1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 /* 22 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) 23 ** P if required. 24 */ 25 #define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) 26 27 /* 28 ** If pMem is an object with a valid string representation, this routine 29 ** ensures the internal encoding for the string representation is 30 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 31 ** 32 ** If pMem is not a string object, or the encoding of the string 33 ** representation is already stored using the requested encoding, then this 34 ** routine is a no-op. 35 ** 36 ** SQLITE_OK is returned if the conversion is successful (or not required). 37 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 38 ** between formats. 39 */ 40 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 41 int rc; 42 assert( (pMem->flags&MEM_RowSet)==0 ); 43 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE 44 || desiredEnc==SQLITE_UTF16BE ); 45 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ 46 return SQLITE_OK; 47 } 48 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 49 #ifdef SQLITE_OMIT_UTF16 50 return SQLITE_ERROR; 51 #else 52 53 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 54 ** then the encoding of the value may not have changed. 55 */ 56 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); 57 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 58 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 59 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 60 return rc; 61 #endif 62 } 63 64 /* 65 ** Make sure pMem->z points to a writable allocation of at least 66 ** n bytes. 67 ** 68 ** If the memory cell currently contains string or blob data 69 ** and the third argument passed to this function is true, the 70 ** current content of the cell is preserved. Otherwise, it may 71 ** be discarded. 72 ** 73 ** This function sets the MEM_Dyn flag and clears any xDel callback. 74 ** It also clears MEM_Ephem and MEM_Static. If the preserve flag is 75 ** not set, Mem.n is zeroed. 76 */ 77 int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){ 78 assert( 1 >= 79 ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) + 80 (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) + 81 ((pMem->flags&MEM_Ephem) ? 1 : 0) + 82 ((pMem->flags&MEM_Static) ? 1 : 0) 83 ); 84 assert( (pMem->flags&MEM_RowSet)==0 ); 85 86 if( n<32 ) n = 32; 87 if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){ 88 if( preserve && pMem->z==pMem->zMalloc ){ 89 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 90 preserve = 0; 91 }else{ 92 sqlite3DbFree(pMem->db, pMem->zMalloc); 93 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 94 } 95 } 96 97 if( pMem->z && preserve && pMem->zMalloc && pMem->z!=pMem->zMalloc ){ 98 memcpy(pMem->zMalloc, pMem->z, pMem->n); 99 } 100 if( pMem->flags&MEM_Dyn && pMem->xDel ){ 101 pMem->xDel((void *)(pMem->z)); 102 } 103 104 pMem->z = pMem->zMalloc; 105 if( pMem->z==0 ){ 106 pMem->flags = MEM_Null; 107 }else{ 108 pMem->flags &= ~(MEM_Ephem|MEM_Static); 109 } 110 pMem->xDel = 0; 111 return (pMem->z ? SQLITE_OK : SQLITE_NOMEM); 112 } 113 114 /* 115 ** Make the given Mem object MEM_Dyn. In other words, make it so 116 ** that any TEXT or BLOB content is stored in memory obtained from 117 ** malloc(). In this way, we know that the memory is safe to be 118 ** overwritten or altered. 119 ** 120 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 121 */ 122 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 123 int f; 124 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 125 assert( (pMem->flags&MEM_RowSet)==0 ); 126 expandBlob(pMem); 127 f = pMem->flags; 128 if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){ 129 if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){ 130 return SQLITE_NOMEM; 131 } 132 pMem->z[pMem->n] = 0; 133 pMem->z[pMem->n+1] = 0; 134 pMem->flags |= MEM_Term; 135 } 136 137 return SQLITE_OK; 138 } 139 140 /* 141 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 142 ** blob stored in dynamically allocated space. 143 */ 144 #ifndef SQLITE_OMIT_INCRBLOB 145 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 146 if( pMem->flags & MEM_Zero ){ 147 int nByte; 148 assert( pMem->flags&MEM_Blob ); 149 assert( (pMem->flags&MEM_RowSet)==0 ); 150 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 151 152 /* Set nByte to the number of bytes required to store the expanded blob. */ 153 nByte = pMem->n + pMem->u.nZero; 154 if( nByte<=0 ){ 155 nByte = 1; 156 } 157 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 158 return SQLITE_NOMEM; 159 } 160 161 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); 162 pMem->n += pMem->u.nZero; 163 pMem->flags &= ~(MEM_Zero|MEM_Term); 164 } 165 return SQLITE_OK; 166 } 167 #endif 168 169 170 /* 171 ** Make sure the given Mem is \u0000 terminated. 172 */ 173 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 174 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 175 if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ 176 return SQLITE_OK; /* Nothing to do */ 177 } 178 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ 179 return SQLITE_NOMEM; 180 } 181 pMem->z[pMem->n] = 0; 182 pMem->z[pMem->n+1] = 0; 183 pMem->flags |= MEM_Term; 184 return SQLITE_OK; 185 } 186 187 /* 188 ** Add MEM_Str to the set of representations for the given Mem. Numbers 189 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string 190 ** is a no-op. 191 ** 192 ** Existing representations MEM_Int and MEM_Real are *not* invalidated. 193 ** 194 ** A MEM_Null value will never be passed to this function. This function is 195 ** used for converting values to text for returning to the user (i.e. via 196 ** sqlite3_value_text()), or for ensuring that values to be used as btree 197 ** keys are strings. In the former case a NULL pointer is returned the 198 ** user and the later is an internal programming error. 199 */ 200 int sqlite3VdbeMemStringify(Mem *pMem, int enc){ 201 int rc = SQLITE_OK; 202 int fg = pMem->flags; 203 const int nByte = 32; 204 205 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 206 assert( !(fg&MEM_Zero) ); 207 assert( !(fg&(MEM_Str|MEM_Blob)) ); 208 assert( fg&(MEM_Int|MEM_Real) ); 209 assert( (pMem->flags&MEM_RowSet)==0 ); 210 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 211 212 213 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){ 214 return SQLITE_NOMEM; 215 } 216 217 /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8 218 ** string representation of the value. Then, if the required encoding 219 ** is UTF-16le or UTF-16be do a translation. 220 ** 221 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. 222 */ 223 if( fg & MEM_Int ){ 224 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); 225 }else{ 226 assert( fg & MEM_Real ); 227 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r); 228 } 229 pMem->n = sqlite3Strlen30(pMem->z); 230 pMem->enc = SQLITE_UTF8; 231 pMem->flags |= MEM_Str|MEM_Term; 232 sqlite3VdbeChangeEncoding(pMem, enc); 233 return rc; 234 } 235 236 /* 237 ** Memory cell pMem contains the context of an aggregate function. 238 ** This routine calls the finalize method for that function. The 239 ** result of the aggregate is stored back into pMem. 240 ** 241 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 242 ** otherwise. 243 */ 244 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 245 int rc = SQLITE_OK; 246 if( ALWAYS(pFunc && pFunc->xFinalize) ){ 247 sqlite3_context ctx; 248 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 249 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 250 memset(&ctx, 0, sizeof(ctx)); 251 ctx.s.flags = MEM_Null; 252 ctx.s.db = pMem->db; 253 ctx.pMem = pMem; 254 ctx.pFunc = pFunc; 255 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ 256 assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel ); 257 sqlite3DbFree(pMem->db, pMem->zMalloc); 258 memcpy(pMem, &ctx.s, sizeof(ctx.s)); 259 rc = ctx.isError; 260 } 261 return rc; 262 } 263 264 /* 265 ** If the memory cell contains a string value that must be freed by 266 ** invoking an external callback, free it now. Calling this function 267 ** does not free any Mem.zMalloc buffer. 268 */ 269 void sqlite3VdbeMemReleaseExternal(Mem *p){ 270 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 271 testcase( p->flags & MEM_Agg ); 272 testcase( p->flags & MEM_Dyn ); 273 testcase( p->flags & MEM_RowSet ); 274 testcase( p->flags & MEM_Frame ); 275 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame) ){ 276 if( p->flags&MEM_Agg ){ 277 sqlite3VdbeMemFinalize(p, p->u.pDef); 278 assert( (p->flags & MEM_Agg)==0 ); 279 sqlite3VdbeMemRelease(p); 280 }else if( p->flags&MEM_Dyn && p->xDel ){ 281 assert( (p->flags&MEM_RowSet)==0 ); 282 p->xDel((void *)p->z); 283 p->xDel = 0; 284 }else if( p->flags&MEM_RowSet ){ 285 sqlite3RowSetClear(p->u.pRowSet); 286 }else if( p->flags&MEM_Frame ){ 287 sqlite3VdbeMemSetNull(p); 288 } 289 } 290 } 291 292 /* 293 ** Release any memory held by the Mem. This may leave the Mem in an 294 ** inconsistent state, for example with (Mem.z==0) and 295 ** (Mem.type==SQLITE_TEXT). 296 */ 297 void sqlite3VdbeMemRelease(Mem *p){ 298 sqlite3VdbeMemReleaseExternal(p); 299 sqlite3DbFree(p->db, p->zMalloc); 300 p->z = 0; 301 p->zMalloc = 0; 302 p->xDel = 0; 303 } 304 305 /* 306 ** Convert a 64-bit IEEE double into a 64-bit signed integer. 307 ** If the double is too large, return 0x8000000000000000. 308 ** 309 ** Most systems appear to do this simply by assigning 310 ** variables and without the extra range tests. But 311 ** there are reports that windows throws an expection 312 ** if the floating point value is out of range. (See ticket #2880.) 313 ** Because we do not completely understand the problem, we will 314 ** take the conservative approach and always do range tests 315 ** before attempting the conversion. 316 */ 317 static i64 doubleToInt64(double r){ 318 #ifdef SQLITE_OMIT_FLOATING_POINT 319 /* When floating-point is omitted, double and int64 are the same thing */ 320 return r; 321 #else 322 /* 323 ** Many compilers we encounter do not define constants for the 324 ** minimum and maximum 64-bit integers, or they define them 325 ** inconsistently. And many do not understand the "LL" notation. 326 ** So we define our own static constants here using nothing 327 ** larger than a 32-bit integer constant. 328 */ 329 static const i64 maxInt = LARGEST_INT64; 330 static const i64 minInt = SMALLEST_INT64; 331 332 if( r<(double)minInt ){ 333 return minInt; 334 }else if( r>(double)maxInt ){ 335 /* minInt is correct here - not maxInt. It turns out that assigning 336 ** a very large positive number to an integer results in a very large 337 ** negative integer. This makes no sense, but it is what x86 hardware 338 ** does so for compatibility we will do the same in software. */ 339 return minInt; 340 }else{ 341 return (i64)r; 342 } 343 #endif 344 } 345 346 /* 347 ** Return some kind of integer value which is the best we can do 348 ** at representing the value that *pMem describes as an integer. 349 ** If pMem is an integer, then the value is exact. If pMem is 350 ** a floating-point then the value returned is the integer part. 351 ** If pMem is a string or blob, then we make an attempt to convert 352 ** it into a integer and return that. If pMem represents an 353 ** an SQL-NULL value, return 0. 354 ** 355 ** If pMem represents a string value, its encoding might be changed. 356 */ 357 i64 sqlite3VdbeIntValue(Mem *pMem){ 358 int flags; 359 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 360 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 361 flags = pMem->flags; 362 if( flags & MEM_Int ){ 363 return pMem->u.i; 364 }else if( flags & MEM_Real ){ 365 return doubleToInt64(pMem->r); 366 }else if( flags & (MEM_Str|MEM_Blob) ){ 367 i64 value; 368 pMem->flags |= MEM_Str; 369 if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) 370 || sqlite3VdbeMemNulTerminate(pMem) ){ 371 return 0; 372 } 373 assert( pMem->z ); 374 sqlite3Atoi64(pMem->z, &value); 375 return value; 376 }else{ 377 return 0; 378 } 379 } 380 381 /* 382 ** Return the best representation of pMem that we can get into a 383 ** double. If pMem is already a double or an integer, return its 384 ** value. If it is a string or blob, try to convert it to a double. 385 ** If it is a NULL, return 0.0. 386 */ 387 double sqlite3VdbeRealValue(Mem *pMem){ 388 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 389 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 390 if( pMem->flags & MEM_Real ){ 391 return pMem->r; 392 }else if( pMem->flags & MEM_Int ){ 393 return (double)pMem->u.i; 394 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 395 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 396 double val = (double)0; 397 pMem->flags |= MEM_Str; 398 if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) 399 || sqlite3VdbeMemNulTerminate(pMem) ){ 400 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 401 return (double)0; 402 } 403 assert( pMem->z ); 404 sqlite3AtoF(pMem->z, &val); 405 return val; 406 }else{ 407 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 408 return (double)0; 409 } 410 } 411 412 /* 413 ** The MEM structure is already a MEM_Real. Try to also make it a 414 ** MEM_Int if we can. 415 */ 416 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 417 assert( pMem->flags & MEM_Real ); 418 assert( (pMem->flags & MEM_RowSet)==0 ); 419 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 420 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 421 422 pMem->u.i = doubleToInt64(pMem->r); 423 424 /* Only mark the value as an integer if 425 ** 426 ** (1) the round-trip conversion real->int->real is a no-op, and 427 ** (2) The integer is neither the largest nor the smallest 428 ** possible integer (ticket #3922) 429 ** 430 ** The second and third terms in the following conditional enforces 431 ** the second condition under the assumption that addition overflow causes 432 ** values to wrap around. On x86 hardware, the third term is always 433 ** true and could be omitted. But we leave it in because other 434 ** architectures might behave differently. 435 */ 436 if( pMem->r==(double)pMem->u.i && pMem->u.i>SMALLEST_INT64 437 && ALWAYS(pMem->u.i<LARGEST_INT64) ){ 438 pMem->flags |= MEM_Int; 439 } 440 } 441 442 /* 443 ** Convert pMem to type integer. Invalidate any prior representations. 444 */ 445 int sqlite3VdbeMemIntegerify(Mem *pMem){ 446 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 447 assert( (pMem->flags & MEM_RowSet)==0 ); 448 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 449 450 pMem->u.i = sqlite3VdbeIntValue(pMem); 451 MemSetTypeFlag(pMem, MEM_Int); 452 return SQLITE_OK; 453 } 454 455 /* 456 ** Convert pMem so that it is of type MEM_Real. 457 ** Invalidate any prior representations. 458 */ 459 int sqlite3VdbeMemRealify(Mem *pMem){ 460 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 461 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 462 463 pMem->r = sqlite3VdbeRealValue(pMem); 464 MemSetTypeFlag(pMem, MEM_Real); 465 return SQLITE_OK; 466 } 467 468 /* 469 ** Convert pMem so that it has types MEM_Real or MEM_Int or both. 470 ** Invalidate any prior representations. 471 ** 472 ** Every effort is made to force the conversion, even if the input 473 ** is a string that does not look completely like a number. Convert 474 ** as much of the string as we can and ignore the rest. 475 */ 476 int sqlite3VdbeMemNumerify(Mem *pMem){ 477 int rc; 478 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ); 479 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 480 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 481 rc = sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8); 482 if( rc ) return rc; 483 rc = sqlite3VdbeMemNulTerminate(pMem); 484 if( rc ) return rc; 485 if( sqlite3Atoi64(pMem->z, &pMem->u.i) ){ 486 MemSetTypeFlag(pMem, MEM_Int); 487 }else{ 488 pMem->r = sqlite3VdbeRealValue(pMem); 489 MemSetTypeFlag(pMem, MEM_Real); 490 sqlite3VdbeIntegerAffinity(pMem); 491 } 492 return SQLITE_OK; 493 } 494 495 /* 496 ** Delete any previous value and set the value stored in *pMem to NULL. 497 */ 498 void sqlite3VdbeMemSetNull(Mem *pMem){ 499 if( pMem->flags & MEM_Frame ){ 500 sqlite3VdbeFrameDelete(pMem->u.pFrame); 501 } 502 if( pMem->flags & MEM_RowSet ){ 503 sqlite3RowSetClear(pMem->u.pRowSet); 504 } 505 MemSetTypeFlag(pMem, MEM_Null); 506 pMem->type = SQLITE_NULL; 507 } 508 509 /* 510 ** Delete any previous value and set the value to be a BLOB of length 511 ** n containing all zeros. 512 */ 513 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 514 sqlite3VdbeMemRelease(pMem); 515 pMem->flags = MEM_Blob|MEM_Zero; 516 pMem->type = SQLITE_BLOB; 517 pMem->n = 0; 518 if( n<0 ) n = 0; 519 pMem->u.nZero = n; 520 pMem->enc = SQLITE_UTF8; 521 522 #ifdef SQLITE_OMIT_INCRBLOB 523 sqlite3VdbeMemGrow(pMem, n, 0); 524 if( pMem->z ){ 525 pMem->n = n; 526 memset(pMem->z, 0, n); 527 } 528 #endif 529 } 530 531 /* 532 ** Delete any previous value and set the value stored in *pMem to val, 533 ** manifest type INTEGER. 534 */ 535 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 536 sqlite3VdbeMemRelease(pMem); 537 pMem->u.i = val; 538 pMem->flags = MEM_Int; 539 pMem->type = SQLITE_INTEGER; 540 } 541 542 #ifndef SQLITE_OMIT_FLOATING_POINT 543 /* 544 ** Delete any previous value and set the value stored in *pMem to val, 545 ** manifest type REAL. 546 */ 547 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 548 if( sqlite3IsNaN(val) ){ 549 sqlite3VdbeMemSetNull(pMem); 550 }else{ 551 sqlite3VdbeMemRelease(pMem); 552 pMem->r = val; 553 pMem->flags = MEM_Real; 554 pMem->type = SQLITE_FLOAT; 555 } 556 } 557 #endif 558 559 /* 560 ** Delete any previous value and set the value of pMem to be an 561 ** empty boolean index. 562 */ 563 void sqlite3VdbeMemSetRowSet(Mem *pMem){ 564 sqlite3 *db = pMem->db; 565 assert( db!=0 ); 566 assert( (pMem->flags & MEM_RowSet)==0 ); 567 sqlite3VdbeMemRelease(pMem); 568 pMem->zMalloc = sqlite3DbMallocRaw(db, 64); 569 if( db->mallocFailed ){ 570 pMem->flags = MEM_Null; 571 }else{ 572 assert( pMem->zMalloc ); 573 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, 574 sqlite3DbMallocSize(db, pMem->zMalloc)); 575 assert( pMem->u.pRowSet!=0 ); 576 pMem->flags = MEM_RowSet; 577 } 578 } 579 580 /* 581 ** Return true if the Mem object contains a TEXT or BLOB that is 582 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 583 */ 584 int sqlite3VdbeMemTooBig(Mem *p){ 585 assert( p->db!=0 ); 586 if( p->flags & (MEM_Str|MEM_Blob) ){ 587 int n = p->n; 588 if( p->flags & MEM_Zero ){ 589 n += p->u.nZero; 590 } 591 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 592 } 593 return 0; 594 } 595 596 /* 597 ** Size of struct Mem not including the Mem.zMalloc member. 598 */ 599 #define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc)) 600 601 /* 602 ** Make an shallow copy of pFrom into pTo. Prior contents of 603 ** pTo are freed. The pFrom->z field is not duplicated. If 604 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 605 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 606 */ 607 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 608 assert( (pFrom->flags & MEM_RowSet)==0 ); 609 sqlite3VdbeMemReleaseExternal(pTo); 610 memcpy(pTo, pFrom, MEMCELLSIZE); 611 pTo->xDel = 0; 612 if( (pFrom->flags&MEM_Static)==0 ){ 613 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 614 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 615 pTo->flags |= srcType; 616 } 617 } 618 619 /* 620 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 621 ** freed before the copy is made. 622 */ 623 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 624 int rc = SQLITE_OK; 625 626 assert( (pFrom->flags & MEM_RowSet)==0 ); 627 sqlite3VdbeMemReleaseExternal(pTo); 628 memcpy(pTo, pFrom, MEMCELLSIZE); 629 pTo->flags &= ~MEM_Dyn; 630 631 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 632 if( 0==(pFrom->flags&MEM_Static) ){ 633 pTo->flags |= MEM_Ephem; 634 rc = sqlite3VdbeMemMakeWriteable(pTo); 635 } 636 } 637 638 return rc; 639 } 640 641 /* 642 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 643 ** freed. If pFrom contains ephemeral data, a copy is made. 644 ** 645 ** pFrom contains an SQL NULL when this routine returns. 646 */ 647 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 648 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 649 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 650 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 651 652 sqlite3VdbeMemRelease(pTo); 653 memcpy(pTo, pFrom, sizeof(Mem)); 654 pFrom->flags = MEM_Null; 655 pFrom->xDel = 0; 656 pFrom->zMalloc = 0; 657 } 658 659 /* 660 ** Change the value of a Mem to be a string or a BLOB. 661 ** 662 ** The memory management strategy depends on the value of the xDel 663 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 664 ** string is copied into a (possibly existing) buffer managed by the 665 ** Mem structure. Otherwise, any existing buffer is freed and the 666 ** pointer copied. 667 ** 668 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH 669 ** size limit) then no memory allocation occurs. If the string can be 670 ** stored without allocating memory, then it is. If a memory allocation 671 ** is required to store the string, then value of pMem is unchanged. In 672 ** either case, SQLITE_TOOBIG is returned. 673 */ 674 int sqlite3VdbeMemSetStr( 675 Mem *pMem, /* Memory cell to set to string value */ 676 const char *z, /* String pointer */ 677 int n, /* Bytes in string, or negative */ 678 u8 enc, /* Encoding of z. 0 for BLOBs */ 679 void (*xDel)(void*) /* Destructor function */ 680 ){ 681 int nByte = n; /* New value for pMem->n */ 682 int iLimit; /* Maximum allowed string or blob size */ 683 u16 flags = 0; /* New value for pMem->flags */ 684 685 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 686 assert( (pMem->flags & MEM_RowSet)==0 ); 687 688 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 689 if( !z ){ 690 sqlite3VdbeMemSetNull(pMem); 691 return SQLITE_OK; 692 } 693 694 if( pMem->db ){ 695 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; 696 }else{ 697 iLimit = SQLITE_MAX_LENGTH; 698 } 699 flags = (enc==0?MEM_Blob:MEM_Str); 700 if( nByte<0 ){ 701 assert( enc!=0 ); 702 if( enc==SQLITE_UTF8 ){ 703 for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){} 704 }else{ 705 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} 706 } 707 flags |= MEM_Term; 708 } 709 710 /* The following block sets the new values of Mem.z and Mem.xDel. It 711 ** also sets a flag in local variable "flags" to indicate the memory 712 ** management (one of MEM_Dyn or MEM_Static). 713 */ 714 if( xDel==SQLITE_TRANSIENT ){ 715 int nAlloc = nByte; 716 if( flags&MEM_Term ){ 717 nAlloc += (enc==SQLITE_UTF8?1:2); 718 } 719 if( nByte>iLimit ){ 720 return SQLITE_TOOBIG; 721 } 722 if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){ 723 return SQLITE_NOMEM; 724 } 725 memcpy(pMem->z, z, nAlloc); 726 }else if( xDel==SQLITE_DYNAMIC ){ 727 sqlite3VdbeMemRelease(pMem); 728 pMem->zMalloc = pMem->z = (char *)z; 729 pMem->xDel = 0; 730 }else{ 731 sqlite3VdbeMemRelease(pMem); 732 pMem->z = (char *)z; 733 pMem->xDel = xDel; 734 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 735 } 736 737 pMem->n = nByte; 738 pMem->flags = flags; 739 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); 740 pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT); 741 742 #ifndef SQLITE_OMIT_UTF16 743 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ 744 return SQLITE_NOMEM; 745 } 746 #endif 747 748 if( nByte>iLimit ){ 749 return SQLITE_TOOBIG; 750 } 751 752 return SQLITE_OK; 753 } 754 755 /* 756 ** Compare the values contained by the two memory cells, returning 757 ** negative, zero or positive if pMem1 is less than, equal to, or greater 758 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 759 ** and reals) sorted numerically, followed by text ordered by the collating 760 ** sequence pColl and finally blob's ordered by memcmp(). 761 ** 762 ** Two NULL values are considered equal by this function. 763 */ 764 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 765 int rc; 766 int f1, f2; 767 int combined_flags; 768 769 f1 = pMem1->flags; 770 f2 = pMem2->flags; 771 combined_flags = f1|f2; 772 assert( (combined_flags & MEM_RowSet)==0 ); 773 774 /* If one value is NULL, it is less than the other. If both values 775 ** are NULL, return 0. 776 */ 777 if( combined_flags&MEM_Null ){ 778 return (f2&MEM_Null) - (f1&MEM_Null); 779 } 780 781 /* If one value is a number and the other is not, the number is less. 782 ** If both are numbers, compare as reals if one is a real, or as integers 783 ** if both values are integers. 784 */ 785 if( combined_flags&(MEM_Int|MEM_Real) ){ 786 if( !(f1&(MEM_Int|MEM_Real)) ){ 787 return 1; 788 } 789 if( !(f2&(MEM_Int|MEM_Real)) ){ 790 return -1; 791 } 792 if( (f1 & f2 & MEM_Int)==0 ){ 793 double r1, r2; 794 if( (f1&MEM_Real)==0 ){ 795 r1 = (double)pMem1->u.i; 796 }else{ 797 r1 = pMem1->r; 798 } 799 if( (f2&MEM_Real)==0 ){ 800 r2 = (double)pMem2->u.i; 801 }else{ 802 r2 = pMem2->r; 803 } 804 if( r1<r2 ) return -1; 805 if( r1>r2 ) return 1; 806 return 0; 807 }else{ 808 assert( f1&MEM_Int ); 809 assert( f2&MEM_Int ); 810 if( pMem1->u.i < pMem2->u.i ) return -1; 811 if( pMem1->u.i > pMem2->u.i ) return 1; 812 return 0; 813 } 814 } 815 816 /* If one value is a string and the other is a blob, the string is less. 817 ** If both are strings, compare using the collating functions. 818 */ 819 if( combined_flags&MEM_Str ){ 820 if( (f1 & MEM_Str)==0 ){ 821 return 1; 822 } 823 if( (f2 & MEM_Str)==0 ){ 824 return -1; 825 } 826 827 assert( pMem1->enc==pMem2->enc ); 828 assert( pMem1->enc==SQLITE_UTF8 || 829 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 830 831 /* The collation sequence must be defined at this point, even if 832 ** the user deletes the collation sequence after the vdbe program is 833 ** compiled (this was not always the case). 834 */ 835 assert( !pColl || pColl->xCmp ); 836 837 if( pColl ){ 838 if( pMem1->enc==pColl->enc ){ 839 /* The strings are already in the correct encoding. Call the 840 ** comparison function directly */ 841 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 842 }else{ 843 const void *v1, *v2; 844 int n1, n2; 845 Mem c1; 846 Mem c2; 847 memset(&c1, 0, sizeof(c1)); 848 memset(&c2, 0, sizeof(c2)); 849 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 850 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 851 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 852 n1 = v1==0 ? 0 : c1.n; 853 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 854 n2 = v2==0 ? 0 : c2.n; 855 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); 856 sqlite3VdbeMemRelease(&c1); 857 sqlite3VdbeMemRelease(&c2); 858 return rc; 859 } 860 } 861 /* If a NULL pointer was passed as the collate function, fall through 862 ** to the blob case and use memcmp(). */ 863 } 864 865 /* Both values must be blobs. Compare using memcmp(). */ 866 rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n); 867 if( rc==0 ){ 868 rc = pMem1->n - pMem2->n; 869 } 870 return rc; 871 } 872 873 /* 874 ** Move data out of a btree key or data field and into a Mem structure. 875 ** The data or key is taken from the entry that pCur is currently pointing 876 ** to. offset and amt determine what portion of the data or key to retrieve. 877 ** key is true to get the key or false to get data. The result is written 878 ** into the pMem element. 879 ** 880 ** The pMem structure is assumed to be uninitialized. Any prior content 881 ** is overwritten without being freed. 882 ** 883 ** If this routine fails for any reason (malloc returns NULL or unable 884 ** to read from the disk) then the pMem is left in an inconsistent state. 885 */ 886 int sqlite3VdbeMemFromBtree( 887 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 888 int offset, /* Offset from the start of data to return bytes from. */ 889 int amt, /* Number of bytes to return. */ 890 int key, /* If true, retrieve from the btree key, not data. */ 891 Mem *pMem /* OUT: Return data in this Mem structure. */ 892 ){ 893 char *zData; /* Data from the btree layer */ 894 int available = 0; /* Number of bytes available on the local btree page */ 895 int rc = SQLITE_OK; /* Return code */ 896 897 assert( sqlite3BtreeCursorIsValid(pCur) ); 898 899 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 900 ** that both the BtShared and database handle mutexes are held. */ 901 assert( (pMem->flags & MEM_RowSet)==0 ); 902 if( key ){ 903 zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); 904 }else{ 905 zData = (char *)sqlite3BtreeDataFetch(pCur, &available); 906 } 907 assert( zData!=0 ); 908 909 if( offset+amt<=available && (pMem->flags&MEM_Dyn)==0 ){ 910 sqlite3VdbeMemRelease(pMem); 911 pMem->z = &zData[offset]; 912 pMem->flags = MEM_Blob|MEM_Ephem; 913 }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){ 914 pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term; 915 pMem->enc = 0; 916 pMem->type = SQLITE_BLOB; 917 if( key ){ 918 rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); 919 }else{ 920 rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); 921 } 922 pMem->z[amt] = 0; 923 pMem->z[amt+1] = 0; 924 if( rc!=SQLITE_OK ){ 925 sqlite3VdbeMemRelease(pMem); 926 } 927 } 928 pMem->n = amt; 929 930 return rc; 931 } 932 933 /* This function is only available internally, it is not part of the 934 ** external API. It works in a similar way to sqlite3_value_text(), 935 ** except the data returned is in the encoding specified by the second 936 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 937 ** SQLITE_UTF8. 938 ** 939 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 940 ** If that is the case, then the result must be aligned on an even byte 941 ** boundary. 942 */ 943 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 944 if( !pVal ) return 0; 945 946 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 947 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 948 assert( (pVal->flags & MEM_RowSet)==0 ); 949 950 if( pVal->flags&MEM_Null ){ 951 return 0; 952 } 953 assert( (MEM_Blob>>3) == MEM_Str ); 954 pVal->flags |= (pVal->flags & MEM_Blob)>>3; 955 expandBlob(pVal); 956 if( pVal->flags&MEM_Str ){ 957 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 958 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ 959 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 960 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 961 return 0; 962 } 963 } 964 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-59893-45467 */ 965 }else{ 966 assert( (pVal->flags&MEM_Blob)==0 ); 967 sqlite3VdbeMemStringify(pVal, enc); 968 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); 969 } 970 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 971 || pVal->db->mallocFailed ); 972 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 973 return pVal->z; 974 }else{ 975 return 0; 976 } 977 } 978 979 /* 980 ** Create a new sqlite3_value object. 981 */ 982 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 983 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 984 if( p ){ 985 p->flags = MEM_Null; 986 p->type = SQLITE_NULL; 987 p->db = db; 988 } 989 return p; 990 } 991 992 /* 993 ** Create a new sqlite3_value object, containing the value of pExpr. 994 ** 995 ** This only works for very simple expressions that consist of one constant 996 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 997 ** be converted directly into a value, then the value is allocated and 998 ** a pointer written to *ppVal. The caller is responsible for deallocating 999 ** the value by passing it to sqlite3ValueFree() later on. If the expression 1000 ** cannot be converted to a value, then *ppVal is set to NULL. 1001 */ 1002 int sqlite3ValueFromExpr( 1003 sqlite3 *db, /* The database connection */ 1004 Expr *pExpr, /* The expression to evaluate */ 1005 u8 enc, /* Encoding to use */ 1006 u8 affinity, /* Affinity to use */ 1007 sqlite3_value **ppVal /* Write the new value here */ 1008 ){ 1009 int op; 1010 char *zVal = 0; 1011 sqlite3_value *pVal = 0; 1012 1013 if( !pExpr ){ 1014 *ppVal = 0; 1015 return SQLITE_OK; 1016 } 1017 op = pExpr->op; 1018 1019 /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT2. 1020 ** The ifdef here is to enable us to achieve 100% branch test coverage even 1021 ** when SQLITE_ENABLE_STAT2 is omitted. 1022 */ 1023 #ifdef SQLITE_ENABLE_STAT2 1024 if( op==TK_REGISTER ) op = pExpr->op2; 1025 #else 1026 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; 1027 #endif 1028 1029 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 1030 pVal = sqlite3ValueNew(db); 1031 if( pVal==0 ) goto no_mem; 1032 if( ExprHasProperty(pExpr, EP_IntValue) ){ 1033 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue); 1034 }else{ 1035 zVal = sqlite3DbStrDup(db, pExpr->u.zToken); 1036 if( zVal==0 ) goto no_mem; 1037 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); 1038 if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT; 1039 } 1040 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ 1041 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); 1042 }else{ 1043 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); 1044 } 1045 if( enc!=SQLITE_UTF8 ){ 1046 sqlite3VdbeChangeEncoding(pVal, enc); 1047 } 1048 }else if( op==TK_UMINUS ) { 1049 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){ 1050 pVal->u.i = -1 * pVal->u.i; 1051 /* (double)-1 In case of SQLITE_OMIT_FLOATING_POINT... */ 1052 pVal->r = (double)-1 * pVal->r; 1053 } 1054 } 1055 #ifndef SQLITE_OMIT_BLOB_LITERAL 1056 else if( op==TK_BLOB ){ 1057 int nVal; 1058 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 1059 assert( pExpr->u.zToken[1]=='\'' ); 1060 pVal = sqlite3ValueNew(db); 1061 if( !pVal ) goto no_mem; 1062 zVal = &pExpr->u.zToken[2]; 1063 nVal = sqlite3Strlen30(zVal)-1; 1064 assert( zVal[nVal]=='\'' ); 1065 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 1066 0, SQLITE_DYNAMIC); 1067 } 1068 #endif 1069 1070 if( pVal ){ 1071 sqlite3VdbeMemStoreType(pVal); 1072 } 1073 *ppVal = pVal; 1074 return SQLITE_OK; 1075 1076 no_mem: 1077 db->mallocFailed = 1; 1078 sqlite3DbFree(db, zVal); 1079 sqlite3ValueFree(pVal); 1080 *ppVal = 0; 1081 return SQLITE_NOMEM; 1082 } 1083 1084 /* 1085 ** Change the string value of an sqlite3_value object 1086 */ 1087 void sqlite3ValueSetStr( 1088 sqlite3_value *v, /* Value to be set */ 1089 int n, /* Length of string z */ 1090 const void *z, /* Text of the new string */ 1091 u8 enc, /* Encoding to use */ 1092 void (*xDel)(void*) /* Destructor for the string */ 1093 ){ 1094 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 1095 } 1096 1097 /* 1098 ** Free an sqlite3_value object 1099 */ 1100 void sqlite3ValueFree(sqlite3_value *v){ 1101 if( !v ) return; 1102 sqlite3VdbeMemRelease((Mem *)v); 1103 sqlite3DbFree(((Mem*)v)->db, v); 1104 } 1105 1106 /* 1107 ** Return the number of bytes in the sqlite3_value object assuming 1108 ** that it uses the encoding "enc" 1109 */ 1110 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1111 Mem *p = (Mem*)pVal; 1112 if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){ 1113 if( p->flags & MEM_Zero ){ 1114 return p->n + p->u.nZero; 1115 }else{ 1116 return p->n; 1117 } 1118 } 1119 return 0; 1120 } 1121