1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 /* True if X is a power of two. 0 is considered a power of two here. 22 ** In other words, return true if X has at most one bit set. 23 */ 24 #define ISPOWEROF2(X) (((X)&((X)-1))==0) 25 26 #ifdef SQLITE_DEBUG 27 /* 28 ** Check invariants on a Mem object. 29 ** 30 ** This routine is intended for use inside of assert() statements, like 31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); 32 */ 33 int sqlite3VdbeCheckMemInvariants(Mem *p){ 34 /* If MEM_Dyn is set then Mem.xDel!=0. 35 ** Mem.xDel might not be initialized if MEM_Dyn is clear. 36 */ 37 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); 38 39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we 40 ** ensure that if Mem.szMalloc>0 then it is safe to do 41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. 42 ** That saves a few cycles in inner loops. */ 43 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); 44 45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */ 46 assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) ); 47 48 if( p->flags & MEM_Null ){ 49 /* Cannot be both MEM_Null and some other type */ 50 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 ); 51 52 /* If MEM_Null is set, then either the value is a pure NULL (the usual 53 ** case) or it is a pointer set using sqlite3_bind_pointer() or 54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be 55 ** set. 56 */ 57 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){ 58 /* This is a pointer type. There may be a flag to indicate what to 59 ** do with the pointer. */ 60 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 61 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 62 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 ); 63 64 /* No other bits set */ 65 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind 66 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 ); 67 }else{ 68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn, 69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */ 70 } 71 }else{ 72 /* The MEM_Cleared bit is only allowed on NULLs */ 73 assert( (p->flags & MEM_Cleared)==0 ); 74 } 75 76 /* The szMalloc field holds the correct memory allocation size */ 77 assert( p->szMalloc==0 78 || (p->flags==MEM_Undefined 79 && p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc)) 80 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc)); 81 82 /* If p holds a string or blob, the Mem.z must point to exactly 83 ** one of the following: 84 ** 85 ** (1) Memory in Mem.zMalloc and managed by the Mem object 86 ** (2) Memory to be freed using Mem.xDel 87 ** (3) An ephemeral string or blob 88 ** (4) A static string or blob 89 */ 90 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ 91 assert( 92 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + 93 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 94 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 95 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 96 ); 97 } 98 return 1; 99 } 100 #endif 101 102 /* 103 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal 104 ** into a buffer. 105 */ 106 static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){ 107 StrAccum acc; 108 assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) ); 109 assert( sz>22 ); 110 if( p->flags & MEM_Int ){ 111 #if GCC_VERSION>=7000000 112 /* Work-around for GCC bug 113 ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */ 114 i64 x; 115 assert( (p->flags&MEM_Int)*2==sizeof(x) ); 116 memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2); 117 sqlite3Int64ToText(x, zBuf); 118 #else 119 sqlite3Int64ToText(p->u.i, zBuf); 120 #endif 121 }else{ 122 sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0); 123 sqlite3_str_appendf(&acc, "%!.15g", 124 (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r); 125 assert( acc.zText==zBuf && acc.mxAlloc<=0 ); 126 zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */ 127 } 128 } 129 130 #ifdef SQLITE_DEBUG 131 /* 132 ** Validity checks on pMem. pMem holds a string. 133 ** 134 ** (1) Check that string value of pMem agrees with its integer or real value. 135 ** (2) Check that the string is correctly zero terminated 136 ** 137 ** A single int or real value always converts to the same strings. But 138 ** many different strings can be converted into the same int or real. 139 ** If a table contains a numeric value and an index is based on the 140 ** corresponding string value, then it is important that the string be 141 ** derived from the numeric value, not the other way around, to ensure 142 ** that the index and table are consistent. See ticket 143 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for 144 ** an example. 145 ** 146 ** This routine looks at pMem to verify that if it has both a numeric 147 ** representation and a string representation then the string rep has 148 ** been derived from the numeric and not the other way around. It returns 149 ** true if everything is ok and false if there is a problem. 150 ** 151 ** This routine is for use inside of assert() statements only. 152 */ 153 int sqlite3VdbeMemValidStrRep(Mem *p){ 154 char zBuf[100]; 155 char *z; 156 int i, j, incr; 157 if( (p->flags & MEM_Str)==0 ) return 1; 158 if( p->flags & MEM_Term ){ 159 /* Insure that the string is properly zero-terminated. Pay particular 160 ** attention to the case where p->n is odd */ 161 if( p->szMalloc>0 && p->z==p->zMalloc ){ 162 assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 ); 163 assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 ); 164 } 165 assert( p->z[p->n]==0 ); 166 assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 ); 167 assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 ); 168 } 169 if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1; 170 vdbeMemRenderNum(sizeof(zBuf), zBuf, p); 171 z = p->z; 172 i = j = 0; 173 incr = 1; 174 if( p->enc!=SQLITE_UTF8 ){ 175 incr = 2; 176 if( p->enc==SQLITE_UTF16BE ) z++; 177 } 178 while( zBuf[j] ){ 179 if( zBuf[j++]!=z[i] ) return 0; 180 i += incr; 181 } 182 return 1; 183 } 184 #endif /* SQLITE_DEBUG */ 185 186 /* 187 ** If pMem is an object with a valid string representation, this routine 188 ** ensures the internal encoding for the string representation is 189 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 190 ** 191 ** If pMem is not a string object, or the encoding of the string 192 ** representation is already stored using the requested encoding, then this 193 ** routine is a no-op. 194 ** 195 ** SQLITE_OK is returned if the conversion is successful (or not required). 196 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 197 ** between formats. 198 */ 199 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 200 #ifndef SQLITE_OMIT_UTF16 201 int rc; 202 #endif 203 assert( pMem!=0 ); 204 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 205 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE 206 || desiredEnc==SQLITE_UTF16BE ); 207 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ 208 return SQLITE_OK; 209 } 210 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 211 #ifdef SQLITE_OMIT_UTF16 212 return SQLITE_ERROR; 213 #else 214 215 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 216 ** then the encoding of the value may not have changed. 217 */ 218 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); 219 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 220 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 221 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 222 return rc; 223 #endif 224 } 225 226 /* 227 ** Make sure pMem->z points to a writable allocation of at least n bytes. 228 ** 229 ** If the bPreserve argument is true, then copy of the content of 230 ** pMem->z into the new allocation. pMem must be either a string or 231 ** blob if bPreserve is true. If bPreserve is false, any prior content 232 ** in pMem->z is discarded. 233 */ 234 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ 235 assert( sqlite3VdbeCheckMemInvariants(pMem) ); 236 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 237 testcase( pMem->db==0 ); 238 239 /* If the bPreserve flag is set to true, then the memory cell must already 240 ** contain a valid string or blob value. */ 241 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); 242 testcase( bPreserve && pMem->z==0 ); 243 244 assert( pMem->szMalloc==0 245 || (pMem->flags==MEM_Undefined 246 && pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc)) 247 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc)); 248 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){ 249 if( pMem->db ){ 250 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 251 }else{ 252 pMem->zMalloc = sqlite3Realloc(pMem->z, n); 253 if( pMem->zMalloc==0 ) sqlite3_free(pMem->z); 254 pMem->z = pMem->zMalloc; 255 } 256 bPreserve = 0; 257 }else{ 258 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 259 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 260 } 261 if( pMem->zMalloc==0 ){ 262 sqlite3VdbeMemSetNull(pMem); 263 pMem->z = 0; 264 pMem->szMalloc = 0; 265 return SQLITE_NOMEM_BKPT; 266 }else{ 267 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 268 } 269 270 if( bPreserve && pMem->z ){ 271 assert( pMem->z!=pMem->zMalloc ); 272 memcpy(pMem->zMalloc, pMem->z, pMem->n); 273 } 274 if( (pMem->flags&MEM_Dyn)!=0 ){ 275 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); 276 pMem->xDel((void *)(pMem->z)); 277 } 278 279 pMem->z = pMem->zMalloc; 280 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); 281 return SQLITE_OK; 282 } 283 284 /* 285 ** Change the pMem->zMalloc allocation to be at least szNew bytes. 286 ** If pMem->zMalloc already meets or exceeds the requested size, this 287 ** routine is a no-op. 288 ** 289 ** Any prior string or blob content in the pMem object may be discarded. 290 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str 291 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal, 292 ** and MEM_Null values are preserved. 293 ** 294 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) 295 ** if unable to complete the resizing. 296 */ 297 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ 298 assert( CORRUPT_DB || szNew>0 ); 299 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); 300 if( pMem->szMalloc<szNew ){ 301 return sqlite3VdbeMemGrow(pMem, szNew, 0); 302 } 303 assert( (pMem->flags & MEM_Dyn)==0 ); 304 pMem->z = pMem->zMalloc; 305 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal); 306 return SQLITE_OK; 307 } 308 309 /* 310 ** It is already known that pMem contains an unterminated string. 311 ** Add the zero terminator. 312 ** 313 ** Three bytes of zero are added. In this way, there is guaranteed 314 ** to be a double-zero byte at an even byte boundary in order to 315 ** terminate a UTF16 string, even if the initial size of the buffer 316 ** is an odd number of bytes. 317 */ 318 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ 319 if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){ 320 return SQLITE_NOMEM_BKPT; 321 } 322 pMem->z[pMem->n] = 0; 323 pMem->z[pMem->n+1] = 0; 324 pMem->z[pMem->n+2] = 0; 325 pMem->flags |= MEM_Term; 326 return SQLITE_OK; 327 } 328 329 /* 330 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in 331 ** MEM.zMalloc, where it can be safely written. 332 ** 333 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 334 */ 335 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 336 assert( pMem!=0 ); 337 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 338 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 339 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ 340 if( ExpandBlob(pMem) ) return SQLITE_NOMEM; 341 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ 342 int rc = vdbeMemAddTerminator(pMem); 343 if( rc ) return rc; 344 } 345 } 346 pMem->flags &= ~MEM_Ephem; 347 #ifdef SQLITE_DEBUG 348 pMem->pScopyFrom = 0; 349 #endif 350 351 return SQLITE_OK; 352 } 353 354 /* 355 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 356 ** blob stored in dynamically allocated space. 357 */ 358 #ifndef SQLITE_OMIT_INCRBLOB 359 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 360 int nByte; 361 assert( pMem!=0 ); 362 assert( pMem->flags & MEM_Zero ); 363 assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) ); 364 testcase( sqlite3_value_nochange(pMem) ); 365 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 366 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 367 368 /* Set nByte to the number of bytes required to store the expanded blob. */ 369 nByte = pMem->n + pMem->u.nZero; 370 if( nByte<=0 ){ 371 if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK; 372 nByte = 1; 373 } 374 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 375 return SQLITE_NOMEM_BKPT; 376 } 377 assert( pMem->z!=0 ); 378 assert( sqlite3DbMallocSize(pMem->db,pMem->z) >= nByte ); 379 380 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); 381 pMem->n += pMem->u.nZero; 382 pMem->flags &= ~(MEM_Zero|MEM_Term); 383 return SQLITE_OK; 384 } 385 #endif 386 387 /* 388 ** Make sure the given Mem is \u0000 terminated. 389 */ 390 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 391 assert( pMem!=0 ); 392 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 393 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); 394 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); 395 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ 396 return SQLITE_OK; /* Nothing to do */ 397 }else{ 398 return vdbeMemAddTerminator(pMem); 399 } 400 } 401 402 /* 403 ** Add MEM_Str to the set of representations for the given Mem. This 404 ** routine is only called if pMem is a number of some kind, not a NULL 405 ** or a BLOB. 406 ** 407 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated 408 ** if bForce is true but are retained if bForce is false. 409 ** 410 ** A MEM_Null value will never be passed to this function. This function is 411 ** used for converting values to text for returning to the user (i.e. via 412 ** sqlite3_value_text()), or for ensuring that values to be used as btree 413 ** keys are strings. In the former case a NULL pointer is returned the 414 ** user and the latter is an internal programming error. 415 */ 416 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ 417 const int nByte = 32; 418 419 assert( pMem!=0 ); 420 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 421 assert( !(pMem->flags&MEM_Zero) ); 422 assert( !(pMem->flags&(MEM_Str|MEM_Blob)) ); 423 assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) ); 424 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 425 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 426 427 428 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 429 pMem->enc = 0; 430 return SQLITE_NOMEM_BKPT; 431 } 432 433 vdbeMemRenderNum(nByte, pMem->z, pMem); 434 assert( pMem->z!=0 ); 435 pMem->n = sqlite3Strlen30NN(pMem->z); 436 pMem->enc = SQLITE_UTF8; 437 pMem->flags |= MEM_Str|MEM_Term; 438 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); 439 sqlite3VdbeChangeEncoding(pMem, enc); 440 return SQLITE_OK; 441 } 442 443 /* 444 ** Memory cell pMem contains the context of an aggregate function. 445 ** This routine calls the finalize method for that function. The 446 ** result of the aggregate is stored back into pMem. 447 ** 448 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 449 ** otherwise. 450 */ 451 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 452 sqlite3_context ctx; 453 Mem t; 454 assert( pFunc!=0 ); 455 assert( pMem!=0 ); 456 assert( pFunc->xFinalize!=0 ); 457 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 458 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 459 memset(&ctx, 0, sizeof(ctx)); 460 memset(&t, 0, sizeof(t)); 461 t.flags = MEM_Null; 462 t.db = pMem->db; 463 ctx.pOut = &t; 464 ctx.pMem = pMem; 465 ctx.pFunc = pFunc; 466 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ 467 assert( (pMem->flags & MEM_Dyn)==0 ); 468 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 469 memcpy(pMem, &t, sizeof(t)); 470 return ctx.isError; 471 } 472 473 /* 474 ** Memory cell pAccum contains the context of an aggregate function. 475 ** This routine calls the xValue method for that function and stores 476 ** the results in memory cell pMem. 477 ** 478 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK 479 ** otherwise. 480 */ 481 #ifndef SQLITE_OMIT_WINDOWFUNC 482 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){ 483 sqlite3_context ctx; 484 assert( pFunc!=0 ); 485 assert( pFunc->xValue!=0 ); 486 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef ); 487 assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) ); 488 memset(&ctx, 0, sizeof(ctx)); 489 sqlite3VdbeMemSetNull(pOut); 490 ctx.pOut = pOut; 491 ctx.pMem = pAccum; 492 ctx.pFunc = pFunc; 493 pFunc->xValue(&ctx); 494 return ctx.isError; 495 } 496 #endif /* SQLITE_OMIT_WINDOWFUNC */ 497 498 /* 499 ** If the memory cell contains a value that must be freed by 500 ** invoking the external callback in Mem.xDel, then this routine 501 ** will free that value. It also sets Mem.flags to MEM_Null. 502 ** 503 ** This is a helper routine for sqlite3VdbeMemSetNull() and 504 ** for sqlite3VdbeMemRelease(). Use those other routines as the 505 ** entry point for releasing Mem resources. 506 */ 507 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ 508 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 509 assert( VdbeMemDynamic(p) ); 510 if( p->flags&MEM_Agg ){ 511 sqlite3VdbeMemFinalize(p, p->u.pDef); 512 assert( (p->flags & MEM_Agg)==0 ); 513 testcase( p->flags & MEM_Dyn ); 514 } 515 if( p->flags&MEM_Dyn ){ 516 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); 517 p->xDel((void *)p->z); 518 } 519 p->flags = MEM_Null; 520 } 521 522 /* 523 ** Release memory held by the Mem p, both external memory cleared 524 ** by p->xDel and memory in p->zMalloc. 525 ** 526 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in 527 ** the unusual case where there really is memory in p that needs 528 ** to be freed. 529 */ 530 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ 531 if( VdbeMemDynamic(p) ){ 532 vdbeMemClearExternAndSetNull(p); 533 } 534 if( p->szMalloc ){ 535 sqlite3DbFreeNN(p->db, p->zMalloc); 536 p->szMalloc = 0; 537 } 538 p->z = 0; 539 } 540 541 /* 542 ** Release any memory resources held by the Mem. Both the memory that is 543 ** free by Mem.xDel and the Mem.zMalloc allocation are freed. 544 ** 545 ** Use this routine prior to clean up prior to abandoning a Mem, or to 546 ** reset a Mem back to its minimum memory utilization. 547 ** 548 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space 549 ** prior to inserting new content into the Mem. 550 */ 551 void sqlite3VdbeMemRelease(Mem *p){ 552 assert( sqlite3VdbeCheckMemInvariants(p) ); 553 if( VdbeMemDynamic(p) || p->szMalloc ){ 554 vdbeMemClear(p); 555 } 556 } 557 558 /* Like sqlite3VdbeMemRelease() but faster for cases where we 559 ** know in advance that the Mem is not MEM_Dyn or MEM_Agg. 560 */ 561 void sqlite3VdbeMemReleaseMalloc(Mem *p){ 562 assert( !VdbeMemDynamic(p) ); 563 if( p->szMalloc ) vdbeMemClear(p); 564 } 565 566 /* 567 ** Convert a 64-bit IEEE double into a 64-bit signed integer. 568 ** If the double is out of range of a 64-bit signed integer then 569 ** return the closest available 64-bit signed integer. 570 */ 571 static SQLITE_NOINLINE i64 doubleToInt64(double r){ 572 #ifdef SQLITE_OMIT_FLOATING_POINT 573 /* When floating-point is omitted, double and int64 are the same thing */ 574 return r; 575 #else 576 /* 577 ** Many compilers we encounter do not define constants for the 578 ** minimum and maximum 64-bit integers, or they define them 579 ** inconsistently. And many do not understand the "LL" notation. 580 ** So we define our own static constants here using nothing 581 ** larger than a 32-bit integer constant. 582 */ 583 static const i64 maxInt = LARGEST_INT64; 584 static const i64 minInt = SMALLEST_INT64; 585 586 if( r<=(double)minInt ){ 587 return minInt; 588 }else if( r>=(double)maxInt ){ 589 return maxInt; 590 }else{ 591 return (i64)r; 592 } 593 #endif 594 } 595 596 /* 597 ** Return some kind of integer value which is the best we can do 598 ** at representing the value that *pMem describes as an integer. 599 ** If pMem is an integer, then the value is exact. If pMem is 600 ** a floating-point then the value returned is the integer part. 601 ** If pMem is a string or blob, then we make an attempt to convert 602 ** it into an integer and return that. If pMem represents an 603 ** an SQL-NULL value, return 0. 604 ** 605 ** If pMem represents a string value, its encoding might be changed. 606 */ 607 static SQLITE_NOINLINE i64 memIntValue(const Mem *pMem){ 608 i64 value = 0; 609 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); 610 return value; 611 } 612 i64 sqlite3VdbeIntValue(const Mem *pMem){ 613 int flags; 614 assert( pMem!=0 ); 615 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 616 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 617 flags = pMem->flags; 618 if( flags & (MEM_Int|MEM_IntReal) ){ 619 testcase( flags & MEM_IntReal ); 620 return pMem->u.i; 621 }else if( flags & MEM_Real ){ 622 return doubleToInt64(pMem->u.r); 623 }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){ 624 return memIntValue(pMem); 625 }else{ 626 return 0; 627 } 628 } 629 630 /* 631 ** Return the best representation of pMem that we can get into a 632 ** double. If pMem is already a double or an integer, return its 633 ** value. If it is a string or blob, try to convert it to a double. 634 ** If it is a NULL, return 0.0. 635 */ 636 static SQLITE_NOINLINE double memRealValue(Mem *pMem){ 637 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 638 double val = (double)0; 639 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); 640 return val; 641 } 642 double sqlite3VdbeRealValue(Mem *pMem){ 643 assert( pMem!=0 ); 644 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 645 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 646 if( pMem->flags & MEM_Real ){ 647 return pMem->u.r; 648 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 649 testcase( pMem->flags & MEM_IntReal ); 650 return (double)pMem->u.i; 651 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 652 return memRealValue(pMem); 653 }else{ 654 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 655 return (double)0; 656 } 657 } 658 659 /* 660 ** Return 1 if pMem represents true, and return 0 if pMem represents false. 661 ** Return the value ifNull if pMem is NULL. 662 */ 663 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ 664 testcase( pMem->flags & MEM_IntReal ); 665 if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0; 666 if( pMem->flags & MEM_Null ) return ifNull; 667 return sqlite3VdbeRealValue(pMem)!=0.0; 668 } 669 670 /* 671 ** The MEM structure is already a MEM_Real. Try to also make it a 672 ** MEM_Int if we can. 673 */ 674 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 675 i64 ix; 676 assert( pMem!=0 ); 677 assert( pMem->flags & MEM_Real ); 678 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 679 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 680 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 681 682 ix = doubleToInt64(pMem->u.r); 683 684 /* Only mark the value as an integer if 685 ** 686 ** (1) the round-trip conversion real->int->real is a no-op, and 687 ** (2) The integer is neither the largest nor the smallest 688 ** possible integer (ticket #3922) 689 ** 690 ** The second and third terms in the following conditional enforces 691 ** the second condition under the assumption that addition overflow causes 692 ** values to wrap around. 693 */ 694 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ 695 pMem->u.i = ix; 696 MemSetTypeFlag(pMem, MEM_Int); 697 } 698 } 699 700 /* 701 ** Convert pMem to type integer. Invalidate any prior representations. 702 */ 703 int sqlite3VdbeMemIntegerify(Mem *pMem){ 704 assert( pMem!=0 ); 705 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 706 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 707 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 708 709 pMem->u.i = sqlite3VdbeIntValue(pMem); 710 MemSetTypeFlag(pMem, MEM_Int); 711 return SQLITE_OK; 712 } 713 714 /* 715 ** Convert pMem so that it is of type MEM_Real. 716 ** Invalidate any prior representations. 717 */ 718 int sqlite3VdbeMemRealify(Mem *pMem){ 719 assert( pMem!=0 ); 720 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 721 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 722 723 pMem->u.r = sqlite3VdbeRealValue(pMem); 724 MemSetTypeFlag(pMem, MEM_Real); 725 return SQLITE_OK; 726 } 727 728 /* Compare a floating point value to an integer. Return true if the two 729 ** values are the same within the precision of the floating point value. 730 ** 731 ** This function assumes that i was obtained by assignment from r1. 732 ** 733 ** For some versions of GCC on 32-bit machines, if you do the more obvious 734 ** comparison of "r1==(double)i" you sometimes get an answer of false even 735 ** though the r1 and (double)i values are bit-for-bit the same. 736 */ 737 int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ 738 double r2 = (double)i; 739 return r1==0.0 740 || (memcmp(&r1, &r2, sizeof(r1))==0 741 && i >= -2251799813685248LL && i < 2251799813685248LL); 742 } 743 744 /* 745 ** Convert pMem so that it has type MEM_Real or MEM_Int. 746 ** Invalidate any prior representations. 747 ** 748 ** Every effort is made to force the conversion, even if the input 749 ** is a string that does not look completely like a number. Convert 750 ** as much of the string as we can and ignore the rest. 751 */ 752 int sqlite3VdbeMemNumerify(Mem *pMem){ 753 assert( pMem!=0 ); 754 testcase( pMem->flags & MEM_Int ); 755 testcase( pMem->flags & MEM_Real ); 756 testcase( pMem->flags & MEM_IntReal ); 757 testcase( pMem->flags & MEM_Null ); 758 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){ 759 int rc; 760 sqlite3_int64 ix; 761 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 762 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 763 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 764 if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1) 765 || sqlite3RealSameAsInt(pMem->u.r, (ix = (i64)pMem->u.r)) 766 ){ 767 pMem->u.i = ix; 768 MemSetTypeFlag(pMem, MEM_Int); 769 }else{ 770 MemSetTypeFlag(pMem, MEM_Real); 771 } 772 } 773 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 ); 774 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); 775 return SQLITE_OK; 776 } 777 778 /* 779 ** Cast the datatype of the value in pMem according to the affinity 780 ** "aff". Casting is different from applying affinity in that a cast 781 ** is forced. In other words, the value is converted into the desired 782 ** affinity even if that results in loss of data. This routine is 783 ** used (for example) to implement the SQL "cast()" operator. 784 */ 785 int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ 786 if( pMem->flags & MEM_Null ) return SQLITE_OK; 787 switch( aff ){ 788 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ 789 if( (pMem->flags & MEM_Blob)==0 ){ 790 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 791 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 792 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); 793 }else{ 794 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); 795 } 796 break; 797 } 798 case SQLITE_AFF_NUMERIC: { 799 sqlite3VdbeMemNumerify(pMem); 800 break; 801 } 802 case SQLITE_AFF_INTEGER: { 803 sqlite3VdbeMemIntegerify(pMem); 804 break; 805 } 806 case SQLITE_AFF_REAL: { 807 sqlite3VdbeMemRealify(pMem); 808 break; 809 } 810 default: { 811 assert( aff==SQLITE_AFF_TEXT ); 812 assert( MEM_Str==(MEM_Blob>>3) ); 813 pMem->flags |= (pMem->flags&MEM_Blob)>>3; 814 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 815 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 816 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero); 817 return sqlite3VdbeChangeEncoding(pMem, encoding); 818 } 819 } 820 return SQLITE_OK; 821 } 822 823 /* 824 ** Initialize bulk memory to be a consistent Mem object. 825 ** 826 ** The minimum amount of initialization feasible is performed. 827 */ 828 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ 829 assert( (flags & ~MEM_TypeMask)==0 ); 830 pMem->flags = flags; 831 pMem->db = db; 832 pMem->szMalloc = 0; 833 } 834 835 836 /* 837 ** Delete any previous value and set the value stored in *pMem to NULL. 838 ** 839 ** This routine calls the Mem.xDel destructor to dispose of values that 840 ** require the destructor. But it preserves the Mem.zMalloc memory allocation. 841 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this 842 ** routine to invoke the destructor and deallocates Mem.zMalloc. 843 ** 844 ** Use this routine to reset the Mem prior to insert a new value. 845 ** 846 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. 847 */ 848 void sqlite3VdbeMemSetNull(Mem *pMem){ 849 if( VdbeMemDynamic(pMem) ){ 850 vdbeMemClearExternAndSetNull(pMem); 851 }else{ 852 pMem->flags = MEM_Null; 853 } 854 } 855 void sqlite3ValueSetNull(sqlite3_value *p){ 856 sqlite3VdbeMemSetNull((Mem*)p); 857 } 858 859 /* 860 ** Delete any previous value and set the value to be a BLOB of length 861 ** n containing all zeros. 862 */ 863 #ifndef SQLITE_OMIT_INCRBLOB 864 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 865 sqlite3VdbeMemRelease(pMem); 866 pMem->flags = MEM_Blob|MEM_Zero; 867 pMem->n = 0; 868 if( n<0 ) n = 0; 869 pMem->u.nZero = n; 870 pMem->enc = SQLITE_UTF8; 871 pMem->z = 0; 872 } 873 #else 874 int sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 875 int nByte = n>0?n:1; 876 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){ 877 return SQLITE_NOMEM_BKPT; 878 } 879 assert( pMem->z!=0 ); 880 assert( sqlite3DbMallocSize(pMem->db, pMem->z)>=nByte ); 881 memset(pMem->z, 0, nByte); 882 pMem->n = n>0?n:0; 883 pMem->flags = MEM_Blob; 884 pMem->enc = SQLITE_UTF8; 885 return SQLITE_OK; 886 } 887 #endif 888 889 /* 890 ** The pMem is known to contain content that needs to be destroyed prior 891 ** to a value change. So invoke the destructor, then set the value to 892 ** a 64-bit integer. 893 */ 894 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ 895 sqlite3VdbeMemSetNull(pMem); 896 pMem->u.i = val; 897 pMem->flags = MEM_Int; 898 } 899 900 /* 901 ** Delete any previous value and set the value stored in *pMem to val, 902 ** manifest type INTEGER. 903 */ 904 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 905 if( VdbeMemDynamic(pMem) ){ 906 vdbeReleaseAndSetInt64(pMem, val); 907 }else{ 908 pMem->u.i = val; 909 pMem->flags = MEM_Int; 910 } 911 } 912 913 /* A no-op destructor */ 914 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } 915 916 /* 917 ** Set the value stored in *pMem should already be a NULL. 918 ** Also store a pointer to go with it. 919 */ 920 void sqlite3VdbeMemSetPointer( 921 Mem *pMem, 922 void *pPtr, 923 const char *zPType, 924 void (*xDestructor)(void*) 925 ){ 926 assert( pMem->flags==MEM_Null ); 927 vdbeMemClear(pMem); 928 pMem->u.zPType = zPType ? zPType : ""; 929 pMem->z = pPtr; 930 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term; 931 pMem->eSubtype = 'p'; 932 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor; 933 } 934 935 #ifndef SQLITE_OMIT_FLOATING_POINT 936 /* 937 ** Delete any previous value and set the value stored in *pMem to val, 938 ** manifest type REAL. 939 */ 940 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 941 sqlite3VdbeMemSetNull(pMem); 942 if( !sqlite3IsNaN(val) ){ 943 pMem->u.r = val; 944 pMem->flags = MEM_Real; 945 } 946 } 947 #endif 948 949 #ifdef SQLITE_DEBUG 950 /* 951 ** Return true if the Mem holds a RowSet object. This routine is intended 952 ** for use inside of assert() statements. 953 */ 954 int sqlite3VdbeMemIsRowSet(const Mem *pMem){ 955 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn) 956 && pMem->xDel==sqlite3RowSetDelete; 957 } 958 #endif 959 960 /* 961 ** Delete any previous value and set the value of pMem to be an 962 ** empty boolean index. 963 ** 964 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation 965 ** error occurs. 966 */ 967 int sqlite3VdbeMemSetRowSet(Mem *pMem){ 968 sqlite3 *db = pMem->db; 969 RowSet *p; 970 assert( db!=0 ); 971 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 972 sqlite3VdbeMemRelease(pMem); 973 p = sqlite3RowSetInit(db); 974 if( p==0 ) return SQLITE_NOMEM; 975 pMem->z = (char*)p; 976 pMem->flags = MEM_Blob|MEM_Dyn; 977 pMem->xDel = sqlite3RowSetDelete; 978 return SQLITE_OK; 979 } 980 981 /* 982 ** Return true if the Mem object contains a TEXT or BLOB that is 983 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 984 */ 985 int sqlite3VdbeMemTooBig(Mem *p){ 986 assert( p->db!=0 ); 987 if( p->flags & (MEM_Str|MEM_Blob) ){ 988 int n = p->n; 989 if( p->flags & MEM_Zero ){ 990 n += p->u.nZero; 991 } 992 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 993 } 994 return 0; 995 } 996 997 #ifdef SQLITE_DEBUG 998 /* 999 ** This routine prepares a memory cell for modification by breaking 1000 ** its link to a shallow copy and by marking any current shallow 1001 ** copies of this cell as invalid. 1002 ** 1003 ** This is used for testing and debugging only - to help ensure that shallow 1004 ** copies (created by OP_SCopy) are not misused. 1005 */ 1006 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ 1007 int i; 1008 Mem *pX; 1009 for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){ 1010 if( pX->pScopyFrom==pMem ){ 1011 u16 mFlags; 1012 if( pVdbe->db->flags & SQLITE_VdbeTrace ){ 1013 sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n", 1014 (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem)); 1015 } 1016 /* If pX is marked as a shallow copy of pMem, then try to verify that 1017 ** no significant changes have been made to pX since the OP_SCopy. 1018 ** A significant change would indicated a missed call to this 1019 ** function for pX. Minor changes, such as adding or removing a 1020 ** dual type, are allowed, as long as the underlying value is the 1021 ** same. */ 1022 mFlags = pMem->flags & pX->flags & pX->mScopyFlags; 1023 assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i ); 1024 1025 /* pMem is the register that is changing. But also mark pX as 1026 ** undefined so that we can quickly detect the shallow-copy error */ 1027 pX->flags = MEM_Undefined; 1028 pX->pScopyFrom = 0; 1029 } 1030 } 1031 pMem->pScopyFrom = 0; 1032 } 1033 #endif /* SQLITE_DEBUG */ 1034 1035 /* 1036 ** Make an shallow copy of pFrom into pTo. Prior contents of 1037 ** pTo are freed. The pFrom->z field is not duplicated. If 1038 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 1039 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 1040 */ 1041 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ 1042 vdbeMemClearExternAndSetNull(pTo); 1043 assert( !VdbeMemDynamic(pTo) ); 1044 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); 1045 } 1046 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 1047 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 1048 assert( pTo->db==pFrom->db ); 1049 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } 1050 memcpy(pTo, pFrom, MEMCELLSIZE); 1051 if( (pFrom->flags&MEM_Static)==0 ){ 1052 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 1053 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 1054 pTo->flags |= srcType; 1055 } 1056 } 1057 1058 /* 1059 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 1060 ** freed before the copy is made. 1061 */ 1062 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 1063 int rc = SQLITE_OK; 1064 1065 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 1066 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); 1067 memcpy(pTo, pFrom, MEMCELLSIZE); 1068 pTo->flags &= ~MEM_Dyn; 1069 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 1070 if( 0==(pFrom->flags&MEM_Static) ){ 1071 pTo->flags |= MEM_Ephem; 1072 rc = sqlite3VdbeMemMakeWriteable(pTo); 1073 } 1074 } 1075 1076 return rc; 1077 } 1078 1079 /* 1080 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 1081 ** freed. If pFrom contains ephemeral data, a copy is made. 1082 ** 1083 ** pFrom contains an SQL NULL when this routine returns. 1084 */ 1085 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 1086 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 1087 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 1088 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 1089 1090 sqlite3VdbeMemRelease(pTo); 1091 memcpy(pTo, pFrom, sizeof(Mem)); 1092 pFrom->flags = MEM_Null; 1093 pFrom->szMalloc = 0; 1094 } 1095 1096 /* 1097 ** Change the value of a Mem to be a string or a BLOB. 1098 ** 1099 ** The memory management strategy depends on the value of the xDel 1100 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 1101 ** string is copied into a (possibly existing) buffer managed by the 1102 ** Mem structure. Otherwise, any existing buffer is freed and the 1103 ** pointer copied. 1104 ** 1105 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH 1106 ** size limit) then no memory allocation occurs. If the string can be 1107 ** stored without allocating memory, then it is. If a memory allocation 1108 ** is required to store the string, then value of pMem is unchanged. In 1109 ** either case, SQLITE_TOOBIG is returned. 1110 ** 1111 ** The "enc" parameter is the text encoding for the string, or zero 1112 ** to store a blob. 1113 ** 1114 ** If n is negative, then the string consists of all bytes up to but 1115 ** excluding the first zero character. The n parameter must be 1116 ** non-negative for blobs. 1117 */ 1118 int sqlite3VdbeMemSetStr( 1119 Mem *pMem, /* Memory cell to set to string value */ 1120 const char *z, /* String pointer */ 1121 i64 n, /* Bytes in string, or negative */ 1122 u8 enc, /* Encoding of z. 0 for BLOBs */ 1123 void (*xDel)(void*) /* Destructor function */ 1124 ){ 1125 i64 nByte = n; /* New value for pMem->n */ 1126 int iLimit; /* Maximum allowed string or blob size */ 1127 u16 flags; /* New value for pMem->flags */ 1128 1129 assert( pMem!=0 ); 1130 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 1131 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1132 assert( enc!=0 || n>=0 ); 1133 1134 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 1135 if( !z ){ 1136 sqlite3VdbeMemSetNull(pMem); 1137 return SQLITE_OK; 1138 } 1139 1140 if( pMem->db ){ 1141 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; 1142 }else{ 1143 iLimit = SQLITE_MAX_LENGTH; 1144 } 1145 if( nByte<0 ){ 1146 assert( enc!=0 ); 1147 if( enc==SQLITE_UTF8 ){ 1148 nByte = strlen(z); 1149 }else{ 1150 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} 1151 } 1152 flags= MEM_Str|MEM_Term; 1153 }else if( enc==0 ){ 1154 flags = MEM_Blob; 1155 #ifdef SQLITE_ENABLE_SESSION 1156 enc = pMem->db ? ENC(pMem->db) : SQLITE_UTF8; 1157 #else 1158 assert( pMem->db!=0 ); 1159 enc = ENC(pMem->db); 1160 #endif 1161 }else{ 1162 flags = MEM_Str; 1163 } 1164 if( nByte>iLimit ){ 1165 if( xDel && xDel!=SQLITE_TRANSIENT ){ 1166 if( xDel==SQLITE_DYNAMIC ){ 1167 sqlite3DbFree(pMem->db, (void*)z); 1168 }else{ 1169 xDel((void*)z); 1170 } 1171 } 1172 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG); 1173 } 1174 1175 /* The following block sets the new values of Mem.z and Mem.xDel. It 1176 ** also sets a flag in local variable "flags" to indicate the memory 1177 ** management (one of MEM_Dyn or MEM_Static). 1178 */ 1179 if( xDel==SQLITE_TRANSIENT ){ 1180 i64 nAlloc = nByte; 1181 if( flags&MEM_Term ){ 1182 nAlloc += (enc==SQLITE_UTF8?1:2); 1183 } 1184 testcase( nAlloc==0 ); 1185 testcase( nAlloc==31 ); 1186 testcase( nAlloc==32 ); 1187 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){ 1188 return SQLITE_NOMEM_BKPT; 1189 } 1190 memcpy(pMem->z, z, nAlloc); 1191 }else{ 1192 sqlite3VdbeMemRelease(pMem); 1193 pMem->z = (char *)z; 1194 if( xDel==SQLITE_DYNAMIC ){ 1195 pMem->zMalloc = pMem->z; 1196 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 1197 }else{ 1198 pMem->xDel = xDel; 1199 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 1200 } 1201 } 1202 1203 pMem->n = (int)(nByte & 0x7fffffff); 1204 pMem->flags = flags; 1205 pMem->enc = enc; 1206 1207 #ifndef SQLITE_OMIT_UTF16 1208 if( enc>SQLITE_UTF8 1209 && (flags & MEM_Blob)==0 1210 && sqlite3VdbeMemHandleBom(pMem) 1211 ){ 1212 return SQLITE_NOMEM_BKPT; 1213 } 1214 #endif 1215 1216 1217 return SQLITE_OK; 1218 } 1219 1220 /* 1221 ** Move data out of a btree key or data field and into a Mem structure. 1222 ** The data is payload from the entry that pCur is currently pointing 1223 ** to. offset and amt determine what portion of the data or key to retrieve. 1224 ** The result is written into the pMem element. 1225 ** 1226 ** The pMem object must have been initialized. This routine will use 1227 ** pMem->zMalloc to hold the content from the btree, if possible. New 1228 ** pMem->zMalloc space will be allocated if necessary. The calling routine 1229 ** is responsible for making sure that the pMem object is eventually 1230 ** destroyed. 1231 ** 1232 ** If this routine fails for any reason (malloc returns NULL or unable 1233 ** to read from the disk) then the pMem is left in an inconsistent state. 1234 */ 1235 int sqlite3VdbeMemFromBtree( 1236 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1237 u32 offset, /* Offset from the start of data to return bytes from. */ 1238 u32 amt, /* Number of bytes to return. */ 1239 Mem *pMem /* OUT: Return data in this Mem structure. */ 1240 ){ 1241 int rc; 1242 pMem->flags = MEM_Null; 1243 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){ 1244 return SQLITE_CORRUPT_BKPT; 1245 } 1246 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){ 1247 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z); 1248 if( rc==SQLITE_OK ){ 1249 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */ 1250 pMem->flags = MEM_Blob; 1251 pMem->n = (int)amt; 1252 }else{ 1253 sqlite3VdbeMemRelease(pMem); 1254 } 1255 } 1256 return rc; 1257 } 1258 int sqlite3VdbeMemFromBtreeZeroOffset( 1259 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1260 u32 amt, /* Number of bytes to return. */ 1261 Mem *pMem /* OUT: Return data in this Mem structure. */ 1262 ){ 1263 u32 available = 0; /* Number of bytes available on the local btree page */ 1264 int rc = SQLITE_OK; /* Return code */ 1265 1266 assert( sqlite3BtreeCursorIsValid(pCur) ); 1267 assert( !VdbeMemDynamic(pMem) ); 1268 1269 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 1270 ** that both the BtShared and database handle mutexes are held. */ 1271 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1272 pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available); 1273 assert( pMem->z!=0 ); 1274 1275 if( amt<=available ){ 1276 pMem->flags = MEM_Blob|MEM_Ephem; 1277 pMem->n = (int)amt; 1278 }else{ 1279 rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem); 1280 } 1281 1282 return rc; 1283 } 1284 1285 /* 1286 ** The pVal argument is known to be a value other than NULL. 1287 ** Convert it into a string with encoding enc and return a pointer 1288 ** to a zero-terminated version of that string. 1289 */ 1290 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ 1291 assert( pVal!=0 ); 1292 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1293 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1294 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1295 assert( (pVal->flags & (MEM_Null))==0 ); 1296 if( pVal->flags & (MEM_Blob|MEM_Str) ){ 1297 if( ExpandBlob(pVal) ) return 0; 1298 pVal->flags |= MEM_Str; 1299 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ 1300 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 1301 } 1302 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ 1303 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 1304 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 1305 return 0; 1306 } 1307 } 1308 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ 1309 }else{ 1310 sqlite3VdbeMemStringify(pVal, enc, 0); 1311 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); 1312 } 1313 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 1314 || pVal->db->mallocFailed ); 1315 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 1316 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1317 return pVal->z; 1318 }else{ 1319 return 0; 1320 } 1321 } 1322 1323 /* This function is only available internally, it is not part of the 1324 ** external API. It works in a similar way to sqlite3_value_text(), 1325 ** except the data returned is in the encoding specified by the second 1326 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 1327 ** SQLITE_UTF8. 1328 ** 1329 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 1330 ** If that is the case, then the result must be aligned on an even byte 1331 ** boundary. 1332 */ 1333 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 1334 if( !pVal ) return 0; 1335 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1336 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1337 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1338 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ 1339 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1340 return pVal->z; 1341 } 1342 if( pVal->flags&MEM_Null ){ 1343 return 0; 1344 } 1345 return valueToText(pVal, enc); 1346 } 1347 1348 /* 1349 ** Create a new sqlite3_value object. 1350 */ 1351 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 1352 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 1353 if( p ){ 1354 p->flags = MEM_Null; 1355 p->db = db; 1356 } 1357 return p; 1358 } 1359 1360 /* 1361 ** Context object passed by sqlite3Stat4ProbeSetValue() through to 1362 ** valueNew(). See comments above valueNew() for details. 1363 */ 1364 struct ValueNewStat4Ctx { 1365 Parse *pParse; 1366 Index *pIdx; 1367 UnpackedRecord **ppRec; 1368 int iVal; 1369 }; 1370 1371 /* 1372 ** Allocate and return a pointer to a new sqlite3_value object. If 1373 ** the second argument to this function is NULL, the object is allocated 1374 ** by calling sqlite3ValueNew(). 1375 ** 1376 ** Otherwise, if the second argument is non-zero, then this function is 1377 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not 1378 ** already been allocated, allocate the UnpackedRecord structure that 1379 ** that function will return to its caller here. Then return a pointer to 1380 ** an sqlite3_value within the UnpackedRecord.a[] array. 1381 */ 1382 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ 1383 #ifdef SQLITE_ENABLE_STAT4 1384 if( p ){ 1385 UnpackedRecord *pRec = p->ppRec[0]; 1386 1387 if( pRec==0 ){ 1388 Index *pIdx = p->pIdx; /* Index being probed */ 1389 int nByte; /* Bytes of space to allocate */ 1390 int i; /* Counter variable */ 1391 int nCol = pIdx->nColumn; /* Number of index columns including rowid */ 1392 1393 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); 1394 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); 1395 if( pRec ){ 1396 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); 1397 if( pRec->pKeyInfo ){ 1398 assert( pRec->pKeyInfo->nAllField==nCol ); 1399 assert( pRec->pKeyInfo->enc==ENC(db) ); 1400 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); 1401 for(i=0; i<nCol; i++){ 1402 pRec->aMem[i].flags = MEM_Null; 1403 pRec->aMem[i].db = db; 1404 } 1405 }else{ 1406 sqlite3DbFreeNN(db, pRec); 1407 pRec = 0; 1408 } 1409 } 1410 if( pRec==0 ) return 0; 1411 p->ppRec[0] = pRec; 1412 } 1413 1414 pRec->nField = p->iVal+1; 1415 return &pRec->aMem[p->iVal]; 1416 } 1417 #else 1418 UNUSED_PARAMETER(p); 1419 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1420 return sqlite3ValueNew(db); 1421 } 1422 1423 /* 1424 ** The expression object indicated by the second argument is guaranteed 1425 ** to be a scalar SQL function. If 1426 ** 1427 ** * all function arguments are SQL literals, 1428 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and 1429 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, 1430 ** 1431 ** then this routine attempts to invoke the SQL function. Assuming no 1432 ** error occurs, output parameter (*ppVal) is set to point to a value 1433 ** object containing the result before returning SQLITE_OK. 1434 ** 1435 ** Affinity aff is applied to the result of the function before returning. 1436 ** If the result is a text value, the sqlite3_value object uses encoding 1437 ** enc. 1438 ** 1439 ** If the conditions above are not met, this function returns SQLITE_OK 1440 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to 1441 ** NULL and an SQLite error code returned. 1442 */ 1443 #ifdef SQLITE_ENABLE_STAT4 1444 static int valueFromFunction( 1445 sqlite3 *db, /* The database connection */ 1446 const Expr *p, /* The expression to evaluate */ 1447 u8 enc, /* Encoding to use */ 1448 u8 aff, /* Affinity to use */ 1449 sqlite3_value **ppVal, /* Write the new value here */ 1450 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1451 ){ 1452 sqlite3_context ctx; /* Context object for function invocation */ 1453 sqlite3_value **apVal = 0; /* Function arguments */ 1454 int nVal = 0; /* Size of apVal[] array */ 1455 FuncDef *pFunc = 0; /* Function definition */ 1456 sqlite3_value *pVal = 0; /* New value */ 1457 int rc = SQLITE_OK; /* Return code */ 1458 ExprList *pList = 0; /* Function arguments */ 1459 int i; /* Iterator variable */ 1460 1461 assert( pCtx!=0 ); 1462 assert( (p->flags & EP_TokenOnly)==0 ); 1463 assert( ExprUseXList(p) ); 1464 pList = p->x.pList; 1465 if( pList ) nVal = pList->nExpr; 1466 assert( !ExprHasProperty(p, EP_IntValue) ); 1467 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); 1468 assert( pFunc ); 1469 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 1470 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 1471 ){ 1472 return SQLITE_OK; 1473 } 1474 1475 if( pList ){ 1476 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); 1477 if( apVal==0 ){ 1478 rc = SQLITE_NOMEM_BKPT; 1479 goto value_from_function_out; 1480 } 1481 for(i=0; i<nVal; i++){ 1482 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); 1483 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; 1484 } 1485 } 1486 1487 pVal = valueNew(db, pCtx); 1488 if( pVal==0 ){ 1489 rc = SQLITE_NOMEM_BKPT; 1490 goto value_from_function_out; 1491 } 1492 1493 assert( pCtx->pParse->rc==SQLITE_OK ); 1494 memset(&ctx, 0, sizeof(ctx)); 1495 ctx.pOut = pVal; 1496 ctx.pFunc = pFunc; 1497 pFunc->xSFunc(&ctx, nVal, apVal); 1498 if( ctx.isError ){ 1499 rc = ctx.isError; 1500 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); 1501 }else{ 1502 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); 1503 assert( rc==SQLITE_OK ); 1504 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1505 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ 1506 rc = SQLITE_TOOBIG; 1507 pCtx->pParse->nErr++; 1508 } 1509 } 1510 pCtx->pParse->rc = rc; 1511 1512 value_from_function_out: 1513 if( rc!=SQLITE_OK ){ 1514 pVal = 0; 1515 } 1516 if( apVal ){ 1517 for(i=0; i<nVal; i++){ 1518 sqlite3ValueFree(apVal[i]); 1519 } 1520 sqlite3DbFreeNN(db, apVal); 1521 } 1522 1523 *ppVal = pVal; 1524 return rc; 1525 } 1526 #else 1527 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK 1528 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1529 1530 /* 1531 ** Extract a value from the supplied expression in the manner described 1532 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object 1533 ** using valueNew(). 1534 ** 1535 ** If pCtx is NULL and an error occurs after the sqlite3_value object 1536 ** has been allocated, it is freed before returning. Or, if pCtx is not 1537 ** NULL, it is assumed that the caller will free any allocated object 1538 ** in all cases. 1539 */ 1540 static int valueFromExpr( 1541 sqlite3 *db, /* The database connection */ 1542 const Expr *pExpr, /* The expression to evaluate */ 1543 u8 enc, /* Encoding to use */ 1544 u8 affinity, /* Affinity to use */ 1545 sqlite3_value **ppVal, /* Write the new value here */ 1546 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1547 ){ 1548 int op; 1549 char *zVal = 0; 1550 sqlite3_value *pVal = 0; 1551 int negInt = 1; 1552 const char *zNeg = ""; 1553 int rc = SQLITE_OK; 1554 1555 assert( pExpr!=0 ); 1556 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; 1557 if( op==TK_REGISTER ) op = pExpr->op2; 1558 1559 /* Compressed expressions only appear when parsing the DEFAULT clause 1560 ** on a table column definition, and hence only when pCtx==0. This 1561 ** check ensures that an EP_TokenOnly expression is never passed down 1562 ** into valueFromFunction(). */ 1563 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); 1564 1565 if( op==TK_CAST ){ 1566 u8 aff; 1567 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1568 aff = sqlite3AffinityType(pExpr->u.zToken,0); 1569 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); 1570 testcase( rc!=SQLITE_OK ); 1571 if( *ppVal ){ 1572 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); 1573 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); 1574 } 1575 return rc; 1576 } 1577 1578 /* Handle negative integers in a single step. This is needed in the 1579 ** case when the value is -9223372036854775808. 1580 */ 1581 if( op==TK_UMINUS 1582 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ 1583 pExpr = pExpr->pLeft; 1584 op = pExpr->op; 1585 negInt = -1; 1586 zNeg = "-"; 1587 } 1588 1589 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 1590 pVal = valueNew(db, pCtx); 1591 if( pVal==0 ) goto no_mem; 1592 if( ExprHasProperty(pExpr, EP_IntValue) ){ 1593 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); 1594 }else{ 1595 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); 1596 if( zVal==0 ) goto no_mem; 1597 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); 1598 } 1599 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ 1600 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); 1601 }else{ 1602 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); 1603 } 1604 assert( (pVal->flags & MEM_IntReal)==0 ); 1605 if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){ 1606 testcase( pVal->flags & MEM_Int ); 1607 testcase( pVal->flags & MEM_Real ); 1608 pVal->flags &= ~MEM_Str; 1609 } 1610 if( enc!=SQLITE_UTF8 ){ 1611 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1612 } 1613 }else if( op==TK_UMINUS ) { 1614 /* This branch happens for multiple negative signs. Ex: -(-5) */ 1615 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) 1616 && pVal!=0 1617 ){ 1618 sqlite3VdbeMemNumerify(pVal); 1619 if( pVal->flags & MEM_Real ){ 1620 pVal->u.r = -pVal->u.r; 1621 }else if( pVal->u.i==SMALLEST_INT64 ){ 1622 #ifndef SQLITE_OMIT_FLOATING_POINT 1623 pVal->u.r = -(double)SMALLEST_INT64; 1624 #else 1625 pVal->u.r = LARGEST_INT64; 1626 #endif 1627 MemSetTypeFlag(pVal, MEM_Real); 1628 }else{ 1629 pVal->u.i = -pVal->u.i; 1630 } 1631 sqlite3ValueApplyAffinity(pVal, affinity, enc); 1632 } 1633 }else if( op==TK_NULL ){ 1634 pVal = valueNew(db, pCtx); 1635 if( pVal==0 ) goto no_mem; 1636 sqlite3VdbeMemSetNull(pVal); 1637 } 1638 #ifndef SQLITE_OMIT_BLOB_LITERAL 1639 else if( op==TK_BLOB ){ 1640 int nVal; 1641 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1642 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 1643 assert( pExpr->u.zToken[1]=='\'' ); 1644 pVal = valueNew(db, pCtx); 1645 if( !pVal ) goto no_mem; 1646 zVal = &pExpr->u.zToken[2]; 1647 nVal = sqlite3Strlen30(zVal)-1; 1648 assert( zVal[nVal]=='\'' ); 1649 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 1650 0, SQLITE_DYNAMIC); 1651 } 1652 #endif 1653 #ifdef SQLITE_ENABLE_STAT4 1654 else if( op==TK_FUNCTION && pCtx!=0 ){ 1655 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); 1656 } 1657 #endif 1658 else if( op==TK_TRUEFALSE ){ 1659 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1660 pVal = valueNew(db, pCtx); 1661 if( pVal ){ 1662 pVal->flags = MEM_Int; 1663 pVal->u.i = pExpr->u.zToken[4]==0; 1664 } 1665 } 1666 1667 *ppVal = pVal; 1668 return rc; 1669 1670 no_mem: 1671 #ifdef SQLITE_ENABLE_STAT4 1672 if( pCtx==0 || NEVER(pCtx->pParse->nErr==0) ) 1673 #endif 1674 sqlite3OomFault(db); 1675 sqlite3DbFree(db, zVal); 1676 assert( *ppVal==0 ); 1677 #ifdef SQLITE_ENABLE_STAT4 1678 if( pCtx==0 ) sqlite3ValueFree(pVal); 1679 #else 1680 assert( pCtx==0 ); sqlite3ValueFree(pVal); 1681 #endif 1682 return SQLITE_NOMEM_BKPT; 1683 } 1684 1685 /* 1686 ** Create a new sqlite3_value object, containing the value of pExpr. 1687 ** 1688 ** This only works for very simple expressions that consist of one constant 1689 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 1690 ** be converted directly into a value, then the value is allocated and 1691 ** a pointer written to *ppVal. The caller is responsible for deallocating 1692 ** the value by passing it to sqlite3ValueFree() later on. If the expression 1693 ** cannot be converted to a value, then *ppVal is set to NULL. 1694 */ 1695 int sqlite3ValueFromExpr( 1696 sqlite3 *db, /* The database connection */ 1697 const Expr *pExpr, /* The expression to evaluate */ 1698 u8 enc, /* Encoding to use */ 1699 u8 affinity, /* Affinity to use */ 1700 sqlite3_value **ppVal /* Write the new value here */ 1701 ){ 1702 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; 1703 } 1704 1705 #ifdef SQLITE_ENABLE_STAT4 1706 /* 1707 ** Attempt to extract a value from pExpr and use it to construct *ppVal. 1708 ** 1709 ** If pAlloc is not NULL, then an UnpackedRecord object is created for 1710 ** pAlloc if one does not exist and the new value is added to the 1711 ** UnpackedRecord object. 1712 ** 1713 ** A value is extracted in the following cases: 1714 ** 1715 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1716 ** 1717 ** * The expression is a bound variable, and this is a reprepare, or 1718 ** 1719 ** * The expression is a literal value. 1720 ** 1721 ** On success, *ppVal is made to point to the extracted value. The caller 1722 ** is responsible for ensuring that the value is eventually freed. 1723 */ 1724 static int stat4ValueFromExpr( 1725 Parse *pParse, /* Parse context */ 1726 Expr *pExpr, /* The expression to extract a value from */ 1727 u8 affinity, /* Affinity to use */ 1728 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ 1729 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1730 ){ 1731 int rc = SQLITE_OK; 1732 sqlite3_value *pVal = 0; 1733 sqlite3 *db = pParse->db; 1734 1735 /* Skip over any TK_COLLATE nodes */ 1736 pExpr = sqlite3ExprSkipCollate(pExpr); 1737 1738 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE ); 1739 if( !pExpr ){ 1740 pVal = valueNew(db, pAlloc); 1741 if( pVal ){ 1742 sqlite3VdbeMemSetNull((Mem*)pVal); 1743 } 1744 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 1745 Vdbe *v; 1746 int iBindVar = pExpr->iColumn; 1747 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); 1748 if( (v = pParse->pReprepare)!=0 ){ 1749 pVal = valueNew(db, pAlloc); 1750 if( pVal ){ 1751 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); 1752 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); 1753 pVal->db = pParse->db; 1754 } 1755 } 1756 }else{ 1757 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); 1758 } 1759 1760 assert( pVal==0 || pVal->db==db ); 1761 *ppVal = pVal; 1762 return rc; 1763 } 1764 1765 /* 1766 ** This function is used to allocate and populate UnpackedRecord 1767 ** structures intended to be compared against sample index keys stored 1768 ** in the sqlite_stat4 table. 1769 ** 1770 ** A single call to this function populates zero or more fields of the 1771 ** record starting with field iVal (fields are numbered from left to 1772 ** right starting with 0). A single field is populated if: 1773 ** 1774 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1775 ** 1776 ** * The expression is a bound variable, and this is a reprepare, or 1777 ** 1778 ** * The sqlite3ValueFromExpr() function is able to extract a value 1779 ** from the expression (i.e. the expression is a literal value). 1780 ** 1781 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the 1782 ** vector components that match either of the two latter criteria listed 1783 ** above. 1784 ** 1785 ** Before any value is appended to the record, the affinity of the 1786 ** corresponding column within index pIdx is applied to it. Before 1787 ** this function returns, output parameter *pnExtract is set to the 1788 ** number of values appended to the record. 1789 ** 1790 ** When this function is called, *ppRec must either point to an object 1791 ** allocated by an earlier call to this function, or must be NULL. If it 1792 ** is NULL and a value can be successfully extracted, a new UnpackedRecord 1793 ** is allocated (and *ppRec set to point to it) before returning. 1794 ** 1795 ** Unless an error is encountered, SQLITE_OK is returned. It is not an 1796 ** error if a value cannot be extracted from pExpr. If an error does 1797 ** occur, an SQLite error code is returned. 1798 */ 1799 int sqlite3Stat4ProbeSetValue( 1800 Parse *pParse, /* Parse context */ 1801 Index *pIdx, /* Index being probed */ 1802 UnpackedRecord **ppRec, /* IN/OUT: Probe record */ 1803 Expr *pExpr, /* The expression to extract a value from */ 1804 int nElem, /* Maximum number of values to append */ 1805 int iVal, /* Array element to populate */ 1806 int *pnExtract /* OUT: Values appended to the record */ 1807 ){ 1808 int rc = SQLITE_OK; 1809 int nExtract = 0; 1810 1811 if( pExpr==0 || pExpr->op!=TK_SELECT ){ 1812 int i; 1813 struct ValueNewStat4Ctx alloc; 1814 1815 alloc.pParse = pParse; 1816 alloc.pIdx = pIdx; 1817 alloc.ppRec = ppRec; 1818 1819 for(i=0; i<nElem; i++){ 1820 sqlite3_value *pVal = 0; 1821 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0); 1822 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i); 1823 alloc.iVal = iVal+i; 1824 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); 1825 if( !pVal ) break; 1826 nExtract++; 1827 } 1828 } 1829 1830 *pnExtract = nExtract; 1831 return rc; 1832 } 1833 1834 /* 1835 ** Attempt to extract a value from expression pExpr using the methods 1836 ** as described for sqlite3Stat4ProbeSetValue() above. 1837 ** 1838 ** If successful, set *ppVal to point to a new value object and return 1839 ** SQLITE_OK. If no value can be extracted, but no other error occurs 1840 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error 1841 ** does occur, return an SQLite error code. The final value of *ppVal 1842 ** is undefined in this case. 1843 */ 1844 int sqlite3Stat4ValueFromExpr( 1845 Parse *pParse, /* Parse context */ 1846 Expr *pExpr, /* The expression to extract a value from */ 1847 u8 affinity, /* Affinity to use */ 1848 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1849 ){ 1850 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); 1851 } 1852 1853 /* 1854 ** Extract the iCol-th column from the nRec-byte record in pRec. Write 1855 ** the column value into *ppVal. If *ppVal is initially NULL then a new 1856 ** sqlite3_value object is allocated. 1857 ** 1858 ** If *ppVal is initially NULL then the caller is responsible for 1859 ** ensuring that the value written into *ppVal is eventually freed. 1860 */ 1861 int sqlite3Stat4Column( 1862 sqlite3 *db, /* Database handle */ 1863 const void *pRec, /* Pointer to buffer containing record */ 1864 int nRec, /* Size of buffer pRec in bytes */ 1865 int iCol, /* Column to extract */ 1866 sqlite3_value **ppVal /* OUT: Extracted value */ 1867 ){ 1868 u32 t = 0; /* a column type code */ 1869 int nHdr; /* Size of the header in the record */ 1870 int iHdr; /* Next unread header byte */ 1871 int iField; /* Next unread data byte */ 1872 int szField = 0; /* Size of the current data field */ 1873 int i; /* Column index */ 1874 u8 *a = (u8*)pRec; /* Typecast byte array */ 1875 Mem *pMem = *ppVal; /* Write result into this Mem object */ 1876 1877 assert( iCol>0 ); 1878 iHdr = getVarint32(a, nHdr); 1879 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; 1880 iField = nHdr; 1881 for(i=0; i<=iCol; i++){ 1882 iHdr += getVarint32(&a[iHdr], t); 1883 testcase( iHdr==nHdr ); 1884 testcase( iHdr==nHdr+1 ); 1885 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; 1886 szField = sqlite3VdbeSerialTypeLen(t); 1887 iField += szField; 1888 } 1889 testcase( iField==nRec ); 1890 testcase( iField==nRec+1 ); 1891 if( iField>nRec ) return SQLITE_CORRUPT_BKPT; 1892 if( pMem==0 ){ 1893 pMem = *ppVal = sqlite3ValueNew(db); 1894 if( pMem==0 ) return SQLITE_NOMEM_BKPT; 1895 } 1896 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); 1897 pMem->enc = ENC(db); 1898 return SQLITE_OK; 1899 } 1900 1901 /* 1902 ** Unless it is NULL, the argument must be an UnpackedRecord object returned 1903 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes 1904 ** the object. 1905 */ 1906 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ 1907 if( pRec ){ 1908 int i; 1909 int nCol = pRec->pKeyInfo->nAllField; 1910 Mem *aMem = pRec->aMem; 1911 sqlite3 *db = aMem[0].db; 1912 for(i=0; i<nCol; i++){ 1913 sqlite3VdbeMemRelease(&aMem[i]); 1914 } 1915 sqlite3KeyInfoUnref(pRec->pKeyInfo); 1916 sqlite3DbFreeNN(db, pRec); 1917 } 1918 } 1919 #endif /* ifdef SQLITE_ENABLE_STAT4 */ 1920 1921 /* 1922 ** Change the string value of an sqlite3_value object 1923 */ 1924 void sqlite3ValueSetStr( 1925 sqlite3_value *v, /* Value to be set */ 1926 int n, /* Length of string z */ 1927 const void *z, /* Text of the new string */ 1928 u8 enc, /* Encoding to use */ 1929 void (*xDel)(void*) /* Destructor for the string */ 1930 ){ 1931 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 1932 } 1933 1934 /* 1935 ** Free an sqlite3_value object 1936 */ 1937 void sqlite3ValueFree(sqlite3_value *v){ 1938 if( !v ) return; 1939 sqlite3VdbeMemRelease((Mem *)v); 1940 sqlite3DbFreeNN(((Mem*)v)->db, v); 1941 } 1942 1943 /* 1944 ** The sqlite3ValueBytes() routine returns the number of bytes in the 1945 ** sqlite3_value object assuming that it uses the encoding "enc". 1946 ** The valueBytes() routine is a helper function. 1947 */ 1948 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ 1949 return valueToText(pVal, enc)!=0 ? pVal->n : 0; 1950 } 1951 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1952 Mem *p = (Mem*)pVal; 1953 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); 1954 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ 1955 return p->n; 1956 } 1957 if( (p->flags & MEM_Blob)!=0 ){ 1958 if( p->flags & MEM_Zero ){ 1959 return p->n + p->u.nZero; 1960 }else{ 1961 return p->n; 1962 } 1963 } 1964 if( p->flags & MEM_Null ) return 0; 1965 return valueBytes(pVal, enc); 1966 } 1967