xref: /sqlite-3.40.0/src/vdbemem.c (revision b80bb6ce)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to manipulate "Mem" structure.  A "Mem"
14 ** stores a single value in the VDBE.  Mem is an opaque structure visible
15 ** only within the VDBE.  Interface routines refer to a Mem using the
16 ** name sqlite_value
17 */
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
20 
21 #ifdef SQLITE_DEBUG
22 /*
23 ** Check invariants on a Mem object.
24 **
25 ** This routine is intended for use inside of assert() statements, like
26 ** this:    assert( sqlite3VdbeCheckMemInvariants(pMem) );
27 */
28 int sqlite3VdbeCheckMemInvariants(Mem *p){
29   /* If MEM_Dyn is set then Mem.xDel!=0.
30   ** Mem.xDel might not be initialized if MEM_Dyn is clear.
31   */
32   assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
33 
34   /* MEM_Dyn may only be set if Mem.szMalloc==0.  In this way we
35   ** ensure that if Mem.szMalloc>0 then it is safe to do
36   ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37   ** That saves a few cycles in inner loops. */
38   assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
39 
40   /* Cannot be both MEM_Int and MEM_Real at the same time */
41   assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );
42 
43   if( p->flags & MEM_Null ){
44     /* Cannot be both MEM_Null and some other type */
45     assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob
46                          |MEM_RowSet|MEM_Frame|MEM_Agg))==0 );
47 
48     /* If MEM_Null is set, then either the value is a pure NULL (the usual
49     ** case) or it is a pointer set using sqlite3_bind_pointer() or
50     ** sqlite3_result_pointer().  If a pointer, then MEM_Term must also be
51     ** set.
52     */
53     if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
54       /* This is a pointer type.  There may be a flag to indicate what to
55       ** do with the pointer. */
56       assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
57               ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
58               ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
59 
60       /* No other bits set */
61       assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype
62                            |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
63     }else{
64       /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
65       ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
66     }
67   }else{
68     /* The MEM_Cleared bit is only allowed on NULLs */
69     assert( (p->flags & MEM_Cleared)==0 );
70   }
71 
72   /* The szMalloc field holds the correct memory allocation size */
73   assert( p->szMalloc==0
74        || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
75 
76   /* If p holds a string or blob, the Mem.z must point to exactly
77   ** one of the following:
78   **
79   **   (1) Memory in Mem.zMalloc and managed by the Mem object
80   **   (2) Memory to be freed using Mem.xDel
81   **   (3) An ephemeral string or blob
82   **   (4) A static string or blob
83   */
84   if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
85     assert(
86       ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
87       ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
88       ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
89       ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
90     );
91   }
92   return 1;
93 }
94 #endif
95 
96 #ifdef SQLITE_DEBUG
97 /*
98 ** Check that string value of pMem agrees with its integer or real value.
99 **
100 ** A single int or real value always converts to the same strings.  But
101 ** many different strings can be converted into the same int or real.
102 ** If a table contains a numeric value and an index is based on the
103 ** corresponding string value, then it is important that the string be
104 ** derived from the numeric value, not the other way around, to ensure
105 ** that the index and table are consistent.  See ticket
106 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
107 ** an example.
108 **
109 ** This routine looks at pMem to verify that if it has both a numeric
110 ** representation and a string representation then the string rep has
111 ** been derived from the numeric and not the other way around.  It returns
112 ** true if everything is ok and false if there is a problem.
113 **
114 ** This routine is for use inside of assert() statements only.
115 */
116 int sqlite3VdbeMemConsistentDualRep(Mem *p){
117   char zBuf[100];
118   char *z;
119   int i, j, incr;
120   if( (p->flags & MEM_Str)==0 ) return 1;
121   if( (p->flags & (MEM_Int|MEM_Real))==0 ) return 1;
122   if( p->flags & MEM_Int ){
123     sqlite3_snprintf(sizeof(zBuf),zBuf,"%lld",p->u.i);
124   }else{
125     sqlite3_snprintf(sizeof(zBuf),zBuf,"%!.15g",p->u.r);
126   }
127   z = p->z;
128   i = j = 0;
129   incr = 1;
130   if( p->enc!=SQLITE_UTF8 ){
131     incr = 2;
132     if( p->enc==SQLITE_UTF16BE ) z++;
133   }
134   while( zBuf[j] ){
135     if( zBuf[j++]!=z[i] ) return 0;
136     i += incr;
137   }
138   return 1;
139 }
140 #endif /* SQLITE_DEBUG */
141 
142 /*
143 ** If pMem is an object with a valid string representation, this routine
144 ** ensures the internal encoding for the string representation is
145 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
146 **
147 ** If pMem is not a string object, or the encoding of the string
148 ** representation is already stored using the requested encoding, then this
149 ** routine is a no-op.
150 **
151 ** SQLITE_OK is returned if the conversion is successful (or not required).
152 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
153 ** between formats.
154 */
155 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
156 #ifndef SQLITE_OMIT_UTF16
157   int rc;
158 #endif
159   assert( (pMem->flags&MEM_RowSet)==0 );
160   assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
161            || desiredEnc==SQLITE_UTF16BE );
162   if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
163     return SQLITE_OK;
164   }
165   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
166 #ifdef SQLITE_OMIT_UTF16
167   return SQLITE_ERROR;
168 #else
169 
170   /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
171   ** then the encoding of the value may not have changed.
172   */
173   rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
174   assert(rc==SQLITE_OK    || rc==SQLITE_NOMEM);
175   assert(rc==SQLITE_OK    || pMem->enc!=desiredEnc);
176   assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
177   return rc;
178 #endif
179 }
180 
181 /*
182 ** Make sure pMem->z points to a writable allocation of at least
183 ** min(n,32) bytes.
184 **
185 ** If the bPreserve argument is true, then copy of the content of
186 ** pMem->z into the new allocation.  pMem must be either a string or
187 ** blob if bPreserve is true.  If bPreserve is false, any prior content
188 ** in pMem->z is discarded.
189 */
190 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
191   assert( sqlite3VdbeCheckMemInvariants(pMem) );
192   assert( (pMem->flags&MEM_RowSet)==0 );
193   testcase( pMem->db==0 );
194 
195   /* If the bPreserve flag is set to true, then the memory cell must already
196   ** contain a valid string or blob value.  */
197   assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
198   testcase( bPreserve && pMem->z==0 );
199 
200   assert( pMem->szMalloc==0
201        || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
202   if( n<32 ) n = 32;
203   if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
204     pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
205     bPreserve = 0;
206   }else{
207     if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
208     pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
209   }
210   if( pMem->zMalloc==0 ){
211     sqlite3VdbeMemSetNull(pMem);
212     pMem->z = 0;
213     pMem->szMalloc = 0;
214     return SQLITE_NOMEM_BKPT;
215   }else{
216     pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
217   }
218 
219   if( bPreserve && pMem->z ){
220     assert( pMem->z!=pMem->zMalloc );
221     memcpy(pMem->zMalloc, pMem->z, pMem->n);
222   }
223   if( (pMem->flags&MEM_Dyn)!=0 ){
224     assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
225     pMem->xDel((void *)(pMem->z));
226   }
227 
228   pMem->z = pMem->zMalloc;
229   pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
230   return SQLITE_OK;
231 }
232 
233 /*
234 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
235 ** If pMem->zMalloc already meets or exceeds the requested size, this
236 ** routine is a no-op.
237 **
238 ** Any prior string or blob content in the pMem object may be discarded.
239 ** The pMem->xDel destructor is called, if it exists.  Though MEM_Str
240 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
241 ** values are preserved.
242 **
243 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
244 ** if unable to complete the resizing.
245 */
246 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
247   assert( szNew>0 );
248   assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
249   if( pMem->szMalloc<szNew ){
250     return sqlite3VdbeMemGrow(pMem, szNew, 0);
251   }
252   assert( (pMem->flags & MEM_Dyn)==0 );
253   pMem->z = pMem->zMalloc;
254   pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
255   return SQLITE_OK;
256 }
257 
258 /*
259 ** It is already known that pMem contains an unterminated string.
260 ** Add the zero terminator.
261 */
262 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
263   if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
264     return SQLITE_NOMEM_BKPT;
265   }
266   pMem->z[pMem->n] = 0;
267   pMem->z[pMem->n+1] = 0;
268   pMem->flags |= MEM_Term;
269   return SQLITE_OK;
270 }
271 
272 /*
273 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
274 ** MEM.zMalloc, where it can be safely written.
275 **
276 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
277 */
278 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
279   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
280   assert( (pMem->flags&MEM_RowSet)==0 );
281   if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
282     if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
283     if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
284       int rc = vdbeMemAddTerminator(pMem);
285       if( rc ) return rc;
286     }
287   }
288   pMem->flags &= ~MEM_Ephem;
289 #ifdef SQLITE_DEBUG
290   pMem->pScopyFrom = 0;
291 #endif
292 
293   return SQLITE_OK;
294 }
295 
296 /*
297 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
298 ** blob stored in dynamically allocated space.
299 */
300 #ifndef SQLITE_OMIT_INCRBLOB
301 int sqlite3VdbeMemExpandBlob(Mem *pMem){
302   int nByte;
303   assert( pMem->flags & MEM_Zero );
304   assert( pMem->flags&MEM_Blob );
305   assert( (pMem->flags&MEM_RowSet)==0 );
306   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
307 
308   /* Set nByte to the number of bytes required to store the expanded blob. */
309   nByte = pMem->n + pMem->u.nZero;
310   if( nByte<=0 ){
311     nByte = 1;
312   }
313   if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
314     return SQLITE_NOMEM_BKPT;
315   }
316 
317   memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
318   pMem->n += pMem->u.nZero;
319   pMem->flags &= ~(MEM_Zero|MEM_Term);
320   return SQLITE_OK;
321 }
322 #endif
323 
324 /*
325 ** Make sure the given Mem is \u0000 terminated.
326 */
327 int sqlite3VdbeMemNulTerminate(Mem *pMem){
328   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
329   testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
330   testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
331   if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
332     return SQLITE_OK;   /* Nothing to do */
333   }else{
334     return vdbeMemAddTerminator(pMem);
335   }
336 }
337 
338 /*
339 ** Add MEM_Str to the set of representations for the given Mem.  Numbers
340 ** are converted using sqlite3_snprintf().  Converting a BLOB to a string
341 ** is a no-op.
342 **
343 ** Existing representations MEM_Int and MEM_Real are invalidated if
344 ** bForce is true but are retained if bForce is false.
345 **
346 ** A MEM_Null value will never be passed to this function. This function is
347 ** used for converting values to text for returning to the user (i.e. via
348 ** sqlite3_value_text()), or for ensuring that values to be used as btree
349 ** keys are strings. In the former case a NULL pointer is returned the
350 ** user and the latter is an internal programming error.
351 */
352 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
353   int fg = pMem->flags;
354   const int nByte = 32;
355 
356   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
357   assert( !(fg&MEM_Zero) );
358   assert( !(fg&(MEM_Str|MEM_Blob)) );
359   assert( fg&(MEM_Int|MEM_Real) );
360   assert( (pMem->flags&MEM_RowSet)==0 );
361   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
362 
363 
364   if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
365     pMem->enc = 0;
366     return SQLITE_NOMEM_BKPT;
367   }
368 
369   /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
370   ** string representation of the value. Then, if the required encoding
371   ** is UTF-16le or UTF-16be do a translation.
372   **
373   ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
374   */
375   if( fg & MEM_Int ){
376     sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
377   }else{
378     assert( fg & MEM_Real );
379     sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
380   }
381   pMem->n = sqlite3Strlen30(pMem->z);
382   pMem->enc = SQLITE_UTF8;
383   pMem->flags |= MEM_Str|MEM_Term;
384   if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
385   sqlite3VdbeChangeEncoding(pMem, enc);
386   return SQLITE_OK;
387 }
388 
389 /*
390 ** Memory cell pMem contains the context of an aggregate function.
391 ** This routine calls the finalize method for that function.  The
392 ** result of the aggregate is stored back into pMem.
393 **
394 ** Return SQLITE_ERROR if the finalizer reports an error.  SQLITE_OK
395 ** otherwise.
396 */
397 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
398   sqlite3_context ctx;
399   Mem t;
400   assert( pFunc!=0 );
401   assert( pFunc->xFinalize!=0 );
402   assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
403   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
404   memset(&ctx, 0, sizeof(ctx));
405   memset(&t, 0, sizeof(t));
406   t.flags = MEM_Null;
407   t.db = pMem->db;
408   ctx.pOut = &t;
409   ctx.pMem = pMem;
410   ctx.pFunc = pFunc;
411   pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
412   assert( (pMem->flags & MEM_Dyn)==0 );
413   if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
414   memcpy(pMem, &t, sizeof(t));
415   return ctx.isError;
416 }
417 
418 /*
419 ** Memory cell pAccum contains the context of an aggregate function.
420 ** This routine calls the xValue method for that function and stores
421 ** the results in memory cell pMem.
422 **
423 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
424 ** otherwise.
425 */
426 #ifndef SQLITE_OMIT_WINDOWFUNC
427 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
428   sqlite3_context ctx;
429   Mem t;
430   assert( pFunc!=0 );
431   assert( pFunc->xValue!=0 );
432   assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
433   assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) );
434   memset(&ctx, 0, sizeof(ctx));
435   memset(&t, 0, sizeof(t));
436   t.flags = MEM_Null;
437   t.db = pAccum->db;
438   sqlite3VdbeMemSetNull(pOut);
439   ctx.pOut = pOut;
440   ctx.pMem = pAccum;
441   ctx.pFunc = pFunc;
442   pFunc->xValue(&ctx);
443   return ctx.isError;
444 }
445 #endif /* SQLITE_OMIT_WINDOWFUNC */
446 
447 /*
448 ** If the memory cell contains a value that must be freed by
449 ** invoking the external callback in Mem.xDel, then this routine
450 ** will free that value.  It also sets Mem.flags to MEM_Null.
451 **
452 ** This is a helper routine for sqlite3VdbeMemSetNull() and
453 ** for sqlite3VdbeMemRelease().  Use those other routines as the
454 ** entry point for releasing Mem resources.
455 */
456 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
457   assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
458   assert( VdbeMemDynamic(p) );
459   if( p->flags&MEM_Agg ){
460     sqlite3VdbeMemFinalize(p, p->u.pDef);
461     assert( (p->flags & MEM_Agg)==0 );
462     testcase( p->flags & MEM_Dyn );
463   }
464   if( p->flags&MEM_Dyn ){
465     assert( (p->flags&MEM_RowSet)==0 );
466     assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
467     p->xDel((void *)p->z);
468   }else if( p->flags&MEM_RowSet ){
469     sqlite3RowSetClear(p->u.pRowSet);
470   }else if( p->flags&MEM_Frame ){
471     VdbeFrame *pFrame = p->u.pFrame;
472     pFrame->pParent = pFrame->v->pDelFrame;
473     pFrame->v->pDelFrame = pFrame;
474   }
475   p->flags = MEM_Null;
476 }
477 
478 /*
479 ** Release memory held by the Mem p, both external memory cleared
480 ** by p->xDel and memory in p->zMalloc.
481 **
482 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
483 ** the unusual case where there really is memory in p that needs
484 ** to be freed.
485 */
486 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
487   if( VdbeMemDynamic(p) ){
488     vdbeMemClearExternAndSetNull(p);
489   }
490   if( p->szMalloc ){
491     sqlite3DbFreeNN(p->db, p->zMalloc);
492     p->szMalloc = 0;
493   }
494   p->z = 0;
495 }
496 
497 /*
498 ** Release any memory resources held by the Mem.  Both the memory that is
499 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
500 **
501 ** Use this routine prior to clean up prior to abandoning a Mem, or to
502 ** reset a Mem back to its minimum memory utilization.
503 **
504 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
505 ** prior to inserting new content into the Mem.
506 */
507 void sqlite3VdbeMemRelease(Mem *p){
508   assert( sqlite3VdbeCheckMemInvariants(p) );
509   if( VdbeMemDynamic(p) || p->szMalloc ){
510     vdbeMemClear(p);
511   }
512 }
513 
514 /*
515 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
516 ** If the double is out of range of a 64-bit signed integer then
517 ** return the closest available 64-bit signed integer.
518 */
519 static SQLITE_NOINLINE i64 doubleToInt64(double r){
520 #ifdef SQLITE_OMIT_FLOATING_POINT
521   /* When floating-point is omitted, double and int64 are the same thing */
522   return r;
523 #else
524   /*
525   ** Many compilers we encounter do not define constants for the
526   ** minimum and maximum 64-bit integers, or they define them
527   ** inconsistently.  And many do not understand the "LL" notation.
528   ** So we define our own static constants here using nothing
529   ** larger than a 32-bit integer constant.
530   */
531   static const i64 maxInt = LARGEST_INT64;
532   static const i64 minInt = SMALLEST_INT64;
533 
534   if( r<=(double)minInt ){
535     return minInt;
536   }else if( r>=(double)maxInt ){
537     return maxInt;
538   }else{
539     return (i64)r;
540   }
541 #endif
542 }
543 
544 /*
545 ** Return some kind of integer value which is the best we can do
546 ** at representing the value that *pMem describes as an integer.
547 ** If pMem is an integer, then the value is exact.  If pMem is
548 ** a floating-point then the value returned is the integer part.
549 ** If pMem is a string or blob, then we make an attempt to convert
550 ** it into an integer and return that.  If pMem represents an
551 ** an SQL-NULL value, return 0.
552 **
553 ** If pMem represents a string value, its encoding might be changed.
554 */
555 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){
556   i64 value = 0;
557   sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
558   return value;
559 }
560 i64 sqlite3VdbeIntValue(Mem *pMem){
561   int flags;
562   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
563   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
564   flags = pMem->flags;
565   if( flags & MEM_Int ){
566     return pMem->u.i;
567   }else if( flags & MEM_Real ){
568     return doubleToInt64(pMem->u.r);
569   }else if( flags & (MEM_Str|MEM_Blob) ){
570     assert( pMem->z || pMem->n==0 );
571     return memIntValue(pMem);
572   }else{
573     return 0;
574   }
575 }
576 
577 /*
578 ** Return the best representation of pMem that we can get into a
579 ** double.  If pMem is already a double or an integer, return its
580 ** value.  If it is a string or blob, try to convert it to a double.
581 ** If it is a NULL, return 0.0.
582 */
583 static SQLITE_NOINLINE double memRealValue(Mem *pMem){
584   /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
585   double val = (double)0;
586   sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
587   return val;
588 }
589 double sqlite3VdbeRealValue(Mem *pMem){
590   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
591   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
592   if( pMem->flags & MEM_Real ){
593     return pMem->u.r;
594   }else if( pMem->flags & MEM_Int ){
595     return (double)pMem->u.i;
596   }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
597     return memRealValue(pMem);
598   }else{
599     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
600     return (double)0;
601   }
602 }
603 
604 /*
605 ** Return 1 if pMem represents true, and return 0 if pMem represents false.
606 ** Return the value ifNull if pMem is NULL.
607 */
608 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
609   if( pMem->flags & MEM_Int ) return pMem->u.i!=0;
610   if( pMem->flags & MEM_Null ) return ifNull;
611   return sqlite3VdbeRealValue(pMem)!=0.0;
612 }
613 
614 /*
615 ** The MEM structure is already a MEM_Real.  Try to also make it a
616 ** MEM_Int if we can.
617 */
618 void sqlite3VdbeIntegerAffinity(Mem *pMem){
619   i64 ix;
620   assert( pMem->flags & MEM_Real );
621   assert( (pMem->flags & MEM_RowSet)==0 );
622   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
623   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
624 
625   ix = doubleToInt64(pMem->u.r);
626 
627   /* Only mark the value as an integer if
628   **
629   **    (1) the round-trip conversion real->int->real is a no-op, and
630   **    (2) The integer is neither the largest nor the smallest
631   **        possible integer (ticket #3922)
632   **
633   ** The second and third terms in the following conditional enforces
634   ** the second condition under the assumption that addition overflow causes
635   ** values to wrap around.
636   */
637   if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
638     pMem->u.i = ix;
639     MemSetTypeFlag(pMem, MEM_Int);
640   }
641 }
642 
643 /*
644 ** Convert pMem to type integer.  Invalidate any prior representations.
645 */
646 int sqlite3VdbeMemIntegerify(Mem *pMem){
647   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
648   assert( (pMem->flags & MEM_RowSet)==0 );
649   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
650 
651   pMem->u.i = sqlite3VdbeIntValue(pMem);
652   MemSetTypeFlag(pMem, MEM_Int);
653   return SQLITE_OK;
654 }
655 
656 /*
657 ** Convert pMem so that it is of type MEM_Real.
658 ** Invalidate any prior representations.
659 */
660 int sqlite3VdbeMemRealify(Mem *pMem){
661   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
662   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
663 
664   pMem->u.r = sqlite3VdbeRealValue(pMem);
665   MemSetTypeFlag(pMem, MEM_Real);
666   return SQLITE_OK;
667 }
668 
669 /* Compare a floating point value to an integer.  Return true if the two
670 ** values are the same within the precision of the floating point value.
671 **
672 ** For some versions of GCC on 32-bit machines, if you do the more obvious
673 ** comparison of "r1==(double)i" you sometimes get an answer of false even
674 ** though the r1 and (double)i values are bit-for-bit the same.
675 */
676 static int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
677   double r2 = (double)i;
678   return memcmp(&r1, &r2, sizeof(r1))==0;
679 }
680 
681 /*
682 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
683 ** Invalidate any prior representations.
684 **
685 ** Every effort is made to force the conversion, even if the input
686 ** is a string that does not look completely like a number.  Convert
687 ** as much of the string as we can and ignore the rest.
688 */
689 int sqlite3VdbeMemNumerify(Mem *pMem){
690   if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
691     int rc;
692     assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
693     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
694     rc = sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc);
695     if( rc==0 ){
696       MemSetTypeFlag(pMem, MEM_Int);
697     }else{
698       i64 i = pMem->u.i;
699       sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
700       if( rc==1 && sqlite3RealSameAsInt(pMem->u.r, i) ){
701         pMem->u.i = i;
702         MemSetTypeFlag(pMem, MEM_Int);
703       }else{
704         MemSetTypeFlag(pMem, MEM_Real);
705       }
706     }
707   }
708   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
709   pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
710   return SQLITE_OK;
711 }
712 
713 /*
714 ** Cast the datatype of the value in pMem according to the affinity
715 ** "aff".  Casting is different from applying affinity in that a cast
716 ** is forced.  In other words, the value is converted into the desired
717 ** affinity even if that results in loss of data.  This routine is
718 ** used (for example) to implement the SQL "cast()" operator.
719 */
720 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
721   if( pMem->flags & MEM_Null ) return;
722   switch( aff ){
723     case SQLITE_AFF_BLOB: {   /* Really a cast to BLOB */
724       if( (pMem->flags & MEM_Blob)==0 ){
725         sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
726         assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
727         if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
728       }else{
729         pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
730       }
731       break;
732     }
733     case SQLITE_AFF_NUMERIC: {
734       sqlite3VdbeMemNumerify(pMem);
735       break;
736     }
737     case SQLITE_AFF_INTEGER: {
738       sqlite3VdbeMemIntegerify(pMem);
739       break;
740     }
741     case SQLITE_AFF_REAL: {
742       sqlite3VdbeMemRealify(pMem);
743       break;
744     }
745     default: {
746       assert( aff==SQLITE_AFF_TEXT );
747       assert( MEM_Str==(MEM_Blob>>3) );
748       pMem->flags |= (pMem->flags&MEM_Blob)>>3;
749       sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
750       assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
751       pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
752       break;
753     }
754   }
755 }
756 
757 /*
758 ** Initialize bulk memory to be a consistent Mem object.
759 **
760 ** The minimum amount of initialization feasible is performed.
761 */
762 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
763   assert( (flags & ~MEM_TypeMask)==0 );
764   pMem->flags = flags;
765   pMem->db = db;
766   pMem->szMalloc = 0;
767 }
768 
769 
770 /*
771 ** Delete any previous value and set the value stored in *pMem to NULL.
772 **
773 ** This routine calls the Mem.xDel destructor to dispose of values that
774 ** require the destructor.  But it preserves the Mem.zMalloc memory allocation.
775 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
776 ** routine to invoke the destructor and deallocates Mem.zMalloc.
777 **
778 ** Use this routine to reset the Mem prior to insert a new value.
779 **
780 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
781 */
782 void sqlite3VdbeMemSetNull(Mem *pMem){
783   if( VdbeMemDynamic(pMem) ){
784     vdbeMemClearExternAndSetNull(pMem);
785   }else{
786     pMem->flags = MEM_Null;
787   }
788 }
789 void sqlite3ValueSetNull(sqlite3_value *p){
790   sqlite3VdbeMemSetNull((Mem*)p);
791 }
792 
793 /*
794 ** Delete any previous value and set the value to be a BLOB of length
795 ** n containing all zeros.
796 */
797 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
798   sqlite3VdbeMemRelease(pMem);
799   pMem->flags = MEM_Blob|MEM_Zero;
800   pMem->n = 0;
801   if( n<0 ) n = 0;
802   pMem->u.nZero = n;
803   pMem->enc = SQLITE_UTF8;
804   pMem->z = 0;
805 }
806 
807 /*
808 ** The pMem is known to contain content that needs to be destroyed prior
809 ** to a value change.  So invoke the destructor, then set the value to
810 ** a 64-bit integer.
811 */
812 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
813   sqlite3VdbeMemSetNull(pMem);
814   pMem->u.i = val;
815   pMem->flags = MEM_Int;
816 }
817 
818 /*
819 ** Delete any previous value and set the value stored in *pMem to val,
820 ** manifest type INTEGER.
821 */
822 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
823   if( VdbeMemDynamic(pMem) ){
824     vdbeReleaseAndSetInt64(pMem, val);
825   }else{
826     pMem->u.i = val;
827     pMem->flags = MEM_Int;
828   }
829 }
830 
831 /* A no-op destructor */
832 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
833 
834 /*
835 ** Set the value stored in *pMem should already be a NULL.
836 ** Also store a pointer to go with it.
837 */
838 void sqlite3VdbeMemSetPointer(
839   Mem *pMem,
840   void *pPtr,
841   const char *zPType,
842   void (*xDestructor)(void*)
843 ){
844   assert( pMem->flags==MEM_Null );
845   pMem->u.zPType = zPType ? zPType : "";
846   pMem->z = pPtr;
847   pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
848   pMem->eSubtype = 'p';
849   pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
850 }
851 
852 #ifndef SQLITE_OMIT_FLOATING_POINT
853 /*
854 ** Delete any previous value and set the value stored in *pMem to val,
855 ** manifest type REAL.
856 */
857 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
858   sqlite3VdbeMemSetNull(pMem);
859   if( !sqlite3IsNaN(val) ){
860     pMem->u.r = val;
861     pMem->flags = MEM_Real;
862   }
863 }
864 #endif
865 
866 /*
867 ** Delete any previous value and set the value of pMem to be an
868 ** empty boolean index.
869 */
870 void sqlite3VdbeMemSetRowSet(Mem *pMem){
871   sqlite3 *db = pMem->db;
872   assert( db!=0 );
873   assert( (pMem->flags & MEM_RowSet)==0 );
874   sqlite3VdbeMemRelease(pMem);
875   pMem->zMalloc = sqlite3DbMallocRawNN(db, 64);
876   if( db->mallocFailed ){
877     pMem->flags = MEM_Null;
878     pMem->szMalloc = 0;
879   }else{
880     assert( pMem->zMalloc );
881     pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
882     pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);
883     assert( pMem->u.pRowSet!=0 );
884     pMem->flags = MEM_RowSet;
885   }
886 }
887 
888 /*
889 ** Return true if the Mem object contains a TEXT or BLOB that is
890 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
891 */
892 int sqlite3VdbeMemTooBig(Mem *p){
893   assert( p->db!=0 );
894   if( p->flags & (MEM_Str|MEM_Blob) ){
895     int n = p->n;
896     if( p->flags & MEM_Zero ){
897       n += p->u.nZero;
898     }
899     return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
900   }
901   return 0;
902 }
903 
904 #ifdef SQLITE_DEBUG
905 /*
906 ** This routine prepares a memory cell for modification by breaking
907 ** its link to a shallow copy and by marking any current shallow
908 ** copies of this cell as invalid.
909 **
910 ** This is used for testing and debugging only - to make sure shallow
911 ** copies are not misused.
912 */
913 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
914   int i;
915   Mem *pX;
916   for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){
917     if( pX->pScopyFrom==pMem ){
918       /* If pX is marked as a shallow copy of pMem, then verify that
919       ** no significant changes have been made to pX since the OP_SCopy.
920       ** A significant change would indicated a missed call to this
921       ** function for pX.  Minor changes, such as adding or removing a
922       ** dual type, are allowed, as long as the underlying value is the
923       ** same. */
924       u16 mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
925       assert( (mFlags&MEM_Int)==0 || pMem->u.i==pX->u.i );
926       assert( (mFlags&MEM_Real)==0 || pMem->u.r==pX->u.r );
927       assert( (mFlags&MEM_Str)==0  || (pMem->n==pX->n && pMem->z==pX->z) );
928       assert( (mFlags&MEM_Blob)==0  || sqlite3BlobCompare(pMem,pX)==0 );
929 
930       /* pMem is the register that is changing.  But also mark pX as
931       ** undefined so that we can quickly detect the shallow-copy error */
932       pX->flags = MEM_Undefined;
933       pX->pScopyFrom = 0;
934     }
935   }
936   pMem->pScopyFrom = 0;
937 #ifdef SQLITE_DEBUG_COLUMN_CACHE
938   pMem->iTabColHash = 0;
939 #endif
940 }
941 #endif /* SQLITE_DEBUG */
942 
943 
944 /*
945 ** Make an shallow copy of pFrom into pTo.  Prior contents of
946 ** pTo are freed.  The pFrom->z field is not duplicated.  If
947 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
948 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
949 */
950 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
951   vdbeMemClearExternAndSetNull(pTo);
952   assert( !VdbeMemDynamic(pTo) );
953   sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
954 }
955 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
956   assert( (pFrom->flags & MEM_RowSet)==0 );
957   assert( pTo->db==pFrom->db );
958   if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
959   memcpy(pTo, pFrom, MEMCELLSIZE);
960 #ifdef SQLITE_DEBUG_COLUMNCACHE
961   pTo->iTabColHash = pFrom->iTabColHash;
962 #endif
963   if( (pFrom->flags&MEM_Static)==0 ){
964     pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
965     assert( srcType==MEM_Ephem || srcType==MEM_Static );
966     pTo->flags |= srcType;
967   }
968 }
969 
970 /*
971 ** Make a full copy of pFrom into pTo.  Prior contents of pTo are
972 ** freed before the copy is made.
973 */
974 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
975   int rc = SQLITE_OK;
976 
977   assert( (pFrom->flags & MEM_RowSet)==0 );
978   if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
979   memcpy(pTo, pFrom, MEMCELLSIZE);
980 #ifdef SQLITE_DEBUG_COLUMNCACHE
981   pTo->iTabColHash = pFrom->iTabColHash;
982 #endif
983   pTo->flags &= ~MEM_Dyn;
984   if( pTo->flags&(MEM_Str|MEM_Blob) ){
985     if( 0==(pFrom->flags&MEM_Static) ){
986       pTo->flags |= MEM_Ephem;
987       rc = sqlite3VdbeMemMakeWriteable(pTo);
988     }
989   }
990 
991   return rc;
992 }
993 
994 /*
995 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
996 ** freed. If pFrom contains ephemeral data, a copy is made.
997 **
998 ** pFrom contains an SQL NULL when this routine returns.
999 */
1000 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
1001   assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
1002   assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
1003   assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
1004 
1005   sqlite3VdbeMemRelease(pTo);
1006   memcpy(pTo, pFrom, sizeof(Mem));
1007   pFrom->flags = MEM_Null;
1008   pFrom->szMalloc = 0;
1009 }
1010 
1011 /*
1012 ** Change the value of a Mem to be a string or a BLOB.
1013 **
1014 ** The memory management strategy depends on the value of the xDel
1015 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
1016 ** string is copied into a (possibly existing) buffer managed by the
1017 ** Mem structure. Otherwise, any existing buffer is freed and the
1018 ** pointer copied.
1019 **
1020 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1021 ** size limit) then no memory allocation occurs.  If the string can be
1022 ** stored without allocating memory, then it is.  If a memory allocation
1023 ** is required to store the string, then value of pMem is unchanged.  In
1024 ** either case, SQLITE_TOOBIG is returned.
1025 */
1026 int sqlite3VdbeMemSetStr(
1027   Mem *pMem,          /* Memory cell to set to string value */
1028   const char *z,      /* String pointer */
1029   int n,              /* Bytes in string, or negative */
1030   u8 enc,             /* Encoding of z.  0 for BLOBs */
1031   void (*xDel)(void*) /* Destructor function */
1032 ){
1033   int nByte = n;      /* New value for pMem->n */
1034   int iLimit;         /* Maximum allowed string or blob size */
1035   u16 flags = 0;      /* New value for pMem->flags */
1036 
1037   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
1038   assert( (pMem->flags & MEM_RowSet)==0 );
1039 
1040   /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
1041   if( !z ){
1042     sqlite3VdbeMemSetNull(pMem);
1043     return SQLITE_OK;
1044   }
1045 
1046   if( pMem->db ){
1047     iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
1048   }else{
1049     iLimit = SQLITE_MAX_LENGTH;
1050   }
1051   flags = (enc==0?MEM_Blob:MEM_Str);
1052   if( nByte<0 ){
1053     assert( enc!=0 );
1054     if( enc==SQLITE_UTF8 ){
1055       nByte = 0x7fffffff & (int)strlen(z);
1056       if( nByte>iLimit ) nByte = iLimit+1;
1057     }else{
1058       for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
1059     }
1060     flags |= MEM_Term;
1061   }
1062 
1063   /* The following block sets the new values of Mem.z and Mem.xDel. It
1064   ** also sets a flag in local variable "flags" to indicate the memory
1065   ** management (one of MEM_Dyn or MEM_Static).
1066   */
1067   if( xDel==SQLITE_TRANSIENT ){
1068     int nAlloc = nByte;
1069     if( flags&MEM_Term ){
1070       nAlloc += (enc==SQLITE_UTF8?1:2);
1071     }
1072     if( nByte>iLimit ){
1073       return SQLITE_TOOBIG;
1074     }
1075     testcase( nAlloc==0 );
1076     testcase( nAlloc==31 );
1077     testcase( nAlloc==32 );
1078     if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){
1079       return SQLITE_NOMEM_BKPT;
1080     }
1081     memcpy(pMem->z, z, nAlloc);
1082   }else if( xDel==SQLITE_DYNAMIC ){
1083     sqlite3VdbeMemRelease(pMem);
1084     pMem->zMalloc = pMem->z = (char *)z;
1085     pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
1086   }else{
1087     sqlite3VdbeMemRelease(pMem);
1088     pMem->z = (char *)z;
1089     pMem->xDel = xDel;
1090     flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
1091   }
1092 
1093   pMem->n = nByte;
1094   pMem->flags = flags;
1095   pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
1096 
1097 #ifndef SQLITE_OMIT_UTF16
1098   if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
1099     return SQLITE_NOMEM_BKPT;
1100   }
1101 #endif
1102 
1103   if( nByte>iLimit ){
1104     return SQLITE_TOOBIG;
1105   }
1106 
1107   return SQLITE_OK;
1108 }
1109 
1110 /*
1111 ** Move data out of a btree key or data field and into a Mem structure.
1112 ** The data is payload from the entry that pCur is currently pointing
1113 ** to.  offset and amt determine what portion of the data or key to retrieve.
1114 ** The result is written into the pMem element.
1115 **
1116 ** The pMem object must have been initialized.  This routine will use
1117 ** pMem->zMalloc to hold the content from the btree, if possible.  New
1118 ** pMem->zMalloc space will be allocated if necessary.  The calling routine
1119 ** is responsible for making sure that the pMem object is eventually
1120 ** destroyed.
1121 **
1122 ** If this routine fails for any reason (malloc returns NULL or unable
1123 ** to read from the disk) then the pMem is left in an inconsistent state.
1124 */
1125 static SQLITE_NOINLINE int vdbeMemFromBtreeResize(
1126   BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
1127   u32 offset,       /* Offset from the start of data to return bytes from. */
1128   u32 amt,          /* Number of bytes to return. */
1129   Mem *pMem         /* OUT: Return data in this Mem structure. */
1130 ){
1131   int rc;
1132   pMem->flags = MEM_Null;
1133   if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
1134     rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
1135     if( rc==SQLITE_OK ){
1136       pMem->z[amt] = 0;   /* Overrun area used when reading malformed records */
1137       pMem->flags = MEM_Blob;
1138       pMem->n = (int)amt;
1139     }else{
1140       sqlite3VdbeMemRelease(pMem);
1141     }
1142   }
1143   return rc;
1144 }
1145 int sqlite3VdbeMemFromBtree(
1146   BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
1147   u32 offset,       /* Offset from the start of data to return bytes from. */
1148   u32 amt,          /* Number of bytes to return. */
1149   Mem *pMem         /* OUT: Return data in this Mem structure. */
1150 ){
1151   char *zData;        /* Data from the btree layer */
1152   u32 available = 0;  /* Number of bytes available on the local btree page */
1153   int rc = SQLITE_OK; /* Return code */
1154 
1155   assert( sqlite3BtreeCursorIsValid(pCur) );
1156   assert( !VdbeMemDynamic(pMem) );
1157 
1158   /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1159   ** that both the BtShared and database handle mutexes are held. */
1160   assert( (pMem->flags & MEM_RowSet)==0 );
1161   zData = (char *)sqlite3BtreePayloadFetch(pCur, &available);
1162   assert( zData!=0 );
1163 
1164   if( offset+amt<=available ){
1165     pMem->z = &zData[offset];
1166     pMem->flags = MEM_Blob|MEM_Ephem;
1167     pMem->n = (int)amt;
1168   }else{
1169     rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem);
1170   }
1171 
1172   return rc;
1173 }
1174 
1175 /*
1176 ** The pVal argument is known to be a value other than NULL.
1177 ** Convert it into a string with encoding enc and return a pointer
1178 ** to a zero-terminated version of that string.
1179 */
1180 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1181   assert( pVal!=0 );
1182   assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1183   assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1184   assert( (pVal->flags & MEM_RowSet)==0 );
1185   assert( (pVal->flags & (MEM_Null))==0 );
1186   if( pVal->flags & (MEM_Blob|MEM_Str) ){
1187     if( ExpandBlob(pVal) ) return 0;
1188     pVal->flags |= MEM_Str;
1189     if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1190       sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1191     }
1192     if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1193       assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1194       if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1195         return 0;
1196       }
1197     }
1198     sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1199   }else{
1200     sqlite3VdbeMemStringify(pVal, enc, 0);
1201     assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1202   }
1203   assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1204               || pVal->db->mallocFailed );
1205   if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1206     assert( sqlite3VdbeMemConsistentDualRep(pVal) );
1207     return pVal->z;
1208   }else{
1209     return 0;
1210   }
1211 }
1212 
1213 /* This function is only available internally, it is not part of the
1214 ** external API. It works in a similar way to sqlite3_value_text(),
1215 ** except the data returned is in the encoding specified by the second
1216 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1217 ** SQLITE_UTF8.
1218 **
1219 ** (2006-02-16:)  The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1220 ** If that is the case, then the result must be aligned on an even byte
1221 ** boundary.
1222 */
1223 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1224   if( !pVal ) return 0;
1225   assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1226   assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1227   assert( (pVal->flags & MEM_RowSet)==0 );
1228   if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1229     assert( sqlite3VdbeMemConsistentDualRep(pVal) );
1230     return pVal->z;
1231   }
1232   if( pVal->flags&MEM_Null ){
1233     return 0;
1234   }
1235   return valueToText(pVal, enc);
1236 }
1237 
1238 /*
1239 ** Create a new sqlite3_value object.
1240 */
1241 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1242   Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1243   if( p ){
1244     p->flags = MEM_Null;
1245     p->db = db;
1246   }
1247   return p;
1248 }
1249 
1250 /*
1251 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1252 ** valueNew(). See comments above valueNew() for details.
1253 */
1254 struct ValueNewStat4Ctx {
1255   Parse *pParse;
1256   Index *pIdx;
1257   UnpackedRecord **ppRec;
1258   int iVal;
1259 };
1260 
1261 /*
1262 ** Allocate and return a pointer to a new sqlite3_value object. If
1263 ** the second argument to this function is NULL, the object is allocated
1264 ** by calling sqlite3ValueNew().
1265 **
1266 ** Otherwise, if the second argument is non-zero, then this function is
1267 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1268 ** already been allocated, allocate the UnpackedRecord structure that
1269 ** that function will return to its caller here. Then return a pointer to
1270 ** an sqlite3_value within the UnpackedRecord.a[] array.
1271 */
1272 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1273 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1274   if( p ){
1275     UnpackedRecord *pRec = p->ppRec[0];
1276 
1277     if( pRec==0 ){
1278       Index *pIdx = p->pIdx;      /* Index being probed */
1279       int nByte;                  /* Bytes of space to allocate */
1280       int i;                      /* Counter variable */
1281       int nCol = pIdx->nColumn;   /* Number of index columns including rowid */
1282 
1283       nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1284       pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1285       if( pRec ){
1286         pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1287         if( pRec->pKeyInfo ){
1288           assert( pRec->pKeyInfo->nAllField==nCol );
1289           assert( pRec->pKeyInfo->enc==ENC(db) );
1290           pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1291           for(i=0; i<nCol; i++){
1292             pRec->aMem[i].flags = MEM_Null;
1293             pRec->aMem[i].db = db;
1294           }
1295         }else{
1296           sqlite3DbFreeNN(db, pRec);
1297           pRec = 0;
1298         }
1299       }
1300       if( pRec==0 ) return 0;
1301       p->ppRec[0] = pRec;
1302     }
1303 
1304     pRec->nField = p->iVal+1;
1305     return &pRec->aMem[p->iVal];
1306   }
1307 #else
1308   UNUSED_PARAMETER(p);
1309 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1310   return sqlite3ValueNew(db);
1311 }
1312 
1313 /*
1314 ** The expression object indicated by the second argument is guaranteed
1315 ** to be a scalar SQL function. If
1316 **
1317 **   * all function arguments are SQL literals,
1318 **   * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1319 **   * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1320 **
1321 ** then this routine attempts to invoke the SQL function. Assuming no
1322 ** error occurs, output parameter (*ppVal) is set to point to a value
1323 ** object containing the result before returning SQLITE_OK.
1324 **
1325 ** Affinity aff is applied to the result of the function before returning.
1326 ** If the result is a text value, the sqlite3_value object uses encoding
1327 ** enc.
1328 **
1329 ** If the conditions above are not met, this function returns SQLITE_OK
1330 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1331 ** NULL and an SQLite error code returned.
1332 */
1333 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1334 static int valueFromFunction(
1335   sqlite3 *db,                    /* The database connection */
1336   Expr *p,                        /* The expression to evaluate */
1337   u8 enc,                         /* Encoding to use */
1338   u8 aff,                         /* Affinity to use */
1339   sqlite3_value **ppVal,          /* Write the new value here */
1340   struct ValueNewStat4Ctx *pCtx   /* Second argument for valueNew() */
1341 ){
1342   sqlite3_context ctx;            /* Context object for function invocation */
1343   sqlite3_value **apVal = 0;      /* Function arguments */
1344   int nVal = 0;                   /* Size of apVal[] array */
1345   FuncDef *pFunc = 0;             /* Function definition */
1346   sqlite3_value *pVal = 0;        /* New value */
1347   int rc = SQLITE_OK;             /* Return code */
1348   ExprList *pList = 0;            /* Function arguments */
1349   int i;                          /* Iterator variable */
1350 
1351   assert( pCtx!=0 );
1352   assert( (p->flags & EP_TokenOnly)==0 );
1353   pList = p->x.pList;
1354   if( pList ) nVal = pList->nExpr;
1355   pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1356   assert( pFunc );
1357   if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1358    || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1359   ){
1360     return SQLITE_OK;
1361   }
1362 
1363   if( pList ){
1364     apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1365     if( apVal==0 ){
1366       rc = SQLITE_NOMEM_BKPT;
1367       goto value_from_function_out;
1368     }
1369     for(i=0; i<nVal; i++){
1370       rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1371       if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1372     }
1373   }
1374 
1375   pVal = valueNew(db, pCtx);
1376   if( pVal==0 ){
1377     rc = SQLITE_NOMEM_BKPT;
1378     goto value_from_function_out;
1379   }
1380 
1381   assert( pCtx->pParse->rc==SQLITE_OK );
1382   memset(&ctx, 0, sizeof(ctx));
1383   ctx.pOut = pVal;
1384   ctx.pFunc = pFunc;
1385   pFunc->xSFunc(&ctx, nVal, apVal);
1386   if( ctx.isError ){
1387     rc = ctx.isError;
1388     sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1389   }else{
1390     sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1391     assert( rc==SQLITE_OK );
1392     rc = sqlite3VdbeChangeEncoding(pVal, enc);
1393     if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1394       rc = SQLITE_TOOBIG;
1395       pCtx->pParse->nErr++;
1396     }
1397   }
1398   pCtx->pParse->rc = rc;
1399 
1400  value_from_function_out:
1401   if( rc!=SQLITE_OK ){
1402     pVal = 0;
1403   }
1404   if( apVal ){
1405     for(i=0; i<nVal; i++){
1406       sqlite3ValueFree(apVal[i]);
1407     }
1408     sqlite3DbFreeNN(db, apVal);
1409   }
1410 
1411   *ppVal = pVal;
1412   return rc;
1413 }
1414 #else
1415 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1416 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1417 
1418 /*
1419 ** Extract a value from the supplied expression in the manner described
1420 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1421 ** using valueNew().
1422 **
1423 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1424 ** has been allocated, it is freed before returning. Or, if pCtx is not
1425 ** NULL, it is assumed that the caller will free any allocated object
1426 ** in all cases.
1427 */
1428 static int valueFromExpr(
1429   sqlite3 *db,                    /* The database connection */
1430   Expr *pExpr,                    /* The expression to evaluate */
1431   u8 enc,                         /* Encoding to use */
1432   u8 affinity,                    /* Affinity to use */
1433   sqlite3_value **ppVal,          /* Write the new value here */
1434   struct ValueNewStat4Ctx *pCtx   /* Second argument for valueNew() */
1435 ){
1436   int op;
1437   char *zVal = 0;
1438   sqlite3_value *pVal = 0;
1439   int negInt = 1;
1440   const char *zNeg = "";
1441   int rc = SQLITE_OK;
1442 
1443   assert( pExpr!=0 );
1444   while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
1445 #if defined(SQLITE_ENABLE_STAT3_OR_STAT4)
1446   if( op==TK_REGISTER ) op = pExpr->op2;
1447 #else
1448   if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1449 #endif
1450 
1451   /* Compressed expressions only appear when parsing the DEFAULT clause
1452   ** on a table column definition, and hence only when pCtx==0.  This
1453   ** check ensures that an EP_TokenOnly expression is never passed down
1454   ** into valueFromFunction(). */
1455   assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1456 
1457   if( op==TK_CAST ){
1458     u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1459     rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1460     testcase( rc!=SQLITE_OK );
1461     if( *ppVal ){
1462       sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1463       sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1464     }
1465     return rc;
1466   }
1467 
1468   /* Handle negative integers in a single step.  This is needed in the
1469   ** case when the value is -9223372036854775808.
1470   */
1471   if( op==TK_UMINUS
1472    && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1473     pExpr = pExpr->pLeft;
1474     op = pExpr->op;
1475     negInt = -1;
1476     zNeg = "-";
1477   }
1478 
1479   if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1480     pVal = valueNew(db, pCtx);
1481     if( pVal==0 ) goto no_mem;
1482     if( ExprHasProperty(pExpr, EP_IntValue) ){
1483       sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1484     }else{
1485       zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1486       if( zVal==0 ) goto no_mem;
1487       sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1488     }
1489     if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1490       sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1491     }else{
1492       sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1493     }
1494     if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
1495     if( enc!=SQLITE_UTF8 ){
1496       rc = sqlite3VdbeChangeEncoding(pVal, enc);
1497     }
1498   }else if( op==TK_UMINUS ) {
1499     /* This branch happens for multiple negative signs.  Ex: -(-5) */
1500     if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
1501      && pVal!=0
1502     ){
1503       sqlite3VdbeMemNumerify(pVal);
1504       if( pVal->flags & MEM_Real ){
1505         pVal->u.r = -pVal->u.r;
1506       }else if( pVal->u.i==SMALLEST_INT64 ){
1507         pVal->u.r = -(double)SMALLEST_INT64;
1508         MemSetTypeFlag(pVal, MEM_Real);
1509       }else{
1510         pVal->u.i = -pVal->u.i;
1511       }
1512       sqlite3ValueApplyAffinity(pVal, affinity, enc);
1513     }
1514   }else if( op==TK_NULL ){
1515     pVal = valueNew(db, pCtx);
1516     if( pVal==0 ) goto no_mem;
1517     sqlite3VdbeMemNumerify(pVal);
1518   }
1519 #ifndef SQLITE_OMIT_BLOB_LITERAL
1520   else if( op==TK_BLOB ){
1521     int nVal;
1522     assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1523     assert( pExpr->u.zToken[1]=='\'' );
1524     pVal = valueNew(db, pCtx);
1525     if( !pVal ) goto no_mem;
1526     zVal = &pExpr->u.zToken[2];
1527     nVal = sqlite3Strlen30(zVal)-1;
1528     assert( zVal[nVal]=='\'' );
1529     sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1530                          0, SQLITE_DYNAMIC);
1531   }
1532 #endif
1533 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1534   else if( op==TK_FUNCTION && pCtx!=0 ){
1535     rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1536   }
1537 #endif
1538   else if( op==TK_TRUEFALSE ){
1539      pVal = valueNew(db, pCtx);
1540      pVal->flags = MEM_Int;
1541      pVal->u.i = pExpr->u.zToken[4]==0;
1542   }
1543 
1544   *ppVal = pVal;
1545   return rc;
1546 
1547 no_mem:
1548 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1549   if( pCtx==0 || pCtx->pParse->nErr==0 )
1550 #endif
1551     sqlite3OomFault(db);
1552   sqlite3DbFree(db, zVal);
1553   assert( *ppVal==0 );
1554 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1555   if( pCtx==0 ) sqlite3ValueFree(pVal);
1556 #else
1557   assert( pCtx==0 ); sqlite3ValueFree(pVal);
1558 #endif
1559   return SQLITE_NOMEM_BKPT;
1560 }
1561 
1562 /*
1563 ** Create a new sqlite3_value object, containing the value of pExpr.
1564 **
1565 ** This only works for very simple expressions that consist of one constant
1566 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1567 ** be converted directly into a value, then the value is allocated and
1568 ** a pointer written to *ppVal. The caller is responsible for deallocating
1569 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1570 ** cannot be converted to a value, then *ppVal is set to NULL.
1571 */
1572 int sqlite3ValueFromExpr(
1573   sqlite3 *db,              /* The database connection */
1574   Expr *pExpr,              /* The expression to evaluate */
1575   u8 enc,                   /* Encoding to use */
1576   u8 affinity,              /* Affinity to use */
1577   sqlite3_value **ppVal     /* Write the new value here */
1578 ){
1579   return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
1580 }
1581 
1582 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1583 /*
1584 ** The implementation of the sqlite_record() function. This function accepts
1585 ** a single argument of any type. The return value is a formatted database
1586 ** record (a blob) containing the argument value.
1587 **
1588 ** This is used to convert the value stored in the 'sample' column of the
1589 ** sqlite_stat3 table to the record format SQLite uses internally.
1590 */
1591 static void recordFunc(
1592   sqlite3_context *context,
1593   int argc,
1594   sqlite3_value **argv
1595 ){
1596   const int file_format = 1;
1597   u32 iSerial;                    /* Serial type */
1598   int nSerial;                    /* Bytes of space for iSerial as varint */
1599   u32 nVal;                       /* Bytes of space required for argv[0] */
1600   int nRet;
1601   sqlite3 *db;
1602   u8 *aRet;
1603 
1604   UNUSED_PARAMETER( argc );
1605   iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal);
1606   nSerial = sqlite3VarintLen(iSerial);
1607   db = sqlite3_context_db_handle(context);
1608 
1609   nRet = 1 + nSerial + nVal;
1610   aRet = sqlite3DbMallocRawNN(db, nRet);
1611   if( aRet==0 ){
1612     sqlite3_result_error_nomem(context);
1613   }else{
1614     aRet[0] = nSerial+1;
1615     putVarint32(&aRet[1], iSerial);
1616     sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
1617     sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
1618     sqlite3DbFreeNN(db, aRet);
1619   }
1620 }
1621 
1622 /*
1623 ** Register built-in functions used to help read ANALYZE data.
1624 */
1625 void sqlite3AnalyzeFunctions(void){
1626   static FuncDef aAnalyzeTableFuncs[] = {
1627     FUNCTION(sqlite_record,   1, 0, 0, recordFunc),
1628   };
1629   sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs));
1630 }
1631 
1632 /*
1633 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1634 **
1635 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1636 ** pAlloc if one does not exist and the new value is added to the
1637 ** UnpackedRecord object.
1638 **
1639 ** A value is extracted in the following cases:
1640 **
1641 **  * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1642 **
1643 **  * The expression is a bound variable, and this is a reprepare, or
1644 **
1645 **  * The expression is a literal value.
1646 **
1647 ** On success, *ppVal is made to point to the extracted value.  The caller
1648 ** is responsible for ensuring that the value is eventually freed.
1649 */
1650 static int stat4ValueFromExpr(
1651   Parse *pParse,                  /* Parse context */
1652   Expr *pExpr,                    /* The expression to extract a value from */
1653   u8 affinity,                    /* Affinity to use */
1654   struct ValueNewStat4Ctx *pAlloc,/* How to allocate space.  Or NULL */
1655   sqlite3_value **ppVal           /* OUT: New value object (or NULL) */
1656 ){
1657   int rc = SQLITE_OK;
1658   sqlite3_value *pVal = 0;
1659   sqlite3 *db = pParse->db;
1660 
1661   /* Skip over any TK_COLLATE nodes */
1662   pExpr = sqlite3ExprSkipCollate(pExpr);
1663 
1664   assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
1665   if( !pExpr ){
1666     pVal = valueNew(db, pAlloc);
1667     if( pVal ){
1668       sqlite3VdbeMemSetNull((Mem*)pVal);
1669     }
1670   }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
1671     Vdbe *v;
1672     int iBindVar = pExpr->iColumn;
1673     sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1674     if( (v = pParse->pReprepare)!=0 ){
1675       pVal = valueNew(db, pAlloc);
1676       if( pVal ){
1677         rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1678         sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1679         pVal->db = pParse->db;
1680       }
1681     }
1682   }else{
1683     rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1684   }
1685 
1686   assert( pVal==0 || pVal->db==db );
1687   *ppVal = pVal;
1688   return rc;
1689 }
1690 
1691 /*
1692 ** This function is used to allocate and populate UnpackedRecord
1693 ** structures intended to be compared against sample index keys stored
1694 ** in the sqlite_stat4 table.
1695 **
1696 ** A single call to this function populates zero or more fields of the
1697 ** record starting with field iVal (fields are numbered from left to
1698 ** right starting with 0). A single field is populated if:
1699 **
1700 **  * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1701 **
1702 **  * The expression is a bound variable, and this is a reprepare, or
1703 **
1704 **  * The sqlite3ValueFromExpr() function is able to extract a value
1705 **    from the expression (i.e. the expression is a literal value).
1706 **
1707 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1708 ** vector components that match either of the two latter criteria listed
1709 ** above.
1710 **
1711 ** Before any value is appended to the record, the affinity of the
1712 ** corresponding column within index pIdx is applied to it. Before
1713 ** this function returns, output parameter *pnExtract is set to the
1714 ** number of values appended to the record.
1715 **
1716 ** When this function is called, *ppRec must either point to an object
1717 ** allocated by an earlier call to this function, or must be NULL. If it
1718 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1719 ** is allocated (and *ppRec set to point to it) before returning.
1720 **
1721 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1722 ** error if a value cannot be extracted from pExpr. If an error does
1723 ** occur, an SQLite error code is returned.
1724 */
1725 int sqlite3Stat4ProbeSetValue(
1726   Parse *pParse,                  /* Parse context */
1727   Index *pIdx,                    /* Index being probed */
1728   UnpackedRecord **ppRec,         /* IN/OUT: Probe record */
1729   Expr *pExpr,                    /* The expression to extract a value from */
1730   int nElem,                      /* Maximum number of values to append */
1731   int iVal,                       /* Array element to populate */
1732   int *pnExtract                  /* OUT: Values appended to the record */
1733 ){
1734   int rc = SQLITE_OK;
1735   int nExtract = 0;
1736 
1737   if( pExpr==0 || pExpr->op!=TK_SELECT ){
1738     int i;
1739     struct ValueNewStat4Ctx alloc;
1740 
1741     alloc.pParse = pParse;
1742     alloc.pIdx = pIdx;
1743     alloc.ppRec = ppRec;
1744 
1745     for(i=0; i<nElem; i++){
1746       sqlite3_value *pVal = 0;
1747       Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
1748       u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1749       alloc.iVal = iVal+i;
1750       rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1751       if( !pVal ) break;
1752       nExtract++;
1753     }
1754   }
1755 
1756   *pnExtract = nExtract;
1757   return rc;
1758 }
1759 
1760 /*
1761 ** Attempt to extract a value from expression pExpr using the methods
1762 ** as described for sqlite3Stat4ProbeSetValue() above.
1763 **
1764 ** If successful, set *ppVal to point to a new value object and return
1765 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1766 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1767 ** does occur, return an SQLite error code. The final value of *ppVal
1768 ** is undefined in this case.
1769 */
1770 int sqlite3Stat4ValueFromExpr(
1771   Parse *pParse,                  /* Parse context */
1772   Expr *pExpr,                    /* The expression to extract a value from */
1773   u8 affinity,                    /* Affinity to use */
1774   sqlite3_value **ppVal           /* OUT: New value object (or NULL) */
1775 ){
1776   return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1777 }
1778 
1779 /*
1780 ** Extract the iCol-th column from the nRec-byte record in pRec.  Write
1781 ** the column value into *ppVal.  If *ppVal is initially NULL then a new
1782 ** sqlite3_value object is allocated.
1783 **
1784 ** If *ppVal is initially NULL then the caller is responsible for
1785 ** ensuring that the value written into *ppVal is eventually freed.
1786 */
1787 int sqlite3Stat4Column(
1788   sqlite3 *db,                    /* Database handle */
1789   const void *pRec,               /* Pointer to buffer containing record */
1790   int nRec,                       /* Size of buffer pRec in bytes */
1791   int iCol,                       /* Column to extract */
1792   sqlite3_value **ppVal           /* OUT: Extracted value */
1793 ){
1794   u32 t;                          /* a column type code */
1795   int nHdr;                       /* Size of the header in the record */
1796   int iHdr;                       /* Next unread header byte */
1797   int iField;                     /* Next unread data byte */
1798   int szField;                    /* Size of the current data field */
1799   int i;                          /* Column index */
1800   u8 *a = (u8*)pRec;              /* Typecast byte array */
1801   Mem *pMem = *ppVal;             /* Write result into this Mem object */
1802 
1803   assert( iCol>0 );
1804   iHdr = getVarint32(a, nHdr);
1805   if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1806   iField = nHdr;
1807   for(i=0; i<=iCol; i++){
1808     iHdr += getVarint32(&a[iHdr], t);
1809     testcase( iHdr==nHdr );
1810     testcase( iHdr==nHdr+1 );
1811     if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1812     szField = sqlite3VdbeSerialTypeLen(t);
1813     iField += szField;
1814   }
1815   testcase( iField==nRec );
1816   testcase( iField==nRec+1 );
1817   if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1818   if( pMem==0 ){
1819     pMem = *ppVal = sqlite3ValueNew(db);
1820     if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1821   }
1822   sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1823   pMem->enc = ENC(db);
1824   return SQLITE_OK;
1825 }
1826 
1827 /*
1828 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1829 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1830 ** the object.
1831 */
1832 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1833   if( pRec ){
1834     int i;
1835     int nCol = pRec->pKeyInfo->nAllField;
1836     Mem *aMem = pRec->aMem;
1837     sqlite3 *db = aMem[0].db;
1838     for(i=0; i<nCol; i++){
1839       sqlite3VdbeMemRelease(&aMem[i]);
1840     }
1841     sqlite3KeyInfoUnref(pRec->pKeyInfo);
1842     sqlite3DbFreeNN(db, pRec);
1843   }
1844 }
1845 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1846 
1847 /*
1848 ** Change the string value of an sqlite3_value object
1849 */
1850 void sqlite3ValueSetStr(
1851   sqlite3_value *v,     /* Value to be set */
1852   int n,                /* Length of string z */
1853   const void *z,        /* Text of the new string */
1854   u8 enc,               /* Encoding to use */
1855   void (*xDel)(void*)   /* Destructor for the string */
1856 ){
1857   if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1858 }
1859 
1860 /*
1861 ** Free an sqlite3_value object
1862 */
1863 void sqlite3ValueFree(sqlite3_value *v){
1864   if( !v ) return;
1865   sqlite3VdbeMemRelease((Mem *)v);
1866   sqlite3DbFreeNN(((Mem*)v)->db, v);
1867 }
1868 
1869 /*
1870 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1871 ** sqlite3_value object assuming that it uses the encoding "enc".
1872 ** The valueBytes() routine is a helper function.
1873 */
1874 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1875   return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1876 }
1877 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1878   Mem *p = (Mem*)pVal;
1879   assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1880   if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1881     return p->n;
1882   }
1883   if( (p->flags & MEM_Blob)!=0 ){
1884     if( p->flags & MEM_Zero ){
1885       return p->n + p->u.nZero;
1886     }else{
1887       return p->n;
1888     }
1889   }
1890   if( p->flags & MEM_Null ) return 0;
1891   return valueBytes(pVal, enc);
1892 }
1893