1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include <ctype.h> 20 #include "vdbeInt.h" 21 22 /* 23 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) 24 ** P if required. 25 */ 26 #define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) 27 28 /* 29 ** If pMem is an object with a valid string representation, this routine 30 ** ensures the internal encoding for the string representation is 31 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 32 ** 33 ** If pMem is not a string object, or the encoding of the string 34 ** representation is already stored using the requested encoding, then this 35 ** routine is a no-op. 36 ** 37 ** SQLITE_OK is returned if the conversion is successful (or not required). 38 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 39 ** between formats. 40 */ 41 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 42 int rc; 43 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ 44 return SQLITE_OK; 45 } 46 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 47 #ifdef SQLITE_OMIT_UTF16 48 return SQLITE_ERROR; 49 #else 50 51 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 52 ** then the encoding of the value may not have changed. 53 */ 54 rc = sqlite3VdbeMemTranslate(pMem, desiredEnc); 55 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 56 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 57 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 58 return rc; 59 #endif 60 } 61 62 /* 63 ** Make sure pMem->z points to a writable allocation of at least 64 ** n bytes. 65 ** 66 ** If the memory cell currently contains string or blob data 67 ** and the third argument passed to this function is true, the 68 ** current content of the cell is preserved. Otherwise, it may 69 ** be discarded. 70 ** 71 ** This function sets the MEM_Dyn flag and clears any xDel callback. 72 ** It also clears MEM_Ephem and MEM_Static. If the preserve flag is 73 ** not set, Mem.n is zeroed. 74 */ 75 int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){ 76 assert( 1 >= 77 ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) + 78 (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) + 79 ((pMem->flags&MEM_Ephem) ? 1 : 0) + 80 ((pMem->flags&MEM_Static) ? 1 : 0) 81 ); 82 83 if( !pMem->zMalloc || sqlite3MallocSize(pMem->zMalloc)<n ){ 84 n = (n>32?n:32); 85 if( preserve && pMem->z==pMem->zMalloc ){ 86 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 87 if( !pMem->z ){ 88 pMem->flags = MEM_Null; 89 } 90 preserve = 0; 91 }else{ 92 sqlite3_free(pMem->zMalloc); 93 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 94 } 95 } 96 97 if( preserve && pMem->z && pMem->zMalloc && pMem->z!=pMem->zMalloc ){ 98 memcpy(pMem->zMalloc, pMem->z, pMem->n); 99 } 100 if( pMem->xDel && pMem->flags&MEM_Dyn){ 101 pMem->xDel((void *)(pMem->z)); 102 } 103 104 pMem->z = pMem->zMalloc; 105 pMem->flags &= ~(MEM_Ephem|MEM_Static); 106 pMem->xDel = 0; 107 return (pMem->z ? SQLITE_OK : SQLITE_NOMEM); 108 } 109 110 /* 111 ** Make the given Mem object MEM_Dyn. 112 ** 113 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 114 */ 115 int sqlite3VdbeMemDynamicify(Mem *pMem){ 116 int f; 117 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 118 expandBlob(pMem); 119 f = pMem->flags; 120 if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){ 121 if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){ 122 return SQLITE_NOMEM; 123 } 124 pMem->z[pMem->n] = 0; 125 pMem->z[pMem->n+1] = 0; 126 pMem->flags |= MEM_Term; 127 } 128 129 return SQLITE_OK; 130 } 131 132 /* 133 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 134 ** blob stored in dynamically allocated space. 135 */ 136 #ifndef SQLITE_OMIT_INCRBLOB 137 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 138 if( pMem->flags & MEM_Zero ){ 139 int nByte; 140 assert( pMem->flags&MEM_Blob ); 141 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 142 143 /* Set nByte to the number of bytes required to store the expanded blob. */ 144 nByte = pMem->n + pMem->u.i; 145 if( nByte<=0 ){ 146 nByte = 1; 147 } 148 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 149 return SQLITE_NOMEM; 150 } 151 152 memset(&pMem->z[pMem->n], 0, pMem->u.i); 153 pMem->n += pMem->u.i; 154 pMem->flags &= ~(MEM_Zero|MEM_Term); 155 } 156 return SQLITE_OK; 157 } 158 #endif 159 160 161 /* 162 ** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes 163 ** of the Mem.z[] array can be modified. 164 ** 165 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 166 */ 167 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 168 return sqlite3VdbeMemDynamicify(pMem); 169 } 170 171 /* 172 ** Make sure the given Mem is \u0000 terminated. 173 */ 174 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 175 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 176 if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ 177 return SQLITE_OK; /* Nothing to do */ 178 } 179 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ 180 return SQLITE_NOMEM; 181 } 182 pMem->z[pMem->n] = 0; 183 pMem->z[pMem->n+1] = 0; 184 pMem->flags |= MEM_Term; 185 return SQLITE_OK; 186 } 187 188 /* 189 ** Add MEM_Str to the set of representations for the given Mem. Numbers 190 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string 191 ** is a no-op. 192 ** 193 ** Existing representations MEM_Int and MEM_Real are *not* invalidated. 194 ** 195 ** A MEM_Null value will never be passed to this function. This function is 196 ** used for converting values to text for returning to the user (i.e. via 197 ** sqlite3_value_text()), or for ensuring that values to be used as btree 198 ** keys are strings. In the former case a NULL pointer is returned the 199 ** user and the later is an internal programming error. 200 */ 201 int sqlite3VdbeMemStringify(Mem *pMem, int enc){ 202 int rc = SQLITE_OK; 203 int fg = pMem->flags; 204 const int nByte = 32; 205 206 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 207 assert( !(fg&MEM_Zero) ); 208 assert( !(fg&(MEM_Str|MEM_Blob)) ); 209 assert( fg&(MEM_Int|MEM_Real) ); 210 211 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){ 212 return SQLITE_NOMEM; 213 } 214 215 /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8 216 ** string representation of the value. Then, if the required encoding 217 ** is UTF-16le or UTF-16be do a translation. 218 ** 219 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. 220 */ 221 if( fg & MEM_Int ){ 222 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); 223 }else{ 224 assert( fg & MEM_Real ); 225 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r); 226 } 227 pMem->n = strlen(pMem->z); 228 pMem->enc = SQLITE_UTF8; 229 pMem->flags |= MEM_Str|MEM_Term; 230 sqlite3VdbeChangeEncoding(pMem, enc); 231 return rc; 232 } 233 234 /* 235 ** Memory cell pMem contains the context of an aggregate function. 236 ** This routine calls the finalize method for that function. The 237 ** result of the aggregate is stored back into pMem. 238 ** 239 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 240 ** otherwise. 241 */ 242 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 243 int rc = SQLITE_OK; 244 if( pFunc && pFunc->xFinalize ){ 245 sqlite3_context ctx; 246 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 247 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 248 ctx.s.flags = MEM_Null; 249 ctx.s.db = pMem->db; 250 ctx.s.zMalloc = 0; 251 ctx.pMem = pMem; 252 ctx.pFunc = pFunc; 253 ctx.isError = 0; 254 pFunc->xFinalize(&ctx); 255 assert( !pMem->xDel || 0==(pMem->flags&MEM_Dyn) ); 256 sqlite3_free(pMem->zMalloc); 257 *pMem = ctx.s; 258 rc = (ctx.isError?SQLITE_ERROR:SQLITE_OK); 259 } 260 return rc; 261 } 262 263 /* 264 ** If the memory cell contains a string value that must be freed by 265 ** invoking an external callback, free it now. Calling this function 266 ** does not free any Mem.zMalloc buffer. 267 */ 268 void sqlite3VdbeMemReleaseExternal(Mem *p){ 269 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 270 if( p->flags&MEM_Agg ){ 271 sqlite3VdbeMemFinalize(p, p->u.pDef); 272 assert( (p->flags & MEM_Agg)==0 ); 273 sqlite3VdbeMemRelease(p); 274 }else if( p->xDel && p->flags&MEM_Dyn ){ 275 p->xDel((void *)p->z); 276 p->xDel = 0; 277 } 278 } 279 280 /* 281 ** Release any memory held by the Mem. This may leave the Mem in an 282 ** inconsistent state, for example with (Mem.z==0) and 283 ** (Mem.type==SQLITE_TEXT). 284 */ 285 void sqlite3VdbeMemRelease(Mem *p){ 286 sqlite3VdbeMemReleaseExternal(p); 287 sqlite3_free(p->zMalloc); 288 p->z = 0; 289 p->zMalloc = 0; 290 p->xDel = 0; 291 } 292 293 /* 294 ** Convert a 64-bit IEEE double into a 64-bit signed integer. 295 ** If the double is too large, return 0x8000000000000000. 296 ** 297 ** Most systems appear to do this simply by assigning 298 ** variables and without the extra range tests. But 299 ** there are reports that windows throws an expection 300 ** if the floating point value is out of range. (See ticket #2880.) 301 ** Because we do not completely understand the problem, we will 302 ** take the conservative approach and always do range tests 303 ** before attempting the conversion. 304 */ 305 static i64 doubleToInt64(double r){ 306 /* 307 ** Many compilers we encounter do not define constants for the 308 ** minimum and maximum 64-bit integers, or they define them 309 ** inconsistently. And many do not understand the "LL" notation. 310 ** So we define our own static constants here using nothing 311 ** larger than a 32-bit integer constant. 312 */ 313 static const i64 maxInt = (((i64)0x7fffffff)<<32)|0xffffffff; 314 static const i64 minInt = ((i64)0x80000000)<<32; 315 316 if( r<(double)minInt ){ 317 return minInt; 318 }else if( r>(double)maxInt ){ 319 return minInt; 320 }else{ 321 return (i64)r; 322 } 323 } 324 325 /* 326 ** Return some kind of integer value which is the best we can do 327 ** at representing the value that *pMem describes as an integer. 328 ** If pMem is an integer, then the value is exact. If pMem is 329 ** a floating-point then the value returned is the integer part. 330 ** If pMem is a string or blob, then we make an attempt to convert 331 ** it into a integer and return that. If pMem is NULL, return 0. 332 ** 333 ** If pMem is a string, its encoding might be changed. 334 */ 335 i64 sqlite3VdbeIntValue(Mem *pMem){ 336 int flags; 337 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 338 flags = pMem->flags; 339 if( flags & MEM_Int ){ 340 return pMem->u.i; 341 }else if( flags & MEM_Real ){ 342 return doubleToInt64(pMem->r); 343 }else if( flags & (MEM_Str|MEM_Blob) ){ 344 i64 value; 345 pMem->flags |= MEM_Str; 346 if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) 347 || sqlite3VdbeMemNulTerminate(pMem) ){ 348 return 0; 349 } 350 assert( pMem->z ); 351 sqlite3Atoi64(pMem->z, &value); 352 return value; 353 }else{ 354 return 0; 355 } 356 } 357 358 /* 359 ** Return the best representation of pMem that we can get into a 360 ** double. If pMem is already a double or an integer, return its 361 ** value. If it is a string or blob, try to convert it to a double. 362 ** If it is a NULL, return 0.0. 363 */ 364 double sqlite3VdbeRealValue(Mem *pMem){ 365 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 366 if( pMem->flags & MEM_Real ){ 367 return pMem->r; 368 }else if( pMem->flags & MEM_Int ){ 369 return (double)pMem->u.i; 370 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 371 double val = 0.0; 372 pMem->flags |= MEM_Str; 373 if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) 374 || sqlite3VdbeMemNulTerminate(pMem) ){ 375 return 0.0; 376 } 377 assert( pMem->z ); 378 sqlite3AtoF(pMem->z, &val); 379 return val; 380 }else{ 381 return 0.0; 382 } 383 } 384 385 /* 386 ** The MEM structure is already a MEM_Real. Try to also make it a 387 ** MEM_Int if we can. 388 */ 389 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 390 assert( pMem->flags & MEM_Real ); 391 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 392 393 pMem->u.i = doubleToInt64(pMem->r); 394 if( pMem->r==(double)pMem->u.i ){ 395 pMem->flags |= MEM_Int; 396 } 397 } 398 399 static void setTypeFlag(Mem *pMem, int f){ 400 MemSetTypeFlag(pMem, f); 401 } 402 403 /* 404 ** Convert pMem to type integer. Invalidate any prior representations. 405 */ 406 int sqlite3VdbeMemIntegerify(Mem *pMem){ 407 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 408 pMem->u.i = sqlite3VdbeIntValue(pMem); 409 setTypeFlag(pMem, MEM_Int); 410 return SQLITE_OK; 411 } 412 413 /* 414 ** Convert pMem so that it is of type MEM_Real. 415 ** Invalidate any prior representations. 416 */ 417 int sqlite3VdbeMemRealify(Mem *pMem){ 418 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 419 pMem->r = sqlite3VdbeRealValue(pMem); 420 setTypeFlag(pMem, MEM_Real); 421 return SQLITE_OK; 422 } 423 424 /* 425 ** Convert pMem so that it has types MEM_Real or MEM_Int or both. 426 ** Invalidate any prior representations. 427 */ 428 int sqlite3VdbeMemNumerify(Mem *pMem){ 429 double r1, r2; 430 i64 i; 431 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ); 432 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 433 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 434 r1 = sqlite3VdbeRealValue(pMem); 435 i = doubleToInt64(r1); 436 r2 = (double)i; 437 if( r1==r2 ){ 438 sqlite3VdbeMemIntegerify(pMem); 439 }else{ 440 pMem->r = r1; 441 setTypeFlag(pMem, MEM_Real); 442 } 443 return SQLITE_OK; 444 } 445 446 /* 447 ** Delete any previous value and set the value stored in *pMem to NULL. 448 */ 449 void sqlite3VdbeMemSetNull(Mem *pMem){ 450 setTypeFlag(pMem, MEM_Null); 451 pMem->type = SQLITE_NULL; 452 } 453 454 /* 455 ** Delete any previous value and set the value to be a BLOB of length 456 ** n containing all zeros. 457 */ 458 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 459 sqlite3VdbeMemRelease(pMem); 460 setTypeFlag(pMem, MEM_Blob); 461 pMem->flags = MEM_Blob|MEM_Zero; 462 pMem->type = SQLITE_BLOB; 463 pMem->n = 0; 464 if( n<0 ) n = 0; 465 pMem->u.i = n; 466 pMem->enc = SQLITE_UTF8; 467 } 468 469 /* 470 ** Delete any previous value and set the value stored in *pMem to val, 471 ** manifest type INTEGER. 472 */ 473 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 474 sqlite3VdbeMemRelease(pMem); 475 pMem->u.i = val; 476 pMem->flags = MEM_Int; 477 pMem->type = SQLITE_INTEGER; 478 } 479 480 /* 481 ** Delete any previous value and set the value stored in *pMem to val, 482 ** manifest type REAL. 483 */ 484 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 485 if( sqlite3_isnan(val) ){ 486 sqlite3VdbeMemSetNull(pMem); 487 }else{ 488 sqlite3VdbeMemRelease(pMem); 489 pMem->r = val; 490 pMem->flags = MEM_Real; 491 pMem->type = SQLITE_FLOAT; 492 } 493 } 494 495 /* 496 ** Return true if the Mem object contains a TEXT or BLOB that is 497 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 498 */ 499 int sqlite3VdbeMemTooBig(Mem *p){ 500 assert( p->db!=0 ); 501 if( p->flags & (MEM_Str|MEM_Blob) ){ 502 int n = p->n; 503 if( p->flags & MEM_Zero ){ 504 n += p->u.i; 505 } 506 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 507 } 508 return 0; 509 } 510 511 /* 512 ** Size of struct Mem not including the Mem.zMalloc member. 513 */ 514 #define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc)) 515 516 /* 517 ** Make an shallow copy of pFrom into pTo. Prior contents of 518 ** pTo are freed. The pFrom->z field is not duplicated. If 519 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 520 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 521 */ 522 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 523 sqlite3VdbeMemReleaseExternal(pTo); 524 memcpy(pTo, pFrom, MEMCELLSIZE); 525 pTo->xDel = 0; 526 if( pFrom->xDel || pFrom->z==pFrom->zMalloc ){ 527 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 528 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 529 pTo->flags |= srcType; 530 } 531 } 532 533 /* 534 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 535 ** freed before the copy is made. 536 */ 537 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 538 int rc = SQLITE_OK; 539 540 sqlite3VdbeMemReleaseExternal(pTo); 541 memcpy(pTo, pFrom, MEMCELLSIZE); 542 pTo->flags &= ~MEM_Dyn; 543 544 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 545 if( 0==(pFrom->flags&MEM_Static) ){ 546 pTo->flags |= MEM_Ephem; 547 rc = sqlite3VdbeMemMakeWriteable(pTo); 548 } 549 } 550 551 return rc; 552 } 553 554 /* 555 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 556 ** freed. If pFrom contains ephemeral data, a copy is made. 557 ** 558 ** pFrom contains an SQL NULL when this routine returns. 559 */ 560 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 561 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 562 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 563 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 564 565 sqlite3VdbeMemRelease(pTo); 566 memcpy(pTo, pFrom, sizeof(Mem)); 567 pFrom->flags = MEM_Null; 568 pFrom->xDel = 0; 569 pFrom->zMalloc = 0; 570 } 571 572 /* 573 ** Change the value of a Mem to be a string or a BLOB. 574 ** 575 ** The memory management strategy depends on the value of the xDel 576 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 577 ** string is copied into a (possibly existing) buffer managed by the 578 ** Mem structure. Otherwise, any existing buffer is freed and the 579 ** pointer copied. 580 */ 581 int sqlite3VdbeMemSetStr( 582 Mem *pMem, /* Memory cell to set to string value */ 583 const char *z, /* String pointer */ 584 int n, /* Bytes in string, or negative */ 585 u8 enc, /* Encoding of z. 0 for BLOBs */ 586 void (*xDel)(void*) /* Destructor function */ 587 ){ 588 int nByte = n; /* New value for pMem->n */ 589 int flags = 0; /* New value for pMem->flags */ 590 591 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 592 593 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 594 if( !z ){ 595 sqlite3VdbeMemSetNull(pMem); 596 return SQLITE_OK; 597 } 598 599 flags = (enc==0?MEM_Blob:MEM_Str); 600 if( nByte<0 ){ 601 assert( enc!=0 ); 602 if( enc==SQLITE_UTF8 ){ 603 for(nByte=0; z[nByte]; nByte++){} 604 }else{ 605 for(nByte=0; z[nByte] | z[nByte+1]; nByte+=2){} 606 } 607 flags |= MEM_Term; 608 }else if( enc==SQLITE_UTF8 && nByte>0 && z[nByte-1]=='\0' ){ 609 nByte--; 610 flags |= MEM_Term; 611 #ifndef SQLITE_OMIT_UTF16 612 }else if( enc && nByte>1 && z[nByte-1]=='\0' && z[nByte-2]=='\0' ){ 613 nByte -= 2; 614 flags |= MEM_Term; 615 #endif 616 } 617 618 /* The following block sets the new values of Mem.z and Mem.xDel. It 619 ** also sets a flag in local variable "flags" to indicate the memory 620 ** management (one of MEM_Dyn or MEM_Static). 621 */ 622 if( xDel==SQLITE_TRANSIENT ){ 623 int nAlloc = nByte; 624 if( flags&MEM_Term ){ 625 nAlloc += (enc==SQLITE_UTF8?1:2); 626 } 627 if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){ 628 return SQLITE_NOMEM; 629 } 630 memcpy(pMem->z, z, nAlloc); 631 }else{ 632 sqlite3VdbeMemRelease(pMem); 633 pMem->z = (char *)z; 634 pMem->xDel = xDel; 635 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 636 } 637 638 pMem->n = nByte; 639 pMem->flags = flags; 640 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); 641 pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT); 642 643 #ifndef SQLITE_OMIT_UTF16 644 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ 645 return SQLITE_NOMEM; 646 } 647 #endif 648 649 return SQLITE_OK; 650 } 651 652 /* 653 ** Compare the values contained by the two memory cells, returning 654 ** negative, zero or positive if pMem1 is less than, equal to, or greater 655 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 656 ** and reals) sorted numerically, followed by text ordered by the collating 657 ** sequence pColl and finally blob's ordered by memcmp(). 658 ** 659 ** Two NULL values are considered equal by this function. 660 */ 661 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 662 int rc; 663 int f1, f2; 664 int combined_flags; 665 666 /* Interchange pMem1 and pMem2 if the collating sequence specifies 667 ** DESC order. 668 */ 669 f1 = pMem1->flags; 670 f2 = pMem2->flags; 671 combined_flags = f1|f2; 672 673 /* If one value is NULL, it is less than the other. If both values 674 ** are NULL, return 0. 675 */ 676 if( combined_flags&MEM_Null ){ 677 return (f2&MEM_Null) - (f1&MEM_Null); 678 } 679 680 /* If one value is a number and the other is not, the number is less. 681 ** If both are numbers, compare as reals if one is a real, or as integers 682 ** if both values are integers. 683 */ 684 if( combined_flags&(MEM_Int|MEM_Real) ){ 685 if( !(f1&(MEM_Int|MEM_Real)) ){ 686 return 1; 687 } 688 if( !(f2&(MEM_Int|MEM_Real)) ){ 689 return -1; 690 } 691 if( (f1 & f2 & MEM_Int)==0 ){ 692 double r1, r2; 693 if( (f1&MEM_Real)==0 ){ 694 r1 = pMem1->u.i; 695 }else{ 696 r1 = pMem1->r; 697 } 698 if( (f2&MEM_Real)==0 ){ 699 r2 = pMem2->u.i; 700 }else{ 701 r2 = pMem2->r; 702 } 703 if( r1<r2 ) return -1; 704 if( r1>r2 ) return 1; 705 return 0; 706 }else{ 707 assert( f1&MEM_Int ); 708 assert( f2&MEM_Int ); 709 if( pMem1->u.i < pMem2->u.i ) return -1; 710 if( pMem1->u.i > pMem2->u.i ) return 1; 711 return 0; 712 } 713 } 714 715 /* If one value is a string and the other is a blob, the string is less. 716 ** If both are strings, compare using the collating functions. 717 */ 718 if( combined_flags&MEM_Str ){ 719 if( (f1 & MEM_Str)==0 ){ 720 return 1; 721 } 722 if( (f2 & MEM_Str)==0 ){ 723 return -1; 724 } 725 726 assert( pMem1->enc==pMem2->enc ); 727 assert( pMem1->enc==SQLITE_UTF8 || 728 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 729 730 /* The collation sequence must be defined at this point, even if 731 ** the user deletes the collation sequence after the vdbe program is 732 ** compiled (this was not always the case). 733 */ 734 assert( !pColl || pColl->xCmp ); 735 736 if( pColl ){ 737 if( pMem1->enc==pColl->enc ){ 738 /* The strings are already in the correct encoding. Call the 739 ** comparison function directly */ 740 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 741 }else{ 742 u8 origEnc = pMem1->enc; 743 const void *v1, *v2; 744 int n1, n2; 745 /* Convert the strings into the encoding that the comparison 746 ** function expects */ 747 v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc); 748 n1 = v1==0 ? 0 : pMem1->n; 749 assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) ); 750 v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc); 751 n2 = v2==0 ? 0 : pMem2->n; 752 assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) ); 753 /* Do the comparison */ 754 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); 755 /* Convert the strings back into the database encoding */ 756 sqlite3ValueText((sqlite3_value*)pMem1, origEnc); 757 sqlite3ValueText((sqlite3_value*)pMem2, origEnc); 758 return rc; 759 } 760 } 761 /* If a NULL pointer was passed as the collate function, fall through 762 ** to the blob case and use memcmp(). */ 763 } 764 765 /* Both values must be blobs. Compare using memcmp(). */ 766 rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n); 767 if( rc==0 ){ 768 rc = pMem1->n - pMem2->n; 769 } 770 return rc; 771 } 772 773 /* 774 ** Move data out of a btree key or data field and into a Mem structure. 775 ** The data or key is taken from the entry that pCur is currently pointing 776 ** to. offset and amt determine what portion of the data or key to retrieve. 777 ** key is true to get the key or false to get data. The result is written 778 ** into the pMem element. 779 ** 780 ** The pMem structure is assumed to be uninitialized. Any prior content 781 ** is overwritten without being freed. 782 ** 783 ** If this routine fails for any reason (malloc returns NULL or unable 784 ** to read from the disk) then the pMem is left in an inconsistent state. 785 */ 786 int sqlite3VdbeMemFromBtree( 787 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 788 int offset, /* Offset from the start of data to return bytes from. */ 789 int amt, /* Number of bytes to return. */ 790 int key, /* If true, retrieve from the btree key, not data. */ 791 Mem *pMem /* OUT: Return data in this Mem structure. */ 792 ){ 793 char *zData; /* Data from the btree layer */ 794 int available = 0; /* Number of bytes available on the local btree page */ 795 sqlite3 *db; /* Database connection */ 796 int rc = SQLITE_OK; 797 798 db = sqlite3BtreeCursorDb(pCur); 799 assert( sqlite3_mutex_held(db->mutex) ); 800 if( key ){ 801 zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); 802 }else{ 803 zData = (char *)sqlite3BtreeDataFetch(pCur, &available); 804 } 805 assert( zData!=0 ); 806 807 if( offset+amt<=available && ((pMem->flags&MEM_Dyn)==0 || pMem->xDel) ){ 808 sqlite3VdbeMemRelease(pMem); 809 pMem->z = &zData[offset]; 810 pMem->flags = MEM_Blob|MEM_Ephem; 811 }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){ 812 pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term; 813 pMem->enc = 0; 814 pMem->type = SQLITE_BLOB; 815 if( key ){ 816 rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); 817 }else{ 818 rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); 819 } 820 pMem->z[amt] = 0; 821 pMem->z[amt+1] = 0; 822 if( rc!=SQLITE_OK ){ 823 sqlite3VdbeMemRelease(pMem); 824 } 825 } 826 pMem->n = amt; 827 828 return rc; 829 } 830 831 #if 0 832 /* 833 ** Perform various checks on the memory cell pMem. An assert() will 834 ** fail if pMem is internally inconsistent. 835 */ 836 void sqlite3VdbeMemSanity(Mem *pMem){ 837 int flags = pMem->flags; 838 assert( flags!=0 ); /* Must define some type */ 839 if( flags & (MEM_Str|MEM_Blob) ){ 840 int x = flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); 841 assert( x!=0 ); /* Strings must define a string subtype */ 842 assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */ 843 assert( pMem->z!=0 ); /* Strings must have a value */ 844 /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */ 845 assert( (x & MEM_Short)==0 || pMem->z==pMem->zShort ); 846 assert( (x & MEM_Short)!=0 || pMem->z!=pMem->zShort ); 847 /* No destructor unless there is MEM_Dyn */ 848 assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 ); 849 850 if( (flags & MEM_Str) ){ 851 assert( pMem->enc==SQLITE_UTF8 || 852 pMem->enc==SQLITE_UTF16BE || 853 pMem->enc==SQLITE_UTF16LE 854 ); 855 /* If the string is UTF-8 encoded and nul terminated, then pMem->n 856 ** must be the length of the string. (Later:) If the database file 857 ** has been corrupted, '\000' characters might have been inserted 858 ** into the middle of the string. In that case, the strlen() might 859 ** be less. 860 */ 861 if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){ 862 assert( strlen(pMem->z)<=pMem->n ); 863 assert( pMem->z[pMem->n]==0 ); 864 } 865 } 866 }else{ 867 /* Cannot define a string subtype for non-string objects */ 868 assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 ); 869 assert( pMem->xDel==0 ); 870 } 871 /* MEM_Null excludes all other types */ 872 assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0 873 || (pMem->flags&MEM_Null)==0 ); 874 /* If the MEM is both real and integer, the values are equal */ 875 assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) 876 || pMem->r==pMem->u.i ); 877 } 878 #endif 879 880 /* This function is only available internally, it is not part of the 881 ** external API. It works in a similar way to sqlite3_value_text(), 882 ** except the data returned is in the encoding specified by the second 883 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 884 ** SQLITE_UTF8. 885 ** 886 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 887 ** If that is the case, then the result must be aligned on an even byte 888 ** boundary. 889 */ 890 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 891 if( !pVal ) return 0; 892 893 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 894 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 895 896 if( pVal->flags&MEM_Null ){ 897 return 0; 898 } 899 assert( (MEM_Blob>>3) == MEM_Str ); 900 pVal->flags |= (pVal->flags & MEM_Blob)>>3; 901 expandBlob(pVal); 902 if( pVal->flags&MEM_Str ){ 903 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 904 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(sqlite3_intptr_t)pVal->z) ){ 905 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 906 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 907 return 0; 908 } 909 } 910 sqlite3VdbeMemNulTerminate(pVal); 911 }else{ 912 assert( (pVal->flags&MEM_Blob)==0 ); 913 sqlite3VdbeMemStringify(pVal, enc); 914 assert( 0==(1&(sqlite3_intptr_t)pVal->z) ); 915 } 916 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 917 || pVal->db->mallocFailed ); 918 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 919 return pVal->z; 920 }else{ 921 return 0; 922 } 923 } 924 925 /* 926 ** Create a new sqlite3_value object. 927 */ 928 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 929 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 930 if( p ){ 931 p->flags = MEM_Null; 932 p->type = SQLITE_NULL; 933 p->db = db; 934 } 935 return p; 936 } 937 938 /* 939 ** Create a new sqlite3_value object, containing the value of pExpr. 940 ** 941 ** This only works for very simple expressions that consist of one constant 942 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 943 ** be converted directly into a value, then the value is allocated and 944 ** a pointer written to *ppVal. The caller is responsible for deallocating 945 ** the value by passing it to sqlite3ValueFree() later on. If the expression 946 ** cannot be converted to a value, then *ppVal is set to NULL. 947 */ 948 int sqlite3ValueFromExpr( 949 sqlite3 *db, /* The database connection */ 950 Expr *pExpr, /* The expression to evaluate */ 951 u8 enc, /* Encoding to use */ 952 u8 affinity, /* Affinity to use */ 953 sqlite3_value **ppVal /* Write the new value here */ 954 ){ 955 int op; 956 char *zVal = 0; 957 sqlite3_value *pVal = 0; 958 959 if( !pExpr ){ 960 *ppVal = 0; 961 return SQLITE_OK; 962 } 963 op = pExpr->op; 964 965 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 966 zVal = sqlite3StrNDup((char*)pExpr->token.z, pExpr->token.n); 967 pVal = sqlite3ValueNew(db); 968 if( !zVal || !pVal ) goto no_mem; 969 sqlite3Dequote(zVal); 970 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3_free); 971 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ 972 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc); 973 }else{ 974 sqlite3ValueApplyAffinity(pVal, affinity, enc); 975 } 976 }else if( op==TK_UMINUS ) { 977 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){ 978 pVal->u.i = -1 * pVal->u.i; 979 pVal->r = -1.0 * pVal->r; 980 } 981 } 982 #ifndef SQLITE_OMIT_BLOB_LITERAL 983 else if( op==TK_BLOB ){ 984 int nVal; 985 assert( pExpr->token.n>=3 ); 986 assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' ); 987 assert( pExpr->token.z[1]=='\'' ); 988 assert( pExpr->token.z[pExpr->token.n-1]=='\'' ); 989 pVal = sqlite3ValueNew(db); 990 nVal = pExpr->token.n - 3; 991 zVal = (char*)pExpr->token.z + 2; 992 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 993 0, sqlite3_free); 994 } 995 #endif 996 997 *ppVal = pVal; 998 return SQLITE_OK; 999 1000 no_mem: 1001 db->mallocFailed = 1; 1002 sqlite3_free(zVal); 1003 sqlite3ValueFree(pVal); 1004 *ppVal = 0; 1005 return SQLITE_NOMEM; 1006 } 1007 1008 /* 1009 ** Change the string value of an sqlite3_value object 1010 */ 1011 void sqlite3ValueSetStr( 1012 sqlite3_value *v, /* Value to be set */ 1013 int n, /* Length of string z */ 1014 const void *z, /* Text of the new string */ 1015 u8 enc, /* Encoding to use */ 1016 void (*xDel)(void*) /* Destructor for the string */ 1017 ){ 1018 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 1019 } 1020 1021 /* 1022 ** Free an sqlite3_value object 1023 */ 1024 void sqlite3ValueFree(sqlite3_value *v){ 1025 if( !v ) return; 1026 sqlite3VdbeMemRelease((Mem *)v); 1027 sqlite3_free(v); 1028 } 1029 1030 /* 1031 ** Return the number of bytes in the sqlite3_value object assuming 1032 ** that it uses the encoding "enc" 1033 */ 1034 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1035 Mem *p = (Mem*)pVal; 1036 if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){ 1037 if( p->flags & MEM_Zero ){ 1038 return p->n+p->u.i; 1039 }else{ 1040 return p->n; 1041 } 1042 } 1043 return 0; 1044 } 1045