1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 /* True if X is a power of two. 0 is considered a power of two here. 22 ** In other words, return true if X has at most one bit set. 23 */ 24 #define ISPOWEROF2(X) (((X)&((X)-1))==0) 25 26 #ifdef SQLITE_DEBUG 27 /* 28 ** Check invariants on a Mem object. 29 ** 30 ** This routine is intended for use inside of assert() statements, like 31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); 32 */ 33 int sqlite3VdbeCheckMemInvariants(Mem *p){ 34 /* If MEM_Dyn is set then Mem.xDel!=0. 35 ** Mem.xDel might not be initialized if MEM_Dyn is clear. 36 */ 37 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); 38 39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we 40 ** ensure that if Mem.szMalloc>0 then it is safe to do 41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. 42 ** That saves a few cycles in inner loops. */ 43 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); 44 45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */ 46 assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) ); 47 48 if( p->flags & MEM_Null ){ 49 /* Cannot be both MEM_Null and some other type */ 50 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 ); 51 52 /* If MEM_Null is set, then either the value is a pure NULL (the usual 53 ** case) or it is a pointer set using sqlite3_bind_pointer() or 54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be 55 ** set. 56 */ 57 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){ 58 /* This is a pointer type. There may be a flag to indicate what to 59 ** do with the pointer. */ 60 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 61 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 62 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 ); 63 64 /* No other bits set */ 65 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind 66 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 ); 67 }else{ 68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn, 69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */ 70 } 71 }else{ 72 /* The MEM_Cleared bit is only allowed on NULLs */ 73 assert( (p->flags & MEM_Cleared)==0 ); 74 } 75 76 /* The szMalloc field holds the correct memory allocation size */ 77 assert( p->szMalloc==0 78 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) ); 79 80 /* If p holds a string or blob, the Mem.z must point to exactly 81 ** one of the following: 82 ** 83 ** (1) Memory in Mem.zMalloc and managed by the Mem object 84 ** (2) Memory to be freed using Mem.xDel 85 ** (3) An ephemeral string or blob 86 ** (4) A static string or blob 87 */ 88 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ 89 assert( 90 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + 91 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 92 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 93 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 94 ); 95 } 96 return 1; 97 } 98 #endif 99 100 /* 101 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal 102 ** into a buffer. 103 */ 104 static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){ 105 StrAccum acc; 106 assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) ); 107 sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0); 108 if( p->flags & MEM_Int ){ 109 sqlite3_str_appendf(&acc, "%lld", p->u.i); 110 }else if( p->flags & MEM_IntReal ){ 111 sqlite3_str_appendf(&acc, "%!.15g", (double)p->u.i); 112 }else{ 113 sqlite3_str_appendf(&acc, "%!.15g", p->u.r); 114 } 115 assert( acc.zText==zBuf && acc.mxAlloc<=0 ); 116 zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */ 117 } 118 119 #ifdef SQLITE_DEBUG 120 /* 121 ** Validity checks on pMem. pMem holds a string. 122 ** 123 ** (1) Check that string value of pMem agrees with its integer or real value. 124 ** (2) Check that the string is correctly zero terminated 125 ** 126 ** A single int or real value always converts to the same strings. But 127 ** many different strings can be converted into the same int or real. 128 ** If a table contains a numeric value and an index is based on the 129 ** corresponding string value, then it is important that the string be 130 ** derived from the numeric value, not the other way around, to ensure 131 ** that the index and table are consistent. See ticket 132 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for 133 ** an example. 134 ** 135 ** This routine looks at pMem to verify that if it has both a numeric 136 ** representation and a string representation then the string rep has 137 ** been derived from the numeric and not the other way around. It returns 138 ** true if everything is ok and false if there is a problem. 139 ** 140 ** This routine is for use inside of assert() statements only. 141 */ 142 int sqlite3VdbeMemValidStrRep(Mem *p){ 143 char zBuf[100]; 144 char *z; 145 int i, j, incr; 146 if( (p->flags & MEM_Str)==0 ) return 1; 147 if( p->flags & MEM_Term ){ 148 /* Insure that the string is properly zero-terminated. Pay particular 149 ** attention to the case where p->n is odd */ 150 if( p->szMalloc>0 && p->z==p->zMalloc ){ 151 assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 ); 152 assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 ); 153 } 154 assert( p->z[p->n]==0 ); 155 assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 ); 156 assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 ); 157 } 158 if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1; 159 vdbeMemRenderNum(sizeof(zBuf), zBuf, p); 160 z = p->z; 161 i = j = 0; 162 incr = 1; 163 if( p->enc!=SQLITE_UTF8 ){ 164 incr = 2; 165 if( p->enc==SQLITE_UTF16BE ) z++; 166 } 167 while( zBuf[j] ){ 168 if( zBuf[j++]!=z[i] ) return 0; 169 i += incr; 170 } 171 return 1; 172 } 173 #endif /* SQLITE_DEBUG */ 174 175 /* 176 ** If pMem is an object with a valid string representation, this routine 177 ** ensures the internal encoding for the string representation is 178 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 179 ** 180 ** If pMem is not a string object, or the encoding of the string 181 ** representation is already stored using the requested encoding, then this 182 ** routine is a no-op. 183 ** 184 ** SQLITE_OK is returned if the conversion is successful (or not required). 185 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 186 ** between formats. 187 */ 188 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 189 #ifndef SQLITE_OMIT_UTF16 190 int rc; 191 #endif 192 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 193 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE 194 || desiredEnc==SQLITE_UTF16BE ); 195 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ 196 return SQLITE_OK; 197 } 198 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 199 #ifdef SQLITE_OMIT_UTF16 200 return SQLITE_ERROR; 201 #else 202 203 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 204 ** then the encoding of the value may not have changed. 205 */ 206 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); 207 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 208 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 209 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 210 return rc; 211 #endif 212 } 213 214 /* 215 ** Make sure pMem->z points to a writable allocation of at least n bytes. 216 ** 217 ** If the bPreserve argument is true, then copy of the content of 218 ** pMem->z into the new allocation. pMem must be either a string or 219 ** blob if bPreserve is true. If bPreserve is false, any prior content 220 ** in pMem->z is discarded. 221 */ 222 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ 223 assert( sqlite3VdbeCheckMemInvariants(pMem) ); 224 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 225 testcase( pMem->db==0 ); 226 227 /* If the bPreserve flag is set to true, then the memory cell must already 228 ** contain a valid string or blob value. */ 229 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); 230 testcase( bPreserve && pMem->z==0 ); 231 232 assert( pMem->szMalloc==0 233 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) ); 234 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){ 235 if( pMem->db ){ 236 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 237 }else{ 238 pMem->zMalloc = sqlite3Realloc(pMem->z, n); 239 if( pMem->zMalloc==0 ) sqlite3_free(pMem->z); 240 pMem->z = pMem->zMalloc; 241 } 242 bPreserve = 0; 243 }else{ 244 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 245 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 246 } 247 if( pMem->zMalloc==0 ){ 248 sqlite3VdbeMemSetNull(pMem); 249 pMem->z = 0; 250 pMem->szMalloc = 0; 251 return SQLITE_NOMEM_BKPT; 252 }else{ 253 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 254 } 255 256 if( bPreserve && pMem->z ){ 257 assert( pMem->z!=pMem->zMalloc ); 258 memcpy(pMem->zMalloc, pMem->z, pMem->n); 259 } 260 if( (pMem->flags&MEM_Dyn)!=0 ){ 261 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); 262 pMem->xDel((void *)(pMem->z)); 263 } 264 265 pMem->z = pMem->zMalloc; 266 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); 267 return SQLITE_OK; 268 } 269 270 /* 271 ** Change the pMem->zMalloc allocation to be at least szNew bytes. 272 ** If pMem->zMalloc already meets or exceeds the requested size, this 273 ** routine is a no-op. 274 ** 275 ** Any prior string or blob content in the pMem object may be discarded. 276 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str 277 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal, 278 ** and MEM_Null values are preserved. 279 ** 280 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) 281 ** if unable to complete the resizing. 282 */ 283 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ 284 assert( CORRUPT_DB || szNew>0 ); 285 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); 286 if( pMem->szMalloc<szNew ){ 287 return sqlite3VdbeMemGrow(pMem, szNew, 0); 288 } 289 assert( (pMem->flags & MEM_Dyn)==0 ); 290 pMem->z = pMem->zMalloc; 291 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal); 292 return SQLITE_OK; 293 } 294 295 /* 296 ** It is already known that pMem contains an unterminated string. 297 ** Add the zero terminator. 298 ** 299 ** Three bytes of zero are added. In this way, there is guaranteed 300 ** to be a double-zero byte at an even byte boundary in order to 301 ** terminate a UTF16 string, even if the initial size of the buffer 302 ** is an odd number of bytes. 303 */ 304 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ 305 if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){ 306 return SQLITE_NOMEM_BKPT; 307 } 308 pMem->z[pMem->n] = 0; 309 pMem->z[pMem->n+1] = 0; 310 pMem->z[pMem->n+2] = 0; 311 pMem->flags |= MEM_Term; 312 return SQLITE_OK; 313 } 314 315 /* 316 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in 317 ** MEM.zMalloc, where it can be safely written. 318 ** 319 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 320 */ 321 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 322 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 323 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 324 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ 325 if( ExpandBlob(pMem) ) return SQLITE_NOMEM; 326 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ 327 int rc = vdbeMemAddTerminator(pMem); 328 if( rc ) return rc; 329 } 330 } 331 pMem->flags &= ~MEM_Ephem; 332 #ifdef SQLITE_DEBUG 333 pMem->pScopyFrom = 0; 334 #endif 335 336 return SQLITE_OK; 337 } 338 339 /* 340 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 341 ** blob stored in dynamically allocated space. 342 */ 343 #ifndef SQLITE_OMIT_INCRBLOB 344 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 345 int nByte; 346 assert( pMem->flags & MEM_Zero ); 347 assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) ); 348 testcase( sqlite3_value_nochange(pMem) ); 349 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 350 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 351 352 /* Set nByte to the number of bytes required to store the expanded blob. */ 353 nByte = pMem->n + pMem->u.nZero; 354 if( nByte<=0 ){ 355 if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK; 356 nByte = 1; 357 } 358 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 359 return SQLITE_NOMEM_BKPT; 360 } 361 362 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); 363 pMem->n += pMem->u.nZero; 364 pMem->flags &= ~(MEM_Zero|MEM_Term); 365 return SQLITE_OK; 366 } 367 #endif 368 369 /* 370 ** Make sure the given Mem is \u0000 terminated. 371 */ 372 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 373 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 374 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); 375 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); 376 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ 377 return SQLITE_OK; /* Nothing to do */ 378 }else{ 379 return vdbeMemAddTerminator(pMem); 380 } 381 } 382 383 /* 384 ** Add MEM_Str to the set of representations for the given Mem. This 385 ** routine is only called if pMem is a number of some kind, not a NULL 386 ** or a BLOB. 387 ** 388 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated 389 ** if bForce is true but are retained if bForce is false. 390 ** 391 ** A MEM_Null value will never be passed to this function. This function is 392 ** used for converting values to text for returning to the user (i.e. via 393 ** sqlite3_value_text()), or for ensuring that values to be used as btree 394 ** keys are strings. In the former case a NULL pointer is returned the 395 ** user and the latter is an internal programming error. 396 */ 397 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ 398 const int nByte = 32; 399 400 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 401 assert( !(pMem->flags&MEM_Zero) ); 402 assert( !(pMem->flags&(MEM_Str|MEM_Blob)) ); 403 assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) ); 404 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 405 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 406 407 408 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 409 pMem->enc = 0; 410 return SQLITE_NOMEM_BKPT; 411 } 412 413 vdbeMemRenderNum(nByte, pMem->z, pMem); 414 assert( pMem->z!=0 ); 415 pMem->n = sqlite3Strlen30NN(pMem->z); 416 pMem->enc = SQLITE_UTF8; 417 pMem->flags |= MEM_Str|MEM_Term; 418 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); 419 sqlite3VdbeChangeEncoding(pMem, enc); 420 return SQLITE_OK; 421 } 422 423 /* 424 ** Memory cell pMem contains the context of an aggregate function. 425 ** This routine calls the finalize method for that function. The 426 ** result of the aggregate is stored back into pMem. 427 ** 428 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 429 ** otherwise. 430 */ 431 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 432 sqlite3_context ctx; 433 Mem t; 434 assert( pFunc!=0 ); 435 assert( pFunc->xFinalize!=0 ); 436 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 437 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 438 memset(&ctx, 0, sizeof(ctx)); 439 memset(&t, 0, sizeof(t)); 440 t.flags = MEM_Null; 441 t.db = pMem->db; 442 ctx.pOut = &t; 443 ctx.pMem = pMem; 444 ctx.pFunc = pFunc; 445 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ 446 assert( (pMem->flags & MEM_Dyn)==0 ); 447 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 448 memcpy(pMem, &t, sizeof(t)); 449 return ctx.isError; 450 } 451 452 /* 453 ** Memory cell pAccum contains the context of an aggregate function. 454 ** This routine calls the xValue method for that function and stores 455 ** the results in memory cell pMem. 456 ** 457 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK 458 ** otherwise. 459 */ 460 #ifndef SQLITE_OMIT_WINDOWFUNC 461 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){ 462 sqlite3_context ctx; 463 assert( pFunc!=0 ); 464 assert( pFunc->xValue!=0 ); 465 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef ); 466 assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) ); 467 memset(&ctx, 0, sizeof(ctx)); 468 sqlite3VdbeMemSetNull(pOut); 469 ctx.pOut = pOut; 470 ctx.pMem = pAccum; 471 ctx.pFunc = pFunc; 472 pFunc->xValue(&ctx); 473 return ctx.isError; 474 } 475 #endif /* SQLITE_OMIT_WINDOWFUNC */ 476 477 /* 478 ** If the memory cell contains a value that must be freed by 479 ** invoking the external callback in Mem.xDel, then this routine 480 ** will free that value. It also sets Mem.flags to MEM_Null. 481 ** 482 ** This is a helper routine for sqlite3VdbeMemSetNull() and 483 ** for sqlite3VdbeMemRelease(). Use those other routines as the 484 ** entry point for releasing Mem resources. 485 */ 486 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ 487 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 488 assert( VdbeMemDynamic(p) ); 489 if( p->flags&MEM_Agg ){ 490 sqlite3VdbeMemFinalize(p, p->u.pDef); 491 assert( (p->flags & MEM_Agg)==0 ); 492 testcase( p->flags & MEM_Dyn ); 493 } 494 if( p->flags&MEM_Dyn ){ 495 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); 496 p->xDel((void *)p->z); 497 } 498 p->flags = MEM_Null; 499 } 500 501 /* 502 ** Release memory held by the Mem p, both external memory cleared 503 ** by p->xDel and memory in p->zMalloc. 504 ** 505 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in 506 ** the unusual case where there really is memory in p that needs 507 ** to be freed. 508 */ 509 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ 510 if( VdbeMemDynamic(p) ){ 511 vdbeMemClearExternAndSetNull(p); 512 } 513 if( p->szMalloc ){ 514 sqlite3DbFreeNN(p->db, p->zMalloc); 515 p->szMalloc = 0; 516 } 517 p->z = 0; 518 } 519 520 /* 521 ** Release any memory resources held by the Mem. Both the memory that is 522 ** free by Mem.xDel and the Mem.zMalloc allocation are freed. 523 ** 524 ** Use this routine prior to clean up prior to abandoning a Mem, or to 525 ** reset a Mem back to its minimum memory utilization. 526 ** 527 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space 528 ** prior to inserting new content into the Mem. 529 */ 530 void sqlite3VdbeMemRelease(Mem *p){ 531 assert( sqlite3VdbeCheckMemInvariants(p) ); 532 if( VdbeMemDynamic(p) || p->szMalloc ){ 533 vdbeMemClear(p); 534 } 535 } 536 537 /* 538 ** Convert a 64-bit IEEE double into a 64-bit signed integer. 539 ** If the double is out of range of a 64-bit signed integer then 540 ** return the closest available 64-bit signed integer. 541 */ 542 static SQLITE_NOINLINE i64 doubleToInt64(double r){ 543 #ifdef SQLITE_OMIT_FLOATING_POINT 544 /* When floating-point is omitted, double and int64 are the same thing */ 545 return r; 546 #else 547 /* 548 ** Many compilers we encounter do not define constants for the 549 ** minimum and maximum 64-bit integers, or they define them 550 ** inconsistently. And many do not understand the "LL" notation. 551 ** So we define our own static constants here using nothing 552 ** larger than a 32-bit integer constant. 553 */ 554 static const i64 maxInt = LARGEST_INT64; 555 static const i64 minInt = SMALLEST_INT64; 556 557 if( r<=(double)minInt ){ 558 return minInt; 559 }else if( r>=(double)maxInt ){ 560 return maxInt; 561 }else{ 562 return (i64)r; 563 } 564 #endif 565 } 566 567 /* 568 ** Return some kind of integer value which is the best we can do 569 ** at representing the value that *pMem describes as an integer. 570 ** If pMem is an integer, then the value is exact. If pMem is 571 ** a floating-point then the value returned is the integer part. 572 ** If pMem is a string or blob, then we make an attempt to convert 573 ** it into an integer and return that. If pMem represents an 574 ** an SQL-NULL value, return 0. 575 ** 576 ** If pMem represents a string value, its encoding might be changed. 577 */ 578 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){ 579 i64 value = 0; 580 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); 581 return value; 582 } 583 i64 sqlite3VdbeIntValue(Mem *pMem){ 584 int flags; 585 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 586 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 587 flags = pMem->flags; 588 if( flags & (MEM_Int|MEM_IntReal) ){ 589 testcase( flags & MEM_IntReal ); 590 return pMem->u.i; 591 }else if( flags & MEM_Real ){ 592 return doubleToInt64(pMem->u.r); 593 }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){ 594 return memIntValue(pMem); 595 }else{ 596 return 0; 597 } 598 } 599 600 /* 601 ** Return the best representation of pMem that we can get into a 602 ** double. If pMem is already a double or an integer, return its 603 ** value. If it is a string or blob, try to convert it to a double. 604 ** If it is a NULL, return 0.0. 605 */ 606 static SQLITE_NOINLINE double memRealValue(Mem *pMem){ 607 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 608 double val = (double)0; 609 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); 610 return val; 611 } 612 double sqlite3VdbeRealValue(Mem *pMem){ 613 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 614 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 615 if( pMem->flags & MEM_Real ){ 616 return pMem->u.r; 617 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 618 testcase( pMem->flags & MEM_IntReal ); 619 return (double)pMem->u.i; 620 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 621 return memRealValue(pMem); 622 }else{ 623 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 624 return (double)0; 625 } 626 } 627 628 /* 629 ** Return 1 if pMem represents true, and return 0 if pMem represents false. 630 ** Return the value ifNull if pMem is NULL. 631 */ 632 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ 633 testcase( pMem->flags & MEM_IntReal ); 634 if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0; 635 if( pMem->flags & MEM_Null ) return ifNull; 636 return sqlite3VdbeRealValue(pMem)!=0.0; 637 } 638 639 /* 640 ** The MEM structure is already a MEM_Real. Try to also make it a 641 ** MEM_Int if we can. 642 */ 643 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 644 i64 ix; 645 assert( pMem->flags & MEM_Real ); 646 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 647 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 648 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 649 650 ix = doubleToInt64(pMem->u.r); 651 652 /* Only mark the value as an integer if 653 ** 654 ** (1) the round-trip conversion real->int->real is a no-op, and 655 ** (2) The integer is neither the largest nor the smallest 656 ** possible integer (ticket #3922) 657 ** 658 ** The second and third terms in the following conditional enforces 659 ** the second condition under the assumption that addition overflow causes 660 ** values to wrap around. 661 */ 662 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ 663 pMem->u.i = ix; 664 MemSetTypeFlag(pMem, MEM_Int); 665 } 666 } 667 668 /* 669 ** Convert pMem to type integer. Invalidate any prior representations. 670 */ 671 int sqlite3VdbeMemIntegerify(Mem *pMem){ 672 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 673 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 674 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 675 676 pMem->u.i = sqlite3VdbeIntValue(pMem); 677 MemSetTypeFlag(pMem, MEM_Int); 678 return SQLITE_OK; 679 } 680 681 /* 682 ** Convert pMem so that it is of type MEM_Real. 683 ** Invalidate any prior representations. 684 */ 685 int sqlite3VdbeMemRealify(Mem *pMem){ 686 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 687 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 688 689 pMem->u.r = sqlite3VdbeRealValue(pMem); 690 MemSetTypeFlag(pMem, MEM_Real); 691 return SQLITE_OK; 692 } 693 694 /* Compare a floating point value to an integer. Return true if the two 695 ** values are the same within the precision of the floating point value. 696 ** 697 ** This function assumes that i was obtained by assignment from r1. 698 ** 699 ** For some versions of GCC on 32-bit machines, if you do the more obvious 700 ** comparison of "r1==(double)i" you sometimes get an answer of false even 701 ** though the r1 and (double)i values are bit-for-bit the same. 702 */ 703 int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ 704 double r2 = (double)i; 705 return r1==0.0 706 || (memcmp(&r1, &r2, sizeof(r1))==0 707 && i >= -2251799813685248LL && i < 2251799813685248LL); 708 } 709 710 /* 711 ** Convert pMem so that it has type MEM_Real or MEM_Int. 712 ** Invalidate any prior representations. 713 ** 714 ** Every effort is made to force the conversion, even if the input 715 ** is a string that does not look completely like a number. Convert 716 ** as much of the string as we can and ignore the rest. 717 */ 718 int sqlite3VdbeMemNumerify(Mem *pMem){ 719 testcase( pMem->flags & MEM_Int ); 720 testcase( pMem->flags & MEM_Real ); 721 testcase( pMem->flags & MEM_IntReal ); 722 testcase( pMem->flags & MEM_Null ); 723 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){ 724 int rc; 725 sqlite3_int64 ix; 726 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 727 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 728 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 729 if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1) 730 || sqlite3RealSameAsInt(pMem->u.r, (ix = (i64)pMem->u.r)) 731 ){ 732 pMem->u.i = ix; 733 MemSetTypeFlag(pMem, MEM_Int); 734 }else{ 735 MemSetTypeFlag(pMem, MEM_Real); 736 } 737 } 738 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 ); 739 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); 740 return SQLITE_OK; 741 } 742 743 /* 744 ** Cast the datatype of the value in pMem according to the affinity 745 ** "aff". Casting is different from applying affinity in that a cast 746 ** is forced. In other words, the value is converted into the desired 747 ** affinity even if that results in loss of data. This routine is 748 ** used (for example) to implement the SQL "cast()" operator. 749 */ 750 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ 751 if( pMem->flags & MEM_Null ) return; 752 switch( aff ){ 753 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ 754 if( (pMem->flags & MEM_Blob)==0 ){ 755 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 756 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 757 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); 758 }else{ 759 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); 760 } 761 break; 762 } 763 case SQLITE_AFF_NUMERIC: { 764 sqlite3VdbeMemNumerify(pMem); 765 break; 766 } 767 case SQLITE_AFF_INTEGER: { 768 sqlite3VdbeMemIntegerify(pMem); 769 break; 770 } 771 case SQLITE_AFF_REAL: { 772 sqlite3VdbeMemRealify(pMem); 773 break; 774 } 775 default: { 776 assert( aff==SQLITE_AFF_TEXT ); 777 assert( MEM_Str==(MEM_Blob>>3) ); 778 pMem->flags |= (pMem->flags&MEM_Blob)>>3; 779 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 780 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 781 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero); 782 break; 783 } 784 } 785 } 786 787 /* 788 ** Initialize bulk memory to be a consistent Mem object. 789 ** 790 ** The minimum amount of initialization feasible is performed. 791 */ 792 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ 793 assert( (flags & ~MEM_TypeMask)==0 ); 794 pMem->flags = flags; 795 pMem->db = db; 796 pMem->szMalloc = 0; 797 } 798 799 800 /* 801 ** Delete any previous value and set the value stored in *pMem to NULL. 802 ** 803 ** This routine calls the Mem.xDel destructor to dispose of values that 804 ** require the destructor. But it preserves the Mem.zMalloc memory allocation. 805 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this 806 ** routine to invoke the destructor and deallocates Mem.zMalloc. 807 ** 808 ** Use this routine to reset the Mem prior to insert a new value. 809 ** 810 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. 811 */ 812 void sqlite3VdbeMemSetNull(Mem *pMem){ 813 if( VdbeMemDynamic(pMem) ){ 814 vdbeMemClearExternAndSetNull(pMem); 815 }else{ 816 pMem->flags = MEM_Null; 817 } 818 } 819 void sqlite3ValueSetNull(sqlite3_value *p){ 820 sqlite3VdbeMemSetNull((Mem*)p); 821 } 822 823 /* 824 ** Delete any previous value and set the value to be a BLOB of length 825 ** n containing all zeros. 826 */ 827 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 828 sqlite3VdbeMemRelease(pMem); 829 pMem->flags = MEM_Blob|MEM_Zero; 830 pMem->n = 0; 831 if( n<0 ) n = 0; 832 pMem->u.nZero = n; 833 pMem->enc = SQLITE_UTF8; 834 pMem->z = 0; 835 } 836 837 /* 838 ** The pMem is known to contain content that needs to be destroyed prior 839 ** to a value change. So invoke the destructor, then set the value to 840 ** a 64-bit integer. 841 */ 842 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ 843 sqlite3VdbeMemSetNull(pMem); 844 pMem->u.i = val; 845 pMem->flags = MEM_Int; 846 } 847 848 /* 849 ** Delete any previous value and set the value stored in *pMem to val, 850 ** manifest type INTEGER. 851 */ 852 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 853 if( VdbeMemDynamic(pMem) ){ 854 vdbeReleaseAndSetInt64(pMem, val); 855 }else{ 856 pMem->u.i = val; 857 pMem->flags = MEM_Int; 858 } 859 } 860 861 /* A no-op destructor */ 862 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } 863 864 /* 865 ** Set the value stored in *pMem should already be a NULL. 866 ** Also store a pointer to go with it. 867 */ 868 void sqlite3VdbeMemSetPointer( 869 Mem *pMem, 870 void *pPtr, 871 const char *zPType, 872 void (*xDestructor)(void*) 873 ){ 874 assert( pMem->flags==MEM_Null ); 875 pMem->u.zPType = zPType ? zPType : ""; 876 pMem->z = pPtr; 877 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term; 878 pMem->eSubtype = 'p'; 879 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor; 880 } 881 882 #ifndef SQLITE_OMIT_FLOATING_POINT 883 /* 884 ** Delete any previous value and set the value stored in *pMem to val, 885 ** manifest type REAL. 886 */ 887 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 888 sqlite3VdbeMemSetNull(pMem); 889 if( !sqlite3IsNaN(val) ){ 890 pMem->u.r = val; 891 pMem->flags = MEM_Real; 892 } 893 } 894 #endif 895 896 #ifdef SQLITE_DEBUG 897 /* 898 ** Return true if the Mem holds a RowSet object. This routine is intended 899 ** for use inside of assert() statements. 900 */ 901 int sqlite3VdbeMemIsRowSet(const Mem *pMem){ 902 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn) 903 && pMem->xDel==sqlite3RowSetDelete; 904 } 905 #endif 906 907 /* 908 ** Delete any previous value and set the value of pMem to be an 909 ** empty boolean index. 910 ** 911 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation 912 ** error occurs. 913 */ 914 int sqlite3VdbeMemSetRowSet(Mem *pMem){ 915 sqlite3 *db = pMem->db; 916 RowSet *p; 917 assert( db!=0 ); 918 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 919 sqlite3VdbeMemRelease(pMem); 920 p = sqlite3RowSetInit(db); 921 if( p==0 ) return SQLITE_NOMEM; 922 pMem->z = (char*)p; 923 pMem->flags = MEM_Blob|MEM_Dyn; 924 pMem->xDel = sqlite3RowSetDelete; 925 return SQLITE_OK; 926 } 927 928 /* 929 ** Return true if the Mem object contains a TEXT or BLOB that is 930 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 931 */ 932 int sqlite3VdbeMemTooBig(Mem *p){ 933 assert( p->db!=0 ); 934 if( p->flags & (MEM_Str|MEM_Blob) ){ 935 int n = p->n; 936 if( p->flags & MEM_Zero ){ 937 n += p->u.nZero; 938 } 939 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 940 } 941 return 0; 942 } 943 944 #ifdef SQLITE_DEBUG 945 /* 946 ** This routine prepares a memory cell for modification by breaking 947 ** its link to a shallow copy and by marking any current shallow 948 ** copies of this cell as invalid. 949 ** 950 ** This is used for testing and debugging only - to make sure shallow 951 ** copies are not misused. 952 */ 953 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ 954 int i; 955 Mem *pX; 956 for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){ 957 if( pX->pScopyFrom==pMem ){ 958 /* If pX is marked as a shallow copy of pMem, then verify that 959 ** no significant changes have been made to pX since the OP_SCopy. 960 ** A significant change would indicated a missed call to this 961 ** function for pX. Minor changes, such as adding or removing a 962 ** dual type, are allowed, as long as the underlying value is the 963 ** same. */ 964 u16 mFlags = pMem->flags & pX->flags & pX->mScopyFlags; 965 assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i ); 966 assert( (mFlags&MEM_Real)==0 || pMem->u.r==pX->u.r ); 967 assert( (mFlags&MEM_Str)==0 || (pMem->n==pX->n && pMem->z==pX->z) ); 968 assert( (mFlags&MEM_Blob)==0 || sqlite3BlobCompare(pMem,pX)==0 ); 969 970 /* pMem is the register that is changing. But also mark pX as 971 ** undefined so that we can quickly detect the shallow-copy error */ 972 pX->flags = MEM_Undefined; 973 pX->pScopyFrom = 0; 974 } 975 } 976 pMem->pScopyFrom = 0; 977 } 978 #endif /* SQLITE_DEBUG */ 979 980 981 /* 982 ** Make an shallow copy of pFrom into pTo. Prior contents of 983 ** pTo are freed. The pFrom->z field is not duplicated. If 984 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 985 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 986 */ 987 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ 988 vdbeMemClearExternAndSetNull(pTo); 989 assert( !VdbeMemDynamic(pTo) ); 990 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); 991 } 992 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 993 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 994 assert( pTo->db==pFrom->db ); 995 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } 996 memcpy(pTo, pFrom, MEMCELLSIZE); 997 if( (pFrom->flags&MEM_Static)==0 ){ 998 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 999 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 1000 pTo->flags |= srcType; 1001 } 1002 } 1003 1004 /* 1005 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 1006 ** freed before the copy is made. 1007 */ 1008 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 1009 int rc = SQLITE_OK; 1010 1011 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 1012 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); 1013 memcpy(pTo, pFrom, MEMCELLSIZE); 1014 pTo->flags &= ~MEM_Dyn; 1015 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 1016 if( 0==(pFrom->flags&MEM_Static) ){ 1017 pTo->flags |= MEM_Ephem; 1018 rc = sqlite3VdbeMemMakeWriteable(pTo); 1019 } 1020 } 1021 1022 return rc; 1023 } 1024 1025 /* 1026 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 1027 ** freed. If pFrom contains ephemeral data, a copy is made. 1028 ** 1029 ** pFrom contains an SQL NULL when this routine returns. 1030 */ 1031 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 1032 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 1033 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 1034 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 1035 1036 sqlite3VdbeMemRelease(pTo); 1037 memcpy(pTo, pFrom, sizeof(Mem)); 1038 pFrom->flags = MEM_Null; 1039 pFrom->szMalloc = 0; 1040 } 1041 1042 /* 1043 ** Change the value of a Mem to be a string or a BLOB. 1044 ** 1045 ** The memory management strategy depends on the value of the xDel 1046 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 1047 ** string is copied into a (possibly existing) buffer managed by the 1048 ** Mem structure. Otherwise, any existing buffer is freed and the 1049 ** pointer copied. 1050 ** 1051 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH 1052 ** size limit) then no memory allocation occurs. If the string can be 1053 ** stored without allocating memory, then it is. If a memory allocation 1054 ** is required to store the string, then value of pMem is unchanged. In 1055 ** either case, SQLITE_TOOBIG is returned. 1056 */ 1057 int sqlite3VdbeMemSetStr( 1058 Mem *pMem, /* Memory cell to set to string value */ 1059 const char *z, /* String pointer */ 1060 int n, /* Bytes in string, or negative */ 1061 u8 enc, /* Encoding of z. 0 for BLOBs */ 1062 void (*xDel)(void*) /* Destructor function */ 1063 ){ 1064 int nByte = n; /* New value for pMem->n */ 1065 int iLimit; /* Maximum allowed string or blob size */ 1066 u16 flags = 0; /* New value for pMem->flags */ 1067 1068 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 1069 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1070 1071 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 1072 if( !z ){ 1073 sqlite3VdbeMemSetNull(pMem); 1074 return SQLITE_OK; 1075 } 1076 1077 if( pMem->db ){ 1078 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; 1079 }else{ 1080 iLimit = SQLITE_MAX_LENGTH; 1081 } 1082 flags = (enc==0?MEM_Blob:MEM_Str); 1083 if( nByte<0 ){ 1084 assert( enc!=0 ); 1085 if( enc==SQLITE_UTF8 ){ 1086 nByte = 0x7fffffff & (int)strlen(z); 1087 }else{ 1088 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} 1089 } 1090 flags |= MEM_Term; 1091 } 1092 1093 /* The following block sets the new values of Mem.z and Mem.xDel. It 1094 ** also sets a flag in local variable "flags" to indicate the memory 1095 ** management (one of MEM_Dyn or MEM_Static). 1096 */ 1097 if( xDel==SQLITE_TRANSIENT ){ 1098 u32 nAlloc = nByte; 1099 if( flags&MEM_Term ){ 1100 nAlloc += (enc==SQLITE_UTF8?1:2); 1101 } 1102 if( nByte>iLimit ){ 1103 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG); 1104 } 1105 testcase( nAlloc==0 ); 1106 testcase( nAlloc==31 ); 1107 testcase( nAlloc==32 ); 1108 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){ 1109 return SQLITE_NOMEM_BKPT; 1110 } 1111 memcpy(pMem->z, z, nAlloc); 1112 }else{ 1113 sqlite3VdbeMemRelease(pMem); 1114 pMem->z = (char *)z; 1115 if( xDel==SQLITE_DYNAMIC ){ 1116 pMem->zMalloc = pMem->z; 1117 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 1118 }else{ 1119 pMem->xDel = xDel; 1120 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 1121 } 1122 } 1123 1124 pMem->n = nByte; 1125 pMem->flags = flags; 1126 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); 1127 1128 #ifndef SQLITE_OMIT_UTF16 1129 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ 1130 return SQLITE_NOMEM_BKPT; 1131 } 1132 #endif 1133 1134 if( nByte>iLimit ){ 1135 return SQLITE_TOOBIG; 1136 } 1137 1138 return SQLITE_OK; 1139 } 1140 1141 /* 1142 ** Move data out of a btree key or data field and into a Mem structure. 1143 ** The data is payload from the entry that pCur is currently pointing 1144 ** to. offset and amt determine what portion of the data or key to retrieve. 1145 ** The result is written into the pMem element. 1146 ** 1147 ** The pMem object must have been initialized. This routine will use 1148 ** pMem->zMalloc to hold the content from the btree, if possible. New 1149 ** pMem->zMalloc space will be allocated if necessary. The calling routine 1150 ** is responsible for making sure that the pMem object is eventually 1151 ** destroyed. 1152 ** 1153 ** If this routine fails for any reason (malloc returns NULL or unable 1154 ** to read from the disk) then the pMem is left in an inconsistent state. 1155 */ 1156 static SQLITE_NOINLINE int vdbeMemFromBtreeResize( 1157 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1158 u32 offset, /* Offset from the start of data to return bytes from. */ 1159 u32 amt, /* Number of bytes to return. */ 1160 Mem *pMem /* OUT: Return data in this Mem structure. */ 1161 ){ 1162 int rc; 1163 pMem->flags = MEM_Null; 1164 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){ 1165 return SQLITE_CORRUPT_BKPT; 1166 } 1167 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){ 1168 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z); 1169 if( rc==SQLITE_OK ){ 1170 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */ 1171 pMem->flags = MEM_Blob; 1172 pMem->n = (int)amt; 1173 }else{ 1174 sqlite3VdbeMemRelease(pMem); 1175 } 1176 } 1177 return rc; 1178 } 1179 int sqlite3VdbeMemFromBtree( 1180 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1181 u32 offset, /* Offset from the start of data to return bytes from. */ 1182 u32 amt, /* Number of bytes to return. */ 1183 Mem *pMem /* OUT: Return data in this Mem structure. */ 1184 ){ 1185 char *zData; /* Data from the btree layer */ 1186 u32 available = 0; /* Number of bytes available on the local btree page */ 1187 int rc = SQLITE_OK; /* Return code */ 1188 1189 assert( sqlite3BtreeCursorIsValid(pCur) ); 1190 assert( !VdbeMemDynamic(pMem) ); 1191 1192 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 1193 ** that both the BtShared and database handle mutexes are held. */ 1194 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1195 zData = (char *)sqlite3BtreePayloadFetch(pCur, &available); 1196 assert( zData!=0 ); 1197 1198 if( offset+amt<=available ){ 1199 pMem->z = &zData[offset]; 1200 pMem->flags = MEM_Blob|MEM_Ephem; 1201 pMem->n = (int)amt; 1202 }else{ 1203 rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem); 1204 } 1205 1206 return rc; 1207 } 1208 1209 /* 1210 ** The pVal argument is known to be a value other than NULL. 1211 ** Convert it into a string with encoding enc and return a pointer 1212 ** to a zero-terminated version of that string. 1213 */ 1214 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ 1215 assert( pVal!=0 ); 1216 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1217 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1218 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1219 assert( (pVal->flags & (MEM_Null))==0 ); 1220 if( pVal->flags & (MEM_Blob|MEM_Str) ){ 1221 if( ExpandBlob(pVal) ) return 0; 1222 pVal->flags |= MEM_Str; 1223 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ 1224 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 1225 } 1226 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ 1227 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 1228 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 1229 return 0; 1230 } 1231 } 1232 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ 1233 }else{ 1234 sqlite3VdbeMemStringify(pVal, enc, 0); 1235 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); 1236 } 1237 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 1238 || pVal->db->mallocFailed ); 1239 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 1240 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1241 return pVal->z; 1242 }else{ 1243 return 0; 1244 } 1245 } 1246 1247 /* This function is only available internally, it is not part of the 1248 ** external API. It works in a similar way to sqlite3_value_text(), 1249 ** except the data returned is in the encoding specified by the second 1250 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 1251 ** SQLITE_UTF8. 1252 ** 1253 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 1254 ** If that is the case, then the result must be aligned on an even byte 1255 ** boundary. 1256 */ 1257 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 1258 if( !pVal ) return 0; 1259 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1260 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1261 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1262 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ 1263 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1264 return pVal->z; 1265 } 1266 if( pVal->flags&MEM_Null ){ 1267 return 0; 1268 } 1269 return valueToText(pVal, enc); 1270 } 1271 1272 /* 1273 ** Create a new sqlite3_value object. 1274 */ 1275 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 1276 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 1277 if( p ){ 1278 p->flags = MEM_Null; 1279 p->db = db; 1280 } 1281 return p; 1282 } 1283 1284 /* 1285 ** Context object passed by sqlite3Stat4ProbeSetValue() through to 1286 ** valueNew(). See comments above valueNew() for details. 1287 */ 1288 struct ValueNewStat4Ctx { 1289 Parse *pParse; 1290 Index *pIdx; 1291 UnpackedRecord **ppRec; 1292 int iVal; 1293 }; 1294 1295 /* 1296 ** Allocate and return a pointer to a new sqlite3_value object. If 1297 ** the second argument to this function is NULL, the object is allocated 1298 ** by calling sqlite3ValueNew(). 1299 ** 1300 ** Otherwise, if the second argument is non-zero, then this function is 1301 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not 1302 ** already been allocated, allocate the UnpackedRecord structure that 1303 ** that function will return to its caller here. Then return a pointer to 1304 ** an sqlite3_value within the UnpackedRecord.a[] array. 1305 */ 1306 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ 1307 #ifdef SQLITE_ENABLE_STAT4 1308 if( p ){ 1309 UnpackedRecord *pRec = p->ppRec[0]; 1310 1311 if( pRec==0 ){ 1312 Index *pIdx = p->pIdx; /* Index being probed */ 1313 int nByte; /* Bytes of space to allocate */ 1314 int i; /* Counter variable */ 1315 int nCol = pIdx->nColumn; /* Number of index columns including rowid */ 1316 1317 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); 1318 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); 1319 if( pRec ){ 1320 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); 1321 if( pRec->pKeyInfo ){ 1322 assert( pRec->pKeyInfo->nAllField==nCol ); 1323 assert( pRec->pKeyInfo->enc==ENC(db) ); 1324 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); 1325 for(i=0; i<nCol; i++){ 1326 pRec->aMem[i].flags = MEM_Null; 1327 pRec->aMem[i].db = db; 1328 } 1329 }else{ 1330 sqlite3DbFreeNN(db, pRec); 1331 pRec = 0; 1332 } 1333 } 1334 if( pRec==0 ) return 0; 1335 p->ppRec[0] = pRec; 1336 } 1337 1338 pRec->nField = p->iVal+1; 1339 return &pRec->aMem[p->iVal]; 1340 } 1341 #else 1342 UNUSED_PARAMETER(p); 1343 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1344 return sqlite3ValueNew(db); 1345 } 1346 1347 /* 1348 ** The expression object indicated by the second argument is guaranteed 1349 ** to be a scalar SQL function. If 1350 ** 1351 ** * all function arguments are SQL literals, 1352 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and 1353 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, 1354 ** 1355 ** then this routine attempts to invoke the SQL function. Assuming no 1356 ** error occurs, output parameter (*ppVal) is set to point to a value 1357 ** object containing the result before returning SQLITE_OK. 1358 ** 1359 ** Affinity aff is applied to the result of the function before returning. 1360 ** If the result is a text value, the sqlite3_value object uses encoding 1361 ** enc. 1362 ** 1363 ** If the conditions above are not met, this function returns SQLITE_OK 1364 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to 1365 ** NULL and an SQLite error code returned. 1366 */ 1367 #ifdef SQLITE_ENABLE_STAT4 1368 static int valueFromFunction( 1369 sqlite3 *db, /* The database connection */ 1370 Expr *p, /* The expression to evaluate */ 1371 u8 enc, /* Encoding to use */ 1372 u8 aff, /* Affinity to use */ 1373 sqlite3_value **ppVal, /* Write the new value here */ 1374 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1375 ){ 1376 sqlite3_context ctx; /* Context object for function invocation */ 1377 sqlite3_value **apVal = 0; /* Function arguments */ 1378 int nVal = 0; /* Size of apVal[] array */ 1379 FuncDef *pFunc = 0; /* Function definition */ 1380 sqlite3_value *pVal = 0; /* New value */ 1381 int rc = SQLITE_OK; /* Return code */ 1382 ExprList *pList = 0; /* Function arguments */ 1383 int i; /* Iterator variable */ 1384 1385 assert( pCtx!=0 ); 1386 assert( (p->flags & EP_TokenOnly)==0 ); 1387 pList = p->x.pList; 1388 if( pList ) nVal = pList->nExpr; 1389 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); 1390 assert( pFunc ); 1391 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 1392 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 1393 ){ 1394 return SQLITE_OK; 1395 } 1396 1397 if( pList ){ 1398 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); 1399 if( apVal==0 ){ 1400 rc = SQLITE_NOMEM_BKPT; 1401 goto value_from_function_out; 1402 } 1403 for(i=0; i<nVal; i++){ 1404 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); 1405 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; 1406 } 1407 } 1408 1409 pVal = valueNew(db, pCtx); 1410 if( pVal==0 ){ 1411 rc = SQLITE_NOMEM_BKPT; 1412 goto value_from_function_out; 1413 } 1414 1415 assert( pCtx->pParse->rc==SQLITE_OK ); 1416 memset(&ctx, 0, sizeof(ctx)); 1417 ctx.pOut = pVal; 1418 ctx.pFunc = pFunc; 1419 pFunc->xSFunc(&ctx, nVal, apVal); 1420 if( ctx.isError ){ 1421 rc = ctx.isError; 1422 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); 1423 }else{ 1424 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); 1425 assert( rc==SQLITE_OK ); 1426 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1427 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ 1428 rc = SQLITE_TOOBIG; 1429 pCtx->pParse->nErr++; 1430 } 1431 } 1432 pCtx->pParse->rc = rc; 1433 1434 value_from_function_out: 1435 if( rc!=SQLITE_OK ){ 1436 pVal = 0; 1437 } 1438 if( apVal ){ 1439 for(i=0; i<nVal; i++){ 1440 sqlite3ValueFree(apVal[i]); 1441 } 1442 sqlite3DbFreeNN(db, apVal); 1443 } 1444 1445 *ppVal = pVal; 1446 return rc; 1447 } 1448 #else 1449 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK 1450 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1451 1452 /* 1453 ** Extract a value from the supplied expression in the manner described 1454 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object 1455 ** using valueNew(). 1456 ** 1457 ** If pCtx is NULL and an error occurs after the sqlite3_value object 1458 ** has been allocated, it is freed before returning. Or, if pCtx is not 1459 ** NULL, it is assumed that the caller will free any allocated object 1460 ** in all cases. 1461 */ 1462 static int valueFromExpr( 1463 sqlite3 *db, /* The database connection */ 1464 Expr *pExpr, /* The expression to evaluate */ 1465 u8 enc, /* Encoding to use */ 1466 u8 affinity, /* Affinity to use */ 1467 sqlite3_value **ppVal, /* Write the new value here */ 1468 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1469 ){ 1470 int op; 1471 char *zVal = 0; 1472 sqlite3_value *pVal = 0; 1473 int negInt = 1; 1474 const char *zNeg = ""; 1475 int rc = SQLITE_OK; 1476 1477 assert( pExpr!=0 ); 1478 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; 1479 #if defined(SQLITE_ENABLE_STAT4) 1480 if( op==TK_REGISTER ) op = pExpr->op2; 1481 #else 1482 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; 1483 #endif 1484 1485 /* Compressed expressions only appear when parsing the DEFAULT clause 1486 ** on a table column definition, and hence only when pCtx==0. This 1487 ** check ensures that an EP_TokenOnly expression is never passed down 1488 ** into valueFromFunction(). */ 1489 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); 1490 1491 if( op==TK_CAST ){ 1492 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0); 1493 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); 1494 testcase( rc!=SQLITE_OK ); 1495 if( *ppVal ){ 1496 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); 1497 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); 1498 } 1499 return rc; 1500 } 1501 1502 /* Handle negative integers in a single step. This is needed in the 1503 ** case when the value is -9223372036854775808. 1504 */ 1505 if( op==TK_UMINUS 1506 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ 1507 pExpr = pExpr->pLeft; 1508 op = pExpr->op; 1509 negInt = -1; 1510 zNeg = "-"; 1511 } 1512 1513 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 1514 pVal = valueNew(db, pCtx); 1515 if( pVal==0 ) goto no_mem; 1516 if( ExprHasProperty(pExpr, EP_IntValue) ){ 1517 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); 1518 }else{ 1519 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); 1520 if( zVal==0 ) goto no_mem; 1521 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); 1522 } 1523 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ 1524 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); 1525 }else{ 1526 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); 1527 } 1528 assert( (pVal->flags & MEM_IntReal)==0 ); 1529 if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){ 1530 testcase( pVal->flags & MEM_Int ); 1531 testcase( pVal->flags & MEM_Real ); 1532 pVal->flags &= ~MEM_Str; 1533 } 1534 if( enc!=SQLITE_UTF8 ){ 1535 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1536 } 1537 }else if( op==TK_UMINUS ) { 1538 /* This branch happens for multiple negative signs. Ex: -(-5) */ 1539 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) 1540 && pVal!=0 1541 ){ 1542 sqlite3VdbeMemNumerify(pVal); 1543 if( pVal->flags & MEM_Real ){ 1544 pVal->u.r = -pVal->u.r; 1545 }else if( pVal->u.i==SMALLEST_INT64 ){ 1546 pVal->u.r = -(double)SMALLEST_INT64; 1547 MemSetTypeFlag(pVal, MEM_Real); 1548 }else{ 1549 pVal->u.i = -pVal->u.i; 1550 } 1551 sqlite3ValueApplyAffinity(pVal, affinity, enc); 1552 } 1553 }else if( op==TK_NULL ){ 1554 pVal = valueNew(db, pCtx); 1555 if( pVal==0 ) goto no_mem; 1556 sqlite3VdbeMemSetNull(pVal); 1557 } 1558 #ifndef SQLITE_OMIT_BLOB_LITERAL 1559 else if( op==TK_BLOB ){ 1560 int nVal; 1561 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 1562 assert( pExpr->u.zToken[1]=='\'' ); 1563 pVal = valueNew(db, pCtx); 1564 if( !pVal ) goto no_mem; 1565 zVal = &pExpr->u.zToken[2]; 1566 nVal = sqlite3Strlen30(zVal)-1; 1567 assert( zVal[nVal]=='\'' ); 1568 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 1569 0, SQLITE_DYNAMIC); 1570 } 1571 #endif 1572 #ifdef SQLITE_ENABLE_STAT4 1573 else if( op==TK_FUNCTION && pCtx!=0 ){ 1574 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); 1575 } 1576 #endif 1577 else if( op==TK_TRUEFALSE ){ 1578 pVal = valueNew(db, pCtx); 1579 if( pVal ){ 1580 pVal->flags = MEM_Int; 1581 pVal->u.i = pExpr->u.zToken[4]==0; 1582 } 1583 } 1584 1585 *ppVal = pVal; 1586 return rc; 1587 1588 no_mem: 1589 #ifdef SQLITE_ENABLE_STAT4 1590 if( pCtx==0 || pCtx->pParse->nErr==0 ) 1591 #endif 1592 sqlite3OomFault(db); 1593 sqlite3DbFree(db, zVal); 1594 assert( *ppVal==0 ); 1595 #ifdef SQLITE_ENABLE_STAT4 1596 if( pCtx==0 ) sqlite3ValueFree(pVal); 1597 #else 1598 assert( pCtx==0 ); sqlite3ValueFree(pVal); 1599 #endif 1600 return SQLITE_NOMEM_BKPT; 1601 } 1602 1603 /* 1604 ** Create a new sqlite3_value object, containing the value of pExpr. 1605 ** 1606 ** This only works for very simple expressions that consist of one constant 1607 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 1608 ** be converted directly into a value, then the value is allocated and 1609 ** a pointer written to *ppVal. The caller is responsible for deallocating 1610 ** the value by passing it to sqlite3ValueFree() later on. If the expression 1611 ** cannot be converted to a value, then *ppVal is set to NULL. 1612 */ 1613 int sqlite3ValueFromExpr( 1614 sqlite3 *db, /* The database connection */ 1615 Expr *pExpr, /* The expression to evaluate */ 1616 u8 enc, /* Encoding to use */ 1617 u8 affinity, /* Affinity to use */ 1618 sqlite3_value **ppVal /* Write the new value here */ 1619 ){ 1620 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; 1621 } 1622 1623 #ifdef SQLITE_ENABLE_STAT4 1624 /* 1625 ** Attempt to extract a value from pExpr and use it to construct *ppVal. 1626 ** 1627 ** If pAlloc is not NULL, then an UnpackedRecord object is created for 1628 ** pAlloc if one does not exist and the new value is added to the 1629 ** UnpackedRecord object. 1630 ** 1631 ** A value is extracted in the following cases: 1632 ** 1633 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1634 ** 1635 ** * The expression is a bound variable, and this is a reprepare, or 1636 ** 1637 ** * The expression is a literal value. 1638 ** 1639 ** On success, *ppVal is made to point to the extracted value. The caller 1640 ** is responsible for ensuring that the value is eventually freed. 1641 */ 1642 static int stat4ValueFromExpr( 1643 Parse *pParse, /* Parse context */ 1644 Expr *pExpr, /* The expression to extract a value from */ 1645 u8 affinity, /* Affinity to use */ 1646 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ 1647 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1648 ){ 1649 int rc = SQLITE_OK; 1650 sqlite3_value *pVal = 0; 1651 sqlite3 *db = pParse->db; 1652 1653 /* Skip over any TK_COLLATE nodes */ 1654 pExpr = sqlite3ExprSkipCollate(pExpr); 1655 1656 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE ); 1657 if( !pExpr ){ 1658 pVal = valueNew(db, pAlloc); 1659 if( pVal ){ 1660 sqlite3VdbeMemSetNull((Mem*)pVal); 1661 } 1662 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 1663 Vdbe *v; 1664 int iBindVar = pExpr->iColumn; 1665 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); 1666 if( (v = pParse->pReprepare)!=0 ){ 1667 pVal = valueNew(db, pAlloc); 1668 if( pVal ){ 1669 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); 1670 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); 1671 pVal->db = pParse->db; 1672 } 1673 } 1674 }else{ 1675 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); 1676 } 1677 1678 assert( pVal==0 || pVal->db==db ); 1679 *ppVal = pVal; 1680 return rc; 1681 } 1682 1683 /* 1684 ** This function is used to allocate and populate UnpackedRecord 1685 ** structures intended to be compared against sample index keys stored 1686 ** in the sqlite_stat4 table. 1687 ** 1688 ** A single call to this function populates zero or more fields of the 1689 ** record starting with field iVal (fields are numbered from left to 1690 ** right starting with 0). A single field is populated if: 1691 ** 1692 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1693 ** 1694 ** * The expression is a bound variable, and this is a reprepare, or 1695 ** 1696 ** * The sqlite3ValueFromExpr() function is able to extract a value 1697 ** from the expression (i.e. the expression is a literal value). 1698 ** 1699 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the 1700 ** vector components that match either of the two latter criteria listed 1701 ** above. 1702 ** 1703 ** Before any value is appended to the record, the affinity of the 1704 ** corresponding column within index pIdx is applied to it. Before 1705 ** this function returns, output parameter *pnExtract is set to the 1706 ** number of values appended to the record. 1707 ** 1708 ** When this function is called, *ppRec must either point to an object 1709 ** allocated by an earlier call to this function, or must be NULL. If it 1710 ** is NULL and a value can be successfully extracted, a new UnpackedRecord 1711 ** is allocated (and *ppRec set to point to it) before returning. 1712 ** 1713 ** Unless an error is encountered, SQLITE_OK is returned. It is not an 1714 ** error if a value cannot be extracted from pExpr. If an error does 1715 ** occur, an SQLite error code is returned. 1716 */ 1717 int sqlite3Stat4ProbeSetValue( 1718 Parse *pParse, /* Parse context */ 1719 Index *pIdx, /* Index being probed */ 1720 UnpackedRecord **ppRec, /* IN/OUT: Probe record */ 1721 Expr *pExpr, /* The expression to extract a value from */ 1722 int nElem, /* Maximum number of values to append */ 1723 int iVal, /* Array element to populate */ 1724 int *pnExtract /* OUT: Values appended to the record */ 1725 ){ 1726 int rc = SQLITE_OK; 1727 int nExtract = 0; 1728 1729 if( pExpr==0 || pExpr->op!=TK_SELECT ){ 1730 int i; 1731 struct ValueNewStat4Ctx alloc; 1732 1733 alloc.pParse = pParse; 1734 alloc.pIdx = pIdx; 1735 alloc.ppRec = ppRec; 1736 1737 for(i=0; i<nElem; i++){ 1738 sqlite3_value *pVal = 0; 1739 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0); 1740 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i); 1741 alloc.iVal = iVal+i; 1742 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); 1743 if( !pVal ) break; 1744 nExtract++; 1745 } 1746 } 1747 1748 *pnExtract = nExtract; 1749 return rc; 1750 } 1751 1752 /* 1753 ** Attempt to extract a value from expression pExpr using the methods 1754 ** as described for sqlite3Stat4ProbeSetValue() above. 1755 ** 1756 ** If successful, set *ppVal to point to a new value object and return 1757 ** SQLITE_OK. If no value can be extracted, but no other error occurs 1758 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error 1759 ** does occur, return an SQLite error code. The final value of *ppVal 1760 ** is undefined in this case. 1761 */ 1762 int sqlite3Stat4ValueFromExpr( 1763 Parse *pParse, /* Parse context */ 1764 Expr *pExpr, /* The expression to extract a value from */ 1765 u8 affinity, /* Affinity to use */ 1766 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1767 ){ 1768 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); 1769 } 1770 1771 /* 1772 ** Extract the iCol-th column from the nRec-byte record in pRec. Write 1773 ** the column value into *ppVal. If *ppVal is initially NULL then a new 1774 ** sqlite3_value object is allocated. 1775 ** 1776 ** If *ppVal is initially NULL then the caller is responsible for 1777 ** ensuring that the value written into *ppVal is eventually freed. 1778 */ 1779 int sqlite3Stat4Column( 1780 sqlite3 *db, /* Database handle */ 1781 const void *pRec, /* Pointer to buffer containing record */ 1782 int nRec, /* Size of buffer pRec in bytes */ 1783 int iCol, /* Column to extract */ 1784 sqlite3_value **ppVal /* OUT: Extracted value */ 1785 ){ 1786 u32 t = 0; /* a column type code */ 1787 int nHdr; /* Size of the header in the record */ 1788 int iHdr; /* Next unread header byte */ 1789 int iField; /* Next unread data byte */ 1790 int szField = 0; /* Size of the current data field */ 1791 int i; /* Column index */ 1792 u8 *a = (u8*)pRec; /* Typecast byte array */ 1793 Mem *pMem = *ppVal; /* Write result into this Mem object */ 1794 1795 assert( iCol>0 ); 1796 iHdr = getVarint32(a, nHdr); 1797 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; 1798 iField = nHdr; 1799 for(i=0; i<=iCol; i++){ 1800 iHdr += getVarint32(&a[iHdr], t); 1801 testcase( iHdr==nHdr ); 1802 testcase( iHdr==nHdr+1 ); 1803 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; 1804 szField = sqlite3VdbeSerialTypeLen(t); 1805 iField += szField; 1806 } 1807 testcase( iField==nRec ); 1808 testcase( iField==nRec+1 ); 1809 if( iField>nRec ) return SQLITE_CORRUPT_BKPT; 1810 if( pMem==0 ){ 1811 pMem = *ppVal = sqlite3ValueNew(db); 1812 if( pMem==0 ) return SQLITE_NOMEM_BKPT; 1813 } 1814 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); 1815 pMem->enc = ENC(db); 1816 return SQLITE_OK; 1817 } 1818 1819 /* 1820 ** Unless it is NULL, the argument must be an UnpackedRecord object returned 1821 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes 1822 ** the object. 1823 */ 1824 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ 1825 if( pRec ){ 1826 int i; 1827 int nCol = pRec->pKeyInfo->nAllField; 1828 Mem *aMem = pRec->aMem; 1829 sqlite3 *db = aMem[0].db; 1830 for(i=0; i<nCol; i++){ 1831 sqlite3VdbeMemRelease(&aMem[i]); 1832 } 1833 sqlite3KeyInfoUnref(pRec->pKeyInfo); 1834 sqlite3DbFreeNN(db, pRec); 1835 } 1836 } 1837 #endif /* ifdef SQLITE_ENABLE_STAT4 */ 1838 1839 /* 1840 ** Change the string value of an sqlite3_value object 1841 */ 1842 void sqlite3ValueSetStr( 1843 sqlite3_value *v, /* Value to be set */ 1844 int n, /* Length of string z */ 1845 const void *z, /* Text of the new string */ 1846 u8 enc, /* Encoding to use */ 1847 void (*xDel)(void*) /* Destructor for the string */ 1848 ){ 1849 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 1850 } 1851 1852 /* 1853 ** Free an sqlite3_value object 1854 */ 1855 void sqlite3ValueFree(sqlite3_value *v){ 1856 if( !v ) return; 1857 sqlite3VdbeMemRelease((Mem *)v); 1858 sqlite3DbFreeNN(((Mem*)v)->db, v); 1859 } 1860 1861 /* 1862 ** The sqlite3ValueBytes() routine returns the number of bytes in the 1863 ** sqlite3_value object assuming that it uses the encoding "enc". 1864 ** The valueBytes() routine is a helper function. 1865 */ 1866 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ 1867 return valueToText(pVal, enc)!=0 ? pVal->n : 0; 1868 } 1869 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1870 Mem *p = (Mem*)pVal; 1871 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); 1872 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ 1873 return p->n; 1874 } 1875 if( (p->flags & MEM_Blob)!=0 ){ 1876 if( p->flags & MEM_Zero ){ 1877 return p->n + p->u.nZero; 1878 }else{ 1879 return p->n; 1880 } 1881 } 1882 if( p->flags & MEM_Null ) return 0; 1883 return valueBytes(pVal, enc); 1884 } 1885