1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include <ctype.h> 20 #include "vdbeInt.h" 21 22 /* 23 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) 24 ** P if required. 25 */ 26 #define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) 27 28 /* 29 ** If pMem is an object with a valid string representation, this routine 30 ** ensures the internal encoding for the string representation is 31 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 32 ** 33 ** If pMem is not a string object, or the encoding of the string 34 ** representation is already stored using the requested encoding, then this 35 ** routine is a no-op. 36 ** 37 ** SQLITE_OK is returned if the conversion is successful (or not required). 38 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 39 ** between formats. 40 */ 41 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 42 int rc; 43 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ 44 return SQLITE_OK; 45 } 46 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 47 #ifdef SQLITE_OMIT_UTF16 48 return SQLITE_ERROR; 49 #else 50 51 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 52 ** then the encoding of the value may not have changed. 53 */ 54 rc = sqlite3VdbeMemTranslate(pMem, desiredEnc); 55 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 56 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 57 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 58 return rc; 59 #endif 60 } 61 62 /* 63 ** Make the given Mem object MEM_Dyn. 64 ** 65 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 66 */ 67 int sqlite3VdbeMemDynamicify(Mem *pMem){ 68 int n; 69 u8 *z; 70 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 71 expandBlob(pMem); 72 if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){ 73 return SQLITE_OK; 74 } 75 assert( (pMem->flags & MEM_Dyn)==0 ); 76 n = pMem->n; 77 assert( pMem->flags & (MEM_Str|MEM_Blob) ); 78 z = sqlite3DbMallocRaw(pMem->db, n+2 ); 79 if( z==0 ){ 80 return SQLITE_NOMEM; 81 } 82 pMem->flags |= MEM_Dyn|MEM_Term; 83 pMem->xDel = 0; 84 memcpy(z, pMem->z, n ); 85 z[n] = 0; 86 z[n+1] = 0; 87 pMem->z = (char*)z; 88 pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short); 89 return SQLITE_OK; 90 } 91 92 /* 93 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 94 ** blob stored in dynamically allocated space. 95 */ 96 #ifndef SQLITE_OMIT_INCRBLOB 97 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 98 if( pMem->flags & MEM_Zero ){ 99 char *pNew; 100 int nByte; 101 assert( (pMem->flags & MEM_Blob)!=0 ); 102 nByte = pMem->n + pMem->u.i; 103 if( nByte<=0 ) nByte = 1; 104 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 105 pNew = sqlite3DbMallocRaw(pMem->db, nByte); 106 if( pNew==0 ){ 107 return SQLITE_NOMEM; 108 } 109 memcpy(pNew, pMem->z, pMem->n); 110 memset(&pNew[pMem->n], 0, pMem->u.i); 111 sqlite3VdbeMemRelease(pMem); 112 pMem->z = pNew; 113 pMem->n += pMem->u.i; 114 pMem->u.i = 0; 115 pMem->flags &= ~(MEM_Zero|MEM_Static|MEM_Ephem|MEM_Short|MEM_Term); 116 pMem->flags |= MEM_Dyn; 117 } 118 return SQLITE_OK; 119 } 120 #endif 121 122 123 /* 124 ** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes 125 ** of the Mem.z[] array can be modified. 126 ** 127 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 128 */ 129 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 130 int n; 131 u8 *z; 132 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 133 expandBlob(pMem); 134 if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){ 135 return SQLITE_OK; 136 } 137 assert( (pMem->flags & MEM_Dyn)==0 ); 138 assert( pMem->flags & (MEM_Str|MEM_Blob) ); 139 if( (n = pMem->n)+2<sizeof(pMem->zShort) ){ 140 z = (u8*)pMem->zShort; 141 pMem->flags |= MEM_Short|MEM_Term; 142 }else{ 143 z = sqlite3DbMallocRaw(pMem->db, n+2 ); 144 if( z==0 ){ 145 return SQLITE_NOMEM; 146 } 147 pMem->flags |= MEM_Dyn|MEM_Term; 148 pMem->xDel = 0; 149 } 150 memcpy(z, pMem->z, n ); 151 z[n] = 0; 152 z[n+1] = 0; 153 pMem->z = (char*)z; 154 pMem->flags &= ~(MEM_Ephem|MEM_Static); 155 assert(0==(1&(int)pMem->z)); 156 return SQLITE_OK; 157 } 158 159 /* 160 ** Make sure the given Mem is \u0000 terminated. 161 */ 162 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 163 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 164 if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ 165 return SQLITE_OK; /* Nothing to do */ 166 } 167 if( pMem->flags & (MEM_Static|MEM_Ephem) ){ 168 return sqlite3VdbeMemMakeWriteable(pMem); 169 }else{ 170 char *z; 171 sqlite3VdbeMemExpandBlob(pMem); 172 z = sqlite3DbMallocRaw(pMem->db, pMem->n+2); 173 if( !z ){ 174 return SQLITE_NOMEM; 175 } 176 memcpy(z, pMem->z, pMem->n); 177 z[pMem->n] = 0; 178 z[pMem->n+1] = 0; 179 if( pMem->xDel ){ 180 pMem->xDel(pMem->z); 181 }else{ 182 sqlite3_free(pMem->z); 183 } 184 pMem->xDel = 0; 185 pMem->z = z; 186 pMem->flags |= MEM_Term; 187 } 188 return SQLITE_OK; 189 } 190 191 /* 192 ** Add MEM_Str to the set of representations for the given Mem. Numbers 193 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string 194 ** is a no-op. 195 ** 196 ** Existing representations MEM_Int and MEM_Real are *not* invalidated. 197 ** 198 ** A MEM_Null value will never be passed to this function. This function is 199 ** used for converting values to text for returning to the user (i.e. via 200 ** sqlite3_value_text()), or for ensuring that values to be used as btree 201 ** keys are strings. In the former case a NULL pointer is returned the 202 ** user and the later is an internal programming error. 203 */ 204 int sqlite3VdbeMemStringify(Mem *pMem, int enc){ 205 int rc = SQLITE_OK; 206 int fg = pMem->flags; 207 char *z = pMem->zShort; 208 209 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 210 assert( !(fg&MEM_Zero) ); 211 assert( !(fg&(MEM_Str|MEM_Blob)) ); 212 assert( fg&(MEM_Int|MEM_Real) ); 213 214 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8 215 ** string representation of the value. Then, if the required encoding 216 ** is UTF-16le or UTF-16be do a translation. 217 ** 218 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. 219 */ 220 if( fg & MEM_Int ){ 221 sqlite3_snprintf(NBFS, z, "%lld", pMem->u.i); 222 }else{ 223 assert( fg & MEM_Real ); 224 sqlite3_snprintf(NBFS, z, "%!.15g", pMem->r); 225 } 226 pMem->n = strlen(z); 227 pMem->z = z; 228 pMem->enc = SQLITE_UTF8; 229 pMem->flags |= MEM_Str | MEM_Short | MEM_Term; 230 sqlite3VdbeChangeEncoding(pMem, enc); 231 return rc; 232 } 233 234 /* 235 ** Memory cell pMem contains the context of an aggregate function. 236 ** This routine calls the finalize method for that function. The 237 ** result of the aggregate is stored back into pMem. 238 ** 239 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 240 ** otherwise. 241 */ 242 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 243 int rc = SQLITE_OK; 244 if( pFunc && pFunc->xFinalize ){ 245 sqlite3_context ctx; 246 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 247 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 248 ctx.s.flags = MEM_Null; 249 ctx.s.z = pMem->zShort; 250 ctx.s.db = pMem->db; 251 ctx.pMem = pMem; 252 ctx.pFunc = pFunc; 253 ctx.isError = 0; 254 pFunc->xFinalize(&ctx); 255 if( pMem->z && pMem->z!=pMem->zShort ){ 256 sqlite3_free( pMem->z ); 257 } 258 *pMem = ctx.s; 259 if( pMem->flags & MEM_Short ){ 260 pMem->z = pMem->zShort; 261 } 262 rc = (ctx.isError?SQLITE_ERROR:SQLITE_OK); 263 } 264 return rc; 265 } 266 267 /* 268 ** Release any memory held by the Mem. This may leave the Mem in an 269 ** inconsistent state, for example with (Mem.z==0) and 270 ** (Mem.type==SQLITE_TEXT). 271 */ 272 void sqlite3VdbeMemRelease(Mem *p){ 273 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 274 if( p->flags & (MEM_Dyn|MEM_Agg) ){ 275 if( p->xDel ){ 276 if( p->flags & MEM_Agg ){ 277 sqlite3VdbeMemFinalize(p, p->u.pDef); 278 assert( (p->flags & MEM_Agg)==0 ); 279 sqlite3VdbeMemRelease(p); 280 }else{ 281 p->xDel((void *)p->z); 282 } 283 }else{ 284 sqlite3_free(p->z); 285 } 286 p->z = 0; 287 p->xDel = 0; 288 } 289 } 290 291 /* 292 ** Return some kind of integer value which is the best we can do 293 ** at representing the value that *pMem describes as an integer. 294 ** If pMem is an integer, then the value is exact. If pMem is 295 ** a floating-point then the value returned is the integer part. 296 ** If pMem is a string or blob, then we make an attempt to convert 297 ** it into a integer and return that. If pMem is NULL, return 0. 298 ** 299 ** If pMem is a string, its encoding might be changed. 300 */ 301 i64 sqlite3VdbeIntValue(Mem *pMem){ 302 int flags; 303 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 304 flags = pMem->flags; 305 if( flags & MEM_Int ){ 306 return pMem->u.i; 307 }else if( flags & MEM_Real ){ 308 return (i64)pMem->r; 309 }else if( flags & (MEM_Str|MEM_Blob) ){ 310 i64 value; 311 pMem->flags |= MEM_Str; 312 if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) 313 || sqlite3VdbeMemNulTerminate(pMem) ){ 314 return 0; 315 } 316 assert( pMem->z ); 317 sqlite3Atoi64(pMem->z, &value); 318 return value; 319 }else{ 320 return 0; 321 } 322 } 323 324 /* 325 ** Return the best representation of pMem that we can get into a 326 ** double. If pMem is already a double or an integer, return its 327 ** value. If it is a string or blob, try to convert it to a double. 328 ** If it is a NULL, return 0.0. 329 */ 330 double sqlite3VdbeRealValue(Mem *pMem){ 331 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 332 if( pMem->flags & MEM_Real ){ 333 return pMem->r; 334 }else if( pMem->flags & MEM_Int ){ 335 return (double)pMem->u.i; 336 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 337 double val = 0.0; 338 pMem->flags |= MEM_Str; 339 if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) 340 || sqlite3VdbeMemNulTerminate(pMem) ){ 341 return 0.0; 342 } 343 assert( pMem->z ); 344 sqlite3AtoF(pMem->z, &val); 345 return val; 346 }else{ 347 return 0.0; 348 } 349 } 350 351 /* 352 ** The MEM structure is already a MEM_Real. Try to also make it a 353 ** MEM_Int if we can. 354 */ 355 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 356 assert( pMem->flags & MEM_Real ); 357 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 358 pMem->u.i = pMem->r; 359 if( ((double)pMem->u.i)==pMem->r ){ 360 pMem->flags |= MEM_Int; 361 } 362 } 363 364 /* 365 ** Convert pMem to type integer. Invalidate any prior representations. 366 */ 367 int sqlite3VdbeMemIntegerify(Mem *pMem){ 368 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 369 pMem->u.i = sqlite3VdbeIntValue(pMem); 370 sqlite3VdbeMemRelease(pMem); 371 pMem->flags = MEM_Int; 372 return SQLITE_OK; 373 } 374 375 /* 376 ** Convert pMem so that it is of type MEM_Real. 377 ** Invalidate any prior representations. 378 */ 379 int sqlite3VdbeMemRealify(Mem *pMem){ 380 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 381 pMem->r = sqlite3VdbeRealValue(pMem); 382 sqlite3VdbeMemRelease(pMem); 383 pMem->flags = MEM_Real; 384 return SQLITE_OK; 385 } 386 387 /* 388 ** Convert pMem so that it has types MEM_Real or MEM_Int or both. 389 ** Invalidate any prior representations. 390 */ 391 int sqlite3VdbeMemNumerify(Mem *pMem){ 392 double r1, r2; 393 i64 i; 394 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ); 395 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 396 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 397 r1 = sqlite3VdbeRealValue(pMem); 398 i = (i64)r1; 399 r2 = (double)i; 400 if( r1==r2 ){ 401 sqlite3VdbeMemIntegerify(pMem); 402 }else{ 403 pMem->r = r1; 404 pMem->flags = MEM_Real; 405 sqlite3VdbeMemRelease(pMem); 406 } 407 return SQLITE_OK; 408 } 409 410 /* 411 ** Delete any previous value and set the value stored in *pMem to NULL. 412 */ 413 void sqlite3VdbeMemSetNull(Mem *pMem){ 414 sqlite3VdbeMemRelease(pMem); 415 pMem->flags = MEM_Null; 416 pMem->type = SQLITE_NULL; 417 pMem->n = 0; 418 } 419 420 /* 421 ** Delete any previous value and set the value to be a BLOB of length 422 ** n containing all zeros. 423 */ 424 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 425 sqlite3VdbeMemRelease(pMem); 426 pMem->flags = MEM_Blob|MEM_Zero|MEM_Short; 427 pMem->type = SQLITE_BLOB; 428 pMem->n = 0; 429 if( n<0 ) n = 0; 430 pMem->u.i = n; 431 pMem->z = pMem->zShort; 432 pMem->enc = SQLITE_UTF8; 433 } 434 435 /* 436 ** Delete any previous value and set the value stored in *pMem to val, 437 ** manifest type INTEGER. 438 */ 439 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 440 sqlite3VdbeMemRelease(pMem); 441 pMem->u.i = val; 442 pMem->flags = MEM_Int; 443 pMem->type = SQLITE_INTEGER; 444 } 445 446 /* 447 ** Delete any previous value and set the value stored in *pMem to val, 448 ** manifest type REAL. 449 */ 450 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 451 if( sqlite3_isnan(val) ){ 452 sqlite3VdbeMemSetNull(pMem); 453 }else{ 454 sqlite3VdbeMemRelease(pMem); 455 pMem->r = val; 456 pMem->flags = MEM_Real; 457 pMem->type = SQLITE_FLOAT; 458 } 459 } 460 461 /* 462 ** Return true if the Mem object contains a TEXT or BLOB that is 463 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 464 */ 465 int sqlite3VdbeMemTooBig(Mem *p){ 466 if( p->flags & (MEM_Str|MEM_Blob) ){ 467 int n = p->n; 468 if( p->flags & MEM_Zero ){ 469 n += p->u.i; 470 } 471 return n>SQLITE_MAX_LENGTH; 472 } 473 return 0; 474 } 475 476 /* 477 ** Make an shallow copy of pFrom into pTo. Prior contents of 478 ** pTo are overwritten. The pFrom->z field is not duplicated. If 479 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 480 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 481 */ 482 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 483 memcpy(pTo, pFrom, sizeof(*pFrom)-sizeof(pFrom->zShort)); 484 pTo->xDel = 0; 485 if( pTo->flags & (MEM_Str|MEM_Blob) ){ 486 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short|MEM_Ephem); 487 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 488 pTo->flags |= srcType; 489 } 490 } 491 492 /* 493 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 494 ** freed before the copy is made. 495 */ 496 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 497 int rc; 498 if( pTo->flags & MEM_Dyn ){ 499 sqlite3VdbeMemRelease(pTo); 500 } 501 sqlite3VdbeMemShallowCopy(pTo, pFrom, MEM_Ephem); 502 if( pTo->flags & MEM_Ephem ){ 503 rc = sqlite3VdbeMemMakeWriteable(pTo); 504 }else{ 505 rc = SQLITE_OK; 506 } 507 return rc; 508 } 509 510 /* 511 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 512 ** freed. If pFrom contains ephemeral data, a copy is made. 513 ** 514 ** pFrom contains an SQL NULL when this routine returns. SQLITE_NOMEM 515 ** might be returned if pFrom held ephemeral data and we were unable 516 ** to allocate enough space to make a copy. 517 */ 518 int sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 519 int rc; 520 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 521 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 522 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 523 if( pTo->flags & MEM_Dyn ){ 524 sqlite3VdbeMemRelease(pTo); 525 } 526 memcpy(pTo, pFrom, sizeof(Mem)); 527 if( pFrom->flags & MEM_Short ){ 528 pTo->z = pTo->zShort; 529 } 530 pFrom->flags = MEM_Null; 531 pFrom->xDel = 0; 532 if( pTo->flags & MEM_Ephem ){ 533 rc = sqlite3VdbeMemMakeWriteable(pTo); 534 }else{ 535 rc = SQLITE_OK; 536 } 537 return rc; 538 } 539 540 /* 541 ** Change the value of a Mem to be a string or a BLOB. 542 */ 543 int sqlite3VdbeMemSetStr( 544 Mem *pMem, /* Memory cell to set to string value */ 545 const char *z, /* String pointer */ 546 int n, /* Bytes in string, or negative */ 547 u8 enc, /* Encoding of z. 0 for BLOBs */ 548 void (*xDel)(void*) /* Destructor function */ 549 ){ 550 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 551 sqlite3VdbeMemRelease(pMem); 552 if( !z ){ 553 pMem->flags = MEM_Null; 554 pMem->type = SQLITE_NULL; 555 return SQLITE_OK; 556 } 557 pMem->z = (char *)z; 558 if( xDel==SQLITE_STATIC ){ 559 pMem->flags = MEM_Static; 560 }else if( xDel==SQLITE_TRANSIENT ){ 561 pMem->flags = MEM_Ephem; 562 }else{ 563 pMem->flags = MEM_Dyn; 564 pMem->xDel = xDel; 565 } 566 567 pMem->enc = enc; 568 pMem->type = enc==0 ? SQLITE_BLOB : SQLITE_TEXT; 569 pMem->n = n; 570 571 assert( enc==0 || enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE 572 || enc==SQLITE_UTF16BE ); 573 switch( enc ){ 574 case 0: 575 pMem->flags |= MEM_Blob; 576 pMem->enc = SQLITE_UTF8; 577 break; 578 579 case SQLITE_UTF8: 580 pMem->flags |= MEM_Str; 581 if( n<0 ){ 582 pMem->n = strlen(z); 583 pMem->flags |= MEM_Term; 584 } 585 break; 586 587 #ifndef SQLITE_OMIT_UTF16 588 case SQLITE_UTF16LE: 589 case SQLITE_UTF16BE: 590 pMem->flags |= MEM_Str; 591 if( pMem->n<0 ){ 592 pMem->n = sqlite3Utf16ByteLen(pMem->z,-1); 593 pMem->flags |= MEM_Term; 594 } 595 if( sqlite3VdbeMemHandleBom(pMem) ){ 596 return SQLITE_NOMEM; 597 } 598 #endif /* SQLITE_OMIT_UTF16 */ 599 } 600 if( pMem->flags&MEM_Ephem ){ 601 return sqlite3VdbeMemMakeWriteable(pMem); 602 } 603 return SQLITE_OK; 604 } 605 606 /* 607 ** Compare the values contained by the two memory cells, returning 608 ** negative, zero or positive if pMem1 is less than, equal to, or greater 609 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 610 ** and reals) sorted numerically, followed by text ordered by the collating 611 ** sequence pColl and finally blob's ordered by memcmp(). 612 ** 613 ** Two NULL values are considered equal by this function. 614 */ 615 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 616 int rc; 617 int f1, f2; 618 int combined_flags; 619 620 /* Interchange pMem1 and pMem2 if the collating sequence specifies 621 ** DESC order. 622 */ 623 f1 = pMem1->flags; 624 f2 = pMem2->flags; 625 combined_flags = f1|f2; 626 627 /* If one value is NULL, it is less than the other. If both values 628 ** are NULL, return 0. 629 */ 630 if( combined_flags&MEM_Null ){ 631 return (f2&MEM_Null) - (f1&MEM_Null); 632 } 633 634 /* If one value is a number and the other is not, the number is less. 635 ** If both are numbers, compare as reals if one is a real, or as integers 636 ** if both values are integers. 637 */ 638 if( combined_flags&(MEM_Int|MEM_Real) ){ 639 if( !(f1&(MEM_Int|MEM_Real)) ){ 640 return 1; 641 } 642 if( !(f2&(MEM_Int|MEM_Real)) ){ 643 return -1; 644 } 645 if( (f1 & f2 & MEM_Int)==0 ){ 646 double r1, r2; 647 if( (f1&MEM_Real)==0 ){ 648 r1 = pMem1->u.i; 649 }else{ 650 r1 = pMem1->r; 651 } 652 if( (f2&MEM_Real)==0 ){ 653 r2 = pMem2->u.i; 654 }else{ 655 r2 = pMem2->r; 656 } 657 if( r1<r2 ) return -1; 658 if( r1>r2 ) return 1; 659 return 0; 660 }else{ 661 assert( f1&MEM_Int ); 662 assert( f2&MEM_Int ); 663 if( pMem1->u.i < pMem2->u.i ) return -1; 664 if( pMem1->u.i > pMem2->u.i ) return 1; 665 return 0; 666 } 667 } 668 669 /* If one value is a string and the other is a blob, the string is less. 670 ** If both are strings, compare using the collating functions. 671 */ 672 if( combined_flags&MEM_Str ){ 673 if( (f1 & MEM_Str)==0 ){ 674 return 1; 675 } 676 if( (f2 & MEM_Str)==0 ){ 677 return -1; 678 } 679 680 assert( pMem1->enc==pMem2->enc ); 681 assert( pMem1->enc==SQLITE_UTF8 || 682 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 683 684 /* The collation sequence must be defined at this point, even if 685 ** the user deletes the collation sequence after the vdbe program is 686 ** compiled (this was not always the case). 687 */ 688 assert( !pColl || pColl->xCmp ); 689 690 if( pColl ){ 691 if( pMem1->enc==pColl->enc ){ 692 /* The strings are already in the correct encoding. Call the 693 ** comparison function directly */ 694 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 695 }else{ 696 u8 origEnc = pMem1->enc; 697 const void *v1, *v2; 698 int n1, n2; 699 /* Convert the strings into the encoding that the comparison 700 ** function expects */ 701 v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc); 702 n1 = v1==0 ? 0 : pMem1->n; 703 assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) ); 704 v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc); 705 n2 = v2==0 ? 0 : pMem2->n; 706 assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) ); 707 /* Do the comparison */ 708 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); 709 /* Convert the strings back into the database encoding */ 710 sqlite3ValueText((sqlite3_value*)pMem1, origEnc); 711 sqlite3ValueText((sqlite3_value*)pMem2, origEnc); 712 return rc; 713 } 714 } 715 /* If a NULL pointer was passed as the collate function, fall through 716 ** to the blob case and use memcmp(). */ 717 } 718 719 /* Both values must be blobs. Compare using memcmp(). */ 720 rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n); 721 if( rc==0 ){ 722 rc = pMem1->n - pMem2->n; 723 } 724 return rc; 725 } 726 727 /* 728 ** Move data out of a btree key or data field and into a Mem structure. 729 ** The data or key is taken from the entry that pCur is currently pointing 730 ** to. offset and amt determine what portion of the data or key to retrieve. 731 ** key is true to get the key or false to get data. The result is written 732 ** into the pMem element. 733 ** 734 ** The pMem structure is assumed to be uninitialized. Any prior content 735 ** is overwritten without being freed. 736 ** 737 ** If this routine fails for any reason (malloc returns NULL or unable 738 ** to read from the disk) then the pMem is left in an inconsistent state. 739 */ 740 int sqlite3VdbeMemFromBtree( 741 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 742 int offset, /* Offset from the start of data to return bytes from. */ 743 int amt, /* Number of bytes to return. */ 744 int key, /* If true, retrieve from the btree key, not data. */ 745 Mem *pMem /* OUT: Return data in this Mem structure. */ 746 ){ 747 char *zData; /* Data from the btree layer */ 748 int available = 0; /* Number of bytes available on the local btree page */ 749 sqlite3 *db; /* Database connection */ 750 751 db = sqlite3BtreeCursorDb(pCur); 752 assert( sqlite3_mutex_held(db->mutex) ); 753 if( key ){ 754 zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); 755 }else{ 756 zData = (char *)sqlite3BtreeDataFetch(pCur, &available); 757 } 758 assert( zData!=0 ); 759 760 pMem->db = db; 761 pMem->n = amt; 762 if( offset+amt<=available ){ 763 pMem->z = &zData[offset]; 764 pMem->flags = MEM_Blob|MEM_Ephem; 765 }else{ 766 int rc; 767 if( amt>NBFS-2 ){ 768 zData = (char *)sqlite3DbMallocRaw(db, amt+2); 769 if( !zData ){ 770 return SQLITE_NOMEM; 771 } 772 pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term; 773 pMem->xDel = 0; 774 }else{ 775 zData = &(pMem->zShort[0]); 776 pMem->flags = MEM_Blob|MEM_Short|MEM_Term; 777 } 778 pMem->z = zData; 779 pMem->enc = 0; 780 pMem->type = SQLITE_BLOB; 781 782 if( key ){ 783 rc = sqlite3BtreeKey(pCur, offset, amt, zData); 784 }else{ 785 rc = sqlite3BtreeData(pCur, offset, amt, zData); 786 } 787 zData[amt] = 0; 788 zData[amt+1] = 0; 789 if( rc!=SQLITE_OK ){ 790 if( amt>NBFS-2 ){ 791 assert( zData!=pMem->zShort ); 792 assert( pMem->flags & MEM_Dyn ); 793 sqlite3_free(zData); 794 } else { 795 assert( zData==pMem->zShort ); 796 assert( pMem->flags & MEM_Short ); 797 } 798 return rc; 799 } 800 } 801 802 return SQLITE_OK; 803 } 804 805 #ifndef NDEBUG 806 /* 807 ** Perform various checks on the memory cell pMem. An assert() will 808 ** fail if pMem is internally inconsistent. 809 */ 810 void sqlite3VdbeMemSanity(Mem *pMem){ 811 int flags = pMem->flags; 812 assert( flags!=0 ); /* Must define some type */ 813 if( flags & (MEM_Str|MEM_Blob) ){ 814 int x = flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); 815 assert( x!=0 ); /* Strings must define a string subtype */ 816 assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */ 817 assert( pMem->z!=0 ); /* Strings must have a value */ 818 /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */ 819 assert( (x & MEM_Short)==0 || pMem->z==pMem->zShort ); 820 assert( (x & MEM_Short)!=0 || pMem->z!=pMem->zShort ); 821 /* No destructor unless there is MEM_Dyn */ 822 assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 ); 823 824 if( (flags & MEM_Str) ){ 825 assert( pMem->enc==SQLITE_UTF8 || 826 pMem->enc==SQLITE_UTF16BE || 827 pMem->enc==SQLITE_UTF16LE 828 ); 829 /* If the string is UTF-8 encoded and nul terminated, then pMem->n 830 ** must be the length of the string. (Later:) If the database file 831 ** has been corrupted, '\000' characters might have been inserted 832 ** into the middle of the string. In that case, the strlen() might 833 ** be less. 834 */ 835 if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){ 836 assert( strlen(pMem->z)<=pMem->n ); 837 assert( pMem->z[pMem->n]==0 ); 838 } 839 } 840 }else{ 841 /* Cannot define a string subtype for non-string objects */ 842 assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 ); 843 assert( pMem->xDel==0 ); 844 } 845 /* MEM_Null excludes all other types */ 846 assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0 847 || (pMem->flags&MEM_Null)==0 ); 848 /* If the MEM is both real and integer, the values are equal */ 849 assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) 850 || pMem->r==pMem->u.i ); 851 } 852 #endif 853 854 /* This function is only available internally, it is not part of the 855 ** external API. It works in a similar way to sqlite3_value_text(), 856 ** except the data returned is in the encoding specified by the second 857 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 858 ** SQLITE_UTF8. 859 ** 860 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 861 ** If that is the case, then the result must be aligned on an even byte 862 ** boundary. 863 */ 864 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 865 if( !pVal ) return 0; 866 867 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 868 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 869 870 if( pVal->flags&MEM_Null ){ 871 return 0; 872 } 873 assert( (MEM_Blob>>3) == MEM_Str ); 874 pVal->flags |= (pVal->flags & MEM_Blob)>>3; 875 expandBlob(pVal); 876 if( pVal->flags&MEM_Str ){ 877 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 878 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(int)pVal->z) ){ 879 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 880 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 881 return 0; 882 } 883 } 884 sqlite3VdbeMemNulTerminate(pVal); 885 }else{ 886 assert( (pVal->flags&MEM_Blob)==0 ); 887 sqlite3VdbeMemStringify(pVal, enc); 888 assert( 0==(1&(int)pVal->z) ); 889 } 890 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 891 || pVal->db->mallocFailed ); 892 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 893 return pVal->z; 894 }else{ 895 return 0; 896 } 897 } 898 899 /* 900 ** Create a new sqlite3_value object. 901 */ 902 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 903 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 904 if( p ){ 905 p->flags = MEM_Null; 906 p->type = SQLITE_NULL; 907 p->db = db; 908 } 909 return p; 910 } 911 912 /* 913 ** Create a new sqlite3_value object, containing the value of pExpr. 914 ** 915 ** This only works for very simple expressions that consist of one constant 916 ** token (i.e. "5", "5.1", "NULL", "'a string'"). If the expression can 917 ** be converted directly into a value, then the value is allocated and 918 ** a pointer written to *ppVal. The caller is responsible for deallocating 919 ** the value by passing it to sqlite3ValueFree() later on. If the expression 920 ** cannot be converted to a value, then *ppVal is set to NULL. 921 */ 922 int sqlite3ValueFromExpr( 923 sqlite3 *db, /* The database connection */ 924 Expr *pExpr, /* The expression to evaluate */ 925 u8 enc, /* Encoding to use */ 926 u8 affinity, /* Affinity to use */ 927 sqlite3_value **ppVal /* Write the new value here */ 928 ){ 929 int op; 930 char *zVal = 0; 931 sqlite3_value *pVal = 0; 932 933 if( !pExpr ){ 934 *ppVal = 0; 935 return SQLITE_OK; 936 } 937 op = pExpr->op; 938 939 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 940 zVal = sqlite3StrNDup((char*)pExpr->token.z, pExpr->token.n); 941 pVal = sqlite3ValueNew(db); 942 if( !zVal || !pVal ) goto no_mem; 943 sqlite3Dequote(zVal); 944 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3_free); 945 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ 946 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc); 947 }else{ 948 sqlite3ValueApplyAffinity(pVal, affinity, enc); 949 } 950 }else if( op==TK_UMINUS ) { 951 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){ 952 pVal->u.i = -1 * pVal->u.i; 953 pVal->r = -1.0 * pVal->r; 954 } 955 } 956 #ifndef SQLITE_OMIT_BLOB_LITERAL 957 else if( op==TK_BLOB ){ 958 int nVal; 959 pVal = sqlite3ValueNew(db); 960 zVal = sqlite3StrNDup((char*)pExpr->token.z+1, pExpr->token.n-1); 961 if( !zVal || !pVal ) goto no_mem; 962 sqlite3Dequote(zVal); 963 nVal = strlen(zVal)/2; 964 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal), nVal,0,sqlite3_free); 965 sqlite3_free(zVal); 966 } 967 #endif 968 969 *ppVal = pVal; 970 return SQLITE_OK; 971 972 no_mem: 973 db->mallocFailed = 1; 974 sqlite3_free(zVal); 975 sqlite3ValueFree(pVal); 976 *ppVal = 0; 977 return SQLITE_NOMEM; 978 } 979 980 /* 981 ** Change the string value of an sqlite3_value object 982 */ 983 void sqlite3ValueSetStr( 984 sqlite3_value *v, /* Value to be set */ 985 int n, /* Length of string z */ 986 const void *z, /* Text of the new string */ 987 u8 enc, /* Encoding to use */ 988 void (*xDel)(void*) /* Destructor for the string */ 989 ){ 990 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 991 } 992 993 /* 994 ** Free an sqlite3_value object 995 */ 996 void sqlite3ValueFree(sqlite3_value *v){ 997 if( !v ) return; 998 sqlite3ValueSetStr(v, 0, 0, SQLITE_UTF8, SQLITE_STATIC); 999 sqlite3_free(v); 1000 } 1001 1002 /* 1003 ** Return the number of bytes in the sqlite3_value object assuming 1004 ** that it uses the encoding "enc" 1005 */ 1006 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1007 Mem *p = (Mem*)pVal; 1008 if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){ 1009 if( p->flags & MEM_Zero ){ 1010 return p->n+p->u.i; 1011 }else{ 1012 return p->n; 1013 } 1014 } 1015 return 0; 1016 } 1017