1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 /* True if X is a power of two. 0 is considered a power of two here. 22 ** In other words, return true if X has at most one bit set. 23 */ 24 #define ISPOWEROF2(X) (((X)&((X)-1))==0) 25 26 #ifdef SQLITE_DEBUG 27 /* 28 ** Check invariants on a Mem object. 29 ** 30 ** This routine is intended for use inside of assert() statements, like 31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); 32 */ 33 int sqlite3VdbeCheckMemInvariants(Mem *p){ 34 /* If MEM_Dyn is set then Mem.xDel!=0. 35 ** Mem.xDel might not be initialized if MEM_Dyn is clear. 36 */ 37 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); 38 39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we 40 ** ensure that if Mem.szMalloc>0 then it is safe to do 41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. 42 ** That saves a few cycles in inner loops. */ 43 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); 44 45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */ 46 assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) ); 47 48 if( p->flags & MEM_Null ){ 49 /* Cannot be both MEM_Null and some other type */ 50 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 ); 51 52 /* If MEM_Null is set, then either the value is a pure NULL (the usual 53 ** case) or it is a pointer set using sqlite3_bind_pointer() or 54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be 55 ** set. 56 */ 57 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){ 58 /* This is a pointer type. There may be a flag to indicate what to 59 ** do with the pointer. */ 60 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 61 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 62 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 ); 63 64 /* No other bits set */ 65 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind 66 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 ); 67 }else{ 68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn, 69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */ 70 } 71 }else{ 72 /* The MEM_Cleared bit is only allowed on NULLs */ 73 assert( (p->flags & MEM_Cleared)==0 ); 74 } 75 76 /* The szMalloc field holds the correct memory allocation size */ 77 assert( p->szMalloc==0 78 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) ); 79 80 /* If p holds a string or blob, the Mem.z must point to exactly 81 ** one of the following: 82 ** 83 ** (1) Memory in Mem.zMalloc and managed by the Mem object 84 ** (2) Memory to be freed using Mem.xDel 85 ** (3) An ephemeral string or blob 86 ** (4) A static string or blob 87 */ 88 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ 89 assert( 90 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + 91 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 92 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 93 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 94 ); 95 } 96 return 1; 97 } 98 #endif 99 100 /* 101 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal 102 ** into a buffer. 103 */ 104 static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){ 105 StrAccum acc; 106 assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) ); 107 sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0); 108 if( p->flags & MEM_Int ){ 109 sqlite3_str_appendf(&acc, "%lld", p->u.i); 110 }else if( p->flags & MEM_IntReal ){ 111 sqlite3_str_appendf(&acc, "%!.15g", (double)p->u.i); 112 }else{ 113 sqlite3_str_appendf(&acc, "%!.15g", p->u.r); 114 } 115 assert( acc.zText==zBuf && acc.mxAlloc<=0 ); 116 zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */ 117 } 118 119 #ifdef SQLITE_DEBUG 120 /* 121 ** Validity checks on pMem. pMem holds a string. 122 ** 123 ** (1) Check that string value of pMem agrees with its integer or real value. 124 ** (2) Check that the string is correctly zero terminated 125 ** 126 ** A single int or real value always converts to the same strings. But 127 ** many different strings can be converted into the same int or real. 128 ** If a table contains a numeric value and an index is based on the 129 ** corresponding string value, then it is important that the string be 130 ** derived from the numeric value, not the other way around, to ensure 131 ** that the index and table are consistent. See ticket 132 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for 133 ** an example. 134 ** 135 ** This routine looks at pMem to verify that if it has both a numeric 136 ** representation and a string representation then the string rep has 137 ** been derived from the numeric and not the other way around. It returns 138 ** true if everything is ok and false if there is a problem. 139 ** 140 ** This routine is for use inside of assert() statements only. 141 */ 142 int sqlite3VdbeMemValidStrRep(Mem *p){ 143 char zBuf[100]; 144 char *z; 145 int i, j, incr; 146 if( (p->flags & MEM_Str)==0 ) return 1; 147 if( p->flags & MEM_Term ){ 148 /* Insure that the string is properly zero-terminated. Pay particular 149 ** attention to the case where p->n is odd */ 150 if( p->szMalloc>0 && p->z==p->zMalloc ){ 151 assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 ); 152 assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 ); 153 } 154 assert( p->z[p->n]==0 ); 155 assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 ); 156 assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 ); 157 } 158 if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1; 159 vdbeMemRenderNum(sizeof(zBuf), zBuf, p); 160 z = p->z; 161 i = j = 0; 162 incr = 1; 163 if( p->enc!=SQLITE_UTF8 ){ 164 incr = 2; 165 if( p->enc==SQLITE_UTF16BE ) z++; 166 } 167 while( zBuf[j] ){ 168 if( zBuf[j++]!=z[i] ) return 0; 169 i += incr; 170 } 171 return 1; 172 } 173 #endif /* SQLITE_DEBUG */ 174 175 /* 176 ** If pMem is an object with a valid string representation, this routine 177 ** ensures the internal encoding for the string representation is 178 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 179 ** 180 ** If pMem is not a string object, or the encoding of the string 181 ** representation is already stored using the requested encoding, then this 182 ** routine is a no-op. 183 ** 184 ** SQLITE_OK is returned if the conversion is successful (or not required). 185 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 186 ** between formats. 187 */ 188 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 189 #ifndef SQLITE_OMIT_UTF16 190 int rc; 191 #endif 192 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 193 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE 194 || desiredEnc==SQLITE_UTF16BE ); 195 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ 196 return SQLITE_OK; 197 } 198 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 199 #ifdef SQLITE_OMIT_UTF16 200 return SQLITE_ERROR; 201 #else 202 203 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 204 ** then the encoding of the value may not have changed. 205 */ 206 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); 207 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 208 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 209 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 210 return rc; 211 #endif 212 } 213 214 /* 215 ** Make sure pMem->z points to a writable allocation of at least n bytes. 216 ** 217 ** If the bPreserve argument is true, then copy of the content of 218 ** pMem->z into the new allocation. pMem must be either a string or 219 ** blob if bPreserve is true. If bPreserve is false, any prior content 220 ** in pMem->z is discarded. 221 */ 222 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ 223 assert( sqlite3VdbeCheckMemInvariants(pMem) ); 224 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 225 testcase( pMem->db==0 ); 226 227 /* If the bPreserve flag is set to true, then the memory cell must already 228 ** contain a valid string or blob value. */ 229 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); 230 testcase( bPreserve && pMem->z==0 ); 231 232 assert( pMem->szMalloc==0 233 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) ); 234 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){ 235 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 236 bPreserve = 0; 237 }else{ 238 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 239 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 240 } 241 if( pMem->zMalloc==0 ){ 242 sqlite3VdbeMemSetNull(pMem); 243 pMem->z = 0; 244 pMem->szMalloc = 0; 245 return SQLITE_NOMEM_BKPT; 246 }else{ 247 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 248 } 249 250 if( bPreserve && pMem->z ){ 251 assert( pMem->z!=pMem->zMalloc ); 252 memcpy(pMem->zMalloc, pMem->z, pMem->n); 253 } 254 if( (pMem->flags&MEM_Dyn)!=0 ){ 255 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); 256 pMem->xDel((void *)(pMem->z)); 257 } 258 259 pMem->z = pMem->zMalloc; 260 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); 261 return SQLITE_OK; 262 } 263 264 /* 265 ** Change the pMem->zMalloc allocation to be at least szNew bytes. 266 ** If pMem->zMalloc already meets or exceeds the requested size, this 267 ** routine is a no-op. 268 ** 269 ** Any prior string or blob content in the pMem object may be discarded. 270 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str 271 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal, 272 ** and MEM_Null values are preserved. 273 ** 274 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) 275 ** if unable to complete the resizing. 276 */ 277 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ 278 assert( CORRUPT_DB || szNew>0 ); 279 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); 280 if( pMem->szMalloc<szNew ){ 281 return sqlite3VdbeMemGrow(pMem, szNew, 0); 282 } 283 assert( (pMem->flags & MEM_Dyn)==0 ); 284 pMem->z = pMem->zMalloc; 285 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal); 286 return SQLITE_OK; 287 } 288 289 /* 290 ** It is already known that pMem contains an unterminated string. 291 ** Add the zero terminator. 292 ** 293 ** Three bytes of zero are added. In this way, there is guaranteed 294 ** to be a double-zero byte at an even byte boundary in order to 295 ** terminate a UTF16 string, even if the initial size of the buffer 296 ** is an odd number of bytes. 297 */ 298 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ 299 if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){ 300 return SQLITE_NOMEM_BKPT; 301 } 302 pMem->z[pMem->n] = 0; 303 pMem->z[pMem->n+1] = 0; 304 pMem->z[pMem->n+2] = 0; 305 pMem->flags |= MEM_Term; 306 return SQLITE_OK; 307 } 308 309 /* 310 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in 311 ** MEM.zMalloc, where it can be safely written. 312 ** 313 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 314 */ 315 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 316 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 317 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 318 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ 319 if( ExpandBlob(pMem) ) return SQLITE_NOMEM; 320 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ 321 int rc = vdbeMemAddTerminator(pMem); 322 if( rc ) return rc; 323 } 324 } 325 pMem->flags &= ~MEM_Ephem; 326 #ifdef SQLITE_DEBUG 327 pMem->pScopyFrom = 0; 328 #endif 329 330 return SQLITE_OK; 331 } 332 333 /* 334 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 335 ** blob stored in dynamically allocated space. 336 */ 337 #ifndef SQLITE_OMIT_INCRBLOB 338 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 339 int nByte; 340 assert( pMem->flags & MEM_Zero ); 341 assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) ); 342 testcase( sqlite3_value_nochange(pMem) ); 343 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 344 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 345 346 /* Set nByte to the number of bytes required to store the expanded blob. */ 347 nByte = pMem->n + pMem->u.nZero; 348 if( nByte<=0 ){ 349 if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK; 350 nByte = 1; 351 } 352 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 353 return SQLITE_NOMEM_BKPT; 354 } 355 356 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); 357 pMem->n += pMem->u.nZero; 358 pMem->flags &= ~(MEM_Zero|MEM_Term); 359 return SQLITE_OK; 360 } 361 #endif 362 363 /* 364 ** Make sure the given Mem is \u0000 terminated. 365 */ 366 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 367 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 368 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); 369 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); 370 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ 371 return SQLITE_OK; /* Nothing to do */ 372 }else{ 373 return vdbeMemAddTerminator(pMem); 374 } 375 } 376 377 /* 378 ** Add MEM_Str to the set of representations for the given Mem. This 379 ** routine is only called if pMem is a number of some kind, not a NULL 380 ** or a BLOB. 381 ** 382 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated 383 ** if bForce is true but are retained if bForce is false. 384 ** 385 ** A MEM_Null value will never be passed to this function. This function is 386 ** used for converting values to text for returning to the user (i.e. via 387 ** sqlite3_value_text()), or for ensuring that values to be used as btree 388 ** keys are strings. In the former case a NULL pointer is returned the 389 ** user and the latter is an internal programming error. 390 */ 391 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ 392 const int nByte = 32; 393 394 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 395 assert( !(pMem->flags&MEM_Zero) ); 396 assert( !(pMem->flags&(MEM_Str|MEM_Blob)) ); 397 assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) ); 398 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 399 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 400 401 402 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 403 pMem->enc = 0; 404 return SQLITE_NOMEM_BKPT; 405 } 406 407 vdbeMemRenderNum(nByte, pMem->z, pMem); 408 assert( pMem->z!=0 ); 409 pMem->n = sqlite3Strlen30NN(pMem->z); 410 pMem->enc = SQLITE_UTF8; 411 pMem->flags |= MEM_Str|MEM_Term; 412 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); 413 sqlite3VdbeChangeEncoding(pMem, enc); 414 return SQLITE_OK; 415 } 416 417 /* 418 ** Memory cell pMem contains the context of an aggregate function. 419 ** This routine calls the finalize method for that function. The 420 ** result of the aggregate is stored back into pMem. 421 ** 422 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 423 ** otherwise. 424 */ 425 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 426 sqlite3_context ctx; 427 Mem t; 428 assert( pFunc!=0 ); 429 assert( pFunc->xFinalize!=0 ); 430 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 431 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 432 memset(&ctx, 0, sizeof(ctx)); 433 memset(&t, 0, sizeof(t)); 434 t.flags = MEM_Null; 435 t.db = pMem->db; 436 ctx.pOut = &t; 437 ctx.pMem = pMem; 438 ctx.pFunc = pFunc; 439 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ 440 assert( (pMem->flags & MEM_Dyn)==0 ); 441 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 442 memcpy(pMem, &t, sizeof(t)); 443 return ctx.isError; 444 } 445 446 /* 447 ** Memory cell pAccum contains the context of an aggregate function. 448 ** This routine calls the xValue method for that function and stores 449 ** the results in memory cell pMem. 450 ** 451 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK 452 ** otherwise. 453 */ 454 #ifndef SQLITE_OMIT_WINDOWFUNC 455 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){ 456 sqlite3_context ctx; 457 Mem t; 458 assert( pFunc!=0 ); 459 assert( pFunc->xValue!=0 ); 460 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef ); 461 assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) ); 462 memset(&ctx, 0, sizeof(ctx)); 463 memset(&t, 0, sizeof(t)); 464 t.flags = MEM_Null; 465 t.db = pAccum->db; 466 sqlite3VdbeMemSetNull(pOut); 467 ctx.pOut = pOut; 468 ctx.pMem = pAccum; 469 ctx.pFunc = pFunc; 470 pFunc->xValue(&ctx); 471 return ctx.isError; 472 } 473 #endif /* SQLITE_OMIT_WINDOWFUNC */ 474 475 /* 476 ** If the memory cell contains a value that must be freed by 477 ** invoking the external callback in Mem.xDel, then this routine 478 ** will free that value. It also sets Mem.flags to MEM_Null. 479 ** 480 ** This is a helper routine for sqlite3VdbeMemSetNull() and 481 ** for sqlite3VdbeMemRelease(). Use those other routines as the 482 ** entry point for releasing Mem resources. 483 */ 484 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ 485 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 486 assert( VdbeMemDynamic(p) ); 487 if( p->flags&MEM_Agg ){ 488 sqlite3VdbeMemFinalize(p, p->u.pDef); 489 assert( (p->flags & MEM_Agg)==0 ); 490 testcase( p->flags & MEM_Dyn ); 491 } 492 if( p->flags&MEM_Dyn ){ 493 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); 494 p->xDel((void *)p->z); 495 } 496 p->flags = MEM_Null; 497 } 498 499 /* 500 ** Release memory held by the Mem p, both external memory cleared 501 ** by p->xDel and memory in p->zMalloc. 502 ** 503 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in 504 ** the unusual case where there really is memory in p that needs 505 ** to be freed. 506 */ 507 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ 508 if( VdbeMemDynamic(p) ){ 509 vdbeMemClearExternAndSetNull(p); 510 } 511 if( p->szMalloc ){ 512 sqlite3DbFreeNN(p->db, p->zMalloc); 513 p->szMalloc = 0; 514 } 515 p->z = 0; 516 } 517 518 /* 519 ** Release any memory resources held by the Mem. Both the memory that is 520 ** free by Mem.xDel and the Mem.zMalloc allocation are freed. 521 ** 522 ** Use this routine prior to clean up prior to abandoning a Mem, or to 523 ** reset a Mem back to its minimum memory utilization. 524 ** 525 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space 526 ** prior to inserting new content into the Mem. 527 */ 528 void sqlite3VdbeMemRelease(Mem *p){ 529 assert( sqlite3VdbeCheckMemInvariants(p) ); 530 if( VdbeMemDynamic(p) || p->szMalloc ){ 531 vdbeMemClear(p); 532 } 533 } 534 535 /* 536 ** Convert a 64-bit IEEE double into a 64-bit signed integer. 537 ** If the double is out of range of a 64-bit signed integer then 538 ** return the closest available 64-bit signed integer. 539 */ 540 static SQLITE_NOINLINE i64 doubleToInt64(double r){ 541 #ifdef SQLITE_OMIT_FLOATING_POINT 542 /* When floating-point is omitted, double and int64 are the same thing */ 543 return r; 544 #else 545 /* 546 ** Many compilers we encounter do not define constants for the 547 ** minimum and maximum 64-bit integers, or they define them 548 ** inconsistently. And many do not understand the "LL" notation. 549 ** So we define our own static constants here using nothing 550 ** larger than a 32-bit integer constant. 551 */ 552 static const i64 maxInt = LARGEST_INT64; 553 static const i64 minInt = SMALLEST_INT64; 554 555 if( r<=(double)minInt ){ 556 return minInt; 557 }else if( r>=(double)maxInt ){ 558 return maxInt; 559 }else{ 560 return (i64)r; 561 } 562 #endif 563 } 564 565 /* 566 ** Return some kind of integer value which is the best we can do 567 ** at representing the value that *pMem describes as an integer. 568 ** If pMem is an integer, then the value is exact. If pMem is 569 ** a floating-point then the value returned is the integer part. 570 ** If pMem is a string or blob, then we make an attempt to convert 571 ** it into an integer and return that. If pMem represents an 572 ** an SQL-NULL value, return 0. 573 ** 574 ** If pMem represents a string value, its encoding might be changed. 575 */ 576 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){ 577 i64 value = 0; 578 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); 579 return value; 580 } 581 i64 sqlite3VdbeIntValue(Mem *pMem){ 582 int flags; 583 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 584 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 585 flags = pMem->flags; 586 if( flags & (MEM_Int|MEM_IntReal) ){ 587 testcase( flags & MEM_IntReal ); 588 return pMem->u.i; 589 }else if( flags & MEM_Real ){ 590 return doubleToInt64(pMem->u.r); 591 }else if( flags & (MEM_Str|MEM_Blob) ){ 592 assert( pMem->z || pMem->n==0 ); 593 return memIntValue(pMem); 594 }else{ 595 return 0; 596 } 597 } 598 599 /* 600 ** Return the best representation of pMem that we can get into a 601 ** double. If pMem is already a double or an integer, return its 602 ** value. If it is a string or blob, try to convert it to a double. 603 ** If it is a NULL, return 0.0. 604 */ 605 static SQLITE_NOINLINE double memRealValue(Mem *pMem){ 606 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 607 double val = (double)0; 608 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); 609 return val; 610 } 611 double sqlite3VdbeRealValue(Mem *pMem){ 612 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 613 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 614 if( pMem->flags & MEM_Real ){ 615 return pMem->u.r; 616 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 617 testcase( pMem->flags & MEM_IntReal ); 618 return (double)pMem->u.i; 619 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 620 return memRealValue(pMem); 621 }else{ 622 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 623 return (double)0; 624 } 625 } 626 627 /* 628 ** Return 1 if pMem represents true, and return 0 if pMem represents false. 629 ** Return the value ifNull if pMem is NULL. 630 */ 631 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ 632 testcase( pMem->flags & MEM_IntReal ); 633 if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0; 634 if( pMem->flags & MEM_Null ) return ifNull; 635 return sqlite3VdbeRealValue(pMem)!=0.0; 636 } 637 638 /* 639 ** The MEM structure is already a MEM_Real. Try to also make it a 640 ** MEM_Int if we can. 641 */ 642 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 643 i64 ix; 644 assert( pMem->flags & MEM_Real ); 645 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 646 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 647 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 648 649 ix = doubleToInt64(pMem->u.r); 650 651 /* Only mark the value as an integer if 652 ** 653 ** (1) the round-trip conversion real->int->real is a no-op, and 654 ** (2) The integer is neither the largest nor the smallest 655 ** possible integer (ticket #3922) 656 ** 657 ** The second and third terms in the following conditional enforces 658 ** the second condition under the assumption that addition overflow causes 659 ** values to wrap around. 660 */ 661 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ 662 pMem->u.i = ix; 663 MemSetTypeFlag(pMem, MEM_Int); 664 } 665 } 666 667 /* 668 ** Convert pMem to type integer. Invalidate any prior representations. 669 */ 670 int sqlite3VdbeMemIntegerify(Mem *pMem){ 671 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 672 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 673 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 674 675 pMem->u.i = sqlite3VdbeIntValue(pMem); 676 MemSetTypeFlag(pMem, MEM_Int); 677 return SQLITE_OK; 678 } 679 680 /* 681 ** Convert pMem so that it is of type MEM_Real. 682 ** Invalidate any prior representations. 683 */ 684 int sqlite3VdbeMemRealify(Mem *pMem){ 685 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 686 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 687 688 pMem->u.r = sqlite3VdbeRealValue(pMem); 689 MemSetTypeFlag(pMem, MEM_Real); 690 return SQLITE_OK; 691 } 692 693 /* Compare a floating point value to an integer. Return true if the two 694 ** values are the same within the precision of the floating point value. 695 ** 696 ** This function assumes that i was obtained by assignment from r1. 697 ** 698 ** For some versions of GCC on 32-bit machines, if you do the more obvious 699 ** comparison of "r1==(double)i" you sometimes get an answer of false even 700 ** though the r1 and (double)i values are bit-for-bit the same. 701 */ 702 int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ 703 double r2 = (double)i; 704 return r1==0.0 705 || (memcmp(&r1, &r2, sizeof(r1))==0 706 && i >= -2251799813685248LL && i < 2251799813685248LL); 707 } 708 709 /* 710 ** Convert pMem so that it has type MEM_Real or MEM_Int. 711 ** Invalidate any prior representations. 712 ** 713 ** Every effort is made to force the conversion, even if the input 714 ** is a string that does not look completely like a number. Convert 715 ** as much of the string as we can and ignore the rest. 716 */ 717 int sqlite3VdbeMemNumerify(Mem *pMem){ 718 testcase( pMem->flags & MEM_Int ); 719 testcase( pMem->flags & MEM_Real ); 720 testcase( pMem->flags & MEM_IntReal ); 721 testcase( pMem->flags & MEM_Null ); 722 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){ 723 int rc; 724 sqlite3_int64 ix; 725 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 726 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 727 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 728 if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1) 729 || sqlite3RealSameAsInt(pMem->u.r, (ix = (i64)pMem->u.r)) 730 ){ 731 pMem->u.i = ix; 732 MemSetTypeFlag(pMem, MEM_Int); 733 }else{ 734 MemSetTypeFlag(pMem, MEM_Real); 735 } 736 } 737 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 ); 738 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); 739 return SQLITE_OK; 740 } 741 742 /* 743 ** Cast the datatype of the value in pMem according to the affinity 744 ** "aff". Casting is different from applying affinity in that a cast 745 ** is forced. In other words, the value is converted into the desired 746 ** affinity even if that results in loss of data. This routine is 747 ** used (for example) to implement the SQL "cast()" operator. 748 */ 749 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ 750 if( pMem->flags & MEM_Null ) return; 751 switch( aff ){ 752 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ 753 if( (pMem->flags & MEM_Blob)==0 ){ 754 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 755 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 756 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); 757 }else{ 758 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); 759 } 760 break; 761 } 762 case SQLITE_AFF_NUMERIC: { 763 sqlite3VdbeMemNumerify(pMem); 764 break; 765 } 766 case SQLITE_AFF_INTEGER: { 767 sqlite3VdbeMemIntegerify(pMem); 768 break; 769 } 770 case SQLITE_AFF_REAL: { 771 sqlite3VdbeMemRealify(pMem); 772 break; 773 } 774 default: { 775 assert( aff==SQLITE_AFF_TEXT ); 776 assert( MEM_Str==(MEM_Blob>>3) ); 777 pMem->flags |= (pMem->flags&MEM_Blob)>>3; 778 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 779 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 780 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero); 781 break; 782 } 783 } 784 } 785 786 /* 787 ** Initialize bulk memory to be a consistent Mem object. 788 ** 789 ** The minimum amount of initialization feasible is performed. 790 */ 791 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ 792 assert( (flags & ~MEM_TypeMask)==0 ); 793 pMem->flags = flags; 794 pMem->db = db; 795 pMem->szMalloc = 0; 796 } 797 798 799 /* 800 ** Delete any previous value and set the value stored in *pMem to NULL. 801 ** 802 ** This routine calls the Mem.xDel destructor to dispose of values that 803 ** require the destructor. But it preserves the Mem.zMalloc memory allocation. 804 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this 805 ** routine to invoke the destructor and deallocates Mem.zMalloc. 806 ** 807 ** Use this routine to reset the Mem prior to insert a new value. 808 ** 809 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. 810 */ 811 void sqlite3VdbeMemSetNull(Mem *pMem){ 812 if( VdbeMemDynamic(pMem) ){ 813 vdbeMemClearExternAndSetNull(pMem); 814 }else{ 815 pMem->flags = MEM_Null; 816 } 817 } 818 void sqlite3ValueSetNull(sqlite3_value *p){ 819 sqlite3VdbeMemSetNull((Mem*)p); 820 } 821 822 /* 823 ** Delete any previous value and set the value to be a BLOB of length 824 ** n containing all zeros. 825 */ 826 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 827 sqlite3VdbeMemRelease(pMem); 828 pMem->flags = MEM_Blob|MEM_Zero; 829 pMem->n = 0; 830 if( n<0 ) n = 0; 831 pMem->u.nZero = n; 832 pMem->enc = SQLITE_UTF8; 833 pMem->z = 0; 834 } 835 836 /* 837 ** The pMem is known to contain content that needs to be destroyed prior 838 ** to a value change. So invoke the destructor, then set the value to 839 ** a 64-bit integer. 840 */ 841 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ 842 sqlite3VdbeMemSetNull(pMem); 843 pMem->u.i = val; 844 pMem->flags = MEM_Int; 845 } 846 847 /* 848 ** Delete any previous value and set the value stored in *pMem to val, 849 ** manifest type INTEGER. 850 */ 851 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 852 if( VdbeMemDynamic(pMem) ){ 853 vdbeReleaseAndSetInt64(pMem, val); 854 }else{ 855 pMem->u.i = val; 856 pMem->flags = MEM_Int; 857 } 858 } 859 860 /* A no-op destructor */ 861 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } 862 863 /* 864 ** Set the value stored in *pMem should already be a NULL. 865 ** Also store a pointer to go with it. 866 */ 867 void sqlite3VdbeMemSetPointer( 868 Mem *pMem, 869 void *pPtr, 870 const char *zPType, 871 void (*xDestructor)(void*) 872 ){ 873 assert( pMem->flags==MEM_Null ); 874 pMem->u.zPType = zPType ? zPType : ""; 875 pMem->z = pPtr; 876 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term; 877 pMem->eSubtype = 'p'; 878 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor; 879 } 880 881 #ifndef SQLITE_OMIT_FLOATING_POINT 882 /* 883 ** Delete any previous value and set the value stored in *pMem to val, 884 ** manifest type REAL. 885 */ 886 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 887 sqlite3VdbeMemSetNull(pMem); 888 if( !sqlite3IsNaN(val) ){ 889 pMem->u.r = val; 890 pMem->flags = MEM_Real; 891 } 892 } 893 #endif 894 895 #ifdef SQLITE_DEBUG 896 /* 897 ** Return true if the Mem holds a RowSet object. This routine is intended 898 ** for use inside of assert() statements. 899 */ 900 int sqlite3VdbeMemIsRowSet(const Mem *pMem){ 901 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn) 902 && pMem->xDel==sqlite3RowSetDelete; 903 } 904 #endif 905 906 /* 907 ** Delete any previous value and set the value of pMem to be an 908 ** empty boolean index. 909 ** 910 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation 911 ** error occurs. 912 */ 913 int sqlite3VdbeMemSetRowSet(Mem *pMem){ 914 sqlite3 *db = pMem->db; 915 RowSet *p; 916 assert( db!=0 ); 917 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 918 sqlite3VdbeMemRelease(pMem); 919 p = sqlite3RowSetInit(db); 920 if( p==0 ) return SQLITE_NOMEM; 921 pMem->z = (char*)p; 922 pMem->flags = MEM_Blob|MEM_Dyn; 923 pMem->xDel = sqlite3RowSetDelete; 924 return SQLITE_OK; 925 } 926 927 /* 928 ** Return true if the Mem object contains a TEXT or BLOB that is 929 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 930 */ 931 int sqlite3VdbeMemTooBig(Mem *p){ 932 assert( p->db!=0 ); 933 if( p->flags & (MEM_Str|MEM_Blob) ){ 934 int n = p->n; 935 if( p->flags & MEM_Zero ){ 936 n += p->u.nZero; 937 } 938 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 939 } 940 return 0; 941 } 942 943 #ifdef SQLITE_DEBUG 944 /* 945 ** This routine prepares a memory cell for modification by breaking 946 ** its link to a shallow copy and by marking any current shallow 947 ** copies of this cell as invalid. 948 ** 949 ** This is used for testing and debugging only - to make sure shallow 950 ** copies are not misused. 951 */ 952 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ 953 int i; 954 Mem *pX; 955 for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){ 956 if( pX->pScopyFrom==pMem ){ 957 /* If pX is marked as a shallow copy of pMem, then verify that 958 ** no significant changes have been made to pX since the OP_SCopy. 959 ** A significant change would indicated a missed call to this 960 ** function for pX. Minor changes, such as adding or removing a 961 ** dual type, are allowed, as long as the underlying value is the 962 ** same. */ 963 u16 mFlags = pMem->flags & pX->flags & pX->mScopyFlags; 964 assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i ); 965 assert( (mFlags&MEM_Real)==0 || pMem->u.r==pX->u.r ); 966 assert( (mFlags&MEM_Str)==0 || (pMem->n==pX->n && pMem->z==pX->z) ); 967 assert( (mFlags&MEM_Blob)==0 || sqlite3BlobCompare(pMem,pX)==0 ); 968 969 /* pMem is the register that is changing. But also mark pX as 970 ** undefined so that we can quickly detect the shallow-copy error */ 971 pX->flags = MEM_Undefined; 972 pX->pScopyFrom = 0; 973 } 974 } 975 pMem->pScopyFrom = 0; 976 } 977 #endif /* SQLITE_DEBUG */ 978 979 980 /* 981 ** Make an shallow copy of pFrom into pTo. Prior contents of 982 ** pTo are freed. The pFrom->z field is not duplicated. If 983 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 984 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 985 */ 986 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ 987 vdbeMemClearExternAndSetNull(pTo); 988 assert( !VdbeMemDynamic(pTo) ); 989 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); 990 } 991 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 992 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 993 assert( pTo->db==pFrom->db ); 994 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } 995 memcpy(pTo, pFrom, MEMCELLSIZE); 996 if( (pFrom->flags&MEM_Static)==0 ){ 997 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 998 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 999 pTo->flags |= srcType; 1000 } 1001 } 1002 1003 /* 1004 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 1005 ** freed before the copy is made. 1006 */ 1007 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 1008 int rc = SQLITE_OK; 1009 1010 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 1011 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); 1012 memcpy(pTo, pFrom, MEMCELLSIZE); 1013 pTo->flags &= ~MEM_Dyn; 1014 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 1015 if( 0==(pFrom->flags&MEM_Static) ){ 1016 pTo->flags |= MEM_Ephem; 1017 rc = sqlite3VdbeMemMakeWriteable(pTo); 1018 } 1019 } 1020 1021 return rc; 1022 } 1023 1024 /* 1025 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 1026 ** freed. If pFrom contains ephemeral data, a copy is made. 1027 ** 1028 ** pFrom contains an SQL NULL when this routine returns. 1029 */ 1030 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 1031 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 1032 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 1033 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 1034 1035 sqlite3VdbeMemRelease(pTo); 1036 memcpy(pTo, pFrom, sizeof(Mem)); 1037 pFrom->flags = MEM_Null; 1038 pFrom->szMalloc = 0; 1039 } 1040 1041 /* 1042 ** Change the value of a Mem to be a string or a BLOB. 1043 ** 1044 ** The memory management strategy depends on the value of the xDel 1045 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 1046 ** string is copied into a (possibly existing) buffer managed by the 1047 ** Mem structure. Otherwise, any existing buffer is freed and the 1048 ** pointer copied. 1049 ** 1050 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH 1051 ** size limit) then no memory allocation occurs. If the string can be 1052 ** stored without allocating memory, then it is. If a memory allocation 1053 ** is required to store the string, then value of pMem is unchanged. In 1054 ** either case, SQLITE_TOOBIG is returned. 1055 */ 1056 int sqlite3VdbeMemSetStr( 1057 Mem *pMem, /* Memory cell to set to string value */ 1058 const char *z, /* String pointer */ 1059 int n, /* Bytes in string, or negative */ 1060 u8 enc, /* Encoding of z. 0 for BLOBs */ 1061 void (*xDel)(void*) /* Destructor function */ 1062 ){ 1063 int nByte = n; /* New value for pMem->n */ 1064 int iLimit; /* Maximum allowed string or blob size */ 1065 u16 flags = 0; /* New value for pMem->flags */ 1066 1067 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 1068 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1069 1070 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 1071 if( !z ){ 1072 sqlite3VdbeMemSetNull(pMem); 1073 return SQLITE_OK; 1074 } 1075 1076 if( pMem->db ){ 1077 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; 1078 }else{ 1079 iLimit = SQLITE_MAX_LENGTH; 1080 } 1081 flags = (enc==0?MEM_Blob:MEM_Str); 1082 if( nByte<0 ){ 1083 assert( enc!=0 ); 1084 if( enc==SQLITE_UTF8 ){ 1085 nByte = 0x7fffffff & (int)strlen(z); 1086 }else{ 1087 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} 1088 } 1089 flags |= MEM_Term; 1090 } 1091 1092 /* The following block sets the new values of Mem.z and Mem.xDel. It 1093 ** also sets a flag in local variable "flags" to indicate the memory 1094 ** management (one of MEM_Dyn or MEM_Static). 1095 */ 1096 if( xDel==SQLITE_TRANSIENT ){ 1097 u32 nAlloc = nByte; 1098 if( flags&MEM_Term ){ 1099 nAlloc += (enc==SQLITE_UTF8?1:2); 1100 } 1101 if( nByte>iLimit ){ 1102 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG); 1103 } 1104 testcase( nAlloc==0 ); 1105 testcase( nAlloc==31 ); 1106 testcase( nAlloc==32 ); 1107 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){ 1108 return SQLITE_NOMEM_BKPT; 1109 } 1110 memcpy(pMem->z, z, nAlloc); 1111 }else{ 1112 sqlite3VdbeMemRelease(pMem); 1113 pMem->z = (char *)z; 1114 if( xDel==SQLITE_DYNAMIC ){ 1115 pMem->zMalloc = pMem->z; 1116 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 1117 }else{ 1118 pMem->xDel = xDel; 1119 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 1120 } 1121 } 1122 1123 pMem->n = nByte; 1124 pMem->flags = flags; 1125 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); 1126 1127 #ifndef SQLITE_OMIT_UTF16 1128 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ 1129 return SQLITE_NOMEM_BKPT; 1130 } 1131 #endif 1132 1133 if( nByte>iLimit ){ 1134 return SQLITE_TOOBIG; 1135 } 1136 1137 return SQLITE_OK; 1138 } 1139 1140 /* 1141 ** Move data out of a btree key or data field and into a Mem structure. 1142 ** The data is payload from the entry that pCur is currently pointing 1143 ** to. offset and amt determine what portion of the data or key to retrieve. 1144 ** The result is written into the pMem element. 1145 ** 1146 ** The pMem object must have been initialized. This routine will use 1147 ** pMem->zMalloc to hold the content from the btree, if possible. New 1148 ** pMem->zMalloc space will be allocated if necessary. The calling routine 1149 ** is responsible for making sure that the pMem object is eventually 1150 ** destroyed. 1151 ** 1152 ** If this routine fails for any reason (malloc returns NULL or unable 1153 ** to read from the disk) then the pMem is left in an inconsistent state. 1154 */ 1155 static SQLITE_NOINLINE int vdbeMemFromBtreeResize( 1156 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1157 u32 offset, /* Offset from the start of data to return bytes from. */ 1158 u32 amt, /* Number of bytes to return. */ 1159 Mem *pMem /* OUT: Return data in this Mem structure. */ 1160 ){ 1161 int rc; 1162 pMem->flags = MEM_Null; 1163 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){ 1164 return SQLITE_CORRUPT_BKPT; 1165 } 1166 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){ 1167 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z); 1168 if( rc==SQLITE_OK ){ 1169 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */ 1170 pMem->flags = MEM_Blob; 1171 pMem->n = (int)amt; 1172 }else{ 1173 sqlite3VdbeMemRelease(pMem); 1174 } 1175 } 1176 return rc; 1177 } 1178 int sqlite3VdbeMemFromBtree( 1179 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1180 u32 offset, /* Offset from the start of data to return bytes from. */ 1181 u32 amt, /* Number of bytes to return. */ 1182 Mem *pMem /* OUT: Return data in this Mem structure. */ 1183 ){ 1184 char *zData; /* Data from the btree layer */ 1185 u32 available = 0; /* Number of bytes available on the local btree page */ 1186 int rc = SQLITE_OK; /* Return code */ 1187 1188 assert( sqlite3BtreeCursorIsValid(pCur) ); 1189 assert( !VdbeMemDynamic(pMem) ); 1190 1191 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 1192 ** that both the BtShared and database handle mutexes are held. */ 1193 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1194 zData = (char *)sqlite3BtreePayloadFetch(pCur, &available); 1195 assert( zData!=0 ); 1196 1197 if( offset+amt<=available ){ 1198 pMem->z = &zData[offset]; 1199 pMem->flags = MEM_Blob|MEM_Ephem; 1200 pMem->n = (int)amt; 1201 }else{ 1202 rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem); 1203 } 1204 1205 return rc; 1206 } 1207 1208 /* 1209 ** The pVal argument is known to be a value other than NULL. 1210 ** Convert it into a string with encoding enc and return a pointer 1211 ** to a zero-terminated version of that string. 1212 */ 1213 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ 1214 assert( pVal!=0 ); 1215 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1216 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1217 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1218 assert( (pVal->flags & (MEM_Null))==0 ); 1219 if( pVal->flags & (MEM_Blob|MEM_Str) ){ 1220 if( ExpandBlob(pVal) ) return 0; 1221 pVal->flags |= MEM_Str; 1222 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ 1223 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 1224 } 1225 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ 1226 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 1227 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 1228 return 0; 1229 } 1230 } 1231 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ 1232 }else{ 1233 sqlite3VdbeMemStringify(pVal, enc, 0); 1234 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); 1235 } 1236 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 1237 || pVal->db->mallocFailed ); 1238 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 1239 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1240 return pVal->z; 1241 }else{ 1242 return 0; 1243 } 1244 } 1245 1246 /* This function is only available internally, it is not part of the 1247 ** external API. It works in a similar way to sqlite3_value_text(), 1248 ** except the data returned is in the encoding specified by the second 1249 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 1250 ** SQLITE_UTF8. 1251 ** 1252 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 1253 ** If that is the case, then the result must be aligned on an even byte 1254 ** boundary. 1255 */ 1256 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 1257 if( !pVal ) return 0; 1258 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1259 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1260 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1261 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ 1262 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1263 return pVal->z; 1264 } 1265 if( pVal->flags&MEM_Null ){ 1266 return 0; 1267 } 1268 return valueToText(pVal, enc); 1269 } 1270 1271 /* 1272 ** Create a new sqlite3_value object. 1273 */ 1274 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 1275 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 1276 if( p ){ 1277 p->flags = MEM_Null; 1278 p->db = db; 1279 } 1280 return p; 1281 } 1282 1283 /* 1284 ** Context object passed by sqlite3Stat4ProbeSetValue() through to 1285 ** valueNew(). See comments above valueNew() for details. 1286 */ 1287 struct ValueNewStat4Ctx { 1288 Parse *pParse; 1289 Index *pIdx; 1290 UnpackedRecord **ppRec; 1291 int iVal; 1292 }; 1293 1294 /* 1295 ** Allocate and return a pointer to a new sqlite3_value object. If 1296 ** the second argument to this function is NULL, the object is allocated 1297 ** by calling sqlite3ValueNew(). 1298 ** 1299 ** Otherwise, if the second argument is non-zero, then this function is 1300 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not 1301 ** already been allocated, allocate the UnpackedRecord structure that 1302 ** that function will return to its caller here. Then return a pointer to 1303 ** an sqlite3_value within the UnpackedRecord.a[] array. 1304 */ 1305 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ 1306 #ifdef SQLITE_ENABLE_STAT4 1307 if( p ){ 1308 UnpackedRecord *pRec = p->ppRec[0]; 1309 1310 if( pRec==0 ){ 1311 Index *pIdx = p->pIdx; /* Index being probed */ 1312 int nByte; /* Bytes of space to allocate */ 1313 int i; /* Counter variable */ 1314 int nCol = pIdx->nColumn; /* Number of index columns including rowid */ 1315 1316 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); 1317 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); 1318 if( pRec ){ 1319 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); 1320 if( pRec->pKeyInfo ){ 1321 assert( pRec->pKeyInfo->nAllField==nCol ); 1322 assert( pRec->pKeyInfo->enc==ENC(db) ); 1323 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); 1324 for(i=0; i<nCol; i++){ 1325 pRec->aMem[i].flags = MEM_Null; 1326 pRec->aMem[i].db = db; 1327 } 1328 }else{ 1329 sqlite3DbFreeNN(db, pRec); 1330 pRec = 0; 1331 } 1332 } 1333 if( pRec==0 ) return 0; 1334 p->ppRec[0] = pRec; 1335 } 1336 1337 pRec->nField = p->iVal+1; 1338 return &pRec->aMem[p->iVal]; 1339 } 1340 #else 1341 UNUSED_PARAMETER(p); 1342 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1343 return sqlite3ValueNew(db); 1344 } 1345 1346 /* 1347 ** The expression object indicated by the second argument is guaranteed 1348 ** to be a scalar SQL function. If 1349 ** 1350 ** * all function arguments are SQL literals, 1351 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and 1352 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, 1353 ** 1354 ** then this routine attempts to invoke the SQL function. Assuming no 1355 ** error occurs, output parameter (*ppVal) is set to point to a value 1356 ** object containing the result before returning SQLITE_OK. 1357 ** 1358 ** Affinity aff is applied to the result of the function before returning. 1359 ** If the result is a text value, the sqlite3_value object uses encoding 1360 ** enc. 1361 ** 1362 ** If the conditions above are not met, this function returns SQLITE_OK 1363 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to 1364 ** NULL and an SQLite error code returned. 1365 */ 1366 #ifdef SQLITE_ENABLE_STAT4 1367 static int valueFromFunction( 1368 sqlite3 *db, /* The database connection */ 1369 Expr *p, /* The expression to evaluate */ 1370 u8 enc, /* Encoding to use */ 1371 u8 aff, /* Affinity to use */ 1372 sqlite3_value **ppVal, /* Write the new value here */ 1373 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1374 ){ 1375 sqlite3_context ctx; /* Context object for function invocation */ 1376 sqlite3_value **apVal = 0; /* Function arguments */ 1377 int nVal = 0; /* Size of apVal[] array */ 1378 FuncDef *pFunc = 0; /* Function definition */ 1379 sqlite3_value *pVal = 0; /* New value */ 1380 int rc = SQLITE_OK; /* Return code */ 1381 ExprList *pList = 0; /* Function arguments */ 1382 int i; /* Iterator variable */ 1383 1384 assert( pCtx!=0 ); 1385 assert( (p->flags & EP_TokenOnly)==0 ); 1386 pList = p->x.pList; 1387 if( pList ) nVal = pList->nExpr; 1388 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); 1389 assert( pFunc ); 1390 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 1391 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 1392 ){ 1393 return SQLITE_OK; 1394 } 1395 1396 if( pList ){ 1397 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); 1398 if( apVal==0 ){ 1399 rc = SQLITE_NOMEM_BKPT; 1400 goto value_from_function_out; 1401 } 1402 for(i=0; i<nVal; i++){ 1403 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); 1404 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; 1405 } 1406 } 1407 1408 pVal = valueNew(db, pCtx); 1409 if( pVal==0 ){ 1410 rc = SQLITE_NOMEM_BKPT; 1411 goto value_from_function_out; 1412 } 1413 1414 assert( pCtx->pParse->rc==SQLITE_OK ); 1415 memset(&ctx, 0, sizeof(ctx)); 1416 ctx.pOut = pVal; 1417 ctx.pFunc = pFunc; 1418 pFunc->xSFunc(&ctx, nVal, apVal); 1419 if( ctx.isError ){ 1420 rc = ctx.isError; 1421 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); 1422 }else{ 1423 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); 1424 assert( rc==SQLITE_OK ); 1425 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1426 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ 1427 rc = SQLITE_TOOBIG; 1428 pCtx->pParse->nErr++; 1429 } 1430 } 1431 pCtx->pParse->rc = rc; 1432 1433 value_from_function_out: 1434 if( rc!=SQLITE_OK ){ 1435 pVal = 0; 1436 } 1437 if( apVal ){ 1438 for(i=0; i<nVal; i++){ 1439 sqlite3ValueFree(apVal[i]); 1440 } 1441 sqlite3DbFreeNN(db, apVal); 1442 } 1443 1444 *ppVal = pVal; 1445 return rc; 1446 } 1447 #else 1448 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK 1449 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1450 1451 /* 1452 ** Extract a value from the supplied expression in the manner described 1453 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object 1454 ** using valueNew(). 1455 ** 1456 ** If pCtx is NULL and an error occurs after the sqlite3_value object 1457 ** has been allocated, it is freed before returning. Or, if pCtx is not 1458 ** NULL, it is assumed that the caller will free any allocated object 1459 ** in all cases. 1460 */ 1461 static int valueFromExpr( 1462 sqlite3 *db, /* The database connection */ 1463 Expr *pExpr, /* The expression to evaluate */ 1464 u8 enc, /* Encoding to use */ 1465 u8 affinity, /* Affinity to use */ 1466 sqlite3_value **ppVal, /* Write the new value here */ 1467 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1468 ){ 1469 int op; 1470 char *zVal = 0; 1471 sqlite3_value *pVal = 0; 1472 int negInt = 1; 1473 const char *zNeg = ""; 1474 int rc = SQLITE_OK; 1475 1476 assert( pExpr!=0 ); 1477 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; 1478 #if defined(SQLITE_ENABLE_STAT4) 1479 if( op==TK_REGISTER ) op = pExpr->op2; 1480 #else 1481 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; 1482 #endif 1483 1484 /* Compressed expressions only appear when parsing the DEFAULT clause 1485 ** on a table column definition, and hence only when pCtx==0. This 1486 ** check ensures that an EP_TokenOnly expression is never passed down 1487 ** into valueFromFunction(). */ 1488 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); 1489 1490 if( op==TK_CAST ){ 1491 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0); 1492 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); 1493 testcase( rc!=SQLITE_OK ); 1494 if( *ppVal ){ 1495 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); 1496 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); 1497 } 1498 return rc; 1499 } 1500 1501 /* Handle negative integers in a single step. This is needed in the 1502 ** case when the value is -9223372036854775808. 1503 */ 1504 if( op==TK_UMINUS 1505 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ 1506 pExpr = pExpr->pLeft; 1507 op = pExpr->op; 1508 negInt = -1; 1509 zNeg = "-"; 1510 } 1511 1512 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 1513 pVal = valueNew(db, pCtx); 1514 if( pVal==0 ) goto no_mem; 1515 if( ExprHasProperty(pExpr, EP_IntValue) ){ 1516 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); 1517 }else{ 1518 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); 1519 if( zVal==0 ) goto no_mem; 1520 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); 1521 } 1522 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ 1523 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); 1524 }else{ 1525 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); 1526 } 1527 assert( (pVal->flags & MEM_IntReal)==0 ); 1528 if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){ 1529 testcase( pVal->flags & MEM_Int ); 1530 testcase( pVal->flags & MEM_Real ); 1531 pVal->flags &= ~MEM_Str; 1532 } 1533 if( enc!=SQLITE_UTF8 ){ 1534 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1535 } 1536 }else if( op==TK_UMINUS ) { 1537 /* This branch happens for multiple negative signs. Ex: -(-5) */ 1538 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) 1539 && pVal!=0 1540 ){ 1541 sqlite3VdbeMemNumerify(pVal); 1542 if( pVal->flags & MEM_Real ){ 1543 pVal->u.r = -pVal->u.r; 1544 }else if( pVal->u.i==SMALLEST_INT64 ){ 1545 pVal->u.r = -(double)SMALLEST_INT64; 1546 MemSetTypeFlag(pVal, MEM_Real); 1547 }else{ 1548 pVal->u.i = -pVal->u.i; 1549 } 1550 sqlite3ValueApplyAffinity(pVal, affinity, enc); 1551 } 1552 }else if( op==TK_NULL ){ 1553 pVal = valueNew(db, pCtx); 1554 if( pVal==0 ) goto no_mem; 1555 sqlite3VdbeMemSetNull(pVal); 1556 } 1557 #ifndef SQLITE_OMIT_BLOB_LITERAL 1558 else if( op==TK_BLOB ){ 1559 int nVal; 1560 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 1561 assert( pExpr->u.zToken[1]=='\'' ); 1562 pVal = valueNew(db, pCtx); 1563 if( !pVal ) goto no_mem; 1564 zVal = &pExpr->u.zToken[2]; 1565 nVal = sqlite3Strlen30(zVal)-1; 1566 assert( zVal[nVal]=='\'' ); 1567 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 1568 0, SQLITE_DYNAMIC); 1569 } 1570 #endif 1571 #ifdef SQLITE_ENABLE_STAT4 1572 else if( op==TK_FUNCTION && pCtx!=0 ){ 1573 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); 1574 } 1575 #endif 1576 else if( op==TK_TRUEFALSE ){ 1577 pVal = valueNew(db, pCtx); 1578 if( pVal ){ 1579 pVal->flags = MEM_Int; 1580 pVal->u.i = pExpr->u.zToken[4]==0; 1581 } 1582 } 1583 1584 *ppVal = pVal; 1585 return rc; 1586 1587 no_mem: 1588 #ifdef SQLITE_ENABLE_STAT4 1589 if( pCtx==0 || pCtx->pParse->nErr==0 ) 1590 #endif 1591 sqlite3OomFault(db); 1592 sqlite3DbFree(db, zVal); 1593 assert( *ppVal==0 ); 1594 #ifdef SQLITE_ENABLE_STAT4 1595 if( pCtx==0 ) sqlite3ValueFree(pVal); 1596 #else 1597 assert( pCtx==0 ); sqlite3ValueFree(pVal); 1598 #endif 1599 return SQLITE_NOMEM_BKPT; 1600 } 1601 1602 /* 1603 ** Create a new sqlite3_value object, containing the value of pExpr. 1604 ** 1605 ** This only works for very simple expressions that consist of one constant 1606 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 1607 ** be converted directly into a value, then the value is allocated and 1608 ** a pointer written to *ppVal. The caller is responsible for deallocating 1609 ** the value by passing it to sqlite3ValueFree() later on. If the expression 1610 ** cannot be converted to a value, then *ppVal is set to NULL. 1611 */ 1612 int sqlite3ValueFromExpr( 1613 sqlite3 *db, /* The database connection */ 1614 Expr *pExpr, /* The expression to evaluate */ 1615 u8 enc, /* Encoding to use */ 1616 u8 affinity, /* Affinity to use */ 1617 sqlite3_value **ppVal /* Write the new value here */ 1618 ){ 1619 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; 1620 } 1621 1622 #ifdef SQLITE_ENABLE_STAT4 1623 /* 1624 ** Attempt to extract a value from pExpr and use it to construct *ppVal. 1625 ** 1626 ** If pAlloc is not NULL, then an UnpackedRecord object is created for 1627 ** pAlloc if one does not exist and the new value is added to the 1628 ** UnpackedRecord object. 1629 ** 1630 ** A value is extracted in the following cases: 1631 ** 1632 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1633 ** 1634 ** * The expression is a bound variable, and this is a reprepare, or 1635 ** 1636 ** * The expression is a literal value. 1637 ** 1638 ** On success, *ppVal is made to point to the extracted value. The caller 1639 ** is responsible for ensuring that the value is eventually freed. 1640 */ 1641 static int stat4ValueFromExpr( 1642 Parse *pParse, /* Parse context */ 1643 Expr *pExpr, /* The expression to extract a value from */ 1644 u8 affinity, /* Affinity to use */ 1645 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ 1646 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1647 ){ 1648 int rc = SQLITE_OK; 1649 sqlite3_value *pVal = 0; 1650 sqlite3 *db = pParse->db; 1651 1652 /* Skip over any TK_COLLATE nodes */ 1653 pExpr = sqlite3ExprSkipCollate(pExpr); 1654 1655 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE ); 1656 if( !pExpr ){ 1657 pVal = valueNew(db, pAlloc); 1658 if( pVal ){ 1659 sqlite3VdbeMemSetNull((Mem*)pVal); 1660 } 1661 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 1662 Vdbe *v; 1663 int iBindVar = pExpr->iColumn; 1664 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); 1665 if( (v = pParse->pReprepare)!=0 ){ 1666 pVal = valueNew(db, pAlloc); 1667 if( pVal ){ 1668 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); 1669 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); 1670 pVal->db = pParse->db; 1671 } 1672 } 1673 }else{ 1674 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); 1675 } 1676 1677 assert( pVal==0 || pVal->db==db ); 1678 *ppVal = pVal; 1679 return rc; 1680 } 1681 1682 /* 1683 ** This function is used to allocate and populate UnpackedRecord 1684 ** structures intended to be compared against sample index keys stored 1685 ** in the sqlite_stat4 table. 1686 ** 1687 ** A single call to this function populates zero or more fields of the 1688 ** record starting with field iVal (fields are numbered from left to 1689 ** right starting with 0). A single field is populated if: 1690 ** 1691 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1692 ** 1693 ** * The expression is a bound variable, and this is a reprepare, or 1694 ** 1695 ** * The sqlite3ValueFromExpr() function is able to extract a value 1696 ** from the expression (i.e. the expression is a literal value). 1697 ** 1698 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the 1699 ** vector components that match either of the two latter criteria listed 1700 ** above. 1701 ** 1702 ** Before any value is appended to the record, the affinity of the 1703 ** corresponding column within index pIdx is applied to it. Before 1704 ** this function returns, output parameter *pnExtract is set to the 1705 ** number of values appended to the record. 1706 ** 1707 ** When this function is called, *ppRec must either point to an object 1708 ** allocated by an earlier call to this function, or must be NULL. If it 1709 ** is NULL and a value can be successfully extracted, a new UnpackedRecord 1710 ** is allocated (and *ppRec set to point to it) before returning. 1711 ** 1712 ** Unless an error is encountered, SQLITE_OK is returned. It is not an 1713 ** error if a value cannot be extracted from pExpr. If an error does 1714 ** occur, an SQLite error code is returned. 1715 */ 1716 int sqlite3Stat4ProbeSetValue( 1717 Parse *pParse, /* Parse context */ 1718 Index *pIdx, /* Index being probed */ 1719 UnpackedRecord **ppRec, /* IN/OUT: Probe record */ 1720 Expr *pExpr, /* The expression to extract a value from */ 1721 int nElem, /* Maximum number of values to append */ 1722 int iVal, /* Array element to populate */ 1723 int *pnExtract /* OUT: Values appended to the record */ 1724 ){ 1725 int rc = SQLITE_OK; 1726 int nExtract = 0; 1727 1728 if( pExpr==0 || pExpr->op!=TK_SELECT ){ 1729 int i; 1730 struct ValueNewStat4Ctx alloc; 1731 1732 alloc.pParse = pParse; 1733 alloc.pIdx = pIdx; 1734 alloc.ppRec = ppRec; 1735 1736 for(i=0; i<nElem; i++){ 1737 sqlite3_value *pVal = 0; 1738 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0); 1739 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i); 1740 alloc.iVal = iVal+i; 1741 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); 1742 if( !pVal ) break; 1743 nExtract++; 1744 } 1745 } 1746 1747 *pnExtract = nExtract; 1748 return rc; 1749 } 1750 1751 /* 1752 ** Attempt to extract a value from expression pExpr using the methods 1753 ** as described for sqlite3Stat4ProbeSetValue() above. 1754 ** 1755 ** If successful, set *ppVal to point to a new value object and return 1756 ** SQLITE_OK. If no value can be extracted, but no other error occurs 1757 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error 1758 ** does occur, return an SQLite error code. The final value of *ppVal 1759 ** is undefined in this case. 1760 */ 1761 int sqlite3Stat4ValueFromExpr( 1762 Parse *pParse, /* Parse context */ 1763 Expr *pExpr, /* The expression to extract a value from */ 1764 u8 affinity, /* Affinity to use */ 1765 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1766 ){ 1767 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); 1768 } 1769 1770 /* 1771 ** Extract the iCol-th column from the nRec-byte record in pRec. Write 1772 ** the column value into *ppVal. If *ppVal is initially NULL then a new 1773 ** sqlite3_value object is allocated. 1774 ** 1775 ** If *ppVal is initially NULL then the caller is responsible for 1776 ** ensuring that the value written into *ppVal is eventually freed. 1777 */ 1778 int sqlite3Stat4Column( 1779 sqlite3 *db, /* Database handle */ 1780 const void *pRec, /* Pointer to buffer containing record */ 1781 int nRec, /* Size of buffer pRec in bytes */ 1782 int iCol, /* Column to extract */ 1783 sqlite3_value **ppVal /* OUT: Extracted value */ 1784 ){ 1785 u32 t = 0; /* a column type code */ 1786 int nHdr; /* Size of the header in the record */ 1787 int iHdr; /* Next unread header byte */ 1788 int iField; /* Next unread data byte */ 1789 int szField = 0; /* Size of the current data field */ 1790 int i; /* Column index */ 1791 u8 *a = (u8*)pRec; /* Typecast byte array */ 1792 Mem *pMem = *ppVal; /* Write result into this Mem object */ 1793 1794 assert( iCol>0 ); 1795 iHdr = getVarint32(a, nHdr); 1796 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; 1797 iField = nHdr; 1798 for(i=0; i<=iCol; i++){ 1799 iHdr += getVarint32(&a[iHdr], t); 1800 testcase( iHdr==nHdr ); 1801 testcase( iHdr==nHdr+1 ); 1802 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; 1803 szField = sqlite3VdbeSerialTypeLen(t); 1804 iField += szField; 1805 } 1806 testcase( iField==nRec ); 1807 testcase( iField==nRec+1 ); 1808 if( iField>nRec ) return SQLITE_CORRUPT_BKPT; 1809 if( pMem==0 ){ 1810 pMem = *ppVal = sqlite3ValueNew(db); 1811 if( pMem==0 ) return SQLITE_NOMEM_BKPT; 1812 } 1813 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); 1814 pMem->enc = ENC(db); 1815 return SQLITE_OK; 1816 } 1817 1818 /* 1819 ** Unless it is NULL, the argument must be an UnpackedRecord object returned 1820 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes 1821 ** the object. 1822 */ 1823 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ 1824 if( pRec ){ 1825 int i; 1826 int nCol = pRec->pKeyInfo->nAllField; 1827 Mem *aMem = pRec->aMem; 1828 sqlite3 *db = aMem[0].db; 1829 for(i=0; i<nCol; i++){ 1830 sqlite3VdbeMemRelease(&aMem[i]); 1831 } 1832 sqlite3KeyInfoUnref(pRec->pKeyInfo); 1833 sqlite3DbFreeNN(db, pRec); 1834 } 1835 } 1836 #endif /* ifdef SQLITE_ENABLE_STAT4 */ 1837 1838 /* 1839 ** Change the string value of an sqlite3_value object 1840 */ 1841 void sqlite3ValueSetStr( 1842 sqlite3_value *v, /* Value to be set */ 1843 int n, /* Length of string z */ 1844 const void *z, /* Text of the new string */ 1845 u8 enc, /* Encoding to use */ 1846 void (*xDel)(void*) /* Destructor for the string */ 1847 ){ 1848 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 1849 } 1850 1851 /* 1852 ** Free an sqlite3_value object 1853 */ 1854 void sqlite3ValueFree(sqlite3_value *v){ 1855 if( !v ) return; 1856 sqlite3VdbeMemRelease((Mem *)v); 1857 sqlite3DbFreeNN(((Mem*)v)->db, v); 1858 } 1859 1860 /* 1861 ** The sqlite3ValueBytes() routine returns the number of bytes in the 1862 ** sqlite3_value object assuming that it uses the encoding "enc". 1863 ** The valueBytes() routine is a helper function. 1864 */ 1865 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ 1866 return valueToText(pVal, enc)!=0 ? pVal->n : 0; 1867 } 1868 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1869 Mem *p = (Mem*)pVal; 1870 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); 1871 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ 1872 return p->n; 1873 } 1874 if( (p->flags & MEM_Blob)!=0 ){ 1875 if( p->flags & MEM_Zero ){ 1876 return p->n + p->u.nZero; 1877 }else{ 1878 return p->n; 1879 } 1880 } 1881 if( p->flags & MEM_Null ) return 0; 1882 return valueBytes(pVal, enc); 1883 } 1884