1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 /* True if X is a power of two. 0 is considered a power of two here. 22 ** In other words, return true if X has at most one bit set. 23 */ 24 #define ISPOWEROF2(X) (((X)&((X)-1))==0) 25 26 #ifdef SQLITE_DEBUG 27 /* 28 ** Check invariants on a Mem object. 29 ** 30 ** This routine is intended for use inside of assert() statements, like 31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); 32 */ 33 int sqlite3VdbeCheckMemInvariants(Mem *p){ 34 /* If MEM_Dyn is set then Mem.xDel!=0. 35 ** Mem.xDel might not be initialized if MEM_Dyn is clear. 36 */ 37 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); 38 39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we 40 ** ensure that if Mem.szMalloc>0 then it is safe to do 41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. 42 ** That saves a few cycles in inner loops. */ 43 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); 44 45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */ 46 assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) ); 47 48 if( p->flags & MEM_Null ){ 49 /* Cannot be both MEM_Null and some other type */ 50 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 ); 51 52 /* If MEM_Null is set, then either the value is a pure NULL (the usual 53 ** case) or it is a pointer set using sqlite3_bind_pointer() or 54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be 55 ** set. 56 */ 57 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){ 58 /* This is a pointer type. There may be a flag to indicate what to 59 ** do with the pointer. */ 60 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 61 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 62 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 ); 63 64 /* No other bits set */ 65 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind 66 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 ); 67 }else{ 68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn, 69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */ 70 } 71 }else{ 72 /* The MEM_Cleared bit is only allowed on NULLs */ 73 assert( (p->flags & MEM_Cleared)==0 ); 74 } 75 76 /* The szMalloc field holds the correct memory allocation size */ 77 assert( p->szMalloc==0 78 || (p->flags==MEM_Undefined 79 && p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc)) 80 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc)); 81 82 /* If p holds a string or blob, the Mem.z must point to exactly 83 ** one of the following: 84 ** 85 ** (1) Memory in Mem.zMalloc and managed by the Mem object 86 ** (2) Memory to be freed using Mem.xDel 87 ** (3) An ephemeral string or blob 88 ** (4) A static string or blob 89 */ 90 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ 91 assert( 92 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + 93 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 94 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 95 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 96 ); 97 } 98 return 1; 99 } 100 #endif 101 102 /* 103 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal 104 ** into a buffer. 105 */ 106 static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){ 107 StrAccum acc; 108 assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) ); 109 assert( sz>22 ); 110 if( p->flags & MEM_Int ){ 111 #if GCC_VERSION>=7000000 112 /* Work-around for GCC bug 113 ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */ 114 i64 x; 115 assert( (p->flags&MEM_Int)*2==sizeof(x) ); 116 memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2); 117 sqlite3Int64ToText(x, zBuf); 118 #else 119 sqlite3Int64ToText(p->u.i, zBuf); 120 #endif 121 }else{ 122 sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0); 123 sqlite3_str_appendf(&acc, "%!.15g", 124 (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r); 125 assert( acc.zText==zBuf && acc.mxAlloc<=0 ); 126 zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */ 127 } 128 } 129 130 #ifdef SQLITE_DEBUG 131 /* 132 ** Validity checks on pMem. pMem holds a string. 133 ** 134 ** (1) Check that string value of pMem agrees with its integer or real value. 135 ** (2) Check that the string is correctly zero terminated 136 ** 137 ** A single int or real value always converts to the same strings. But 138 ** many different strings can be converted into the same int or real. 139 ** If a table contains a numeric value and an index is based on the 140 ** corresponding string value, then it is important that the string be 141 ** derived from the numeric value, not the other way around, to ensure 142 ** that the index and table are consistent. See ticket 143 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for 144 ** an example. 145 ** 146 ** This routine looks at pMem to verify that if it has both a numeric 147 ** representation and a string representation then the string rep has 148 ** been derived from the numeric and not the other way around. It returns 149 ** true if everything is ok and false if there is a problem. 150 ** 151 ** This routine is for use inside of assert() statements only. 152 */ 153 int sqlite3VdbeMemValidStrRep(Mem *p){ 154 char zBuf[100]; 155 char *z; 156 int i, j, incr; 157 if( (p->flags & MEM_Str)==0 ) return 1; 158 if( p->flags & MEM_Term ){ 159 /* Insure that the string is properly zero-terminated. Pay particular 160 ** attention to the case where p->n is odd */ 161 if( p->szMalloc>0 && p->z==p->zMalloc ){ 162 assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 ); 163 assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 ); 164 } 165 assert( p->z[p->n]==0 ); 166 assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 ); 167 assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 ); 168 } 169 if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1; 170 vdbeMemRenderNum(sizeof(zBuf), zBuf, p); 171 z = p->z; 172 i = j = 0; 173 incr = 1; 174 if( p->enc!=SQLITE_UTF8 ){ 175 incr = 2; 176 if( p->enc==SQLITE_UTF16BE ) z++; 177 } 178 while( zBuf[j] ){ 179 if( zBuf[j++]!=z[i] ) return 0; 180 i += incr; 181 } 182 return 1; 183 } 184 #endif /* SQLITE_DEBUG */ 185 186 /* 187 ** If pMem is an object with a valid string representation, this routine 188 ** ensures the internal encoding for the string representation is 189 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 190 ** 191 ** If pMem is not a string object, or the encoding of the string 192 ** representation is already stored using the requested encoding, then this 193 ** routine is a no-op. 194 ** 195 ** SQLITE_OK is returned if the conversion is successful (or not required). 196 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 197 ** between formats. 198 */ 199 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 200 #ifndef SQLITE_OMIT_UTF16 201 int rc; 202 #endif 203 assert( pMem!=0 ); 204 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 205 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE 206 || desiredEnc==SQLITE_UTF16BE ); 207 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ 208 return SQLITE_OK; 209 } 210 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 211 #ifdef SQLITE_OMIT_UTF16 212 return SQLITE_ERROR; 213 #else 214 215 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 216 ** then the encoding of the value may not have changed. 217 */ 218 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); 219 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 220 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 221 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 222 return rc; 223 #endif 224 } 225 226 /* 227 ** Make sure pMem->z points to a writable allocation of at least n bytes. 228 ** 229 ** If the bPreserve argument is true, then copy of the content of 230 ** pMem->z into the new allocation. pMem must be either a string or 231 ** blob if bPreserve is true. If bPreserve is false, any prior content 232 ** in pMem->z is discarded. 233 */ 234 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ 235 assert( sqlite3VdbeCheckMemInvariants(pMem) ); 236 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 237 testcase( pMem->db==0 ); 238 239 /* If the bPreserve flag is set to true, then the memory cell must already 240 ** contain a valid string or blob value. */ 241 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); 242 testcase( bPreserve && pMem->z==0 ); 243 244 assert( pMem->szMalloc==0 245 || (pMem->flags==MEM_Undefined 246 && pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc)) 247 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc)); 248 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){ 249 if( pMem->db ){ 250 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 251 }else{ 252 pMem->zMalloc = sqlite3Realloc(pMem->z, n); 253 if( pMem->zMalloc==0 ) sqlite3_free(pMem->z); 254 pMem->z = pMem->zMalloc; 255 } 256 bPreserve = 0; 257 }else{ 258 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 259 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 260 } 261 if( pMem->zMalloc==0 ){ 262 sqlite3VdbeMemSetNull(pMem); 263 pMem->z = 0; 264 pMem->szMalloc = 0; 265 return SQLITE_NOMEM_BKPT; 266 }else{ 267 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 268 } 269 270 if( bPreserve && pMem->z ){ 271 assert( pMem->z!=pMem->zMalloc ); 272 memcpy(pMem->zMalloc, pMem->z, pMem->n); 273 } 274 if( (pMem->flags&MEM_Dyn)!=0 ){ 275 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); 276 pMem->xDel((void *)(pMem->z)); 277 } 278 279 pMem->z = pMem->zMalloc; 280 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); 281 return SQLITE_OK; 282 } 283 284 /* 285 ** Change the pMem->zMalloc allocation to be at least szNew bytes. 286 ** If pMem->zMalloc already meets or exceeds the requested size, this 287 ** routine is a no-op. 288 ** 289 ** Any prior string or blob content in the pMem object may be discarded. 290 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str 291 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal, 292 ** and MEM_Null values are preserved. 293 ** 294 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) 295 ** if unable to complete the resizing. 296 */ 297 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ 298 assert( CORRUPT_DB || szNew>0 ); 299 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); 300 if( pMem->szMalloc<szNew ){ 301 return sqlite3VdbeMemGrow(pMem, szNew, 0); 302 } 303 assert( (pMem->flags & MEM_Dyn)==0 ); 304 pMem->z = pMem->zMalloc; 305 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal); 306 return SQLITE_OK; 307 } 308 309 /* 310 ** It is already known that pMem contains an unterminated string. 311 ** Add the zero terminator. 312 ** 313 ** Three bytes of zero are added. In this way, there is guaranteed 314 ** to be a double-zero byte at an even byte boundary in order to 315 ** terminate a UTF16 string, even if the initial size of the buffer 316 ** is an odd number of bytes. 317 */ 318 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ 319 if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){ 320 return SQLITE_NOMEM_BKPT; 321 } 322 pMem->z[pMem->n] = 0; 323 pMem->z[pMem->n+1] = 0; 324 pMem->z[pMem->n+2] = 0; 325 pMem->flags |= MEM_Term; 326 return SQLITE_OK; 327 } 328 329 /* 330 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in 331 ** MEM.zMalloc, where it can be safely written. 332 ** 333 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 334 */ 335 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 336 assert( pMem!=0 ); 337 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 338 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 339 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ 340 if( ExpandBlob(pMem) ) return SQLITE_NOMEM; 341 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ 342 int rc = vdbeMemAddTerminator(pMem); 343 if( rc ) return rc; 344 } 345 } 346 pMem->flags &= ~MEM_Ephem; 347 #ifdef SQLITE_DEBUG 348 pMem->pScopyFrom = 0; 349 #endif 350 351 return SQLITE_OK; 352 } 353 354 /* 355 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 356 ** blob stored in dynamically allocated space. 357 */ 358 #ifndef SQLITE_OMIT_INCRBLOB 359 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 360 int nByte; 361 assert( pMem!=0 ); 362 assert( pMem->flags & MEM_Zero ); 363 assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) ); 364 testcase( sqlite3_value_nochange(pMem) ); 365 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 366 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 367 368 /* Set nByte to the number of bytes required to store the expanded blob. */ 369 nByte = pMem->n + pMem->u.nZero; 370 if( nByte<=0 ){ 371 if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK; 372 nByte = 1; 373 } 374 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 375 return SQLITE_NOMEM_BKPT; 376 } 377 378 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); 379 pMem->n += pMem->u.nZero; 380 pMem->flags &= ~(MEM_Zero|MEM_Term); 381 return SQLITE_OK; 382 } 383 #endif 384 385 /* 386 ** Make sure the given Mem is \u0000 terminated. 387 */ 388 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 389 assert( pMem!=0 ); 390 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 391 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); 392 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); 393 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ 394 return SQLITE_OK; /* Nothing to do */ 395 }else{ 396 return vdbeMemAddTerminator(pMem); 397 } 398 } 399 400 /* 401 ** Add MEM_Str to the set of representations for the given Mem. This 402 ** routine is only called if pMem is a number of some kind, not a NULL 403 ** or a BLOB. 404 ** 405 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated 406 ** if bForce is true but are retained if bForce is false. 407 ** 408 ** A MEM_Null value will never be passed to this function. This function is 409 ** used for converting values to text for returning to the user (i.e. via 410 ** sqlite3_value_text()), or for ensuring that values to be used as btree 411 ** keys are strings. In the former case a NULL pointer is returned the 412 ** user and the latter is an internal programming error. 413 */ 414 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ 415 const int nByte = 32; 416 417 assert( pMem!=0 ); 418 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 419 assert( !(pMem->flags&MEM_Zero) ); 420 assert( !(pMem->flags&(MEM_Str|MEM_Blob)) ); 421 assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) ); 422 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 423 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 424 425 426 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 427 pMem->enc = 0; 428 return SQLITE_NOMEM_BKPT; 429 } 430 431 vdbeMemRenderNum(nByte, pMem->z, pMem); 432 assert( pMem->z!=0 ); 433 pMem->n = sqlite3Strlen30NN(pMem->z); 434 pMem->enc = SQLITE_UTF8; 435 pMem->flags |= MEM_Str|MEM_Term; 436 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); 437 sqlite3VdbeChangeEncoding(pMem, enc); 438 return SQLITE_OK; 439 } 440 441 /* 442 ** Memory cell pMem contains the context of an aggregate function. 443 ** This routine calls the finalize method for that function. The 444 ** result of the aggregate is stored back into pMem. 445 ** 446 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 447 ** otherwise. 448 */ 449 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 450 sqlite3_context ctx; 451 Mem t; 452 assert( pFunc!=0 ); 453 assert( pMem!=0 ); 454 assert( pFunc->xFinalize!=0 ); 455 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 456 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 457 memset(&ctx, 0, sizeof(ctx)); 458 memset(&t, 0, sizeof(t)); 459 t.flags = MEM_Null; 460 t.db = pMem->db; 461 ctx.pOut = &t; 462 ctx.pMem = pMem; 463 ctx.pFunc = pFunc; 464 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ 465 assert( (pMem->flags & MEM_Dyn)==0 ); 466 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 467 memcpy(pMem, &t, sizeof(t)); 468 return ctx.isError; 469 } 470 471 /* 472 ** Memory cell pAccum contains the context of an aggregate function. 473 ** This routine calls the xValue method for that function and stores 474 ** the results in memory cell pMem. 475 ** 476 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK 477 ** otherwise. 478 */ 479 #ifndef SQLITE_OMIT_WINDOWFUNC 480 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){ 481 sqlite3_context ctx; 482 assert( pFunc!=0 ); 483 assert( pFunc->xValue!=0 ); 484 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef ); 485 assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) ); 486 memset(&ctx, 0, sizeof(ctx)); 487 sqlite3VdbeMemSetNull(pOut); 488 ctx.pOut = pOut; 489 ctx.pMem = pAccum; 490 ctx.pFunc = pFunc; 491 pFunc->xValue(&ctx); 492 return ctx.isError; 493 } 494 #endif /* SQLITE_OMIT_WINDOWFUNC */ 495 496 /* 497 ** If the memory cell contains a value that must be freed by 498 ** invoking the external callback in Mem.xDel, then this routine 499 ** will free that value. It also sets Mem.flags to MEM_Null. 500 ** 501 ** This is a helper routine for sqlite3VdbeMemSetNull() and 502 ** for sqlite3VdbeMemRelease(). Use those other routines as the 503 ** entry point for releasing Mem resources. 504 */ 505 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ 506 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 507 assert( VdbeMemDynamic(p) ); 508 if( p->flags&MEM_Agg ){ 509 sqlite3VdbeMemFinalize(p, p->u.pDef); 510 assert( (p->flags & MEM_Agg)==0 ); 511 testcase( p->flags & MEM_Dyn ); 512 } 513 if( p->flags&MEM_Dyn ){ 514 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); 515 p->xDel((void *)p->z); 516 } 517 p->flags = MEM_Null; 518 } 519 520 /* 521 ** Release memory held by the Mem p, both external memory cleared 522 ** by p->xDel and memory in p->zMalloc. 523 ** 524 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in 525 ** the unusual case where there really is memory in p that needs 526 ** to be freed. 527 */ 528 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ 529 if( VdbeMemDynamic(p) ){ 530 vdbeMemClearExternAndSetNull(p); 531 } 532 if( p->szMalloc ){ 533 sqlite3DbFreeNN(p->db, p->zMalloc); 534 p->szMalloc = 0; 535 } 536 p->z = 0; 537 } 538 539 /* 540 ** Release any memory resources held by the Mem. Both the memory that is 541 ** free by Mem.xDel and the Mem.zMalloc allocation are freed. 542 ** 543 ** Use this routine prior to clean up prior to abandoning a Mem, or to 544 ** reset a Mem back to its minimum memory utilization. 545 ** 546 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space 547 ** prior to inserting new content into the Mem. 548 */ 549 void sqlite3VdbeMemRelease(Mem *p){ 550 assert( sqlite3VdbeCheckMemInvariants(p) ); 551 if( VdbeMemDynamic(p) || p->szMalloc ){ 552 vdbeMemClear(p); 553 } 554 } 555 556 /* 557 ** Convert a 64-bit IEEE double into a 64-bit signed integer. 558 ** If the double is out of range of a 64-bit signed integer then 559 ** return the closest available 64-bit signed integer. 560 */ 561 static SQLITE_NOINLINE i64 doubleToInt64(double r){ 562 #ifdef SQLITE_OMIT_FLOATING_POINT 563 /* When floating-point is omitted, double and int64 are the same thing */ 564 return r; 565 #else 566 /* 567 ** Many compilers we encounter do not define constants for the 568 ** minimum and maximum 64-bit integers, or they define them 569 ** inconsistently. And many do not understand the "LL" notation. 570 ** So we define our own static constants here using nothing 571 ** larger than a 32-bit integer constant. 572 */ 573 static const i64 maxInt = LARGEST_INT64; 574 static const i64 minInt = SMALLEST_INT64; 575 576 if( r<=(double)minInt ){ 577 return minInt; 578 }else if( r>=(double)maxInt ){ 579 return maxInt; 580 }else{ 581 return (i64)r; 582 } 583 #endif 584 } 585 586 /* 587 ** Return some kind of integer value which is the best we can do 588 ** at representing the value that *pMem describes as an integer. 589 ** If pMem is an integer, then the value is exact. If pMem is 590 ** a floating-point then the value returned is the integer part. 591 ** If pMem is a string or blob, then we make an attempt to convert 592 ** it into an integer and return that. If pMem represents an 593 ** an SQL-NULL value, return 0. 594 ** 595 ** If pMem represents a string value, its encoding might be changed. 596 */ 597 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){ 598 i64 value = 0; 599 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); 600 return value; 601 } 602 i64 sqlite3VdbeIntValue(Mem *pMem){ 603 int flags; 604 assert( pMem!=0 ); 605 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 606 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 607 flags = pMem->flags; 608 if( flags & (MEM_Int|MEM_IntReal) ){ 609 testcase( flags & MEM_IntReal ); 610 return pMem->u.i; 611 }else if( flags & MEM_Real ){ 612 return doubleToInt64(pMem->u.r); 613 }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){ 614 return memIntValue(pMem); 615 }else{ 616 return 0; 617 } 618 } 619 620 /* 621 ** Return the best representation of pMem that we can get into a 622 ** double. If pMem is already a double or an integer, return its 623 ** value. If it is a string or blob, try to convert it to a double. 624 ** If it is a NULL, return 0.0. 625 */ 626 static SQLITE_NOINLINE double memRealValue(Mem *pMem){ 627 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 628 double val = (double)0; 629 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); 630 return val; 631 } 632 double sqlite3VdbeRealValue(Mem *pMem){ 633 assert( pMem!=0 ); 634 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 635 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 636 if( pMem->flags & MEM_Real ){ 637 return pMem->u.r; 638 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 639 testcase( pMem->flags & MEM_IntReal ); 640 return (double)pMem->u.i; 641 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 642 return memRealValue(pMem); 643 }else{ 644 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 645 return (double)0; 646 } 647 } 648 649 /* 650 ** Return 1 if pMem represents true, and return 0 if pMem represents false. 651 ** Return the value ifNull if pMem is NULL. 652 */ 653 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ 654 testcase( pMem->flags & MEM_IntReal ); 655 if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0; 656 if( pMem->flags & MEM_Null ) return ifNull; 657 return sqlite3VdbeRealValue(pMem)!=0.0; 658 } 659 660 /* 661 ** The MEM structure is already a MEM_Real. Try to also make it a 662 ** MEM_Int if we can. 663 */ 664 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 665 i64 ix; 666 assert( pMem!=0 ); 667 assert( pMem->flags & MEM_Real ); 668 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 669 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 670 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 671 672 ix = doubleToInt64(pMem->u.r); 673 674 /* Only mark the value as an integer if 675 ** 676 ** (1) the round-trip conversion real->int->real is a no-op, and 677 ** (2) The integer is neither the largest nor the smallest 678 ** possible integer (ticket #3922) 679 ** 680 ** The second and third terms in the following conditional enforces 681 ** the second condition under the assumption that addition overflow causes 682 ** values to wrap around. 683 */ 684 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ 685 pMem->u.i = ix; 686 MemSetTypeFlag(pMem, MEM_Int); 687 } 688 } 689 690 /* 691 ** Convert pMem to type integer. Invalidate any prior representations. 692 */ 693 int sqlite3VdbeMemIntegerify(Mem *pMem){ 694 assert( pMem!=0 ); 695 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 696 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 697 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 698 699 pMem->u.i = sqlite3VdbeIntValue(pMem); 700 MemSetTypeFlag(pMem, MEM_Int); 701 return SQLITE_OK; 702 } 703 704 /* 705 ** Convert pMem so that it is of type MEM_Real. 706 ** Invalidate any prior representations. 707 */ 708 int sqlite3VdbeMemRealify(Mem *pMem){ 709 assert( pMem!=0 ); 710 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 711 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 712 713 pMem->u.r = sqlite3VdbeRealValue(pMem); 714 MemSetTypeFlag(pMem, MEM_Real); 715 return SQLITE_OK; 716 } 717 718 /* Compare a floating point value to an integer. Return true if the two 719 ** values are the same within the precision of the floating point value. 720 ** 721 ** This function assumes that i was obtained by assignment from r1. 722 ** 723 ** For some versions of GCC on 32-bit machines, if you do the more obvious 724 ** comparison of "r1==(double)i" you sometimes get an answer of false even 725 ** though the r1 and (double)i values are bit-for-bit the same. 726 */ 727 int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ 728 double r2 = (double)i; 729 return r1==0.0 730 || (memcmp(&r1, &r2, sizeof(r1))==0 731 && i >= -2251799813685248LL && i < 2251799813685248LL); 732 } 733 734 /* 735 ** Convert pMem so that it has type MEM_Real or MEM_Int. 736 ** Invalidate any prior representations. 737 ** 738 ** Every effort is made to force the conversion, even if the input 739 ** is a string that does not look completely like a number. Convert 740 ** as much of the string as we can and ignore the rest. 741 */ 742 int sqlite3VdbeMemNumerify(Mem *pMem){ 743 assert( pMem!=0 ); 744 testcase( pMem->flags & MEM_Int ); 745 testcase( pMem->flags & MEM_Real ); 746 testcase( pMem->flags & MEM_IntReal ); 747 testcase( pMem->flags & MEM_Null ); 748 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){ 749 int rc; 750 sqlite3_int64 ix; 751 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 752 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 753 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 754 if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1) 755 || sqlite3RealSameAsInt(pMem->u.r, (ix = (i64)pMem->u.r)) 756 ){ 757 pMem->u.i = ix; 758 MemSetTypeFlag(pMem, MEM_Int); 759 }else{ 760 MemSetTypeFlag(pMem, MEM_Real); 761 } 762 } 763 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 ); 764 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); 765 return SQLITE_OK; 766 } 767 768 /* 769 ** Cast the datatype of the value in pMem according to the affinity 770 ** "aff". Casting is different from applying affinity in that a cast 771 ** is forced. In other words, the value is converted into the desired 772 ** affinity even if that results in loss of data. This routine is 773 ** used (for example) to implement the SQL "cast()" operator. 774 */ 775 int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ 776 if( pMem->flags & MEM_Null ) return SQLITE_OK; 777 switch( aff ){ 778 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ 779 if( (pMem->flags & MEM_Blob)==0 ){ 780 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 781 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 782 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); 783 }else{ 784 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); 785 } 786 break; 787 } 788 case SQLITE_AFF_NUMERIC: { 789 sqlite3VdbeMemNumerify(pMem); 790 break; 791 } 792 case SQLITE_AFF_INTEGER: { 793 sqlite3VdbeMemIntegerify(pMem); 794 break; 795 } 796 case SQLITE_AFF_REAL: { 797 sqlite3VdbeMemRealify(pMem); 798 break; 799 } 800 default: { 801 assert( aff==SQLITE_AFF_TEXT ); 802 assert( MEM_Str==(MEM_Blob>>3) ); 803 pMem->flags |= (pMem->flags&MEM_Blob)>>3; 804 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 805 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 806 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero); 807 return sqlite3VdbeChangeEncoding(pMem, encoding); 808 } 809 } 810 return SQLITE_OK; 811 } 812 813 /* 814 ** Initialize bulk memory to be a consistent Mem object. 815 ** 816 ** The minimum amount of initialization feasible is performed. 817 */ 818 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ 819 assert( (flags & ~MEM_TypeMask)==0 ); 820 pMem->flags = flags; 821 pMem->db = db; 822 pMem->szMalloc = 0; 823 } 824 825 826 /* 827 ** Delete any previous value and set the value stored in *pMem to NULL. 828 ** 829 ** This routine calls the Mem.xDel destructor to dispose of values that 830 ** require the destructor. But it preserves the Mem.zMalloc memory allocation. 831 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this 832 ** routine to invoke the destructor and deallocates Mem.zMalloc. 833 ** 834 ** Use this routine to reset the Mem prior to insert a new value. 835 ** 836 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. 837 */ 838 void sqlite3VdbeMemSetNull(Mem *pMem){ 839 if( VdbeMemDynamic(pMem) ){ 840 vdbeMemClearExternAndSetNull(pMem); 841 }else{ 842 pMem->flags = MEM_Null; 843 } 844 } 845 void sqlite3ValueSetNull(sqlite3_value *p){ 846 sqlite3VdbeMemSetNull((Mem*)p); 847 } 848 849 /* 850 ** Delete any previous value and set the value to be a BLOB of length 851 ** n containing all zeros. 852 */ 853 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 854 sqlite3VdbeMemRelease(pMem); 855 pMem->flags = MEM_Blob|MEM_Zero; 856 pMem->n = 0; 857 if( n<0 ) n = 0; 858 pMem->u.nZero = n; 859 pMem->enc = SQLITE_UTF8; 860 pMem->z = 0; 861 } 862 863 /* 864 ** The pMem is known to contain content that needs to be destroyed prior 865 ** to a value change. So invoke the destructor, then set the value to 866 ** a 64-bit integer. 867 */ 868 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ 869 sqlite3VdbeMemSetNull(pMem); 870 pMem->u.i = val; 871 pMem->flags = MEM_Int; 872 } 873 874 /* 875 ** Delete any previous value and set the value stored in *pMem to val, 876 ** manifest type INTEGER. 877 */ 878 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 879 if( VdbeMemDynamic(pMem) ){ 880 vdbeReleaseAndSetInt64(pMem, val); 881 }else{ 882 pMem->u.i = val; 883 pMem->flags = MEM_Int; 884 } 885 } 886 887 /* A no-op destructor */ 888 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } 889 890 /* 891 ** Set the value stored in *pMem should already be a NULL. 892 ** Also store a pointer to go with it. 893 */ 894 void sqlite3VdbeMemSetPointer( 895 Mem *pMem, 896 void *pPtr, 897 const char *zPType, 898 void (*xDestructor)(void*) 899 ){ 900 assert( pMem->flags==MEM_Null ); 901 pMem->u.zPType = zPType ? zPType : ""; 902 pMem->z = pPtr; 903 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term; 904 pMem->eSubtype = 'p'; 905 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor; 906 } 907 908 #ifndef SQLITE_OMIT_FLOATING_POINT 909 /* 910 ** Delete any previous value and set the value stored in *pMem to val, 911 ** manifest type REAL. 912 */ 913 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 914 sqlite3VdbeMemSetNull(pMem); 915 if( !sqlite3IsNaN(val) ){ 916 pMem->u.r = val; 917 pMem->flags = MEM_Real; 918 } 919 } 920 #endif 921 922 #ifdef SQLITE_DEBUG 923 /* 924 ** Return true if the Mem holds a RowSet object. This routine is intended 925 ** for use inside of assert() statements. 926 */ 927 int sqlite3VdbeMemIsRowSet(const Mem *pMem){ 928 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn) 929 && pMem->xDel==sqlite3RowSetDelete; 930 } 931 #endif 932 933 /* 934 ** Delete any previous value and set the value of pMem to be an 935 ** empty boolean index. 936 ** 937 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation 938 ** error occurs. 939 */ 940 int sqlite3VdbeMemSetRowSet(Mem *pMem){ 941 sqlite3 *db = pMem->db; 942 RowSet *p; 943 assert( db!=0 ); 944 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 945 sqlite3VdbeMemRelease(pMem); 946 p = sqlite3RowSetInit(db); 947 if( p==0 ) return SQLITE_NOMEM; 948 pMem->z = (char*)p; 949 pMem->flags = MEM_Blob|MEM_Dyn; 950 pMem->xDel = sqlite3RowSetDelete; 951 return SQLITE_OK; 952 } 953 954 /* 955 ** Return true if the Mem object contains a TEXT or BLOB that is 956 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 957 */ 958 int sqlite3VdbeMemTooBig(Mem *p){ 959 assert( p->db!=0 ); 960 if( p->flags & (MEM_Str|MEM_Blob) ){ 961 int n = p->n; 962 if( p->flags & MEM_Zero ){ 963 n += p->u.nZero; 964 } 965 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 966 } 967 return 0; 968 } 969 970 #ifdef SQLITE_DEBUG 971 /* 972 ** This routine prepares a memory cell for modification by breaking 973 ** its link to a shallow copy and by marking any current shallow 974 ** copies of this cell as invalid. 975 ** 976 ** This is used for testing and debugging only - to help ensure that shallow 977 ** copies (created by OP_SCopy) are not misused. 978 */ 979 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ 980 int i; 981 Mem *pX; 982 for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){ 983 if( pX->pScopyFrom==pMem ){ 984 u16 mFlags; 985 if( pVdbe->db->flags & SQLITE_VdbeTrace ){ 986 sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n", 987 (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem)); 988 } 989 /* If pX is marked as a shallow copy of pMem, then try to verify that 990 ** no significant changes have been made to pX since the OP_SCopy. 991 ** A significant change would indicated a missed call to this 992 ** function for pX. Minor changes, such as adding or removing a 993 ** dual type, are allowed, as long as the underlying value is the 994 ** same. */ 995 mFlags = pMem->flags & pX->flags & pX->mScopyFlags; 996 assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i ); 997 998 /* pMem is the register that is changing. But also mark pX as 999 ** undefined so that we can quickly detect the shallow-copy error */ 1000 pX->flags = MEM_Undefined; 1001 pX->pScopyFrom = 0; 1002 } 1003 } 1004 pMem->pScopyFrom = 0; 1005 } 1006 #endif /* SQLITE_DEBUG */ 1007 1008 /* 1009 ** Make an shallow copy of pFrom into pTo. Prior contents of 1010 ** pTo are freed. The pFrom->z field is not duplicated. If 1011 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 1012 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 1013 */ 1014 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ 1015 vdbeMemClearExternAndSetNull(pTo); 1016 assert( !VdbeMemDynamic(pTo) ); 1017 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); 1018 } 1019 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 1020 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 1021 assert( pTo->db==pFrom->db ); 1022 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } 1023 memcpy(pTo, pFrom, MEMCELLSIZE); 1024 if( (pFrom->flags&MEM_Static)==0 ){ 1025 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 1026 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 1027 pTo->flags |= srcType; 1028 } 1029 } 1030 1031 /* 1032 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 1033 ** freed before the copy is made. 1034 */ 1035 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 1036 int rc = SQLITE_OK; 1037 1038 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 1039 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); 1040 memcpy(pTo, pFrom, MEMCELLSIZE); 1041 pTo->flags &= ~MEM_Dyn; 1042 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 1043 if( 0==(pFrom->flags&MEM_Static) ){ 1044 pTo->flags |= MEM_Ephem; 1045 rc = sqlite3VdbeMemMakeWriteable(pTo); 1046 } 1047 } 1048 1049 return rc; 1050 } 1051 1052 /* 1053 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 1054 ** freed. If pFrom contains ephemeral data, a copy is made. 1055 ** 1056 ** pFrom contains an SQL NULL when this routine returns. 1057 */ 1058 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 1059 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 1060 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 1061 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 1062 1063 sqlite3VdbeMemRelease(pTo); 1064 memcpy(pTo, pFrom, sizeof(Mem)); 1065 pFrom->flags = MEM_Null; 1066 pFrom->szMalloc = 0; 1067 } 1068 1069 /* 1070 ** Change the value of a Mem to be a string or a BLOB. 1071 ** 1072 ** The memory management strategy depends on the value of the xDel 1073 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 1074 ** string is copied into a (possibly existing) buffer managed by the 1075 ** Mem structure. Otherwise, any existing buffer is freed and the 1076 ** pointer copied. 1077 ** 1078 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH 1079 ** size limit) then no memory allocation occurs. If the string can be 1080 ** stored without allocating memory, then it is. If a memory allocation 1081 ** is required to store the string, then value of pMem is unchanged. In 1082 ** either case, SQLITE_TOOBIG is returned. 1083 */ 1084 int sqlite3VdbeMemSetStr( 1085 Mem *pMem, /* Memory cell to set to string value */ 1086 const char *z, /* String pointer */ 1087 i64 n, /* Bytes in string, or negative */ 1088 u8 enc, /* Encoding of z. 0 for BLOBs */ 1089 void (*xDel)(void*) /* Destructor function */ 1090 ){ 1091 i64 nByte = n; /* New value for pMem->n */ 1092 int iLimit; /* Maximum allowed string or blob size */ 1093 u16 flags = 0; /* New value for pMem->flags */ 1094 1095 assert( pMem!=0 ); 1096 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 1097 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1098 1099 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 1100 if( !z ){ 1101 sqlite3VdbeMemSetNull(pMem); 1102 return SQLITE_OK; 1103 } 1104 1105 if( pMem->db ){ 1106 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; 1107 }else{ 1108 iLimit = SQLITE_MAX_LENGTH; 1109 } 1110 flags = (enc==0?MEM_Blob:MEM_Str); 1111 if( nByte<0 ){ 1112 assert( enc!=0 ); 1113 if( enc==SQLITE_UTF8 ){ 1114 nByte = strlen(z); 1115 }else{ 1116 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} 1117 } 1118 flags |= MEM_Term; 1119 } 1120 1121 /* The following block sets the new values of Mem.z and Mem.xDel. It 1122 ** also sets a flag in local variable "flags" to indicate the memory 1123 ** management (one of MEM_Dyn or MEM_Static). 1124 */ 1125 if( xDel==SQLITE_TRANSIENT ){ 1126 i64 nAlloc = nByte; 1127 if( flags&MEM_Term ){ 1128 nAlloc += (enc==SQLITE_UTF8?1:2); 1129 } 1130 if( nByte>iLimit ){ 1131 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG); 1132 } 1133 testcase( nAlloc==0 ); 1134 testcase( nAlloc==31 ); 1135 testcase( nAlloc==32 ); 1136 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){ 1137 return SQLITE_NOMEM_BKPT; 1138 } 1139 memcpy(pMem->z, z, nAlloc); 1140 }else{ 1141 sqlite3VdbeMemRelease(pMem); 1142 pMem->z = (char *)z; 1143 if( xDel==SQLITE_DYNAMIC ){ 1144 pMem->zMalloc = pMem->z; 1145 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 1146 }else{ 1147 pMem->xDel = xDel; 1148 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 1149 } 1150 } 1151 1152 pMem->n = (int)(nByte & 0x7fffffff); 1153 pMem->flags = flags; 1154 if( enc ){ 1155 pMem->enc = enc; 1156 #ifdef SQLITE_ENABLE_SESSION 1157 }else if( pMem->db==0 ){ 1158 pMem->enc = SQLITE_UTF8; 1159 #endif 1160 }else{ 1161 assert( pMem->db!=0 ); 1162 pMem->enc = ENC(pMem->db); 1163 } 1164 1165 #ifndef SQLITE_OMIT_UTF16 1166 if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ 1167 return SQLITE_NOMEM_BKPT; 1168 } 1169 #endif 1170 1171 if( nByte>iLimit ){ 1172 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG); 1173 } 1174 1175 return SQLITE_OK; 1176 } 1177 1178 /* 1179 ** Move data out of a btree key or data field and into a Mem structure. 1180 ** The data is payload from the entry that pCur is currently pointing 1181 ** to. offset and amt determine what portion of the data or key to retrieve. 1182 ** The result is written into the pMem element. 1183 ** 1184 ** The pMem object must have been initialized. This routine will use 1185 ** pMem->zMalloc to hold the content from the btree, if possible. New 1186 ** pMem->zMalloc space will be allocated if necessary. The calling routine 1187 ** is responsible for making sure that the pMem object is eventually 1188 ** destroyed. 1189 ** 1190 ** If this routine fails for any reason (malloc returns NULL or unable 1191 ** to read from the disk) then the pMem is left in an inconsistent state. 1192 */ 1193 int sqlite3VdbeMemFromBtree( 1194 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1195 u32 offset, /* Offset from the start of data to return bytes from. */ 1196 u32 amt, /* Number of bytes to return. */ 1197 Mem *pMem /* OUT: Return data in this Mem structure. */ 1198 ){ 1199 int rc; 1200 pMem->flags = MEM_Null; 1201 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){ 1202 return SQLITE_CORRUPT_BKPT; 1203 } 1204 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){ 1205 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z); 1206 if( rc==SQLITE_OK ){ 1207 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */ 1208 pMem->flags = MEM_Blob; 1209 pMem->n = (int)amt; 1210 }else{ 1211 sqlite3VdbeMemRelease(pMem); 1212 } 1213 } 1214 return rc; 1215 } 1216 int sqlite3VdbeMemFromBtreeZeroOffset( 1217 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1218 u32 amt, /* Number of bytes to return. */ 1219 Mem *pMem /* OUT: Return data in this Mem structure. */ 1220 ){ 1221 u32 available = 0; /* Number of bytes available on the local btree page */ 1222 int rc = SQLITE_OK; /* Return code */ 1223 1224 assert( sqlite3BtreeCursorIsValid(pCur) ); 1225 assert( !VdbeMemDynamic(pMem) ); 1226 1227 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 1228 ** that both the BtShared and database handle mutexes are held. */ 1229 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1230 pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available); 1231 assert( pMem->z!=0 ); 1232 1233 if( amt<=available ){ 1234 pMem->flags = MEM_Blob|MEM_Ephem; 1235 pMem->n = (int)amt; 1236 }else{ 1237 rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem); 1238 } 1239 1240 return rc; 1241 } 1242 1243 /* 1244 ** The pVal argument is known to be a value other than NULL. 1245 ** Convert it into a string with encoding enc and return a pointer 1246 ** to a zero-terminated version of that string. 1247 */ 1248 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ 1249 assert( pVal!=0 ); 1250 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1251 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1252 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1253 assert( (pVal->flags & (MEM_Null))==0 ); 1254 if( pVal->flags & (MEM_Blob|MEM_Str) ){ 1255 if( ExpandBlob(pVal) ) return 0; 1256 pVal->flags |= MEM_Str; 1257 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ 1258 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 1259 } 1260 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ 1261 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 1262 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 1263 return 0; 1264 } 1265 } 1266 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ 1267 }else{ 1268 sqlite3VdbeMemStringify(pVal, enc, 0); 1269 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); 1270 } 1271 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 1272 || pVal->db->mallocFailed ); 1273 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 1274 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1275 return pVal->z; 1276 }else{ 1277 return 0; 1278 } 1279 } 1280 1281 /* This function is only available internally, it is not part of the 1282 ** external API. It works in a similar way to sqlite3_value_text(), 1283 ** except the data returned is in the encoding specified by the second 1284 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 1285 ** SQLITE_UTF8. 1286 ** 1287 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 1288 ** If that is the case, then the result must be aligned on an even byte 1289 ** boundary. 1290 */ 1291 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 1292 if( !pVal ) return 0; 1293 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1294 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1295 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1296 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ 1297 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1298 return pVal->z; 1299 } 1300 if( pVal->flags&MEM_Null ){ 1301 return 0; 1302 } 1303 return valueToText(pVal, enc); 1304 } 1305 1306 /* 1307 ** Create a new sqlite3_value object. 1308 */ 1309 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 1310 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 1311 if( p ){ 1312 p->flags = MEM_Null; 1313 p->db = db; 1314 } 1315 return p; 1316 } 1317 1318 /* 1319 ** Context object passed by sqlite3Stat4ProbeSetValue() through to 1320 ** valueNew(). See comments above valueNew() for details. 1321 */ 1322 struct ValueNewStat4Ctx { 1323 Parse *pParse; 1324 Index *pIdx; 1325 UnpackedRecord **ppRec; 1326 int iVal; 1327 }; 1328 1329 /* 1330 ** Allocate and return a pointer to a new sqlite3_value object. If 1331 ** the second argument to this function is NULL, the object is allocated 1332 ** by calling sqlite3ValueNew(). 1333 ** 1334 ** Otherwise, if the second argument is non-zero, then this function is 1335 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not 1336 ** already been allocated, allocate the UnpackedRecord structure that 1337 ** that function will return to its caller here. Then return a pointer to 1338 ** an sqlite3_value within the UnpackedRecord.a[] array. 1339 */ 1340 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ 1341 #ifdef SQLITE_ENABLE_STAT4 1342 if( p ){ 1343 UnpackedRecord *pRec = p->ppRec[0]; 1344 1345 if( pRec==0 ){ 1346 Index *pIdx = p->pIdx; /* Index being probed */ 1347 int nByte; /* Bytes of space to allocate */ 1348 int i; /* Counter variable */ 1349 int nCol = pIdx->nColumn; /* Number of index columns including rowid */ 1350 1351 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); 1352 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); 1353 if( pRec ){ 1354 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); 1355 if( pRec->pKeyInfo ){ 1356 assert( pRec->pKeyInfo->nAllField==nCol ); 1357 assert( pRec->pKeyInfo->enc==ENC(db) ); 1358 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); 1359 for(i=0; i<nCol; i++){ 1360 pRec->aMem[i].flags = MEM_Null; 1361 pRec->aMem[i].db = db; 1362 } 1363 }else{ 1364 sqlite3DbFreeNN(db, pRec); 1365 pRec = 0; 1366 } 1367 } 1368 if( pRec==0 ) return 0; 1369 p->ppRec[0] = pRec; 1370 } 1371 1372 pRec->nField = p->iVal+1; 1373 return &pRec->aMem[p->iVal]; 1374 } 1375 #else 1376 UNUSED_PARAMETER(p); 1377 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1378 return sqlite3ValueNew(db); 1379 } 1380 1381 /* 1382 ** The expression object indicated by the second argument is guaranteed 1383 ** to be a scalar SQL function. If 1384 ** 1385 ** * all function arguments are SQL literals, 1386 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and 1387 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, 1388 ** 1389 ** then this routine attempts to invoke the SQL function. Assuming no 1390 ** error occurs, output parameter (*ppVal) is set to point to a value 1391 ** object containing the result before returning SQLITE_OK. 1392 ** 1393 ** Affinity aff is applied to the result of the function before returning. 1394 ** If the result is a text value, the sqlite3_value object uses encoding 1395 ** enc. 1396 ** 1397 ** If the conditions above are not met, this function returns SQLITE_OK 1398 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to 1399 ** NULL and an SQLite error code returned. 1400 */ 1401 #ifdef SQLITE_ENABLE_STAT4 1402 static int valueFromFunction( 1403 sqlite3 *db, /* The database connection */ 1404 const Expr *p, /* The expression to evaluate */ 1405 u8 enc, /* Encoding to use */ 1406 u8 aff, /* Affinity to use */ 1407 sqlite3_value **ppVal, /* Write the new value here */ 1408 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1409 ){ 1410 sqlite3_context ctx; /* Context object for function invocation */ 1411 sqlite3_value **apVal = 0; /* Function arguments */ 1412 int nVal = 0; /* Size of apVal[] array */ 1413 FuncDef *pFunc = 0; /* Function definition */ 1414 sqlite3_value *pVal = 0; /* New value */ 1415 int rc = SQLITE_OK; /* Return code */ 1416 ExprList *pList = 0; /* Function arguments */ 1417 int i; /* Iterator variable */ 1418 1419 assert( pCtx!=0 ); 1420 assert( (p->flags & EP_TokenOnly)==0 ); 1421 assert( ExprUseXList(p) ); 1422 pList = p->x.pList; 1423 if( pList ) nVal = pList->nExpr; 1424 assert( !ExprHasProperty(p, EP_IntValue) ); 1425 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); 1426 assert( pFunc ); 1427 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 1428 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 1429 ){ 1430 return SQLITE_OK; 1431 } 1432 1433 if( pList ){ 1434 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); 1435 if( apVal==0 ){ 1436 rc = SQLITE_NOMEM_BKPT; 1437 goto value_from_function_out; 1438 } 1439 for(i=0; i<nVal; i++){ 1440 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); 1441 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; 1442 } 1443 } 1444 1445 pVal = valueNew(db, pCtx); 1446 if( pVal==0 ){ 1447 rc = SQLITE_NOMEM_BKPT; 1448 goto value_from_function_out; 1449 } 1450 1451 assert( pCtx->pParse->rc==SQLITE_OK ); 1452 memset(&ctx, 0, sizeof(ctx)); 1453 ctx.pOut = pVal; 1454 ctx.pFunc = pFunc; 1455 pFunc->xSFunc(&ctx, nVal, apVal); 1456 if( ctx.isError ){ 1457 rc = ctx.isError; 1458 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); 1459 }else{ 1460 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); 1461 assert( rc==SQLITE_OK ); 1462 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1463 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ 1464 rc = SQLITE_TOOBIG; 1465 pCtx->pParse->nErr++; 1466 } 1467 } 1468 pCtx->pParse->rc = rc; 1469 1470 value_from_function_out: 1471 if( rc!=SQLITE_OK ){ 1472 pVal = 0; 1473 } 1474 if( apVal ){ 1475 for(i=0; i<nVal; i++){ 1476 sqlite3ValueFree(apVal[i]); 1477 } 1478 sqlite3DbFreeNN(db, apVal); 1479 } 1480 1481 *ppVal = pVal; 1482 return rc; 1483 } 1484 #else 1485 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK 1486 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1487 1488 /* 1489 ** Extract a value from the supplied expression in the manner described 1490 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object 1491 ** using valueNew(). 1492 ** 1493 ** If pCtx is NULL and an error occurs after the sqlite3_value object 1494 ** has been allocated, it is freed before returning. Or, if pCtx is not 1495 ** NULL, it is assumed that the caller will free any allocated object 1496 ** in all cases. 1497 */ 1498 static int valueFromExpr( 1499 sqlite3 *db, /* The database connection */ 1500 const Expr *pExpr, /* The expression to evaluate */ 1501 u8 enc, /* Encoding to use */ 1502 u8 affinity, /* Affinity to use */ 1503 sqlite3_value **ppVal, /* Write the new value here */ 1504 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1505 ){ 1506 int op; 1507 char *zVal = 0; 1508 sqlite3_value *pVal = 0; 1509 int negInt = 1; 1510 const char *zNeg = ""; 1511 int rc = SQLITE_OK; 1512 1513 assert( pExpr!=0 ); 1514 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; 1515 #if defined(SQLITE_ENABLE_STAT4) 1516 if( op==TK_REGISTER ) op = pExpr->op2; 1517 #else 1518 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; 1519 #endif 1520 1521 /* Compressed expressions only appear when parsing the DEFAULT clause 1522 ** on a table column definition, and hence only when pCtx==0. This 1523 ** check ensures that an EP_TokenOnly expression is never passed down 1524 ** into valueFromFunction(). */ 1525 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); 1526 1527 if( op==TK_CAST ){ 1528 u8 aff; 1529 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1530 aff = sqlite3AffinityType(pExpr->u.zToken,0); 1531 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); 1532 testcase( rc!=SQLITE_OK ); 1533 if( *ppVal ){ 1534 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); 1535 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); 1536 } 1537 return rc; 1538 } 1539 1540 /* Handle negative integers in a single step. This is needed in the 1541 ** case when the value is -9223372036854775808. 1542 */ 1543 if( op==TK_UMINUS 1544 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ 1545 pExpr = pExpr->pLeft; 1546 op = pExpr->op; 1547 negInt = -1; 1548 zNeg = "-"; 1549 } 1550 1551 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 1552 pVal = valueNew(db, pCtx); 1553 if( pVal==0 ) goto no_mem; 1554 if( ExprHasProperty(pExpr, EP_IntValue) ){ 1555 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); 1556 }else{ 1557 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); 1558 if( zVal==0 ) goto no_mem; 1559 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); 1560 } 1561 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ 1562 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); 1563 }else{ 1564 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); 1565 } 1566 assert( (pVal->flags & MEM_IntReal)==0 ); 1567 if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){ 1568 testcase( pVal->flags & MEM_Int ); 1569 testcase( pVal->flags & MEM_Real ); 1570 pVal->flags &= ~MEM_Str; 1571 } 1572 if( enc!=SQLITE_UTF8 ){ 1573 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1574 } 1575 }else if( op==TK_UMINUS ) { 1576 /* This branch happens for multiple negative signs. Ex: -(-5) */ 1577 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) 1578 && pVal!=0 1579 ){ 1580 sqlite3VdbeMemNumerify(pVal); 1581 if( pVal->flags & MEM_Real ){ 1582 pVal->u.r = -pVal->u.r; 1583 }else if( pVal->u.i==SMALLEST_INT64 ){ 1584 #ifndef SQLITE_OMIT_FLOATING_POINT 1585 pVal->u.r = -(double)SMALLEST_INT64; 1586 #else 1587 pVal->u.r = LARGEST_INT64; 1588 #endif 1589 MemSetTypeFlag(pVal, MEM_Real); 1590 }else{ 1591 pVal->u.i = -pVal->u.i; 1592 } 1593 sqlite3ValueApplyAffinity(pVal, affinity, enc); 1594 } 1595 }else if( op==TK_NULL ){ 1596 pVal = valueNew(db, pCtx); 1597 if( pVal==0 ) goto no_mem; 1598 sqlite3VdbeMemSetNull(pVal); 1599 } 1600 #ifndef SQLITE_OMIT_BLOB_LITERAL 1601 else if( op==TK_BLOB ){ 1602 int nVal; 1603 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1604 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 1605 assert( pExpr->u.zToken[1]=='\'' ); 1606 pVal = valueNew(db, pCtx); 1607 if( !pVal ) goto no_mem; 1608 zVal = &pExpr->u.zToken[2]; 1609 nVal = sqlite3Strlen30(zVal)-1; 1610 assert( zVal[nVal]=='\'' ); 1611 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 1612 0, SQLITE_DYNAMIC); 1613 } 1614 #endif 1615 #ifdef SQLITE_ENABLE_STAT4 1616 else if( op==TK_FUNCTION && pCtx!=0 ){ 1617 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); 1618 } 1619 #endif 1620 else if( op==TK_TRUEFALSE ){ 1621 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1622 pVal = valueNew(db, pCtx); 1623 if( pVal ){ 1624 pVal->flags = MEM_Int; 1625 pVal->u.i = pExpr->u.zToken[4]==0; 1626 } 1627 } 1628 1629 *ppVal = pVal; 1630 return rc; 1631 1632 no_mem: 1633 #ifdef SQLITE_ENABLE_STAT4 1634 if( pCtx==0 || pCtx->pParse->nErr==0 ) 1635 #endif 1636 sqlite3OomFault(db); 1637 sqlite3DbFree(db, zVal); 1638 assert( *ppVal==0 ); 1639 #ifdef SQLITE_ENABLE_STAT4 1640 if( pCtx==0 ) sqlite3ValueFree(pVal); 1641 #else 1642 assert( pCtx==0 ); sqlite3ValueFree(pVal); 1643 #endif 1644 return SQLITE_NOMEM_BKPT; 1645 } 1646 1647 /* 1648 ** Create a new sqlite3_value object, containing the value of pExpr. 1649 ** 1650 ** This only works for very simple expressions that consist of one constant 1651 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 1652 ** be converted directly into a value, then the value is allocated and 1653 ** a pointer written to *ppVal. The caller is responsible for deallocating 1654 ** the value by passing it to sqlite3ValueFree() later on. If the expression 1655 ** cannot be converted to a value, then *ppVal is set to NULL. 1656 */ 1657 int sqlite3ValueFromExpr( 1658 sqlite3 *db, /* The database connection */ 1659 const Expr *pExpr, /* The expression to evaluate */ 1660 u8 enc, /* Encoding to use */ 1661 u8 affinity, /* Affinity to use */ 1662 sqlite3_value **ppVal /* Write the new value here */ 1663 ){ 1664 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; 1665 } 1666 1667 #ifdef SQLITE_ENABLE_STAT4 1668 /* 1669 ** Attempt to extract a value from pExpr and use it to construct *ppVal. 1670 ** 1671 ** If pAlloc is not NULL, then an UnpackedRecord object is created for 1672 ** pAlloc if one does not exist and the new value is added to the 1673 ** UnpackedRecord object. 1674 ** 1675 ** A value is extracted in the following cases: 1676 ** 1677 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1678 ** 1679 ** * The expression is a bound variable, and this is a reprepare, or 1680 ** 1681 ** * The expression is a literal value. 1682 ** 1683 ** On success, *ppVal is made to point to the extracted value. The caller 1684 ** is responsible for ensuring that the value is eventually freed. 1685 */ 1686 static int stat4ValueFromExpr( 1687 Parse *pParse, /* Parse context */ 1688 Expr *pExpr, /* The expression to extract a value from */ 1689 u8 affinity, /* Affinity to use */ 1690 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ 1691 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1692 ){ 1693 int rc = SQLITE_OK; 1694 sqlite3_value *pVal = 0; 1695 sqlite3 *db = pParse->db; 1696 1697 /* Skip over any TK_COLLATE nodes */ 1698 pExpr = sqlite3ExprSkipCollate(pExpr); 1699 1700 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE ); 1701 if( !pExpr ){ 1702 pVal = valueNew(db, pAlloc); 1703 if( pVal ){ 1704 sqlite3VdbeMemSetNull((Mem*)pVal); 1705 } 1706 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 1707 Vdbe *v; 1708 int iBindVar = pExpr->iColumn; 1709 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); 1710 if( (v = pParse->pReprepare)!=0 ){ 1711 pVal = valueNew(db, pAlloc); 1712 if( pVal ){ 1713 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); 1714 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); 1715 pVal->db = pParse->db; 1716 } 1717 } 1718 }else{ 1719 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); 1720 } 1721 1722 assert( pVal==0 || pVal->db==db ); 1723 *ppVal = pVal; 1724 return rc; 1725 } 1726 1727 /* 1728 ** This function is used to allocate and populate UnpackedRecord 1729 ** structures intended to be compared against sample index keys stored 1730 ** in the sqlite_stat4 table. 1731 ** 1732 ** A single call to this function populates zero or more fields of the 1733 ** record starting with field iVal (fields are numbered from left to 1734 ** right starting with 0). A single field is populated if: 1735 ** 1736 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1737 ** 1738 ** * The expression is a bound variable, and this is a reprepare, or 1739 ** 1740 ** * The sqlite3ValueFromExpr() function is able to extract a value 1741 ** from the expression (i.e. the expression is a literal value). 1742 ** 1743 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the 1744 ** vector components that match either of the two latter criteria listed 1745 ** above. 1746 ** 1747 ** Before any value is appended to the record, the affinity of the 1748 ** corresponding column within index pIdx is applied to it. Before 1749 ** this function returns, output parameter *pnExtract is set to the 1750 ** number of values appended to the record. 1751 ** 1752 ** When this function is called, *ppRec must either point to an object 1753 ** allocated by an earlier call to this function, or must be NULL. If it 1754 ** is NULL and a value can be successfully extracted, a new UnpackedRecord 1755 ** is allocated (and *ppRec set to point to it) before returning. 1756 ** 1757 ** Unless an error is encountered, SQLITE_OK is returned. It is not an 1758 ** error if a value cannot be extracted from pExpr. If an error does 1759 ** occur, an SQLite error code is returned. 1760 */ 1761 int sqlite3Stat4ProbeSetValue( 1762 Parse *pParse, /* Parse context */ 1763 Index *pIdx, /* Index being probed */ 1764 UnpackedRecord **ppRec, /* IN/OUT: Probe record */ 1765 Expr *pExpr, /* The expression to extract a value from */ 1766 int nElem, /* Maximum number of values to append */ 1767 int iVal, /* Array element to populate */ 1768 int *pnExtract /* OUT: Values appended to the record */ 1769 ){ 1770 int rc = SQLITE_OK; 1771 int nExtract = 0; 1772 1773 if( pExpr==0 || pExpr->op!=TK_SELECT ){ 1774 int i; 1775 struct ValueNewStat4Ctx alloc; 1776 1777 alloc.pParse = pParse; 1778 alloc.pIdx = pIdx; 1779 alloc.ppRec = ppRec; 1780 1781 for(i=0; i<nElem; i++){ 1782 sqlite3_value *pVal = 0; 1783 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0); 1784 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i); 1785 alloc.iVal = iVal+i; 1786 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); 1787 if( !pVal ) break; 1788 nExtract++; 1789 } 1790 } 1791 1792 *pnExtract = nExtract; 1793 return rc; 1794 } 1795 1796 /* 1797 ** Attempt to extract a value from expression pExpr using the methods 1798 ** as described for sqlite3Stat4ProbeSetValue() above. 1799 ** 1800 ** If successful, set *ppVal to point to a new value object and return 1801 ** SQLITE_OK. If no value can be extracted, but no other error occurs 1802 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error 1803 ** does occur, return an SQLite error code. The final value of *ppVal 1804 ** is undefined in this case. 1805 */ 1806 int sqlite3Stat4ValueFromExpr( 1807 Parse *pParse, /* Parse context */ 1808 Expr *pExpr, /* The expression to extract a value from */ 1809 u8 affinity, /* Affinity to use */ 1810 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1811 ){ 1812 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); 1813 } 1814 1815 /* 1816 ** Extract the iCol-th column from the nRec-byte record in pRec. Write 1817 ** the column value into *ppVal. If *ppVal is initially NULL then a new 1818 ** sqlite3_value object is allocated. 1819 ** 1820 ** If *ppVal is initially NULL then the caller is responsible for 1821 ** ensuring that the value written into *ppVal is eventually freed. 1822 */ 1823 int sqlite3Stat4Column( 1824 sqlite3 *db, /* Database handle */ 1825 const void *pRec, /* Pointer to buffer containing record */ 1826 int nRec, /* Size of buffer pRec in bytes */ 1827 int iCol, /* Column to extract */ 1828 sqlite3_value **ppVal /* OUT: Extracted value */ 1829 ){ 1830 u32 t = 0; /* a column type code */ 1831 int nHdr; /* Size of the header in the record */ 1832 int iHdr; /* Next unread header byte */ 1833 int iField; /* Next unread data byte */ 1834 int szField = 0; /* Size of the current data field */ 1835 int i; /* Column index */ 1836 u8 *a = (u8*)pRec; /* Typecast byte array */ 1837 Mem *pMem = *ppVal; /* Write result into this Mem object */ 1838 1839 assert( iCol>0 ); 1840 iHdr = getVarint32(a, nHdr); 1841 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; 1842 iField = nHdr; 1843 for(i=0; i<=iCol; i++){ 1844 iHdr += getVarint32(&a[iHdr], t); 1845 testcase( iHdr==nHdr ); 1846 testcase( iHdr==nHdr+1 ); 1847 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; 1848 szField = sqlite3VdbeSerialTypeLen(t); 1849 iField += szField; 1850 } 1851 testcase( iField==nRec ); 1852 testcase( iField==nRec+1 ); 1853 if( iField>nRec ) return SQLITE_CORRUPT_BKPT; 1854 if( pMem==0 ){ 1855 pMem = *ppVal = sqlite3ValueNew(db); 1856 if( pMem==0 ) return SQLITE_NOMEM_BKPT; 1857 } 1858 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); 1859 pMem->enc = ENC(db); 1860 return SQLITE_OK; 1861 } 1862 1863 /* 1864 ** Unless it is NULL, the argument must be an UnpackedRecord object returned 1865 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes 1866 ** the object. 1867 */ 1868 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ 1869 if( pRec ){ 1870 int i; 1871 int nCol = pRec->pKeyInfo->nAllField; 1872 Mem *aMem = pRec->aMem; 1873 sqlite3 *db = aMem[0].db; 1874 for(i=0; i<nCol; i++){ 1875 sqlite3VdbeMemRelease(&aMem[i]); 1876 } 1877 sqlite3KeyInfoUnref(pRec->pKeyInfo); 1878 sqlite3DbFreeNN(db, pRec); 1879 } 1880 } 1881 #endif /* ifdef SQLITE_ENABLE_STAT4 */ 1882 1883 /* 1884 ** Change the string value of an sqlite3_value object 1885 */ 1886 void sqlite3ValueSetStr( 1887 sqlite3_value *v, /* Value to be set */ 1888 int n, /* Length of string z */ 1889 const void *z, /* Text of the new string */ 1890 u8 enc, /* Encoding to use */ 1891 void (*xDel)(void*) /* Destructor for the string */ 1892 ){ 1893 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 1894 } 1895 1896 /* 1897 ** Free an sqlite3_value object 1898 */ 1899 void sqlite3ValueFree(sqlite3_value *v){ 1900 if( !v ) return; 1901 sqlite3VdbeMemRelease((Mem *)v); 1902 sqlite3DbFreeNN(((Mem*)v)->db, v); 1903 } 1904 1905 /* 1906 ** The sqlite3ValueBytes() routine returns the number of bytes in the 1907 ** sqlite3_value object assuming that it uses the encoding "enc". 1908 ** The valueBytes() routine is a helper function. 1909 */ 1910 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ 1911 return valueToText(pVal, enc)!=0 ? pVal->n : 0; 1912 } 1913 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1914 Mem *p = (Mem*)pVal; 1915 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); 1916 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ 1917 return p->n; 1918 } 1919 if( (p->flags & MEM_Blob)!=0 ){ 1920 if( p->flags & MEM_Zero ){ 1921 return p->n + p->u.nZero; 1922 }else{ 1923 return p->n; 1924 } 1925 } 1926 if( p->flags & MEM_Null ) return 0; 1927 return valueBytes(pVal, enc); 1928 } 1929