xref: /sqlite-3.40.0/src/vdbemem.c (revision dfe4e6bb)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to manipulate "Mem" structure.  A "Mem"
14 ** stores a single value in the VDBE.  Mem is an opaque structure visible
15 ** only within the VDBE.  Interface routines refer to a Mem using the
16 ** name sqlite_value
17 */
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
20 
21 #ifdef SQLITE_DEBUG
22 /*
23 ** Check invariants on a Mem object.
24 **
25 ** This routine is intended for use inside of assert() statements, like
26 ** this:    assert( sqlite3VdbeCheckMemInvariants(pMem) );
27 */
28 int sqlite3VdbeCheckMemInvariants(Mem *p){
29   /* If MEM_Dyn is set then Mem.xDel!=0.
30   ** Mem.xDel is might not be initialized if MEM_Dyn is clear.
31   */
32   assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
33 
34   /* MEM_Dyn may only be set if Mem.szMalloc==0.  In this way we
35   ** ensure that if Mem.szMalloc>0 then it is safe to do
36   ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37   ** That saves a few cycles in inner loops. */
38   assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
39 
40   /* Cannot be both MEM_Int and MEM_Real at the same time */
41   assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );
42 
43   /* The szMalloc field holds the correct memory allocation size */
44   assert( p->szMalloc==0
45        || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
46 
47   /* If p holds a string or blob, the Mem.z must point to exactly
48   ** one of the following:
49   **
50   **   (1) Memory in Mem.zMalloc and managed by the Mem object
51   **   (2) Memory to be freed using Mem.xDel
52   **   (3) An ephemeral string or blob
53   **   (4) A static string or blob
54   */
55   if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
56     assert(
57       ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
58       ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
59       ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
60       ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
61     );
62   }
63   return 1;
64 }
65 #endif
66 
67 
68 /*
69 ** If pMem is an object with a valid string representation, this routine
70 ** ensures the internal encoding for the string representation is
71 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
72 **
73 ** If pMem is not a string object, or the encoding of the string
74 ** representation is already stored using the requested encoding, then this
75 ** routine is a no-op.
76 **
77 ** SQLITE_OK is returned if the conversion is successful (or not required).
78 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
79 ** between formats.
80 */
81 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
82 #ifndef SQLITE_OMIT_UTF16
83   int rc;
84 #endif
85   assert( (pMem->flags&MEM_RowSet)==0 );
86   assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
87            || desiredEnc==SQLITE_UTF16BE );
88   if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
89     return SQLITE_OK;
90   }
91   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
92 #ifdef SQLITE_OMIT_UTF16
93   return SQLITE_ERROR;
94 #else
95 
96   /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
97   ** then the encoding of the value may not have changed.
98   */
99   rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
100   assert(rc==SQLITE_OK    || rc==SQLITE_NOMEM);
101   assert(rc==SQLITE_OK    || pMem->enc!=desiredEnc);
102   assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
103   return rc;
104 #endif
105 }
106 
107 /*
108 ** Make sure pMem->z points to a writable allocation of at least
109 ** min(n,32) bytes.
110 **
111 ** If the bPreserve argument is true, then copy of the content of
112 ** pMem->z into the new allocation.  pMem must be either a string or
113 ** blob if bPreserve is true.  If bPreserve is false, any prior content
114 ** in pMem->z is discarded.
115 */
116 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
117   assert( sqlite3VdbeCheckMemInvariants(pMem) );
118   assert( (pMem->flags&MEM_RowSet)==0 );
119   testcase( pMem->db==0 );
120 
121   /* If the bPreserve flag is set to true, then the memory cell must already
122   ** contain a valid string or blob value.  */
123   assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
124   testcase( bPreserve && pMem->z==0 );
125 
126   assert( pMem->szMalloc==0
127        || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
128   if( pMem->szMalloc<n ){
129     if( n<32 ) n = 32;
130     if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){
131       pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
132       bPreserve = 0;
133     }else{
134       if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
135       pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
136     }
137     if( pMem->zMalloc==0 ){
138       sqlite3VdbeMemSetNull(pMem);
139       pMem->z = 0;
140       pMem->szMalloc = 0;
141       return SQLITE_NOMEM_BKPT;
142     }else{
143       pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
144     }
145   }
146 
147   if( bPreserve && pMem->z && pMem->z!=pMem->zMalloc ){
148     memcpy(pMem->zMalloc, pMem->z, pMem->n);
149   }
150   if( (pMem->flags&MEM_Dyn)!=0 ){
151     assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
152     pMem->xDel((void *)(pMem->z));
153   }
154 
155   pMem->z = pMem->zMalloc;
156   pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
157   return SQLITE_OK;
158 }
159 
160 /*
161 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
162 ** If pMem->zMalloc already meets or exceeds the requested size, this
163 ** routine is a no-op.
164 **
165 ** Any prior string or blob content in the pMem object may be discarded.
166 ** The pMem->xDel destructor is called, if it exists.  Though MEM_Str
167 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
168 ** values are preserved.
169 **
170 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
171 ** if unable to complete the resizing.
172 */
173 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
174   assert( szNew>0 );
175   assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
176   if( pMem->szMalloc<szNew ){
177     return sqlite3VdbeMemGrow(pMem, szNew, 0);
178   }
179   assert( (pMem->flags & MEM_Dyn)==0 );
180   pMem->z = pMem->zMalloc;
181   pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
182   return SQLITE_OK;
183 }
184 
185 /*
186 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
187 ** MEM.zMalloc, where it can be safely written.
188 **
189 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
190 */
191 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
192   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
193   assert( (pMem->flags&MEM_RowSet)==0 );
194   if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
195     if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
196     if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
197       if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
198         return SQLITE_NOMEM_BKPT;
199       }
200       pMem->z[pMem->n] = 0;
201       pMem->z[pMem->n+1] = 0;
202       pMem->flags |= MEM_Term;
203     }
204   }
205   pMem->flags &= ~MEM_Ephem;
206 #ifdef SQLITE_DEBUG
207   pMem->pScopyFrom = 0;
208 #endif
209 
210   return SQLITE_OK;
211 }
212 
213 /*
214 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
215 ** blob stored in dynamically allocated space.
216 */
217 #ifndef SQLITE_OMIT_INCRBLOB
218 int sqlite3VdbeMemExpandBlob(Mem *pMem){
219   int nByte;
220   assert( pMem->flags & MEM_Zero );
221   assert( pMem->flags&MEM_Blob );
222   assert( (pMem->flags&MEM_RowSet)==0 );
223   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
224 
225   /* Set nByte to the number of bytes required to store the expanded blob. */
226   nByte = pMem->n + pMem->u.nZero;
227   if( nByte<=0 ){
228     nByte = 1;
229   }
230   if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
231     return SQLITE_NOMEM_BKPT;
232   }
233 
234   memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
235   pMem->n += pMem->u.nZero;
236   pMem->flags &= ~(MEM_Zero|MEM_Term);
237   return SQLITE_OK;
238 }
239 #endif
240 
241 /*
242 ** It is already known that pMem contains an unterminated string.
243 ** Add the zero terminator.
244 */
245 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
246   if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
247     return SQLITE_NOMEM_BKPT;
248   }
249   pMem->z[pMem->n] = 0;
250   pMem->z[pMem->n+1] = 0;
251   pMem->flags |= MEM_Term;
252   return SQLITE_OK;
253 }
254 
255 /*
256 ** Make sure the given Mem is \u0000 terminated.
257 */
258 int sqlite3VdbeMemNulTerminate(Mem *pMem){
259   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
260   testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
261   testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
262   if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
263     return SQLITE_OK;   /* Nothing to do */
264   }else{
265     return vdbeMemAddTerminator(pMem);
266   }
267 }
268 
269 /*
270 ** Add MEM_Str to the set of representations for the given Mem.  Numbers
271 ** are converted using sqlite3_snprintf().  Converting a BLOB to a string
272 ** is a no-op.
273 **
274 ** Existing representations MEM_Int and MEM_Real are invalidated if
275 ** bForce is true but are retained if bForce is false.
276 **
277 ** A MEM_Null value will never be passed to this function. This function is
278 ** used for converting values to text for returning to the user (i.e. via
279 ** sqlite3_value_text()), or for ensuring that values to be used as btree
280 ** keys are strings. In the former case a NULL pointer is returned the
281 ** user and the latter is an internal programming error.
282 */
283 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
284   int fg = pMem->flags;
285   const int nByte = 32;
286 
287   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
288   assert( !(fg&MEM_Zero) );
289   assert( !(fg&(MEM_Str|MEM_Blob)) );
290   assert( fg&(MEM_Int|MEM_Real) );
291   assert( (pMem->flags&MEM_RowSet)==0 );
292   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
293 
294 
295   if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
296     pMem->enc = 0;
297     return SQLITE_NOMEM_BKPT;
298   }
299 
300   /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
301   ** string representation of the value. Then, if the required encoding
302   ** is UTF-16le or UTF-16be do a translation.
303   **
304   ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
305   */
306   if( fg & MEM_Int ){
307     sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
308   }else{
309     assert( fg & MEM_Real );
310     sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
311   }
312   pMem->n = sqlite3Strlen30(pMem->z);
313   pMem->enc = SQLITE_UTF8;
314   pMem->flags |= MEM_Str|MEM_Term;
315   if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
316   sqlite3VdbeChangeEncoding(pMem, enc);
317   return SQLITE_OK;
318 }
319 
320 /*
321 ** Memory cell pMem contains the context of an aggregate function.
322 ** This routine calls the finalize method for that function.  The
323 ** result of the aggregate is stored back into pMem.
324 **
325 ** Return SQLITE_ERROR if the finalizer reports an error.  SQLITE_OK
326 ** otherwise.
327 */
328 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
329   int rc = SQLITE_OK;
330   if( ALWAYS(pFunc && pFunc->xFinalize) ){
331     sqlite3_context ctx;
332     Mem t;
333     assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
334     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
335     memset(&ctx, 0, sizeof(ctx));
336     memset(&t, 0, sizeof(t));
337     t.flags = MEM_Null;
338     t.db = pMem->db;
339     ctx.pOut = &t;
340     ctx.pMem = pMem;
341     ctx.pFunc = pFunc;
342     pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
343     assert( (pMem->flags & MEM_Dyn)==0 );
344     if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
345     memcpy(pMem, &t, sizeof(t));
346     rc = ctx.isError;
347   }
348   return rc;
349 }
350 
351 /*
352 ** If the memory cell contains a value that must be freed by
353 ** invoking the external callback in Mem.xDel, then this routine
354 ** will free that value.  It also sets Mem.flags to MEM_Null.
355 **
356 ** This is a helper routine for sqlite3VdbeMemSetNull() and
357 ** for sqlite3VdbeMemRelease().  Use those other routines as the
358 ** entry point for releasing Mem resources.
359 */
360 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
361   assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
362   assert( VdbeMemDynamic(p) );
363   if( p->flags&MEM_Agg ){
364     sqlite3VdbeMemFinalize(p, p->u.pDef);
365     assert( (p->flags & MEM_Agg)==0 );
366     testcase( p->flags & MEM_Dyn );
367   }
368   if( p->flags&MEM_Dyn ){
369     assert( (p->flags&MEM_RowSet)==0 );
370     assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
371     p->xDel((void *)p->z);
372   }else if( p->flags&MEM_RowSet ){
373     sqlite3RowSetClear(p->u.pRowSet);
374   }else if( p->flags&MEM_Frame ){
375     VdbeFrame *pFrame = p->u.pFrame;
376     pFrame->pParent = pFrame->v->pDelFrame;
377     pFrame->v->pDelFrame = pFrame;
378   }
379   p->flags = MEM_Null;
380 }
381 
382 /*
383 ** Release memory held by the Mem p, both external memory cleared
384 ** by p->xDel and memory in p->zMalloc.
385 **
386 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
387 ** the unusual case where there really is memory in p that needs
388 ** to be freed.
389 */
390 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
391   if( VdbeMemDynamic(p) ){
392     vdbeMemClearExternAndSetNull(p);
393   }
394   if( p->szMalloc ){
395     sqlite3DbFree(p->db, p->zMalloc);
396     p->szMalloc = 0;
397   }
398   p->z = 0;
399 }
400 
401 /*
402 ** Release any memory resources held by the Mem.  Both the memory that is
403 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
404 **
405 ** Use this routine prior to clean up prior to abandoning a Mem, or to
406 ** reset a Mem back to its minimum memory utilization.
407 **
408 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
409 ** prior to inserting new content into the Mem.
410 */
411 void sqlite3VdbeMemRelease(Mem *p){
412   assert( sqlite3VdbeCheckMemInvariants(p) );
413   if( VdbeMemDynamic(p) || p->szMalloc ){
414     vdbeMemClear(p);
415   }
416 }
417 
418 /*
419 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
420 ** If the double is out of range of a 64-bit signed integer then
421 ** return the closest available 64-bit signed integer.
422 */
423 static i64 doubleToInt64(double r){
424 #ifdef SQLITE_OMIT_FLOATING_POINT
425   /* When floating-point is omitted, double and int64 are the same thing */
426   return r;
427 #else
428   /*
429   ** Many compilers we encounter do not define constants for the
430   ** minimum and maximum 64-bit integers, or they define them
431   ** inconsistently.  And many do not understand the "LL" notation.
432   ** So we define our own static constants here using nothing
433   ** larger than a 32-bit integer constant.
434   */
435   static const i64 maxInt = LARGEST_INT64;
436   static const i64 minInt = SMALLEST_INT64;
437 
438   if( r<=(double)minInt ){
439     return minInt;
440   }else if( r>=(double)maxInt ){
441     return maxInt;
442   }else{
443     return (i64)r;
444   }
445 #endif
446 }
447 
448 /*
449 ** Return some kind of integer value which is the best we can do
450 ** at representing the value that *pMem describes as an integer.
451 ** If pMem is an integer, then the value is exact.  If pMem is
452 ** a floating-point then the value returned is the integer part.
453 ** If pMem is a string or blob, then we make an attempt to convert
454 ** it into an integer and return that.  If pMem represents an
455 ** an SQL-NULL value, return 0.
456 **
457 ** If pMem represents a string value, its encoding might be changed.
458 */
459 i64 sqlite3VdbeIntValue(Mem *pMem){
460   int flags;
461   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
462   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
463   flags = pMem->flags;
464   if( flags & MEM_Int ){
465     return pMem->u.i;
466   }else if( flags & MEM_Real ){
467     return doubleToInt64(pMem->u.r);
468   }else if( flags & (MEM_Str|MEM_Blob) ){
469     i64 value = 0;
470     assert( pMem->z || pMem->n==0 );
471     sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
472     return value;
473   }else{
474     return 0;
475   }
476 }
477 
478 /*
479 ** Return the best representation of pMem that we can get into a
480 ** double.  If pMem is already a double or an integer, return its
481 ** value.  If it is a string or blob, try to convert it to a double.
482 ** If it is a NULL, return 0.0.
483 */
484 double sqlite3VdbeRealValue(Mem *pMem){
485   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
486   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
487   if( pMem->flags & MEM_Real ){
488     return pMem->u.r;
489   }else if( pMem->flags & MEM_Int ){
490     return (double)pMem->u.i;
491   }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
492     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
493     double val = (double)0;
494     sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
495     return val;
496   }else{
497     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
498     return (double)0;
499   }
500 }
501 
502 /*
503 ** The MEM structure is already a MEM_Real.  Try to also make it a
504 ** MEM_Int if we can.
505 */
506 void sqlite3VdbeIntegerAffinity(Mem *pMem){
507   i64 ix;
508   assert( pMem->flags & MEM_Real );
509   assert( (pMem->flags & MEM_RowSet)==0 );
510   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
511   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
512 
513   ix = doubleToInt64(pMem->u.r);
514 
515   /* Only mark the value as an integer if
516   **
517   **    (1) the round-trip conversion real->int->real is a no-op, and
518   **    (2) The integer is neither the largest nor the smallest
519   **        possible integer (ticket #3922)
520   **
521   ** The second and third terms in the following conditional enforces
522   ** the second condition under the assumption that addition overflow causes
523   ** values to wrap around.
524   */
525   if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
526     pMem->u.i = ix;
527     MemSetTypeFlag(pMem, MEM_Int);
528   }
529 }
530 
531 /*
532 ** Convert pMem to type integer.  Invalidate any prior representations.
533 */
534 int sqlite3VdbeMemIntegerify(Mem *pMem){
535   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
536   assert( (pMem->flags & MEM_RowSet)==0 );
537   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
538 
539   pMem->u.i = sqlite3VdbeIntValue(pMem);
540   MemSetTypeFlag(pMem, MEM_Int);
541   return SQLITE_OK;
542 }
543 
544 /*
545 ** Convert pMem so that it is of type MEM_Real.
546 ** Invalidate any prior representations.
547 */
548 int sqlite3VdbeMemRealify(Mem *pMem){
549   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
550   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
551 
552   pMem->u.r = sqlite3VdbeRealValue(pMem);
553   MemSetTypeFlag(pMem, MEM_Real);
554   return SQLITE_OK;
555 }
556 
557 /*
558 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
559 ** Invalidate any prior representations.
560 **
561 ** Every effort is made to force the conversion, even if the input
562 ** is a string that does not look completely like a number.  Convert
563 ** as much of the string as we can and ignore the rest.
564 */
565 int sqlite3VdbeMemNumerify(Mem *pMem){
566   if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
567     assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
568     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
569     if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){
570       MemSetTypeFlag(pMem, MEM_Int);
571     }else{
572       pMem->u.r = sqlite3VdbeRealValue(pMem);
573       MemSetTypeFlag(pMem, MEM_Real);
574       sqlite3VdbeIntegerAffinity(pMem);
575     }
576   }
577   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
578   pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
579   return SQLITE_OK;
580 }
581 
582 /*
583 ** Cast the datatype of the value in pMem according to the affinity
584 ** "aff".  Casting is different from applying affinity in that a cast
585 ** is forced.  In other words, the value is converted into the desired
586 ** affinity even if that results in loss of data.  This routine is
587 ** used (for example) to implement the SQL "cast()" operator.
588 */
589 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
590   if( pMem->flags & MEM_Null ) return;
591   switch( aff ){
592     case SQLITE_AFF_BLOB: {   /* Really a cast to BLOB */
593       if( (pMem->flags & MEM_Blob)==0 ){
594         sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
595         assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
596         if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
597       }else{
598         pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
599       }
600       break;
601     }
602     case SQLITE_AFF_NUMERIC: {
603       sqlite3VdbeMemNumerify(pMem);
604       break;
605     }
606     case SQLITE_AFF_INTEGER: {
607       sqlite3VdbeMemIntegerify(pMem);
608       break;
609     }
610     case SQLITE_AFF_REAL: {
611       sqlite3VdbeMemRealify(pMem);
612       break;
613     }
614     default: {
615       assert( aff==SQLITE_AFF_TEXT );
616       assert( MEM_Str==(MEM_Blob>>3) );
617       pMem->flags |= (pMem->flags&MEM_Blob)>>3;
618       sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
619       assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
620       pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
621       break;
622     }
623   }
624 }
625 
626 /*
627 ** Initialize bulk memory to be a consistent Mem object.
628 **
629 ** The minimum amount of initialization feasible is performed.
630 */
631 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
632   assert( (flags & ~MEM_TypeMask)==0 );
633   pMem->flags = flags;
634   pMem->db = db;
635   pMem->szMalloc = 0;
636 }
637 
638 
639 /*
640 ** Delete any previous value and set the value stored in *pMem to NULL.
641 **
642 ** This routine calls the Mem.xDel destructor to dispose of values that
643 ** require the destructor.  But it preserves the Mem.zMalloc memory allocation.
644 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
645 ** routine to invoke the destructor and deallocates Mem.zMalloc.
646 **
647 ** Use this routine to reset the Mem prior to insert a new value.
648 **
649 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
650 */
651 void sqlite3VdbeMemSetNull(Mem *pMem){
652   if( VdbeMemDynamic(pMem) ){
653     vdbeMemClearExternAndSetNull(pMem);
654   }else{
655     pMem->flags = MEM_Null;
656   }
657 }
658 void sqlite3ValueSetNull(sqlite3_value *p){
659   sqlite3VdbeMemSetNull((Mem*)p);
660 }
661 
662 /*
663 ** Delete any previous value and set the value to be a BLOB of length
664 ** n containing all zeros.
665 */
666 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
667   sqlite3VdbeMemRelease(pMem);
668   pMem->flags = MEM_Blob|MEM_Zero;
669   pMem->n = 0;
670   if( n<0 ) n = 0;
671   pMem->u.nZero = n;
672   pMem->enc = SQLITE_UTF8;
673   pMem->z = 0;
674 }
675 
676 /*
677 ** The pMem is known to contain content that needs to be destroyed prior
678 ** to a value change.  So invoke the destructor, then set the value to
679 ** a 64-bit integer.
680 */
681 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
682   sqlite3VdbeMemSetNull(pMem);
683   pMem->u.i = val;
684   pMem->flags = MEM_Int;
685 }
686 
687 /*
688 ** Delete any previous value and set the value stored in *pMem to val,
689 ** manifest type INTEGER.
690 */
691 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
692   if( VdbeMemDynamic(pMem) ){
693     vdbeReleaseAndSetInt64(pMem, val);
694   }else{
695     pMem->u.i = val;
696     pMem->flags = MEM_Int;
697   }
698 }
699 
700 #ifndef SQLITE_OMIT_FLOATING_POINT
701 /*
702 ** Delete any previous value and set the value stored in *pMem to val,
703 ** manifest type REAL.
704 */
705 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
706   sqlite3VdbeMemSetNull(pMem);
707   if( !sqlite3IsNaN(val) ){
708     pMem->u.r = val;
709     pMem->flags = MEM_Real;
710   }
711 }
712 #endif
713 
714 /*
715 ** Delete any previous value and set the value of pMem to be an
716 ** empty boolean index.
717 */
718 void sqlite3VdbeMemSetRowSet(Mem *pMem){
719   sqlite3 *db = pMem->db;
720   assert( db!=0 );
721   assert( (pMem->flags & MEM_RowSet)==0 );
722   sqlite3VdbeMemRelease(pMem);
723   pMem->zMalloc = sqlite3DbMallocRawNN(db, 64);
724   if( db->mallocFailed ){
725     pMem->flags = MEM_Null;
726     pMem->szMalloc = 0;
727   }else{
728     assert( pMem->zMalloc );
729     pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
730     pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);
731     assert( pMem->u.pRowSet!=0 );
732     pMem->flags = MEM_RowSet;
733   }
734 }
735 
736 /*
737 ** Return true if the Mem object contains a TEXT or BLOB that is
738 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
739 */
740 int sqlite3VdbeMemTooBig(Mem *p){
741   assert( p->db!=0 );
742   if( p->flags & (MEM_Str|MEM_Blob) ){
743     int n = p->n;
744     if( p->flags & MEM_Zero ){
745       n += p->u.nZero;
746     }
747     return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
748   }
749   return 0;
750 }
751 
752 #ifdef SQLITE_DEBUG
753 /*
754 ** This routine prepares a memory cell for modification by breaking
755 ** its link to a shallow copy and by marking any current shallow
756 ** copies of this cell as invalid.
757 **
758 ** This is used for testing and debugging only - to make sure shallow
759 ** copies are not misused.
760 */
761 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
762   int i;
763   Mem *pX;
764   for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){
765     if( pX->pScopyFrom==pMem ){
766       pX->flags |= MEM_Undefined;
767       pX->pScopyFrom = 0;
768     }
769   }
770   pMem->pScopyFrom = 0;
771 }
772 #endif /* SQLITE_DEBUG */
773 
774 
775 /*
776 ** Make an shallow copy of pFrom into pTo.  Prior contents of
777 ** pTo are freed.  The pFrom->z field is not duplicated.  If
778 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
779 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
780 */
781 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
782   vdbeMemClearExternAndSetNull(pTo);
783   assert( !VdbeMemDynamic(pTo) );
784   sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
785 }
786 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
787   assert( (pFrom->flags & MEM_RowSet)==0 );
788   assert( pTo->db==pFrom->db );
789   if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
790   memcpy(pTo, pFrom, MEMCELLSIZE);
791   if( (pFrom->flags&MEM_Static)==0 ){
792     pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
793     assert( srcType==MEM_Ephem || srcType==MEM_Static );
794     pTo->flags |= srcType;
795   }
796 }
797 
798 /*
799 ** Make a full copy of pFrom into pTo.  Prior contents of pTo are
800 ** freed before the copy is made.
801 */
802 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
803   int rc = SQLITE_OK;
804 
805   assert( (pFrom->flags & MEM_RowSet)==0 );
806   if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
807   memcpy(pTo, pFrom, MEMCELLSIZE);
808   pTo->flags &= ~MEM_Dyn;
809   if( pTo->flags&(MEM_Str|MEM_Blob) ){
810     if( 0==(pFrom->flags&MEM_Static) ){
811       pTo->flags |= MEM_Ephem;
812       rc = sqlite3VdbeMemMakeWriteable(pTo);
813     }
814   }
815 
816   return rc;
817 }
818 
819 /*
820 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
821 ** freed. If pFrom contains ephemeral data, a copy is made.
822 **
823 ** pFrom contains an SQL NULL when this routine returns.
824 */
825 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
826   assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
827   assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
828   assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
829 
830   sqlite3VdbeMemRelease(pTo);
831   memcpy(pTo, pFrom, sizeof(Mem));
832   pFrom->flags = MEM_Null;
833   pFrom->szMalloc = 0;
834 }
835 
836 /*
837 ** Change the value of a Mem to be a string or a BLOB.
838 **
839 ** The memory management strategy depends on the value of the xDel
840 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
841 ** string is copied into a (possibly existing) buffer managed by the
842 ** Mem structure. Otherwise, any existing buffer is freed and the
843 ** pointer copied.
844 **
845 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
846 ** size limit) then no memory allocation occurs.  If the string can be
847 ** stored without allocating memory, then it is.  If a memory allocation
848 ** is required to store the string, then value of pMem is unchanged.  In
849 ** either case, SQLITE_TOOBIG is returned.
850 */
851 int sqlite3VdbeMemSetStr(
852   Mem *pMem,          /* Memory cell to set to string value */
853   const char *z,      /* String pointer */
854   int n,              /* Bytes in string, or negative */
855   u8 enc,             /* Encoding of z.  0 for BLOBs */
856   void (*xDel)(void*) /* Destructor function */
857 ){
858   int nByte = n;      /* New value for pMem->n */
859   int iLimit;         /* Maximum allowed string or blob size */
860   u16 flags = 0;      /* New value for pMem->flags */
861 
862   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
863   assert( (pMem->flags & MEM_RowSet)==0 );
864 
865   /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
866   if( !z ){
867     sqlite3VdbeMemSetNull(pMem);
868     return SQLITE_OK;
869   }
870 
871   if( pMem->db ){
872     iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
873   }else{
874     iLimit = SQLITE_MAX_LENGTH;
875   }
876   flags = (enc==0?MEM_Blob:MEM_Str);
877   if( nByte<0 ){
878     assert( enc!=0 );
879     if( enc==SQLITE_UTF8 ){
880       nByte = sqlite3Strlen30(z);
881       if( nByte>iLimit ) nByte = iLimit+1;
882     }else{
883       for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
884     }
885     flags |= MEM_Term;
886   }
887 
888   /* The following block sets the new values of Mem.z and Mem.xDel. It
889   ** also sets a flag in local variable "flags" to indicate the memory
890   ** management (one of MEM_Dyn or MEM_Static).
891   */
892   if( xDel==SQLITE_TRANSIENT ){
893     int nAlloc = nByte;
894     if( flags&MEM_Term ){
895       nAlloc += (enc==SQLITE_UTF8?1:2);
896     }
897     if( nByte>iLimit ){
898       return SQLITE_TOOBIG;
899     }
900     testcase( nAlloc==0 );
901     testcase( nAlloc==31 );
902     testcase( nAlloc==32 );
903     if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){
904       return SQLITE_NOMEM_BKPT;
905     }
906     memcpy(pMem->z, z, nAlloc);
907   }else if( xDel==SQLITE_DYNAMIC ){
908     sqlite3VdbeMemRelease(pMem);
909     pMem->zMalloc = pMem->z = (char *)z;
910     pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
911   }else{
912     sqlite3VdbeMemRelease(pMem);
913     pMem->z = (char *)z;
914     pMem->xDel = xDel;
915     flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
916   }
917 
918   pMem->n = nByte;
919   pMem->flags = flags;
920   pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
921 
922 #ifndef SQLITE_OMIT_UTF16
923   if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
924     return SQLITE_NOMEM_BKPT;
925   }
926 #endif
927 
928   if( nByte>iLimit ){
929     return SQLITE_TOOBIG;
930   }
931 
932   return SQLITE_OK;
933 }
934 
935 /*
936 ** Move data out of a btree key or data field and into a Mem structure.
937 ** The data or key is taken from the entry that pCur is currently pointing
938 ** to.  offset and amt determine what portion of the data or key to retrieve.
939 ** key is true to get the key or false to get data.  The result is written
940 ** into the pMem element.
941 **
942 ** The pMem object must have been initialized.  This routine will use
943 ** pMem->zMalloc to hold the content from the btree, if possible.  New
944 ** pMem->zMalloc space will be allocated if necessary.  The calling routine
945 ** is responsible for making sure that the pMem object is eventually
946 ** destroyed.
947 **
948 ** If this routine fails for any reason (malloc returns NULL or unable
949 ** to read from the disk) then the pMem is left in an inconsistent state.
950 */
951 static SQLITE_NOINLINE int vdbeMemFromBtreeResize(
952   BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
953   u32 offset,       /* Offset from the start of data to return bytes from. */
954   u32 amt,          /* Number of bytes to return. */
955   int key,          /* If true, retrieve from the btree key, not data. */
956   Mem *pMem         /* OUT: Return data in this Mem structure. */
957 ){
958   int rc;
959   pMem->flags = MEM_Null;
960   if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){
961     if( key ){
962       rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
963     }else{
964       rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
965     }
966     if( rc==SQLITE_OK ){
967       pMem->z[amt] = 0;
968       pMem->z[amt+1] = 0;
969       pMem->flags = MEM_Blob|MEM_Term;
970       pMem->n = (int)amt;
971     }else{
972       sqlite3VdbeMemRelease(pMem);
973     }
974   }
975   return rc;
976 }
977 int sqlite3VdbeMemFromBtree(
978   BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
979   u32 offset,       /* Offset from the start of data to return bytes from. */
980   u32 amt,          /* Number of bytes to return. */
981   int key,          /* If true, retrieve from the btree key, not data. */
982   Mem *pMem         /* OUT: Return data in this Mem structure. */
983 ){
984   char *zData;        /* Data from the btree layer */
985   u32 available = 0;  /* Number of bytes available on the local btree page */
986   int rc = SQLITE_OK; /* Return code */
987 
988   assert( sqlite3BtreeCursorIsValid(pCur) );
989   assert( !VdbeMemDynamic(pMem) );
990 
991   /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
992   ** that both the BtShared and database handle mutexes are held. */
993   assert( (pMem->flags & MEM_RowSet)==0 );
994   zData = (char *)sqlite3BtreePayloadFetch(pCur, &available);
995   assert( zData!=0 );
996 
997   if( offset+amt<=available ){
998     pMem->z = &zData[offset];
999     pMem->flags = MEM_Blob|MEM_Ephem;
1000     pMem->n = (int)amt;
1001   }else{
1002     rc = vdbeMemFromBtreeResize(pCur, offset, amt, key, pMem);
1003   }
1004 
1005   return rc;
1006 }
1007 
1008 /*
1009 ** The pVal argument is known to be a value other than NULL.
1010 ** Convert it into a string with encoding enc and return a pointer
1011 ** to a zero-terminated version of that string.
1012 */
1013 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1014   assert( pVal!=0 );
1015   assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1016   assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1017   assert( (pVal->flags & MEM_RowSet)==0 );
1018   assert( (pVal->flags & (MEM_Null))==0 );
1019   if( pVal->flags & (MEM_Blob|MEM_Str) ){
1020     pVal->flags |= MEM_Str;
1021     if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1022       sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1023     }
1024     if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1025       assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1026       if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1027         return 0;
1028       }
1029     }
1030     sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1031   }else{
1032     sqlite3VdbeMemStringify(pVal, enc, 0);
1033     assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1034   }
1035   assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1036               || pVal->db->mallocFailed );
1037   if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1038     return pVal->z;
1039   }else{
1040     return 0;
1041   }
1042 }
1043 
1044 /* This function is only available internally, it is not part of the
1045 ** external API. It works in a similar way to sqlite3_value_text(),
1046 ** except the data returned is in the encoding specified by the second
1047 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1048 ** SQLITE_UTF8.
1049 **
1050 ** (2006-02-16:)  The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1051 ** If that is the case, then the result must be aligned on an even byte
1052 ** boundary.
1053 */
1054 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1055   if( !pVal ) return 0;
1056   assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1057   assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1058   assert( (pVal->flags & MEM_RowSet)==0 );
1059   if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1060     return pVal->z;
1061   }
1062   if( pVal->flags&MEM_Null ){
1063     return 0;
1064   }
1065   return valueToText(pVal, enc);
1066 }
1067 
1068 /*
1069 ** Create a new sqlite3_value object.
1070 */
1071 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1072   Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1073   if( p ){
1074     p->flags = MEM_Null;
1075     p->db = db;
1076   }
1077   return p;
1078 }
1079 
1080 /*
1081 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1082 ** valueNew(). See comments above valueNew() for details.
1083 */
1084 struct ValueNewStat4Ctx {
1085   Parse *pParse;
1086   Index *pIdx;
1087   UnpackedRecord **ppRec;
1088   int iVal;
1089 };
1090 
1091 /*
1092 ** Allocate and return a pointer to a new sqlite3_value object. If
1093 ** the second argument to this function is NULL, the object is allocated
1094 ** by calling sqlite3ValueNew().
1095 **
1096 ** Otherwise, if the second argument is non-zero, then this function is
1097 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1098 ** already been allocated, allocate the UnpackedRecord structure that
1099 ** that function will return to its caller here. Then return a pointer to
1100 ** an sqlite3_value within the UnpackedRecord.a[] array.
1101 */
1102 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1103 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1104   if( p ){
1105     UnpackedRecord *pRec = p->ppRec[0];
1106 
1107     if( pRec==0 ){
1108       Index *pIdx = p->pIdx;      /* Index being probed */
1109       int nByte;                  /* Bytes of space to allocate */
1110       int i;                      /* Counter variable */
1111       int nCol = pIdx->nColumn;   /* Number of index columns including rowid */
1112 
1113       nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1114       pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1115       if( pRec ){
1116         pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1117         if( pRec->pKeyInfo ){
1118           assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol );
1119           assert( pRec->pKeyInfo->enc==ENC(db) );
1120           pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1121           for(i=0; i<nCol; i++){
1122             pRec->aMem[i].flags = MEM_Null;
1123             pRec->aMem[i].db = db;
1124           }
1125         }else{
1126           sqlite3DbFree(db, pRec);
1127           pRec = 0;
1128         }
1129       }
1130       if( pRec==0 ) return 0;
1131       p->ppRec[0] = pRec;
1132     }
1133 
1134     pRec->nField = p->iVal+1;
1135     return &pRec->aMem[p->iVal];
1136   }
1137 #else
1138   UNUSED_PARAMETER(p);
1139 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1140   return sqlite3ValueNew(db);
1141 }
1142 
1143 /*
1144 ** The expression object indicated by the second argument is guaranteed
1145 ** to be a scalar SQL function. If
1146 **
1147 **   * all function arguments are SQL literals,
1148 **   * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1149 **   * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1150 **
1151 ** then this routine attempts to invoke the SQL function. Assuming no
1152 ** error occurs, output parameter (*ppVal) is set to point to a value
1153 ** object containing the result before returning SQLITE_OK.
1154 **
1155 ** Affinity aff is applied to the result of the function before returning.
1156 ** If the result is a text value, the sqlite3_value object uses encoding
1157 ** enc.
1158 **
1159 ** If the conditions above are not met, this function returns SQLITE_OK
1160 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1161 ** NULL and an SQLite error code returned.
1162 */
1163 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1164 static int valueFromFunction(
1165   sqlite3 *db,                    /* The database connection */
1166   Expr *p,                        /* The expression to evaluate */
1167   u8 enc,                         /* Encoding to use */
1168   u8 aff,                         /* Affinity to use */
1169   sqlite3_value **ppVal,          /* Write the new value here */
1170   struct ValueNewStat4Ctx *pCtx   /* Second argument for valueNew() */
1171 ){
1172   sqlite3_context ctx;            /* Context object for function invocation */
1173   sqlite3_value **apVal = 0;      /* Function arguments */
1174   int nVal = 0;                   /* Size of apVal[] array */
1175   FuncDef *pFunc = 0;             /* Function definition */
1176   sqlite3_value *pVal = 0;        /* New value */
1177   int rc = SQLITE_OK;             /* Return code */
1178   ExprList *pList = 0;            /* Function arguments */
1179   int i;                          /* Iterator variable */
1180 
1181   assert( pCtx!=0 );
1182   assert( (p->flags & EP_TokenOnly)==0 );
1183   pList = p->x.pList;
1184   if( pList ) nVal = pList->nExpr;
1185   pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1186   assert( pFunc );
1187   if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1188    || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1189   ){
1190     return SQLITE_OK;
1191   }
1192 
1193   if( pList ){
1194     apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1195     if( apVal==0 ){
1196       rc = SQLITE_NOMEM_BKPT;
1197       goto value_from_function_out;
1198     }
1199     for(i=0; i<nVal; i++){
1200       rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1201       if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1202     }
1203   }
1204 
1205   pVal = valueNew(db, pCtx);
1206   if( pVal==0 ){
1207     rc = SQLITE_NOMEM_BKPT;
1208     goto value_from_function_out;
1209   }
1210 
1211   assert( pCtx->pParse->rc==SQLITE_OK );
1212   memset(&ctx, 0, sizeof(ctx));
1213   ctx.pOut = pVal;
1214   ctx.pFunc = pFunc;
1215   pFunc->xSFunc(&ctx, nVal, apVal);
1216   if( ctx.isError ){
1217     rc = ctx.isError;
1218     sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1219   }else{
1220     sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1221     assert( rc==SQLITE_OK );
1222     rc = sqlite3VdbeChangeEncoding(pVal, enc);
1223     if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1224       rc = SQLITE_TOOBIG;
1225       pCtx->pParse->nErr++;
1226     }
1227   }
1228   pCtx->pParse->rc = rc;
1229 
1230  value_from_function_out:
1231   if( rc!=SQLITE_OK ){
1232     pVal = 0;
1233   }
1234   if( apVal ){
1235     for(i=0; i<nVal; i++){
1236       sqlite3ValueFree(apVal[i]);
1237     }
1238     sqlite3DbFree(db, apVal);
1239   }
1240 
1241   *ppVal = pVal;
1242   return rc;
1243 }
1244 #else
1245 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1246 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1247 
1248 /*
1249 ** Extract a value from the supplied expression in the manner described
1250 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1251 ** using valueNew().
1252 **
1253 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1254 ** has been allocated, it is freed before returning. Or, if pCtx is not
1255 ** NULL, it is assumed that the caller will free any allocated object
1256 ** in all cases.
1257 */
1258 static int valueFromExpr(
1259   sqlite3 *db,                    /* The database connection */
1260   Expr *pExpr,                    /* The expression to evaluate */
1261   u8 enc,                         /* Encoding to use */
1262   u8 affinity,                    /* Affinity to use */
1263   sqlite3_value **ppVal,          /* Write the new value here */
1264   struct ValueNewStat4Ctx *pCtx   /* Second argument for valueNew() */
1265 ){
1266   int op;
1267   char *zVal = 0;
1268   sqlite3_value *pVal = 0;
1269   int negInt = 1;
1270   const char *zNeg = "";
1271   int rc = SQLITE_OK;
1272 
1273   assert( pExpr!=0 );
1274   while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
1275   if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1276 
1277   /* Compressed expressions only appear when parsing the DEFAULT clause
1278   ** on a table column definition, and hence only when pCtx==0.  This
1279   ** check ensures that an EP_TokenOnly expression is never passed down
1280   ** into valueFromFunction(). */
1281   assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1282 
1283   if( op==TK_CAST ){
1284     u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1285     rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1286     testcase( rc!=SQLITE_OK );
1287     if( *ppVal ){
1288       sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1289       sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1290     }
1291     return rc;
1292   }
1293 
1294   /* Handle negative integers in a single step.  This is needed in the
1295   ** case when the value is -9223372036854775808.
1296   */
1297   if( op==TK_UMINUS
1298    && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1299     pExpr = pExpr->pLeft;
1300     op = pExpr->op;
1301     negInt = -1;
1302     zNeg = "-";
1303   }
1304 
1305   if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1306     pVal = valueNew(db, pCtx);
1307     if( pVal==0 ) goto no_mem;
1308     if( ExprHasProperty(pExpr, EP_IntValue) ){
1309       sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1310     }else{
1311       zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1312       if( zVal==0 ) goto no_mem;
1313       sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1314     }
1315     if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1316       sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1317     }else{
1318       sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1319     }
1320     if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
1321     if( enc!=SQLITE_UTF8 ){
1322       rc = sqlite3VdbeChangeEncoding(pVal, enc);
1323     }
1324   }else if( op==TK_UMINUS ) {
1325     /* This branch happens for multiple negative signs.  Ex: -(-5) */
1326     if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal)
1327      && pVal!=0
1328     ){
1329       sqlite3VdbeMemNumerify(pVal);
1330       if( pVal->flags & MEM_Real ){
1331         pVal->u.r = -pVal->u.r;
1332       }else if( pVal->u.i==SMALLEST_INT64 ){
1333         pVal->u.r = -(double)SMALLEST_INT64;
1334         MemSetTypeFlag(pVal, MEM_Real);
1335       }else{
1336         pVal->u.i = -pVal->u.i;
1337       }
1338       sqlite3ValueApplyAffinity(pVal, affinity, enc);
1339     }
1340   }else if( op==TK_NULL ){
1341     pVal = valueNew(db, pCtx);
1342     if( pVal==0 ) goto no_mem;
1343   }
1344 #ifndef SQLITE_OMIT_BLOB_LITERAL
1345   else if( op==TK_BLOB ){
1346     int nVal;
1347     assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1348     assert( pExpr->u.zToken[1]=='\'' );
1349     pVal = valueNew(db, pCtx);
1350     if( !pVal ) goto no_mem;
1351     zVal = &pExpr->u.zToken[2];
1352     nVal = sqlite3Strlen30(zVal)-1;
1353     assert( zVal[nVal]=='\'' );
1354     sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1355                          0, SQLITE_DYNAMIC);
1356   }
1357 #endif
1358 
1359 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1360   else if( op==TK_FUNCTION && pCtx!=0 ){
1361     rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1362   }
1363 #endif
1364 
1365   *ppVal = pVal;
1366   return rc;
1367 
1368 no_mem:
1369   sqlite3OomFault(db);
1370   sqlite3DbFree(db, zVal);
1371   assert( *ppVal==0 );
1372 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1373   if( pCtx==0 ) sqlite3ValueFree(pVal);
1374 #else
1375   assert( pCtx==0 ); sqlite3ValueFree(pVal);
1376 #endif
1377   return SQLITE_NOMEM_BKPT;
1378 }
1379 
1380 /*
1381 ** Create a new sqlite3_value object, containing the value of pExpr.
1382 **
1383 ** This only works for very simple expressions that consist of one constant
1384 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1385 ** be converted directly into a value, then the value is allocated and
1386 ** a pointer written to *ppVal. The caller is responsible for deallocating
1387 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1388 ** cannot be converted to a value, then *ppVal is set to NULL.
1389 */
1390 int sqlite3ValueFromExpr(
1391   sqlite3 *db,              /* The database connection */
1392   Expr *pExpr,              /* The expression to evaluate */
1393   u8 enc,                   /* Encoding to use */
1394   u8 affinity,              /* Affinity to use */
1395   sqlite3_value **ppVal     /* Write the new value here */
1396 ){
1397   return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
1398 }
1399 
1400 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1401 /*
1402 ** The implementation of the sqlite_record() function. This function accepts
1403 ** a single argument of any type. The return value is a formatted database
1404 ** record (a blob) containing the argument value.
1405 **
1406 ** This is used to convert the value stored in the 'sample' column of the
1407 ** sqlite_stat3 table to the record format SQLite uses internally.
1408 */
1409 static void recordFunc(
1410   sqlite3_context *context,
1411   int argc,
1412   sqlite3_value **argv
1413 ){
1414   const int file_format = 1;
1415   u32 iSerial;                    /* Serial type */
1416   int nSerial;                    /* Bytes of space for iSerial as varint */
1417   u32 nVal;                       /* Bytes of space required for argv[0] */
1418   int nRet;
1419   sqlite3 *db;
1420   u8 *aRet;
1421 
1422   UNUSED_PARAMETER( argc );
1423   iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal);
1424   nSerial = sqlite3VarintLen(iSerial);
1425   db = sqlite3_context_db_handle(context);
1426 
1427   nRet = 1 + nSerial + nVal;
1428   aRet = sqlite3DbMallocRawNN(db, nRet);
1429   if( aRet==0 ){
1430     sqlite3_result_error_nomem(context);
1431   }else{
1432     aRet[0] = nSerial+1;
1433     putVarint32(&aRet[1], iSerial);
1434     sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
1435     sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
1436     sqlite3DbFree(db, aRet);
1437   }
1438 }
1439 
1440 /*
1441 ** Register built-in functions used to help read ANALYZE data.
1442 */
1443 void sqlite3AnalyzeFunctions(void){
1444   static FuncDef aAnalyzeTableFuncs[] = {
1445     FUNCTION(sqlite_record,   1, 0, 0, recordFunc),
1446   };
1447   sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs));
1448 }
1449 
1450 /*
1451 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1452 **
1453 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1454 ** pAlloc if one does not exist and the new value is added to the
1455 ** UnpackedRecord object.
1456 **
1457 ** A value is extracted in the following cases:
1458 **
1459 **  * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1460 **
1461 **  * The expression is a bound variable, and this is a reprepare, or
1462 **
1463 **  * The expression is a literal value.
1464 **
1465 ** On success, *ppVal is made to point to the extracted value.  The caller
1466 ** is responsible for ensuring that the value is eventually freed.
1467 */
1468 static int stat4ValueFromExpr(
1469   Parse *pParse,                  /* Parse context */
1470   Expr *pExpr,                    /* The expression to extract a value from */
1471   u8 affinity,                    /* Affinity to use */
1472   struct ValueNewStat4Ctx *pAlloc,/* How to allocate space.  Or NULL */
1473   sqlite3_value **ppVal           /* OUT: New value object (or NULL) */
1474 ){
1475   int rc = SQLITE_OK;
1476   sqlite3_value *pVal = 0;
1477   sqlite3 *db = pParse->db;
1478 
1479   /* Skip over any TK_COLLATE nodes */
1480   pExpr = sqlite3ExprSkipCollate(pExpr);
1481 
1482   if( !pExpr ){
1483     pVal = valueNew(db, pAlloc);
1484     if( pVal ){
1485       sqlite3VdbeMemSetNull((Mem*)pVal);
1486     }
1487   }else if( pExpr->op==TK_VARIABLE
1488         || NEVER(pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
1489   ){
1490     Vdbe *v;
1491     int iBindVar = pExpr->iColumn;
1492     sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1493     if( (v = pParse->pReprepare)!=0 ){
1494       pVal = valueNew(db, pAlloc);
1495       if( pVal ){
1496         rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1497         if( rc==SQLITE_OK ){
1498           sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1499         }
1500         pVal->db = pParse->db;
1501       }
1502     }
1503   }else{
1504     rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1505   }
1506 
1507   assert( pVal==0 || pVal->db==db );
1508   *ppVal = pVal;
1509   return rc;
1510 }
1511 
1512 /*
1513 ** This function is used to allocate and populate UnpackedRecord
1514 ** structures intended to be compared against sample index keys stored
1515 ** in the sqlite_stat4 table.
1516 **
1517 ** A single call to this function populates zero or more fields of the
1518 ** record starting with field iVal (fields are numbered from left to
1519 ** right starting with 0). A single field is populated if:
1520 **
1521 **  * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1522 **
1523 **  * The expression is a bound variable, and this is a reprepare, or
1524 **
1525 **  * The sqlite3ValueFromExpr() function is able to extract a value
1526 **    from the expression (i.e. the expression is a literal value).
1527 **
1528 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1529 ** vector components that match either of the two latter criteria listed
1530 ** above.
1531 **
1532 ** Before any value is appended to the record, the affinity of the
1533 ** corresponding column within index pIdx is applied to it. Before
1534 ** this function returns, output parameter *pnExtract is set to the
1535 ** number of values appended to the record.
1536 **
1537 ** When this function is called, *ppRec must either point to an object
1538 ** allocated by an earlier call to this function, or must be NULL. If it
1539 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1540 ** is allocated (and *ppRec set to point to it) before returning.
1541 **
1542 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1543 ** error if a value cannot be extracted from pExpr. If an error does
1544 ** occur, an SQLite error code is returned.
1545 */
1546 int sqlite3Stat4ProbeSetValue(
1547   Parse *pParse,                  /* Parse context */
1548   Index *pIdx,                    /* Index being probed */
1549   UnpackedRecord **ppRec,         /* IN/OUT: Probe record */
1550   Expr *pExpr,                    /* The expression to extract a value from */
1551   int nElem,                      /* Maximum number of values to append */
1552   int iVal,                       /* Array element to populate */
1553   int *pnExtract                  /* OUT: Values appended to the record */
1554 ){
1555   int rc = SQLITE_OK;
1556   int nExtract = 0;
1557 
1558   if( pExpr==0 || pExpr->op!=TK_SELECT ){
1559     int i;
1560     struct ValueNewStat4Ctx alloc;
1561 
1562     alloc.pParse = pParse;
1563     alloc.pIdx = pIdx;
1564     alloc.ppRec = ppRec;
1565 
1566     for(i=0; i<nElem; i++){
1567       sqlite3_value *pVal = 0;
1568       Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
1569       u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1570       alloc.iVal = iVal+i;
1571       rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1572       if( !pVal ) break;
1573       nExtract++;
1574     }
1575   }
1576 
1577   *pnExtract = nExtract;
1578   return rc;
1579 }
1580 
1581 /*
1582 ** Attempt to extract a value from expression pExpr using the methods
1583 ** as described for sqlite3Stat4ProbeSetValue() above.
1584 **
1585 ** If successful, set *ppVal to point to a new value object and return
1586 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1587 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1588 ** does occur, return an SQLite error code. The final value of *ppVal
1589 ** is undefined in this case.
1590 */
1591 int sqlite3Stat4ValueFromExpr(
1592   Parse *pParse,                  /* Parse context */
1593   Expr *pExpr,                    /* The expression to extract a value from */
1594   u8 affinity,                    /* Affinity to use */
1595   sqlite3_value **ppVal           /* OUT: New value object (or NULL) */
1596 ){
1597   return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1598 }
1599 
1600 /*
1601 ** Extract the iCol-th column from the nRec-byte record in pRec.  Write
1602 ** the column value into *ppVal.  If *ppVal is initially NULL then a new
1603 ** sqlite3_value object is allocated.
1604 **
1605 ** If *ppVal is initially NULL then the caller is responsible for
1606 ** ensuring that the value written into *ppVal is eventually freed.
1607 */
1608 int sqlite3Stat4Column(
1609   sqlite3 *db,                    /* Database handle */
1610   const void *pRec,               /* Pointer to buffer containing record */
1611   int nRec,                       /* Size of buffer pRec in bytes */
1612   int iCol,                       /* Column to extract */
1613   sqlite3_value **ppVal           /* OUT: Extracted value */
1614 ){
1615   u32 t;                          /* a column type code */
1616   int nHdr;                       /* Size of the header in the record */
1617   int iHdr;                       /* Next unread header byte */
1618   int iField;                     /* Next unread data byte */
1619   int szField;                    /* Size of the current data field */
1620   int i;                          /* Column index */
1621   u8 *a = (u8*)pRec;              /* Typecast byte array */
1622   Mem *pMem = *ppVal;             /* Write result into this Mem object */
1623 
1624   assert( iCol>0 );
1625   iHdr = getVarint32(a, nHdr);
1626   if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1627   iField = nHdr;
1628   for(i=0; i<=iCol; i++){
1629     iHdr += getVarint32(&a[iHdr], t);
1630     testcase( iHdr==nHdr );
1631     testcase( iHdr==nHdr+1 );
1632     if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1633     szField = sqlite3VdbeSerialTypeLen(t);
1634     iField += szField;
1635   }
1636   testcase( iField==nRec );
1637   testcase( iField==nRec+1 );
1638   if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1639   if( pMem==0 ){
1640     pMem = *ppVal = sqlite3ValueNew(db);
1641     if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1642   }
1643   sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1644   pMem->enc = ENC(db);
1645   return SQLITE_OK;
1646 }
1647 
1648 /*
1649 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1650 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1651 ** the object.
1652 */
1653 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1654   if( pRec ){
1655     int i;
1656     int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField;
1657     Mem *aMem = pRec->aMem;
1658     sqlite3 *db = aMem[0].db;
1659     for(i=0; i<nCol; i++){
1660       sqlite3VdbeMemRelease(&aMem[i]);
1661     }
1662     sqlite3KeyInfoUnref(pRec->pKeyInfo);
1663     sqlite3DbFree(db, pRec);
1664   }
1665 }
1666 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1667 
1668 /*
1669 ** Change the string value of an sqlite3_value object
1670 */
1671 void sqlite3ValueSetStr(
1672   sqlite3_value *v,     /* Value to be set */
1673   int n,                /* Length of string z */
1674   const void *z,        /* Text of the new string */
1675   u8 enc,               /* Encoding to use */
1676   void (*xDel)(void*)   /* Destructor for the string */
1677 ){
1678   if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1679 }
1680 
1681 /*
1682 ** Free an sqlite3_value object
1683 */
1684 void sqlite3ValueFree(sqlite3_value *v){
1685   if( !v ) return;
1686   sqlite3VdbeMemRelease((Mem *)v);
1687   sqlite3DbFree(((Mem*)v)->db, v);
1688 }
1689 
1690 /*
1691 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1692 ** sqlite3_value object assuming that it uses the encoding "enc".
1693 ** The valueBytes() routine is a helper function.
1694 */
1695 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1696   return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1697 }
1698 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1699   Mem *p = (Mem*)pVal;
1700   assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1701   if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1702     return p->n;
1703   }
1704   if( (p->flags & MEM_Blob)!=0 ){
1705     if( p->flags & MEM_Zero ){
1706       return p->n + p->u.nZero;
1707     }else{
1708       return p->n;
1709     }
1710   }
1711   if( p->flags & MEM_Null ) return 0;
1712   return valueBytes(pVal, enc);
1713 }
1714