1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 /* True if X is a power of two. 0 is considered a power of two here. 22 ** In other words, return true if X has at most one bit set. 23 */ 24 #define ISPOWEROF2(X) (((X)&((X)-1))==0) 25 26 #ifdef SQLITE_DEBUG 27 /* 28 ** Check invariants on a Mem object. 29 ** 30 ** This routine is intended for use inside of assert() statements, like 31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); 32 */ 33 int sqlite3VdbeCheckMemInvariants(Mem *p){ 34 /* If MEM_Dyn is set then Mem.xDel!=0. 35 ** Mem.xDel might not be initialized if MEM_Dyn is clear. 36 */ 37 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); 38 39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we 40 ** ensure that if Mem.szMalloc>0 then it is safe to do 41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. 42 ** That saves a few cycles in inner loops. */ 43 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); 44 45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */ 46 assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) ); 47 48 if( p->flags & MEM_Null ){ 49 /* Cannot be both MEM_Null and some other type */ 50 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 ); 51 52 /* If MEM_Null is set, then either the value is a pure NULL (the usual 53 ** case) or it is a pointer set using sqlite3_bind_pointer() or 54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be 55 ** set. 56 */ 57 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){ 58 /* This is a pointer type. There may be a flag to indicate what to 59 ** do with the pointer. */ 60 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 61 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 62 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 ); 63 64 /* No other bits set */ 65 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind 66 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 ); 67 }else{ 68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn, 69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */ 70 } 71 }else{ 72 /* The MEM_Cleared bit is only allowed on NULLs */ 73 assert( (p->flags & MEM_Cleared)==0 ); 74 } 75 76 /* The szMalloc field holds the correct memory allocation size */ 77 assert( p->szMalloc==0 78 || (p->flags==MEM_Undefined 79 && p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc)) 80 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc)); 81 82 /* If p holds a string or blob, the Mem.z must point to exactly 83 ** one of the following: 84 ** 85 ** (1) Memory in Mem.zMalloc and managed by the Mem object 86 ** (2) Memory to be freed using Mem.xDel 87 ** (3) An ephemeral string or blob 88 ** (4) A static string or blob 89 */ 90 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ 91 assert( 92 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + 93 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 94 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 95 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 96 ); 97 } 98 return 1; 99 } 100 #endif 101 102 /* 103 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal 104 ** into a buffer. 105 */ 106 static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){ 107 StrAccum acc; 108 assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) ); 109 assert( sz>22 ); 110 if( p->flags & MEM_Int ){ 111 #if GCC_VERSION>=7000000 112 /* Work-around for GCC bug 113 ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */ 114 i64 x; 115 assert( (p->flags&MEM_Int)*2==sizeof(x) ); 116 memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2); 117 sqlite3Int64ToText(x, zBuf); 118 #else 119 sqlite3Int64ToText(p->u.i, zBuf); 120 #endif 121 }else{ 122 sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0); 123 sqlite3_str_appendf(&acc, "%!.15g", 124 (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r); 125 assert( acc.zText==zBuf && acc.mxAlloc<=0 ); 126 zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */ 127 } 128 } 129 130 #ifdef SQLITE_DEBUG 131 /* 132 ** Validity checks on pMem. pMem holds a string. 133 ** 134 ** (1) Check that string value of pMem agrees with its integer or real value. 135 ** (2) Check that the string is correctly zero terminated 136 ** 137 ** A single int or real value always converts to the same strings. But 138 ** many different strings can be converted into the same int or real. 139 ** If a table contains a numeric value and an index is based on the 140 ** corresponding string value, then it is important that the string be 141 ** derived from the numeric value, not the other way around, to ensure 142 ** that the index and table are consistent. See ticket 143 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for 144 ** an example. 145 ** 146 ** This routine looks at pMem to verify that if it has both a numeric 147 ** representation and a string representation then the string rep has 148 ** been derived from the numeric and not the other way around. It returns 149 ** true if everything is ok and false if there is a problem. 150 ** 151 ** This routine is for use inside of assert() statements only. 152 */ 153 int sqlite3VdbeMemValidStrRep(Mem *p){ 154 char zBuf[100]; 155 char *z; 156 int i, j, incr; 157 if( (p->flags & MEM_Str)==0 ) return 1; 158 if( p->flags & MEM_Term ){ 159 /* Insure that the string is properly zero-terminated. Pay particular 160 ** attention to the case where p->n is odd */ 161 if( p->szMalloc>0 && p->z==p->zMalloc ){ 162 assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 ); 163 assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 ); 164 } 165 assert( p->z[p->n]==0 ); 166 assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 ); 167 assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 ); 168 } 169 if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1; 170 vdbeMemRenderNum(sizeof(zBuf), zBuf, p); 171 z = p->z; 172 i = j = 0; 173 incr = 1; 174 if( p->enc!=SQLITE_UTF8 ){ 175 incr = 2; 176 if( p->enc==SQLITE_UTF16BE ) z++; 177 } 178 while( zBuf[j] ){ 179 if( zBuf[j++]!=z[i] ) return 0; 180 i += incr; 181 } 182 return 1; 183 } 184 #endif /* SQLITE_DEBUG */ 185 186 /* 187 ** If pMem is an object with a valid string representation, this routine 188 ** ensures the internal encoding for the string representation is 189 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 190 ** 191 ** If pMem is not a string object, or the encoding of the string 192 ** representation is already stored using the requested encoding, then this 193 ** routine is a no-op. 194 ** 195 ** SQLITE_OK is returned if the conversion is successful (or not required). 196 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 197 ** between formats. 198 */ 199 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 200 #ifndef SQLITE_OMIT_UTF16 201 int rc; 202 #endif 203 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 204 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE 205 || desiredEnc==SQLITE_UTF16BE ); 206 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ 207 return SQLITE_OK; 208 } 209 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 210 #ifdef SQLITE_OMIT_UTF16 211 return SQLITE_ERROR; 212 #else 213 214 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 215 ** then the encoding of the value may not have changed. 216 */ 217 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); 218 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 219 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 220 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 221 return rc; 222 #endif 223 } 224 225 /* 226 ** Make sure pMem->z points to a writable allocation of at least n bytes. 227 ** 228 ** If the bPreserve argument is true, then copy of the content of 229 ** pMem->z into the new allocation. pMem must be either a string or 230 ** blob if bPreserve is true. If bPreserve is false, any prior content 231 ** in pMem->z is discarded. 232 */ 233 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ 234 assert( sqlite3VdbeCheckMemInvariants(pMem) ); 235 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 236 testcase( pMem->db==0 ); 237 238 /* If the bPreserve flag is set to true, then the memory cell must already 239 ** contain a valid string or blob value. */ 240 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); 241 testcase( bPreserve && pMem->z==0 ); 242 243 assert( pMem->szMalloc==0 244 || (pMem->flags==MEM_Undefined 245 && pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc)) 246 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc)); 247 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){ 248 if( pMem->db ){ 249 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 250 }else{ 251 pMem->zMalloc = sqlite3Realloc(pMem->z, n); 252 if( pMem->zMalloc==0 ) sqlite3_free(pMem->z); 253 pMem->z = pMem->zMalloc; 254 } 255 bPreserve = 0; 256 }else{ 257 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 258 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 259 } 260 if( pMem->zMalloc==0 ){ 261 sqlite3VdbeMemSetNull(pMem); 262 pMem->z = 0; 263 pMem->szMalloc = 0; 264 return SQLITE_NOMEM_BKPT; 265 }else{ 266 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 267 } 268 269 if( bPreserve && pMem->z ){ 270 assert( pMem->z!=pMem->zMalloc ); 271 memcpy(pMem->zMalloc, pMem->z, pMem->n); 272 } 273 if( (pMem->flags&MEM_Dyn)!=0 ){ 274 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); 275 pMem->xDel((void *)(pMem->z)); 276 } 277 278 pMem->z = pMem->zMalloc; 279 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); 280 return SQLITE_OK; 281 } 282 283 /* 284 ** Change the pMem->zMalloc allocation to be at least szNew bytes. 285 ** If pMem->zMalloc already meets or exceeds the requested size, this 286 ** routine is a no-op. 287 ** 288 ** Any prior string or blob content in the pMem object may be discarded. 289 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str 290 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal, 291 ** and MEM_Null values are preserved. 292 ** 293 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) 294 ** if unable to complete the resizing. 295 */ 296 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ 297 assert( CORRUPT_DB || szNew>0 ); 298 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); 299 if( pMem->szMalloc<szNew ){ 300 return sqlite3VdbeMemGrow(pMem, szNew, 0); 301 } 302 assert( (pMem->flags & MEM_Dyn)==0 ); 303 pMem->z = pMem->zMalloc; 304 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal); 305 return SQLITE_OK; 306 } 307 308 /* 309 ** It is already known that pMem contains an unterminated string. 310 ** Add the zero terminator. 311 ** 312 ** Three bytes of zero are added. In this way, there is guaranteed 313 ** to be a double-zero byte at an even byte boundary in order to 314 ** terminate a UTF16 string, even if the initial size of the buffer 315 ** is an odd number of bytes. 316 */ 317 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ 318 if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){ 319 return SQLITE_NOMEM_BKPT; 320 } 321 pMem->z[pMem->n] = 0; 322 pMem->z[pMem->n+1] = 0; 323 pMem->z[pMem->n+2] = 0; 324 pMem->flags |= MEM_Term; 325 return SQLITE_OK; 326 } 327 328 /* 329 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in 330 ** MEM.zMalloc, where it can be safely written. 331 ** 332 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 333 */ 334 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 335 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 336 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 337 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ 338 if( ExpandBlob(pMem) ) return SQLITE_NOMEM; 339 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ 340 int rc = vdbeMemAddTerminator(pMem); 341 if( rc ) return rc; 342 } 343 } 344 pMem->flags &= ~MEM_Ephem; 345 #ifdef SQLITE_DEBUG 346 pMem->pScopyFrom = 0; 347 #endif 348 349 return SQLITE_OK; 350 } 351 352 /* 353 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 354 ** blob stored in dynamically allocated space. 355 */ 356 #ifndef SQLITE_OMIT_INCRBLOB 357 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 358 int nByte; 359 assert( pMem->flags & MEM_Zero ); 360 assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) ); 361 testcase( sqlite3_value_nochange(pMem) ); 362 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 363 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 364 365 /* Set nByte to the number of bytes required to store the expanded blob. */ 366 nByte = pMem->n + pMem->u.nZero; 367 if( nByte<=0 ){ 368 if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK; 369 nByte = 1; 370 } 371 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 372 return SQLITE_NOMEM_BKPT; 373 } 374 375 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); 376 pMem->n += pMem->u.nZero; 377 pMem->flags &= ~(MEM_Zero|MEM_Term); 378 return SQLITE_OK; 379 } 380 #endif 381 382 /* 383 ** Make sure the given Mem is \u0000 terminated. 384 */ 385 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 386 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 387 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); 388 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); 389 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ 390 return SQLITE_OK; /* Nothing to do */ 391 }else{ 392 return vdbeMemAddTerminator(pMem); 393 } 394 } 395 396 /* 397 ** Add MEM_Str to the set of representations for the given Mem. This 398 ** routine is only called if pMem is a number of some kind, not a NULL 399 ** or a BLOB. 400 ** 401 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated 402 ** if bForce is true but are retained if bForce is false. 403 ** 404 ** A MEM_Null value will never be passed to this function. This function is 405 ** used for converting values to text for returning to the user (i.e. via 406 ** sqlite3_value_text()), or for ensuring that values to be used as btree 407 ** keys are strings. In the former case a NULL pointer is returned the 408 ** user and the latter is an internal programming error. 409 */ 410 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ 411 const int nByte = 32; 412 413 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 414 assert( !(pMem->flags&MEM_Zero) ); 415 assert( !(pMem->flags&(MEM_Str|MEM_Blob)) ); 416 assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) ); 417 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 418 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 419 420 421 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 422 pMem->enc = 0; 423 return SQLITE_NOMEM_BKPT; 424 } 425 426 vdbeMemRenderNum(nByte, pMem->z, pMem); 427 assert( pMem->z!=0 ); 428 pMem->n = sqlite3Strlen30NN(pMem->z); 429 pMem->enc = SQLITE_UTF8; 430 pMem->flags |= MEM_Str|MEM_Term; 431 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); 432 sqlite3VdbeChangeEncoding(pMem, enc); 433 return SQLITE_OK; 434 } 435 436 /* 437 ** Memory cell pMem contains the context of an aggregate function. 438 ** This routine calls the finalize method for that function. The 439 ** result of the aggregate is stored back into pMem. 440 ** 441 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 442 ** otherwise. 443 */ 444 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 445 sqlite3_context ctx; 446 Mem t; 447 assert( pFunc!=0 ); 448 assert( pFunc->xFinalize!=0 ); 449 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 450 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 451 memset(&ctx, 0, sizeof(ctx)); 452 memset(&t, 0, sizeof(t)); 453 t.flags = MEM_Null; 454 t.db = pMem->db; 455 ctx.pOut = &t; 456 ctx.pMem = pMem; 457 ctx.pFunc = pFunc; 458 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ 459 assert( (pMem->flags & MEM_Dyn)==0 ); 460 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 461 memcpy(pMem, &t, sizeof(t)); 462 return ctx.isError; 463 } 464 465 /* 466 ** Memory cell pAccum contains the context of an aggregate function. 467 ** This routine calls the xValue method for that function and stores 468 ** the results in memory cell pMem. 469 ** 470 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK 471 ** otherwise. 472 */ 473 #ifndef SQLITE_OMIT_WINDOWFUNC 474 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){ 475 sqlite3_context ctx; 476 assert( pFunc!=0 ); 477 assert( pFunc->xValue!=0 ); 478 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef ); 479 assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) ); 480 memset(&ctx, 0, sizeof(ctx)); 481 sqlite3VdbeMemSetNull(pOut); 482 ctx.pOut = pOut; 483 ctx.pMem = pAccum; 484 ctx.pFunc = pFunc; 485 pFunc->xValue(&ctx); 486 return ctx.isError; 487 } 488 #endif /* SQLITE_OMIT_WINDOWFUNC */ 489 490 /* 491 ** If the memory cell contains a value that must be freed by 492 ** invoking the external callback in Mem.xDel, then this routine 493 ** will free that value. It also sets Mem.flags to MEM_Null. 494 ** 495 ** This is a helper routine for sqlite3VdbeMemSetNull() and 496 ** for sqlite3VdbeMemRelease(). Use those other routines as the 497 ** entry point for releasing Mem resources. 498 */ 499 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ 500 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 501 assert( VdbeMemDynamic(p) ); 502 if( p->flags&MEM_Agg ){ 503 sqlite3VdbeMemFinalize(p, p->u.pDef); 504 assert( (p->flags & MEM_Agg)==0 ); 505 testcase( p->flags & MEM_Dyn ); 506 } 507 if( p->flags&MEM_Dyn ){ 508 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); 509 p->xDel((void *)p->z); 510 } 511 p->flags = MEM_Null; 512 } 513 514 /* 515 ** Release memory held by the Mem p, both external memory cleared 516 ** by p->xDel and memory in p->zMalloc. 517 ** 518 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in 519 ** the unusual case where there really is memory in p that needs 520 ** to be freed. 521 */ 522 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ 523 if( VdbeMemDynamic(p) ){ 524 vdbeMemClearExternAndSetNull(p); 525 } 526 if( p->szMalloc ){ 527 sqlite3DbFreeNN(p->db, p->zMalloc); 528 p->szMalloc = 0; 529 } 530 p->z = 0; 531 } 532 533 /* 534 ** Release any memory resources held by the Mem. Both the memory that is 535 ** free by Mem.xDel and the Mem.zMalloc allocation are freed. 536 ** 537 ** Use this routine prior to clean up prior to abandoning a Mem, or to 538 ** reset a Mem back to its minimum memory utilization. 539 ** 540 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space 541 ** prior to inserting new content into the Mem. 542 */ 543 void sqlite3VdbeMemRelease(Mem *p){ 544 assert( sqlite3VdbeCheckMemInvariants(p) ); 545 if( VdbeMemDynamic(p) || p->szMalloc ){ 546 vdbeMemClear(p); 547 } 548 } 549 550 /* 551 ** Convert a 64-bit IEEE double into a 64-bit signed integer. 552 ** If the double is out of range of a 64-bit signed integer then 553 ** return the closest available 64-bit signed integer. 554 */ 555 static SQLITE_NOINLINE i64 doubleToInt64(double r){ 556 #ifdef SQLITE_OMIT_FLOATING_POINT 557 /* When floating-point is omitted, double and int64 are the same thing */ 558 return r; 559 #else 560 /* 561 ** Many compilers we encounter do not define constants for the 562 ** minimum and maximum 64-bit integers, or they define them 563 ** inconsistently. And many do not understand the "LL" notation. 564 ** So we define our own static constants here using nothing 565 ** larger than a 32-bit integer constant. 566 */ 567 static const i64 maxInt = LARGEST_INT64; 568 static const i64 minInt = SMALLEST_INT64; 569 570 if( r<=(double)minInt ){ 571 return minInt; 572 }else if( r>=(double)maxInt ){ 573 return maxInt; 574 }else{ 575 return (i64)r; 576 } 577 #endif 578 } 579 580 /* 581 ** Return some kind of integer value which is the best we can do 582 ** at representing the value that *pMem describes as an integer. 583 ** If pMem is an integer, then the value is exact. If pMem is 584 ** a floating-point then the value returned is the integer part. 585 ** If pMem is a string or blob, then we make an attempt to convert 586 ** it into an integer and return that. If pMem represents an 587 ** an SQL-NULL value, return 0. 588 ** 589 ** If pMem represents a string value, its encoding might be changed. 590 */ 591 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){ 592 i64 value = 0; 593 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); 594 return value; 595 } 596 i64 sqlite3VdbeIntValue(Mem *pMem){ 597 int flags; 598 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 599 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 600 flags = pMem->flags; 601 if( flags & (MEM_Int|MEM_IntReal) ){ 602 testcase( flags & MEM_IntReal ); 603 return pMem->u.i; 604 }else if( flags & MEM_Real ){ 605 return doubleToInt64(pMem->u.r); 606 }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){ 607 return memIntValue(pMem); 608 }else{ 609 return 0; 610 } 611 } 612 613 /* 614 ** Return the best representation of pMem that we can get into a 615 ** double. If pMem is already a double or an integer, return its 616 ** value. If it is a string or blob, try to convert it to a double. 617 ** If it is a NULL, return 0.0. 618 */ 619 static SQLITE_NOINLINE double memRealValue(Mem *pMem){ 620 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 621 double val = (double)0; 622 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); 623 return val; 624 } 625 double sqlite3VdbeRealValue(Mem *pMem){ 626 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 627 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 628 if( pMem->flags & MEM_Real ){ 629 return pMem->u.r; 630 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 631 testcase( pMem->flags & MEM_IntReal ); 632 return (double)pMem->u.i; 633 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 634 return memRealValue(pMem); 635 }else{ 636 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 637 return (double)0; 638 } 639 } 640 641 /* 642 ** Return 1 if pMem represents true, and return 0 if pMem represents false. 643 ** Return the value ifNull if pMem is NULL. 644 */ 645 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ 646 testcase( pMem->flags & MEM_IntReal ); 647 if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0; 648 if( pMem->flags & MEM_Null ) return ifNull; 649 return sqlite3VdbeRealValue(pMem)!=0.0; 650 } 651 652 /* 653 ** The MEM structure is already a MEM_Real. Try to also make it a 654 ** MEM_Int if we can. 655 */ 656 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 657 i64 ix; 658 assert( pMem->flags & MEM_Real ); 659 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 660 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 661 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 662 663 ix = doubleToInt64(pMem->u.r); 664 665 /* Only mark the value as an integer if 666 ** 667 ** (1) the round-trip conversion real->int->real is a no-op, and 668 ** (2) The integer is neither the largest nor the smallest 669 ** possible integer (ticket #3922) 670 ** 671 ** The second and third terms in the following conditional enforces 672 ** the second condition under the assumption that addition overflow causes 673 ** values to wrap around. 674 */ 675 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ 676 pMem->u.i = ix; 677 MemSetTypeFlag(pMem, MEM_Int); 678 } 679 } 680 681 /* 682 ** Convert pMem to type integer. Invalidate any prior representations. 683 */ 684 int sqlite3VdbeMemIntegerify(Mem *pMem){ 685 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 686 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 687 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 688 689 pMem->u.i = sqlite3VdbeIntValue(pMem); 690 MemSetTypeFlag(pMem, MEM_Int); 691 return SQLITE_OK; 692 } 693 694 /* 695 ** Convert pMem so that it is of type MEM_Real. 696 ** Invalidate any prior representations. 697 */ 698 int sqlite3VdbeMemRealify(Mem *pMem){ 699 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 700 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 701 702 pMem->u.r = sqlite3VdbeRealValue(pMem); 703 MemSetTypeFlag(pMem, MEM_Real); 704 return SQLITE_OK; 705 } 706 707 /* Compare a floating point value to an integer. Return true if the two 708 ** values are the same within the precision of the floating point value. 709 ** 710 ** This function assumes that i was obtained by assignment from r1. 711 ** 712 ** For some versions of GCC on 32-bit machines, if you do the more obvious 713 ** comparison of "r1==(double)i" you sometimes get an answer of false even 714 ** though the r1 and (double)i values are bit-for-bit the same. 715 */ 716 int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ 717 double r2 = (double)i; 718 return r1==0.0 719 || (memcmp(&r1, &r2, sizeof(r1))==0 720 && i >= -2251799813685248LL && i < 2251799813685248LL); 721 } 722 723 /* 724 ** Convert pMem so that it has type MEM_Real or MEM_Int. 725 ** Invalidate any prior representations. 726 ** 727 ** Every effort is made to force the conversion, even if the input 728 ** is a string that does not look completely like a number. Convert 729 ** as much of the string as we can and ignore the rest. 730 */ 731 int sqlite3VdbeMemNumerify(Mem *pMem){ 732 testcase( pMem->flags & MEM_Int ); 733 testcase( pMem->flags & MEM_Real ); 734 testcase( pMem->flags & MEM_IntReal ); 735 testcase( pMem->flags & MEM_Null ); 736 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){ 737 int rc; 738 sqlite3_int64 ix; 739 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 740 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 741 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 742 if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1) 743 || sqlite3RealSameAsInt(pMem->u.r, (ix = (i64)pMem->u.r)) 744 ){ 745 pMem->u.i = ix; 746 MemSetTypeFlag(pMem, MEM_Int); 747 }else{ 748 MemSetTypeFlag(pMem, MEM_Real); 749 } 750 } 751 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 ); 752 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); 753 return SQLITE_OK; 754 } 755 756 /* 757 ** Cast the datatype of the value in pMem according to the affinity 758 ** "aff". Casting is different from applying affinity in that a cast 759 ** is forced. In other words, the value is converted into the desired 760 ** affinity even if that results in loss of data. This routine is 761 ** used (for example) to implement the SQL "cast()" operator. 762 */ 763 int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ 764 if( pMem->flags & MEM_Null ) return SQLITE_OK; 765 switch( aff ){ 766 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ 767 if( (pMem->flags & MEM_Blob)==0 ){ 768 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 769 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 770 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); 771 }else{ 772 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); 773 } 774 break; 775 } 776 case SQLITE_AFF_NUMERIC: { 777 sqlite3VdbeMemNumerify(pMem); 778 break; 779 } 780 case SQLITE_AFF_INTEGER: { 781 sqlite3VdbeMemIntegerify(pMem); 782 break; 783 } 784 case SQLITE_AFF_REAL: { 785 sqlite3VdbeMemRealify(pMem); 786 break; 787 } 788 default: { 789 assert( aff==SQLITE_AFF_TEXT ); 790 assert( MEM_Str==(MEM_Blob>>3) ); 791 pMem->flags |= (pMem->flags&MEM_Blob)>>3; 792 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 793 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 794 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero); 795 return sqlite3VdbeChangeEncoding(pMem, encoding); 796 } 797 } 798 return SQLITE_OK; 799 } 800 801 /* 802 ** Initialize bulk memory to be a consistent Mem object. 803 ** 804 ** The minimum amount of initialization feasible is performed. 805 */ 806 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ 807 assert( (flags & ~MEM_TypeMask)==0 ); 808 pMem->flags = flags; 809 pMem->db = db; 810 pMem->szMalloc = 0; 811 } 812 813 814 /* 815 ** Delete any previous value and set the value stored in *pMem to NULL. 816 ** 817 ** This routine calls the Mem.xDel destructor to dispose of values that 818 ** require the destructor. But it preserves the Mem.zMalloc memory allocation. 819 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this 820 ** routine to invoke the destructor and deallocates Mem.zMalloc. 821 ** 822 ** Use this routine to reset the Mem prior to insert a new value. 823 ** 824 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. 825 */ 826 void sqlite3VdbeMemSetNull(Mem *pMem){ 827 if( VdbeMemDynamic(pMem) ){ 828 vdbeMemClearExternAndSetNull(pMem); 829 }else{ 830 pMem->flags = MEM_Null; 831 } 832 } 833 void sqlite3ValueSetNull(sqlite3_value *p){ 834 sqlite3VdbeMemSetNull((Mem*)p); 835 } 836 837 /* 838 ** Delete any previous value and set the value to be a BLOB of length 839 ** n containing all zeros. 840 */ 841 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 842 sqlite3VdbeMemRelease(pMem); 843 pMem->flags = MEM_Blob|MEM_Zero; 844 pMem->n = 0; 845 if( n<0 ) n = 0; 846 pMem->u.nZero = n; 847 pMem->enc = SQLITE_UTF8; 848 pMem->z = 0; 849 } 850 851 /* 852 ** The pMem is known to contain content that needs to be destroyed prior 853 ** to a value change. So invoke the destructor, then set the value to 854 ** a 64-bit integer. 855 */ 856 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ 857 sqlite3VdbeMemSetNull(pMem); 858 pMem->u.i = val; 859 pMem->flags = MEM_Int; 860 } 861 862 /* 863 ** Delete any previous value and set the value stored in *pMem to val, 864 ** manifest type INTEGER. 865 */ 866 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 867 if( VdbeMemDynamic(pMem) ){ 868 vdbeReleaseAndSetInt64(pMem, val); 869 }else{ 870 pMem->u.i = val; 871 pMem->flags = MEM_Int; 872 } 873 } 874 875 /* A no-op destructor */ 876 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } 877 878 /* 879 ** Set the value stored in *pMem should already be a NULL. 880 ** Also store a pointer to go with it. 881 */ 882 void sqlite3VdbeMemSetPointer( 883 Mem *pMem, 884 void *pPtr, 885 const char *zPType, 886 void (*xDestructor)(void*) 887 ){ 888 assert( pMem->flags==MEM_Null ); 889 pMem->u.zPType = zPType ? zPType : ""; 890 pMem->z = pPtr; 891 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term; 892 pMem->eSubtype = 'p'; 893 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor; 894 } 895 896 #ifndef SQLITE_OMIT_FLOATING_POINT 897 /* 898 ** Delete any previous value and set the value stored in *pMem to val, 899 ** manifest type REAL. 900 */ 901 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 902 sqlite3VdbeMemSetNull(pMem); 903 if( !sqlite3IsNaN(val) ){ 904 pMem->u.r = val; 905 pMem->flags = MEM_Real; 906 } 907 } 908 #endif 909 910 #ifdef SQLITE_DEBUG 911 /* 912 ** Return true if the Mem holds a RowSet object. This routine is intended 913 ** for use inside of assert() statements. 914 */ 915 int sqlite3VdbeMemIsRowSet(const Mem *pMem){ 916 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn) 917 && pMem->xDel==sqlite3RowSetDelete; 918 } 919 #endif 920 921 /* 922 ** Delete any previous value and set the value of pMem to be an 923 ** empty boolean index. 924 ** 925 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation 926 ** error occurs. 927 */ 928 int sqlite3VdbeMemSetRowSet(Mem *pMem){ 929 sqlite3 *db = pMem->db; 930 RowSet *p; 931 assert( db!=0 ); 932 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 933 sqlite3VdbeMemRelease(pMem); 934 p = sqlite3RowSetInit(db); 935 if( p==0 ) return SQLITE_NOMEM; 936 pMem->z = (char*)p; 937 pMem->flags = MEM_Blob|MEM_Dyn; 938 pMem->xDel = sqlite3RowSetDelete; 939 return SQLITE_OK; 940 } 941 942 /* 943 ** Return true if the Mem object contains a TEXT or BLOB that is 944 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 945 */ 946 int sqlite3VdbeMemTooBig(Mem *p){ 947 assert( p->db!=0 ); 948 if( p->flags & (MEM_Str|MEM_Blob) ){ 949 int n = p->n; 950 if( p->flags & MEM_Zero ){ 951 n += p->u.nZero; 952 } 953 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 954 } 955 return 0; 956 } 957 958 #ifdef SQLITE_DEBUG 959 /* 960 ** This routine prepares a memory cell for modification by breaking 961 ** its link to a shallow copy and by marking any current shallow 962 ** copies of this cell as invalid. 963 ** 964 ** This is used for testing and debugging only - to help ensure that shallow 965 ** copies (created by OP_SCopy) are not misused. 966 */ 967 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ 968 int i; 969 Mem *pX; 970 for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){ 971 if( pX->pScopyFrom==pMem ){ 972 u16 mFlags; 973 if( pVdbe->db->flags & SQLITE_VdbeTrace ){ 974 sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n", 975 (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem)); 976 } 977 /* If pX is marked as a shallow copy of pMem, then try to verify that 978 ** no significant changes have been made to pX since the OP_SCopy. 979 ** A significant change would indicated a missed call to this 980 ** function for pX. Minor changes, such as adding or removing a 981 ** dual type, are allowed, as long as the underlying value is the 982 ** same. */ 983 mFlags = pMem->flags & pX->flags & pX->mScopyFlags; 984 assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i ); 985 986 /* pMem is the register that is changing. But also mark pX as 987 ** undefined so that we can quickly detect the shallow-copy error */ 988 pX->flags = MEM_Undefined; 989 pX->pScopyFrom = 0; 990 } 991 } 992 pMem->pScopyFrom = 0; 993 } 994 #endif /* SQLITE_DEBUG */ 995 996 /* 997 ** Make an shallow copy of pFrom into pTo. Prior contents of 998 ** pTo are freed. The pFrom->z field is not duplicated. If 999 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 1000 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 1001 */ 1002 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ 1003 vdbeMemClearExternAndSetNull(pTo); 1004 assert( !VdbeMemDynamic(pTo) ); 1005 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); 1006 } 1007 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 1008 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 1009 assert( pTo->db==pFrom->db ); 1010 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } 1011 memcpy(pTo, pFrom, MEMCELLSIZE); 1012 if( (pFrom->flags&MEM_Static)==0 ){ 1013 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 1014 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 1015 pTo->flags |= srcType; 1016 } 1017 } 1018 1019 /* 1020 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 1021 ** freed before the copy is made. 1022 */ 1023 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 1024 int rc = SQLITE_OK; 1025 1026 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 1027 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); 1028 memcpy(pTo, pFrom, MEMCELLSIZE); 1029 pTo->flags &= ~MEM_Dyn; 1030 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 1031 if( 0==(pFrom->flags&MEM_Static) ){ 1032 pTo->flags |= MEM_Ephem; 1033 rc = sqlite3VdbeMemMakeWriteable(pTo); 1034 } 1035 } 1036 1037 return rc; 1038 } 1039 1040 /* 1041 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 1042 ** freed. If pFrom contains ephemeral data, a copy is made. 1043 ** 1044 ** pFrom contains an SQL NULL when this routine returns. 1045 */ 1046 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 1047 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 1048 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 1049 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 1050 1051 sqlite3VdbeMemRelease(pTo); 1052 memcpy(pTo, pFrom, sizeof(Mem)); 1053 pFrom->flags = MEM_Null; 1054 pFrom->szMalloc = 0; 1055 } 1056 1057 /* 1058 ** Change the value of a Mem to be a string or a BLOB. 1059 ** 1060 ** The memory management strategy depends on the value of the xDel 1061 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 1062 ** string is copied into a (possibly existing) buffer managed by the 1063 ** Mem structure. Otherwise, any existing buffer is freed and the 1064 ** pointer copied. 1065 ** 1066 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH 1067 ** size limit) then no memory allocation occurs. If the string can be 1068 ** stored without allocating memory, then it is. If a memory allocation 1069 ** is required to store the string, then value of pMem is unchanged. In 1070 ** either case, SQLITE_TOOBIG is returned. 1071 */ 1072 int sqlite3VdbeMemSetStr( 1073 Mem *pMem, /* Memory cell to set to string value */ 1074 const char *z, /* String pointer */ 1075 int n, /* Bytes in string, or negative */ 1076 u8 enc, /* Encoding of z. 0 for BLOBs */ 1077 void (*xDel)(void*) /* Destructor function */ 1078 ){ 1079 int nByte = n; /* New value for pMem->n */ 1080 int iLimit; /* Maximum allowed string or blob size */ 1081 u16 flags = 0; /* New value for pMem->flags */ 1082 1083 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 1084 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1085 1086 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 1087 if( !z ){ 1088 sqlite3VdbeMemSetNull(pMem); 1089 return SQLITE_OK; 1090 } 1091 1092 if( pMem->db ){ 1093 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; 1094 }else{ 1095 iLimit = SQLITE_MAX_LENGTH; 1096 } 1097 flags = (enc==0?MEM_Blob:MEM_Str); 1098 if( nByte<0 ){ 1099 assert( enc!=0 ); 1100 if( enc==SQLITE_UTF8 ){ 1101 nByte = 0x7fffffff & (int)strlen(z); 1102 }else{ 1103 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} 1104 } 1105 flags |= MEM_Term; 1106 } 1107 1108 /* The following block sets the new values of Mem.z and Mem.xDel. It 1109 ** also sets a flag in local variable "flags" to indicate the memory 1110 ** management (one of MEM_Dyn or MEM_Static). 1111 */ 1112 if( xDel==SQLITE_TRANSIENT ){ 1113 u32 nAlloc = nByte; 1114 if( flags&MEM_Term ){ 1115 nAlloc += (enc==SQLITE_UTF8?1:2); 1116 } 1117 if( nByte>iLimit ){ 1118 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG); 1119 } 1120 testcase( nAlloc==0 ); 1121 testcase( nAlloc==31 ); 1122 testcase( nAlloc==32 ); 1123 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){ 1124 return SQLITE_NOMEM_BKPT; 1125 } 1126 memcpy(pMem->z, z, nAlloc); 1127 }else{ 1128 sqlite3VdbeMemRelease(pMem); 1129 pMem->z = (char *)z; 1130 if( xDel==SQLITE_DYNAMIC ){ 1131 pMem->zMalloc = pMem->z; 1132 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 1133 }else{ 1134 pMem->xDel = xDel; 1135 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 1136 } 1137 } 1138 1139 pMem->n = nByte; 1140 pMem->flags = flags; 1141 if( enc ){ 1142 pMem->enc = enc; 1143 #ifdef SQLITE_ENABLE_SESSION 1144 }else if( pMem->db==0 ){ 1145 pMem->enc = SQLITE_UTF8; 1146 #endif 1147 }else{ 1148 assert( pMem->db!=0 ); 1149 pMem->enc = ENC(pMem->db); 1150 } 1151 1152 #ifndef SQLITE_OMIT_UTF16 1153 if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ 1154 return SQLITE_NOMEM_BKPT; 1155 } 1156 #endif 1157 1158 if( nByte>iLimit ){ 1159 return SQLITE_TOOBIG; 1160 } 1161 1162 return SQLITE_OK; 1163 } 1164 1165 /* 1166 ** Move data out of a btree key or data field and into a Mem structure. 1167 ** The data is payload from the entry that pCur is currently pointing 1168 ** to. offset and amt determine what portion of the data or key to retrieve. 1169 ** The result is written into the pMem element. 1170 ** 1171 ** The pMem object must have been initialized. This routine will use 1172 ** pMem->zMalloc to hold the content from the btree, if possible. New 1173 ** pMem->zMalloc space will be allocated if necessary. The calling routine 1174 ** is responsible for making sure that the pMem object is eventually 1175 ** destroyed. 1176 ** 1177 ** If this routine fails for any reason (malloc returns NULL or unable 1178 ** to read from the disk) then the pMem is left in an inconsistent state. 1179 */ 1180 int sqlite3VdbeMemFromBtree( 1181 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1182 u32 offset, /* Offset from the start of data to return bytes from. */ 1183 u32 amt, /* Number of bytes to return. */ 1184 Mem *pMem /* OUT: Return data in this Mem structure. */ 1185 ){ 1186 int rc; 1187 pMem->flags = MEM_Null; 1188 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){ 1189 return SQLITE_CORRUPT_BKPT; 1190 } 1191 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){ 1192 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z); 1193 if( rc==SQLITE_OK ){ 1194 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */ 1195 pMem->flags = MEM_Blob; 1196 pMem->n = (int)amt; 1197 }else{ 1198 sqlite3VdbeMemRelease(pMem); 1199 } 1200 } 1201 return rc; 1202 } 1203 int sqlite3VdbeMemFromBtreeZeroOffset( 1204 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1205 u32 amt, /* Number of bytes to return. */ 1206 Mem *pMem /* OUT: Return data in this Mem structure. */ 1207 ){ 1208 u32 available = 0; /* Number of bytes available on the local btree page */ 1209 int rc = SQLITE_OK; /* Return code */ 1210 1211 assert( sqlite3BtreeCursorIsValid(pCur) ); 1212 assert( !VdbeMemDynamic(pMem) ); 1213 1214 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 1215 ** that both the BtShared and database handle mutexes are held. */ 1216 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1217 pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available); 1218 assert( pMem->z!=0 ); 1219 1220 if( amt<=available ){ 1221 pMem->flags = MEM_Blob|MEM_Ephem; 1222 pMem->n = (int)amt; 1223 }else{ 1224 rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem); 1225 } 1226 1227 return rc; 1228 } 1229 1230 /* 1231 ** The pVal argument is known to be a value other than NULL. 1232 ** Convert it into a string with encoding enc and return a pointer 1233 ** to a zero-terminated version of that string. 1234 */ 1235 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ 1236 assert( pVal!=0 ); 1237 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1238 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1239 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1240 assert( (pVal->flags & (MEM_Null))==0 ); 1241 if( pVal->flags & (MEM_Blob|MEM_Str) ){ 1242 if( ExpandBlob(pVal) ) return 0; 1243 pVal->flags |= MEM_Str; 1244 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ 1245 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 1246 } 1247 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ 1248 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 1249 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 1250 return 0; 1251 } 1252 } 1253 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ 1254 }else{ 1255 sqlite3VdbeMemStringify(pVal, enc, 0); 1256 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); 1257 } 1258 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 1259 || pVal->db->mallocFailed ); 1260 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 1261 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1262 return pVal->z; 1263 }else{ 1264 return 0; 1265 } 1266 } 1267 1268 /* This function is only available internally, it is not part of the 1269 ** external API. It works in a similar way to sqlite3_value_text(), 1270 ** except the data returned is in the encoding specified by the second 1271 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 1272 ** SQLITE_UTF8. 1273 ** 1274 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 1275 ** If that is the case, then the result must be aligned on an even byte 1276 ** boundary. 1277 */ 1278 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 1279 if( !pVal ) return 0; 1280 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1281 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1282 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1283 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ 1284 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1285 return pVal->z; 1286 } 1287 if( pVal->flags&MEM_Null ){ 1288 return 0; 1289 } 1290 return valueToText(pVal, enc); 1291 } 1292 1293 /* 1294 ** Create a new sqlite3_value object. 1295 */ 1296 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 1297 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 1298 if( p ){ 1299 p->flags = MEM_Null; 1300 p->db = db; 1301 } 1302 return p; 1303 } 1304 1305 /* 1306 ** Context object passed by sqlite3Stat4ProbeSetValue() through to 1307 ** valueNew(). See comments above valueNew() for details. 1308 */ 1309 struct ValueNewStat4Ctx { 1310 Parse *pParse; 1311 Index *pIdx; 1312 UnpackedRecord **ppRec; 1313 int iVal; 1314 }; 1315 1316 /* 1317 ** Allocate and return a pointer to a new sqlite3_value object. If 1318 ** the second argument to this function is NULL, the object is allocated 1319 ** by calling sqlite3ValueNew(). 1320 ** 1321 ** Otherwise, if the second argument is non-zero, then this function is 1322 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not 1323 ** already been allocated, allocate the UnpackedRecord structure that 1324 ** that function will return to its caller here. Then return a pointer to 1325 ** an sqlite3_value within the UnpackedRecord.a[] array. 1326 */ 1327 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ 1328 #ifdef SQLITE_ENABLE_STAT4 1329 if( p ){ 1330 UnpackedRecord *pRec = p->ppRec[0]; 1331 1332 if( pRec==0 ){ 1333 Index *pIdx = p->pIdx; /* Index being probed */ 1334 int nByte; /* Bytes of space to allocate */ 1335 int i; /* Counter variable */ 1336 int nCol = pIdx->nColumn; /* Number of index columns including rowid */ 1337 1338 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); 1339 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); 1340 if( pRec ){ 1341 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); 1342 if( pRec->pKeyInfo ){ 1343 assert( pRec->pKeyInfo->nAllField==nCol ); 1344 assert( pRec->pKeyInfo->enc==ENC(db) ); 1345 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); 1346 for(i=0; i<nCol; i++){ 1347 pRec->aMem[i].flags = MEM_Null; 1348 pRec->aMem[i].db = db; 1349 } 1350 }else{ 1351 sqlite3DbFreeNN(db, pRec); 1352 pRec = 0; 1353 } 1354 } 1355 if( pRec==0 ) return 0; 1356 p->ppRec[0] = pRec; 1357 } 1358 1359 pRec->nField = p->iVal+1; 1360 return &pRec->aMem[p->iVal]; 1361 } 1362 #else 1363 UNUSED_PARAMETER(p); 1364 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1365 return sqlite3ValueNew(db); 1366 } 1367 1368 /* 1369 ** The expression object indicated by the second argument is guaranteed 1370 ** to be a scalar SQL function. If 1371 ** 1372 ** * all function arguments are SQL literals, 1373 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and 1374 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, 1375 ** 1376 ** then this routine attempts to invoke the SQL function. Assuming no 1377 ** error occurs, output parameter (*ppVal) is set to point to a value 1378 ** object containing the result before returning SQLITE_OK. 1379 ** 1380 ** Affinity aff is applied to the result of the function before returning. 1381 ** If the result is a text value, the sqlite3_value object uses encoding 1382 ** enc. 1383 ** 1384 ** If the conditions above are not met, this function returns SQLITE_OK 1385 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to 1386 ** NULL and an SQLite error code returned. 1387 */ 1388 #ifdef SQLITE_ENABLE_STAT4 1389 static int valueFromFunction( 1390 sqlite3 *db, /* The database connection */ 1391 Expr *p, /* The expression to evaluate */ 1392 u8 enc, /* Encoding to use */ 1393 u8 aff, /* Affinity to use */ 1394 sqlite3_value **ppVal, /* Write the new value here */ 1395 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1396 ){ 1397 sqlite3_context ctx; /* Context object for function invocation */ 1398 sqlite3_value **apVal = 0; /* Function arguments */ 1399 int nVal = 0; /* Size of apVal[] array */ 1400 FuncDef *pFunc = 0; /* Function definition */ 1401 sqlite3_value *pVal = 0; /* New value */ 1402 int rc = SQLITE_OK; /* Return code */ 1403 ExprList *pList = 0; /* Function arguments */ 1404 int i; /* Iterator variable */ 1405 1406 assert( pCtx!=0 ); 1407 assert( (p->flags & EP_TokenOnly)==0 ); 1408 pList = p->x.pList; 1409 if( pList ) nVal = pList->nExpr; 1410 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); 1411 assert( pFunc ); 1412 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 1413 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 1414 ){ 1415 return SQLITE_OK; 1416 } 1417 1418 if( pList ){ 1419 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); 1420 if( apVal==0 ){ 1421 rc = SQLITE_NOMEM_BKPT; 1422 goto value_from_function_out; 1423 } 1424 for(i=0; i<nVal; i++){ 1425 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); 1426 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; 1427 } 1428 } 1429 1430 pVal = valueNew(db, pCtx); 1431 if( pVal==0 ){ 1432 rc = SQLITE_NOMEM_BKPT; 1433 goto value_from_function_out; 1434 } 1435 1436 assert( pCtx->pParse->rc==SQLITE_OK ); 1437 memset(&ctx, 0, sizeof(ctx)); 1438 ctx.pOut = pVal; 1439 ctx.pFunc = pFunc; 1440 pFunc->xSFunc(&ctx, nVal, apVal); 1441 if( ctx.isError ){ 1442 rc = ctx.isError; 1443 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); 1444 }else{ 1445 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); 1446 assert( rc==SQLITE_OK ); 1447 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1448 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ 1449 rc = SQLITE_TOOBIG; 1450 pCtx->pParse->nErr++; 1451 } 1452 } 1453 pCtx->pParse->rc = rc; 1454 1455 value_from_function_out: 1456 if( rc!=SQLITE_OK ){ 1457 pVal = 0; 1458 } 1459 if( apVal ){ 1460 for(i=0; i<nVal; i++){ 1461 sqlite3ValueFree(apVal[i]); 1462 } 1463 sqlite3DbFreeNN(db, apVal); 1464 } 1465 1466 *ppVal = pVal; 1467 return rc; 1468 } 1469 #else 1470 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK 1471 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1472 1473 /* 1474 ** Extract a value from the supplied expression in the manner described 1475 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object 1476 ** using valueNew(). 1477 ** 1478 ** If pCtx is NULL and an error occurs after the sqlite3_value object 1479 ** has been allocated, it is freed before returning. Or, if pCtx is not 1480 ** NULL, it is assumed that the caller will free any allocated object 1481 ** in all cases. 1482 */ 1483 static int valueFromExpr( 1484 sqlite3 *db, /* The database connection */ 1485 Expr *pExpr, /* The expression to evaluate */ 1486 u8 enc, /* Encoding to use */ 1487 u8 affinity, /* Affinity to use */ 1488 sqlite3_value **ppVal, /* Write the new value here */ 1489 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1490 ){ 1491 int op; 1492 char *zVal = 0; 1493 sqlite3_value *pVal = 0; 1494 int negInt = 1; 1495 const char *zNeg = ""; 1496 int rc = SQLITE_OK; 1497 1498 assert( pExpr!=0 ); 1499 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; 1500 #if defined(SQLITE_ENABLE_STAT4) 1501 if( op==TK_REGISTER ) op = pExpr->op2; 1502 #else 1503 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; 1504 #endif 1505 1506 /* Compressed expressions only appear when parsing the DEFAULT clause 1507 ** on a table column definition, and hence only when pCtx==0. This 1508 ** check ensures that an EP_TokenOnly expression is never passed down 1509 ** into valueFromFunction(). */ 1510 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); 1511 1512 if( op==TK_CAST ){ 1513 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0); 1514 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); 1515 testcase( rc!=SQLITE_OK ); 1516 if( *ppVal ){ 1517 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); 1518 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); 1519 } 1520 return rc; 1521 } 1522 1523 /* Handle negative integers in a single step. This is needed in the 1524 ** case when the value is -9223372036854775808. 1525 */ 1526 if( op==TK_UMINUS 1527 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ 1528 pExpr = pExpr->pLeft; 1529 op = pExpr->op; 1530 negInt = -1; 1531 zNeg = "-"; 1532 } 1533 1534 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 1535 pVal = valueNew(db, pCtx); 1536 if( pVal==0 ) goto no_mem; 1537 if( ExprHasProperty(pExpr, EP_IntValue) ){ 1538 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); 1539 }else{ 1540 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); 1541 if( zVal==0 ) goto no_mem; 1542 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); 1543 } 1544 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ 1545 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); 1546 }else{ 1547 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); 1548 } 1549 assert( (pVal->flags & MEM_IntReal)==0 ); 1550 if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){ 1551 testcase( pVal->flags & MEM_Int ); 1552 testcase( pVal->flags & MEM_Real ); 1553 pVal->flags &= ~MEM_Str; 1554 } 1555 if( enc!=SQLITE_UTF8 ){ 1556 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1557 } 1558 }else if( op==TK_UMINUS ) { 1559 /* This branch happens for multiple negative signs. Ex: -(-5) */ 1560 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) 1561 && pVal!=0 1562 ){ 1563 sqlite3VdbeMemNumerify(pVal); 1564 if( pVal->flags & MEM_Real ){ 1565 pVal->u.r = -pVal->u.r; 1566 }else if( pVal->u.i==SMALLEST_INT64 ){ 1567 #ifndef SQLITE_OMIT_FLOATING_POINT 1568 pVal->u.r = -(double)SMALLEST_INT64; 1569 #else 1570 pVal->u.r = LARGEST_INT64; 1571 #endif 1572 MemSetTypeFlag(pVal, MEM_Real); 1573 }else{ 1574 pVal->u.i = -pVal->u.i; 1575 } 1576 sqlite3ValueApplyAffinity(pVal, affinity, enc); 1577 } 1578 }else if( op==TK_NULL ){ 1579 pVal = valueNew(db, pCtx); 1580 if( pVal==0 ) goto no_mem; 1581 sqlite3VdbeMemSetNull(pVal); 1582 } 1583 #ifndef SQLITE_OMIT_BLOB_LITERAL 1584 else if( op==TK_BLOB ){ 1585 int nVal; 1586 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 1587 assert( pExpr->u.zToken[1]=='\'' ); 1588 pVal = valueNew(db, pCtx); 1589 if( !pVal ) goto no_mem; 1590 zVal = &pExpr->u.zToken[2]; 1591 nVal = sqlite3Strlen30(zVal)-1; 1592 assert( zVal[nVal]=='\'' ); 1593 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 1594 0, SQLITE_DYNAMIC); 1595 } 1596 #endif 1597 #ifdef SQLITE_ENABLE_STAT4 1598 else if( op==TK_FUNCTION && pCtx!=0 ){ 1599 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); 1600 } 1601 #endif 1602 else if( op==TK_TRUEFALSE ){ 1603 pVal = valueNew(db, pCtx); 1604 if( pVal ){ 1605 pVal->flags = MEM_Int; 1606 pVal->u.i = pExpr->u.zToken[4]==0; 1607 } 1608 } 1609 1610 *ppVal = pVal; 1611 return rc; 1612 1613 no_mem: 1614 #ifdef SQLITE_ENABLE_STAT4 1615 if( pCtx==0 || pCtx->pParse->nErr==0 ) 1616 #endif 1617 sqlite3OomFault(db); 1618 sqlite3DbFree(db, zVal); 1619 assert( *ppVal==0 ); 1620 #ifdef SQLITE_ENABLE_STAT4 1621 if( pCtx==0 ) sqlite3ValueFree(pVal); 1622 #else 1623 assert( pCtx==0 ); sqlite3ValueFree(pVal); 1624 #endif 1625 return SQLITE_NOMEM_BKPT; 1626 } 1627 1628 /* 1629 ** Create a new sqlite3_value object, containing the value of pExpr. 1630 ** 1631 ** This only works for very simple expressions that consist of one constant 1632 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 1633 ** be converted directly into a value, then the value is allocated and 1634 ** a pointer written to *ppVal. The caller is responsible for deallocating 1635 ** the value by passing it to sqlite3ValueFree() later on. If the expression 1636 ** cannot be converted to a value, then *ppVal is set to NULL. 1637 */ 1638 int sqlite3ValueFromExpr( 1639 sqlite3 *db, /* The database connection */ 1640 Expr *pExpr, /* The expression to evaluate */ 1641 u8 enc, /* Encoding to use */ 1642 u8 affinity, /* Affinity to use */ 1643 sqlite3_value **ppVal /* Write the new value here */ 1644 ){ 1645 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; 1646 } 1647 1648 #ifdef SQLITE_ENABLE_STAT4 1649 /* 1650 ** Attempt to extract a value from pExpr and use it to construct *ppVal. 1651 ** 1652 ** If pAlloc is not NULL, then an UnpackedRecord object is created for 1653 ** pAlloc if one does not exist and the new value is added to the 1654 ** UnpackedRecord object. 1655 ** 1656 ** A value is extracted in the following cases: 1657 ** 1658 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1659 ** 1660 ** * The expression is a bound variable, and this is a reprepare, or 1661 ** 1662 ** * The expression is a literal value. 1663 ** 1664 ** On success, *ppVal is made to point to the extracted value. The caller 1665 ** is responsible for ensuring that the value is eventually freed. 1666 */ 1667 static int stat4ValueFromExpr( 1668 Parse *pParse, /* Parse context */ 1669 Expr *pExpr, /* The expression to extract a value from */ 1670 u8 affinity, /* Affinity to use */ 1671 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ 1672 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1673 ){ 1674 int rc = SQLITE_OK; 1675 sqlite3_value *pVal = 0; 1676 sqlite3 *db = pParse->db; 1677 1678 /* Skip over any TK_COLLATE nodes */ 1679 pExpr = sqlite3ExprSkipCollate(pExpr); 1680 1681 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE ); 1682 if( !pExpr ){ 1683 pVal = valueNew(db, pAlloc); 1684 if( pVal ){ 1685 sqlite3VdbeMemSetNull((Mem*)pVal); 1686 } 1687 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 1688 Vdbe *v; 1689 int iBindVar = pExpr->iColumn; 1690 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); 1691 if( (v = pParse->pReprepare)!=0 ){ 1692 pVal = valueNew(db, pAlloc); 1693 if( pVal ){ 1694 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); 1695 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); 1696 pVal->db = pParse->db; 1697 } 1698 } 1699 }else{ 1700 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); 1701 } 1702 1703 assert( pVal==0 || pVal->db==db ); 1704 *ppVal = pVal; 1705 return rc; 1706 } 1707 1708 /* 1709 ** This function is used to allocate and populate UnpackedRecord 1710 ** structures intended to be compared against sample index keys stored 1711 ** in the sqlite_stat4 table. 1712 ** 1713 ** A single call to this function populates zero or more fields of the 1714 ** record starting with field iVal (fields are numbered from left to 1715 ** right starting with 0). A single field is populated if: 1716 ** 1717 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1718 ** 1719 ** * The expression is a bound variable, and this is a reprepare, or 1720 ** 1721 ** * The sqlite3ValueFromExpr() function is able to extract a value 1722 ** from the expression (i.e. the expression is a literal value). 1723 ** 1724 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the 1725 ** vector components that match either of the two latter criteria listed 1726 ** above. 1727 ** 1728 ** Before any value is appended to the record, the affinity of the 1729 ** corresponding column within index pIdx is applied to it. Before 1730 ** this function returns, output parameter *pnExtract is set to the 1731 ** number of values appended to the record. 1732 ** 1733 ** When this function is called, *ppRec must either point to an object 1734 ** allocated by an earlier call to this function, or must be NULL. If it 1735 ** is NULL and a value can be successfully extracted, a new UnpackedRecord 1736 ** is allocated (and *ppRec set to point to it) before returning. 1737 ** 1738 ** Unless an error is encountered, SQLITE_OK is returned. It is not an 1739 ** error if a value cannot be extracted from pExpr. If an error does 1740 ** occur, an SQLite error code is returned. 1741 */ 1742 int sqlite3Stat4ProbeSetValue( 1743 Parse *pParse, /* Parse context */ 1744 Index *pIdx, /* Index being probed */ 1745 UnpackedRecord **ppRec, /* IN/OUT: Probe record */ 1746 Expr *pExpr, /* The expression to extract a value from */ 1747 int nElem, /* Maximum number of values to append */ 1748 int iVal, /* Array element to populate */ 1749 int *pnExtract /* OUT: Values appended to the record */ 1750 ){ 1751 int rc = SQLITE_OK; 1752 int nExtract = 0; 1753 1754 if( pExpr==0 || pExpr->op!=TK_SELECT ){ 1755 int i; 1756 struct ValueNewStat4Ctx alloc; 1757 1758 alloc.pParse = pParse; 1759 alloc.pIdx = pIdx; 1760 alloc.ppRec = ppRec; 1761 1762 for(i=0; i<nElem; i++){ 1763 sqlite3_value *pVal = 0; 1764 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0); 1765 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i); 1766 alloc.iVal = iVal+i; 1767 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); 1768 if( !pVal ) break; 1769 nExtract++; 1770 } 1771 } 1772 1773 *pnExtract = nExtract; 1774 return rc; 1775 } 1776 1777 /* 1778 ** Attempt to extract a value from expression pExpr using the methods 1779 ** as described for sqlite3Stat4ProbeSetValue() above. 1780 ** 1781 ** If successful, set *ppVal to point to a new value object and return 1782 ** SQLITE_OK. If no value can be extracted, but no other error occurs 1783 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error 1784 ** does occur, return an SQLite error code. The final value of *ppVal 1785 ** is undefined in this case. 1786 */ 1787 int sqlite3Stat4ValueFromExpr( 1788 Parse *pParse, /* Parse context */ 1789 Expr *pExpr, /* The expression to extract a value from */ 1790 u8 affinity, /* Affinity to use */ 1791 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1792 ){ 1793 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); 1794 } 1795 1796 /* 1797 ** Extract the iCol-th column from the nRec-byte record in pRec. Write 1798 ** the column value into *ppVal. If *ppVal is initially NULL then a new 1799 ** sqlite3_value object is allocated. 1800 ** 1801 ** If *ppVal is initially NULL then the caller is responsible for 1802 ** ensuring that the value written into *ppVal is eventually freed. 1803 */ 1804 int sqlite3Stat4Column( 1805 sqlite3 *db, /* Database handle */ 1806 const void *pRec, /* Pointer to buffer containing record */ 1807 int nRec, /* Size of buffer pRec in bytes */ 1808 int iCol, /* Column to extract */ 1809 sqlite3_value **ppVal /* OUT: Extracted value */ 1810 ){ 1811 u32 t = 0; /* a column type code */ 1812 int nHdr; /* Size of the header in the record */ 1813 int iHdr; /* Next unread header byte */ 1814 int iField; /* Next unread data byte */ 1815 int szField = 0; /* Size of the current data field */ 1816 int i; /* Column index */ 1817 u8 *a = (u8*)pRec; /* Typecast byte array */ 1818 Mem *pMem = *ppVal; /* Write result into this Mem object */ 1819 1820 assert( iCol>0 ); 1821 iHdr = getVarint32(a, nHdr); 1822 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; 1823 iField = nHdr; 1824 for(i=0; i<=iCol; i++){ 1825 iHdr += getVarint32(&a[iHdr], t); 1826 testcase( iHdr==nHdr ); 1827 testcase( iHdr==nHdr+1 ); 1828 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; 1829 szField = sqlite3VdbeSerialTypeLen(t); 1830 iField += szField; 1831 } 1832 testcase( iField==nRec ); 1833 testcase( iField==nRec+1 ); 1834 if( iField>nRec ) return SQLITE_CORRUPT_BKPT; 1835 if( pMem==0 ){ 1836 pMem = *ppVal = sqlite3ValueNew(db); 1837 if( pMem==0 ) return SQLITE_NOMEM_BKPT; 1838 } 1839 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); 1840 pMem->enc = ENC(db); 1841 return SQLITE_OK; 1842 } 1843 1844 /* 1845 ** Unless it is NULL, the argument must be an UnpackedRecord object returned 1846 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes 1847 ** the object. 1848 */ 1849 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ 1850 if( pRec ){ 1851 int i; 1852 int nCol = pRec->pKeyInfo->nAllField; 1853 Mem *aMem = pRec->aMem; 1854 sqlite3 *db = aMem[0].db; 1855 for(i=0; i<nCol; i++){ 1856 sqlite3VdbeMemRelease(&aMem[i]); 1857 } 1858 sqlite3KeyInfoUnref(pRec->pKeyInfo); 1859 sqlite3DbFreeNN(db, pRec); 1860 } 1861 } 1862 #endif /* ifdef SQLITE_ENABLE_STAT4 */ 1863 1864 /* 1865 ** Change the string value of an sqlite3_value object 1866 */ 1867 void sqlite3ValueSetStr( 1868 sqlite3_value *v, /* Value to be set */ 1869 int n, /* Length of string z */ 1870 const void *z, /* Text of the new string */ 1871 u8 enc, /* Encoding to use */ 1872 void (*xDel)(void*) /* Destructor for the string */ 1873 ){ 1874 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 1875 } 1876 1877 /* 1878 ** Free an sqlite3_value object 1879 */ 1880 void sqlite3ValueFree(sqlite3_value *v){ 1881 if( !v ) return; 1882 sqlite3VdbeMemRelease((Mem *)v); 1883 sqlite3DbFreeNN(((Mem*)v)->db, v); 1884 } 1885 1886 /* 1887 ** The sqlite3ValueBytes() routine returns the number of bytes in the 1888 ** sqlite3_value object assuming that it uses the encoding "enc". 1889 ** The valueBytes() routine is a helper function. 1890 */ 1891 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ 1892 return valueToText(pVal, enc)!=0 ? pVal->n : 0; 1893 } 1894 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1895 Mem *p = (Mem*)pVal; 1896 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); 1897 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ 1898 return p->n; 1899 } 1900 if( (p->flags & MEM_Blob)!=0 ){ 1901 if( p->flags & MEM_Zero ){ 1902 return p->n + p->u.nZero; 1903 }else{ 1904 return p->n; 1905 } 1906 } 1907 if( p->flags & MEM_Null ) return 0; 1908 return valueBytes(pVal, enc); 1909 } 1910