1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 /* True if X is a power of two. 0 is considered a power of two here. 22 ** In other words, return true if X has at most one bit set. 23 */ 24 #define ISPOWEROF2(X) (((X)&((X)-1))==0) 25 26 #ifdef SQLITE_DEBUG 27 /* 28 ** Check invariants on a Mem object. 29 ** 30 ** This routine is intended for use inside of assert() statements, like 31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); 32 */ 33 int sqlite3VdbeCheckMemInvariants(Mem *p){ 34 /* If MEM_Dyn is set then Mem.xDel!=0. 35 ** Mem.xDel might not be initialized if MEM_Dyn is clear. 36 */ 37 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); 38 39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we 40 ** ensure that if Mem.szMalloc>0 then it is safe to do 41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. 42 ** That saves a few cycles in inner loops. */ 43 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); 44 45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */ 46 assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) ); 47 48 if( p->flags & MEM_Null ){ 49 /* Cannot be both MEM_Null and some other type */ 50 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 ); 51 52 /* If MEM_Null is set, then either the value is a pure NULL (the usual 53 ** case) or it is a pointer set using sqlite3_bind_pointer() or 54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be 55 ** set. 56 */ 57 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){ 58 /* This is a pointer type. There may be a flag to indicate what to 59 ** do with the pointer. */ 60 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 61 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 62 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 ); 63 64 /* No other bits set */ 65 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind 66 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 ); 67 }else{ 68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn, 69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */ 70 } 71 }else{ 72 /* The MEM_Cleared bit is only allowed on NULLs */ 73 assert( (p->flags & MEM_Cleared)==0 ); 74 } 75 76 /* The szMalloc field holds the correct memory allocation size */ 77 assert( p->szMalloc==0 78 || (p->flags==MEM_Undefined 79 && p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc)) 80 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc)); 81 82 /* If p holds a string or blob, the Mem.z must point to exactly 83 ** one of the following: 84 ** 85 ** (1) Memory in Mem.zMalloc and managed by the Mem object 86 ** (2) Memory to be freed using Mem.xDel 87 ** (3) An ephemeral string or blob 88 ** (4) A static string or blob 89 */ 90 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ 91 assert( 92 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + 93 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 94 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 95 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 96 ); 97 } 98 return 1; 99 } 100 #endif 101 102 /* 103 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal 104 ** into a buffer. 105 */ 106 static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){ 107 StrAccum acc; 108 assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) ); 109 assert( sz>22 ); 110 if( p->flags & MEM_Int ){ 111 #if GCC_VERSION>=7000000 112 /* Work-around for GCC bug 113 ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */ 114 i64 x; 115 assert( (p->flags&MEM_Int)*2==sizeof(x) ); 116 memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2); 117 sqlite3Int64ToText(x, zBuf); 118 #else 119 sqlite3Int64ToText(p->u.i, zBuf); 120 #endif 121 }else{ 122 sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0); 123 sqlite3_str_appendf(&acc, "%!.15g", 124 (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r); 125 assert( acc.zText==zBuf && acc.mxAlloc<=0 ); 126 zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */ 127 } 128 } 129 130 #ifdef SQLITE_DEBUG 131 /* 132 ** Validity checks on pMem. pMem holds a string. 133 ** 134 ** (1) Check that string value of pMem agrees with its integer or real value. 135 ** (2) Check that the string is correctly zero terminated 136 ** 137 ** A single int or real value always converts to the same strings. But 138 ** many different strings can be converted into the same int or real. 139 ** If a table contains a numeric value and an index is based on the 140 ** corresponding string value, then it is important that the string be 141 ** derived from the numeric value, not the other way around, to ensure 142 ** that the index and table are consistent. See ticket 143 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for 144 ** an example. 145 ** 146 ** This routine looks at pMem to verify that if it has both a numeric 147 ** representation and a string representation then the string rep has 148 ** been derived from the numeric and not the other way around. It returns 149 ** true if everything is ok and false if there is a problem. 150 ** 151 ** This routine is for use inside of assert() statements only. 152 */ 153 int sqlite3VdbeMemValidStrRep(Mem *p){ 154 char zBuf[100]; 155 char *z; 156 int i, j, incr; 157 if( (p->flags & MEM_Str)==0 ) return 1; 158 if( p->flags & MEM_Term ){ 159 /* Insure that the string is properly zero-terminated. Pay particular 160 ** attention to the case where p->n is odd */ 161 if( p->szMalloc>0 && p->z==p->zMalloc ){ 162 assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 ); 163 assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 ); 164 } 165 assert( p->z[p->n]==0 ); 166 assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 ); 167 assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 ); 168 } 169 if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1; 170 vdbeMemRenderNum(sizeof(zBuf), zBuf, p); 171 z = p->z; 172 i = j = 0; 173 incr = 1; 174 if( p->enc!=SQLITE_UTF8 ){ 175 incr = 2; 176 if( p->enc==SQLITE_UTF16BE ) z++; 177 } 178 while( zBuf[j] ){ 179 if( zBuf[j++]!=z[i] ) return 0; 180 i += incr; 181 } 182 return 1; 183 } 184 #endif /* SQLITE_DEBUG */ 185 186 /* 187 ** If pMem is an object with a valid string representation, this routine 188 ** ensures the internal encoding for the string representation is 189 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 190 ** 191 ** If pMem is not a string object, or the encoding of the string 192 ** representation is already stored using the requested encoding, then this 193 ** routine is a no-op. 194 ** 195 ** SQLITE_OK is returned if the conversion is successful (or not required). 196 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 197 ** between formats. 198 */ 199 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 200 #ifndef SQLITE_OMIT_UTF16 201 int rc; 202 #endif 203 assert( pMem!=0 ); 204 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 205 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE 206 || desiredEnc==SQLITE_UTF16BE ); 207 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ 208 return SQLITE_OK; 209 } 210 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 211 #ifdef SQLITE_OMIT_UTF16 212 return SQLITE_ERROR; 213 #else 214 215 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 216 ** then the encoding of the value may not have changed. 217 */ 218 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); 219 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 220 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 221 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 222 return rc; 223 #endif 224 } 225 226 /* 227 ** Make sure pMem->z points to a writable allocation of at least n bytes. 228 ** 229 ** If the bPreserve argument is true, then copy of the content of 230 ** pMem->z into the new allocation. pMem must be either a string or 231 ** blob if bPreserve is true. If bPreserve is false, any prior content 232 ** in pMem->z is discarded. 233 */ 234 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ 235 assert( sqlite3VdbeCheckMemInvariants(pMem) ); 236 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 237 testcase( pMem->db==0 ); 238 239 /* If the bPreserve flag is set to true, then the memory cell must already 240 ** contain a valid string or blob value. */ 241 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); 242 testcase( bPreserve && pMem->z==0 ); 243 244 assert( pMem->szMalloc==0 245 || (pMem->flags==MEM_Undefined 246 && pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc)) 247 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc)); 248 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){ 249 if( pMem->db ){ 250 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 251 }else{ 252 pMem->zMalloc = sqlite3Realloc(pMem->z, n); 253 if( pMem->zMalloc==0 ) sqlite3_free(pMem->z); 254 pMem->z = pMem->zMalloc; 255 } 256 bPreserve = 0; 257 }else{ 258 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 259 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 260 } 261 if( pMem->zMalloc==0 ){ 262 sqlite3VdbeMemSetNull(pMem); 263 pMem->z = 0; 264 pMem->szMalloc = 0; 265 return SQLITE_NOMEM_BKPT; 266 }else{ 267 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 268 } 269 270 if( bPreserve && pMem->z ){ 271 assert( pMem->z!=pMem->zMalloc ); 272 memcpy(pMem->zMalloc, pMem->z, pMem->n); 273 } 274 if( (pMem->flags&MEM_Dyn)!=0 ){ 275 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); 276 pMem->xDel((void *)(pMem->z)); 277 } 278 279 pMem->z = pMem->zMalloc; 280 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); 281 return SQLITE_OK; 282 } 283 284 /* 285 ** Change the pMem->zMalloc allocation to be at least szNew bytes. 286 ** If pMem->zMalloc already meets or exceeds the requested size, this 287 ** routine is a no-op. 288 ** 289 ** Any prior string or blob content in the pMem object may be discarded. 290 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str 291 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal, 292 ** and MEM_Null values are preserved. 293 ** 294 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) 295 ** if unable to complete the resizing. 296 */ 297 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ 298 assert( CORRUPT_DB || szNew>0 ); 299 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); 300 if( pMem->szMalloc<szNew ){ 301 return sqlite3VdbeMemGrow(pMem, szNew, 0); 302 } 303 assert( (pMem->flags & MEM_Dyn)==0 ); 304 pMem->z = pMem->zMalloc; 305 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal); 306 return SQLITE_OK; 307 } 308 309 /* 310 ** It is already known that pMem contains an unterminated string. 311 ** Add the zero terminator. 312 ** 313 ** Three bytes of zero are added. In this way, there is guaranteed 314 ** to be a double-zero byte at an even byte boundary in order to 315 ** terminate a UTF16 string, even if the initial size of the buffer 316 ** is an odd number of bytes. 317 */ 318 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ 319 if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){ 320 return SQLITE_NOMEM_BKPT; 321 } 322 pMem->z[pMem->n] = 0; 323 pMem->z[pMem->n+1] = 0; 324 pMem->z[pMem->n+2] = 0; 325 pMem->flags |= MEM_Term; 326 return SQLITE_OK; 327 } 328 329 /* 330 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in 331 ** MEM.zMalloc, where it can be safely written. 332 ** 333 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 334 */ 335 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 336 assert( pMem!=0 ); 337 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 338 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 339 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ 340 if( ExpandBlob(pMem) ) return SQLITE_NOMEM; 341 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ 342 int rc = vdbeMemAddTerminator(pMem); 343 if( rc ) return rc; 344 } 345 } 346 pMem->flags &= ~MEM_Ephem; 347 #ifdef SQLITE_DEBUG 348 pMem->pScopyFrom = 0; 349 #endif 350 351 return SQLITE_OK; 352 } 353 354 /* 355 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 356 ** blob stored in dynamically allocated space. 357 */ 358 #ifndef SQLITE_OMIT_INCRBLOB 359 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 360 int nByte; 361 assert( pMem!=0 ); 362 assert( pMem->flags & MEM_Zero ); 363 assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) ); 364 testcase( sqlite3_value_nochange(pMem) ); 365 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 366 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 367 368 /* Set nByte to the number of bytes required to store the expanded blob. */ 369 nByte = pMem->n + pMem->u.nZero; 370 if( nByte<=0 ){ 371 if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK; 372 nByte = 1; 373 } 374 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 375 return SQLITE_NOMEM_BKPT; 376 } 377 assert( pMem->z!=0 ); 378 assert( sqlite3DbMallocSize(pMem->db,pMem->z) >= nByte ); 379 380 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); 381 pMem->n += pMem->u.nZero; 382 pMem->flags &= ~(MEM_Zero|MEM_Term); 383 return SQLITE_OK; 384 } 385 #endif 386 387 /* 388 ** Make sure the given Mem is \u0000 terminated. 389 */ 390 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 391 assert( pMem!=0 ); 392 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 393 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); 394 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); 395 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ 396 return SQLITE_OK; /* Nothing to do */ 397 }else{ 398 return vdbeMemAddTerminator(pMem); 399 } 400 } 401 402 /* 403 ** Add MEM_Str to the set of representations for the given Mem. This 404 ** routine is only called if pMem is a number of some kind, not a NULL 405 ** or a BLOB. 406 ** 407 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated 408 ** if bForce is true but are retained if bForce is false. 409 ** 410 ** A MEM_Null value will never be passed to this function. This function is 411 ** used for converting values to text for returning to the user (i.e. via 412 ** sqlite3_value_text()), or for ensuring that values to be used as btree 413 ** keys are strings. In the former case a NULL pointer is returned the 414 ** user and the latter is an internal programming error. 415 */ 416 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ 417 const int nByte = 32; 418 419 assert( pMem!=0 ); 420 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 421 assert( !(pMem->flags&MEM_Zero) ); 422 assert( !(pMem->flags&(MEM_Str|MEM_Blob)) ); 423 assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) ); 424 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 425 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 426 427 428 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 429 pMem->enc = 0; 430 return SQLITE_NOMEM_BKPT; 431 } 432 433 vdbeMemRenderNum(nByte, pMem->z, pMem); 434 assert( pMem->z!=0 ); 435 pMem->n = sqlite3Strlen30NN(pMem->z); 436 pMem->enc = SQLITE_UTF8; 437 pMem->flags |= MEM_Str|MEM_Term; 438 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); 439 sqlite3VdbeChangeEncoding(pMem, enc); 440 return SQLITE_OK; 441 } 442 443 /* 444 ** Memory cell pMem contains the context of an aggregate function. 445 ** This routine calls the finalize method for that function. The 446 ** result of the aggregate is stored back into pMem. 447 ** 448 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 449 ** otherwise. 450 */ 451 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 452 sqlite3_context ctx; 453 Mem t; 454 assert( pFunc!=0 ); 455 assert( pMem!=0 ); 456 assert( pFunc->xFinalize!=0 ); 457 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 458 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 459 memset(&ctx, 0, sizeof(ctx)); 460 memset(&t, 0, sizeof(t)); 461 t.flags = MEM_Null; 462 t.db = pMem->db; 463 ctx.pOut = &t; 464 ctx.pMem = pMem; 465 ctx.pFunc = pFunc; 466 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ 467 assert( (pMem->flags & MEM_Dyn)==0 ); 468 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 469 memcpy(pMem, &t, sizeof(t)); 470 return ctx.isError; 471 } 472 473 /* 474 ** Memory cell pAccum contains the context of an aggregate function. 475 ** This routine calls the xValue method for that function and stores 476 ** the results in memory cell pMem. 477 ** 478 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK 479 ** otherwise. 480 */ 481 #ifndef SQLITE_OMIT_WINDOWFUNC 482 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){ 483 sqlite3_context ctx; 484 assert( pFunc!=0 ); 485 assert( pFunc->xValue!=0 ); 486 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef ); 487 assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) ); 488 memset(&ctx, 0, sizeof(ctx)); 489 sqlite3VdbeMemSetNull(pOut); 490 ctx.pOut = pOut; 491 ctx.pMem = pAccum; 492 ctx.pFunc = pFunc; 493 pFunc->xValue(&ctx); 494 return ctx.isError; 495 } 496 #endif /* SQLITE_OMIT_WINDOWFUNC */ 497 498 /* 499 ** If the memory cell contains a value that must be freed by 500 ** invoking the external callback in Mem.xDel, then this routine 501 ** will free that value. It also sets Mem.flags to MEM_Null. 502 ** 503 ** This is a helper routine for sqlite3VdbeMemSetNull() and 504 ** for sqlite3VdbeMemRelease(). Use those other routines as the 505 ** entry point for releasing Mem resources. 506 */ 507 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ 508 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 509 assert( VdbeMemDynamic(p) ); 510 if( p->flags&MEM_Agg ){ 511 sqlite3VdbeMemFinalize(p, p->u.pDef); 512 assert( (p->flags & MEM_Agg)==0 ); 513 testcase( p->flags & MEM_Dyn ); 514 } 515 if( p->flags&MEM_Dyn ){ 516 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); 517 p->xDel((void *)p->z); 518 } 519 p->flags = MEM_Null; 520 } 521 522 /* 523 ** Release memory held by the Mem p, both external memory cleared 524 ** by p->xDel and memory in p->zMalloc. 525 ** 526 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in 527 ** the unusual case where there really is memory in p that needs 528 ** to be freed. 529 */ 530 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ 531 if( VdbeMemDynamic(p) ){ 532 vdbeMemClearExternAndSetNull(p); 533 } 534 if( p->szMalloc ){ 535 sqlite3DbFreeNN(p->db, p->zMalloc); 536 p->szMalloc = 0; 537 } 538 p->z = 0; 539 } 540 541 /* 542 ** Release any memory resources held by the Mem. Both the memory that is 543 ** free by Mem.xDel and the Mem.zMalloc allocation are freed. 544 ** 545 ** Use this routine prior to clean up prior to abandoning a Mem, or to 546 ** reset a Mem back to its minimum memory utilization. 547 ** 548 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space 549 ** prior to inserting new content into the Mem. 550 */ 551 void sqlite3VdbeMemRelease(Mem *p){ 552 assert( sqlite3VdbeCheckMemInvariants(p) ); 553 if( VdbeMemDynamic(p) || p->szMalloc ){ 554 vdbeMemClear(p); 555 } 556 } 557 558 /* 559 ** Convert a 64-bit IEEE double into a 64-bit signed integer. 560 ** If the double is out of range of a 64-bit signed integer then 561 ** return the closest available 64-bit signed integer. 562 */ 563 static SQLITE_NOINLINE i64 doubleToInt64(double r){ 564 #ifdef SQLITE_OMIT_FLOATING_POINT 565 /* When floating-point is omitted, double and int64 are the same thing */ 566 return r; 567 #else 568 /* 569 ** Many compilers we encounter do not define constants for the 570 ** minimum and maximum 64-bit integers, or they define them 571 ** inconsistently. And many do not understand the "LL" notation. 572 ** So we define our own static constants here using nothing 573 ** larger than a 32-bit integer constant. 574 */ 575 static const i64 maxInt = LARGEST_INT64; 576 static const i64 minInt = SMALLEST_INT64; 577 578 if( r<=(double)minInt ){ 579 return minInt; 580 }else if( r>=(double)maxInt ){ 581 return maxInt; 582 }else{ 583 return (i64)r; 584 } 585 #endif 586 } 587 588 /* 589 ** Return some kind of integer value which is the best we can do 590 ** at representing the value that *pMem describes as an integer. 591 ** If pMem is an integer, then the value is exact. If pMem is 592 ** a floating-point then the value returned is the integer part. 593 ** If pMem is a string or blob, then we make an attempt to convert 594 ** it into an integer and return that. If pMem represents an 595 ** an SQL-NULL value, return 0. 596 ** 597 ** If pMem represents a string value, its encoding might be changed. 598 */ 599 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){ 600 i64 value = 0; 601 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); 602 return value; 603 } 604 i64 sqlite3VdbeIntValue(Mem *pMem){ 605 int flags; 606 assert( pMem!=0 ); 607 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 608 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 609 flags = pMem->flags; 610 if( flags & (MEM_Int|MEM_IntReal) ){ 611 testcase( flags & MEM_IntReal ); 612 return pMem->u.i; 613 }else if( flags & MEM_Real ){ 614 return doubleToInt64(pMem->u.r); 615 }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){ 616 return memIntValue(pMem); 617 }else{ 618 return 0; 619 } 620 } 621 622 /* 623 ** Return the best representation of pMem that we can get into a 624 ** double. If pMem is already a double or an integer, return its 625 ** value. If it is a string or blob, try to convert it to a double. 626 ** If it is a NULL, return 0.0. 627 */ 628 static SQLITE_NOINLINE double memRealValue(Mem *pMem){ 629 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 630 double val = (double)0; 631 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); 632 return val; 633 } 634 double sqlite3VdbeRealValue(Mem *pMem){ 635 assert( pMem!=0 ); 636 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 637 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 638 if( pMem->flags & MEM_Real ){ 639 return pMem->u.r; 640 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 641 testcase( pMem->flags & MEM_IntReal ); 642 return (double)pMem->u.i; 643 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 644 return memRealValue(pMem); 645 }else{ 646 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 647 return (double)0; 648 } 649 } 650 651 /* 652 ** Return 1 if pMem represents true, and return 0 if pMem represents false. 653 ** Return the value ifNull if pMem is NULL. 654 */ 655 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ 656 testcase( pMem->flags & MEM_IntReal ); 657 if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0; 658 if( pMem->flags & MEM_Null ) return ifNull; 659 return sqlite3VdbeRealValue(pMem)!=0.0; 660 } 661 662 /* 663 ** The MEM structure is already a MEM_Real. Try to also make it a 664 ** MEM_Int if we can. 665 */ 666 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 667 i64 ix; 668 assert( pMem!=0 ); 669 assert( pMem->flags & MEM_Real ); 670 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 671 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 672 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 673 674 ix = doubleToInt64(pMem->u.r); 675 676 /* Only mark the value as an integer if 677 ** 678 ** (1) the round-trip conversion real->int->real is a no-op, and 679 ** (2) The integer is neither the largest nor the smallest 680 ** possible integer (ticket #3922) 681 ** 682 ** The second and third terms in the following conditional enforces 683 ** the second condition under the assumption that addition overflow causes 684 ** values to wrap around. 685 */ 686 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ 687 pMem->u.i = ix; 688 MemSetTypeFlag(pMem, MEM_Int); 689 } 690 } 691 692 /* 693 ** Convert pMem to type integer. Invalidate any prior representations. 694 */ 695 int sqlite3VdbeMemIntegerify(Mem *pMem){ 696 assert( pMem!=0 ); 697 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 698 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 699 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 700 701 pMem->u.i = sqlite3VdbeIntValue(pMem); 702 MemSetTypeFlag(pMem, MEM_Int); 703 return SQLITE_OK; 704 } 705 706 /* 707 ** Convert pMem so that it is of type MEM_Real. 708 ** Invalidate any prior representations. 709 */ 710 int sqlite3VdbeMemRealify(Mem *pMem){ 711 assert( pMem!=0 ); 712 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 713 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 714 715 pMem->u.r = sqlite3VdbeRealValue(pMem); 716 MemSetTypeFlag(pMem, MEM_Real); 717 return SQLITE_OK; 718 } 719 720 /* Compare a floating point value to an integer. Return true if the two 721 ** values are the same within the precision of the floating point value. 722 ** 723 ** This function assumes that i was obtained by assignment from r1. 724 ** 725 ** For some versions of GCC on 32-bit machines, if you do the more obvious 726 ** comparison of "r1==(double)i" you sometimes get an answer of false even 727 ** though the r1 and (double)i values are bit-for-bit the same. 728 */ 729 int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ 730 double r2 = (double)i; 731 return r1==0.0 732 || (memcmp(&r1, &r2, sizeof(r1))==0 733 && i >= -2251799813685248LL && i < 2251799813685248LL); 734 } 735 736 /* 737 ** Convert pMem so that it has type MEM_Real or MEM_Int. 738 ** Invalidate any prior representations. 739 ** 740 ** Every effort is made to force the conversion, even if the input 741 ** is a string that does not look completely like a number. Convert 742 ** as much of the string as we can and ignore the rest. 743 */ 744 int sqlite3VdbeMemNumerify(Mem *pMem){ 745 assert( pMem!=0 ); 746 testcase( pMem->flags & MEM_Int ); 747 testcase( pMem->flags & MEM_Real ); 748 testcase( pMem->flags & MEM_IntReal ); 749 testcase( pMem->flags & MEM_Null ); 750 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){ 751 int rc; 752 sqlite3_int64 ix; 753 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 754 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 755 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 756 if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1) 757 || sqlite3RealSameAsInt(pMem->u.r, (ix = (i64)pMem->u.r)) 758 ){ 759 pMem->u.i = ix; 760 MemSetTypeFlag(pMem, MEM_Int); 761 }else{ 762 MemSetTypeFlag(pMem, MEM_Real); 763 } 764 } 765 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 ); 766 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); 767 return SQLITE_OK; 768 } 769 770 /* 771 ** Cast the datatype of the value in pMem according to the affinity 772 ** "aff". Casting is different from applying affinity in that a cast 773 ** is forced. In other words, the value is converted into the desired 774 ** affinity even if that results in loss of data. This routine is 775 ** used (for example) to implement the SQL "cast()" operator. 776 */ 777 int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ 778 if( pMem->flags & MEM_Null ) return SQLITE_OK; 779 switch( aff ){ 780 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ 781 if( (pMem->flags & MEM_Blob)==0 ){ 782 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 783 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 784 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); 785 }else{ 786 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); 787 } 788 break; 789 } 790 case SQLITE_AFF_NUMERIC: { 791 sqlite3VdbeMemNumerify(pMem); 792 break; 793 } 794 case SQLITE_AFF_INTEGER: { 795 sqlite3VdbeMemIntegerify(pMem); 796 break; 797 } 798 case SQLITE_AFF_REAL: { 799 sqlite3VdbeMemRealify(pMem); 800 break; 801 } 802 default: { 803 assert( aff==SQLITE_AFF_TEXT ); 804 assert( MEM_Str==(MEM_Blob>>3) ); 805 pMem->flags |= (pMem->flags&MEM_Blob)>>3; 806 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 807 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 808 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero); 809 return sqlite3VdbeChangeEncoding(pMem, encoding); 810 } 811 } 812 return SQLITE_OK; 813 } 814 815 /* 816 ** Initialize bulk memory to be a consistent Mem object. 817 ** 818 ** The minimum amount of initialization feasible is performed. 819 */ 820 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ 821 assert( (flags & ~MEM_TypeMask)==0 ); 822 pMem->flags = flags; 823 pMem->db = db; 824 pMem->szMalloc = 0; 825 } 826 827 828 /* 829 ** Delete any previous value and set the value stored in *pMem to NULL. 830 ** 831 ** This routine calls the Mem.xDel destructor to dispose of values that 832 ** require the destructor. But it preserves the Mem.zMalloc memory allocation. 833 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this 834 ** routine to invoke the destructor and deallocates Mem.zMalloc. 835 ** 836 ** Use this routine to reset the Mem prior to insert a new value. 837 ** 838 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. 839 */ 840 void sqlite3VdbeMemSetNull(Mem *pMem){ 841 if( VdbeMemDynamic(pMem) ){ 842 vdbeMemClearExternAndSetNull(pMem); 843 }else{ 844 pMem->flags = MEM_Null; 845 } 846 } 847 void sqlite3ValueSetNull(sqlite3_value *p){ 848 sqlite3VdbeMemSetNull((Mem*)p); 849 } 850 851 /* 852 ** Delete any previous value and set the value to be a BLOB of length 853 ** n containing all zeros. 854 */ 855 #ifndef SQLITE_OMIT_INCRBLOB 856 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 857 sqlite3VdbeMemRelease(pMem); 858 pMem->flags = MEM_Blob|MEM_Zero; 859 pMem->n = 0; 860 if( n<0 ) n = 0; 861 pMem->u.nZero = n; 862 pMem->enc = SQLITE_UTF8; 863 pMem->z = 0; 864 } 865 #else 866 int sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 867 int nByte = n>0?n:1; 868 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){ 869 return SQLITE_NOMEM_BKPT; 870 } 871 assert( pMem->z!=0 ); 872 assert( sqlite3DbMallocSize(pMem->db, pMem->z)>=nByte ); 873 memset(pMem->z, 0, nByte); 874 pMem->n = n>0?n:0; 875 pMem->flags = MEM_Blob; 876 pMem->enc = SQLITE_UTF8; 877 return SQLITE_OK; 878 } 879 #endif 880 881 /* 882 ** The pMem is known to contain content that needs to be destroyed prior 883 ** to a value change. So invoke the destructor, then set the value to 884 ** a 64-bit integer. 885 */ 886 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ 887 sqlite3VdbeMemSetNull(pMem); 888 pMem->u.i = val; 889 pMem->flags = MEM_Int; 890 } 891 892 /* 893 ** Delete any previous value and set the value stored in *pMem to val, 894 ** manifest type INTEGER. 895 */ 896 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 897 if( VdbeMemDynamic(pMem) ){ 898 vdbeReleaseAndSetInt64(pMem, val); 899 }else{ 900 pMem->u.i = val; 901 pMem->flags = MEM_Int; 902 } 903 } 904 905 /* A no-op destructor */ 906 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } 907 908 /* 909 ** Set the value stored in *pMem should already be a NULL. 910 ** Also store a pointer to go with it. 911 */ 912 void sqlite3VdbeMemSetPointer( 913 Mem *pMem, 914 void *pPtr, 915 const char *zPType, 916 void (*xDestructor)(void*) 917 ){ 918 assert( pMem->flags==MEM_Null ); 919 pMem->u.zPType = zPType ? zPType : ""; 920 pMem->z = pPtr; 921 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term; 922 pMem->eSubtype = 'p'; 923 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor; 924 } 925 926 #ifndef SQLITE_OMIT_FLOATING_POINT 927 /* 928 ** Delete any previous value and set the value stored in *pMem to val, 929 ** manifest type REAL. 930 */ 931 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 932 sqlite3VdbeMemSetNull(pMem); 933 if( !sqlite3IsNaN(val) ){ 934 pMem->u.r = val; 935 pMem->flags = MEM_Real; 936 } 937 } 938 #endif 939 940 #ifdef SQLITE_DEBUG 941 /* 942 ** Return true if the Mem holds a RowSet object. This routine is intended 943 ** for use inside of assert() statements. 944 */ 945 int sqlite3VdbeMemIsRowSet(const Mem *pMem){ 946 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn) 947 && pMem->xDel==sqlite3RowSetDelete; 948 } 949 #endif 950 951 /* 952 ** Delete any previous value and set the value of pMem to be an 953 ** empty boolean index. 954 ** 955 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation 956 ** error occurs. 957 */ 958 int sqlite3VdbeMemSetRowSet(Mem *pMem){ 959 sqlite3 *db = pMem->db; 960 RowSet *p; 961 assert( db!=0 ); 962 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 963 sqlite3VdbeMemRelease(pMem); 964 p = sqlite3RowSetInit(db); 965 if( p==0 ) return SQLITE_NOMEM; 966 pMem->z = (char*)p; 967 pMem->flags = MEM_Blob|MEM_Dyn; 968 pMem->xDel = sqlite3RowSetDelete; 969 return SQLITE_OK; 970 } 971 972 /* 973 ** Return true if the Mem object contains a TEXT or BLOB that is 974 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 975 */ 976 int sqlite3VdbeMemTooBig(Mem *p){ 977 assert( p->db!=0 ); 978 if( p->flags & (MEM_Str|MEM_Blob) ){ 979 int n = p->n; 980 if( p->flags & MEM_Zero ){ 981 n += p->u.nZero; 982 } 983 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 984 } 985 return 0; 986 } 987 988 #ifdef SQLITE_DEBUG 989 /* 990 ** This routine prepares a memory cell for modification by breaking 991 ** its link to a shallow copy and by marking any current shallow 992 ** copies of this cell as invalid. 993 ** 994 ** This is used for testing and debugging only - to help ensure that shallow 995 ** copies (created by OP_SCopy) are not misused. 996 */ 997 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ 998 int i; 999 Mem *pX; 1000 for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){ 1001 if( pX->pScopyFrom==pMem ){ 1002 u16 mFlags; 1003 if( pVdbe->db->flags & SQLITE_VdbeTrace ){ 1004 sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n", 1005 (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem)); 1006 } 1007 /* If pX is marked as a shallow copy of pMem, then try to verify that 1008 ** no significant changes have been made to pX since the OP_SCopy. 1009 ** A significant change would indicated a missed call to this 1010 ** function for pX. Minor changes, such as adding or removing a 1011 ** dual type, are allowed, as long as the underlying value is the 1012 ** same. */ 1013 mFlags = pMem->flags & pX->flags & pX->mScopyFlags; 1014 assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i ); 1015 1016 /* pMem is the register that is changing. But also mark pX as 1017 ** undefined so that we can quickly detect the shallow-copy error */ 1018 pX->flags = MEM_Undefined; 1019 pX->pScopyFrom = 0; 1020 } 1021 } 1022 pMem->pScopyFrom = 0; 1023 } 1024 #endif /* SQLITE_DEBUG */ 1025 1026 /* 1027 ** Make an shallow copy of pFrom into pTo. Prior contents of 1028 ** pTo are freed. The pFrom->z field is not duplicated. If 1029 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 1030 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 1031 */ 1032 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ 1033 vdbeMemClearExternAndSetNull(pTo); 1034 assert( !VdbeMemDynamic(pTo) ); 1035 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); 1036 } 1037 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 1038 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 1039 assert( pTo->db==pFrom->db ); 1040 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } 1041 memcpy(pTo, pFrom, MEMCELLSIZE); 1042 if( (pFrom->flags&MEM_Static)==0 ){ 1043 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 1044 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 1045 pTo->flags |= srcType; 1046 } 1047 } 1048 1049 /* 1050 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 1051 ** freed before the copy is made. 1052 */ 1053 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 1054 int rc = SQLITE_OK; 1055 1056 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 1057 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); 1058 memcpy(pTo, pFrom, MEMCELLSIZE); 1059 pTo->flags &= ~MEM_Dyn; 1060 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 1061 if( 0==(pFrom->flags&MEM_Static) ){ 1062 pTo->flags |= MEM_Ephem; 1063 rc = sqlite3VdbeMemMakeWriteable(pTo); 1064 } 1065 } 1066 1067 return rc; 1068 } 1069 1070 /* 1071 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 1072 ** freed. If pFrom contains ephemeral data, a copy is made. 1073 ** 1074 ** pFrom contains an SQL NULL when this routine returns. 1075 */ 1076 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 1077 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 1078 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 1079 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 1080 1081 sqlite3VdbeMemRelease(pTo); 1082 memcpy(pTo, pFrom, sizeof(Mem)); 1083 pFrom->flags = MEM_Null; 1084 pFrom->szMalloc = 0; 1085 } 1086 1087 /* 1088 ** Change the value of a Mem to be a string or a BLOB. 1089 ** 1090 ** The memory management strategy depends on the value of the xDel 1091 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 1092 ** string is copied into a (possibly existing) buffer managed by the 1093 ** Mem structure. Otherwise, any existing buffer is freed and the 1094 ** pointer copied. 1095 ** 1096 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH 1097 ** size limit) then no memory allocation occurs. If the string can be 1098 ** stored without allocating memory, then it is. If a memory allocation 1099 ** is required to store the string, then value of pMem is unchanged. In 1100 ** either case, SQLITE_TOOBIG is returned. 1101 */ 1102 int sqlite3VdbeMemSetStr( 1103 Mem *pMem, /* Memory cell to set to string value */ 1104 const char *z, /* String pointer */ 1105 i64 n, /* Bytes in string, or negative */ 1106 u8 enc, /* Encoding of z. 0 for BLOBs */ 1107 void (*xDel)(void*) /* Destructor function */ 1108 ){ 1109 i64 nByte = n; /* New value for pMem->n */ 1110 int iLimit; /* Maximum allowed string or blob size */ 1111 u16 flags = 0; /* New value for pMem->flags */ 1112 1113 assert( pMem!=0 ); 1114 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 1115 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1116 1117 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 1118 if( !z ){ 1119 sqlite3VdbeMemSetNull(pMem); 1120 return SQLITE_OK; 1121 } 1122 1123 if( pMem->db ){ 1124 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; 1125 }else{ 1126 iLimit = SQLITE_MAX_LENGTH; 1127 } 1128 flags = (enc==0?MEM_Blob:MEM_Str); 1129 if( nByte<0 ){ 1130 assert( enc!=0 ); 1131 if( enc==SQLITE_UTF8 ){ 1132 nByte = strlen(z); 1133 }else{ 1134 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} 1135 } 1136 flags |= MEM_Term; 1137 } 1138 1139 /* The following block sets the new values of Mem.z and Mem.xDel. It 1140 ** also sets a flag in local variable "flags" to indicate the memory 1141 ** management (one of MEM_Dyn or MEM_Static). 1142 */ 1143 if( xDel==SQLITE_TRANSIENT ){ 1144 i64 nAlloc = nByte; 1145 if( flags&MEM_Term ){ 1146 nAlloc += (enc==SQLITE_UTF8?1:2); 1147 } 1148 if( nByte>iLimit ){ 1149 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG); 1150 } 1151 testcase( nAlloc==0 ); 1152 testcase( nAlloc==31 ); 1153 testcase( nAlloc==32 ); 1154 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){ 1155 return SQLITE_NOMEM_BKPT; 1156 } 1157 memcpy(pMem->z, z, nAlloc); 1158 }else{ 1159 sqlite3VdbeMemRelease(pMem); 1160 pMem->z = (char *)z; 1161 if( xDel==SQLITE_DYNAMIC ){ 1162 pMem->zMalloc = pMem->z; 1163 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 1164 }else{ 1165 pMem->xDel = xDel; 1166 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 1167 } 1168 } 1169 1170 pMem->n = (int)(nByte & 0x7fffffff); 1171 pMem->flags = flags; 1172 if( enc ){ 1173 pMem->enc = enc; 1174 #ifdef SQLITE_ENABLE_SESSION 1175 }else if( pMem->db==0 ){ 1176 pMem->enc = SQLITE_UTF8; 1177 #endif 1178 }else{ 1179 assert( pMem->db!=0 ); 1180 pMem->enc = ENC(pMem->db); 1181 } 1182 1183 #ifndef SQLITE_OMIT_UTF16 1184 if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ 1185 return SQLITE_NOMEM_BKPT; 1186 } 1187 #endif 1188 1189 if( nByte>iLimit ){ 1190 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG); 1191 } 1192 1193 return SQLITE_OK; 1194 } 1195 1196 /* 1197 ** Move data out of a btree key or data field and into a Mem structure. 1198 ** The data is payload from the entry that pCur is currently pointing 1199 ** to. offset and amt determine what portion of the data or key to retrieve. 1200 ** The result is written into the pMem element. 1201 ** 1202 ** The pMem object must have been initialized. This routine will use 1203 ** pMem->zMalloc to hold the content from the btree, if possible. New 1204 ** pMem->zMalloc space will be allocated if necessary. The calling routine 1205 ** is responsible for making sure that the pMem object is eventually 1206 ** destroyed. 1207 ** 1208 ** If this routine fails for any reason (malloc returns NULL or unable 1209 ** to read from the disk) then the pMem is left in an inconsistent state. 1210 */ 1211 int sqlite3VdbeMemFromBtree( 1212 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1213 u32 offset, /* Offset from the start of data to return bytes from. */ 1214 u32 amt, /* Number of bytes to return. */ 1215 Mem *pMem /* OUT: Return data in this Mem structure. */ 1216 ){ 1217 int rc; 1218 pMem->flags = MEM_Null; 1219 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){ 1220 return SQLITE_CORRUPT_BKPT; 1221 } 1222 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){ 1223 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z); 1224 if( rc==SQLITE_OK ){ 1225 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */ 1226 pMem->flags = MEM_Blob; 1227 pMem->n = (int)amt; 1228 }else{ 1229 sqlite3VdbeMemRelease(pMem); 1230 } 1231 } 1232 return rc; 1233 } 1234 int sqlite3VdbeMemFromBtreeZeroOffset( 1235 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1236 u32 amt, /* Number of bytes to return. */ 1237 Mem *pMem /* OUT: Return data in this Mem structure. */ 1238 ){ 1239 u32 available = 0; /* Number of bytes available on the local btree page */ 1240 int rc = SQLITE_OK; /* Return code */ 1241 1242 assert( sqlite3BtreeCursorIsValid(pCur) ); 1243 assert( !VdbeMemDynamic(pMem) ); 1244 1245 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 1246 ** that both the BtShared and database handle mutexes are held. */ 1247 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1248 pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available); 1249 assert( pMem->z!=0 ); 1250 1251 if( amt<=available ){ 1252 pMem->flags = MEM_Blob|MEM_Ephem; 1253 pMem->n = (int)amt; 1254 }else{ 1255 rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem); 1256 } 1257 1258 return rc; 1259 } 1260 1261 /* 1262 ** The pVal argument is known to be a value other than NULL. 1263 ** Convert it into a string with encoding enc and return a pointer 1264 ** to a zero-terminated version of that string. 1265 */ 1266 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ 1267 assert( pVal!=0 ); 1268 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1269 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1270 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1271 assert( (pVal->flags & (MEM_Null))==0 ); 1272 if( pVal->flags & (MEM_Blob|MEM_Str) ){ 1273 if( ExpandBlob(pVal) ) return 0; 1274 pVal->flags |= MEM_Str; 1275 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ 1276 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 1277 } 1278 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ 1279 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 1280 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 1281 return 0; 1282 } 1283 } 1284 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ 1285 }else{ 1286 sqlite3VdbeMemStringify(pVal, enc, 0); 1287 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); 1288 } 1289 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 1290 || pVal->db->mallocFailed ); 1291 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 1292 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1293 return pVal->z; 1294 }else{ 1295 return 0; 1296 } 1297 } 1298 1299 /* This function is only available internally, it is not part of the 1300 ** external API. It works in a similar way to sqlite3_value_text(), 1301 ** except the data returned is in the encoding specified by the second 1302 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 1303 ** SQLITE_UTF8. 1304 ** 1305 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 1306 ** If that is the case, then the result must be aligned on an even byte 1307 ** boundary. 1308 */ 1309 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 1310 if( !pVal ) return 0; 1311 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1312 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1313 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1314 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ 1315 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1316 return pVal->z; 1317 } 1318 if( pVal->flags&MEM_Null ){ 1319 return 0; 1320 } 1321 return valueToText(pVal, enc); 1322 } 1323 1324 /* 1325 ** Create a new sqlite3_value object. 1326 */ 1327 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 1328 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 1329 if( p ){ 1330 p->flags = MEM_Null; 1331 p->db = db; 1332 } 1333 return p; 1334 } 1335 1336 /* 1337 ** Context object passed by sqlite3Stat4ProbeSetValue() through to 1338 ** valueNew(). See comments above valueNew() for details. 1339 */ 1340 struct ValueNewStat4Ctx { 1341 Parse *pParse; 1342 Index *pIdx; 1343 UnpackedRecord **ppRec; 1344 int iVal; 1345 }; 1346 1347 /* 1348 ** Allocate and return a pointer to a new sqlite3_value object. If 1349 ** the second argument to this function is NULL, the object is allocated 1350 ** by calling sqlite3ValueNew(). 1351 ** 1352 ** Otherwise, if the second argument is non-zero, then this function is 1353 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not 1354 ** already been allocated, allocate the UnpackedRecord structure that 1355 ** that function will return to its caller here. Then return a pointer to 1356 ** an sqlite3_value within the UnpackedRecord.a[] array. 1357 */ 1358 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ 1359 #ifdef SQLITE_ENABLE_STAT4 1360 if( p ){ 1361 UnpackedRecord *pRec = p->ppRec[0]; 1362 1363 if( pRec==0 ){ 1364 Index *pIdx = p->pIdx; /* Index being probed */ 1365 int nByte; /* Bytes of space to allocate */ 1366 int i; /* Counter variable */ 1367 int nCol = pIdx->nColumn; /* Number of index columns including rowid */ 1368 1369 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); 1370 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); 1371 if( pRec ){ 1372 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); 1373 if( pRec->pKeyInfo ){ 1374 assert( pRec->pKeyInfo->nAllField==nCol ); 1375 assert( pRec->pKeyInfo->enc==ENC(db) ); 1376 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); 1377 for(i=0; i<nCol; i++){ 1378 pRec->aMem[i].flags = MEM_Null; 1379 pRec->aMem[i].db = db; 1380 } 1381 }else{ 1382 sqlite3DbFreeNN(db, pRec); 1383 pRec = 0; 1384 } 1385 } 1386 if( pRec==0 ) return 0; 1387 p->ppRec[0] = pRec; 1388 } 1389 1390 pRec->nField = p->iVal+1; 1391 return &pRec->aMem[p->iVal]; 1392 } 1393 #else 1394 UNUSED_PARAMETER(p); 1395 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1396 return sqlite3ValueNew(db); 1397 } 1398 1399 /* 1400 ** The expression object indicated by the second argument is guaranteed 1401 ** to be a scalar SQL function. If 1402 ** 1403 ** * all function arguments are SQL literals, 1404 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and 1405 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, 1406 ** 1407 ** then this routine attempts to invoke the SQL function. Assuming no 1408 ** error occurs, output parameter (*ppVal) is set to point to a value 1409 ** object containing the result before returning SQLITE_OK. 1410 ** 1411 ** Affinity aff is applied to the result of the function before returning. 1412 ** If the result is a text value, the sqlite3_value object uses encoding 1413 ** enc. 1414 ** 1415 ** If the conditions above are not met, this function returns SQLITE_OK 1416 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to 1417 ** NULL and an SQLite error code returned. 1418 */ 1419 #ifdef SQLITE_ENABLE_STAT4 1420 static int valueFromFunction( 1421 sqlite3 *db, /* The database connection */ 1422 const Expr *p, /* The expression to evaluate */ 1423 u8 enc, /* Encoding to use */ 1424 u8 aff, /* Affinity to use */ 1425 sqlite3_value **ppVal, /* Write the new value here */ 1426 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1427 ){ 1428 sqlite3_context ctx; /* Context object for function invocation */ 1429 sqlite3_value **apVal = 0; /* Function arguments */ 1430 int nVal = 0; /* Size of apVal[] array */ 1431 FuncDef *pFunc = 0; /* Function definition */ 1432 sqlite3_value *pVal = 0; /* New value */ 1433 int rc = SQLITE_OK; /* Return code */ 1434 ExprList *pList = 0; /* Function arguments */ 1435 int i; /* Iterator variable */ 1436 1437 assert( pCtx!=0 ); 1438 assert( (p->flags & EP_TokenOnly)==0 ); 1439 assert( ExprUseXList(p) ); 1440 pList = p->x.pList; 1441 if( pList ) nVal = pList->nExpr; 1442 assert( !ExprHasProperty(p, EP_IntValue) ); 1443 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); 1444 assert( pFunc ); 1445 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 1446 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 1447 ){ 1448 return SQLITE_OK; 1449 } 1450 1451 if( pList ){ 1452 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); 1453 if( apVal==0 ){ 1454 rc = SQLITE_NOMEM_BKPT; 1455 goto value_from_function_out; 1456 } 1457 for(i=0; i<nVal; i++){ 1458 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); 1459 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; 1460 } 1461 } 1462 1463 pVal = valueNew(db, pCtx); 1464 if( pVal==0 ){ 1465 rc = SQLITE_NOMEM_BKPT; 1466 goto value_from_function_out; 1467 } 1468 1469 assert( pCtx->pParse->rc==SQLITE_OK ); 1470 memset(&ctx, 0, sizeof(ctx)); 1471 ctx.pOut = pVal; 1472 ctx.pFunc = pFunc; 1473 pFunc->xSFunc(&ctx, nVal, apVal); 1474 if( ctx.isError ){ 1475 rc = ctx.isError; 1476 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); 1477 }else{ 1478 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); 1479 assert( rc==SQLITE_OK ); 1480 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1481 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ 1482 rc = SQLITE_TOOBIG; 1483 pCtx->pParse->nErr++; 1484 } 1485 } 1486 pCtx->pParse->rc = rc; 1487 1488 value_from_function_out: 1489 if( rc!=SQLITE_OK ){ 1490 pVal = 0; 1491 } 1492 if( apVal ){ 1493 for(i=0; i<nVal; i++){ 1494 sqlite3ValueFree(apVal[i]); 1495 } 1496 sqlite3DbFreeNN(db, apVal); 1497 } 1498 1499 *ppVal = pVal; 1500 return rc; 1501 } 1502 #else 1503 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK 1504 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1505 1506 /* 1507 ** Extract a value from the supplied expression in the manner described 1508 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object 1509 ** using valueNew(). 1510 ** 1511 ** If pCtx is NULL and an error occurs after the sqlite3_value object 1512 ** has been allocated, it is freed before returning. Or, if pCtx is not 1513 ** NULL, it is assumed that the caller will free any allocated object 1514 ** in all cases. 1515 */ 1516 static int valueFromExpr( 1517 sqlite3 *db, /* The database connection */ 1518 const Expr *pExpr, /* The expression to evaluate */ 1519 u8 enc, /* Encoding to use */ 1520 u8 affinity, /* Affinity to use */ 1521 sqlite3_value **ppVal, /* Write the new value here */ 1522 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1523 ){ 1524 int op; 1525 char *zVal = 0; 1526 sqlite3_value *pVal = 0; 1527 int negInt = 1; 1528 const char *zNeg = ""; 1529 int rc = SQLITE_OK; 1530 1531 assert( pExpr!=0 ); 1532 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; 1533 #if defined(SQLITE_ENABLE_STAT4) 1534 if( op==TK_REGISTER ) op = pExpr->op2; 1535 #else 1536 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; 1537 #endif 1538 1539 /* Compressed expressions only appear when parsing the DEFAULT clause 1540 ** on a table column definition, and hence only when pCtx==0. This 1541 ** check ensures that an EP_TokenOnly expression is never passed down 1542 ** into valueFromFunction(). */ 1543 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); 1544 1545 if( op==TK_CAST ){ 1546 u8 aff; 1547 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1548 aff = sqlite3AffinityType(pExpr->u.zToken,0); 1549 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); 1550 testcase( rc!=SQLITE_OK ); 1551 if( *ppVal ){ 1552 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); 1553 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); 1554 } 1555 return rc; 1556 } 1557 1558 /* Handle negative integers in a single step. This is needed in the 1559 ** case when the value is -9223372036854775808. 1560 */ 1561 if( op==TK_UMINUS 1562 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ 1563 pExpr = pExpr->pLeft; 1564 op = pExpr->op; 1565 negInt = -1; 1566 zNeg = "-"; 1567 } 1568 1569 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 1570 pVal = valueNew(db, pCtx); 1571 if( pVal==0 ) goto no_mem; 1572 if( ExprHasProperty(pExpr, EP_IntValue) ){ 1573 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); 1574 }else{ 1575 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); 1576 if( zVal==0 ) goto no_mem; 1577 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); 1578 } 1579 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ 1580 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); 1581 }else{ 1582 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); 1583 } 1584 assert( (pVal->flags & MEM_IntReal)==0 ); 1585 if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){ 1586 testcase( pVal->flags & MEM_Int ); 1587 testcase( pVal->flags & MEM_Real ); 1588 pVal->flags &= ~MEM_Str; 1589 } 1590 if( enc!=SQLITE_UTF8 ){ 1591 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1592 } 1593 }else if( op==TK_UMINUS ) { 1594 /* This branch happens for multiple negative signs. Ex: -(-5) */ 1595 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) 1596 && pVal!=0 1597 ){ 1598 sqlite3VdbeMemNumerify(pVal); 1599 if( pVal->flags & MEM_Real ){ 1600 pVal->u.r = -pVal->u.r; 1601 }else if( pVal->u.i==SMALLEST_INT64 ){ 1602 #ifndef SQLITE_OMIT_FLOATING_POINT 1603 pVal->u.r = -(double)SMALLEST_INT64; 1604 #else 1605 pVal->u.r = LARGEST_INT64; 1606 #endif 1607 MemSetTypeFlag(pVal, MEM_Real); 1608 }else{ 1609 pVal->u.i = -pVal->u.i; 1610 } 1611 sqlite3ValueApplyAffinity(pVal, affinity, enc); 1612 } 1613 }else if( op==TK_NULL ){ 1614 pVal = valueNew(db, pCtx); 1615 if( pVal==0 ) goto no_mem; 1616 sqlite3VdbeMemSetNull(pVal); 1617 } 1618 #ifndef SQLITE_OMIT_BLOB_LITERAL 1619 else if( op==TK_BLOB ){ 1620 int nVal; 1621 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1622 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 1623 assert( pExpr->u.zToken[1]=='\'' ); 1624 pVal = valueNew(db, pCtx); 1625 if( !pVal ) goto no_mem; 1626 zVal = &pExpr->u.zToken[2]; 1627 nVal = sqlite3Strlen30(zVal)-1; 1628 assert( zVal[nVal]=='\'' ); 1629 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 1630 0, SQLITE_DYNAMIC); 1631 } 1632 #endif 1633 #ifdef SQLITE_ENABLE_STAT4 1634 else if( op==TK_FUNCTION && pCtx!=0 ){ 1635 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); 1636 } 1637 #endif 1638 else if( op==TK_TRUEFALSE ){ 1639 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1640 pVal = valueNew(db, pCtx); 1641 if( pVal ){ 1642 pVal->flags = MEM_Int; 1643 pVal->u.i = pExpr->u.zToken[4]==0; 1644 } 1645 } 1646 1647 *ppVal = pVal; 1648 return rc; 1649 1650 no_mem: 1651 #ifdef SQLITE_ENABLE_STAT4 1652 if( pCtx==0 || pCtx->pParse->nErr==0 ) 1653 #endif 1654 sqlite3OomFault(db); 1655 sqlite3DbFree(db, zVal); 1656 assert( *ppVal==0 ); 1657 #ifdef SQLITE_ENABLE_STAT4 1658 if( pCtx==0 ) sqlite3ValueFree(pVal); 1659 #else 1660 assert( pCtx==0 ); sqlite3ValueFree(pVal); 1661 #endif 1662 return SQLITE_NOMEM_BKPT; 1663 } 1664 1665 /* 1666 ** Create a new sqlite3_value object, containing the value of pExpr. 1667 ** 1668 ** This only works for very simple expressions that consist of one constant 1669 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 1670 ** be converted directly into a value, then the value is allocated and 1671 ** a pointer written to *ppVal. The caller is responsible for deallocating 1672 ** the value by passing it to sqlite3ValueFree() later on. If the expression 1673 ** cannot be converted to a value, then *ppVal is set to NULL. 1674 */ 1675 int sqlite3ValueFromExpr( 1676 sqlite3 *db, /* The database connection */ 1677 const Expr *pExpr, /* The expression to evaluate */ 1678 u8 enc, /* Encoding to use */ 1679 u8 affinity, /* Affinity to use */ 1680 sqlite3_value **ppVal /* Write the new value here */ 1681 ){ 1682 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; 1683 } 1684 1685 #ifdef SQLITE_ENABLE_STAT4 1686 /* 1687 ** Attempt to extract a value from pExpr and use it to construct *ppVal. 1688 ** 1689 ** If pAlloc is not NULL, then an UnpackedRecord object is created for 1690 ** pAlloc if one does not exist and the new value is added to the 1691 ** UnpackedRecord object. 1692 ** 1693 ** A value is extracted in the following cases: 1694 ** 1695 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1696 ** 1697 ** * The expression is a bound variable, and this is a reprepare, or 1698 ** 1699 ** * The expression is a literal value. 1700 ** 1701 ** On success, *ppVal is made to point to the extracted value. The caller 1702 ** is responsible for ensuring that the value is eventually freed. 1703 */ 1704 static int stat4ValueFromExpr( 1705 Parse *pParse, /* Parse context */ 1706 Expr *pExpr, /* The expression to extract a value from */ 1707 u8 affinity, /* Affinity to use */ 1708 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ 1709 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1710 ){ 1711 int rc = SQLITE_OK; 1712 sqlite3_value *pVal = 0; 1713 sqlite3 *db = pParse->db; 1714 1715 /* Skip over any TK_COLLATE nodes */ 1716 pExpr = sqlite3ExprSkipCollate(pExpr); 1717 1718 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE ); 1719 if( !pExpr ){ 1720 pVal = valueNew(db, pAlloc); 1721 if( pVal ){ 1722 sqlite3VdbeMemSetNull((Mem*)pVal); 1723 } 1724 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 1725 Vdbe *v; 1726 int iBindVar = pExpr->iColumn; 1727 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); 1728 if( (v = pParse->pReprepare)!=0 ){ 1729 pVal = valueNew(db, pAlloc); 1730 if( pVal ){ 1731 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); 1732 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); 1733 pVal->db = pParse->db; 1734 } 1735 } 1736 }else{ 1737 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); 1738 } 1739 1740 assert( pVal==0 || pVal->db==db ); 1741 *ppVal = pVal; 1742 return rc; 1743 } 1744 1745 /* 1746 ** This function is used to allocate and populate UnpackedRecord 1747 ** structures intended to be compared against sample index keys stored 1748 ** in the sqlite_stat4 table. 1749 ** 1750 ** A single call to this function populates zero or more fields of the 1751 ** record starting with field iVal (fields are numbered from left to 1752 ** right starting with 0). A single field is populated if: 1753 ** 1754 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1755 ** 1756 ** * The expression is a bound variable, and this is a reprepare, or 1757 ** 1758 ** * The sqlite3ValueFromExpr() function is able to extract a value 1759 ** from the expression (i.e. the expression is a literal value). 1760 ** 1761 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the 1762 ** vector components that match either of the two latter criteria listed 1763 ** above. 1764 ** 1765 ** Before any value is appended to the record, the affinity of the 1766 ** corresponding column within index pIdx is applied to it. Before 1767 ** this function returns, output parameter *pnExtract is set to the 1768 ** number of values appended to the record. 1769 ** 1770 ** When this function is called, *ppRec must either point to an object 1771 ** allocated by an earlier call to this function, or must be NULL. If it 1772 ** is NULL and a value can be successfully extracted, a new UnpackedRecord 1773 ** is allocated (and *ppRec set to point to it) before returning. 1774 ** 1775 ** Unless an error is encountered, SQLITE_OK is returned. It is not an 1776 ** error if a value cannot be extracted from pExpr. If an error does 1777 ** occur, an SQLite error code is returned. 1778 */ 1779 int sqlite3Stat4ProbeSetValue( 1780 Parse *pParse, /* Parse context */ 1781 Index *pIdx, /* Index being probed */ 1782 UnpackedRecord **ppRec, /* IN/OUT: Probe record */ 1783 Expr *pExpr, /* The expression to extract a value from */ 1784 int nElem, /* Maximum number of values to append */ 1785 int iVal, /* Array element to populate */ 1786 int *pnExtract /* OUT: Values appended to the record */ 1787 ){ 1788 int rc = SQLITE_OK; 1789 int nExtract = 0; 1790 1791 if( pExpr==0 || pExpr->op!=TK_SELECT ){ 1792 int i; 1793 struct ValueNewStat4Ctx alloc; 1794 1795 alloc.pParse = pParse; 1796 alloc.pIdx = pIdx; 1797 alloc.ppRec = ppRec; 1798 1799 for(i=0; i<nElem; i++){ 1800 sqlite3_value *pVal = 0; 1801 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0); 1802 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i); 1803 alloc.iVal = iVal+i; 1804 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); 1805 if( !pVal ) break; 1806 nExtract++; 1807 } 1808 } 1809 1810 *pnExtract = nExtract; 1811 return rc; 1812 } 1813 1814 /* 1815 ** Attempt to extract a value from expression pExpr using the methods 1816 ** as described for sqlite3Stat4ProbeSetValue() above. 1817 ** 1818 ** If successful, set *ppVal to point to a new value object and return 1819 ** SQLITE_OK. If no value can be extracted, but no other error occurs 1820 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error 1821 ** does occur, return an SQLite error code. The final value of *ppVal 1822 ** is undefined in this case. 1823 */ 1824 int sqlite3Stat4ValueFromExpr( 1825 Parse *pParse, /* Parse context */ 1826 Expr *pExpr, /* The expression to extract a value from */ 1827 u8 affinity, /* Affinity to use */ 1828 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1829 ){ 1830 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); 1831 } 1832 1833 /* 1834 ** Extract the iCol-th column from the nRec-byte record in pRec. Write 1835 ** the column value into *ppVal. If *ppVal is initially NULL then a new 1836 ** sqlite3_value object is allocated. 1837 ** 1838 ** If *ppVal is initially NULL then the caller is responsible for 1839 ** ensuring that the value written into *ppVal is eventually freed. 1840 */ 1841 int sqlite3Stat4Column( 1842 sqlite3 *db, /* Database handle */ 1843 const void *pRec, /* Pointer to buffer containing record */ 1844 int nRec, /* Size of buffer pRec in bytes */ 1845 int iCol, /* Column to extract */ 1846 sqlite3_value **ppVal /* OUT: Extracted value */ 1847 ){ 1848 u32 t = 0; /* a column type code */ 1849 int nHdr; /* Size of the header in the record */ 1850 int iHdr; /* Next unread header byte */ 1851 int iField; /* Next unread data byte */ 1852 int szField = 0; /* Size of the current data field */ 1853 int i; /* Column index */ 1854 u8 *a = (u8*)pRec; /* Typecast byte array */ 1855 Mem *pMem = *ppVal; /* Write result into this Mem object */ 1856 1857 assert( iCol>0 ); 1858 iHdr = getVarint32(a, nHdr); 1859 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; 1860 iField = nHdr; 1861 for(i=0; i<=iCol; i++){ 1862 iHdr += getVarint32(&a[iHdr], t); 1863 testcase( iHdr==nHdr ); 1864 testcase( iHdr==nHdr+1 ); 1865 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; 1866 szField = sqlite3VdbeSerialTypeLen(t); 1867 iField += szField; 1868 } 1869 testcase( iField==nRec ); 1870 testcase( iField==nRec+1 ); 1871 if( iField>nRec ) return SQLITE_CORRUPT_BKPT; 1872 if( pMem==0 ){ 1873 pMem = *ppVal = sqlite3ValueNew(db); 1874 if( pMem==0 ) return SQLITE_NOMEM_BKPT; 1875 } 1876 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); 1877 pMem->enc = ENC(db); 1878 return SQLITE_OK; 1879 } 1880 1881 /* 1882 ** Unless it is NULL, the argument must be an UnpackedRecord object returned 1883 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes 1884 ** the object. 1885 */ 1886 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ 1887 if( pRec ){ 1888 int i; 1889 int nCol = pRec->pKeyInfo->nAllField; 1890 Mem *aMem = pRec->aMem; 1891 sqlite3 *db = aMem[0].db; 1892 for(i=0; i<nCol; i++){ 1893 sqlite3VdbeMemRelease(&aMem[i]); 1894 } 1895 sqlite3KeyInfoUnref(pRec->pKeyInfo); 1896 sqlite3DbFreeNN(db, pRec); 1897 } 1898 } 1899 #endif /* ifdef SQLITE_ENABLE_STAT4 */ 1900 1901 /* 1902 ** Change the string value of an sqlite3_value object 1903 */ 1904 void sqlite3ValueSetStr( 1905 sqlite3_value *v, /* Value to be set */ 1906 int n, /* Length of string z */ 1907 const void *z, /* Text of the new string */ 1908 u8 enc, /* Encoding to use */ 1909 void (*xDel)(void*) /* Destructor for the string */ 1910 ){ 1911 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 1912 } 1913 1914 /* 1915 ** Free an sqlite3_value object 1916 */ 1917 void sqlite3ValueFree(sqlite3_value *v){ 1918 if( !v ) return; 1919 sqlite3VdbeMemRelease((Mem *)v); 1920 sqlite3DbFreeNN(((Mem*)v)->db, v); 1921 } 1922 1923 /* 1924 ** The sqlite3ValueBytes() routine returns the number of bytes in the 1925 ** sqlite3_value object assuming that it uses the encoding "enc". 1926 ** The valueBytes() routine is a helper function. 1927 */ 1928 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ 1929 return valueToText(pVal, enc)!=0 ? pVal->n : 0; 1930 } 1931 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1932 Mem *p = (Mem*)pVal; 1933 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); 1934 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ 1935 return p->n; 1936 } 1937 if( (p->flags & MEM_Blob)!=0 ){ 1938 if( p->flags & MEM_Zero ){ 1939 return p->n + p->u.nZero; 1940 }else{ 1941 return p->n; 1942 } 1943 } 1944 if( p->flags & MEM_Null ) return 0; 1945 return valueBytes(pVal, enc); 1946 } 1947