1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 /* True if X is a power of two. 0 is considered a power of two here. 22 ** In other words, return true if X has at most one bit set. 23 */ 24 #define ISPOWEROF2(X) (((X)&((X)-1))==0) 25 26 #ifdef SQLITE_DEBUG 27 /* 28 ** Check invariants on a Mem object. 29 ** 30 ** This routine is intended for use inside of assert() statements, like 31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); 32 */ 33 int sqlite3VdbeCheckMemInvariants(Mem *p){ 34 /* If MEM_Dyn is set then Mem.xDel!=0. 35 ** Mem.xDel might not be initialized if MEM_Dyn is clear. 36 */ 37 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); 38 39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we 40 ** ensure that if Mem.szMalloc>0 then it is safe to do 41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. 42 ** That saves a few cycles in inner loops. */ 43 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); 44 45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */ 46 assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) ); 47 48 if( p->flags & MEM_Null ){ 49 /* Cannot be both MEM_Null and some other type */ 50 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 ); 51 52 /* If MEM_Null is set, then either the value is a pure NULL (the usual 53 ** case) or it is a pointer set using sqlite3_bind_pointer() or 54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be 55 ** set. 56 */ 57 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){ 58 /* This is a pointer type. There may be a flag to indicate what to 59 ** do with the pointer. */ 60 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 61 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 62 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 ); 63 64 /* No other bits set */ 65 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind 66 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 ); 67 }else{ 68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn, 69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */ 70 } 71 }else{ 72 /* The MEM_Cleared bit is only allowed on NULLs */ 73 assert( (p->flags & MEM_Cleared)==0 ); 74 } 75 76 /* The szMalloc field holds the correct memory allocation size */ 77 assert( p->szMalloc==0 78 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) ); 79 80 /* If p holds a string or blob, the Mem.z must point to exactly 81 ** one of the following: 82 ** 83 ** (1) Memory in Mem.zMalloc and managed by the Mem object 84 ** (2) Memory to be freed using Mem.xDel 85 ** (3) An ephemeral string or blob 86 ** (4) A static string or blob 87 */ 88 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ 89 assert( 90 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + 91 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 92 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 93 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 94 ); 95 } 96 return 1; 97 } 98 #endif 99 100 /* 101 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal 102 ** into a buffer. 103 */ 104 static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){ 105 StrAccum acc; 106 assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) ); 107 assert( sz>22 ); 108 if( p->flags & MEM_Int ){ 109 #if GCC_VERSION>=7000000 110 /* Work-around for GCC bug 111 ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */ 112 i64 x; 113 assert( (p->flags&MEM_Int)*2==sizeof(x) ); 114 memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2); 115 sqlite3Int64ToText(x, zBuf); 116 #else 117 sqlite3Int64ToText(p->u.i, zBuf); 118 #endif 119 }else{ 120 sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0); 121 sqlite3_str_appendf(&acc, "%!.15g", 122 (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r); 123 assert( acc.zText==zBuf && acc.mxAlloc<=0 ); 124 zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */ 125 } 126 } 127 128 #ifdef SQLITE_DEBUG 129 /* 130 ** Validity checks on pMem. pMem holds a string. 131 ** 132 ** (1) Check that string value of pMem agrees with its integer or real value. 133 ** (2) Check that the string is correctly zero terminated 134 ** 135 ** A single int or real value always converts to the same strings. But 136 ** many different strings can be converted into the same int or real. 137 ** If a table contains a numeric value and an index is based on the 138 ** corresponding string value, then it is important that the string be 139 ** derived from the numeric value, not the other way around, to ensure 140 ** that the index and table are consistent. See ticket 141 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for 142 ** an example. 143 ** 144 ** This routine looks at pMem to verify that if it has both a numeric 145 ** representation and a string representation then the string rep has 146 ** been derived from the numeric and not the other way around. It returns 147 ** true if everything is ok and false if there is a problem. 148 ** 149 ** This routine is for use inside of assert() statements only. 150 */ 151 int sqlite3VdbeMemValidStrRep(Mem *p){ 152 char zBuf[100]; 153 char *z; 154 int i, j, incr; 155 if( (p->flags & MEM_Str)==0 ) return 1; 156 if( p->flags & MEM_Term ){ 157 /* Insure that the string is properly zero-terminated. Pay particular 158 ** attention to the case where p->n is odd */ 159 if( p->szMalloc>0 && p->z==p->zMalloc ){ 160 assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 ); 161 assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 ); 162 } 163 assert( p->z[p->n]==0 ); 164 assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 ); 165 assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 ); 166 } 167 if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1; 168 vdbeMemRenderNum(sizeof(zBuf), zBuf, p); 169 z = p->z; 170 i = j = 0; 171 incr = 1; 172 if( p->enc!=SQLITE_UTF8 ){ 173 incr = 2; 174 if( p->enc==SQLITE_UTF16BE ) z++; 175 } 176 while( zBuf[j] ){ 177 if( zBuf[j++]!=z[i] ) return 0; 178 i += incr; 179 } 180 return 1; 181 } 182 #endif /* SQLITE_DEBUG */ 183 184 /* 185 ** If pMem is an object with a valid string representation, this routine 186 ** ensures the internal encoding for the string representation is 187 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 188 ** 189 ** If pMem is not a string object, or the encoding of the string 190 ** representation is already stored using the requested encoding, then this 191 ** routine is a no-op. 192 ** 193 ** SQLITE_OK is returned if the conversion is successful (or not required). 194 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 195 ** between formats. 196 */ 197 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 198 #ifndef SQLITE_OMIT_UTF16 199 int rc; 200 #endif 201 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 202 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE 203 || desiredEnc==SQLITE_UTF16BE ); 204 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ 205 return SQLITE_OK; 206 } 207 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 208 #ifdef SQLITE_OMIT_UTF16 209 return SQLITE_ERROR; 210 #else 211 212 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 213 ** then the encoding of the value may not have changed. 214 */ 215 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); 216 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 217 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 218 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 219 return rc; 220 #endif 221 } 222 223 /* 224 ** Make sure pMem->z points to a writable allocation of at least n bytes. 225 ** 226 ** If the bPreserve argument is true, then copy of the content of 227 ** pMem->z into the new allocation. pMem must be either a string or 228 ** blob if bPreserve is true. If bPreserve is false, any prior content 229 ** in pMem->z is discarded. 230 */ 231 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ 232 assert( sqlite3VdbeCheckMemInvariants(pMem) ); 233 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 234 testcase( pMem->db==0 ); 235 236 /* If the bPreserve flag is set to true, then the memory cell must already 237 ** contain a valid string or blob value. */ 238 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); 239 testcase( bPreserve && pMem->z==0 ); 240 241 assert( pMem->szMalloc==0 242 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) ); 243 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){ 244 if( pMem->db ){ 245 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 246 }else{ 247 pMem->zMalloc = sqlite3Realloc(pMem->z, n); 248 if( pMem->zMalloc==0 ) sqlite3_free(pMem->z); 249 pMem->z = pMem->zMalloc; 250 } 251 bPreserve = 0; 252 }else{ 253 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 254 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 255 } 256 if( pMem->zMalloc==0 ){ 257 sqlite3VdbeMemSetNull(pMem); 258 pMem->z = 0; 259 pMem->szMalloc = 0; 260 return SQLITE_NOMEM_BKPT; 261 }else{ 262 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 263 } 264 265 if( bPreserve && pMem->z ){ 266 assert( pMem->z!=pMem->zMalloc ); 267 memcpy(pMem->zMalloc, pMem->z, pMem->n); 268 } 269 if( (pMem->flags&MEM_Dyn)!=0 ){ 270 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); 271 pMem->xDel((void *)(pMem->z)); 272 } 273 274 pMem->z = pMem->zMalloc; 275 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); 276 return SQLITE_OK; 277 } 278 279 /* 280 ** Change the pMem->zMalloc allocation to be at least szNew bytes. 281 ** If pMem->zMalloc already meets or exceeds the requested size, this 282 ** routine is a no-op. 283 ** 284 ** Any prior string or blob content in the pMem object may be discarded. 285 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str 286 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal, 287 ** and MEM_Null values are preserved. 288 ** 289 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) 290 ** if unable to complete the resizing. 291 */ 292 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ 293 assert( CORRUPT_DB || szNew>0 ); 294 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); 295 if( pMem->szMalloc<szNew ){ 296 return sqlite3VdbeMemGrow(pMem, szNew, 0); 297 } 298 assert( (pMem->flags & MEM_Dyn)==0 ); 299 pMem->z = pMem->zMalloc; 300 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal); 301 return SQLITE_OK; 302 } 303 304 /* 305 ** It is already known that pMem contains an unterminated string. 306 ** Add the zero terminator. 307 ** 308 ** Three bytes of zero are added. In this way, there is guaranteed 309 ** to be a double-zero byte at an even byte boundary in order to 310 ** terminate a UTF16 string, even if the initial size of the buffer 311 ** is an odd number of bytes. 312 */ 313 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ 314 if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){ 315 return SQLITE_NOMEM_BKPT; 316 } 317 pMem->z[pMem->n] = 0; 318 pMem->z[pMem->n+1] = 0; 319 pMem->z[pMem->n+2] = 0; 320 pMem->flags |= MEM_Term; 321 return SQLITE_OK; 322 } 323 324 /* 325 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in 326 ** MEM.zMalloc, where it can be safely written. 327 ** 328 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 329 */ 330 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 331 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 332 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 333 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ 334 if( ExpandBlob(pMem) ) return SQLITE_NOMEM; 335 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ 336 int rc = vdbeMemAddTerminator(pMem); 337 if( rc ) return rc; 338 } 339 } 340 pMem->flags &= ~MEM_Ephem; 341 #ifdef SQLITE_DEBUG 342 pMem->pScopyFrom = 0; 343 #endif 344 345 return SQLITE_OK; 346 } 347 348 /* 349 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 350 ** blob stored in dynamically allocated space. 351 */ 352 #ifndef SQLITE_OMIT_INCRBLOB 353 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 354 int nByte; 355 assert( pMem->flags & MEM_Zero ); 356 assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) ); 357 testcase( sqlite3_value_nochange(pMem) ); 358 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 359 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 360 361 /* Set nByte to the number of bytes required to store the expanded blob. */ 362 nByte = pMem->n + pMem->u.nZero; 363 if( nByte<=0 ){ 364 if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK; 365 nByte = 1; 366 } 367 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 368 return SQLITE_NOMEM_BKPT; 369 } 370 371 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); 372 pMem->n += pMem->u.nZero; 373 pMem->flags &= ~(MEM_Zero|MEM_Term); 374 return SQLITE_OK; 375 } 376 #endif 377 378 /* 379 ** Make sure the given Mem is \u0000 terminated. 380 */ 381 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 382 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 383 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); 384 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); 385 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ 386 return SQLITE_OK; /* Nothing to do */ 387 }else{ 388 return vdbeMemAddTerminator(pMem); 389 } 390 } 391 392 /* 393 ** Add MEM_Str to the set of representations for the given Mem. This 394 ** routine is only called if pMem is a number of some kind, not a NULL 395 ** or a BLOB. 396 ** 397 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated 398 ** if bForce is true but are retained if bForce is false. 399 ** 400 ** A MEM_Null value will never be passed to this function. This function is 401 ** used for converting values to text for returning to the user (i.e. via 402 ** sqlite3_value_text()), or for ensuring that values to be used as btree 403 ** keys are strings. In the former case a NULL pointer is returned the 404 ** user and the latter is an internal programming error. 405 */ 406 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ 407 const int nByte = 32; 408 409 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 410 assert( !(pMem->flags&MEM_Zero) ); 411 assert( !(pMem->flags&(MEM_Str|MEM_Blob)) ); 412 assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) ); 413 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 414 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 415 416 417 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 418 pMem->enc = 0; 419 return SQLITE_NOMEM_BKPT; 420 } 421 422 vdbeMemRenderNum(nByte, pMem->z, pMem); 423 assert( pMem->z!=0 ); 424 pMem->n = sqlite3Strlen30NN(pMem->z); 425 pMem->enc = SQLITE_UTF8; 426 pMem->flags |= MEM_Str|MEM_Term; 427 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); 428 sqlite3VdbeChangeEncoding(pMem, enc); 429 return SQLITE_OK; 430 } 431 432 /* 433 ** Memory cell pMem contains the context of an aggregate function. 434 ** This routine calls the finalize method for that function. The 435 ** result of the aggregate is stored back into pMem. 436 ** 437 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 438 ** otherwise. 439 */ 440 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 441 sqlite3_context ctx; 442 Mem t; 443 assert( pFunc!=0 ); 444 assert( pFunc->xFinalize!=0 ); 445 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 446 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 447 memset(&ctx, 0, sizeof(ctx)); 448 memset(&t, 0, sizeof(t)); 449 t.flags = MEM_Null; 450 t.db = pMem->db; 451 ctx.pOut = &t; 452 ctx.pMem = pMem; 453 ctx.pFunc = pFunc; 454 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ 455 assert( (pMem->flags & MEM_Dyn)==0 ); 456 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 457 memcpy(pMem, &t, sizeof(t)); 458 return ctx.isError; 459 } 460 461 /* 462 ** Memory cell pAccum contains the context of an aggregate function. 463 ** This routine calls the xValue method for that function and stores 464 ** the results in memory cell pMem. 465 ** 466 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK 467 ** otherwise. 468 */ 469 #ifndef SQLITE_OMIT_WINDOWFUNC 470 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){ 471 sqlite3_context ctx; 472 assert( pFunc!=0 ); 473 assert( pFunc->xValue!=0 ); 474 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef ); 475 assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) ); 476 memset(&ctx, 0, sizeof(ctx)); 477 sqlite3VdbeMemSetNull(pOut); 478 ctx.pOut = pOut; 479 ctx.pMem = pAccum; 480 ctx.pFunc = pFunc; 481 pFunc->xValue(&ctx); 482 return ctx.isError; 483 } 484 #endif /* SQLITE_OMIT_WINDOWFUNC */ 485 486 /* 487 ** If the memory cell contains a value that must be freed by 488 ** invoking the external callback in Mem.xDel, then this routine 489 ** will free that value. It also sets Mem.flags to MEM_Null. 490 ** 491 ** This is a helper routine for sqlite3VdbeMemSetNull() and 492 ** for sqlite3VdbeMemRelease(). Use those other routines as the 493 ** entry point for releasing Mem resources. 494 */ 495 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ 496 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 497 assert( VdbeMemDynamic(p) ); 498 if( p->flags&MEM_Agg ){ 499 sqlite3VdbeMemFinalize(p, p->u.pDef); 500 assert( (p->flags & MEM_Agg)==0 ); 501 testcase( p->flags & MEM_Dyn ); 502 } 503 if( p->flags&MEM_Dyn ){ 504 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); 505 p->xDel((void *)p->z); 506 } 507 p->flags = MEM_Null; 508 } 509 510 /* 511 ** Release memory held by the Mem p, both external memory cleared 512 ** by p->xDel and memory in p->zMalloc. 513 ** 514 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in 515 ** the unusual case where there really is memory in p that needs 516 ** to be freed. 517 */ 518 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ 519 if( VdbeMemDynamic(p) ){ 520 vdbeMemClearExternAndSetNull(p); 521 } 522 if( p->szMalloc ){ 523 sqlite3DbFreeNN(p->db, p->zMalloc); 524 p->szMalloc = 0; 525 } 526 p->z = 0; 527 } 528 529 /* 530 ** Release any memory resources held by the Mem. Both the memory that is 531 ** free by Mem.xDel and the Mem.zMalloc allocation are freed. 532 ** 533 ** Use this routine prior to clean up prior to abandoning a Mem, or to 534 ** reset a Mem back to its minimum memory utilization. 535 ** 536 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space 537 ** prior to inserting new content into the Mem. 538 */ 539 void sqlite3VdbeMemRelease(Mem *p){ 540 assert( sqlite3VdbeCheckMemInvariants(p) ); 541 if( VdbeMemDynamic(p) || p->szMalloc ){ 542 vdbeMemClear(p); 543 } 544 } 545 546 /* 547 ** Convert a 64-bit IEEE double into a 64-bit signed integer. 548 ** If the double is out of range of a 64-bit signed integer then 549 ** return the closest available 64-bit signed integer. 550 */ 551 static SQLITE_NOINLINE i64 doubleToInt64(double r){ 552 #ifdef SQLITE_OMIT_FLOATING_POINT 553 /* When floating-point is omitted, double and int64 are the same thing */ 554 return r; 555 #else 556 /* 557 ** Many compilers we encounter do not define constants for the 558 ** minimum and maximum 64-bit integers, or they define them 559 ** inconsistently. And many do not understand the "LL" notation. 560 ** So we define our own static constants here using nothing 561 ** larger than a 32-bit integer constant. 562 */ 563 static const i64 maxInt = LARGEST_INT64; 564 static const i64 minInt = SMALLEST_INT64; 565 566 if( r<=(double)minInt ){ 567 return minInt; 568 }else if( r>=(double)maxInt ){ 569 return maxInt; 570 }else{ 571 return (i64)r; 572 } 573 #endif 574 } 575 576 /* 577 ** Return some kind of integer value which is the best we can do 578 ** at representing the value that *pMem describes as an integer. 579 ** If pMem is an integer, then the value is exact. If pMem is 580 ** a floating-point then the value returned is the integer part. 581 ** If pMem is a string or blob, then we make an attempt to convert 582 ** it into an integer and return that. If pMem represents an 583 ** an SQL-NULL value, return 0. 584 ** 585 ** If pMem represents a string value, its encoding might be changed. 586 */ 587 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){ 588 i64 value = 0; 589 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); 590 return value; 591 } 592 i64 sqlite3VdbeIntValue(Mem *pMem){ 593 int flags; 594 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 595 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 596 flags = pMem->flags; 597 if( flags & (MEM_Int|MEM_IntReal) ){ 598 testcase( flags & MEM_IntReal ); 599 return pMem->u.i; 600 }else if( flags & MEM_Real ){ 601 return doubleToInt64(pMem->u.r); 602 }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){ 603 return memIntValue(pMem); 604 }else{ 605 return 0; 606 } 607 } 608 609 /* 610 ** Return the best representation of pMem that we can get into a 611 ** double. If pMem is already a double or an integer, return its 612 ** value. If it is a string or blob, try to convert it to a double. 613 ** If it is a NULL, return 0.0. 614 */ 615 static SQLITE_NOINLINE double memRealValue(Mem *pMem){ 616 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 617 double val = (double)0; 618 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); 619 return val; 620 } 621 double sqlite3VdbeRealValue(Mem *pMem){ 622 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 623 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 624 if( pMem->flags & MEM_Real ){ 625 return pMem->u.r; 626 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 627 testcase( pMem->flags & MEM_IntReal ); 628 return (double)pMem->u.i; 629 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 630 return memRealValue(pMem); 631 }else{ 632 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 633 return (double)0; 634 } 635 } 636 637 /* 638 ** Return 1 if pMem represents true, and return 0 if pMem represents false. 639 ** Return the value ifNull if pMem is NULL. 640 */ 641 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ 642 testcase( pMem->flags & MEM_IntReal ); 643 if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0; 644 if( pMem->flags & MEM_Null ) return ifNull; 645 return sqlite3VdbeRealValue(pMem)!=0.0; 646 } 647 648 /* 649 ** The MEM structure is already a MEM_Real. Try to also make it a 650 ** MEM_Int if we can. 651 */ 652 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 653 i64 ix; 654 assert( pMem->flags & MEM_Real ); 655 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 656 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 657 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 658 659 ix = doubleToInt64(pMem->u.r); 660 661 /* Only mark the value as an integer if 662 ** 663 ** (1) the round-trip conversion real->int->real is a no-op, and 664 ** (2) The integer is neither the largest nor the smallest 665 ** possible integer (ticket #3922) 666 ** 667 ** The second and third terms in the following conditional enforces 668 ** the second condition under the assumption that addition overflow causes 669 ** values to wrap around. 670 */ 671 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ 672 pMem->u.i = ix; 673 MemSetTypeFlag(pMem, MEM_Int); 674 } 675 } 676 677 /* 678 ** Convert pMem to type integer. Invalidate any prior representations. 679 */ 680 int sqlite3VdbeMemIntegerify(Mem *pMem){ 681 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 682 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 683 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 684 685 pMem->u.i = sqlite3VdbeIntValue(pMem); 686 MemSetTypeFlag(pMem, MEM_Int); 687 return SQLITE_OK; 688 } 689 690 /* 691 ** Convert pMem so that it is of type MEM_Real. 692 ** Invalidate any prior representations. 693 */ 694 int sqlite3VdbeMemRealify(Mem *pMem){ 695 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 696 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 697 698 pMem->u.r = sqlite3VdbeRealValue(pMem); 699 MemSetTypeFlag(pMem, MEM_Real); 700 return SQLITE_OK; 701 } 702 703 /* Compare a floating point value to an integer. Return true if the two 704 ** values are the same within the precision of the floating point value. 705 ** 706 ** This function assumes that i was obtained by assignment from r1. 707 ** 708 ** For some versions of GCC on 32-bit machines, if you do the more obvious 709 ** comparison of "r1==(double)i" you sometimes get an answer of false even 710 ** though the r1 and (double)i values are bit-for-bit the same. 711 */ 712 int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ 713 double r2 = (double)i; 714 return r1==0.0 715 || (memcmp(&r1, &r2, sizeof(r1))==0 716 && i >= -2251799813685248LL && i < 2251799813685248LL); 717 } 718 719 /* 720 ** Convert pMem so that it has type MEM_Real or MEM_Int. 721 ** Invalidate any prior representations. 722 ** 723 ** Every effort is made to force the conversion, even if the input 724 ** is a string that does not look completely like a number. Convert 725 ** as much of the string as we can and ignore the rest. 726 */ 727 int sqlite3VdbeMemNumerify(Mem *pMem){ 728 testcase( pMem->flags & MEM_Int ); 729 testcase( pMem->flags & MEM_Real ); 730 testcase( pMem->flags & MEM_IntReal ); 731 testcase( pMem->flags & MEM_Null ); 732 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){ 733 int rc; 734 sqlite3_int64 ix; 735 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 736 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 737 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 738 if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1) 739 || sqlite3RealSameAsInt(pMem->u.r, (ix = (i64)pMem->u.r)) 740 ){ 741 pMem->u.i = ix; 742 MemSetTypeFlag(pMem, MEM_Int); 743 }else{ 744 MemSetTypeFlag(pMem, MEM_Real); 745 } 746 } 747 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 ); 748 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); 749 return SQLITE_OK; 750 } 751 752 /* 753 ** Cast the datatype of the value in pMem according to the affinity 754 ** "aff". Casting is different from applying affinity in that a cast 755 ** is forced. In other words, the value is converted into the desired 756 ** affinity even if that results in loss of data. This routine is 757 ** used (for example) to implement the SQL "cast()" operator. 758 */ 759 int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ 760 if( pMem->flags & MEM_Null ) return SQLITE_OK; 761 switch( aff ){ 762 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ 763 if( (pMem->flags & MEM_Blob)==0 ){ 764 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 765 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 766 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); 767 }else{ 768 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); 769 } 770 break; 771 } 772 case SQLITE_AFF_NUMERIC: { 773 sqlite3VdbeMemNumerify(pMem); 774 break; 775 } 776 case SQLITE_AFF_INTEGER: { 777 sqlite3VdbeMemIntegerify(pMem); 778 break; 779 } 780 case SQLITE_AFF_REAL: { 781 sqlite3VdbeMemRealify(pMem); 782 break; 783 } 784 default: { 785 assert( aff==SQLITE_AFF_TEXT ); 786 assert( MEM_Str==(MEM_Blob>>3) ); 787 pMem->flags |= (pMem->flags&MEM_Blob)>>3; 788 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 789 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 790 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero); 791 return sqlite3VdbeChangeEncoding(pMem, encoding); 792 } 793 } 794 return SQLITE_OK; 795 } 796 797 /* 798 ** Initialize bulk memory to be a consistent Mem object. 799 ** 800 ** The minimum amount of initialization feasible is performed. 801 */ 802 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ 803 assert( (flags & ~MEM_TypeMask)==0 ); 804 pMem->flags = flags; 805 pMem->db = db; 806 pMem->szMalloc = 0; 807 } 808 809 810 /* 811 ** Delete any previous value and set the value stored in *pMem to NULL. 812 ** 813 ** This routine calls the Mem.xDel destructor to dispose of values that 814 ** require the destructor. But it preserves the Mem.zMalloc memory allocation. 815 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this 816 ** routine to invoke the destructor and deallocates Mem.zMalloc. 817 ** 818 ** Use this routine to reset the Mem prior to insert a new value. 819 ** 820 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. 821 */ 822 void sqlite3VdbeMemSetNull(Mem *pMem){ 823 if( VdbeMemDynamic(pMem) ){ 824 vdbeMemClearExternAndSetNull(pMem); 825 }else{ 826 pMem->flags = MEM_Null; 827 } 828 } 829 void sqlite3ValueSetNull(sqlite3_value *p){ 830 sqlite3VdbeMemSetNull((Mem*)p); 831 } 832 833 /* 834 ** Delete any previous value and set the value to be a BLOB of length 835 ** n containing all zeros. 836 */ 837 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 838 sqlite3VdbeMemRelease(pMem); 839 pMem->flags = MEM_Blob|MEM_Zero; 840 pMem->n = 0; 841 if( n<0 ) n = 0; 842 pMem->u.nZero = n; 843 pMem->enc = SQLITE_UTF8; 844 pMem->z = 0; 845 } 846 847 /* 848 ** The pMem is known to contain content that needs to be destroyed prior 849 ** to a value change. So invoke the destructor, then set the value to 850 ** a 64-bit integer. 851 */ 852 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ 853 sqlite3VdbeMemSetNull(pMem); 854 pMem->u.i = val; 855 pMem->flags = MEM_Int; 856 } 857 858 /* 859 ** Delete any previous value and set the value stored in *pMem to val, 860 ** manifest type INTEGER. 861 */ 862 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 863 if( VdbeMemDynamic(pMem) ){ 864 vdbeReleaseAndSetInt64(pMem, val); 865 }else{ 866 pMem->u.i = val; 867 pMem->flags = MEM_Int; 868 } 869 } 870 871 /* A no-op destructor */ 872 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } 873 874 /* 875 ** Set the value stored in *pMem should already be a NULL. 876 ** Also store a pointer to go with it. 877 */ 878 void sqlite3VdbeMemSetPointer( 879 Mem *pMem, 880 void *pPtr, 881 const char *zPType, 882 void (*xDestructor)(void*) 883 ){ 884 assert( pMem->flags==MEM_Null ); 885 pMem->u.zPType = zPType ? zPType : ""; 886 pMem->z = pPtr; 887 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term; 888 pMem->eSubtype = 'p'; 889 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor; 890 } 891 892 #ifndef SQLITE_OMIT_FLOATING_POINT 893 /* 894 ** Delete any previous value and set the value stored in *pMem to val, 895 ** manifest type REAL. 896 */ 897 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 898 sqlite3VdbeMemSetNull(pMem); 899 if( !sqlite3IsNaN(val) ){ 900 pMem->u.r = val; 901 pMem->flags = MEM_Real; 902 } 903 } 904 #endif 905 906 #ifdef SQLITE_DEBUG 907 /* 908 ** Return true if the Mem holds a RowSet object. This routine is intended 909 ** for use inside of assert() statements. 910 */ 911 int sqlite3VdbeMemIsRowSet(const Mem *pMem){ 912 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn) 913 && pMem->xDel==sqlite3RowSetDelete; 914 } 915 #endif 916 917 /* 918 ** Delete any previous value and set the value of pMem to be an 919 ** empty boolean index. 920 ** 921 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation 922 ** error occurs. 923 */ 924 int sqlite3VdbeMemSetRowSet(Mem *pMem){ 925 sqlite3 *db = pMem->db; 926 RowSet *p; 927 assert( db!=0 ); 928 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 929 sqlite3VdbeMemRelease(pMem); 930 p = sqlite3RowSetInit(db); 931 if( p==0 ) return SQLITE_NOMEM; 932 pMem->z = (char*)p; 933 pMem->flags = MEM_Blob|MEM_Dyn; 934 pMem->xDel = sqlite3RowSetDelete; 935 return SQLITE_OK; 936 } 937 938 /* 939 ** Return true if the Mem object contains a TEXT or BLOB that is 940 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 941 */ 942 int sqlite3VdbeMemTooBig(Mem *p){ 943 assert( p->db!=0 ); 944 if( p->flags & (MEM_Str|MEM_Blob) ){ 945 int n = p->n; 946 if( p->flags & MEM_Zero ){ 947 n += p->u.nZero; 948 } 949 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 950 } 951 return 0; 952 } 953 954 #ifdef SQLITE_DEBUG 955 /* 956 ** This routine prepares a memory cell for modification by breaking 957 ** its link to a shallow copy and by marking any current shallow 958 ** copies of this cell as invalid. 959 ** 960 ** This is used for testing and debugging only - to help ensure that shallow 961 ** copies (created by OP_SCopy) are not misused. 962 */ 963 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ 964 int i; 965 Mem *pX; 966 for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){ 967 if( pX->pScopyFrom==pMem ){ 968 u16 mFlags; 969 if( pVdbe->db->flags & SQLITE_VdbeTrace ){ 970 sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n", 971 (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem)); 972 } 973 /* If pX is marked as a shallow copy of pMem, then try to verify that 974 ** no significant changes have been made to pX since the OP_SCopy. 975 ** A significant change would indicated a missed call to this 976 ** function for pX. Minor changes, such as adding or removing a 977 ** dual type, are allowed, as long as the underlying value is the 978 ** same. */ 979 mFlags = pMem->flags & pX->flags & pX->mScopyFlags; 980 assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i ); 981 982 /* pMem is the register that is changing. But also mark pX as 983 ** undefined so that we can quickly detect the shallow-copy error */ 984 pX->flags = MEM_Undefined; 985 pX->pScopyFrom = 0; 986 } 987 } 988 pMem->pScopyFrom = 0; 989 } 990 #endif /* SQLITE_DEBUG */ 991 992 /* 993 ** Make an shallow copy of pFrom into pTo. Prior contents of 994 ** pTo are freed. The pFrom->z field is not duplicated. If 995 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 996 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 997 */ 998 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ 999 vdbeMemClearExternAndSetNull(pTo); 1000 assert( !VdbeMemDynamic(pTo) ); 1001 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); 1002 } 1003 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 1004 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 1005 assert( pTo->db==pFrom->db ); 1006 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } 1007 memcpy(pTo, pFrom, MEMCELLSIZE); 1008 if( (pFrom->flags&MEM_Static)==0 ){ 1009 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 1010 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 1011 pTo->flags |= srcType; 1012 } 1013 } 1014 1015 /* 1016 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 1017 ** freed before the copy is made. 1018 */ 1019 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 1020 int rc = SQLITE_OK; 1021 1022 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 1023 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); 1024 memcpy(pTo, pFrom, MEMCELLSIZE); 1025 pTo->flags &= ~MEM_Dyn; 1026 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 1027 if( 0==(pFrom->flags&MEM_Static) ){ 1028 pTo->flags |= MEM_Ephem; 1029 rc = sqlite3VdbeMemMakeWriteable(pTo); 1030 } 1031 } 1032 1033 return rc; 1034 } 1035 1036 /* 1037 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 1038 ** freed. If pFrom contains ephemeral data, a copy is made. 1039 ** 1040 ** pFrom contains an SQL NULL when this routine returns. 1041 */ 1042 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 1043 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 1044 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 1045 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 1046 1047 sqlite3VdbeMemRelease(pTo); 1048 memcpy(pTo, pFrom, sizeof(Mem)); 1049 pFrom->flags = MEM_Null; 1050 pFrom->szMalloc = 0; 1051 } 1052 1053 /* 1054 ** Change the value of a Mem to be a string or a BLOB. 1055 ** 1056 ** The memory management strategy depends on the value of the xDel 1057 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 1058 ** string is copied into a (possibly existing) buffer managed by the 1059 ** Mem structure. Otherwise, any existing buffer is freed and the 1060 ** pointer copied. 1061 ** 1062 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH 1063 ** size limit) then no memory allocation occurs. If the string can be 1064 ** stored without allocating memory, then it is. If a memory allocation 1065 ** is required to store the string, then value of pMem is unchanged. In 1066 ** either case, SQLITE_TOOBIG is returned. 1067 */ 1068 int sqlite3VdbeMemSetStr( 1069 Mem *pMem, /* Memory cell to set to string value */ 1070 const char *z, /* String pointer */ 1071 int n, /* Bytes in string, or negative */ 1072 u8 enc, /* Encoding of z. 0 for BLOBs */ 1073 void (*xDel)(void*) /* Destructor function */ 1074 ){ 1075 int nByte = n; /* New value for pMem->n */ 1076 int iLimit; /* Maximum allowed string or blob size */ 1077 u16 flags = 0; /* New value for pMem->flags */ 1078 1079 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 1080 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1081 1082 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 1083 if( !z ){ 1084 sqlite3VdbeMemSetNull(pMem); 1085 return SQLITE_OK; 1086 } 1087 1088 if( pMem->db ){ 1089 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; 1090 }else{ 1091 iLimit = SQLITE_MAX_LENGTH; 1092 } 1093 flags = (enc==0?MEM_Blob:MEM_Str); 1094 if( nByte<0 ){ 1095 assert( enc!=0 ); 1096 if( enc==SQLITE_UTF8 ){ 1097 nByte = 0x7fffffff & (int)strlen(z); 1098 }else{ 1099 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} 1100 } 1101 flags |= MEM_Term; 1102 } 1103 1104 /* The following block sets the new values of Mem.z and Mem.xDel. It 1105 ** also sets a flag in local variable "flags" to indicate the memory 1106 ** management (one of MEM_Dyn or MEM_Static). 1107 */ 1108 if( xDel==SQLITE_TRANSIENT ){ 1109 u32 nAlloc = nByte; 1110 if( flags&MEM_Term ){ 1111 nAlloc += (enc==SQLITE_UTF8?1:2); 1112 } 1113 if( nByte>iLimit ){ 1114 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG); 1115 } 1116 testcase( nAlloc==0 ); 1117 testcase( nAlloc==31 ); 1118 testcase( nAlloc==32 ); 1119 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){ 1120 return SQLITE_NOMEM_BKPT; 1121 } 1122 memcpy(pMem->z, z, nAlloc); 1123 }else{ 1124 sqlite3VdbeMemRelease(pMem); 1125 pMem->z = (char *)z; 1126 if( xDel==SQLITE_DYNAMIC ){ 1127 pMem->zMalloc = pMem->z; 1128 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 1129 }else{ 1130 pMem->xDel = xDel; 1131 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 1132 } 1133 } 1134 1135 pMem->n = nByte; 1136 pMem->flags = flags; 1137 if( enc ){ 1138 pMem->enc = enc; 1139 #ifdef SQLITE_ENABLE_SESSION 1140 }else if( pMem->db==0 ){ 1141 pMem->enc = SQLITE_UTF8; 1142 #endif 1143 }else{ 1144 assert( pMem->db!=0 ); 1145 pMem->enc = ENC(pMem->db); 1146 } 1147 1148 #ifndef SQLITE_OMIT_UTF16 1149 if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ 1150 return SQLITE_NOMEM_BKPT; 1151 } 1152 #endif 1153 1154 if( nByte>iLimit ){ 1155 return SQLITE_TOOBIG; 1156 } 1157 1158 return SQLITE_OK; 1159 } 1160 1161 /* 1162 ** Move data out of a btree key or data field and into a Mem structure. 1163 ** The data is payload from the entry that pCur is currently pointing 1164 ** to. offset and amt determine what portion of the data or key to retrieve. 1165 ** The result is written into the pMem element. 1166 ** 1167 ** The pMem object must have been initialized. This routine will use 1168 ** pMem->zMalloc to hold the content from the btree, if possible. New 1169 ** pMem->zMalloc space will be allocated if necessary. The calling routine 1170 ** is responsible for making sure that the pMem object is eventually 1171 ** destroyed. 1172 ** 1173 ** If this routine fails for any reason (malloc returns NULL or unable 1174 ** to read from the disk) then the pMem is left in an inconsistent state. 1175 */ 1176 int sqlite3VdbeMemFromBtree( 1177 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1178 u32 offset, /* Offset from the start of data to return bytes from. */ 1179 u32 amt, /* Number of bytes to return. */ 1180 Mem *pMem /* OUT: Return data in this Mem structure. */ 1181 ){ 1182 int rc; 1183 pMem->flags = MEM_Null; 1184 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){ 1185 return SQLITE_CORRUPT_BKPT; 1186 } 1187 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){ 1188 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z); 1189 if( rc==SQLITE_OK ){ 1190 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */ 1191 pMem->flags = MEM_Blob; 1192 pMem->n = (int)amt; 1193 }else{ 1194 sqlite3VdbeMemRelease(pMem); 1195 } 1196 } 1197 return rc; 1198 } 1199 int sqlite3VdbeMemFromBtreeZeroOffset( 1200 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1201 u32 amt, /* Number of bytes to return. */ 1202 Mem *pMem /* OUT: Return data in this Mem structure. */ 1203 ){ 1204 u32 available = 0; /* Number of bytes available on the local btree page */ 1205 int rc = SQLITE_OK; /* Return code */ 1206 1207 assert( sqlite3BtreeCursorIsValid(pCur) ); 1208 assert( !VdbeMemDynamic(pMem) ); 1209 1210 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 1211 ** that both the BtShared and database handle mutexes are held. */ 1212 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1213 pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available); 1214 assert( pMem->z!=0 ); 1215 1216 if( amt<=available ){ 1217 pMem->flags = MEM_Blob|MEM_Ephem; 1218 pMem->n = (int)amt; 1219 }else{ 1220 rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem); 1221 } 1222 1223 return rc; 1224 } 1225 1226 /* 1227 ** The pVal argument is known to be a value other than NULL. 1228 ** Convert it into a string with encoding enc and return a pointer 1229 ** to a zero-terminated version of that string. 1230 */ 1231 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ 1232 assert( pVal!=0 ); 1233 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1234 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1235 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1236 assert( (pVal->flags & (MEM_Null))==0 ); 1237 if( pVal->flags & (MEM_Blob|MEM_Str) ){ 1238 if( ExpandBlob(pVal) ) return 0; 1239 pVal->flags |= MEM_Str; 1240 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ 1241 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 1242 } 1243 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ 1244 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 1245 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 1246 return 0; 1247 } 1248 } 1249 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ 1250 }else{ 1251 sqlite3VdbeMemStringify(pVal, enc, 0); 1252 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); 1253 } 1254 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 1255 || pVal->db->mallocFailed ); 1256 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 1257 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1258 return pVal->z; 1259 }else{ 1260 return 0; 1261 } 1262 } 1263 1264 /* This function is only available internally, it is not part of the 1265 ** external API. It works in a similar way to sqlite3_value_text(), 1266 ** except the data returned is in the encoding specified by the second 1267 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 1268 ** SQLITE_UTF8. 1269 ** 1270 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 1271 ** If that is the case, then the result must be aligned on an even byte 1272 ** boundary. 1273 */ 1274 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 1275 if( !pVal ) return 0; 1276 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1277 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1278 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1279 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ 1280 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1281 return pVal->z; 1282 } 1283 if( pVal->flags&MEM_Null ){ 1284 return 0; 1285 } 1286 return valueToText(pVal, enc); 1287 } 1288 1289 /* 1290 ** Create a new sqlite3_value object. 1291 */ 1292 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 1293 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 1294 if( p ){ 1295 p->flags = MEM_Null; 1296 p->db = db; 1297 } 1298 return p; 1299 } 1300 1301 /* 1302 ** Context object passed by sqlite3Stat4ProbeSetValue() through to 1303 ** valueNew(). See comments above valueNew() for details. 1304 */ 1305 struct ValueNewStat4Ctx { 1306 Parse *pParse; 1307 Index *pIdx; 1308 UnpackedRecord **ppRec; 1309 int iVal; 1310 }; 1311 1312 /* 1313 ** Allocate and return a pointer to a new sqlite3_value object. If 1314 ** the second argument to this function is NULL, the object is allocated 1315 ** by calling sqlite3ValueNew(). 1316 ** 1317 ** Otherwise, if the second argument is non-zero, then this function is 1318 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not 1319 ** already been allocated, allocate the UnpackedRecord structure that 1320 ** that function will return to its caller here. Then return a pointer to 1321 ** an sqlite3_value within the UnpackedRecord.a[] array. 1322 */ 1323 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ 1324 #ifdef SQLITE_ENABLE_STAT4 1325 if( p ){ 1326 UnpackedRecord *pRec = p->ppRec[0]; 1327 1328 if( pRec==0 ){ 1329 Index *pIdx = p->pIdx; /* Index being probed */ 1330 int nByte; /* Bytes of space to allocate */ 1331 int i; /* Counter variable */ 1332 int nCol = pIdx->nColumn; /* Number of index columns including rowid */ 1333 1334 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); 1335 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); 1336 if( pRec ){ 1337 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); 1338 if( pRec->pKeyInfo ){ 1339 assert( pRec->pKeyInfo->nAllField==nCol ); 1340 assert( pRec->pKeyInfo->enc==ENC(db) ); 1341 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); 1342 for(i=0; i<nCol; i++){ 1343 pRec->aMem[i].flags = MEM_Null; 1344 pRec->aMem[i].db = db; 1345 } 1346 }else{ 1347 sqlite3DbFreeNN(db, pRec); 1348 pRec = 0; 1349 } 1350 } 1351 if( pRec==0 ) return 0; 1352 p->ppRec[0] = pRec; 1353 } 1354 1355 pRec->nField = p->iVal+1; 1356 return &pRec->aMem[p->iVal]; 1357 } 1358 #else 1359 UNUSED_PARAMETER(p); 1360 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1361 return sqlite3ValueNew(db); 1362 } 1363 1364 /* 1365 ** The expression object indicated by the second argument is guaranteed 1366 ** to be a scalar SQL function. If 1367 ** 1368 ** * all function arguments are SQL literals, 1369 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and 1370 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, 1371 ** 1372 ** then this routine attempts to invoke the SQL function. Assuming no 1373 ** error occurs, output parameter (*ppVal) is set to point to a value 1374 ** object containing the result before returning SQLITE_OK. 1375 ** 1376 ** Affinity aff is applied to the result of the function before returning. 1377 ** If the result is a text value, the sqlite3_value object uses encoding 1378 ** enc. 1379 ** 1380 ** If the conditions above are not met, this function returns SQLITE_OK 1381 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to 1382 ** NULL and an SQLite error code returned. 1383 */ 1384 #ifdef SQLITE_ENABLE_STAT4 1385 static int valueFromFunction( 1386 sqlite3 *db, /* The database connection */ 1387 Expr *p, /* The expression to evaluate */ 1388 u8 enc, /* Encoding to use */ 1389 u8 aff, /* Affinity to use */ 1390 sqlite3_value **ppVal, /* Write the new value here */ 1391 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1392 ){ 1393 sqlite3_context ctx; /* Context object for function invocation */ 1394 sqlite3_value **apVal = 0; /* Function arguments */ 1395 int nVal = 0; /* Size of apVal[] array */ 1396 FuncDef *pFunc = 0; /* Function definition */ 1397 sqlite3_value *pVal = 0; /* New value */ 1398 int rc = SQLITE_OK; /* Return code */ 1399 ExprList *pList = 0; /* Function arguments */ 1400 int i; /* Iterator variable */ 1401 1402 assert( pCtx!=0 ); 1403 assert( (p->flags & EP_TokenOnly)==0 ); 1404 pList = p->x.pList; 1405 if( pList ) nVal = pList->nExpr; 1406 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); 1407 assert( pFunc ); 1408 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 1409 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 1410 ){ 1411 return SQLITE_OK; 1412 } 1413 1414 if( pList ){ 1415 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); 1416 if( apVal==0 ){ 1417 rc = SQLITE_NOMEM_BKPT; 1418 goto value_from_function_out; 1419 } 1420 for(i=0; i<nVal; i++){ 1421 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); 1422 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; 1423 } 1424 } 1425 1426 pVal = valueNew(db, pCtx); 1427 if( pVal==0 ){ 1428 rc = SQLITE_NOMEM_BKPT; 1429 goto value_from_function_out; 1430 } 1431 1432 assert( pCtx->pParse->rc==SQLITE_OK ); 1433 memset(&ctx, 0, sizeof(ctx)); 1434 ctx.pOut = pVal; 1435 ctx.pFunc = pFunc; 1436 pFunc->xSFunc(&ctx, nVal, apVal); 1437 if( ctx.isError ){ 1438 rc = ctx.isError; 1439 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); 1440 }else{ 1441 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); 1442 assert( rc==SQLITE_OK ); 1443 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1444 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ 1445 rc = SQLITE_TOOBIG; 1446 pCtx->pParse->nErr++; 1447 } 1448 } 1449 pCtx->pParse->rc = rc; 1450 1451 value_from_function_out: 1452 if( rc!=SQLITE_OK ){ 1453 pVal = 0; 1454 } 1455 if( apVal ){ 1456 for(i=0; i<nVal; i++){ 1457 sqlite3ValueFree(apVal[i]); 1458 } 1459 sqlite3DbFreeNN(db, apVal); 1460 } 1461 1462 *ppVal = pVal; 1463 return rc; 1464 } 1465 #else 1466 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK 1467 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1468 1469 /* 1470 ** Extract a value from the supplied expression in the manner described 1471 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object 1472 ** using valueNew(). 1473 ** 1474 ** If pCtx is NULL and an error occurs after the sqlite3_value object 1475 ** has been allocated, it is freed before returning. Or, if pCtx is not 1476 ** NULL, it is assumed that the caller will free any allocated object 1477 ** in all cases. 1478 */ 1479 static int valueFromExpr( 1480 sqlite3 *db, /* The database connection */ 1481 Expr *pExpr, /* The expression to evaluate */ 1482 u8 enc, /* Encoding to use */ 1483 u8 affinity, /* Affinity to use */ 1484 sqlite3_value **ppVal, /* Write the new value here */ 1485 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1486 ){ 1487 int op; 1488 char *zVal = 0; 1489 sqlite3_value *pVal = 0; 1490 int negInt = 1; 1491 const char *zNeg = ""; 1492 int rc = SQLITE_OK; 1493 1494 assert( pExpr!=0 ); 1495 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; 1496 #if defined(SQLITE_ENABLE_STAT4) 1497 if( op==TK_REGISTER ) op = pExpr->op2; 1498 #else 1499 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; 1500 #endif 1501 1502 /* Compressed expressions only appear when parsing the DEFAULT clause 1503 ** on a table column definition, and hence only when pCtx==0. This 1504 ** check ensures that an EP_TokenOnly expression is never passed down 1505 ** into valueFromFunction(). */ 1506 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); 1507 1508 if( op==TK_CAST ){ 1509 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0); 1510 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); 1511 testcase( rc!=SQLITE_OK ); 1512 if( *ppVal ){ 1513 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); 1514 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); 1515 } 1516 return rc; 1517 } 1518 1519 /* Handle negative integers in a single step. This is needed in the 1520 ** case when the value is -9223372036854775808. 1521 */ 1522 if( op==TK_UMINUS 1523 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ 1524 pExpr = pExpr->pLeft; 1525 op = pExpr->op; 1526 negInt = -1; 1527 zNeg = "-"; 1528 } 1529 1530 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 1531 pVal = valueNew(db, pCtx); 1532 if( pVal==0 ) goto no_mem; 1533 if( ExprHasProperty(pExpr, EP_IntValue) ){ 1534 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); 1535 }else{ 1536 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); 1537 if( zVal==0 ) goto no_mem; 1538 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); 1539 } 1540 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ 1541 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); 1542 }else{ 1543 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); 1544 } 1545 assert( (pVal->flags & MEM_IntReal)==0 ); 1546 if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){ 1547 testcase( pVal->flags & MEM_Int ); 1548 testcase( pVal->flags & MEM_Real ); 1549 pVal->flags &= ~MEM_Str; 1550 } 1551 if( enc!=SQLITE_UTF8 ){ 1552 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1553 } 1554 }else if( op==TK_UMINUS ) { 1555 /* This branch happens for multiple negative signs. Ex: -(-5) */ 1556 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) 1557 && pVal!=0 1558 ){ 1559 sqlite3VdbeMemNumerify(pVal); 1560 if( pVal->flags & MEM_Real ){ 1561 pVal->u.r = -pVal->u.r; 1562 }else if( pVal->u.i==SMALLEST_INT64 ){ 1563 #ifndef SQLITE_OMIT_FLOATING_POINT 1564 pVal->u.r = -(double)SMALLEST_INT64; 1565 #else 1566 pVal->u.r = LARGEST_INT64; 1567 #endif 1568 MemSetTypeFlag(pVal, MEM_Real); 1569 }else{ 1570 pVal->u.i = -pVal->u.i; 1571 } 1572 sqlite3ValueApplyAffinity(pVal, affinity, enc); 1573 } 1574 }else if( op==TK_NULL ){ 1575 pVal = valueNew(db, pCtx); 1576 if( pVal==0 ) goto no_mem; 1577 sqlite3VdbeMemSetNull(pVal); 1578 } 1579 #ifndef SQLITE_OMIT_BLOB_LITERAL 1580 else if( op==TK_BLOB ){ 1581 int nVal; 1582 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 1583 assert( pExpr->u.zToken[1]=='\'' ); 1584 pVal = valueNew(db, pCtx); 1585 if( !pVal ) goto no_mem; 1586 zVal = &pExpr->u.zToken[2]; 1587 nVal = sqlite3Strlen30(zVal)-1; 1588 assert( zVal[nVal]=='\'' ); 1589 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 1590 0, SQLITE_DYNAMIC); 1591 } 1592 #endif 1593 #ifdef SQLITE_ENABLE_STAT4 1594 else if( op==TK_FUNCTION && pCtx!=0 ){ 1595 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); 1596 } 1597 #endif 1598 else if( op==TK_TRUEFALSE ){ 1599 pVal = valueNew(db, pCtx); 1600 if( pVal ){ 1601 pVal->flags = MEM_Int; 1602 pVal->u.i = pExpr->u.zToken[4]==0; 1603 } 1604 } 1605 1606 *ppVal = pVal; 1607 return rc; 1608 1609 no_mem: 1610 #ifdef SQLITE_ENABLE_STAT4 1611 if( pCtx==0 || pCtx->pParse->nErr==0 ) 1612 #endif 1613 sqlite3OomFault(db); 1614 sqlite3DbFree(db, zVal); 1615 assert( *ppVal==0 ); 1616 #ifdef SQLITE_ENABLE_STAT4 1617 if( pCtx==0 ) sqlite3ValueFree(pVal); 1618 #else 1619 assert( pCtx==0 ); sqlite3ValueFree(pVal); 1620 #endif 1621 return SQLITE_NOMEM_BKPT; 1622 } 1623 1624 /* 1625 ** Create a new sqlite3_value object, containing the value of pExpr. 1626 ** 1627 ** This only works for very simple expressions that consist of one constant 1628 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 1629 ** be converted directly into a value, then the value is allocated and 1630 ** a pointer written to *ppVal. The caller is responsible for deallocating 1631 ** the value by passing it to sqlite3ValueFree() later on. If the expression 1632 ** cannot be converted to a value, then *ppVal is set to NULL. 1633 */ 1634 int sqlite3ValueFromExpr( 1635 sqlite3 *db, /* The database connection */ 1636 Expr *pExpr, /* The expression to evaluate */ 1637 u8 enc, /* Encoding to use */ 1638 u8 affinity, /* Affinity to use */ 1639 sqlite3_value **ppVal /* Write the new value here */ 1640 ){ 1641 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; 1642 } 1643 1644 #ifdef SQLITE_ENABLE_STAT4 1645 /* 1646 ** Attempt to extract a value from pExpr and use it to construct *ppVal. 1647 ** 1648 ** If pAlloc is not NULL, then an UnpackedRecord object is created for 1649 ** pAlloc if one does not exist and the new value is added to the 1650 ** UnpackedRecord object. 1651 ** 1652 ** A value is extracted in the following cases: 1653 ** 1654 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1655 ** 1656 ** * The expression is a bound variable, and this is a reprepare, or 1657 ** 1658 ** * The expression is a literal value. 1659 ** 1660 ** On success, *ppVal is made to point to the extracted value. The caller 1661 ** is responsible for ensuring that the value is eventually freed. 1662 */ 1663 static int stat4ValueFromExpr( 1664 Parse *pParse, /* Parse context */ 1665 Expr *pExpr, /* The expression to extract a value from */ 1666 u8 affinity, /* Affinity to use */ 1667 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ 1668 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1669 ){ 1670 int rc = SQLITE_OK; 1671 sqlite3_value *pVal = 0; 1672 sqlite3 *db = pParse->db; 1673 1674 /* Skip over any TK_COLLATE nodes */ 1675 pExpr = sqlite3ExprSkipCollate(pExpr); 1676 1677 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE ); 1678 if( !pExpr ){ 1679 pVal = valueNew(db, pAlloc); 1680 if( pVal ){ 1681 sqlite3VdbeMemSetNull((Mem*)pVal); 1682 } 1683 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 1684 Vdbe *v; 1685 int iBindVar = pExpr->iColumn; 1686 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); 1687 if( (v = pParse->pReprepare)!=0 ){ 1688 pVal = valueNew(db, pAlloc); 1689 if( pVal ){ 1690 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); 1691 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); 1692 pVal->db = pParse->db; 1693 } 1694 } 1695 }else{ 1696 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); 1697 } 1698 1699 assert( pVal==0 || pVal->db==db ); 1700 *ppVal = pVal; 1701 return rc; 1702 } 1703 1704 /* 1705 ** This function is used to allocate and populate UnpackedRecord 1706 ** structures intended to be compared against sample index keys stored 1707 ** in the sqlite_stat4 table. 1708 ** 1709 ** A single call to this function populates zero or more fields of the 1710 ** record starting with field iVal (fields are numbered from left to 1711 ** right starting with 0). A single field is populated if: 1712 ** 1713 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1714 ** 1715 ** * The expression is a bound variable, and this is a reprepare, or 1716 ** 1717 ** * The sqlite3ValueFromExpr() function is able to extract a value 1718 ** from the expression (i.e. the expression is a literal value). 1719 ** 1720 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the 1721 ** vector components that match either of the two latter criteria listed 1722 ** above. 1723 ** 1724 ** Before any value is appended to the record, the affinity of the 1725 ** corresponding column within index pIdx is applied to it. Before 1726 ** this function returns, output parameter *pnExtract is set to the 1727 ** number of values appended to the record. 1728 ** 1729 ** When this function is called, *ppRec must either point to an object 1730 ** allocated by an earlier call to this function, or must be NULL. If it 1731 ** is NULL and a value can be successfully extracted, a new UnpackedRecord 1732 ** is allocated (and *ppRec set to point to it) before returning. 1733 ** 1734 ** Unless an error is encountered, SQLITE_OK is returned. It is not an 1735 ** error if a value cannot be extracted from pExpr. If an error does 1736 ** occur, an SQLite error code is returned. 1737 */ 1738 int sqlite3Stat4ProbeSetValue( 1739 Parse *pParse, /* Parse context */ 1740 Index *pIdx, /* Index being probed */ 1741 UnpackedRecord **ppRec, /* IN/OUT: Probe record */ 1742 Expr *pExpr, /* The expression to extract a value from */ 1743 int nElem, /* Maximum number of values to append */ 1744 int iVal, /* Array element to populate */ 1745 int *pnExtract /* OUT: Values appended to the record */ 1746 ){ 1747 int rc = SQLITE_OK; 1748 int nExtract = 0; 1749 1750 if( pExpr==0 || pExpr->op!=TK_SELECT ){ 1751 int i; 1752 struct ValueNewStat4Ctx alloc; 1753 1754 alloc.pParse = pParse; 1755 alloc.pIdx = pIdx; 1756 alloc.ppRec = ppRec; 1757 1758 for(i=0; i<nElem; i++){ 1759 sqlite3_value *pVal = 0; 1760 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0); 1761 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i); 1762 alloc.iVal = iVal+i; 1763 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); 1764 if( !pVal ) break; 1765 nExtract++; 1766 } 1767 } 1768 1769 *pnExtract = nExtract; 1770 return rc; 1771 } 1772 1773 /* 1774 ** Attempt to extract a value from expression pExpr using the methods 1775 ** as described for sqlite3Stat4ProbeSetValue() above. 1776 ** 1777 ** If successful, set *ppVal to point to a new value object and return 1778 ** SQLITE_OK. If no value can be extracted, but no other error occurs 1779 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error 1780 ** does occur, return an SQLite error code. The final value of *ppVal 1781 ** is undefined in this case. 1782 */ 1783 int sqlite3Stat4ValueFromExpr( 1784 Parse *pParse, /* Parse context */ 1785 Expr *pExpr, /* The expression to extract a value from */ 1786 u8 affinity, /* Affinity to use */ 1787 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1788 ){ 1789 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); 1790 } 1791 1792 /* 1793 ** Extract the iCol-th column from the nRec-byte record in pRec. Write 1794 ** the column value into *ppVal. If *ppVal is initially NULL then a new 1795 ** sqlite3_value object is allocated. 1796 ** 1797 ** If *ppVal is initially NULL then the caller is responsible for 1798 ** ensuring that the value written into *ppVal is eventually freed. 1799 */ 1800 int sqlite3Stat4Column( 1801 sqlite3 *db, /* Database handle */ 1802 const void *pRec, /* Pointer to buffer containing record */ 1803 int nRec, /* Size of buffer pRec in bytes */ 1804 int iCol, /* Column to extract */ 1805 sqlite3_value **ppVal /* OUT: Extracted value */ 1806 ){ 1807 u32 t = 0; /* a column type code */ 1808 int nHdr; /* Size of the header in the record */ 1809 int iHdr; /* Next unread header byte */ 1810 int iField; /* Next unread data byte */ 1811 int szField = 0; /* Size of the current data field */ 1812 int i; /* Column index */ 1813 u8 *a = (u8*)pRec; /* Typecast byte array */ 1814 Mem *pMem = *ppVal; /* Write result into this Mem object */ 1815 1816 assert( iCol>0 ); 1817 iHdr = getVarint32(a, nHdr); 1818 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; 1819 iField = nHdr; 1820 for(i=0; i<=iCol; i++){ 1821 iHdr += getVarint32(&a[iHdr], t); 1822 testcase( iHdr==nHdr ); 1823 testcase( iHdr==nHdr+1 ); 1824 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; 1825 szField = sqlite3VdbeSerialTypeLen(t); 1826 iField += szField; 1827 } 1828 testcase( iField==nRec ); 1829 testcase( iField==nRec+1 ); 1830 if( iField>nRec ) return SQLITE_CORRUPT_BKPT; 1831 if( pMem==0 ){ 1832 pMem = *ppVal = sqlite3ValueNew(db); 1833 if( pMem==0 ) return SQLITE_NOMEM_BKPT; 1834 } 1835 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); 1836 pMem->enc = ENC(db); 1837 return SQLITE_OK; 1838 } 1839 1840 /* 1841 ** Unless it is NULL, the argument must be an UnpackedRecord object returned 1842 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes 1843 ** the object. 1844 */ 1845 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ 1846 if( pRec ){ 1847 int i; 1848 int nCol = pRec->pKeyInfo->nAllField; 1849 Mem *aMem = pRec->aMem; 1850 sqlite3 *db = aMem[0].db; 1851 for(i=0; i<nCol; i++){ 1852 sqlite3VdbeMemRelease(&aMem[i]); 1853 } 1854 sqlite3KeyInfoUnref(pRec->pKeyInfo); 1855 sqlite3DbFreeNN(db, pRec); 1856 } 1857 } 1858 #endif /* ifdef SQLITE_ENABLE_STAT4 */ 1859 1860 /* 1861 ** Change the string value of an sqlite3_value object 1862 */ 1863 void sqlite3ValueSetStr( 1864 sqlite3_value *v, /* Value to be set */ 1865 int n, /* Length of string z */ 1866 const void *z, /* Text of the new string */ 1867 u8 enc, /* Encoding to use */ 1868 void (*xDel)(void*) /* Destructor for the string */ 1869 ){ 1870 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 1871 } 1872 1873 /* 1874 ** Free an sqlite3_value object 1875 */ 1876 void sqlite3ValueFree(sqlite3_value *v){ 1877 if( !v ) return; 1878 sqlite3VdbeMemRelease((Mem *)v); 1879 sqlite3DbFreeNN(((Mem*)v)->db, v); 1880 } 1881 1882 /* 1883 ** The sqlite3ValueBytes() routine returns the number of bytes in the 1884 ** sqlite3_value object assuming that it uses the encoding "enc". 1885 ** The valueBytes() routine is a helper function. 1886 */ 1887 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ 1888 return valueToText(pVal, enc)!=0 ? pVal->n : 0; 1889 } 1890 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1891 Mem *p = (Mem*)pVal; 1892 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); 1893 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ 1894 return p->n; 1895 } 1896 if( (p->flags & MEM_Blob)!=0 ){ 1897 if( p->flags & MEM_Zero ){ 1898 return p->n + p->u.nZero; 1899 }else{ 1900 return p->n; 1901 } 1902 } 1903 if( p->flags & MEM_Null ) return 0; 1904 return valueBytes(pVal, enc); 1905 } 1906