1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 #ifdef SQLITE_DEBUG 22 /* 23 ** Check invariants on a Mem object. 24 ** 25 ** This routine is intended for use inside of assert() statements, like 26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); 27 */ 28 int sqlite3VdbeCheckMemInvariants(Mem *p){ 29 /* If MEM_Dyn is set then Mem.xDel!=0. 30 ** Mem.xDel might not be initialized if MEM_Dyn is clear. 31 */ 32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); 33 34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we 35 ** ensure that if Mem.szMalloc>0 then it is safe to do 36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. 37 ** That saves a few cycles in inner loops. */ 38 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); 39 40 /* Cannot be both MEM_Int and MEM_Real at the same time */ 41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) ); 42 43 if( p->flags & MEM_Null ){ 44 /* Cannot be both MEM_Null and some other type */ 45 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 ); 46 47 /* If MEM_Null is set, then either the value is a pure NULL (the usual 48 ** case) or it is a pointer set using sqlite3_bind_pointer() or 49 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be 50 ** set. 51 */ 52 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){ 53 /* This is a pointer type. There may be a flag to indicate what to 54 ** do with the pointer. */ 55 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 56 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 57 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 ); 58 59 /* No other bits set */ 60 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype 61 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 ); 62 }else{ 63 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn, 64 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */ 65 } 66 }else{ 67 /* The MEM_Cleared bit is only allowed on NULLs */ 68 assert( (p->flags & MEM_Cleared)==0 ); 69 } 70 71 /* The szMalloc field holds the correct memory allocation size */ 72 assert( p->szMalloc==0 73 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) ); 74 75 /* If p holds a string or blob, the Mem.z must point to exactly 76 ** one of the following: 77 ** 78 ** (1) Memory in Mem.zMalloc and managed by the Mem object 79 ** (2) Memory to be freed using Mem.xDel 80 ** (3) An ephemeral string or blob 81 ** (4) A static string or blob 82 */ 83 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ 84 assert( 85 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + 86 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 87 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 88 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 89 ); 90 } 91 return 1; 92 } 93 #endif 94 95 #ifdef SQLITE_DEBUG 96 /* 97 ** Check that string value of pMem agrees with its integer or real value. 98 ** 99 ** A single int or real value always converts to the same strings. But 100 ** many different strings can be converted into the same int or real. 101 ** If a table contains a numeric value and an index is based on the 102 ** corresponding string value, then it is important that the string be 103 ** derived from the numeric value, not the other way around, to ensure 104 ** that the index and table are consistent. See ticket 105 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for 106 ** an example. 107 ** 108 ** This routine looks at pMem to verify that if it has both a numeric 109 ** representation and a string representation then the string rep has 110 ** been derived from the numeric and not the other way around. It returns 111 ** true if everything is ok and false if there is a problem. 112 ** 113 ** This routine is for use inside of assert() statements only. 114 */ 115 int sqlite3VdbeMemConsistentDualRep(Mem *p){ 116 char zBuf[100]; 117 char *z; 118 int i, j, incr; 119 if( (p->flags & MEM_Str)==0 ) return 1; 120 if( (p->flags & (MEM_Int|MEM_Real))==0 ) return 1; 121 if( p->flags & MEM_Int ){ 122 sqlite3_snprintf(sizeof(zBuf),zBuf,"%lld",p->u.i); 123 }else{ 124 sqlite3_snprintf(sizeof(zBuf),zBuf,"%!.15g",p->u.r); 125 } 126 z = p->z; 127 i = j = 0; 128 incr = 1; 129 if( p->enc!=SQLITE_UTF8 ){ 130 incr = 2; 131 if( p->enc==SQLITE_UTF16BE ) z++; 132 } 133 while( zBuf[j] ){ 134 if( zBuf[j++]!=z[i] ) return 0; 135 i += incr; 136 } 137 return 1; 138 } 139 #endif /* SQLITE_DEBUG */ 140 141 /* 142 ** If pMem is an object with a valid string representation, this routine 143 ** ensures the internal encoding for the string representation is 144 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 145 ** 146 ** If pMem is not a string object, or the encoding of the string 147 ** representation is already stored using the requested encoding, then this 148 ** routine is a no-op. 149 ** 150 ** SQLITE_OK is returned if the conversion is successful (or not required). 151 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 152 ** between formats. 153 */ 154 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 155 #ifndef SQLITE_OMIT_UTF16 156 int rc; 157 #endif 158 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 159 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE 160 || desiredEnc==SQLITE_UTF16BE ); 161 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ 162 return SQLITE_OK; 163 } 164 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 165 #ifdef SQLITE_OMIT_UTF16 166 return SQLITE_ERROR; 167 #else 168 169 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 170 ** then the encoding of the value may not have changed. 171 */ 172 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); 173 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 174 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 175 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 176 return rc; 177 #endif 178 } 179 180 /* 181 ** Make sure pMem->z points to a writable allocation of at least 182 ** min(n,32) bytes. 183 ** 184 ** If the bPreserve argument is true, then copy of the content of 185 ** pMem->z into the new allocation. pMem must be either a string or 186 ** blob if bPreserve is true. If bPreserve is false, any prior content 187 ** in pMem->z is discarded. 188 */ 189 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ 190 assert( sqlite3VdbeCheckMemInvariants(pMem) ); 191 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 192 testcase( pMem->db==0 ); 193 194 /* If the bPreserve flag is set to true, then the memory cell must already 195 ** contain a valid string or blob value. */ 196 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); 197 testcase( bPreserve && pMem->z==0 ); 198 199 assert( pMem->szMalloc==0 200 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) ); 201 if( n<32 ) n = 32; 202 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){ 203 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 204 bPreserve = 0; 205 }else{ 206 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 207 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 208 } 209 if( pMem->zMalloc==0 ){ 210 sqlite3VdbeMemSetNull(pMem); 211 pMem->z = 0; 212 pMem->szMalloc = 0; 213 return SQLITE_NOMEM_BKPT; 214 }else{ 215 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 216 } 217 218 if( bPreserve && pMem->z ){ 219 assert( pMem->z!=pMem->zMalloc ); 220 memcpy(pMem->zMalloc, pMem->z, pMem->n); 221 } 222 if( (pMem->flags&MEM_Dyn)!=0 ){ 223 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); 224 pMem->xDel((void *)(pMem->z)); 225 } 226 227 pMem->z = pMem->zMalloc; 228 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); 229 return SQLITE_OK; 230 } 231 232 /* 233 ** Change the pMem->zMalloc allocation to be at least szNew bytes. 234 ** If pMem->zMalloc already meets or exceeds the requested size, this 235 ** routine is a no-op. 236 ** 237 ** Any prior string or blob content in the pMem object may be discarded. 238 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str 239 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null 240 ** values are preserved. 241 ** 242 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) 243 ** if unable to complete the resizing. 244 */ 245 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ 246 assert( szNew>0 ); 247 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); 248 if( pMem->szMalloc<szNew ){ 249 return sqlite3VdbeMemGrow(pMem, szNew, 0); 250 } 251 assert( (pMem->flags & MEM_Dyn)==0 ); 252 pMem->z = pMem->zMalloc; 253 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real); 254 return SQLITE_OK; 255 } 256 257 /* 258 ** It is already known that pMem contains an unterminated string. 259 ** Add the zero terminator. 260 */ 261 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ 262 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ 263 return SQLITE_NOMEM_BKPT; 264 } 265 pMem->z[pMem->n] = 0; 266 pMem->z[pMem->n+1] = 0; 267 pMem->flags |= MEM_Term; 268 return SQLITE_OK; 269 } 270 271 /* 272 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in 273 ** MEM.zMalloc, where it can be safely written. 274 ** 275 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 276 */ 277 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 278 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 279 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 280 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ 281 if( ExpandBlob(pMem) ) return SQLITE_NOMEM; 282 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ 283 int rc = vdbeMemAddTerminator(pMem); 284 if( rc ) return rc; 285 } 286 } 287 pMem->flags &= ~MEM_Ephem; 288 #ifdef SQLITE_DEBUG 289 pMem->pScopyFrom = 0; 290 #endif 291 292 return SQLITE_OK; 293 } 294 295 /* 296 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 297 ** blob stored in dynamically allocated space. 298 */ 299 #ifndef SQLITE_OMIT_INCRBLOB 300 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 301 int nByte; 302 assert( pMem->flags & MEM_Zero ); 303 assert( pMem->flags&MEM_Blob ); 304 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 305 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 306 307 /* Set nByte to the number of bytes required to store the expanded blob. */ 308 nByte = pMem->n + pMem->u.nZero; 309 if( nByte<=0 ){ 310 nByte = 1; 311 } 312 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 313 return SQLITE_NOMEM_BKPT; 314 } 315 316 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); 317 pMem->n += pMem->u.nZero; 318 pMem->flags &= ~(MEM_Zero|MEM_Term); 319 return SQLITE_OK; 320 } 321 #endif 322 323 /* 324 ** Make sure the given Mem is \u0000 terminated. 325 */ 326 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 327 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 328 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); 329 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); 330 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ 331 return SQLITE_OK; /* Nothing to do */ 332 }else{ 333 return vdbeMemAddTerminator(pMem); 334 } 335 } 336 337 /* 338 ** Add MEM_Str to the set of representations for the given Mem. Numbers 339 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string 340 ** is a no-op. 341 ** 342 ** Existing representations MEM_Int and MEM_Real are invalidated if 343 ** bForce is true but are retained if bForce is false. 344 ** 345 ** A MEM_Null value will never be passed to this function. This function is 346 ** used for converting values to text for returning to the user (i.e. via 347 ** sqlite3_value_text()), or for ensuring that values to be used as btree 348 ** keys are strings. In the former case a NULL pointer is returned the 349 ** user and the latter is an internal programming error. 350 */ 351 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ 352 int fg = pMem->flags; 353 const int nByte = 32; 354 355 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 356 assert( !(fg&MEM_Zero) ); 357 assert( !(fg&(MEM_Str|MEM_Blob)) ); 358 assert( fg&(MEM_Int|MEM_Real) ); 359 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 360 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 361 362 363 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 364 pMem->enc = 0; 365 return SQLITE_NOMEM_BKPT; 366 } 367 368 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8 369 ** string representation of the value. Then, if the required encoding 370 ** is UTF-16le or UTF-16be do a translation. 371 ** 372 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. 373 */ 374 if( fg & MEM_Int ){ 375 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); 376 }else{ 377 assert( fg & MEM_Real ); 378 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r); 379 } 380 assert( pMem->z!=0 ); 381 pMem->n = sqlite3Strlen30NN(pMem->z); 382 pMem->enc = SQLITE_UTF8; 383 pMem->flags |= MEM_Str|MEM_Term; 384 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real); 385 sqlite3VdbeChangeEncoding(pMem, enc); 386 return SQLITE_OK; 387 } 388 389 /* 390 ** Memory cell pMem contains the context of an aggregate function. 391 ** This routine calls the finalize method for that function. The 392 ** result of the aggregate is stored back into pMem. 393 ** 394 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 395 ** otherwise. 396 */ 397 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 398 sqlite3_context ctx; 399 Mem t; 400 assert( pFunc!=0 ); 401 assert( pFunc->xFinalize!=0 ); 402 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 403 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 404 memset(&ctx, 0, sizeof(ctx)); 405 memset(&t, 0, sizeof(t)); 406 t.flags = MEM_Null; 407 t.db = pMem->db; 408 ctx.pOut = &t; 409 ctx.pMem = pMem; 410 ctx.pFunc = pFunc; 411 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ 412 assert( (pMem->flags & MEM_Dyn)==0 ); 413 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 414 memcpy(pMem, &t, sizeof(t)); 415 return ctx.isError; 416 } 417 418 /* 419 ** Memory cell pAccum contains the context of an aggregate function. 420 ** This routine calls the xValue method for that function and stores 421 ** the results in memory cell pMem. 422 ** 423 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK 424 ** otherwise. 425 */ 426 #ifndef SQLITE_OMIT_WINDOWFUNC 427 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){ 428 sqlite3_context ctx; 429 Mem t; 430 assert( pFunc!=0 ); 431 assert( pFunc->xValue!=0 ); 432 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef ); 433 assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) ); 434 memset(&ctx, 0, sizeof(ctx)); 435 memset(&t, 0, sizeof(t)); 436 t.flags = MEM_Null; 437 t.db = pAccum->db; 438 sqlite3VdbeMemSetNull(pOut); 439 ctx.pOut = pOut; 440 ctx.pMem = pAccum; 441 ctx.pFunc = pFunc; 442 pFunc->xValue(&ctx); 443 return ctx.isError; 444 } 445 #endif /* SQLITE_OMIT_WINDOWFUNC */ 446 447 /* 448 ** If the memory cell contains a value that must be freed by 449 ** invoking the external callback in Mem.xDel, then this routine 450 ** will free that value. It also sets Mem.flags to MEM_Null. 451 ** 452 ** This is a helper routine for sqlite3VdbeMemSetNull() and 453 ** for sqlite3VdbeMemRelease(). Use those other routines as the 454 ** entry point for releasing Mem resources. 455 */ 456 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ 457 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 458 assert( VdbeMemDynamic(p) ); 459 if( p->flags&MEM_Agg ){ 460 sqlite3VdbeMemFinalize(p, p->u.pDef); 461 assert( (p->flags & MEM_Agg)==0 ); 462 testcase( p->flags & MEM_Dyn ); 463 } 464 if( p->flags&MEM_Dyn ){ 465 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); 466 p->xDel((void *)p->z); 467 } 468 p->flags = MEM_Null; 469 } 470 471 /* 472 ** Release memory held by the Mem p, both external memory cleared 473 ** by p->xDel and memory in p->zMalloc. 474 ** 475 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in 476 ** the unusual case where there really is memory in p that needs 477 ** to be freed. 478 */ 479 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ 480 if( VdbeMemDynamic(p) ){ 481 vdbeMemClearExternAndSetNull(p); 482 } 483 if( p->szMalloc ){ 484 sqlite3DbFreeNN(p->db, p->zMalloc); 485 p->szMalloc = 0; 486 } 487 p->z = 0; 488 } 489 490 /* 491 ** Release any memory resources held by the Mem. Both the memory that is 492 ** free by Mem.xDel and the Mem.zMalloc allocation are freed. 493 ** 494 ** Use this routine prior to clean up prior to abandoning a Mem, or to 495 ** reset a Mem back to its minimum memory utilization. 496 ** 497 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space 498 ** prior to inserting new content into the Mem. 499 */ 500 void sqlite3VdbeMemRelease(Mem *p){ 501 assert( sqlite3VdbeCheckMemInvariants(p) ); 502 if( VdbeMemDynamic(p) || p->szMalloc ){ 503 vdbeMemClear(p); 504 } 505 } 506 507 /* 508 ** Convert a 64-bit IEEE double into a 64-bit signed integer. 509 ** If the double is out of range of a 64-bit signed integer then 510 ** return the closest available 64-bit signed integer. 511 */ 512 static SQLITE_NOINLINE i64 doubleToInt64(double r){ 513 #ifdef SQLITE_OMIT_FLOATING_POINT 514 /* When floating-point is omitted, double and int64 are the same thing */ 515 return r; 516 #else 517 /* 518 ** Many compilers we encounter do not define constants for the 519 ** minimum and maximum 64-bit integers, or they define them 520 ** inconsistently. And many do not understand the "LL" notation. 521 ** So we define our own static constants here using nothing 522 ** larger than a 32-bit integer constant. 523 */ 524 static const i64 maxInt = LARGEST_INT64; 525 static const i64 minInt = SMALLEST_INT64; 526 527 if( r<=(double)minInt ){ 528 return minInt; 529 }else if( r>=(double)maxInt ){ 530 return maxInt; 531 }else{ 532 return (i64)r; 533 } 534 #endif 535 } 536 537 /* 538 ** Return some kind of integer value which is the best we can do 539 ** at representing the value that *pMem describes as an integer. 540 ** If pMem is an integer, then the value is exact. If pMem is 541 ** a floating-point then the value returned is the integer part. 542 ** If pMem is a string or blob, then we make an attempt to convert 543 ** it into an integer and return that. If pMem represents an 544 ** an SQL-NULL value, return 0. 545 ** 546 ** If pMem represents a string value, its encoding might be changed. 547 */ 548 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){ 549 i64 value = 0; 550 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); 551 return value; 552 } 553 i64 sqlite3VdbeIntValue(Mem *pMem){ 554 int flags; 555 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 556 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 557 flags = pMem->flags; 558 if( flags & MEM_Int ){ 559 return pMem->u.i; 560 }else if( flags & MEM_Real ){ 561 return doubleToInt64(pMem->u.r); 562 }else if( flags & (MEM_Str|MEM_Blob) ){ 563 assert( pMem->z || pMem->n==0 ); 564 return memIntValue(pMem); 565 }else{ 566 return 0; 567 } 568 } 569 570 /* 571 ** Return the best representation of pMem that we can get into a 572 ** double. If pMem is already a double or an integer, return its 573 ** value. If it is a string or blob, try to convert it to a double. 574 ** If it is a NULL, return 0.0. 575 */ 576 static SQLITE_NOINLINE double memRealValue(Mem *pMem){ 577 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 578 double val = (double)0; 579 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); 580 return val; 581 } 582 double sqlite3VdbeRealValue(Mem *pMem){ 583 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 584 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 585 if( pMem->flags & MEM_Real ){ 586 return pMem->u.r; 587 }else if( pMem->flags & MEM_Int ){ 588 return (double)pMem->u.i; 589 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 590 return memRealValue(pMem); 591 }else{ 592 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 593 return (double)0; 594 } 595 } 596 597 /* 598 ** Return 1 if pMem represents true, and return 0 if pMem represents false. 599 ** Return the value ifNull if pMem is NULL. 600 */ 601 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ 602 if( pMem->flags & MEM_Int ) return pMem->u.i!=0; 603 if( pMem->flags & MEM_Null ) return ifNull; 604 return sqlite3VdbeRealValue(pMem)!=0.0; 605 } 606 607 /* 608 ** The MEM structure is already a MEM_Real. Try to also make it a 609 ** MEM_Int if we can. 610 */ 611 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 612 i64 ix; 613 assert( pMem->flags & MEM_Real ); 614 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 615 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 616 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 617 618 ix = doubleToInt64(pMem->u.r); 619 620 /* Only mark the value as an integer if 621 ** 622 ** (1) the round-trip conversion real->int->real is a no-op, and 623 ** (2) The integer is neither the largest nor the smallest 624 ** possible integer (ticket #3922) 625 ** 626 ** The second and third terms in the following conditional enforces 627 ** the second condition under the assumption that addition overflow causes 628 ** values to wrap around. 629 */ 630 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ 631 pMem->u.i = ix; 632 MemSetTypeFlag(pMem, MEM_Int); 633 } 634 } 635 636 /* 637 ** Convert pMem to type integer. Invalidate any prior representations. 638 */ 639 int sqlite3VdbeMemIntegerify(Mem *pMem){ 640 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 641 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 642 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 643 644 pMem->u.i = sqlite3VdbeIntValue(pMem); 645 MemSetTypeFlag(pMem, MEM_Int); 646 return SQLITE_OK; 647 } 648 649 /* 650 ** Convert pMem so that it is of type MEM_Real. 651 ** Invalidate any prior representations. 652 */ 653 int sqlite3VdbeMemRealify(Mem *pMem){ 654 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 655 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 656 657 pMem->u.r = sqlite3VdbeRealValue(pMem); 658 MemSetTypeFlag(pMem, MEM_Real); 659 return SQLITE_OK; 660 } 661 662 /* Compare a floating point value to an integer. Return true if the two 663 ** values are the same within the precision of the floating point value. 664 ** 665 ** For some versions of GCC on 32-bit machines, if you do the more obvious 666 ** comparison of "r1==(double)i" you sometimes get an answer of false even 667 ** though the r1 and (double)i values are bit-for-bit the same. 668 */ 669 static int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ 670 double r2 = (double)i; 671 return memcmp(&r1, &r2, sizeof(r1))==0; 672 } 673 674 /* 675 ** Convert pMem so that it has types MEM_Real or MEM_Int or both. 676 ** Invalidate any prior representations. 677 ** 678 ** Every effort is made to force the conversion, even if the input 679 ** is a string that does not look completely like a number. Convert 680 ** as much of the string as we can and ignore the rest. 681 */ 682 int sqlite3VdbeMemNumerify(Mem *pMem){ 683 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){ 684 int rc; 685 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 686 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 687 rc = sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc); 688 if( rc==0 ){ 689 MemSetTypeFlag(pMem, MEM_Int); 690 }else{ 691 i64 i = pMem->u.i; 692 sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 693 if( rc==1 && sqlite3RealSameAsInt(pMem->u.r, i) ){ 694 pMem->u.i = i; 695 MemSetTypeFlag(pMem, MEM_Int); 696 }else{ 697 MemSetTypeFlag(pMem, MEM_Real); 698 } 699 } 700 } 701 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 ); 702 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); 703 return SQLITE_OK; 704 } 705 706 /* 707 ** Cast the datatype of the value in pMem according to the affinity 708 ** "aff". Casting is different from applying affinity in that a cast 709 ** is forced. In other words, the value is converted into the desired 710 ** affinity even if that results in loss of data. This routine is 711 ** used (for example) to implement the SQL "cast()" operator. 712 */ 713 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ 714 if( pMem->flags & MEM_Null ) return; 715 switch( aff ){ 716 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ 717 if( (pMem->flags & MEM_Blob)==0 ){ 718 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 719 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 720 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); 721 }else{ 722 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); 723 } 724 break; 725 } 726 case SQLITE_AFF_NUMERIC: { 727 sqlite3VdbeMemNumerify(pMem); 728 break; 729 } 730 case SQLITE_AFF_INTEGER: { 731 sqlite3VdbeMemIntegerify(pMem); 732 break; 733 } 734 case SQLITE_AFF_REAL: { 735 sqlite3VdbeMemRealify(pMem); 736 break; 737 } 738 default: { 739 assert( aff==SQLITE_AFF_TEXT ); 740 assert( MEM_Str==(MEM_Blob>>3) ); 741 pMem->flags |= (pMem->flags&MEM_Blob)>>3; 742 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 743 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 744 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); 745 break; 746 } 747 } 748 } 749 750 /* 751 ** Initialize bulk memory to be a consistent Mem object. 752 ** 753 ** The minimum amount of initialization feasible is performed. 754 */ 755 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ 756 assert( (flags & ~MEM_TypeMask)==0 ); 757 pMem->flags = flags; 758 pMem->db = db; 759 pMem->szMalloc = 0; 760 } 761 762 763 /* 764 ** Delete any previous value and set the value stored in *pMem to NULL. 765 ** 766 ** This routine calls the Mem.xDel destructor to dispose of values that 767 ** require the destructor. But it preserves the Mem.zMalloc memory allocation. 768 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this 769 ** routine to invoke the destructor and deallocates Mem.zMalloc. 770 ** 771 ** Use this routine to reset the Mem prior to insert a new value. 772 ** 773 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. 774 */ 775 void sqlite3VdbeMemSetNull(Mem *pMem){ 776 if( VdbeMemDynamic(pMem) ){ 777 vdbeMemClearExternAndSetNull(pMem); 778 }else{ 779 pMem->flags = MEM_Null; 780 } 781 } 782 void sqlite3ValueSetNull(sqlite3_value *p){ 783 sqlite3VdbeMemSetNull((Mem*)p); 784 } 785 786 /* 787 ** Delete any previous value and set the value to be a BLOB of length 788 ** n containing all zeros. 789 */ 790 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 791 sqlite3VdbeMemRelease(pMem); 792 pMem->flags = MEM_Blob|MEM_Zero; 793 pMem->n = 0; 794 if( n<0 ) n = 0; 795 pMem->u.nZero = n; 796 pMem->enc = SQLITE_UTF8; 797 pMem->z = 0; 798 } 799 800 /* 801 ** The pMem is known to contain content that needs to be destroyed prior 802 ** to a value change. So invoke the destructor, then set the value to 803 ** a 64-bit integer. 804 */ 805 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ 806 sqlite3VdbeMemSetNull(pMem); 807 pMem->u.i = val; 808 pMem->flags = MEM_Int; 809 } 810 811 /* 812 ** Delete any previous value and set the value stored in *pMem to val, 813 ** manifest type INTEGER. 814 */ 815 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 816 if( VdbeMemDynamic(pMem) ){ 817 vdbeReleaseAndSetInt64(pMem, val); 818 }else{ 819 pMem->u.i = val; 820 pMem->flags = MEM_Int; 821 } 822 } 823 824 /* A no-op destructor */ 825 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } 826 827 /* 828 ** Set the value stored in *pMem should already be a NULL. 829 ** Also store a pointer to go with it. 830 */ 831 void sqlite3VdbeMemSetPointer( 832 Mem *pMem, 833 void *pPtr, 834 const char *zPType, 835 void (*xDestructor)(void*) 836 ){ 837 assert( pMem->flags==MEM_Null ); 838 pMem->u.zPType = zPType ? zPType : ""; 839 pMem->z = pPtr; 840 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term; 841 pMem->eSubtype = 'p'; 842 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor; 843 } 844 845 #ifndef SQLITE_OMIT_FLOATING_POINT 846 /* 847 ** Delete any previous value and set the value stored in *pMem to val, 848 ** manifest type REAL. 849 */ 850 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 851 sqlite3VdbeMemSetNull(pMem); 852 if( !sqlite3IsNaN(val) ){ 853 pMem->u.r = val; 854 pMem->flags = MEM_Real; 855 } 856 } 857 #endif 858 859 #ifdef SQLITE_DEBUG 860 /* 861 ** Return true if the Mem holds a RowSet object. This routine is intended 862 ** for use inside of assert() statements. 863 */ 864 int sqlite3VdbeMemIsRowSet(const Mem *pMem){ 865 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn) 866 && pMem->xDel==sqlite3RowSetDelete; 867 } 868 #endif 869 870 /* 871 ** Delete any previous value and set the value of pMem to be an 872 ** empty boolean index. 873 ** 874 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation 875 ** error occurs. 876 */ 877 int sqlite3VdbeMemSetRowSet(Mem *pMem){ 878 sqlite3 *db = pMem->db; 879 RowSet *p; 880 assert( db!=0 ); 881 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 882 sqlite3VdbeMemRelease(pMem); 883 p = sqlite3RowSetInit(db); 884 if( p==0 ) return SQLITE_NOMEM; 885 pMem->z = (char*)p; 886 pMem->flags = MEM_Blob|MEM_Dyn; 887 pMem->xDel = sqlite3RowSetDelete; 888 return SQLITE_OK; 889 } 890 891 /* 892 ** Return true if the Mem object contains a TEXT or BLOB that is 893 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 894 */ 895 int sqlite3VdbeMemTooBig(Mem *p){ 896 assert( p->db!=0 ); 897 if( p->flags & (MEM_Str|MEM_Blob) ){ 898 int n = p->n; 899 if( p->flags & MEM_Zero ){ 900 n += p->u.nZero; 901 } 902 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 903 } 904 return 0; 905 } 906 907 #ifdef SQLITE_DEBUG 908 /* 909 ** This routine prepares a memory cell for modification by breaking 910 ** its link to a shallow copy and by marking any current shallow 911 ** copies of this cell as invalid. 912 ** 913 ** This is used for testing and debugging only - to make sure shallow 914 ** copies are not misused. 915 */ 916 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ 917 int i; 918 Mem *pX; 919 for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){ 920 if( pX->pScopyFrom==pMem ){ 921 /* If pX is marked as a shallow copy of pMem, then verify that 922 ** no significant changes have been made to pX since the OP_SCopy. 923 ** A significant change would indicated a missed call to this 924 ** function for pX. Minor changes, such as adding or removing a 925 ** dual type, are allowed, as long as the underlying value is the 926 ** same. */ 927 u16 mFlags = pMem->flags & pX->flags & pX->mScopyFlags; 928 assert( (mFlags&MEM_Int)==0 || pMem->u.i==pX->u.i ); 929 assert( (mFlags&MEM_Real)==0 || pMem->u.r==pX->u.r ); 930 assert( (mFlags&MEM_Str)==0 || (pMem->n==pX->n && pMem->z==pX->z) ); 931 assert( (mFlags&MEM_Blob)==0 || sqlite3BlobCompare(pMem,pX)==0 ); 932 933 /* pMem is the register that is changing. But also mark pX as 934 ** undefined so that we can quickly detect the shallow-copy error */ 935 pX->flags = MEM_Undefined; 936 pX->pScopyFrom = 0; 937 } 938 } 939 pMem->pScopyFrom = 0; 940 } 941 #endif /* SQLITE_DEBUG */ 942 943 944 /* 945 ** Make an shallow copy of pFrom into pTo. Prior contents of 946 ** pTo are freed. The pFrom->z field is not duplicated. If 947 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 948 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 949 */ 950 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ 951 vdbeMemClearExternAndSetNull(pTo); 952 assert( !VdbeMemDynamic(pTo) ); 953 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); 954 } 955 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 956 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 957 assert( pTo->db==pFrom->db ); 958 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } 959 memcpy(pTo, pFrom, MEMCELLSIZE); 960 if( (pFrom->flags&MEM_Static)==0 ){ 961 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 962 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 963 pTo->flags |= srcType; 964 } 965 } 966 967 /* 968 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 969 ** freed before the copy is made. 970 */ 971 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 972 int rc = SQLITE_OK; 973 974 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 975 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); 976 memcpy(pTo, pFrom, MEMCELLSIZE); 977 pTo->flags &= ~MEM_Dyn; 978 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 979 if( 0==(pFrom->flags&MEM_Static) ){ 980 pTo->flags |= MEM_Ephem; 981 rc = sqlite3VdbeMemMakeWriteable(pTo); 982 } 983 } 984 985 return rc; 986 } 987 988 /* 989 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 990 ** freed. If pFrom contains ephemeral data, a copy is made. 991 ** 992 ** pFrom contains an SQL NULL when this routine returns. 993 */ 994 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 995 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 996 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 997 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 998 999 sqlite3VdbeMemRelease(pTo); 1000 memcpy(pTo, pFrom, sizeof(Mem)); 1001 pFrom->flags = MEM_Null; 1002 pFrom->szMalloc = 0; 1003 } 1004 1005 /* 1006 ** Change the value of a Mem to be a string or a BLOB. 1007 ** 1008 ** The memory management strategy depends on the value of the xDel 1009 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 1010 ** string is copied into a (possibly existing) buffer managed by the 1011 ** Mem structure. Otherwise, any existing buffer is freed and the 1012 ** pointer copied. 1013 ** 1014 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH 1015 ** size limit) then no memory allocation occurs. If the string can be 1016 ** stored without allocating memory, then it is. If a memory allocation 1017 ** is required to store the string, then value of pMem is unchanged. In 1018 ** either case, SQLITE_TOOBIG is returned. 1019 */ 1020 int sqlite3VdbeMemSetStr( 1021 Mem *pMem, /* Memory cell to set to string value */ 1022 const char *z, /* String pointer */ 1023 int n, /* Bytes in string, or negative */ 1024 u8 enc, /* Encoding of z. 0 for BLOBs */ 1025 void (*xDel)(void*) /* Destructor function */ 1026 ){ 1027 int nByte = n; /* New value for pMem->n */ 1028 int iLimit; /* Maximum allowed string or blob size */ 1029 u16 flags = 0; /* New value for pMem->flags */ 1030 1031 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 1032 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1033 1034 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 1035 if( !z ){ 1036 sqlite3VdbeMemSetNull(pMem); 1037 return SQLITE_OK; 1038 } 1039 1040 if( pMem->db ){ 1041 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; 1042 }else{ 1043 iLimit = SQLITE_MAX_LENGTH; 1044 } 1045 flags = (enc==0?MEM_Blob:MEM_Str); 1046 if( nByte<0 ){ 1047 assert( enc!=0 ); 1048 if( enc==SQLITE_UTF8 ){ 1049 nByte = 0x7fffffff & (int)strlen(z); 1050 if( nByte>iLimit ) nByte = iLimit+1; 1051 }else{ 1052 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} 1053 } 1054 flags |= MEM_Term; 1055 } 1056 1057 /* The following block sets the new values of Mem.z and Mem.xDel. It 1058 ** also sets a flag in local variable "flags" to indicate the memory 1059 ** management (one of MEM_Dyn or MEM_Static). 1060 */ 1061 if( xDel==SQLITE_TRANSIENT ){ 1062 int nAlloc = nByte; 1063 if( flags&MEM_Term ){ 1064 nAlloc += (enc==SQLITE_UTF8?1:2); 1065 } 1066 if( nByte>iLimit ){ 1067 return SQLITE_TOOBIG; 1068 } 1069 testcase( nAlloc==0 ); 1070 testcase( nAlloc==31 ); 1071 testcase( nAlloc==32 ); 1072 if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){ 1073 return SQLITE_NOMEM_BKPT; 1074 } 1075 memcpy(pMem->z, z, nAlloc); 1076 }else if( xDel==SQLITE_DYNAMIC ){ 1077 sqlite3VdbeMemRelease(pMem); 1078 pMem->zMalloc = pMem->z = (char *)z; 1079 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 1080 }else{ 1081 sqlite3VdbeMemRelease(pMem); 1082 pMem->z = (char *)z; 1083 pMem->xDel = xDel; 1084 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 1085 } 1086 1087 pMem->n = nByte; 1088 pMem->flags = flags; 1089 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); 1090 1091 #ifndef SQLITE_OMIT_UTF16 1092 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ 1093 return SQLITE_NOMEM_BKPT; 1094 } 1095 #endif 1096 1097 if( nByte>iLimit ){ 1098 return SQLITE_TOOBIG; 1099 } 1100 1101 return SQLITE_OK; 1102 } 1103 1104 /* 1105 ** Move data out of a btree key or data field and into a Mem structure. 1106 ** The data is payload from the entry that pCur is currently pointing 1107 ** to. offset and amt determine what portion of the data or key to retrieve. 1108 ** The result is written into the pMem element. 1109 ** 1110 ** The pMem object must have been initialized. This routine will use 1111 ** pMem->zMalloc to hold the content from the btree, if possible. New 1112 ** pMem->zMalloc space will be allocated if necessary. The calling routine 1113 ** is responsible for making sure that the pMem object is eventually 1114 ** destroyed. 1115 ** 1116 ** If this routine fails for any reason (malloc returns NULL or unable 1117 ** to read from the disk) then the pMem is left in an inconsistent state. 1118 */ 1119 static SQLITE_NOINLINE int vdbeMemFromBtreeResize( 1120 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1121 u32 offset, /* Offset from the start of data to return bytes from. */ 1122 u32 amt, /* Number of bytes to return. */ 1123 Mem *pMem /* OUT: Return data in this Mem structure. */ 1124 ){ 1125 int rc; 1126 pMem->flags = MEM_Null; 1127 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){ 1128 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z); 1129 if( rc==SQLITE_OK ){ 1130 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */ 1131 pMem->flags = MEM_Blob; 1132 pMem->n = (int)amt; 1133 }else{ 1134 sqlite3VdbeMemRelease(pMem); 1135 } 1136 } 1137 return rc; 1138 } 1139 int sqlite3VdbeMemFromBtree( 1140 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1141 u32 offset, /* Offset from the start of data to return bytes from. */ 1142 u32 amt, /* Number of bytes to return. */ 1143 Mem *pMem /* OUT: Return data in this Mem structure. */ 1144 ){ 1145 char *zData; /* Data from the btree layer */ 1146 u32 available = 0; /* Number of bytes available on the local btree page */ 1147 int rc = SQLITE_OK; /* Return code */ 1148 1149 assert( sqlite3BtreeCursorIsValid(pCur) ); 1150 assert( !VdbeMemDynamic(pMem) ); 1151 1152 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 1153 ** that both the BtShared and database handle mutexes are held. */ 1154 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1155 zData = (char *)sqlite3BtreePayloadFetch(pCur, &available); 1156 assert( zData!=0 ); 1157 1158 if( offset+amt<=available ){ 1159 pMem->z = &zData[offset]; 1160 pMem->flags = MEM_Blob|MEM_Ephem; 1161 pMem->n = (int)amt; 1162 }else{ 1163 rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem); 1164 } 1165 1166 return rc; 1167 } 1168 1169 /* 1170 ** The pVal argument is known to be a value other than NULL. 1171 ** Convert it into a string with encoding enc and return a pointer 1172 ** to a zero-terminated version of that string. 1173 */ 1174 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ 1175 assert( pVal!=0 ); 1176 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1177 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1178 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1179 assert( (pVal->flags & (MEM_Null))==0 ); 1180 if( pVal->flags & (MEM_Blob|MEM_Str) ){ 1181 if( ExpandBlob(pVal) ) return 0; 1182 pVal->flags |= MEM_Str; 1183 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ 1184 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 1185 } 1186 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ 1187 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 1188 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 1189 return 0; 1190 } 1191 } 1192 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ 1193 }else{ 1194 sqlite3VdbeMemStringify(pVal, enc, 0); 1195 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); 1196 } 1197 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 1198 || pVal->db->mallocFailed ); 1199 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 1200 assert( sqlite3VdbeMemConsistentDualRep(pVal) ); 1201 return pVal->z; 1202 }else{ 1203 return 0; 1204 } 1205 } 1206 1207 /* This function is only available internally, it is not part of the 1208 ** external API. It works in a similar way to sqlite3_value_text(), 1209 ** except the data returned is in the encoding specified by the second 1210 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 1211 ** SQLITE_UTF8. 1212 ** 1213 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 1214 ** If that is the case, then the result must be aligned on an even byte 1215 ** boundary. 1216 */ 1217 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 1218 if( !pVal ) return 0; 1219 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1220 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1221 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1222 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ 1223 assert( sqlite3VdbeMemConsistentDualRep(pVal) ); 1224 return pVal->z; 1225 } 1226 if( pVal->flags&MEM_Null ){ 1227 return 0; 1228 } 1229 return valueToText(pVal, enc); 1230 } 1231 1232 /* 1233 ** Create a new sqlite3_value object. 1234 */ 1235 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 1236 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 1237 if( p ){ 1238 p->flags = MEM_Null; 1239 p->db = db; 1240 } 1241 return p; 1242 } 1243 1244 /* 1245 ** Context object passed by sqlite3Stat4ProbeSetValue() through to 1246 ** valueNew(). See comments above valueNew() for details. 1247 */ 1248 struct ValueNewStat4Ctx { 1249 Parse *pParse; 1250 Index *pIdx; 1251 UnpackedRecord **ppRec; 1252 int iVal; 1253 }; 1254 1255 /* 1256 ** Allocate and return a pointer to a new sqlite3_value object. If 1257 ** the second argument to this function is NULL, the object is allocated 1258 ** by calling sqlite3ValueNew(). 1259 ** 1260 ** Otherwise, if the second argument is non-zero, then this function is 1261 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not 1262 ** already been allocated, allocate the UnpackedRecord structure that 1263 ** that function will return to its caller here. Then return a pointer to 1264 ** an sqlite3_value within the UnpackedRecord.a[] array. 1265 */ 1266 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ 1267 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1268 if( p ){ 1269 UnpackedRecord *pRec = p->ppRec[0]; 1270 1271 if( pRec==0 ){ 1272 Index *pIdx = p->pIdx; /* Index being probed */ 1273 int nByte; /* Bytes of space to allocate */ 1274 int i; /* Counter variable */ 1275 int nCol = pIdx->nColumn; /* Number of index columns including rowid */ 1276 1277 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); 1278 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); 1279 if( pRec ){ 1280 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); 1281 if( pRec->pKeyInfo ){ 1282 assert( pRec->pKeyInfo->nAllField==nCol ); 1283 assert( pRec->pKeyInfo->enc==ENC(db) ); 1284 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); 1285 for(i=0; i<nCol; i++){ 1286 pRec->aMem[i].flags = MEM_Null; 1287 pRec->aMem[i].db = db; 1288 } 1289 }else{ 1290 sqlite3DbFreeNN(db, pRec); 1291 pRec = 0; 1292 } 1293 } 1294 if( pRec==0 ) return 0; 1295 p->ppRec[0] = pRec; 1296 } 1297 1298 pRec->nField = p->iVal+1; 1299 return &pRec->aMem[p->iVal]; 1300 } 1301 #else 1302 UNUSED_PARAMETER(p); 1303 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ 1304 return sqlite3ValueNew(db); 1305 } 1306 1307 /* 1308 ** The expression object indicated by the second argument is guaranteed 1309 ** to be a scalar SQL function. If 1310 ** 1311 ** * all function arguments are SQL literals, 1312 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and 1313 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, 1314 ** 1315 ** then this routine attempts to invoke the SQL function. Assuming no 1316 ** error occurs, output parameter (*ppVal) is set to point to a value 1317 ** object containing the result before returning SQLITE_OK. 1318 ** 1319 ** Affinity aff is applied to the result of the function before returning. 1320 ** If the result is a text value, the sqlite3_value object uses encoding 1321 ** enc. 1322 ** 1323 ** If the conditions above are not met, this function returns SQLITE_OK 1324 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to 1325 ** NULL and an SQLite error code returned. 1326 */ 1327 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1328 static int valueFromFunction( 1329 sqlite3 *db, /* The database connection */ 1330 Expr *p, /* The expression to evaluate */ 1331 u8 enc, /* Encoding to use */ 1332 u8 aff, /* Affinity to use */ 1333 sqlite3_value **ppVal, /* Write the new value here */ 1334 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1335 ){ 1336 sqlite3_context ctx; /* Context object for function invocation */ 1337 sqlite3_value **apVal = 0; /* Function arguments */ 1338 int nVal = 0; /* Size of apVal[] array */ 1339 FuncDef *pFunc = 0; /* Function definition */ 1340 sqlite3_value *pVal = 0; /* New value */ 1341 int rc = SQLITE_OK; /* Return code */ 1342 ExprList *pList = 0; /* Function arguments */ 1343 int i; /* Iterator variable */ 1344 1345 assert( pCtx!=0 ); 1346 assert( (p->flags & EP_TokenOnly)==0 ); 1347 pList = p->x.pList; 1348 if( pList ) nVal = pList->nExpr; 1349 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); 1350 assert( pFunc ); 1351 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 1352 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 1353 ){ 1354 return SQLITE_OK; 1355 } 1356 1357 if( pList ){ 1358 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); 1359 if( apVal==0 ){ 1360 rc = SQLITE_NOMEM_BKPT; 1361 goto value_from_function_out; 1362 } 1363 for(i=0; i<nVal; i++){ 1364 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); 1365 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; 1366 } 1367 } 1368 1369 pVal = valueNew(db, pCtx); 1370 if( pVal==0 ){ 1371 rc = SQLITE_NOMEM_BKPT; 1372 goto value_from_function_out; 1373 } 1374 1375 assert( pCtx->pParse->rc==SQLITE_OK ); 1376 memset(&ctx, 0, sizeof(ctx)); 1377 ctx.pOut = pVal; 1378 ctx.pFunc = pFunc; 1379 pFunc->xSFunc(&ctx, nVal, apVal); 1380 if( ctx.isError ){ 1381 rc = ctx.isError; 1382 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); 1383 }else{ 1384 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); 1385 assert( rc==SQLITE_OK ); 1386 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1387 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ 1388 rc = SQLITE_TOOBIG; 1389 pCtx->pParse->nErr++; 1390 } 1391 } 1392 pCtx->pParse->rc = rc; 1393 1394 value_from_function_out: 1395 if( rc!=SQLITE_OK ){ 1396 pVal = 0; 1397 } 1398 if( apVal ){ 1399 for(i=0; i<nVal; i++){ 1400 sqlite3ValueFree(apVal[i]); 1401 } 1402 sqlite3DbFreeNN(db, apVal); 1403 } 1404 1405 *ppVal = pVal; 1406 return rc; 1407 } 1408 #else 1409 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK 1410 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ 1411 1412 /* 1413 ** Extract a value from the supplied expression in the manner described 1414 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object 1415 ** using valueNew(). 1416 ** 1417 ** If pCtx is NULL and an error occurs after the sqlite3_value object 1418 ** has been allocated, it is freed before returning. Or, if pCtx is not 1419 ** NULL, it is assumed that the caller will free any allocated object 1420 ** in all cases. 1421 */ 1422 static int valueFromExpr( 1423 sqlite3 *db, /* The database connection */ 1424 Expr *pExpr, /* The expression to evaluate */ 1425 u8 enc, /* Encoding to use */ 1426 u8 affinity, /* Affinity to use */ 1427 sqlite3_value **ppVal, /* Write the new value here */ 1428 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1429 ){ 1430 int op; 1431 char *zVal = 0; 1432 sqlite3_value *pVal = 0; 1433 int negInt = 1; 1434 const char *zNeg = ""; 1435 int rc = SQLITE_OK; 1436 1437 assert( pExpr!=0 ); 1438 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; 1439 #if defined(SQLITE_ENABLE_STAT3_OR_STAT4) 1440 if( op==TK_REGISTER ) op = pExpr->op2; 1441 #else 1442 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; 1443 #endif 1444 1445 /* Compressed expressions only appear when parsing the DEFAULT clause 1446 ** on a table column definition, and hence only when pCtx==0. This 1447 ** check ensures that an EP_TokenOnly expression is never passed down 1448 ** into valueFromFunction(). */ 1449 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); 1450 1451 if( op==TK_CAST ){ 1452 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0); 1453 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); 1454 testcase( rc!=SQLITE_OK ); 1455 if( *ppVal ){ 1456 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); 1457 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); 1458 } 1459 return rc; 1460 } 1461 1462 /* Handle negative integers in a single step. This is needed in the 1463 ** case when the value is -9223372036854775808. 1464 */ 1465 if( op==TK_UMINUS 1466 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ 1467 pExpr = pExpr->pLeft; 1468 op = pExpr->op; 1469 negInt = -1; 1470 zNeg = "-"; 1471 } 1472 1473 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 1474 pVal = valueNew(db, pCtx); 1475 if( pVal==0 ) goto no_mem; 1476 if( ExprHasProperty(pExpr, EP_IntValue) ){ 1477 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); 1478 }else{ 1479 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); 1480 if( zVal==0 ) goto no_mem; 1481 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); 1482 } 1483 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ 1484 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); 1485 }else{ 1486 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); 1487 } 1488 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str; 1489 if( enc!=SQLITE_UTF8 ){ 1490 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1491 } 1492 }else if( op==TK_UMINUS ) { 1493 /* This branch happens for multiple negative signs. Ex: -(-5) */ 1494 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) 1495 && pVal!=0 1496 ){ 1497 sqlite3VdbeMemNumerify(pVal); 1498 if( pVal->flags & MEM_Real ){ 1499 pVal->u.r = -pVal->u.r; 1500 }else if( pVal->u.i==SMALLEST_INT64 ){ 1501 pVal->u.r = -(double)SMALLEST_INT64; 1502 MemSetTypeFlag(pVal, MEM_Real); 1503 }else{ 1504 pVal->u.i = -pVal->u.i; 1505 } 1506 sqlite3ValueApplyAffinity(pVal, affinity, enc); 1507 } 1508 }else if( op==TK_NULL ){ 1509 pVal = valueNew(db, pCtx); 1510 if( pVal==0 ) goto no_mem; 1511 sqlite3VdbeMemNumerify(pVal); 1512 } 1513 #ifndef SQLITE_OMIT_BLOB_LITERAL 1514 else if( op==TK_BLOB ){ 1515 int nVal; 1516 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 1517 assert( pExpr->u.zToken[1]=='\'' ); 1518 pVal = valueNew(db, pCtx); 1519 if( !pVal ) goto no_mem; 1520 zVal = &pExpr->u.zToken[2]; 1521 nVal = sqlite3Strlen30(zVal)-1; 1522 assert( zVal[nVal]=='\'' ); 1523 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 1524 0, SQLITE_DYNAMIC); 1525 } 1526 #endif 1527 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1528 else if( op==TK_FUNCTION && pCtx!=0 ){ 1529 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); 1530 } 1531 #endif 1532 else if( op==TK_TRUEFALSE ){ 1533 pVal = valueNew(db, pCtx); 1534 pVal->flags = MEM_Int; 1535 pVal->u.i = pExpr->u.zToken[4]==0; 1536 } 1537 1538 *ppVal = pVal; 1539 return rc; 1540 1541 no_mem: 1542 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1543 if( pCtx==0 || pCtx->pParse->nErr==0 ) 1544 #endif 1545 sqlite3OomFault(db); 1546 sqlite3DbFree(db, zVal); 1547 assert( *ppVal==0 ); 1548 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1549 if( pCtx==0 ) sqlite3ValueFree(pVal); 1550 #else 1551 assert( pCtx==0 ); sqlite3ValueFree(pVal); 1552 #endif 1553 return SQLITE_NOMEM_BKPT; 1554 } 1555 1556 /* 1557 ** Create a new sqlite3_value object, containing the value of pExpr. 1558 ** 1559 ** This only works for very simple expressions that consist of one constant 1560 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 1561 ** be converted directly into a value, then the value is allocated and 1562 ** a pointer written to *ppVal. The caller is responsible for deallocating 1563 ** the value by passing it to sqlite3ValueFree() later on. If the expression 1564 ** cannot be converted to a value, then *ppVal is set to NULL. 1565 */ 1566 int sqlite3ValueFromExpr( 1567 sqlite3 *db, /* The database connection */ 1568 Expr *pExpr, /* The expression to evaluate */ 1569 u8 enc, /* Encoding to use */ 1570 u8 affinity, /* Affinity to use */ 1571 sqlite3_value **ppVal /* Write the new value here */ 1572 ){ 1573 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; 1574 } 1575 1576 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1577 /* 1578 ** The implementation of the sqlite_record() function. This function accepts 1579 ** a single argument of any type. The return value is a formatted database 1580 ** record (a blob) containing the argument value. 1581 ** 1582 ** This is used to convert the value stored in the 'sample' column of the 1583 ** sqlite_stat3 table to the record format SQLite uses internally. 1584 */ 1585 static void recordFunc( 1586 sqlite3_context *context, 1587 int argc, 1588 sqlite3_value **argv 1589 ){ 1590 const int file_format = 1; 1591 u32 iSerial; /* Serial type */ 1592 int nSerial; /* Bytes of space for iSerial as varint */ 1593 u32 nVal; /* Bytes of space required for argv[0] */ 1594 int nRet; 1595 sqlite3 *db; 1596 u8 *aRet; 1597 1598 UNUSED_PARAMETER( argc ); 1599 iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal); 1600 nSerial = sqlite3VarintLen(iSerial); 1601 db = sqlite3_context_db_handle(context); 1602 1603 nRet = 1 + nSerial + nVal; 1604 aRet = sqlite3DbMallocRawNN(db, nRet); 1605 if( aRet==0 ){ 1606 sqlite3_result_error_nomem(context); 1607 }else{ 1608 aRet[0] = nSerial+1; 1609 putVarint32(&aRet[1], iSerial); 1610 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial); 1611 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT); 1612 sqlite3DbFreeNN(db, aRet); 1613 } 1614 } 1615 1616 /* 1617 ** Register built-in functions used to help read ANALYZE data. 1618 */ 1619 void sqlite3AnalyzeFunctions(void){ 1620 static FuncDef aAnalyzeTableFuncs[] = { 1621 FUNCTION(sqlite_record, 1, 0, 0, recordFunc), 1622 }; 1623 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs)); 1624 } 1625 1626 /* 1627 ** Attempt to extract a value from pExpr and use it to construct *ppVal. 1628 ** 1629 ** If pAlloc is not NULL, then an UnpackedRecord object is created for 1630 ** pAlloc if one does not exist and the new value is added to the 1631 ** UnpackedRecord object. 1632 ** 1633 ** A value is extracted in the following cases: 1634 ** 1635 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1636 ** 1637 ** * The expression is a bound variable, and this is a reprepare, or 1638 ** 1639 ** * The expression is a literal value. 1640 ** 1641 ** On success, *ppVal is made to point to the extracted value. The caller 1642 ** is responsible for ensuring that the value is eventually freed. 1643 */ 1644 static int stat4ValueFromExpr( 1645 Parse *pParse, /* Parse context */ 1646 Expr *pExpr, /* The expression to extract a value from */ 1647 u8 affinity, /* Affinity to use */ 1648 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ 1649 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1650 ){ 1651 int rc = SQLITE_OK; 1652 sqlite3_value *pVal = 0; 1653 sqlite3 *db = pParse->db; 1654 1655 /* Skip over any TK_COLLATE nodes */ 1656 pExpr = sqlite3ExprSkipCollate(pExpr); 1657 1658 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE ); 1659 if( !pExpr ){ 1660 pVal = valueNew(db, pAlloc); 1661 if( pVal ){ 1662 sqlite3VdbeMemSetNull((Mem*)pVal); 1663 } 1664 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 1665 Vdbe *v; 1666 int iBindVar = pExpr->iColumn; 1667 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); 1668 if( (v = pParse->pReprepare)!=0 ){ 1669 pVal = valueNew(db, pAlloc); 1670 if( pVal ){ 1671 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); 1672 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); 1673 pVal->db = pParse->db; 1674 } 1675 } 1676 }else{ 1677 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); 1678 } 1679 1680 assert( pVal==0 || pVal->db==db ); 1681 *ppVal = pVal; 1682 return rc; 1683 } 1684 1685 /* 1686 ** This function is used to allocate and populate UnpackedRecord 1687 ** structures intended to be compared against sample index keys stored 1688 ** in the sqlite_stat4 table. 1689 ** 1690 ** A single call to this function populates zero or more fields of the 1691 ** record starting with field iVal (fields are numbered from left to 1692 ** right starting with 0). A single field is populated if: 1693 ** 1694 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1695 ** 1696 ** * The expression is a bound variable, and this is a reprepare, or 1697 ** 1698 ** * The sqlite3ValueFromExpr() function is able to extract a value 1699 ** from the expression (i.e. the expression is a literal value). 1700 ** 1701 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the 1702 ** vector components that match either of the two latter criteria listed 1703 ** above. 1704 ** 1705 ** Before any value is appended to the record, the affinity of the 1706 ** corresponding column within index pIdx is applied to it. Before 1707 ** this function returns, output parameter *pnExtract is set to the 1708 ** number of values appended to the record. 1709 ** 1710 ** When this function is called, *ppRec must either point to an object 1711 ** allocated by an earlier call to this function, or must be NULL. If it 1712 ** is NULL and a value can be successfully extracted, a new UnpackedRecord 1713 ** is allocated (and *ppRec set to point to it) before returning. 1714 ** 1715 ** Unless an error is encountered, SQLITE_OK is returned. It is not an 1716 ** error if a value cannot be extracted from pExpr. If an error does 1717 ** occur, an SQLite error code is returned. 1718 */ 1719 int sqlite3Stat4ProbeSetValue( 1720 Parse *pParse, /* Parse context */ 1721 Index *pIdx, /* Index being probed */ 1722 UnpackedRecord **ppRec, /* IN/OUT: Probe record */ 1723 Expr *pExpr, /* The expression to extract a value from */ 1724 int nElem, /* Maximum number of values to append */ 1725 int iVal, /* Array element to populate */ 1726 int *pnExtract /* OUT: Values appended to the record */ 1727 ){ 1728 int rc = SQLITE_OK; 1729 int nExtract = 0; 1730 1731 if( pExpr==0 || pExpr->op!=TK_SELECT ){ 1732 int i; 1733 struct ValueNewStat4Ctx alloc; 1734 1735 alloc.pParse = pParse; 1736 alloc.pIdx = pIdx; 1737 alloc.ppRec = ppRec; 1738 1739 for(i=0; i<nElem; i++){ 1740 sqlite3_value *pVal = 0; 1741 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0); 1742 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i); 1743 alloc.iVal = iVal+i; 1744 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); 1745 if( !pVal ) break; 1746 nExtract++; 1747 } 1748 } 1749 1750 *pnExtract = nExtract; 1751 return rc; 1752 } 1753 1754 /* 1755 ** Attempt to extract a value from expression pExpr using the methods 1756 ** as described for sqlite3Stat4ProbeSetValue() above. 1757 ** 1758 ** If successful, set *ppVal to point to a new value object and return 1759 ** SQLITE_OK. If no value can be extracted, but no other error occurs 1760 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error 1761 ** does occur, return an SQLite error code. The final value of *ppVal 1762 ** is undefined in this case. 1763 */ 1764 int sqlite3Stat4ValueFromExpr( 1765 Parse *pParse, /* Parse context */ 1766 Expr *pExpr, /* The expression to extract a value from */ 1767 u8 affinity, /* Affinity to use */ 1768 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1769 ){ 1770 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); 1771 } 1772 1773 /* 1774 ** Extract the iCol-th column from the nRec-byte record in pRec. Write 1775 ** the column value into *ppVal. If *ppVal is initially NULL then a new 1776 ** sqlite3_value object is allocated. 1777 ** 1778 ** If *ppVal is initially NULL then the caller is responsible for 1779 ** ensuring that the value written into *ppVal is eventually freed. 1780 */ 1781 int sqlite3Stat4Column( 1782 sqlite3 *db, /* Database handle */ 1783 const void *pRec, /* Pointer to buffer containing record */ 1784 int nRec, /* Size of buffer pRec in bytes */ 1785 int iCol, /* Column to extract */ 1786 sqlite3_value **ppVal /* OUT: Extracted value */ 1787 ){ 1788 u32 t = 0; /* a column type code */ 1789 int nHdr; /* Size of the header in the record */ 1790 int iHdr; /* Next unread header byte */ 1791 int iField; /* Next unread data byte */ 1792 int szField = 0; /* Size of the current data field */ 1793 int i; /* Column index */ 1794 u8 *a = (u8*)pRec; /* Typecast byte array */ 1795 Mem *pMem = *ppVal; /* Write result into this Mem object */ 1796 1797 assert( iCol>0 ); 1798 iHdr = getVarint32(a, nHdr); 1799 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; 1800 iField = nHdr; 1801 for(i=0; i<=iCol; i++){ 1802 iHdr += getVarint32(&a[iHdr], t); 1803 testcase( iHdr==nHdr ); 1804 testcase( iHdr==nHdr+1 ); 1805 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; 1806 szField = sqlite3VdbeSerialTypeLen(t); 1807 iField += szField; 1808 } 1809 testcase( iField==nRec ); 1810 testcase( iField==nRec+1 ); 1811 if( iField>nRec ) return SQLITE_CORRUPT_BKPT; 1812 if( pMem==0 ){ 1813 pMem = *ppVal = sqlite3ValueNew(db); 1814 if( pMem==0 ) return SQLITE_NOMEM_BKPT; 1815 } 1816 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); 1817 pMem->enc = ENC(db); 1818 return SQLITE_OK; 1819 } 1820 1821 /* 1822 ** Unless it is NULL, the argument must be an UnpackedRecord object returned 1823 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes 1824 ** the object. 1825 */ 1826 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ 1827 if( pRec ){ 1828 int i; 1829 int nCol = pRec->pKeyInfo->nAllField; 1830 Mem *aMem = pRec->aMem; 1831 sqlite3 *db = aMem[0].db; 1832 for(i=0; i<nCol; i++){ 1833 sqlite3VdbeMemRelease(&aMem[i]); 1834 } 1835 sqlite3KeyInfoUnref(pRec->pKeyInfo); 1836 sqlite3DbFreeNN(db, pRec); 1837 } 1838 } 1839 #endif /* ifdef SQLITE_ENABLE_STAT4 */ 1840 1841 /* 1842 ** Change the string value of an sqlite3_value object 1843 */ 1844 void sqlite3ValueSetStr( 1845 sqlite3_value *v, /* Value to be set */ 1846 int n, /* Length of string z */ 1847 const void *z, /* Text of the new string */ 1848 u8 enc, /* Encoding to use */ 1849 void (*xDel)(void*) /* Destructor for the string */ 1850 ){ 1851 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 1852 } 1853 1854 /* 1855 ** Free an sqlite3_value object 1856 */ 1857 void sqlite3ValueFree(sqlite3_value *v){ 1858 if( !v ) return; 1859 sqlite3VdbeMemRelease((Mem *)v); 1860 sqlite3DbFreeNN(((Mem*)v)->db, v); 1861 } 1862 1863 /* 1864 ** The sqlite3ValueBytes() routine returns the number of bytes in the 1865 ** sqlite3_value object assuming that it uses the encoding "enc". 1866 ** The valueBytes() routine is a helper function. 1867 */ 1868 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ 1869 return valueToText(pVal, enc)!=0 ? pVal->n : 0; 1870 } 1871 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1872 Mem *p = (Mem*)pVal; 1873 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); 1874 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ 1875 return p->n; 1876 } 1877 if( (p->flags & MEM_Blob)!=0 ){ 1878 if( p->flags & MEM_Zero ){ 1879 return p->n + p->u.nZero; 1880 }else{ 1881 return p->n; 1882 } 1883 } 1884 if( p->flags & MEM_Null ) return 0; 1885 return valueBytes(pVal, enc); 1886 } 1887