xref: /sqlite-3.40.0/src/vdbemem.c (revision a4eeccdf)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to manipulate "Mem" structure.  A "Mem"
14 ** stores a single value in the VDBE.  Mem is an opaque structure visible
15 ** only within the VDBE.  Interface routines refer to a Mem using the
16 ** name sqlite_value
17 */
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
20 
21 /* True if X is a power of two.  0 is considered a power of two here.
22 ** In other words, return true if X has at most one bit set.
23 */
24 #define ISPOWEROF2(X)  (((X)&((X)-1))==0)
25 
26 #ifdef SQLITE_DEBUG
27 /*
28 ** Check invariants on a Mem object.
29 **
30 ** This routine is intended for use inside of assert() statements, like
31 ** this:    assert( sqlite3VdbeCheckMemInvariants(pMem) );
32 */
33 int sqlite3VdbeCheckMemInvariants(Mem *p){
34   /* If MEM_Dyn is set then Mem.xDel!=0.
35   ** Mem.xDel might not be initialized if MEM_Dyn is clear.
36   */
37   assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
38 
39   /* MEM_Dyn may only be set if Mem.szMalloc==0.  In this way we
40   ** ensure that if Mem.szMalloc>0 then it is safe to do
41   ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
42   ** That saves a few cycles in inner loops. */
43   assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
44 
45   /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */
46   assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) );
47 
48   if( p->flags & MEM_Null ){
49     /* Cannot be both MEM_Null and some other type */
50     assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 );
51 
52     /* If MEM_Null is set, then either the value is a pure NULL (the usual
53     ** case) or it is a pointer set using sqlite3_bind_pointer() or
54     ** sqlite3_result_pointer().  If a pointer, then MEM_Term must also be
55     ** set.
56     */
57     if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
58       /* This is a pointer type.  There may be a flag to indicate what to
59       ** do with the pointer. */
60       assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
61               ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
62               ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
63 
64       /* No other bits set */
65       assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind
66                            |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
67     }else{
68       /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
69       ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
70     }
71   }else{
72     /* The MEM_Cleared bit is only allowed on NULLs */
73     assert( (p->flags & MEM_Cleared)==0 );
74   }
75 
76   /* The szMalloc field holds the correct memory allocation size */
77   assert( p->szMalloc==0
78        || (p->flags==MEM_Undefined
79            && p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc))
80        || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc));
81 
82   /* If p holds a string or blob, the Mem.z must point to exactly
83   ** one of the following:
84   **
85   **   (1) Memory in Mem.zMalloc and managed by the Mem object
86   **   (2) Memory to be freed using Mem.xDel
87   **   (3) An ephemeral string or blob
88   **   (4) A static string or blob
89   */
90   if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
91     assert(
92       ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
93       ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
94       ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
95       ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
96     );
97   }
98   return 1;
99 }
100 #endif
101 
102 /*
103 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal
104 ** into a buffer.
105 */
106 static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){
107   StrAccum acc;
108   assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) );
109   assert( sz>22 );
110   if( p->flags & MEM_Int ){
111 #if GCC_VERSION>=7000000
112     /* Work-around for GCC bug
113     ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */
114     i64 x;
115     assert( (p->flags&MEM_Int)*2==sizeof(x) );
116     memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2);
117     sqlite3Int64ToText(x, zBuf);
118 #else
119     sqlite3Int64ToText(p->u.i, zBuf);
120 #endif
121   }else{
122     sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0);
123     sqlite3_str_appendf(&acc, "%!.15g",
124          (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r);
125     assert( acc.zText==zBuf && acc.mxAlloc<=0 );
126     zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */
127   }
128 }
129 
130 #ifdef SQLITE_DEBUG
131 /*
132 ** Validity checks on pMem.  pMem holds a string.
133 **
134 ** (1) Check that string value of pMem agrees with its integer or real value.
135 ** (2) Check that the string is correctly zero terminated
136 **
137 ** A single int or real value always converts to the same strings.  But
138 ** many different strings can be converted into the same int or real.
139 ** If a table contains a numeric value and an index is based on the
140 ** corresponding string value, then it is important that the string be
141 ** derived from the numeric value, not the other way around, to ensure
142 ** that the index and table are consistent.  See ticket
143 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
144 ** an example.
145 **
146 ** This routine looks at pMem to verify that if it has both a numeric
147 ** representation and a string representation then the string rep has
148 ** been derived from the numeric and not the other way around.  It returns
149 ** true if everything is ok and false if there is a problem.
150 **
151 ** This routine is for use inside of assert() statements only.
152 */
153 int sqlite3VdbeMemValidStrRep(Mem *p){
154   char zBuf[100];
155   char *z;
156   int i, j, incr;
157   if( (p->flags & MEM_Str)==0 ) return 1;
158   if( p->flags & MEM_Term ){
159     /* Insure that the string is properly zero-terminated.  Pay particular
160     ** attention to the case where p->n is odd */
161     if( p->szMalloc>0 && p->z==p->zMalloc ){
162       assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 );
163       assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 );
164     }
165     assert( p->z[p->n]==0 );
166     assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 );
167     assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 );
168   }
169   if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1;
170   vdbeMemRenderNum(sizeof(zBuf), zBuf, p);
171   z = p->z;
172   i = j = 0;
173   incr = 1;
174   if( p->enc!=SQLITE_UTF8 ){
175     incr = 2;
176     if( p->enc==SQLITE_UTF16BE ) z++;
177   }
178   while( zBuf[j] ){
179     if( zBuf[j++]!=z[i] ) return 0;
180     i += incr;
181   }
182   return 1;
183 }
184 #endif /* SQLITE_DEBUG */
185 
186 /*
187 ** If pMem is an object with a valid string representation, this routine
188 ** ensures the internal encoding for the string representation is
189 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
190 **
191 ** If pMem is not a string object, or the encoding of the string
192 ** representation is already stored using the requested encoding, then this
193 ** routine is a no-op.
194 **
195 ** SQLITE_OK is returned if the conversion is successful (or not required).
196 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
197 ** between formats.
198 */
199 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
200 #ifndef SQLITE_OMIT_UTF16
201   int rc;
202 #endif
203   assert( pMem!=0 );
204   assert( !sqlite3VdbeMemIsRowSet(pMem) );
205   assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
206            || desiredEnc==SQLITE_UTF16BE );
207   if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
208     return SQLITE_OK;
209   }
210   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
211 #ifdef SQLITE_OMIT_UTF16
212   return SQLITE_ERROR;
213 #else
214 
215   /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
216   ** then the encoding of the value may not have changed.
217   */
218   rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
219   assert(rc==SQLITE_OK    || rc==SQLITE_NOMEM);
220   assert(rc==SQLITE_OK    || pMem->enc!=desiredEnc);
221   assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
222   return rc;
223 #endif
224 }
225 
226 /*
227 ** Make sure pMem->z points to a writable allocation of at least n bytes.
228 **
229 ** If the bPreserve argument is true, then copy of the content of
230 ** pMem->z into the new allocation.  pMem must be either a string or
231 ** blob if bPreserve is true.  If bPreserve is false, any prior content
232 ** in pMem->z is discarded.
233 */
234 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
235   assert( sqlite3VdbeCheckMemInvariants(pMem) );
236   assert( !sqlite3VdbeMemIsRowSet(pMem) );
237   testcase( pMem->db==0 );
238 
239   /* If the bPreserve flag is set to true, then the memory cell must already
240   ** contain a valid string or blob value.  */
241   assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
242   testcase( bPreserve && pMem->z==0 );
243 
244   assert( pMem->szMalloc==0
245        || (pMem->flags==MEM_Undefined
246            && pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc))
247        || pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc));
248   if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
249     if( pMem->db ){
250       pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
251     }else{
252       pMem->zMalloc = sqlite3Realloc(pMem->z, n);
253       if( pMem->zMalloc==0 ) sqlite3_free(pMem->z);
254       pMem->z = pMem->zMalloc;
255     }
256     bPreserve = 0;
257   }else{
258     if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
259     pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
260   }
261   if( pMem->zMalloc==0 ){
262     sqlite3VdbeMemSetNull(pMem);
263     pMem->z = 0;
264     pMem->szMalloc = 0;
265     return SQLITE_NOMEM_BKPT;
266   }else{
267     pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
268   }
269 
270   if( bPreserve && pMem->z ){
271     assert( pMem->z!=pMem->zMalloc );
272     memcpy(pMem->zMalloc, pMem->z, pMem->n);
273   }
274   if( (pMem->flags&MEM_Dyn)!=0 ){
275     assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
276     pMem->xDel((void *)(pMem->z));
277   }
278 
279   pMem->z = pMem->zMalloc;
280   pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
281   return SQLITE_OK;
282 }
283 
284 /*
285 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
286 ** If pMem->zMalloc already meets or exceeds the requested size, this
287 ** routine is a no-op.
288 **
289 ** Any prior string or blob content in the pMem object may be discarded.
290 ** The pMem->xDel destructor is called, if it exists.  Though MEM_Str
291 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal,
292 ** and MEM_Null values are preserved.
293 **
294 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
295 ** if unable to complete the resizing.
296 */
297 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
298   assert( CORRUPT_DB || szNew>0 );
299   assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
300   if( pMem->szMalloc<szNew ){
301     return sqlite3VdbeMemGrow(pMem, szNew, 0);
302   }
303   assert( (pMem->flags & MEM_Dyn)==0 );
304   pMem->z = pMem->zMalloc;
305   pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal);
306   return SQLITE_OK;
307 }
308 
309 /*
310 ** It is already known that pMem contains an unterminated string.
311 ** Add the zero terminator.
312 **
313 ** Three bytes of zero are added.  In this way, there is guaranteed
314 ** to be a double-zero byte at an even byte boundary in order to
315 ** terminate a UTF16 string, even if the initial size of the buffer
316 ** is an odd number of bytes.
317 */
318 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
319   if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){
320     return SQLITE_NOMEM_BKPT;
321   }
322   pMem->z[pMem->n] = 0;
323   pMem->z[pMem->n+1] = 0;
324   pMem->z[pMem->n+2] = 0;
325   pMem->flags |= MEM_Term;
326   return SQLITE_OK;
327 }
328 
329 /*
330 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
331 ** MEM.zMalloc, where it can be safely written.
332 **
333 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
334 */
335 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
336   assert( pMem!=0 );
337   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
338   assert( !sqlite3VdbeMemIsRowSet(pMem) );
339   if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
340     if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
341     if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
342       int rc = vdbeMemAddTerminator(pMem);
343       if( rc ) return rc;
344     }
345   }
346   pMem->flags &= ~MEM_Ephem;
347 #ifdef SQLITE_DEBUG
348   pMem->pScopyFrom = 0;
349 #endif
350 
351   return SQLITE_OK;
352 }
353 
354 /*
355 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
356 ** blob stored in dynamically allocated space.
357 */
358 #ifndef SQLITE_OMIT_INCRBLOB
359 int sqlite3VdbeMemExpandBlob(Mem *pMem){
360   int nByte;
361   assert( pMem!=0 );
362   assert( pMem->flags & MEM_Zero );
363   assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) );
364   testcase( sqlite3_value_nochange(pMem) );
365   assert( !sqlite3VdbeMemIsRowSet(pMem) );
366   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
367 
368   /* Set nByte to the number of bytes required to store the expanded blob. */
369   nByte = pMem->n + pMem->u.nZero;
370   if( nByte<=0 ){
371     if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK;
372     nByte = 1;
373   }
374   if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
375     return SQLITE_NOMEM_BKPT;
376   }
377 
378   memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
379   pMem->n += pMem->u.nZero;
380   pMem->flags &= ~(MEM_Zero|MEM_Term);
381   return SQLITE_OK;
382 }
383 #endif
384 
385 /*
386 ** Make sure the given Mem is \u0000 terminated.
387 */
388 int sqlite3VdbeMemNulTerminate(Mem *pMem){
389   assert( pMem!=0 );
390   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
391   testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
392   testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
393   if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
394     return SQLITE_OK;   /* Nothing to do */
395   }else{
396     return vdbeMemAddTerminator(pMem);
397   }
398 }
399 
400 /*
401 ** Add MEM_Str to the set of representations for the given Mem.  This
402 ** routine is only called if pMem is a number of some kind, not a NULL
403 ** or a BLOB.
404 **
405 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated
406 ** if bForce is true but are retained if bForce is false.
407 **
408 ** A MEM_Null value will never be passed to this function. This function is
409 ** used for converting values to text for returning to the user (i.e. via
410 ** sqlite3_value_text()), or for ensuring that values to be used as btree
411 ** keys are strings. In the former case a NULL pointer is returned the
412 ** user and the latter is an internal programming error.
413 */
414 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
415   const int nByte = 32;
416 
417   assert( pMem!=0 );
418   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
419   assert( !(pMem->flags&MEM_Zero) );
420   assert( !(pMem->flags&(MEM_Str|MEM_Blob)) );
421   assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) );
422   assert( !sqlite3VdbeMemIsRowSet(pMem) );
423   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
424 
425 
426   if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
427     pMem->enc = 0;
428     return SQLITE_NOMEM_BKPT;
429   }
430 
431   vdbeMemRenderNum(nByte, pMem->z, pMem);
432   assert( pMem->z!=0 );
433   pMem->n = sqlite3Strlen30NN(pMem->z);
434   pMem->enc = SQLITE_UTF8;
435   pMem->flags |= MEM_Str|MEM_Term;
436   if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
437   sqlite3VdbeChangeEncoding(pMem, enc);
438   return SQLITE_OK;
439 }
440 
441 /*
442 ** Memory cell pMem contains the context of an aggregate function.
443 ** This routine calls the finalize method for that function.  The
444 ** result of the aggregate is stored back into pMem.
445 **
446 ** Return SQLITE_ERROR if the finalizer reports an error.  SQLITE_OK
447 ** otherwise.
448 */
449 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
450   sqlite3_context ctx;
451   Mem t;
452   assert( pFunc!=0 );
453   assert( pMem!=0 );
454   assert( pFunc->xFinalize!=0 );
455   assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
456   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
457   memset(&ctx, 0, sizeof(ctx));
458   memset(&t, 0, sizeof(t));
459   t.flags = MEM_Null;
460   t.db = pMem->db;
461   ctx.pOut = &t;
462   ctx.pMem = pMem;
463   ctx.pFunc = pFunc;
464   pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
465   assert( (pMem->flags & MEM_Dyn)==0 );
466   if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
467   memcpy(pMem, &t, sizeof(t));
468   return ctx.isError;
469 }
470 
471 /*
472 ** Memory cell pAccum contains the context of an aggregate function.
473 ** This routine calls the xValue method for that function and stores
474 ** the results in memory cell pMem.
475 **
476 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
477 ** otherwise.
478 */
479 #ifndef SQLITE_OMIT_WINDOWFUNC
480 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
481   sqlite3_context ctx;
482   assert( pFunc!=0 );
483   assert( pFunc->xValue!=0 );
484   assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
485   assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) );
486   memset(&ctx, 0, sizeof(ctx));
487   sqlite3VdbeMemSetNull(pOut);
488   ctx.pOut = pOut;
489   ctx.pMem = pAccum;
490   ctx.pFunc = pFunc;
491   pFunc->xValue(&ctx);
492   return ctx.isError;
493 }
494 #endif /* SQLITE_OMIT_WINDOWFUNC */
495 
496 /*
497 ** If the memory cell contains a value that must be freed by
498 ** invoking the external callback in Mem.xDel, then this routine
499 ** will free that value.  It also sets Mem.flags to MEM_Null.
500 **
501 ** This is a helper routine for sqlite3VdbeMemSetNull() and
502 ** for sqlite3VdbeMemRelease().  Use those other routines as the
503 ** entry point for releasing Mem resources.
504 */
505 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
506   assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
507   assert( VdbeMemDynamic(p) );
508   if( p->flags&MEM_Agg ){
509     sqlite3VdbeMemFinalize(p, p->u.pDef);
510     assert( (p->flags & MEM_Agg)==0 );
511     testcase( p->flags & MEM_Dyn );
512   }
513   if( p->flags&MEM_Dyn ){
514     assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
515     p->xDel((void *)p->z);
516   }
517   p->flags = MEM_Null;
518 }
519 
520 /*
521 ** Release memory held by the Mem p, both external memory cleared
522 ** by p->xDel and memory in p->zMalloc.
523 **
524 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
525 ** the unusual case where there really is memory in p that needs
526 ** to be freed.
527 */
528 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
529   if( VdbeMemDynamic(p) ){
530     vdbeMemClearExternAndSetNull(p);
531   }
532   if( p->szMalloc ){
533     sqlite3DbFreeNN(p->db, p->zMalloc);
534     p->szMalloc = 0;
535   }
536   p->z = 0;
537 }
538 
539 /*
540 ** Release any memory resources held by the Mem.  Both the memory that is
541 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
542 **
543 ** Use this routine prior to clean up prior to abandoning a Mem, or to
544 ** reset a Mem back to its minimum memory utilization.
545 **
546 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
547 ** prior to inserting new content into the Mem.
548 */
549 void sqlite3VdbeMemRelease(Mem *p){
550   assert( sqlite3VdbeCheckMemInvariants(p) );
551   if( VdbeMemDynamic(p) || p->szMalloc ){
552     vdbeMemClear(p);
553   }
554 }
555 
556 /*
557 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
558 ** If the double is out of range of a 64-bit signed integer then
559 ** return the closest available 64-bit signed integer.
560 */
561 static SQLITE_NOINLINE i64 doubleToInt64(double r){
562 #ifdef SQLITE_OMIT_FLOATING_POINT
563   /* When floating-point is omitted, double and int64 are the same thing */
564   return r;
565 #else
566   /*
567   ** Many compilers we encounter do not define constants for the
568   ** minimum and maximum 64-bit integers, or they define them
569   ** inconsistently.  And many do not understand the "LL" notation.
570   ** So we define our own static constants here using nothing
571   ** larger than a 32-bit integer constant.
572   */
573   static const i64 maxInt = LARGEST_INT64;
574   static const i64 minInt = SMALLEST_INT64;
575 
576   if( r<=(double)minInt ){
577     return minInt;
578   }else if( r>=(double)maxInt ){
579     return maxInt;
580   }else{
581     return (i64)r;
582   }
583 #endif
584 }
585 
586 /*
587 ** Return some kind of integer value which is the best we can do
588 ** at representing the value that *pMem describes as an integer.
589 ** If pMem is an integer, then the value is exact.  If pMem is
590 ** a floating-point then the value returned is the integer part.
591 ** If pMem is a string or blob, then we make an attempt to convert
592 ** it into an integer and return that.  If pMem represents an
593 ** an SQL-NULL value, return 0.
594 **
595 ** If pMem represents a string value, its encoding might be changed.
596 */
597 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){
598   i64 value = 0;
599   sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
600   return value;
601 }
602 i64 sqlite3VdbeIntValue(Mem *pMem){
603   int flags;
604   assert( pMem!=0 );
605   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
606   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
607   flags = pMem->flags;
608   if( flags & (MEM_Int|MEM_IntReal) ){
609     testcase( flags & MEM_IntReal );
610     return pMem->u.i;
611   }else if( flags & MEM_Real ){
612     return doubleToInt64(pMem->u.r);
613   }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){
614     return memIntValue(pMem);
615   }else{
616     return 0;
617   }
618 }
619 
620 /*
621 ** Return the best representation of pMem that we can get into a
622 ** double.  If pMem is already a double or an integer, return its
623 ** value.  If it is a string or blob, try to convert it to a double.
624 ** If it is a NULL, return 0.0.
625 */
626 static SQLITE_NOINLINE double memRealValue(Mem *pMem){
627   /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
628   double val = (double)0;
629   sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
630   return val;
631 }
632 double sqlite3VdbeRealValue(Mem *pMem){
633   assert( pMem!=0 );
634   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
635   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
636   if( pMem->flags & MEM_Real ){
637     return pMem->u.r;
638   }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
639     testcase( pMem->flags & MEM_IntReal );
640     return (double)pMem->u.i;
641   }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
642     return memRealValue(pMem);
643   }else{
644     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
645     return (double)0;
646   }
647 }
648 
649 /*
650 ** Return 1 if pMem represents true, and return 0 if pMem represents false.
651 ** Return the value ifNull if pMem is NULL.
652 */
653 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
654   testcase( pMem->flags & MEM_IntReal );
655   if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0;
656   if( pMem->flags & MEM_Null ) return ifNull;
657   return sqlite3VdbeRealValue(pMem)!=0.0;
658 }
659 
660 /*
661 ** The MEM structure is already a MEM_Real.  Try to also make it a
662 ** MEM_Int if we can.
663 */
664 void sqlite3VdbeIntegerAffinity(Mem *pMem){
665   i64 ix;
666   assert( pMem!=0 );
667   assert( pMem->flags & MEM_Real );
668   assert( !sqlite3VdbeMemIsRowSet(pMem) );
669   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
670   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
671 
672   ix = doubleToInt64(pMem->u.r);
673 
674   /* Only mark the value as an integer if
675   **
676   **    (1) the round-trip conversion real->int->real is a no-op, and
677   **    (2) The integer is neither the largest nor the smallest
678   **        possible integer (ticket #3922)
679   **
680   ** The second and third terms in the following conditional enforces
681   ** the second condition under the assumption that addition overflow causes
682   ** values to wrap around.
683   */
684   if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
685     pMem->u.i = ix;
686     MemSetTypeFlag(pMem, MEM_Int);
687   }
688 }
689 
690 /*
691 ** Convert pMem to type integer.  Invalidate any prior representations.
692 */
693 int sqlite3VdbeMemIntegerify(Mem *pMem){
694   assert( pMem!=0 );
695   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
696   assert( !sqlite3VdbeMemIsRowSet(pMem) );
697   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
698 
699   pMem->u.i = sqlite3VdbeIntValue(pMem);
700   MemSetTypeFlag(pMem, MEM_Int);
701   return SQLITE_OK;
702 }
703 
704 /*
705 ** Convert pMem so that it is of type MEM_Real.
706 ** Invalidate any prior representations.
707 */
708 int sqlite3VdbeMemRealify(Mem *pMem){
709   assert( pMem!=0 );
710   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
711   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
712 
713   pMem->u.r = sqlite3VdbeRealValue(pMem);
714   MemSetTypeFlag(pMem, MEM_Real);
715   return SQLITE_OK;
716 }
717 
718 /* Compare a floating point value to an integer.  Return true if the two
719 ** values are the same within the precision of the floating point value.
720 **
721 ** This function assumes that i was obtained by assignment from r1.
722 **
723 ** For some versions of GCC on 32-bit machines, if you do the more obvious
724 ** comparison of "r1==(double)i" you sometimes get an answer of false even
725 ** though the r1 and (double)i values are bit-for-bit the same.
726 */
727 int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
728   double r2 = (double)i;
729   return r1==0.0
730       || (memcmp(&r1, &r2, sizeof(r1))==0
731           && i >= -2251799813685248LL && i < 2251799813685248LL);
732 }
733 
734 /*
735 ** Convert pMem so that it has type MEM_Real or MEM_Int.
736 ** Invalidate any prior representations.
737 **
738 ** Every effort is made to force the conversion, even if the input
739 ** is a string that does not look completely like a number.  Convert
740 ** as much of the string as we can and ignore the rest.
741 */
742 int sqlite3VdbeMemNumerify(Mem *pMem){
743   assert( pMem!=0 );
744   testcase( pMem->flags & MEM_Int );
745   testcase( pMem->flags & MEM_Real );
746   testcase( pMem->flags & MEM_IntReal );
747   testcase( pMem->flags & MEM_Null );
748   if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){
749     int rc;
750     sqlite3_int64 ix;
751     assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
752     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
753     rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
754     if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1)
755      || sqlite3RealSameAsInt(pMem->u.r, (ix = (i64)pMem->u.r))
756     ){
757       pMem->u.i = ix;
758       MemSetTypeFlag(pMem, MEM_Int);
759     }else{
760       MemSetTypeFlag(pMem, MEM_Real);
761     }
762   }
763   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 );
764   pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
765   return SQLITE_OK;
766 }
767 
768 /*
769 ** Cast the datatype of the value in pMem according to the affinity
770 ** "aff".  Casting is different from applying affinity in that a cast
771 ** is forced.  In other words, the value is converted into the desired
772 ** affinity even if that results in loss of data.  This routine is
773 ** used (for example) to implement the SQL "cast()" operator.
774 */
775 int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
776   if( pMem->flags & MEM_Null ) return SQLITE_OK;
777   switch( aff ){
778     case SQLITE_AFF_BLOB: {   /* Really a cast to BLOB */
779       if( (pMem->flags & MEM_Blob)==0 ){
780         sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
781         assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
782         if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
783       }else{
784         pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
785       }
786       break;
787     }
788     case SQLITE_AFF_NUMERIC: {
789       sqlite3VdbeMemNumerify(pMem);
790       break;
791     }
792     case SQLITE_AFF_INTEGER: {
793       sqlite3VdbeMemIntegerify(pMem);
794       break;
795     }
796     case SQLITE_AFF_REAL: {
797       sqlite3VdbeMemRealify(pMem);
798       break;
799     }
800     default: {
801       assert( aff==SQLITE_AFF_TEXT );
802       assert( MEM_Str==(MEM_Blob>>3) );
803       pMem->flags |= (pMem->flags&MEM_Blob)>>3;
804       sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
805       assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
806       pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero);
807       return sqlite3VdbeChangeEncoding(pMem, encoding);
808     }
809   }
810   return SQLITE_OK;
811 }
812 
813 /*
814 ** Initialize bulk memory to be a consistent Mem object.
815 **
816 ** The minimum amount of initialization feasible is performed.
817 */
818 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
819   assert( (flags & ~MEM_TypeMask)==0 );
820   pMem->flags = flags;
821   pMem->db = db;
822   pMem->szMalloc = 0;
823 }
824 
825 
826 /*
827 ** Delete any previous value and set the value stored in *pMem to NULL.
828 **
829 ** This routine calls the Mem.xDel destructor to dispose of values that
830 ** require the destructor.  But it preserves the Mem.zMalloc memory allocation.
831 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
832 ** routine to invoke the destructor and deallocates Mem.zMalloc.
833 **
834 ** Use this routine to reset the Mem prior to insert a new value.
835 **
836 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
837 */
838 void sqlite3VdbeMemSetNull(Mem *pMem){
839   if( VdbeMemDynamic(pMem) ){
840     vdbeMemClearExternAndSetNull(pMem);
841   }else{
842     pMem->flags = MEM_Null;
843   }
844 }
845 void sqlite3ValueSetNull(sqlite3_value *p){
846   sqlite3VdbeMemSetNull((Mem*)p);
847 }
848 
849 /*
850 ** Delete any previous value and set the value to be a BLOB of length
851 ** n containing all zeros.
852 */
853 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
854   sqlite3VdbeMemRelease(pMem);
855   pMem->flags = MEM_Blob|MEM_Zero;
856   pMem->n = 0;
857   if( n<0 ) n = 0;
858   pMem->u.nZero = n;
859   pMem->enc = SQLITE_UTF8;
860   pMem->z = 0;
861 }
862 
863 /*
864 ** The pMem is known to contain content that needs to be destroyed prior
865 ** to a value change.  So invoke the destructor, then set the value to
866 ** a 64-bit integer.
867 */
868 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
869   sqlite3VdbeMemSetNull(pMem);
870   pMem->u.i = val;
871   pMem->flags = MEM_Int;
872 }
873 
874 /*
875 ** Delete any previous value and set the value stored in *pMem to val,
876 ** manifest type INTEGER.
877 */
878 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
879   if( VdbeMemDynamic(pMem) ){
880     vdbeReleaseAndSetInt64(pMem, val);
881   }else{
882     pMem->u.i = val;
883     pMem->flags = MEM_Int;
884   }
885 }
886 
887 /* A no-op destructor */
888 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
889 
890 /*
891 ** Set the value stored in *pMem should already be a NULL.
892 ** Also store a pointer to go with it.
893 */
894 void sqlite3VdbeMemSetPointer(
895   Mem *pMem,
896   void *pPtr,
897   const char *zPType,
898   void (*xDestructor)(void*)
899 ){
900   assert( pMem->flags==MEM_Null );
901   pMem->u.zPType = zPType ? zPType : "";
902   pMem->z = pPtr;
903   pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
904   pMem->eSubtype = 'p';
905   pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
906 }
907 
908 #ifndef SQLITE_OMIT_FLOATING_POINT
909 /*
910 ** Delete any previous value and set the value stored in *pMem to val,
911 ** manifest type REAL.
912 */
913 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
914   sqlite3VdbeMemSetNull(pMem);
915   if( !sqlite3IsNaN(val) ){
916     pMem->u.r = val;
917     pMem->flags = MEM_Real;
918   }
919 }
920 #endif
921 
922 #ifdef SQLITE_DEBUG
923 /*
924 ** Return true if the Mem holds a RowSet object.  This routine is intended
925 ** for use inside of assert() statements.
926 */
927 int sqlite3VdbeMemIsRowSet(const Mem *pMem){
928   return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn)
929          && pMem->xDel==sqlite3RowSetDelete;
930 }
931 #endif
932 
933 /*
934 ** Delete any previous value and set the value of pMem to be an
935 ** empty boolean index.
936 **
937 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation
938 ** error occurs.
939 */
940 int sqlite3VdbeMemSetRowSet(Mem *pMem){
941   sqlite3 *db = pMem->db;
942   RowSet *p;
943   assert( db!=0 );
944   assert( !sqlite3VdbeMemIsRowSet(pMem) );
945   sqlite3VdbeMemRelease(pMem);
946   p = sqlite3RowSetInit(db);
947   if( p==0 ) return SQLITE_NOMEM;
948   pMem->z = (char*)p;
949   pMem->flags = MEM_Blob|MEM_Dyn;
950   pMem->xDel = sqlite3RowSetDelete;
951   return SQLITE_OK;
952 }
953 
954 /*
955 ** Return true if the Mem object contains a TEXT or BLOB that is
956 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
957 */
958 int sqlite3VdbeMemTooBig(Mem *p){
959   assert( p->db!=0 );
960   if( p->flags & (MEM_Str|MEM_Blob) ){
961     int n = p->n;
962     if( p->flags & MEM_Zero ){
963       n += p->u.nZero;
964     }
965     return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
966   }
967   return 0;
968 }
969 
970 #ifdef SQLITE_DEBUG
971 /*
972 ** This routine prepares a memory cell for modification by breaking
973 ** its link to a shallow copy and by marking any current shallow
974 ** copies of this cell as invalid.
975 **
976 ** This is used for testing and debugging only - to help ensure that shallow
977 ** copies (created by OP_SCopy) are not misused.
978 */
979 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
980   int i;
981   Mem *pX;
982   for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){
983     if( pX->pScopyFrom==pMem ){
984       u16 mFlags;
985       if( pVdbe->db->flags & SQLITE_VdbeTrace ){
986         sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n",
987           (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem));
988       }
989       /* If pX is marked as a shallow copy of pMem, then try to verify that
990       ** no significant changes have been made to pX since the OP_SCopy.
991       ** A significant change would indicated a missed call to this
992       ** function for pX.  Minor changes, such as adding or removing a
993       ** dual type, are allowed, as long as the underlying value is the
994       ** same. */
995       mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
996       assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i );
997 
998       /* pMem is the register that is changing.  But also mark pX as
999       ** undefined so that we can quickly detect the shallow-copy error */
1000       pX->flags = MEM_Undefined;
1001       pX->pScopyFrom = 0;
1002     }
1003   }
1004   pMem->pScopyFrom = 0;
1005 }
1006 #endif /* SQLITE_DEBUG */
1007 
1008 /*
1009 ** Make an shallow copy of pFrom into pTo.  Prior contents of
1010 ** pTo are freed.  The pFrom->z field is not duplicated.  If
1011 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
1012 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
1013 */
1014 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
1015   vdbeMemClearExternAndSetNull(pTo);
1016   assert( !VdbeMemDynamic(pTo) );
1017   sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
1018 }
1019 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
1020   assert( !sqlite3VdbeMemIsRowSet(pFrom) );
1021   assert( pTo->db==pFrom->db );
1022   if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
1023   memcpy(pTo, pFrom, MEMCELLSIZE);
1024   if( (pFrom->flags&MEM_Static)==0 ){
1025     pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
1026     assert( srcType==MEM_Ephem || srcType==MEM_Static );
1027     pTo->flags |= srcType;
1028   }
1029 }
1030 
1031 /*
1032 ** Make a full copy of pFrom into pTo.  Prior contents of pTo are
1033 ** freed before the copy is made.
1034 */
1035 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
1036   int rc = SQLITE_OK;
1037 
1038   assert( !sqlite3VdbeMemIsRowSet(pFrom) );
1039   if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
1040   memcpy(pTo, pFrom, MEMCELLSIZE);
1041   pTo->flags &= ~MEM_Dyn;
1042   if( pTo->flags&(MEM_Str|MEM_Blob) ){
1043     if( 0==(pFrom->flags&MEM_Static) ){
1044       pTo->flags |= MEM_Ephem;
1045       rc = sqlite3VdbeMemMakeWriteable(pTo);
1046     }
1047   }
1048 
1049   return rc;
1050 }
1051 
1052 /*
1053 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
1054 ** freed. If pFrom contains ephemeral data, a copy is made.
1055 **
1056 ** pFrom contains an SQL NULL when this routine returns.
1057 */
1058 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
1059   assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
1060   assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
1061   assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
1062 
1063   sqlite3VdbeMemRelease(pTo);
1064   memcpy(pTo, pFrom, sizeof(Mem));
1065   pFrom->flags = MEM_Null;
1066   pFrom->szMalloc = 0;
1067 }
1068 
1069 /*
1070 ** Change the value of a Mem to be a string or a BLOB.
1071 **
1072 ** The memory management strategy depends on the value of the xDel
1073 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
1074 ** string is copied into a (possibly existing) buffer managed by the
1075 ** Mem structure. Otherwise, any existing buffer is freed and the
1076 ** pointer copied.
1077 **
1078 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1079 ** size limit) then no memory allocation occurs.  If the string can be
1080 ** stored without allocating memory, then it is.  If a memory allocation
1081 ** is required to store the string, then value of pMem is unchanged.  In
1082 ** either case, SQLITE_TOOBIG is returned.
1083 */
1084 int sqlite3VdbeMemSetStr(
1085   Mem *pMem,          /* Memory cell to set to string value */
1086   const char *z,      /* String pointer */
1087   i64 n,              /* Bytes in string, or negative */
1088   u8 enc,             /* Encoding of z.  0 for BLOBs */
1089   void (*xDel)(void*) /* Destructor function */
1090 ){
1091   i64 nByte = n;      /* New value for pMem->n */
1092   int iLimit;         /* Maximum allowed string or blob size */
1093   u16 flags = 0;      /* New value for pMem->flags */
1094 
1095   assert( pMem!=0 );
1096   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
1097   assert( !sqlite3VdbeMemIsRowSet(pMem) );
1098 
1099   /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
1100   if( !z ){
1101     sqlite3VdbeMemSetNull(pMem);
1102     return SQLITE_OK;
1103   }
1104 
1105   if( pMem->db ){
1106     iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
1107   }else{
1108     iLimit = SQLITE_MAX_LENGTH;
1109   }
1110   flags = (enc==0?MEM_Blob:MEM_Str);
1111   if( nByte<0 ){
1112     assert( enc!=0 );
1113     if( enc==SQLITE_UTF8 ){
1114       nByte = strlen(z);
1115     }else{
1116       for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
1117     }
1118     flags |= MEM_Term;
1119   }
1120 
1121   /* The following block sets the new values of Mem.z and Mem.xDel. It
1122   ** also sets a flag in local variable "flags" to indicate the memory
1123   ** management (one of MEM_Dyn or MEM_Static).
1124   */
1125   if( xDel==SQLITE_TRANSIENT ){
1126     i64 nAlloc = nByte;
1127     if( flags&MEM_Term ){
1128       nAlloc += (enc==SQLITE_UTF8?1:2);
1129     }
1130     if( nByte>iLimit ){
1131       return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG);
1132     }
1133     testcase( nAlloc==0 );
1134     testcase( nAlloc==31 );
1135     testcase( nAlloc==32 );
1136     if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){
1137       return SQLITE_NOMEM_BKPT;
1138     }
1139     memcpy(pMem->z, z, nAlloc);
1140   }else{
1141     sqlite3VdbeMemRelease(pMem);
1142     pMem->z = (char *)z;
1143     if( xDel==SQLITE_DYNAMIC ){
1144       pMem->zMalloc = pMem->z;
1145       pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
1146     }else{
1147       pMem->xDel = xDel;
1148       flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
1149     }
1150   }
1151 
1152   pMem->n = (int)(nByte & 0x7fffffff);
1153   pMem->flags = flags;
1154   if( enc ){
1155     pMem->enc = enc;
1156 #ifdef SQLITE_ENABLE_SESSION
1157   }else if( pMem->db==0 ){
1158     pMem->enc = SQLITE_UTF8;
1159 #endif
1160   }else{
1161     assert( pMem->db!=0 );
1162     pMem->enc = ENC(pMem->db);
1163   }
1164 
1165 #ifndef SQLITE_OMIT_UTF16
1166   if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
1167     return SQLITE_NOMEM_BKPT;
1168   }
1169 #endif
1170 
1171   if( nByte>iLimit ){
1172     return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG);
1173   }
1174 
1175   return SQLITE_OK;
1176 }
1177 
1178 /*
1179 ** Move data out of a btree key or data field and into a Mem structure.
1180 ** The data is payload from the entry that pCur is currently pointing
1181 ** to.  offset and amt determine what portion of the data or key to retrieve.
1182 ** The result is written into the pMem element.
1183 **
1184 ** The pMem object must have been initialized.  This routine will use
1185 ** pMem->zMalloc to hold the content from the btree, if possible.  New
1186 ** pMem->zMalloc space will be allocated if necessary.  The calling routine
1187 ** is responsible for making sure that the pMem object is eventually
1188 ** destroyed.
1189 **
1190 ** If this routine fails for any reason (malloc returns NULL or unable
1191 ** to read from the disk) then the pMem is left in an inconsistent state.
1192 */
1193 int sqlite3VdbeMemFromBtree(
1194   BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
1195   u32 offset,       /* Offset from the start of data to return bytes from. */
1196   u32 amt,          /* Number of bytes to return. */
1197   Mem *pMem         /* OUT: Return data in this Mem structure. */
1198 ){
1199   int rc;
1200   pMem->flags = MEM_Null;
1201   if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){
1202     return SQLITE_CORRUPT_BKPT;
1203   }
1204   if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
1205     rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
1206     if( rc==SQLITE_OK ){
1207       pMem->z[amt] = 0;   /* Overrun area used when reading malformed records */
1208       pMem->flags = MEM_Blob;
1209       pMem->n = (int)amt;
1210     }else{
1211       sqlite3VdbeMemRelease(pMem);
1212     }
1213   }
1214   return rc;
1215 }
1216 int sqlite3VdbeMemFromBtreeZeroOffset(
1217   BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
1218   u32 amt,          /* Number of bytes to return. */
1219   Mem *pMem         /* OUT: Return data in this Mem structure. */
1220 ){
1221   u32 available = 0;  /* Number of bytes available on the local btree page */
1222   int rc = SQLITE_OK; /* Return code */
1223 
1224   assert( sqlite3BtreeCursorIsValid(pCur) );
1225   assert( !VdbeMemDynamic(pMem) );
1226 
1227   /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1228   ** that both the BtShared and database handle mutexes are held. */
1229   assert( !sqlite3VdbeMemIsRowSet(pMem) );
1230   pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available);
1231   assert( pMem->z!=0 );
1232 
1233   if( amt<=available ){
1234     pMem->flags = MEM_Blob|MEM_Ephem;
1235     pMem->n = (int)amt;
1236   }else{
1237     rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem);
1238   }
1239 
1240   return rc;
1241 }
1242 
1243 /*
1244 ** The pVal argument is known to be a value other than NULL.
1245 ** Convert it into a string with encoding enc and return a pointer
1246 ** to a zero-terminated version of that string.
1247 */
1248 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1249   assert( pVal!=0 );
1250   assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1251   assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1252   assert( !sqlite3VdbeMemIsRowSet(pVal) );
1253   assert( (pVal->flags & (MEM_Null))==0 );
1254   if( pVal->flags & (MEM_Blob|MEM_Str) ){
1255     if( ExpandBlob(pVal) ) return 0;
1256     pVal->flags |= MEM_Str;
1257     if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1258       sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1259     }
1260     if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1261       assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1262       if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1263         return 0;
1264       }
1265     }
1266     sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1267   }else{
1268     sqlite3VdbeMemStringify(pVal, enc, 0);
1269     assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1270   }
1271   assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1272               || pVal->db->mallocFailed );
1273   if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1274     assert( sqlite3VdbeMemValidStrRep(pVal) );
1275     return pVal->z;
1276   }else{
1277     return 0;
1278   }
1279 }
1280 
1281 /* This function is only available internally, it is not part of the
1282 ** external API. It works in a similar way to sqlite3_value_text(),
1283 ** except the data returned is in the encoding specified by the second
1284 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1285 ** SQLITE_UTF8.
1286 **
1287 ** (2006-02-16:)  The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1288 ** If that is the case, then the result must be aligned on an even byte
1289 ** boundary.
1290 */
1291 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1292   if( !pVal ) return 0;
1293   assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1294   assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1295   assert( !sqlite3VdbeMemIsRowSet(pVal) );
1296   if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1297     assert( sqlite3VdbeMemValidStrRep(pVal) );
1298     return pVal->z;
1299   }
1300   if( pVal->flags&MEM_Null ){
1301     return 0;
1302   }
1303   return valueToText(pVal, enc);
1304 }
1305 
1306 /*
1307 ** Create a new sqlite3_value object.
1308 */
1309 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1310   Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1311   if( p ){
1312     p->flags = MEM_Null;
1313     p->db = db;
1314   }
1315   return p;
1316 }
1317 
1318 /*
1319 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1320 ** valueNew(). See comments above valueNew() for details.
1321 */
1322 struct ValueNewStat4Ctx {
1323   Parse *pParse;
1324   Index *pIdx;
1325   UnpackedRecord **ppRec;
1326   int iVal;
1327 };
1328 
1329 /*
1330 ** Allocate and return a pointer to a new sqlite3_value object. If
1331 ** the second argument to this function is NULL, the object is allocated
1332 ** by calling sqlite3ValueNew().
1333 **
1334 ** Otherwise, if the second argument is non-zero, then this function is
1335 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1336 ** already been allocated, allocate the UnpackedRecord structure that
1337 ** that function will return to its caller here. Then return a pointer to
1338 ** an sqlite3_value within the UnpackedRecord.a[] array.
1339 */
1340 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1341 #ifdef SQLITE_ENABLE_STAT4
1342   if( p ){
1343     UnpackedRecord *pRec = p->ppRec[0];
1344 
1345     if( pRec==0 ){
1346       Index *pIdx = p->pIdx;      /* Index being probed */
1347       int nByte;                  /* Bytes of space to allocate */
1348       int i;                      /* Counter variable */
1349       int nCol = pIdx->nColumn;   /* Number of index columns including rowid */
1350 
1351       nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1352       pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1353       if( pRec ){
1354         pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1355         if( pRec->pKeyInfo ){
1356           assert( pRec->pKeyInfo->nAllField==nCol );
1357           assert( pRec->pKeyInfo->enc==ENC(db) );
1358           pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1359           for(i=0; i<nCol; i++){
1360             pRec->aMem[i].flags = MEM_Null;
1361             pRec->aMem[i].db = db;
1362           }
1363         }else{
1364           sqlite3DbFreeNN(db, pRec);
1365           pRec = 0;
1366         }
1367       }
1368       if( pRec==0 ) return 0;
1369       p->ppRec[0] = pRec;
1370     }
1371 
1372     pRec->nField = p->iVal+1;
1373     return &pRec->aMem[p->iVal];
1374   }
1375 #else
1376   UNUSED_PARAMETER(p);
1377 #endif /* defined(SQLITE_ENABLE_STAT4) */
1378   return sqlite3ValueNew(db);
1379 }
1380 
1381 /*
1382 ** The expression object indicated by the second argument is guaranteed
1383 ** to be a scalar SQL function. If
1384 **
1385 **   * all function arguments are SQL literals,
1386 **   * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1387 **   * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1388 **
1389 ** then this routine attempts to invoke the SQL function. Assuming no
1390 ** error occurs, output parameter (*ppVal) is set to point to a value
1391 ** object containing the result before returning SQLITE_OK.
1392 **
1393 ** Affinity aff is applied to the result of the function before returning.
1394 ** If the result is a text value, the sqlite3_value object uses encoding
1395 ** enc.
1396 **
1397 ** If the conditions above are not met, this function returns SQLITE_OK
1398 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1399 ** NULL and an SQLite error code returned.
1400 */
1401 #ifdef SQLITE_ENABLE_STAT4
1402 static int valueFromFunction(
1403   sqlite3 *db,                    /* The database connection */
1404   const Expr *p,                  /* The expression to evaluate */
1405   u8 enc,                         /* Encoding to use */
1406   u8 aff,                         /* Affinity to use */
1407   sqlite3_value **ppVal,          /* Write the new value here */
1408   struct ValueNewStat4Ctx *pCtx   /* Second argument for valueNew() */
1409 ){
1410   sqlite3_context ctx;            /* Context object for function invocation */
1411   sqlite3_value **apVal = 0;      /* Function arguments */
1412   int nVal = 0;                   /* Size of apVal[] array */
1413   FuncDef *pFunc = 0;             /* Function definition */
1414   sqlite3_value *pVal = 0;        /* New value */
1415   int rc = SQLITE_OK;             /* Return code */
1416   ExprList *pList = 0;            /* Function arguments */
1417   int i;                          /* Iterator variable */
1418 
1419   assert( pCtx!=0 );
1420   assert( (p->flags & EP_TokenOnly)==0 );
1421   assert( ExprUseXList(p) );
1422   pList = p->x.pList;
1423   if( pList ) nVal = pList->nExpr;
1424   assert( !ExprHasProperty(p, EP_IntValue) );
1425   pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1426   assert( pFunc );
1427   if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1428    || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1429   ){
1430     return SQLITE_OK;
1431   }
1432 
1433   if( pList ){
1434     apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1435     if( apVal==0 ){
1436       rc = SQLITE_NOMEM_BKPT;
1437       goto value_from_function_out;
1438     }
1439     for(i=0; i<nVal; i++){
1440       rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1441       if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1442     }
1443   }
1444 
1445   pVal = valueNew(db, pCtx);
1446   if( pVal==0 ){
1447     rc = SQLITE_NOMEM_BKPT;
1448     goto value_from_function_out;
1449   }
1450 
1451   assert( pCtx->pParse->rc==SQLITE_OK );
1452   memset(&ctx, 0, sizeof(ctx));
1453   ctx.pOut = pVal;
1454   ctx.pFunc = pFunc;
1455   pFunc->xSFunc(&ctx, nVal, apVal);
1456   if( ctx.isError ){
1457     rc = ctx.isError;
1458     sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1459   }else{
1460     sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1461     assert( rc==SQLITE_OK );
1462     rc = sqlite3VdbeChangeEncoding(pVal, enc);
1463     if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1464       rc = SQLITE_TOOBIG;
1465       pCtx->pParse->nErr++;
1466     }
1467   }
1468   pCtx->pParse->rc = rc;
1469 
1470  value_from_function_out:
1471   if( rc!=SQLITE_OK ){
1472     pVal = 0;
1473   }
1474   if( apVal ){
1475     for(i=0; i<nVal; i++){
1476       sqlite3ValueFree(apVal[i]);
1477     }
1478     sqlite3DbFreeNN(db, apVal);
1479   }
1480 
1481   *ppVal = pVal;
1482   return rc;
1483 }
1484 #else
1485 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1486 #endif /* defined(SQLITE_ENABLE_STAT4) */
1487 
1488 /*
1489 ** Extract a value from the supplied expression in the manner described
1490 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1491 ** using valueNew().
1492 **
1493 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1494 ** has been allocated, it is freed before returning. Or, if pCtx is not
1495 ** NULL, it is assumed that the caller will free any allocated object
1496 ** in all cases.
1497 */
1498 static int valueFromExpr(
1499   sqlite3 *db,                    /* The database connection */
1500   const Expr *pExpr,              /* The expression to evaluate */
1501   u8 enc,                         /* Encoding to use */
1502   u8 affinity,                    /* Affinity to use */
1503   sqlite3_value **ppVal,          /* Write the new value here */
1504   struct ValueNewStat4Ctx *pCtx   /* Second argument for valueNew() */
1505 ){
1506   int op;
1507   char *zVal = 0;
1508   sqlite3_value *pVal = 0;
1509   int negInt = 1;
1510   const char *zNeg = "";
1511   int rc = SQLITE_OK;
1512 
1513   assert( pExpr!=0 );
1514   while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
1515 #if defined(SQLITE_ENABLE_STAT4)
1516   if( op==TK_REGISTER ) op = pExpr->op2;
1517 #else
1518   if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1519 #endif
1520 
1521   /* Compressed expressions only appear when parsing the DEFAULT clause
1522   ** on a table column definition, and hence only when pCtx==0.  This
1523   ** check ensures that an EP_TokenOnly expression is never passed down
1524   ** into valueFromFunction(). */
1525   assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1526 
1527   if( op==TK_CAST ){
1528     u8 aff;
1529     assert( !ExprHasProperty(pExpr, EP_IntValue) );
1530     aff = sqlite3AffinityType(pExpr->u.zToken,0);
1531     rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1532     testcase( rc!=SQLITE_OK );
1533     if( *ppVal ){
1534       sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1535       sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1536     }
1537     return rc;
1538   }
1539 
1540   /* Handle negative integers in a single step.  This is needed in the
1541   ** case when the value is -9223372036854775808.
1542   */
1543   if( op==TK_UMINUS
1544    && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1545     pExpr = pExpr->pLeft;
1546     op = pExpr->op;
1547     negInt = -1;
1548     zNeg = "-";
1549   }
1550 
1551   if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1552     pVal = valueNew(db, pCtx);
1553     if( pVal==0 ) goto no_mem;
1554     if( ExprHasProperty(pExpr, EP_IntValue) ){
1555       sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1556     }else{
1557       zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1558       if( zVal==0 ) goto no_mem;
1559       sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1560     }
1561     if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1562       sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1563     }else{
1564       sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1565     }
1566     assert( (pVal->flags & MEM_IntReal)==0 );
1567     if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){
1568       testcase( pVal->flags & MEM_Int );
1569       testcase( pVal->flags & MEM_Real );
1570       pVal->flags &= ~MEM_Str;
1571     }
1572     if( enc!=SQLITE_UTF8 ){
1573       rc = sqlite3VdbeChangeEncoding(pVal, enc);
1574     }
1575   }else if( op==TK_UMINUS ) {
1576     /* This branch happens for multiple negative signs.  Ex: -(-5) */
1577     if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
1578      && pVal!=0
1579     ){
1580       sqlite3VdbeMemNumerify(pVal);
1581       if( pVal->flags & MEM_Real ){
1582         pVal->u.r = -pVal->u.r;
1583       }else if( pVal->u.i==SMALLEST_INT64 ){
1584 #ifndef SQLITE_OMIT_FLOATING_POINT
1585         pVal->u.r = -(double)SMALLEST_INT64;
1586 #else
1587         pVal->u.r = LARGEST_INT64;
1588 #endif
1589         MemSetTypeFlag(pVal, MEM_Real);
1590       }else{
1591         pVal->u.i = -pVal->u.i;
1592       }
1593       sqlite3ValueApplyAffinity(pVal, affinity, enc);
1594     }
1595   }else if( op==TK_NULL ){
1596     pVal = valueNew(db, pCtx);
1597     if( pVal==0 ) goto no_mem;
1598     sqlite3VdbeMemSetNull(pVal);
1599   }
1600 #ifndef SQLITE_OMIT_BLOB_LITERAL
1601   else if( op==TK_BLOB ){
1602     int nVal;
1603     assert( !ExprHasProperty(pExpr, EP_IntValue) );
1604     assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1605     assert( pExpr->u.zToken[1]=='\'' );
1606     pVal = valueNew(db, pCtx);
1607     if( !pVal ) goto no_mem;
1608     zVal = &pExpr->u.zToken[2];
1609     nVal = sqlite3Strlen30(zVal)-1;
1610     assert( zVal[nVal]=='\'' );
1611     sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1612                          0, SQLITE_DYNAMIC);
1613   }
1614 #endif
1615 #ifdef SQLITE_ENABLE_STAT4
1616   else if( op==TK_FUNCTION && pCtx!=0 ){
1617     rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1618   }
1619 #endif
1620   else if( op==TK_TRUEFALSE ){
1621     assert( !ExprHasProperty(pExpr, EP_IntValue) );
1622     pVal = valueNew(db, pCtx);
1623     if( pVal ){
1624       pVal->flags = MEM_Int;
1625       pVal->u.i = pExpr->u.zToken[4]==0;
1626     }
1627   }
1628 
1629   *ppVal = pVal;
1630   return rc;
1631 
1632 no_mem:
1633 #ifdef SQLITE_ENABLE_STAT4
1634   if( pCtx==0 || pCtx->pParse->nErr==0 )
1635 #endif
1636     sqlite3OomFault(db);
1637   sqlite3DbFree(db, zVal);
1638   assert( *ppVal==0 );
1639 #ifdef SQLITE_ENABLE_STAT4
1640   if( pCtx==0 ) sqlite3ValueFree(pVal);
1641 #else
1642   assert( pCtx==0 ); sqlite3ValueFree(pVal);
1643 #endif
1644   return SQLITE_NOMEM_BKPT;
1645 }
1646 
1647 /*
1648 ** Create a new sqlite3_value object, containing the value of pExpr.
1649 **
1650 ** This only works for very simple expressions that consist of one constant
1651 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1652 ** be converted directly into a value, then the value is allocated and
1653 ** a pointer written to *ppVal. The caller is responsible for deallocating
1654 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1655 ** cannot be converted to a value, then *ppVal is set to NULL.
1656 */
1657 int sqlite3ValueFromExpr(
1658   sqlite3 *db,              /* The database connection */
1659   const Expr *pExpr,        /* The expression to evaluate */
1660   u8 enc,                   /* Encoding to use */
1661   u8 affinity,              /* Affinity to use */
1662   sqlite3_value **ppVal     /* Write the new value here */
1663 ){
1664   return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
1665 }
1666 
1667 #ifdef SQLITE_ENABLE_STAT4
1668 /*
1669 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1670 **
1671 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1672 ** pAlloc if one does not exist and the new value is added to the
1673 ** UnpackedRecord object.
1674 **
1675 ** A value is extracted in the following cases:
1676 **
1677 **  * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1678 **
1679 **  * The expression is a bound variable, and this is a reprepare, or
1680 **
1681 **  * The expression is a literal value.
1682 **
1683 ** On success, *ppVal is made to point to the extracted value.  The caller
1684 ** is responsible for ensuring that the value is eventually freed.
1685 */
1686 static int stat4ValueFromExpr(
1687   Parse *pParse,                  /* Parse context */
1688   Expr *pExpr,                    /* The expression to extract a value from */
1689   u8 affinity,                    /* Affinity to use */
1690   struct ValueNewStat4Ctx *pAlloc,/* How to allocate space.  Or NULL */
1691   sqlite3_value **ppVal           /* OUT: New value object (or NULL) */
1692 ){
1693   int rc = SQLITE_OK;
1694   sqlite3_value *pVal = 0;
1695   sqlite3 *db = pParse->db;
1696 
1697   /* Skip over any TK_COLLATE nodes */
1698   pExpr = sqlite3ExprSkipCollate(pExpr);
1699 
1700   assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
1701   if( !pExpr ){
1702     pVal = valueNew(db, pAlloc);
1703     if( pVal ){
1704       sqlite3VdbeMemSetNull((Mem*)pVal);
1705     }
1706   }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
1707     Vdbe *v;
1708     int iBindVar = pExpr->iColumn;
1709     sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1710     if( (v = pParse->pReprepare)!=0 ){
1711       pVal = valueNew(db, pAlloc);
1712       if( pVal ){
1713         rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1714         sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1715         pVal->db = pParse->db;
1716       }
1717     }
1718   }else{
1719     rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1720   }
1721 
1722   assert( pVal==0 || pVal->db==db );
1723   *ppVal = pVal;
1724   return rc;
1725 }
1726 
1727 /*
1728 ** This function is used to allocate and populate UnpackedRecord
1729 ** structures intended to be compared against sample index keys stored
1730 ** in the sqlite_stat4 table.
1731 **
1732 ** A single call to this function populates zero or more fields of the
1733 ** record starting with field iVal (fields are numbered from left to
1734 ** right starting with 0). A single field is populated if:
1735 **
1736 **  * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1737 **
1738 **  * The expression is a bound variable, and this is a reprepare, or
1739 **
1740 **  * The sqlite3ValueFromExpr() function is able to extract a value
1741 **    from the expression (i.e. the expression is a literal value).
1742 **
1743 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1744 ** vector components that match either of the two latter criteria listed
1745 ** above.
1746 **
1747 ** Before any value is appended to the record, the affinity of the
1748 ** corresponding column within index pIdx is applied to it. Before
1749 ** this function returns, output parameter *pnExtract is set to the
1750 ** number of values appended to the record.
1751 **
1752 ** When this function is called, *ppRec must either point to an object
1753 ** allocated by an earlier call to this function, or must be NULL. If it
1754 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1755 ** is allocated (and *ppRec set to point to it) before returning.
1756 **
1757 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1758 ** error if a value cannot be extracted from pExpr. If an error does
1759 ** occur, an SQLite error code is returned.
1760 */
1761 int sqlite3Stat4ProbeSetValue(
1762   Parse *pParse,                  /* Parse context */
1763   Index *pIdx,                    /* Index being probed */
1764   UnpackedRecord **ppRec,         /* IN/OUT: Probe record */
1765   Expr *pExpr,                    /* The expression to extract a value from */
1766   int nElem,                      /* Maximum number of values to append */
1767   int iVal,                       /* Array element to populate */
1768   int *pnExtract                  /* OUT: Values appended to the record */
1769 ){
1770   int rc = SQLITE_OK;
1771   int nExtract = 0;
1772 
1773   if( pExpr==0 || pExpr->op!=TK_SELECT ){
1774     int i;
1775     struct ValueNewStat4Ctx alloc;
1776 
1777     alloc.pParse = pParse;
1778     alloc.pIdx = pIdx;
1779     alloc.ppRec = ppRec;
1780 
1781     for(i=0; i<nElem; i++){
1782       sqlite3_value *pVal = 0;
1783       Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
1784       u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1785       alloc.iVal = iVal+i;
1786       rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1787       if( !pVal ) break;
1788       nExtract++;
1789     }
1790   }
1791 
1792   *pnExtract = nExtract;
1793   return rc;
1794 }
1795 
1796 /*
1797 ** Attempt to extract a value from expression pExpr using the methods
1798 ** as described for sqlite3Stat4ProbeSetValue() above.
1799 **
1800 ** If successful, set *ppVal to point to a new value object and return
1801 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1802 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1803 ** does occur, return an SQLite error code. The final value of *ppVal
1804 ** is undefined in this case.
1805 */
1806 int sqlite3Stat4ValueFromExpr(
1807   Parse *pParse,                  /* Parse context */
1808   Expr *pExpr,                    /* The expression to extract a value from */
1809   u8 affinity,                    /* Affinity to use */
1810   sqlite3_value **ppVal           /* OUT: New value object (or NULL) */
1811 ){
1812   return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1813 }
1814 
1815 /*
1816 ** Extract the iCol-th column from the nRec-byte record in pRec.  Write
1817 ** the column value into *ppVal.  If *ppVal is initially NULL then a new
1818 ** sqlite3_value object is allocated.
1819 **
1820 ** If *ppVal is initially NULL then the caller is responsible for
1821 ** ensuring that the value written into *ppVal is eventually freed.
1822 */
1823 int sqlite3Stat4Column(
1824   sqlite3 *db,                    /* Database handle */
1825   const void *pRec,               /* Pointer to buffer containing record */
1826   int nRec,                       /* Size of buffer pRec in bytes */
1827   int iCol,                       /* Column to extract */
1828   sqlite3_value **ppVal           /* OUT: Extracted value */
1829 ){
1830   u32 t = 0;                      /* a column type code */
1831   int nHdr;                       /* Size of the header in the record */
1832   int iHdr;                       /* Next unread header byte */
1833   int iField;                     /* Next unread data byte */
1834   int szField = 0;                /* Size of the current data field */
1835   int i;                          /* Column index */
1836   u8 *a = (u8*)pRec;              /* Typecast byte array */
1837   Mem *pMem = *ppVal;             /* Write result into this Mem object */
1838 
1839   assert( iCol>0 );
1840   iHdr = getVarint32(a, nHdr);
1841   if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1842   iField = nHdr;
1843   for(i=0; i<=iCol; i++){
1844     iHdr += getVarint32(&a[iHdr], t);
1845     testcase( iHdr==nHdr );
1846     testcase( iHdr==nHdr+1 );
1847     if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1848     szField = sqlite3VdbeSerialTypeLen(t);
1849     iField += szField;
1850   }
1851   testcase( iField==nRec );
1852   testcase( iField==nRec+1 );
1853   if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1854   if( pMem==0 ){
1855     pMem = *ppVal = sqlite3ValueNew(db);
1856     if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1857   }
1858   sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1859   pMem->enc = ENC(db);
1860   return SQLITE_OK;
1861 }
1862 
1863 /*
1864 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1865 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1866 ** the object.
1867 */
1868 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1869   if( pRec ){
1870     int i;
1871     int nCol = pRec->pKeyInfo->nAllField;
1872     Mem *aMem = pRec->aMem;
1873     sqlite3 *db = aMem[0].db;
1874     for(i=0; i<nCol; i++){
1875       sqlite3VdbeMemRelease(&aMem[i]);
1876     }
1877     sqlite3KeyInfoUnref(pRec->pKeyInfo);
1878     sqlite3DbFreeNN(db, pRec);
1879   }
1880 }
1881 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1882 
1883 /*
1884 ** Change the string value of an sqlite3_value object
1885 */
1886 void sqlite3ValueSetStr(
1887   sqlite3_value *v,     /* Value to be set */
1888   int n,                /* Length of string z */
1889   const void *z,        /* Text of the new string */
1890   u8 enc,               /* Encoding to use */
1891   void (*xDel)(void*)   /* Destructor for the string */
1892 ){
1893   if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1894 }
1895 
1896 /*
1897 ** Free an sqlite3_value object
1898 */
1899 void sqlite3ValueFree(sqlite3_value *v){
1900   if( !v ) return;
1901   sqlite3VdbeMemRelease((Mem *)v);
1902   sqlite3DbFreeNN(((Mem*)v)->db, v);
1903 }
1904 
1905 /*
1906 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1907 ** sqlite3_value object assuming that it uses the encoding "enc".
1908 ** The valueBytes() routine is a helper function.
1909 */
1910 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1911   return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1912 }
1913 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1914   Mem *p = (Mem*)pVal;
1915   assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1916   if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1917     return p->n;
1918   }
1919   if( (p->flags & MEM_Blob)!=0 ){
1920     if( p->flags & MEM_Zero ){
1921       return p->n + p->u.nZero;
1922     }else{
1923       return p->n;
1924     }
1925   }
1926   if( p->flags & MEM_Null ) return 0;
1927   return valueBytes(pVal, enc);
1928 }
1929