1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 #ifdef SQLITE_DEBUG 22 /* 23 ** Check invariants on a Mem object. 24 ** 25 ** This routine is intended for use inside of assert() statements, like 26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); 27 */ 28 int sqlite3VdbeCheckMemInvariants(Mem *p){ 29 /* If MEM_Dyn is set then Mem.xDel!=0. 30 ** Mem.xDel might not be initialized if MEM_Dyn is clear. 31 */ 32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); 33 34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we 35 ** ensure that if Mem.szMalloc>0 then it is safe to do 36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. 37 ** That saves a few cycles in inner loops. */ 38 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); 39 40 /* Cannot be both MEM_Int and MEM_Real at the same time */ 41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) ); 42 43 if( p->flags & MEM_Null ){ 44 /* Cannot be both MEM_Null and some other type */ 45 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob 46 |MEM_RowSet|MEM_Frame|MEM_Agg))==0 ); 47 48 /* If MEM_Null is set, then either the value is a pure NULL (the usual 49 ** case) or it is a pointer set using sqlite3_bind_pointer() or 50 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be 51 ** set. 52 */ 53 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){ 54 /* This is a pointer type. There may be a flag to indicate what to 55 ** do with the pointer. */ 56 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 57 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 58 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 ); 59 60 /* No other bits set */ 61 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype 62 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 ); 63 }else{ 64 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn, 65 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */ 66 } 67 }else{ 68 /* The MEM_Cleared bit is only allowed on NULLs */ 69 assert( (p->flags & MEM_Cleared)==0 ); 70 } 71 72 /* The szMalloc field holds the correct memory allocation size */ 73 assert( p->szMalloc==0 74 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) ); 75 76 /* If p holds a string or blob, the Mem.z must point to exactly 77 ** one of the following: 78 ** 79 ** (1) Memory in Mem.zMalloc and managed by the Mem object 80 ** (2) Memory to be freed using Mem.xDel 81 ** (3) An ephemeral string or blob 82 ** (4) A static string or blob 83 */ 84 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ 85 assert( 86 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + 87 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 88 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 89 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 90 ); 91 } 92 return 1; 93 } 94 #endif 95 96 #ifdef SQLITE_DEBUG 97 /* 98 ** Check that string value of pMem agrees with its integer or real value. 99 ** 100 ** A single int or real value always converts to the same strings. But 101 ** many different strings can be converted into the same int or real. 102 ** If a table contains a numeric value and an index is based on the 103 ** corresponding string value, then it is important that the string be 104 ** derived from the numeric value, not the other way around, to ensure 105 ** that the index and table are consistent. See ticket 106 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for 107 ** an example. 108 ** 109 ** This routine looks at pMem to verify that if it has both a numeric 110 ** representation and a string representation then the string rep has 111 ** been derived from the numeric and not the other way around. It returns 112 ** true if everything is ok and false if there is a problem. 113 ** 114 ** This routine is for use inside of assert() statements only. 115 */ 116 int sqlite3VdbeMemConsistentDualRep(Mem *p){ 117 char zBuf[100]; 118 char *z; 119 int i, j, incr; 120 if( (p->flags & MEM_Str)==0 ) return 1; 121 if( (p->flags & (MEM_Int|MEM_Real))==0 ) return 1; 122 if( p->flags & MEM_Int ){ 123 sqlite3_snprintf(sizeof(zBuf),zBuf,"%lld",p->u.i); 124 }else{ 125 sqlite3_snprintf(sizeof(zBuf),zBuf,"%!.15g",p->u.r); 126 } 127 z = p->z; 128 i = j = 0; 129 incr = 1; 130 if( p->enc!=SQLITE_UTF8 ){ 131 incr = 2; 132 if( p->enc==SQLITE_UTF16BE ) z++; 133 } 134 while( zBuf[j] ){ 135 if( zBuf[j++]!=z[i] ) return 0; 136 i += incr; 137 } 138 return 1; 139 } 140 #endif /* SQLITE_DEBUG */ 141 142 /* 143 ** If pMem is an object with a valid string representation, this routine 144 ** ensures the internal encoding for the string representation is 145 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 146 ** 147 ** If pMem is not a string object, or the encoding of the string 148 ** representation is already stored using the requested encoding, then this 149 ** routine is a no-op. 150 ** 151 ** SQLITE_OK is returned if the conversion is successful (or not required). 152 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 153 ** between formats. 154 */ 155 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 156 #ifndef SQLITE_OMIT_UTF16 157 int rc; 158 #endif 159 assert( (pMem->flags&MEM_RowSet)==0 ); 160 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE 161 || desiredEnc==SQLITE_UTF16BE ); 162 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ 163 return SQLITE_OK; 164 } 165 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 166 #ifdef SQLITE_OMIT_UTF16 167 return SQLITE_ERROR; 168 #else 169 170 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 171 ** then the encoding of the value may not have changed. 172 */ 173 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); 174 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 175 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 176 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 177 return rc; 178 #endif 179 } 180 181 /* 182 ** Make sure pMem->z points to a writable allocation of at least 183 ** min(n,32) bytes. 184 ** 185 ** If the bPreserve argument is true, then copy of the content of 186 ** pMem->z into the new allocation. pMem must be either a string or 187 ** blob if bPreserve is true. If bPreserve is false, any prior content 188 ** in pMem->z is discarded. 189 */ 190 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ 191 assert( sqlite3VdbeCheckMemInvariants(pMem) ); 192 assert( (pMem->flags&MEM_RowSet)==0 ); 193 testcase( pMem->db==0 ); 194 195 /* If the bPreserve flag is set to true, then the memory cell must already 196 ** contain a valid string or blob value. */ 197 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); 198 testcase( bPreserve && pMem->z==0 ); 199 200 assert( pMem->szMalloc==0 201 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) ); 202 if( n<32 ) n = 32; 203 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){ 204 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 205 bPreserve = 0; 206 }else{ 207 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 208 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 209 } 210 if( pMem->zMalloc==0 ){ 211 sqlite3VdbeMemSetNull(pMem); 212 pMem->z = 0; 213 pMem->szMalloc = 0; 214 return SQLITE_NOMEM_BKPT; 215 }else{ 216 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 217 } 218 219 if( bPreserve && pMem->z ){ 220 assert( pMem->z!=pMem->zMalloc ); 221 memcpy(pMem->zMalloc, pMem->z, pMem->n); 222 } 223 if( (pMem->flags&MEM_Dyn)!=0 ){ 224 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); 225 pMem->xDel((void *)(pMem->z)); 226 } 227 228 pMem->z = pMem->zMalloc; 229 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); 230 return SQLITE_OK; 231 } 232 233 /* 234 ** Change the pMem->zMalloc allocation to be at least szNew bytes. 235 ** If pMem->zMalloc already meets or exceeds the requested size, this 236 ** routine is a no-op. 237 ** 238 ** Any prior string or blob content in the pMem object may be discarded. 239 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str 240 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null 241 ** values are preserved. 242 ** 243 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) 244 ** if unable to complete the resizing. 245 */ 246 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ 247 assert( szNew>0 ); 248 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); 249 if( pMem->szMalloc<szNew ){ 250 return sqlite3VdbeMemGrow(pMem, szNew, 0); 251 } 252 assert( (pMem->flags & MEM_Dyn)==0 ); 253 pMem->z = pMem->zMalloc; 254 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real); 255 return SQLITE_OK; 256 } 257 258 /* 259 ** It is already known that pMem contains an unterminated string. 260 ** Add the zero terminator. 261 */ 262 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ 263 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ 264 return SQLITE_NOMEM_BKPT; 265 } 266 pMem->z[pMem->n] = 0; 267 pMem->z[pMem->n+1] = 0; 268 pMem->flags |= MEM_Term; 269 return SQLITE_OK; 270 } 271 272 /* 273 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in 274 ** MEM.zMalloc, where it can be safely written. 275 ** 276 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 277 */ 278 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 279 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 280 assert( (pMem->flags&MEM_RowSet)==0 ); 281 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ 282 if( ExpandBlob(pMem) ) return SQLITE_NOMEM; 283 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ 284 int rc = vdbeMemAddTerminator(pMem); 285 if( rc ) return rc; 286 } 287 } 288 pMem->flags &= ~MEM_Ephem; 289 #ifdef SQLITE_DEBUG 290 pMem->pScopyFrom = 0; 291 #endif 292 293 return SQLITE_OK; 294 } 295 296 /* 297 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 298 ** blob stored in dynamically allocated space. 299 */ 300 #ifndef SQLITE_OMIT_INCRBLOB 301 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 302 int nByte; 303 assert( pMem->flags & MEM_Zero ); 304 assert( pMem->flags&MEM_Blob ); 305 assert( (pMem->flags&MEM_RowSet)==0 ); 306 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 307 308 /* Set nByte to the number of bytes required to store the expanded blob. */ 309 nByte = pMem->n + pMem->u.nZero; 310 if( nByte<=0 ){ 311 nByte = 1; 312 } 313 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 314 return SQLITE_NOMEM_BKPT; 315 } 316 317 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); 318 pMem->n += pMem->u.nZero; 319 pMem->flags &= ~(MEM_Zero|MEM_Term); 320 return SQLITE_OK; 321 } 322 #endif 323 324 /* 325 ** Make sure the given Mem is \u0000 terminated. 326 */ 327 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 328 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 329 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); 330 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); 331 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ 332 return SQLITE_OK; /* Nothing to do */ 333 }else{ 334 return vdbeMemAddTerminator(pMem); 335 } 336 } 337 338 /* 339 ** Add MEM_Str to the set of representations for the given Mem. Numbers 340 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string 341 ** is a no-op. 342 ** 343 ** Existing representations MEM_Int and MEM_Real are invalidated if 344 ** bForce is true but are retained if bForce is false. 345 ** 346 ** A MEM_Null value will never be passed to this function. This function is 347 ** used for converting values to text for returning to the user (i.e. via 348 ** sqlite3_value_text()), or for ensuring that values to be used as btree 349 ** keys are strings. In the former case a NULL pointer is returned the 350 ** user and the latter is an internal programming error. 351 */ 352 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ 353 int fg = pMem->flags; 354 const int nByte = 32; 355 356 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 357 assert( !(fg&MEM_Zero) ); 358 assert( !(fg&(MEM_Str|MEM_Blob)) ); 359 assert( fg&(MEM_Int|MEM_Real) ); 360 assert( (pMem->flags&MEM_RowSet)==0 ); 361 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 362 363 364 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 365 pMem->enc = 0; 366 return SQLITE_NOMEM_BKPT; 367 } 368 369 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8 370 ** string representation of the value. Then, if the required encoding 371 ** is UTF-16le or UTF-16be do a translation. 372 ** 373 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. 374 */ 375 if( fg & MEM_Int ){ 376 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); 377 }else{ 378 assert( fg & MEM_Real ); 379 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r); 380 } 381 pMem->n = sqlite3Strlen30(pMem->z); 382 pMem->enc = SQLITE_UTF8; 383 pMem->flags |= MEM_Str|MEM_Term; 384 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real); 385 sqlite3VdbeChangeEncoding(pMem, enc); 386 return SQLITE_OK; 387 } 388 389 /* 390 ** Memory cell pMem contains the context of an aggregate function. 391 ** This routine calls the finalize method for that function. The 392 ** result of the aggregate is stored back into pMem. 393 ** 394 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 395 ** otherwise. 396 */ 397 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 398 sqlite3_context ctx; 399 Mem t; 400 assert( pFunc!=0 ); 401 assert( pFunc->xFinalize!=0 ); 402 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 403 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 404 memset(&ctx, 0, sizeof(ctx)); 405 memset(&t, 0, sizeof(t)); 406 t.flags = MEM_Null; 407 t.db = pMem->db; 408 ctx.pOut = &t; 409 ctx.pMem = pMem; 410 ctx.pFunc = pFunc; 411 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ 412 assert( (pMem->flags & MEM_Dyn)==0 ); 413 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 414 memcpy(pMem, &t, sizeof(t)); 415 return ctx.isError; 416 } 417 418 /* 419 ** Memory cell pAccum contains the context of an aggregate function. 420 ** This routine calls the xValue method for that function and stores 421 ** the results in memory cell pMem. 422 ** 423 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK 424 ** otherwise. 425 */ 426 #ifndef SQLITE_OMIT_WINDOWFUNC 427 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){ 428 sqlite3_context ctx; 429 Mem t; 430 assert( pFunc!=0 ); 431 assert( pFunc->xValue!=0 ); 432 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef ); 433 assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) ); 434 memset(&ctx, 0, sizeof(ctx)); 435 memset(&t, 0, sizeof(t)); 436 t.flags = MEM_Null; 437 t.db = pAccum->db; 438 sqlite3VdbeMemSetNull(pOut); 439 ctx.pOut = pOut; 440 ctx.pMem = pAccum; 441 ctx.pFunc = pFunc; 442 pFunc->xValue(&ctx); 443 return ctx.isError; 444 } 445 #endif /* SQLITE_OMIT_WINDOWFUNC */ 446 447 /* 448 ** If the memory cell contains a value that must be freed by 449 ** invoking the external callback in Mem.xDel, then this routine 450 ** will free that value. It also sets Mem.flags to MEM_Null. 451 ** 452 ** This is a helper routine for sqlite3VdbeMemSetNull() and 453 ** for sqlite3VdbeMemRelease(). Use those other routines as the 454 ** entry point for releasing Mem resources. 455 */ 456 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ 457 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 458 assert( VdbeMemDynamic(p) ); 459 if( p->flags&MEM_Agg ){ 460 sqlite3VdbeMemFinalize(p, p->u.pDef); 461 assert( (p->flags & MEM_Agg)==0 ); 462 testcase( p->flags & MEM_Dyn ); 463 } 464 if( p->flags&MEM_Dyn ){ 465 assert( (p->flags&MEM_RowSet)==0 ); 466 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); 467 p->xDel((void *)p->z); 468 }else if( p->flags&MEM_RowSet ){ 469 sqlite3RowSetClear(p->u.pRowSet); 470 }else if( p->flags&MEM_Frame ){ 471 VdbeFrame *pFrame = p->u.pFrame; 472 pFrame->pParent = pFrame->v->pDelFrame; 473 pFrame->v->pDelFrame = pFrame; 474 } 475 p->flags = MEM_Null; 476 } 477 478 /* 479 ** Release memory held by the Mem p, both external memory cleared 480 ** by p->xDel and memory in p->zMalloc. 481 ** 482 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in 483 ** the unusual case where there really is memory in p that needs 484 ** to be freed. 485 */ 486 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ 487 if( VdbeMemDynamic(p) ){ 488 vdbeMemClearExternAndSetNull(p); 489 } 490 if( p->szMalloc ){ 491 sqlite3DbFreeNN(p->db, p->zMalloc); 492 p->szMalloc = 0; 493 } 494 p->z = 0; 495 } 496 497 /* 498 ** Release any memory resources held by the Mem. Both the memory that is 499 ** free by Mem.xDel and the Mem.zMalloc allocation are freed. 500 ** 501 ** Use this routine prior to clean up prior to abandoning a Mem, or to 502 ** reset a Mem back to its minimum memory utilization. 503 ** 504 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space 505 ** prior to inserting new content into the Mem. 506 */ 507 void sqlite3VdbeMemRelease(Mem *p){ 508 assert( sqlite3VdbeCheckMemInvariants(p) ); 509 if( VdbeMemDynamic(p) || p->szMalloc ){ 510 vdbeMemClear(p); 511 } 512 } 513 514 /* 515 ** Convert a 64-bit IEEE double into a 64-bit signed integer. 516 ** If the double is out of range of a 64-bit signed integer then 517 ** return the closest available 64-bit signed integer. 518 */ 519 static SQLITE_NOINLINE i64 doubleToInt64(double r){ 520 #ifdef SQLITE_OMIT_FLOATING_POINT 521 /* When floating-point is omitted, double and int64 are the same thing */ 522 return r; 523 #else 524 /* 525 ** Many compilers we encounter do not define constants for the 526 ** minimum and maximum 64-bit integers, or they define them 527 ** inconsistently. And many do not understand the "LL" notation. 528 ** So we define our own static constants here using nothing 529 ** larger than a 32-bit integer constant. 530 */ 531 static const i64 maxInt = LARGEST_INT64; 532 static const i64 minInt = SMALLEST_INT64; 533 534 if( r<=(double)minInt ){ 535 return minInt; 536 }else if( r>=(double)maxInt ){ 537 return maxInt; 538 }else{ 539 return (i64)r; 540 } 541 #endif 542 } 543 544 /* 545 ** Return some kind of integer value which is the best we can do 546 ** at representing the value that *pMem describes as an integer. 547 ** If pMem is an integer, then the value is exact. If pMem is 548 ** a floating-point then the value returned is the integer part. 549 ** If pMem is a string or blob, then we make an attempt to convert 550 ** it into an integer and return that. If pMem represents an 551 ** an SQL-NULL value, return 0. 552 ** 553 ** If pMem represents a string value, its encoding might be changed. 554 */ 555 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){ 556 i64 value = 0; 557 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); 558 return value; 559 } 560 i64 sqlite3VdbeIntValue(Mem *pMem){ 561 int flags; 562 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 563 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 564 flags = pMem->flags; 565 if( flags & MEM_Int ){ 566 return pMem->u.i; 567 }else if( flags & MEM_Real ){ 568 return doubleToInt64(pMem->u.r); 569 }else if( flags & (MEM_Str|MEM_Blob) ){ 570 assert( pMem->z || pMem->n==0 ); 571 return memIntValue(pMem); 572 }else{ 573 return 0; 574 } 575 } 576 577 /* 578 ** Return the best representation of pMem that we can get into a 579 ** double. If pMem is already a double or an integer, return its 580 ** value. If it is a string or blob, try to convert it to a double. 581 ** If it is a NULL, return 0.0. 582 */ 583 static SQLITE_NOINLINE double memRealValue(Mem *pMem){ 584 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 585 double val = (double)0; 586 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); 587 return val; 588 } 589 double sqlite3VdbeRealValue(Mem *pMem){ 590 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 591 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 592 if( pMem->flags & MEM_Real ){ 593 return pMem->u.r; 594 }else if( pMem->flags & MEM_Int ){ 595 return (double)pMem->u.i; 596 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 597 return memRealValue(pMem); 598 }else{ 599 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 600 return (double)0; 601 } 602 } 603 604 /* 605 ** Return 1 if pMem represents true, and return 0 if pMem represents false. 606 ** Return the value ifNull if pMem is NULL. 607 */ 608 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ 609 if( pMem->flags & MEM_Int ) return pMem->u.i!=0; 610 if( pMem->flags & MEM_Null ) return ifNull; 611 return sqlite3VdbeRealValue(pMem)!=0.0; 612 } 613 614 /* 615 ** The MEM structure is already a MEM_Real. Try to also make it a 616 ** MEM_Int if we can. 617 */ 618 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 619 i64 ix; 620 assert( pMem->flags & MEM_Real ); 621 assert( (pMem->flags & MEM_RowSet)==0 ); 622 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 623 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 624 625 ix = doubleToInt64(pMem->u.r); 626 627 /* Only mark the value as an integer if 628 ** 629 ** (1) the round-trip conversion real->int->real is a no-op, and 630 ** (2) The integer is neither the largest nor the smallest 631 ** possible integer (ticket #3922) 632 ** 633 ** The second and third terms in the following conditional enforces 634 ** the second condition under the assumption that addition overflow causes 635 ** values to wrap around. 636 */ 637 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ 638 pMem->u.i = ix; 639 MemSetTypeFlag(pMem, MEM_Int); 640 } 641 } 642 643 /* 644 ** Convert pMem to type integer. Invalidate any prior representations. 645 */ 646 int sqlite3VdbeMemIntegerify(Mem *pMem){ 647 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 648 assert( (pMem->flags & MEM_RowSet)==0 ); 649 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 650 651 pMem->u.i = sqlite3VdbeIntValue(pMem); 652 MemSetTypeFlag(pMem, MEM_Int); 653 return SQLITE_OK; 654 } 655 656 /* 657 ** Convert pMem so that it is of type MEM_Real. 658 ** Invalidate any prior representations. 659 */ 660 int sqlite3VdbeMemRealify(Mem *pMem){ 661 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 662 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 663 664 pMem->u.r = sqlite3VdbeRealValue(pMem); 665 MemSetTypeFlag(pMem, MEM_Real); 666 return SQLITE_OK; 667 } 668 669 /* Compare a floating point value to an integer. Return true if the two 670 ** values are the same within the precision of the floating point value. 671 ** 672 ** For some versions of GCC on 32-bit machines, if you do the more obvious 673 ** comparison of "r1==(double)i" you sometimes get an answer of false even 674 ** though the r1 and (double)i values are bit-for-bit the same. 675 */ 676 static int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ 677 double r2 = (double)i; 678 return memcmp(&r1, &r2, sizeof(r1))==0; 679 } 680 681 /* 682 ** Convert pMem so that it has types MEM_Real or MEM_Int or both. 683 ** Invalidate any prior representations. 684 ** 685 ** Every effort is made to force the conversion, even if the input 686 ** is a string that does not look completely like a number. Convert 687 ** as much of the string as we can and ignore the rest. 688 */ 689 int sqlite3VdbeMemNumerify(Mem *pMem){ 690 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){ 691 int rc; 692 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 693 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 694 rc = sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc); 695 if( rc==0 ){ 696 MemSetTypeFlag(pMem, MEM_Int); 697 }else{ 698 i64 i = pMem->u.i; 699 sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 700 if( rc==1 && sqlite3RealSameAsInt(pMem->u.r, i) ){ 701 pMem->u.i = i; 702 MemSetTypeFlag(pMem, MEM_Int); 703 }else{ 704 MemSetTypeFlag(pMem, MEM_Real); 705 } 706 } 707 } 708 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 ); 709 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); 710 return SQLITE_OK; 711 } 712 713 /* 714 ** Cast the datatype of the value in pMem according to the affinity 715 ** "aff". Casting is different from applying affinity in that a cast 716 ** is forced. In other words, the value is converted into the desired 717 ** affinity even if that results in loss of data. This routine is 718 ** used (for example) to implement the SQL "cast()" operator. 719 */ 720 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ 721 if( pMem->flags & MEM_Null ) return; 722 switch( aff ){ 723 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ 724 if( (pMem->flags & MEM_Blob)==0 ){ 725 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 726 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 727 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); 728 }else{ 729 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); 730 } 731 break; 732 } 733 case SQLITE_AFF_NUMERIC: { 734 sqlite3VdbeMemNumerify(pMem); 735 break; 736 } 737 case SQLITE_AFF_INTEGER: { 738 sqlite3VdbeMemIntegerify(pMem); 739 break; 740 } 741 case SQLITE_AFF_REAL: { 742 sqlite3VdbeMemRealify(pMem); 743 break; 744 } 745 default: { 746 assert( aff==SQLITE_AFF_TEXT ); 747 assert( MEM_Str==(MEM_Blob>>3) ); 748 pMem->flags |= (pMem->flags&MEM_Blob)>>3; 749 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 750 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 751 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); 752 break; 753 } 754 } 755 } 756 757 /* 758 ** Initialize bulk memory to be a consistent Mem object. 759 ** 760 ** The minimum amount of initialization feasible is performed. 761 */ 762 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ 763 assert( (flags & ~MEM_TypeMask)==0 ); 764 pMem->flags = flags; 765 pMem->db = db; 766 pMem->szMalloc = 0; 767 } 768 769 770 /* 771 ** Delete any previous value and set the value stored in *pMem to NULL. 772 ** 773 ** This routine calls the Mem.xDel destructor to dispose of values that 774 ** require the destructor. But it preserves the Mem.zMalloc memory allocation. 775 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this 776 ** routine to invoke the destructor and deallocates Mem.zMalloc. 777 ** 778 ** Use this routine to reset the Mem prior to insert a new value. 779 ** 780 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. 781 */ 782 void sqlite3VdbeMemSetNull(Mem *pMem){ 783 if( VdbeMemDynamic(pMem) ){ 784 vdbeMemClearExternAndSetNull(pMem); 785 }else{ 786 pMem->flags = MEM_Null; 787 } 788 } 789 void sqlite3ValueSetNull(sqlite3_value *p){ 790 sqlite3VdbeMemSetNull((Mem*)p); 791 } 792 793 /* 794 ** Delete any previous value and set the value to be a BLOB of length 795 ** n containing all zeros. 796 */ 797 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 798 sqlite3VdbeMemRelease(pMem); 799 pMem->flags = MEM_Blob|MEM_Zero; 800 pMem->n = 0; 801 if( n<0 ) n = 0; 802 pMem->u.nZero = n; 803 pMem->enc = SQLITE_UTF8; 804 pMem->z = 0; 805 } 806 807 /* 808 ** The pMem is known to contain content that needs to be destroyed prior 809 ** to a value change. So invoke the destructor, then set the value to 810 ** a 64-bit integer. 811 */ 812 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ 813 sqlite3VdbeMemSetNull(pMem); 814 pMem->u.i = val; 815 pMem->flags = MEM_Int; 816 } 817 818 /* 819 ** Delete any previous value and set the value stored in *pMem to val, 820 ** manifest type INTEGER. 821 */ 822 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 823 if( VdbeMemDynamic(pMem) ){ 824 vdbeReleaseAndSetInt64(pMem, val); 825 }else{ 826 pMem->u.i = val; 827 pMem->flags = MEM_Int; 828 } 829 } 830 831 /* A no-op destructor */ 832 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } 833 834 /* 835 ** Set the value stored in *pMem should already be a NULL. 836 ** Also store a pointer to go with it. 837 */ 838 void sqlite3VdbeMemSetPointer( 839 Mem *pMem, 840 void *pPtr, 841 const char *zPType, 842 void (*xDestructor)(void*) 843 ){ 844 assert( pMem->flags==MEM_Null ); 845 pMem->u.zPType = zPType ? zPType : ""; 846 pMem->z = pPtr; 847 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term; 848 pMem->eSubtype = 'p'; 849 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor; 850 } 851 852 #ifndef SQLITE_OMIT_FLOATING_POINT 853 /* 854 ** Delete any previous value and set the value stored in *pMem to val, 855 ** manifest type REAL. 856 */ 857 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 858 sqlite3VdbeMemSetNull(pMem); 859 if( !sqlite3IsNaN(val) ){ 860 pMem->u.r = val; 861 pMem->flags = MEM_Real; 862 } 863 } 864 #endif 865 866 /* 867 ** Delete any previous value and set the value of pMem to be an 868 ** empty boolean index. 869 */ 870 void sqlite3VdbeMemSetRowSet(Mem *pMem){ 871 sqlite3 *db = pMem->db; 872 assert( db!=0 ); 873 assert( (pMem->flags & MEM_RowSet)==0 ); 874 sqlite3VdbeMemRelease(pMem); 875 pMem->zMalloc = sqlite3DbMallocRawNN(db, 64); 876 if( db->mallocFailed ){ 877 pMem->flags = MEM_Null; 878 pMem->szMalloc = 0; 879 }else{ 880 assert( pMem->zMalloc ); 881 pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc); 882 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc); 883 assert( pMem->u.pRowSet!=0 ); 884 pMem->flags = MEM_RowSet; 885 } 886 } 887 888 /* 889 ** Return true if the Mem object contains a TEXT or BLOB that is 890 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 891 */ 892 int sqlite3VdbeMemTooBig(Mem *p){ 893 assert( p->db!=0 ); 894 if( p->flags & (MEM_Str|MEM_Blob) ){ 895 int n = p->n; 896 if( p->flags & MEM_Zero ){ 897 n += p->u.nZero; 898 } 899 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 900 } 901 return 0; 902 } 903 904 #ifdef SQLITE_DEBUG 905 /* 906 ** This routine prepares a memory cell for modification by breaking 907 ** its link to a shallow copy and by marking any current shallow 908 ** copies of this cell as invalid. 909 ** 910 ** This is used for testing and debugging only - to make sure shallow 911 ** copies are not misused. 912 */ 913 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ 914 int i; 915 Mem *pX; 916 for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){ 917 if( pX->pScopyFrom==pMem ){ 918 /* If pX is marked as a shallow copy of pMem, then verify that 919 ** no significant changes have been made to pX since the OP_SCopy. 920 ** A significant change would indicated a missed call to this 921 ** function for pX. Minor changes, such as adding or removing a 922 ** dual type, are allowed, as long as the underlying value is the 923 ** same. */ 924 u16 mFlags = pMem->flags & pX->flags & pX->mScopyFlags; 925 assert( (mFlags&MEM_Int)==0 || pMem->u.i==pX->u.i ); 926 assert( (mFlags&MEM_Real)==0 || pMem->u.r==pX->u.r ); 927 assert( (mFlags&MEM_Str)==0 || (pMem->n==pX->n && pMem->z==pX->z) ); 928 assert( (mFlags&MEM_Blob)==0 || sqlite3BlobCompare(pMem,pX)==0 ); 929 930 /* pMem is the register that is changing. But also mark pX as 931 ** undefined so that we can quickly detect the shallow-copy error */ 932 pX->flags = MEM_Undefined; 933 pX->pScopyFrom = 0; 934 } 935 } 936 pMem->pScopyFrom = 0; 937 #ifdef SQLITE_DEBUG_COLUMN_CACHE 938 pMem->iTabColHash = 0; 939 #endif 940 } 941 #endif /* SQLITE_DEBUG */ 942 943 944 /* 945 ** Make an shallow copy of pFrom into pTo. Prior contents of 946 ** pTo are freed. The pFrom->z field is not duplicated. If 947 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 948 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 949 */ 950 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ 951 vdbeMemClearExternAndSetNull(pTo); 952 assert( !VdbeMemDynamic(pTo) ); 953 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); 954 } 955 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 956 assert( (pFrom->flags & MEM_RowSet)==0 ); 957 assert( pTo->db==pFrom->db ); 958 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } 959 memcpy(pTo, pFrom, MEMCELLSIZE); 960 #ifdef SQLITE_DEBUG_COLUMNCACHE 961 pTo->iTabColHash = pFrom->iTabColHash; 962 #endif 963 if( (pFrom->flags&MEM_Static)==0 ){ 964 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 965 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 966 pTo->flags |= srcType; 967 } 968 } 969 970 /* 971 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 972 ** freed before the copy is made. 973 */ 974 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 975 int rc = SQLITE_OK; 976 977 assert( (pFrom->flags & MEM_RowSet)==0 ); 978 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); 979 memcpy(pTo, pFrom, MEMCELLSIZE); 980 #ifdef SQLITE_DEBUG_COLUMNCACHE 981 pTo->iTabColHash = pFrom->iTabColHash; 982 #endif 983 pTo->flags &= ~MEM_Dyn; 984 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 985 if( 0==(pFrom->flags&MEM_Static) ){ 986 pTo->flags |= MEM_Ephem; 987 rc = sqlite3VdbeMemMakeWriteable(pTo); 988 } 989 } 990 991 return rc; 992 } 993 994 /* 995 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 996 ** freed. If pFrom contains ephemeral data, a copy is made. 997 ** 998 ** pFrom contains an SQL NULL when this routine returns. 999 */ 1000 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 1001 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 1002 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 1003 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 1004 1005 sqlite3VdbeMemRelease(pTo); 1006 memcpy(pTo, pFrom, sizeof(Mem)); 1007 pFrom->flags = MEM_Null; 1008 pFrom->szMalloc = 0; 1009 } 1010 1011 /* 1012 ** Change the value of a Mem to be a string or a BLOB. 1013 ** 1014 ** The memory management strategy depends on the value of the xDel 1015 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 1016 ** string is copied into a (possibly existing) buffer managed by the 1017 ** Mem structure. Otherwise, any existing buffer is freed and the 1018 ** pointer copied. 1019 ** 1020 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH 1021 ** size limit) then no memory allocation occurs. If the string can be 1022 ** stored without allocating memory, then it is. If a memory allocation 1023 ** is required to store the string, then value of pMem is unchanged. In 1024 ** either case, SQLITE_TOOBIG is returned. 1025 */ 1026 int sqlite3VdbeMemSetStr( 1027 Mem *pMem, /* Memory cell to set to string value */ 1028 const char *z, /* String pointer */ 1029 int n, /* Bytes in string, or negative */ 1030 u8 enc, /* Encoding of z. 0 for BLOBs */ 1031 void (*xDel)(void*) /* Destructor function */ 1032 ){ 1033 int nByte = n; /* New value for pMem->n */ 1034 int iLimit; /* Maximum allowed string or blob size */ 1035 u16 flags = 0; /* New value for pMem->flags */ 1036 1037 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 1038 assert( (pMem->flags & MEM_RowSet)==0 ); 1039 1040 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 1041 if( !z ){ 1042 sqlite3VdbeMemSetNull(pMem); 1043 return SQLITE_OK; 1044 } 1045 1046 if( pMem->db ){ 1047 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; 1048 }else{ 1049 iLimit = SQLITE_MAX_LENGTH; 1050 } 1051 flags = (enc==0?MEM_Blob:MEM_Str); 1052 if( nByte<0 ){ 1053 assert( enc!=0 ); 1054 if( enc==SQLITE_UTF8 ){ 1055 nByte = 0x7fffffff & (int)strlen(z); 1056 if( nByte>iLimit ) nByte = iLimit+1; 1057 }else{ 1058 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} 1059 } 1060 flags |= MEM_Term; 1061 } 1062 1063 /* The following block sets the new values of Mem.z and Mem.xDel. It 1064 ** also sets a flag in local variable "flags" to indicate the memory 1065 ** management (one of MEM_Dyn or MEM_Static). 1066 */ 1067 if( xDel==SQLITE_TRANSIENT ){ 1068 int nAlloc = nByte; 1069 if( flags&MEM_Term ){ 1070 nAlloc += (enc==SQLITE_UTF8?1:2); 1071 } 1072 if( nByte>iLimit ){ 1073 return SQLITE_TOOBIG; 1074 } 1075 testcase( nAlloc==0 ); 1076 testcase( nAlloc==31 ); 1077 testcase( nAlloc==32 ); 1078 if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){ 1079 return SQLITE_NOMEM_BKPT; 1080 } 1081 memcpy(pMem->z, z, nAlloc); 1082 }else if( xDel==SQLITE_DYNAMIC ){ 1083 sqlite3VdbeMemRelease(pMem); 1084 pMem->zMalloc = pMem->z = (char *)z; 1085 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 1086 }else{ 1087 sqlite3VdbeMemRelease(pMem); 1088 pMem->z = (char *)z; 1089 pMem->xDel = xDel; 1090 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 1091 } 1092 1093 pMem->n = nByte; 1094 pMem->flags = flags; 1095 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); 1096 1097 #ifndef SQLITE_OMIT_UTF16 1098 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ 1099 return SQLITE_NOMEM_BKPT; 1100 } 1101 #endif 1102 1103 if( nByte>iLimit ){ 1104 return SQLITE_TOOBIG; 1105 } 1106 1107 return SQLITE_OK; 1108 } 1109 1110 /* 1111 ** Move data out of a btree key or data field and into a Mem structure. 1112 ** The data is payload from the entry that pCur is currently pointing 1113 ** to. offset and amt determine what portion of the data or key to retrieve. 1114 ** The result is written into the pMem element. 1115 ** 1116 ** The pMem object must have been initialized. This routine will use 1117 ** pMem->zMalloc to hold the content from the btree, if possible. New 1118 ** pMem->zMalloc space will be allocated if necessary. The calling routine 1119 ** is responsible for making sure that the pMem object is eventually 1120 ** destroyed. 1121 ** 1122 ** If this routine fails for any reason (malloc returns NULL or unable 1123 ** to read from the disk) then the pMem is left in an inconsistent state. 1124 */ 1125 static SQLITE_NOINLINE int vdbeMemFromBtreeResize( 1126 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1127 u32 offset, /* Offset from the start of data to return bytes from. */ 1128 u32 amt, /* Number of bytes to return. */ 1129 Mem *pMem /* OUT: Return data in this Mem structure. */ 1130 ){ 1131 int rc; 1132 pMem->flags = MEM_Null; 1133 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){ 1134 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z); 1135 if( rc==SQLITE_OK ){ 1136 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */ 1137 pMem->flags = MEM_Blob; 1138 pMem->n = (int)amt; 1139 }else{ 1140 sqlite3VdbeMemRelease(pMem); 1141 } 1142 } 1143 return rc; 1144 } 1145 int sqlite3VdbeMemFromBtree( 1146 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1147 u32 offset, /* Offset from the start of data to return bytes from. */ 1148 u32 amt, /* Number of bytes to return. */ 1149 Mem *pMem /* OUT: Return data in this Mem structure. */ 1150 ){ 1151 char *zData; /* Data from the btree layer */ 1152 u32 available = 0; /* Number of bytes available on the local btree page */ 1153 int rc = SQLITE_OK; /* Return code */ 1154 1155 assert( sqlite3BtreeCursorIsValid(pCur) ); 1156 assert( !VdbeMemDynamic(pMem) ); 1157 1158 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 1159 ** that both the BtShared and database handle mutexes are held. */ 1160 assert( (pMem->flags & MEM_RowSet)==0 ); 1161 zData = (char *)sqlite3BtreePayloadFetch(pCur, &available); 1162 assert( zData!=0 ); 1163 1164 if( offset+amt<=available ){ 1165 pMem->z = &zData[offset]; 1166 pMem->flags = MEM_Blob|MEM_Ephem; 1167 pMem->n = (int)amt; 1168 }else{ 1169 rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem); 1170 } 1171 1172 return rc; 1173 } 1174 1175 /* 1176 ** The pVal argument is known to be a value other than NULL. 1177 ** Convert it into a string with encoding enc and return a pointer 1178 ** to a zero-terminated version of that string. 1179 */ 1180 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ 1181 assert( pVal!=0 ); 1182 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1183 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1184 assert( (pVal->flags & MEM_RowSet)==0 ); 1185 assert( (pVal->flags & (MEM_Null))==0 ); 1186 if( pVal->flags & (MEM_Blob|MEM_Str) ){ 1187 if( ExpandBlob(pVal) ) return 0; 1188 pVal->flags |= MEM_Str; 1189 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ 1190 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 1191 } 1192 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ 1193 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 1194 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 1195 return 0; 1196 } 1197 } 1198 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ 1199 }else{ 1200 sqlite3VdbeMemStringify(pVal, enc, 0); 1201 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); 1202 } 1203 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 1204 || pVal->db->mallocFailed ); 1205 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 1206 assert( sqlite3VdbeMemConsistentDualRep(pVal) ); 1207 return pVal->z; 1208 }else{ 1209 return 0; 1210 } 1211 } 1212 1213 /* This function is only available internally, it is not part of the 1214 ** external API. It works in a similar way to sqlite3_value_text(), 1215 ** except the data returned is in the encoding specified by the second 1216 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 1217 ** SQLITE_UTF8. 1218 ** 1219 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 1220 ** If that is the case, then the result must be aligned on an even byte 1221 ** boundary. 1222 */ 1223 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 1224 if( !pVal ) return 0; 1225 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1226 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1227 assert( (pVal->flags & MEM_RowSet)==0 ); 1228 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ 1229 assert( sqlite3VdbeMemConsistentDualRep(pVal) ); 1230 return pVal->z; 1231 } 1232 if( pVal->flags&MEM_Null ){ 1233 return 0; 1234 } 1235 return valueToText(pVal, enc); 1236 } 1237 1238 /* 1239 ** Create a new sqlite3_value object. 1240 */ 1241 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 1242 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 1243 if( p ){ 1244 p->flags = MEM_Null; 1245 p->db = db; 1246 } 1247 return p; 1248 } 1249 1250 /* 1251 ** Context object passed by sqlite3Stat4ProbeSetValue() through to 1252 ** valueNew(). See comments above valueNew() for details. 1253 */ 1254 struct ValueNewStat4Ctx { 1255 Parse *pParse; 1256 Index *pIdx; 1257 UnpackedRecord **ppRec; 1258 int iVal; 1259 }; 1260 1261 /* 1262 ** Allocate and return a pointer to a new sqlite3_value object. If 1263 ** the second argument to this function is NULL, the object is allocated 1264 ** by calling sqlite3ValueNew(). 1265 ** 1266 ** Otherwise, if the second argument is non-zero, then this function is 1267 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not 1268 ** already been allocated, allocate the UnpackedRecord structure that 1269 ** that function will return to its caller here. Then return a pointer to 1270 ** an sqlite3_value within the UnpackedRecord.a[] array. 1271 */ 1272 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ 1273 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1274 if( p ){ 1275 UnpackedRecord *pRec = p->ppRec[0]; 1276 1277 if( pRec==0 ){ 1278 Index *pIdx = p->pIdx; /* Index being probed */ 1279 int nByte; /* Bytes of space to allocate */ 1280 int i; /* Counter variable */ 1281 int nCol = pIdx->nColumn; /* Number of index columns including rowid */ 1282 1283 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); 1284 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); 1285 if( pRec ){ 1286 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); 1287 if( pRec->pKeyInfo ){ 1288 assert( pRec->pKeyInfo->nAllField==nCol ); 1289 assert( pRec->pKeyInfo->enc==ENC(db) ); 1290 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); 1291 for(i=0; i<nCol; i++){ 1292 pRec->aMem[i].flags = MEM_Null; 1293 pRec->aMem[i].db = db; 1294 } 1295 }else{ 1296 sqlite3DbFreeNN(db, pRec); 1297 pRec = 0; 1298 } 1299 } 1300 if( pRec==0 ) return 0; 1301 p->ppRec[0] = pRec; 1302 } 1303 1304 pRec->nField = p->iVal+1; 1305 return &pRec->aMem[p->iVal]; 1306 } 1307 #else 1308 UNUSED_PARAMETER(p); 1309 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ 1310 return sqlite3ValueNew(db); 1311 } 1312 1313 /* 1314 ** The expression object indicated by the second argument is guaranteed 1315 ** to be a scalar SQL function. If 1316 ** 1317 ** * all function arguments are SQL literals, 1318 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and 1319 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, 1320 ** 1321 ** then this routine attempts to invoke the SQL function. Assuming no 1322 ** error occurs, output parameter (*ppVal) is set to point to a value 1323 ** object containing the result before returning SQLITE_OK. 1324 ** 1325 ** Affinity aff is applied to the result of the function before returning. 1326 ** If the result is a text value, the sqlite3_value object uses encoding 1327 ** enc. 1328 ** 1329 ** If the conditions above are not met, this function returns SQLITE_OK 1330 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to 1331 ** NULL and an SQLite error code returned. 1332 */ 1333 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1334 static int valueFromFunction( 1335 sqlite3 *db, /* The database connection */ 1336 Expr *p, /* The expression to evaluate */ 1337 u8 enc, /* Encoding to use */ 1338 u8 aff, /* Affinity to use */ 1339 sqlite3_value **ppVal, /* Write the new value here */ 1340 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1341 ){ 1342 sqlite3_context ctx; /* Context object for function invocation */ 1343 sqlite3_value **apVal = 0; /* Function arguments */ 1344 int nVal = 0; /* Size of apVal[] array */ 1345 FuncDef *pFunc = 0; /* Function definition */ 1346 sqlite3_value *pVal = 0; /* New value */ 1347 int rc = SQLITE_OK; /* Return code */ 1348 ExprList *pList = 0; /* Function arguments */ 1349 int i; /* Iterator variable */ 1350 1351 assert( pCtx!=0 ); 1352 assert( (p->flags & EP_TokenOnly)==0 ); 1353 pList = p->x.pList; 1354 if( pList ) nVal = pList->nExpr; 1355 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); 1356 assert( pFunc ); 1357 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 1358 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 1359 ){ 1360 return SQLITE_OK; 1361 } 1362 1363 if( pList ){ 1364 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); 1365 if( apVal==0 ){ 1366 rc = SQLITE_NOMEM_BKPT; 1367 goto value_from_function_out; 1368 } 1369 for(i=0; i<nVal; i++){ 1370 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); 1371 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; 1372 } 1373 } 1374 1375 pVal = valueNew(db, pCtx); 1376 if( pVal==0 ){ 1377 rc = SQLITE_NOMEM_BKPT; 1378 goto value_from_function_out; 1379 } 1380 1381 assert( pCtx->pParse->rc==SQLITE_OK ); 1382 memset(&ctx, 0, sizeof(ctx)); 1383 ctx.pOut = pVal; 1384 ctx.pFunc = pFunc; 1385 pFunc->xSFunc(&ctx, nVal, apVal); 1386 if( ctx.isError ){ 1387 rc = ctx.isError; 1388 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); 1389 }else{ 1390 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); 1391 assert( rc==SQLITE_OK ); 1392 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1393 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ 1394 rc = SQLITE_TOOBIG; 1395 pCtx->pParse->nErr++; 1396 } 1397 } 1398 pCtx->pParse->rc = rc; 1399 1400 value_from_function_out: 1401 if( rc!=SQLITE_OK ){ 1402 pVal = 0; 1403 } 1404 if( apVal ){ 1405 for(i=0; i<nVal; i++){ 1406 sqlite3ValueFree(apVal[i]); 1407 } 1408 sqlite3DbFreeNN(db, apVal); 1409 } 1410 1411 *ppVal = pVal; 1412 return rc; 1413 } 1414 #else 1415 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK 1416 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ 1417 1418 /* 1419 ** Extract a value from the supplied expression in the manner described 1420 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object 1421 ** using valueNew(). 1422 ** 1423 ** If pCtx is NULL and an error occurs after the sqlite3_value object 1424 ** has been allocated, it is freed before returning. Or, if pCtx is not 1425 ** NULL, it is assumed that the caller will free any allocated object 1426 ** in all cases. 1427 */ 1428 static int valueFromExpr( 1429 sqlite3 *db, /* The database connection */ 1430 Expr *pExpr, /* The expression to evaluate */ 1431 u8 enc, /* Encoding to use */ 1432 u8 affinity, /* Affinity to use */ 1433 sqlite3_value **ppVal, /* Write the new value here */ 1434 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1435 ){ 1436 int op; 1437 char *zVal = 0; 1438 sqlite3_value *pVal = 0; 1439 int negInt = 1; 1440 const char *zNeg = ""; 1441 int rc = SQLITE_OK; 1442 1443 assert( pExpr!=0 ); 1444 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; 1445 #if defined(SQLITE_ENABLE_STAT3_OR_STAT4) 1446 if( op==TK_REGISTER ) op = pExpr->op2; 1447 #else 1448 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; 1449 #endif 1450 1451 /* Compressed expressions only appear when parsing the DEFAULT clause 1452 ** on a table column definition, and hence only when pCtx==0. This 1453 ** check ensures that an EP_TokenOnly expression is never passed down 1454 ** into valueFromFunction(). */ 1455 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); 1456 1457 if( op==TK_CAST ){ 1458 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0); 1459 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); 1460 testcase( rc!=SQLITE_OK ); 1461 if( *ppVal ){ 1462 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); 1463 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); 1464 } 1465 return rc; 1466 } 1467 1468 /* Handle negative integers in a single step. This is needed in the 1469 ** case when the value is -9223372036854775808. 1470 */ 1471 if( op==TK_UMINUS 1472 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ 1473 pExpr = pExpr->pLeft; 1474 op = pExpr->op; 1475 negInt = -1; 1476 zNeg = "-"; 1477 } 1478 1479 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 1480 pVal = valueNew(db, pCtx); 1481 if( pVal==0 ) goto no_mem; 1482 if( ExprHasProperty(pExpr, EP_IntValue) ){ 1483 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); 1484 }else{ 1485 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); 1486 if( zVal==0 ) goto no_mem; 1487 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); 1488 } 1489 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ 1490 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); 1491 }else{ 1492 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); 1493 } 1494 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str; 1495 if( enc!=SQLITE_UTF8 ){ 1496 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1497 } 1498 }else if( op==TK_UMINUS ) { 1499 /* This branch happens for multiple negative signs. Ex: -(-5) */ 1500 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) 1501 && pVal!=0 1502 ){ 1503 sqlite3VdbeMemNumerify(pVal); 1504 if( pVal->flags & MEM_Real ){ 1505 pVal->u.r = -pVal->u.r; 1506 }else if( pVal->u.i==SMALLEST_INT64 ){ 1507 pVal->u.r = -(double)SMALLEST_INT64; 1508 MemSetTypeFlag(pVal, MEM_Real); 1509 }else{ 1510 pVal->u.i = -pVal->u.i; 1511 } 1512 sqlite3ValueApplyAffinity(pVal, affinity, enc); 1513 } 1514 }else if( op==TK_NULL ){ 1515 pVal = valueNew(db, pCtx); 1516 if( pVal==0 ) goto no_mem; 1517 sqlite3VdbeMemNumerify(pVal); 1518 } 1519 #ifndef SQLITE_OMIT_BLOB_LITERAL 1520 else if( op==TK_BLOB ){ 1521 int nVal; 1522 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 1523 assert( pExpr->u.zToken[1]=='\'' ); 1524 pVal = valueNew(db, pCtx); 1525 if( !pVal ) goto no_mem; 1526 zVal = &pExpr->u.zToken[2]; 1527 nVal = sqlite3Strlen30(zVal)-1; 1528 assert( zVal[nVal]=='\'' ); 1529 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 1530 0, SQLITE_DYNAMIC); 1531 } 1532 #endif 1533 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1534 else if( op==TK_FUNCTION && pCtx!=0 ){ 1535 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); 1536 } 1537 #endif 1538 else if( op==TK_TRUEFALSE ){ 1539 pVal = valueNew(db, pCtx); 1540 pVal->flags = MEM_Int; 1541 pVal->u.i = pExpr->u.zToken[4]==0; 1542 } 1543 1544 *ppVal = pVal; 1545 return rc; 1546 1547 no_mem: 1548 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1549 if( pCtx==0 || pCtx->pParse->nErr==0 ) 1550 #endif 1551 sqlite3OomFault(db); 1552 sqlite3DbFree(db, zVal); 1553 assert( *ppVal==0 ); 1554 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1555 if( pCtx==0 ) sqlite3ValueFree(pVal); 1556 #else 1557 assert( pCtx==0 ); sqlite3ValueFree(pVal); 1558 #endif 1559 return SQLITE_NOMEM_BKPT; 1560 } 1561 1562 /* 1563 ** Create a new sqlite3_value object, containing the value of pExpr. 1564 ** 1565 ** This only works for very simple expressions that consist of one constant 1566 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 1567 ** be converted directly into a value, then the value is allocated and 1568 ** a pointer written to *ppVal. The caller is responsible for deallocating 1569 ** the value by passing it to sqlite3ValueFree() later on. If the expression 1570 ** cannot be converted to a value, then *ppVal is set to NULL. 1571 */ 1572 int sqlite3ValueFromExpr( 1573 sqlite3 *db, /* The database connection */ 1574 Expr *pExpr, /* The expression to evaluate */ 1575 u8 enc, /* Encoding to use */ 1576 u8 affinity, /* Affinity to use */ 1577 sqlite3_value **ppVal /* Write the new value here */ 1578 ){ 1579 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; 1580 } 1581 1582 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1583 /* 1584 ** The implementation of the sqlite_record() function. This function accepts 1585 ** a single argument of any type. The return value is a formatted database 1586 ** record (a blob) containing the argument value. 1587 ** 1588 ** This is used to convert the value stored in the 'sample' column of the 1589 ** sqlite_stat3 table to the record format SQLite uses internally. 1590 */ 1591 static void recordFunc( 1592 sqlite3_context *context, 1593 int argc, 1594 sqlite3_value **argv 1595 ){ 1596 const int file_format = 1; 1597 u32 iSerial; /* Serial type */ 1598 int nSerial; /* Bytes of space for iSerial as varint */ 1599 u32 nVal; /* Bytes of space required for argv[0] */ 1600 int nRet; 1601 sqlite3 *db; 1602 u8 *aRet; 1603 1604 UNUSED_PARAMETER( argc ); 1605 iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal); 1606 nSerial = sqlite3VarintLen(iSerial); 1607 db = sqlite3_context_db_handle(context); 1608 1609 nRet = 1 + nSerial + nVal; 1610 aRet = sqlite3DbMallocRawNN(db, nRet); 1611 if( aRet==0 ){ 1612 sqlite3_result_error_nomem(context); 1613 }else{ 1614 aRet[0] = nSerial+1; 1615 putVarint32(&aRet[1], iSerial); 1616 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial); 1617 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT); 1618 sqlite3DbFreeNN(db, aRet); 1619 } 1620 } 1621 1622 /* 1623 ** Register built-in functions used to help read ANALYZE data. 1624 */ 1625 void sqlite3AnalyzeFunctions(void){ 1626 static FuncDef aAnalyzeTableFuncs[] = { 1627 FUNCTION(sqlite_record, 1, 0, 0, recordFunc), 1628 }; 1629 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs)); 1630 } 1631 1632 /* 1633 ** Attempt to extract a value from pExpr and use it to construct *ppVal. 1634 ** 1635 ** If pAlloc is not NULL, then an UnpackedRecord object is created for 1636 ** pAlloc if one does not exist and the new value is added to the 1637 ** UnpackedRecord object. 1638 ** 1639 ** A value is extracted in the following cases: 1640 ** 1641 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1642 ** 1643 ** * The expression is a bound variable, and this is a reprepare, or 1644 ** 1645 ** * The expression is a literal value. 1646 ** 1647 ** On success, *ppVal is made to point to the extracted value. The caller 1648 ** is responsible for ensuring that the value is eventually freed. 1649 */ 1650 static int stat4ValueFromExpr( 1651 Parse *pParse, /* Parse context */ 1652 Expr *pExpr, /* The expression to extract a value from */ 1653 u8 affinity, /* Affinity to use */ 1654 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ 1655 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1656 ){ 1657 int rc = SQLITE_OK; 1658 sqlite3_value *pVal = 0; 1659 sqlite3 *db = pParse->db; 1660 1661 /* Skip over any TK_COLLATE nodes */ 1662 pExpr = sqlite3ExprSkipCollate(pExpr); 1663 1664 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE ); 1665 if( !pExpr ){ 1666 pVal = valueNew(db, pAlloc); 1667 if( pVal ){ 1668 sqlite3VdbeMemSetNull((Mem*)pVal); 1669 } 1670 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 1671 Vdbe *v; 1672 int iBindVar = pExpr->iColumn; 1673 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); 1674 if( (v = pParse->pReprepare)!=0 ){ 1675 pVal = valueNew(db, pAlloc); 1676 if( pVal ){ 1677 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); 1678 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); 1679 pVal->db = pParse->db; 1680 } 1681 } 1682 }else{ 1683 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); 1684 } 1685 1686 assert( pVal==0 || pVal->db==db ); 1687 *ppVal = pVal; 1688 return rc; 1689 } 1690 1691 /* 1692 ** This function is used to allocate and populate UnpackedRecord 1693 ** structures intended to be compared against sample index keys stored 1694 ** in the sqlite_stat4 table. 1695 ** 1696 ** A single call to this function populates zero or more fields of the 1697 ** record starting with field iVal (fields are numbered from left to 1698 ** right starting with 0). A single field is populated if: 1699 ** 1700 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1701 ** 1702 ** * The expression is a bound variable, and this is a reprepare, or 1703 ** 1704 ** * The sqlite3ValueFromExpr() function is able to extract a value 1705 ** from the expression (i.e. the expression is a literal value). 1706 ** 1707 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the 1708 ** vector components that match either of the two latter criteria listed 1709 ** above. 1710 ** 1711 ** Before any value is appended to the record, the affinity of the 1712 ** corresponding column within index pIdx is applied to it. Before 1713 ** this function returns, output parameter *pnExtract is set to the 1714 ** number of values appended to the record. 1715 ** 1716 ** When this function is called, *ppRec must either point to an object 1717 ** allocated by an earlier call to this function, or must be NULL. If it 1718 ** is NULL and a value can be successfully extracted, a new UnpackedRecord 1719 ** is allocated (and *ppRec set to point to it) before returning. 1720 ** 1721 ** Unless an error is encountered, SQLITE_OK is returned. It is not an 1722 ** error if a value cannot be extracted from pExpr. If an error does 1723 ** occur, an SQLite error code is returned. 1724 */ 1725 int sqlite3Stat4ProbeSetValue( 1726 Parse *pParse, /* Parse context */ 1727 Index *pIdx, /* Index being probed */ 1728 UnpackedRecord **ppRec, /* IN/OUT: Probe record */ 1729 Expr *pExpr, /* The expression to extract a value from */ 1730 int nElem, /* Maximum number of values to append */ 1731 int iVal, /* Array element to populate */ 1732 int *pnExtract /* OUT: Values appended to the record */ 1733 ){ 1734 int rc = SQLITE_OK; 1735 int nExtract = 0; 1736 1737 if( pExpr==0 || pExpr->op!=TK_SELECT ){ 1738 int i; 1739 struct ValueNewStat4Ctx alloc; 1740 1741 alloc.pParse = pParse; 1742 alloc.pIdx = pIdx; 1743 alloc.ppRec = ppRec; 1744 1745 for(i=0; i<nElem; i++){ 1746 sqlite3_value *pVal = 0; 1747 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0); 1748 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i); 1749 alloc.iVal = iVal+i; 1750 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); 1751 if( !pVal ) break; 1752 nExtract++; 1753 } 1754 } 1755 1756 *pnExtract = nExtract; 1757 return rc; 1758 } 1759 1760 /* 1761 ** Attempt to extract a value from expression pExpr using the methods 1762 ** as described for sqlite3Stat4ProbeSetValue() above. 1763 ** 1764 ** If successful, set *ppVal to point to a new value object and return 1765 ** SQLITE_OK. If no value can be extracted, but no other error occurs 1766 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error 1767 ** does occur, return an SQLite error code. The final value of *ppVal 1768 ** is undefined in this case. 1769 */ 1770 int sqlite3Stat4ValueFromExpr( 1771 Parse *pParse, /* Parse context */ 1772 Expr *pExpr, /* The expression to extract a value from */ 1773 u8 affinity, /* Affinity to use */ 1774 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1775 ){ 1776 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); 1777 } 1778 1779 /* 1780 ** Extract the iCol-th column from the nRec-byte record in pRec. Write 1781 ** the column value into *ppVal. If *ppVal is initially NULL then a new 1782 ** sqlite3_value object is allocated. 1783 ** 1784 ** If *ppVal is initially NULL then the caller is responsible for 1785 ** ensuring that the value written into *ppVal is eventually freed. 1786 */ 1787 int sqlite3Stat4Column( 1788 sqlite3 *db, /* Database handle */ 1789 const void *pRec, /* Pointer to buffer containing record */ 1790 int nRec, /* Size of buffer pRec in bytes */ 1791 int iCol, /* Column to extract */ 1792 sqlite3_value **ppVal /* OUT: Extracted value */ 1793 ){ 1794 u32 t; /* a column type code */ 1795 int nHdr; /* Size of the header in the record */ 1796 int iHdr; /* Next unread header byte */ 1797 int iField; /* Next unread data byte */ 1798 int szField; /* Size of the current data field */ 1799 int i; /* Column index */ 1800 u8 *a = (u8*)pRec; /* Typecast byte array */ 1801 Mem *pMem = *ppVal; /* Write result into this Mem object */ 1802 1803 assert( iCol>0 ); 1804 iHdr = getVarint32(a, nHdr); 1805 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; 1806 iField = nHdr; 1807 for(i=0; i<=iCol; i++){ 1808 iHdr += getVarint32(&a[iHdr], t); 1809 testcase( iHdr==nHdr ); 1810 testcase( iHdr==nHdr+1 ); 1811 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; 1812 szField = sqlite3VdbeSerialTypeLen(t); 1813 iField += szField; 1814 } 1815 testcase( iField==nRec ); 1816 testcase( iField==nRec+1 ); 1817 if( iField>nRec ) return SQLITE_CORRUPT_BKPT; 1818 if( pMem==0 ){ 1819 pMem = *ppVal = sqlite3ValueNew(db); 1820 if( pMem==0 ) return SQLITE_NOMEM_BKPT; 1821 } 1822 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); 1823 pMem->enc = ENC(db); 1824 return SQLITE_OK; 1825 } 1826 1827 /* 1828 ** Unless it is NULL, the argument must be an UnpackedRecord object returned 1829 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes 1830 ** the object. 1831 */ 1832 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ 1833 if( pRec ){ 1834 int i; 1835 int nCol = pRec->pKeyInfo->nAllField; 1836 Mem *aMem = pRec->aMem; 1837 sqlite3 *db = aMem[0].db; 1838 for(i=0; i<nCol; i++){ 1839 sqlite3VdbeMemRelease(&aMem[i]); 1840 } 1841 sqlite3KeyInfoUnref(pRec->pKeyInfo); 1842 sqlite3DbFreeNN(db, pRec); 1843 } 1844 } 1845 #endif /* ifdef SQLITE_ENABLE_STAT4 */ 1846 1847 /* 1848 ** Change the string value of an sqlite3_value object 1849 */ 1850 void sqlite3ValueSetStr( 1851 sqlite3_value *v, /* Value to be set */ 1852 int n, /* Length of string z */ 1853 const void *z, /* Text of the new string */ 1854 u8 enc, /* Encoding to use */ 1855 void (*xDel)(void*) /* Destructor for the string */ 1856 ){ 1857 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 1858 } 1859 1860 /* 1861 ** Free an sqlite3_value object 1862 */ 1863 void sqlite3ValueFree(sqlite3_value *v){ 1864 if( !v ) return; 1865 sqlite3VdbeMemRelease((Mem *)v); 1866 sqlite3DbFreeNN(((Mem*)v)->db, v); 1867 } 1868 1869 /* 1870 ** The sqlite3ValueBytes() routine returns the number of bytes in the 1871 ** sqlite3_value object assuming that it uses the encoding "enc". 1872 ** The valueBytes() routine is a helper function. 1873 */ 1874 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ 1875 return valueToText(pVal, enc)!=0 ? pVal->n : 0; 1876 } 1877 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1878 Mem *p = (Mem*)pVal; 1879 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); 1880 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ 1881 return p->n; 1882 } 1883 if( (p->flags & MEM_Blob)!=0 ){ 1884 if( p->flags & MEM_Zero ){ 1885 return p->n + p->u.nZero; 1886 }else{ 1887 return p->n; 1888 } 1889 } 1890 if( p->flags & MEM_Null ) return 0; 1891 return valueBytes(pVal, enc); 1892 } 1893