1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 #ifdef SQLITE_DEBUG 22 /* 23 ** Check invariants on a Mem object. 24 ** 25 ** This routine is intended for use inside of assert() statements, like 26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); 27 */ 28 int sqlite3VdbeCheckMemInvariants(Mem *p){ 29 /* If MEM_Dyn is set then Mem.xDel!=0. 30 ** Mem.xDel is might not be initialized if MEM_Dyn is clear. 31 */ 32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); 33 34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we 35 ** ensure that if Mem.szMalloc>0 then it is safe to do 36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. 37 ** That saves a few cycles in inner loops. */ 38 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); 39 40 /* Cannot be both MEM_Int and MEM_Real at the same time */ 41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) ); 42 43 /* The szMalloc field holds the correct memory allocation size */ 44 assert( p->szMalloc==0 45 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) ); 46 47 /* If p holds a string or blob, the Mem.z must point to exactly 48 ** one of the following: 49 ** 50 ** (1) Memory in Mem.zMalloc and managed by the Mem object 51 ** (2) Memory to be freed using Mem.xDel 52 ** (3) An ephemeral string or blob 53 ** (4) A static string or blob 54 */ 55 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ 56 assert( 57 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + 58 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 59 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 60 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 61 ); 62 } 63 return 1; 64 } 65 #endif 66 67 68 /* 69 ** If pMem is an object with a valid string representation, this routine 70 ** ensures the internal encoding for the string representation is 71 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 72 ** 73 ** If pMem is not a string object, or the encoding of the string 74 ** representation is already stored using the requested encoding, then this 75 ** routine is a no-op. 76 ** 77 ** SQLITE_OK is returned if the conversion is successful (or not required). 78 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 79 ** between formats. 80 */ 81 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 82 #ifndef SQLITE_OMIT_UTF16 83 int rc; 84 #endif 85 assert( (pMem->flags&MEM_RowSet)==0 ); 86 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE 87 || desiredEnc==SQLITE_UTF16BE ); 88 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ 89 return SQLITE_OK; 90 } 91 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 92 #ifdef SQLITE_OMIT_UTF16 93 return SQLITE_ERROR; 94 #else 95 96 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 97 ** then the encoding of the value may not have changed. 98 */ 99 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); 100 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 101 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 102 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 103 return rc; 104 #endif 105 } 106 107 /* 108 ** Make sure pMem->z points to a writable allocation of at least 109 ** min(n,32) bytes. 110 ** 111 ** If the bPreserve argument is true, then copy of the content of 112 ** pMem->z into the new allocation. pMem must be either a string or 113 ** blob if bPreserve is true. If bPreserve is false, any prior content 114 ** in pMem->z is discarded. 115 */ 116 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ 117 assert( sqlite3VdbeCheckMemInvariants(pMem) ); 118 assert( (pMem->flags&MEM_RowSet)==0 ); 119 testcase( pMem->db==0 ); 120 121 /* If the bPreserve flag is set to true, then the memory cell must already 122 ** contain a valid string or blob value. */ 123 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); 124 testcase( bPreserve && pMem->z==0 ); 125 126 assert( pMem->szMalloc==0 127 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) ); 128 if( pMem->szMalloc<n ){ 129 if( n<32 ) n = 32; 130 if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){ 131 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 132 bPreserve = 0; 133 }else{ 134 if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc); 135 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 136 } 137 if( pMem->zMalloc==0 ){ 138 sqlite3VdbeMemSetNull(pMem); 139 pMem->z = 0; 140 pMem->szMalloc = 0; 141 return SQLITE_NOMEM_BKPT; 142 }else{ 143 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 144 } 145 } 146 147 if( bPreserve && pMem->z && pMem->z!=pMem->zMalloc ){ 148 memcpy(pMem->zMalloc, pMem->z, pMem->n); 149 } 150 if( (pMem->flags&MEM_Dyn)!=0 ){ 151 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); 152 pMem->xDel((void *)(pMem->z)); 153 } 154 155 pMem->z = pMem->zMalloc; 156 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); 157 return SQLITE_OK; 158 } 159 160 /* 161 ** Change the pMem->zMalloc allocation to be at least szNew bytes. 162 ** If pMem->zMalloc already meets or exceeds the requested size, this 163 ** routine is a no-op. 164 ** 165 ** Any prior string or blob content in the pMem object may be discarded. 166 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str 167 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null 168 ** values are preserved. 169 ** 170 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) 171 ** if unable to complete the resizing. 172 */ 173 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ 174 assert( szNew>0 ); 175 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); 176 if( pMem->szMalloc<szNew ){ 177 return sqlite3VdbeMemGrow(pMem, szNew, 0); 178 } 179 assert( (pMem->flags & MEM_Dyn)==0 ); 180 pMem->z = pMem->zMalloc; 181 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real); 182 return SQLITE_OK; 183 } 184 185 /* 186 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in 187 ** MEM.zMalloc, where it can be safely written. 188 ** 189 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 190 */ 191 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 192 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 193 assert( (pMem->flags&MEM_RowSet)==0 ); 194 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ 195 if( ExpandBlob(pMem) ) return SQLITE_NOMEM; 196 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ 197 if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){ 198 return SQLITE_NOMEM_BKPT; 199 } 200 pMem->z[pMem->n] = 0; 201 pMem->z[pMem->n+1] = 0; 202 pMem->flags |= MEM_Term; 203 } 204 } 205 pMem->flags &= ~MEM_Ephem; 206 #ifdef SQLITE_DEBUG 207 pMem->pScopyFrom = 0; 208 #endif 209 210 return SQLITE_OK; 211 } 212 213 /* 214 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 215 ** blob stored in dynamically allocated space. 216 */ 217 #ifndef SQLITE_OMIT_INCRBLOB 218 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 219 int nByte; 220 assert( pMem->flags & MEM_Zero ); 221 assert( pMem->flags&MEM_Blob ); 222 assert( (pMem->flags&MEM_RowSet)==0 ); 223 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 224 225 /* Set nByte to the number of bytes required to store the expanded blob. */ 226 nByte = pMem->n + pMem->u.nZero; 227 if( nByte<=0 ){ 228 nByte = 1; 229 } 230 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 231 return SQLITE_NOMEM_BKPT; 232 } 233 234 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); 235 pMem->n += pMem->u.nZero; 236 pMem->flags &= ~(MEM_Zero|MEM_Term); 237 return SQLITE_OK; 238 } 239 #endif 240 241 /* 242 ** It is already known that pMem contains an unterminated string. 243 ** Add the zero terminator. 244 */ 245 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ 246 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ 247 return SQLITE_NOMEM_BKPT; 248 } 249 pMem->z[pMem->n] = 0; 250 pMem->z[pMem->n+1] = 0; 251 pMem->flags |= MEM_Term; 252 return SQLITE_OK; 253 } 254 255 /* 256 ** Make sure the given Mem is \u0000 terminated. 257 */ 258 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 259 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 260 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); 261 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); 262 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ 263 return SQLITE_OK; /* Nothing to do */ 264 }else{ 265 return vdbeMemAddTerminator(pMem); 266 } 267 } 268 269 /* 270 ** Add MEM_Str to the set of representations for the given Mem. Numbers 271 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string 272 ** is a no-op. 273 ** 274 ** Existing representations MEM_Int and MEM_Real are invalidated if 275 ** bForce is true but are retained if bForce is false. 276 ** 277 ** A MEM_Null value will never be passed to this function. This function is 278 ** used for converting values to text for returning to the user (i.e. via 279 ** sqlite3_value_text()), or for ensuring that values to be used as btree 280 ** keys are strings. In the former case a NULL pointer is returned the 281 ** user and the latter is an internal programming error. 282 */ 283 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ 284 int fg = pMem->flags; 285 const int nByte = 32; 286 287 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 288 assert( !(fg&MEM_Zero) ); 289 assert( !(fg&(MEM_Str|MEM_Blob)) ); 290 assert( fg&(MEM_Int|MEM_Real) ); 291 assert( (pMem->flags&MEM_RowSet)==0 ); 292 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 293 294 295 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 296 pMem->enc = 0; 297 return SQLITE_NOMEM_BKPT; 298 } 299 300 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8 301 ** string representation of the value. Then, if the required encoding 302 ** is UTF-16le or UTF-16be do a translation. 303 ** 304 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. 305 */ 306 if( fg & MEM_Int ){ 307 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); 308 }else{ 309 assert( fg & MEM_Real ); 310 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r); 311 } 312 pMem->n = sqlite3Strlen30(pMem->z); 313 pMem->enc = SQLITE_UTF8; 314 pMem->flags |= MEM_Str|MEM_Term; 315 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real); 316 sqlite3VdbeChangeEncoding(pMem, enc); 317 return SQLITE_OK; 318 } 319 320 /* 321 ** Memory cell pMem contains the context of an aggregate function. 322 ** This routine calls the finalize method for that function. The 323 ** result of the aggregate is stored back into pMem. 324 ** 325 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 326 ** otherwise. 327 */ 328 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 329 int rc = SQLITE_OK; 330 if( ALWAYS(pFunc && pFunc->xFinalize) ){ 331 sqlite3_context ctx; 332 Mem t; 333 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 334 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 335 memset(&ctx, 0, sizeof(ctx)); 336 memset(&t, 0, sizeof(t)); 337 t.flags = MEM_Null; 338 t.db = pMem->db; 339 ctx.pOut = &t; 340 ctx.pMem = pMem; 341 ctx.pFunc = pFunc; 342 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ 343 assert( (pMem->flags & MEM_Dyn)==0 ); 344 if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc); 345 memcpy(pMem, &t, sizeof(t)); 346 rc = ctx.isError; 347 } 348 return rc; 349 } 350 351 /* 352 ** If the memory cell contains a value that must be freed by 353 ** invoking the external callback in Mem.xDel, then this routine 354 ** will free that value. It also sets Mem.flags to MEM_Null. 355 ** 356 ** This is a helper routine for sqlite3VdbeMemSetNull() and 357 ** for sqlite3VdbeMemRelease(). Use those other routines as the 358 ** entry point for releasing Mem resources. 359 */ 360 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ 361 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 362 assert( VdbeMemDynamic(p) ); 363 if( p->flags&MEM_Agg ){ 364 sqlite3VdbeMemFinalize(p, p->u.pDef); 365 assert( (p->flags & MEM_Agg)==0 ); 366 testcase( p->flags & MEM_Dyn ); 367 } 368 if( p->flags&MEM_Dyn ){ 369 assert( (p->flags&MEM_RowSet)==0 ); 370 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); 371 p->xDel((void *)p->z); 372 }else if( p->flags&MEM_RowSet ){ 373 sqlite3RowSetClear(p->u.pRowSet); 374 }else if( p->flags&MEM_Frame ){ 375 VdbeFrame *pFrame = p->u.pFrame; 376 pFrame->pParent = pFrame->v->pDelFrame; 377 pFrame->v->pDelFrame = pFrame; 378 } 379 p->flags = MEM_Null; 380 } 381 382 /* 383 ** Release memory held by the Mem p, both external memory cleared 384 ** by p->xDel and memory in p->zMalloc. 385 ** 386 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in 387 ** the unusual case where there really is memory in p that needs 388 ** to be freed. 389 */ 390 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ 391 if( VdbeMemDynamic(p) ){ 392 vdbeMemClearExternAndSetNull(p); 393 } 394 if( p->szMalloc ){ 395 sqlite3DbFree(p->db, p->zMalloc); 396 p->szMalloc = 0; 397 } 398 p->z = 0; 399 } 400 401 /* 402 ** Release any memory resources held by the Mem. Both the memory that is 403 ** free by Mem.xDel and the Mem.zMalloc allocation are freed. 404 ** 405 ** Use this routine prior to clean up prior to abandoning a Mem, or to 406 ** reset a Mem back to its minimum memory utilization. 407 ** 408 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space 409 ** prior to inserting new content into the Mem. 410 */ 411 void sqlite3VdbeMemRelease(Mem *p){ 412 assert( sqlite3VdbeCheckMemInvariants(p) ); 413 if( VdbeMemDynamic(p) || p->szMalloc ){ 414 vdbeMemClear(p); 415 } 416 } 417 418 /* 419 ** Convert a 64-bit IEEE double into a 64-bit signed integer. 420 ** If the double is out of range of a 64-bit signed integer then 421 ** return the closest available 64-bit signed integer. 422 */ 423 static i64 doubleToInt64(double r){ 424 #ifdef SQLITE_OMIT_FLOATING_POINT 425 /* When floating-point is omitted, double and int64 are the same thing */ 426 return r; 427 #else 428 /* 429 ** Many compilers we encounter do not define constants for the 430 ** minimum and maximum 64-bit integers, or they define them 431 ** inconsistently. And many do not understand the "LL" notation. 432 ** So we define our own static constants here using nothing 433 ** larger than a 32-bit integer constant. 434 */ 435 static const i64 maxInt = LARGEST_INT64; 436 static const i64 minInt = SMALLEST_INT64; 437 438 if( r<=(double)minInt ){ 439 return minInt; 440 }else if( r>=(double)maxInt ){ 441 return maxInt; 442 }else{ 443 return (i64)r; 444 } 445 #endif 446 } 447 448 /* 449 ** Return some kind of integer value which is the best we can do 450 ** at representing the value that *pMem describes as an integer. 451 ** If pMem is an integer, then the value is exact. If pMem is 452 ** a floating-point then the value returned is the integer part. 453 ** If pMem is a string or blob, then we make an attempt to convert 454 ** it into an integer and return that. If pMem represents an 455 ** an SQL-NULL value, return 0. 456 ** 457 ** If pMem represents a string value, its encoding might be changed. 458 */ 459 i64 sqlite3VdbeIntValue(Mem *pMem){ 460 int flags; 461 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 462 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 463 flags = pMem->flags; 464 if( flags & MEM_Int ){ 465 return pMem->u.i; 466 }else if( flags & MEM_Real ){ 467 return doubleToInt64(pMem->u.r); 468 }else if( flags & (MEM_Str|MEM_Blob) ){ 469 i64 value = 0; 470 assert( pMem->z || pMem->n==0 ); 471 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); 472 return value; 473 }else{ 474 return 0; 475 } 476 } 477 478 /* 479 ** Return the best representation of pMem that we can get into a 480 ** double. If pMem is already a double or an integer, return its 481 ** value. If it is a string or blob, try to convert it to a double. 482 ** If it is a NULL, return 0.0. 483 */ 484 double sqlite3VdbeRealValue(Mem *pMem){ 485 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 486 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 487 if( pMem->flags & MEM_Real ){ 488 return pMem->u.r; 489 }else if( pMem->flags & MEM_Int ){ 490 return (double)pMem->u.i; 491 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 492 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 493 double val = (double)0; 494 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); 495 return val; 496 }else{ 497 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 498 return (double)0; 499 } 500 } 501 502 /* 503 ** The MEM structure is already a MEM_Real. Try to also make it a 504 ** MEM_Int if we can. 505 */ 506 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 507 i64 ix; 508 assert( pMem->flags & MEM_Real ); 509 assert( (pMem->flags & MEM_RowSet)==0 ); 510 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 511 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 512 513 ix = doubleToInt64(pMem->u.r); 514 515 /* Only mark the value as an integer if 516 ** 517 ** (1) the round-trip conversion real->int->real is a no-op, and 518 ** (2) The integer is neither the largest nor the smallest 519 ** possible integer (ticket #3922) 520 ** 521 ** The second and third terms in the following conditional enforces 522 ** the second condition under the assumption that addition overflow causes 523 ** values to wrap around. 524 */ 525 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ 526 pMem->u.i = ix; 527 MemSetTypeFlag(pMem, MEM_Int); 528 } 529 } 530 531 /* 532 ** Convert pMem to type integer. Invalidate any prior representations. 533 */ 534 int sqlite3VdbeMemIntegerify(Mem *pMem){ 535 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 536 assert( (pMem->flags & MEM_RowSet)==0 ); 537 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 538 539 pMem->u.i = sqlite3VdbeIntValue(pMem); 540 MemSetTypeFlag(pMem, MEM_Int); 541 return SQLITE_OK; 542 } 543 544 /* 545 ** Convert pMem so that it is of type MEM_Real. 546 ** Invalidate any prior representations. 547 */ 548 int sqlite3VdbeMemRealify(Mem *pMem){ 549 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 550 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 551 552 pMem->u.r = sqlite3VdbeRealValue(pMem); 553 MemSetTypeFlag(pMem, MEM_Real); 554 return SQLITE_OK; 555 } 556 557 /* 558 ** Convert pMem so that it has types MEM_Real or MEM_Int or both. 559 ** Invalidate any prior representations. 560 ** 561 ** Every effort is made to force the conversion, even if the input 562 ** is a string that does not look completely like a number. Convert 563 ** as much of the string as we can and ignore the rest. 564 */ 565 int sqlite3VdbeMemNumerify(Mem *pMem){ 566 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){ 567 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 568 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 569 if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){ 570 MemSetTypeFlag(pMem, MEM_Int); 571 }else{ 572 pMem->u.r = sqlite3VdbeRealValue(pMem); 573 MemSetTypeFlag(pMem, MEM_Real); 574 sqlite3VdbeIntegerAffinity(pMem); 575 } 576 } 577 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 ); 578 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); 579 return SQLITE_OK; 580 } 581 582 /* 583 ** Cast the datatype of the value in pMem according to the affinity 584 ** "aff". Casting is different from applying affinity in that a cast 585 ** is forced. In other words, the value is converted into the desired 586 ** affinity even if that results in loss of data. This routine is 587 ** used (for example) to implement the SQL "cast()" operator. 588 */ 589 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ 590 if( pMem->flags & MEM_Null ) return; 591 switch( aff ){ 592 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ 593 if( (pMem->flags & MEM_Blob)==0 ){ 594 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 595 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 596 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); 597 }else{ 598 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); 599 } 600 break; 601 } 602 case SQLITE_AFF_NUMERIC: { 603 sqlite3VdbeMemNumerify(pMem); 604 break; 605 } 606 case SQLITE_AFF_INTEGER: { 607 sqlite3VdbeMemIntegerify(pMem); 608 break; 609 } 610 case SQLITE_AFF_REAL: { 611 sqlite3VdbeMemRealify(pMem); 612 break; 613 } 614 default: { 615 assert( aff==SQLITE_AFF_TEXT ); 616 assert( MEM_Str==(MEM_Blob>>3) ); 617 pMem->flags |= (pMem->flags&MEM_Blob)>>3; 618 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 619 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 620 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); 621 break; 622 } 623 } 624 } 625 626 /* 627 ** Initialize bulk memory to be a consistent Mem object. 628 ** 629 ** The minimum amount of initialization feasible is performed. 630 */ 631 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ 632 assert( (flags & ~MEM_TypeMask)==0 ); 633 pMem->flags = flags; 634 pMem->db = db; 635 pMem->szMalloc = 0; 636 } 637 638 639 /* 640 ** Delete any previous value and set the value stored in *pMem to NULL. 641 ** 642 ** This routine calls the Mem.xDel destructor to dispose of values that 643 ** require the destructor. But it preserves the Mem.zMalloc memory allocation. 644 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this 645 ** routine to invoke the destructor and deallocates Mem.zMalloc. 646 ** 647 ** Use this routine to reset the Mem prior to insert a new value. 648 ** 649 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. 650 */ 651 void sqlite3VdbeMemSetNull(Mem *pMem){ 652 if( VdbeMemDynamic(pMem) ){ 653 vdbeMemClearExternAndSetNull(pMem); 654 }else{ 655 pMem->flags = MEM_Null; 656 } 657 } 658 void sqlite3ValueSetNull(sqlite3_value *p){ 659 sqlite3VdbeMemSetNull((Mem*)p); 660 } 661 662 /* 663 ** Delete any previous value and set the value to be a BLOB of length 664 ** n containing all zeros. 665 */ 666 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 667 sqlite3VdbeMemRelease(pMem); 668 pMem->flags = MEM_Blob|MEM_Zero; 669 pMem->n = 0; 670 if( n<0 ) n = 0; 671 pMem->u.nZero = n; 672 pMem->enc = SQLITE_UTF8; 673 pMem->z = 0; 674 } 675 676 /* 677 ** The pMem is known to contain content that needs to be destroyed prior 678 ** to a value change. So invoke the destructor, then set the value to 679 ** a 64-bit integer. 680 */ 681 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ 682 sqlite3VdbeMemSetNull(pMem); 683 pMem->u.i = val; 684 pMem->flags = MEM_Int; 685 } 686 687 /* 688 ** Delete any previous value and set the value stored in *pMem to val, 689 ** manifest type INTEGER. 690 */ 691 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 692 if( VdbeMemDynamic(pMem) ){ 693 vdbeReleaseAndSetInt64(pMem, val); 694 }else{ 695 pMem->u.i = val; 696 pMem->flags = MEM_Int; 697 } 698 } 699 700 #ifndef SQLITE_OMIT_FLOATING_POINT 701 /* 702 ** Delete any previous value and set the value stored in *pMem to val, 703 ** manifest type REAL. 704 */ 705 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 706 sqlite3VdbeMemSetNull(pMem); 707 if( !sqlite3IsNaN(val) ){ 708 pMem->u.r = val; 709 pMem->flags = MEM_Real; 710 } 711 } 712 #endif 713 714 /* 715 ** Delete any previous value and set the value of pMem to be an 716 ** empty boolean index. 717 */ 718 void sqlite3VdbeMemSetRowSet(Mem *pMem){ 719 sqlite3 *db = pMem->db; 720 assert( db!=0 ); 721 assert( (pMem->flags & MEM_RowSet)==0 ); 722 sqlite3VdbeMemRelease(pMem); 723 pMem->zMalloc = sqlite3DbMallocRawNN(db, 64); 724 if( db->mallocFailed ){ 725 pMem->flags = MEM_Null; 726 pMem->szMalloc = 0; 727 }else{ 728 assert( pMem->zMalloc ); 729 pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc); 730 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc); 731 assert( pMem->u.pRowSet!=0 ); 732 pMem->flags = MEM_RowSet; 733 } 734 } 735 736 /* 737 ** Return true if the Mem object contains a TEXT or BLOB that is 738 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 739 */ 740 int sqlite3VdbeMemTooBig(Mem *p){ 741 assert( p->db!=0 ); 742 if( p->flags & (MEM_Str|MEM_Blob) ){ 743 int n = p->n; 744 if( p->flags & MEM_Zero ){ 745 n += p->u.nZero; 746 } 747 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 748 } 749 return 0; 750 } 751 752 #ifdef SQLITE_DEBUG 753 /* 754 ** This routine prepares a memory cell for modification by breaking 755 ** its link to a shallow copy and by marking any current shallow 756 ** copies of this cell as invalid. 757 ** 758 ** This is used for testing and debugging only - to make sure shallow 759 ** copies are not misused. 760 */ 761 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ 762 int i; 763 Mem *pX; 764 for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){ 765 if( pX->pScopyFrom==pMem ){ 766 pX->flags |= MEM_Undefined; 767 pX->pScopyFrom = 0; 768 } 769 } 770 pMem->pScopyFrom = 0; 771 } 772 #endif /* SQLITE_DEBUG */ 773 774 775 /* 776 ** Make an shallow copy of pFrom into pTo. Prior contents of 777 ** pTo are freed. The pFrom->z field is not duplicated. If 778 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 779 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 780 */ 781 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ 782 vdbeMemClearExternAndSetNull(pTo); 783 assert( !VdbeMemDynamic(pTo) ); 784 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); 785 } 786 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 787 assert( (pFrom->flags & MEM_RowSet)==0 ); 788 assert( pTo->db==pFrom->db ); 789 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } 790 memcpy(pTo, pFrom, MEMCELLSIZE); 791 if( (pFrom->flags&MEM_Static)==0 ){ 792 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 793 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 794 pTo->flags |= srcType; 795 } 796 } 797 798 /* 799 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 800 ** freed before the copy is made. 801 */ 802 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 803 int rc = SQLITE_OK; 804 805 assert( (pFrom->flags & MEM_RowSet)==0 ); 806 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); 807 memcpy(pTo, pFrom, MEMCELLSIZE); 808 pTo->flags &= ~MEM_Dyn; 809 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 810 if( 0==(pFrom->flags&MEM_Static) ){ 811 pTo->flags |= MEM_Ephem; 812 rc = sqlite3VdbeMemMakeWriteable(pTo); 813 } 814 } 815 816 return rc; 817 } 818 819 /* 820 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 821 ** freed. If pFrom contains ephemeral data, a copy is made. 822 ** 823 ** pFrom contains an SQL NULL when this routine returns. 824 */ 825 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 826 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 827 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 828 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 829 830 sqlite3VdbeMemRelease(pTo); 831 memcpy(pTo, pFrom, sizeof(Mem)); 832 pFrom->flags = MEM_Null; 833 pFrom->szMalloc = 0; 834 } 835 836 /* 837 ** Change the value of a Mem to be a string or a BLOB. 838 ** 839 ** The memory management strategy depends on the value of the xDel 840 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 841 ** string is copied into a (possibly existing) buffer managed by the 842 ** Mem structure. Otherwise, any existing buffer is freed and the 843 ** pointer copied. 844 ** 845 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH 846 ** size limit) then no memory allocation occurs. If the string can be 847 ** stored without allocating memory, then it is. If a memory allocation 848 ** is required to store the string, then value of pMem is unchanged. In 849 ** either case, SQLITE_TOOBIG is returned. 850 */ 851 int sqlite3VdbeMemSetStr( 852 Mem *pMem, /* Memory cell to set to string value */ 853 const char *z, /* String pointer */ 854 int n, /* Bytes in string, or negative */ 855 u8 enc, /* Encoding of z. 0 for BLOBs */ 856 void (*xDel)(void*) /* Destructor function */ 857 ){ 858 int nByte = n; /* New value for pMem->n */ 859 int iLimit; /* Maximum allowed string or blob size */ 860 u16 flags = 0; /* New value for pMem->flags */ 861 862 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 863 assert( (pMem->flags & MEM_RowSet)==0 ); 864 865 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 866 if( !z ){ 867 sqlite3VdbeMemSetNull(pMem); 868 return SQLITE_OK; 869 } 870 871 if( pMem->db ){ 872 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; 873 }else{ 874 iLimit = SQLITE_MAX_LENGTH; 875 } 876 flags = (enc==0?MEM_Blob:MEM_Str); 877 if( nByte<0 ){ 878 assert( enc!=0 ); 879 if( enc==SQLITE_UTF8 ){ 880 nByte = sqlite3Strlen30(z); 881 if( nByte>iLimit ) nByte = iLimit+1; 882 }else{ 883 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} 884 } 885 flags |= MEM_Term; 886 } 887 888 /* The following block sets the new values of Mem.z and Mem.xDel. It 889 ** also sets a flag in local variable "flags" to indicate the memory 890 ** management (one of MEM_Dyn or MEM_Static). 891 */ 892 if( xDel==SQLITE_TRANSIENT ){ 893 int nAlloc = nByte; 894 if( flags&MEM_Term ){ 895 nAlloc += (enc==SQLITE_UTF8?1:2); 896 } 897 if( nByte>iLimit ){ 898 return SQLITE_TOOBIG; 899 } 900 testcase( nAlloc==0 ); 901 testcase( nAlloc==31 ); 902 testcase( nAlloc==32 ); 903 if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){ 904 return SQLITE_NOMEM_BKPT; 905 } 906 memcpy(pMem->z, z, nAlloc); 907 }else if( xDel==SQLITE_DYNAMIC ){ 908 sqlite3VdbeMemRelease(pMem); 909 pMem->zMalloc = pMem->z = (char *)z; 910 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 911 }else{ 912 sqlite3VdbeMemRelease(pMem); 913 pMem->z = (char *)z; 914 pMem->xDel = xDel; 915 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 916 } 917 918 pMem->n = nByte; 919 pMem->flags = flags; 920 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); 921 922 #ifndef SQLITE_OMIT_UTF16 923 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ 924 return SQLITE_NOMEM_BKPT; 925 } 926 #endif 927 928 if( nByte>iLimit ){ 929 return SQLITE_TOOBIG; 930 } 931 932 return SQLITE_OK; 933 } 934 935 /* 936 ** Move data out of a btree key or data field and into a Mem structure. 937 ** The data is payload from the entry that pCur is currently pointing 938 ** to. offset and amt determine what portion of the data or key to retrieve. 939 ** The result is written into the pMem element. 940 ** 941 ** The pMem object must have been initialized. This routine will use 942 ** pMem->zMalloc to hold the content from the btree, if possible. New 943 ** pMem->zMalloc space will be allocated if necessary. The calling routine 944 ** is responsible for making sure that the pMem object is eventually 945 ** destroyed. 946 ** 947 ** If this routine fails for any reason (malloc returns NULL or unable 948 ** to read from the disk) then the pMem is left in an inconsistent state. 949 */ 950 static SQLITE_NOINLINE int vdbeMemFromBtreeResize( 951 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 952 u32 offset, /* Offset from the start of data to return bytes from. */ 953 u32 amt, /* Number of bytes to return. */ 954 Mem *pMem /* OUT: Return data in this Mem structure. */ 955 ){ 956 int rc; 957 pMem->flags = MEM_Null; 958 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){ 959 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z); 960 if( rc==SQLITE_OK ){ 961 pMem->z[amt] = 0; 962 pMem->z[amt+1] = 0; 963 pMem->flags = MEM_Blob|MEM_Term; 964 pMem->n = (int)amt; 965 }else{ 966 sqlite3VdbeMemRelease(pMem); 967 } 968 } 969 return rc; 970 } 971 int sqlite3VdbeMemFromBtree( 972 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 973 u32 offset, /* Offset from the start of data to return bytes from. */ 974 u32 amt, /* Number of bytes to return. */ 975 Mem *pMem /* OUT: Return data in this Mem structure. */ 976 ){ 977 char *zData; /* Data from the btree layer */ 978 u32 available = 0; /* Number of bytes available on the local btree page */ 979 int rc = SQLITE_OK; /* Return code */ 980 981 assert( sqlite3BtreeCursorIsValid(pCur) ); 982 assert( !VdbeMemDynamic(pMem) ); 983 984 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 985 ** that both the BtShared and database handle mutexes are held. */ 986 assert( (pMem->flags & MEM_RowSet)==0 ); 987 zData = (char *)sqlite3BtreePayloadFetch(pCur, &available); 988 assert( zData!=0 ); 989 990 if( offset+amt<=available ){ 991 pMem->z = &zData[offset]; 992 pMem->flags = MEM_Blob|MEM_Ephem; 993 pMem->n = (int)amt; 994 }else{ 995 rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem); 996 } 997 998 return rc; 999 } 1000 1001 /* 1002 ** The pVal argument is known to be a value other than NULL. 1003 ** Convert it into a string with encoding enc and return a pointer 1004 ** to a zero-terminated version of that string. 1005 */ 1006 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ 1007 assert( pVal!=0 ); 1008 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1009 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1010 assert( (pVal->flags & MEM_RowSet)==0 ); 1011 assert( (pVal->flags & (MEM_Null))==0 ); 1012 if( pVal->flags & (MEM_Blob|MEM_Str) ){ 1013 if( ExpandBlob(pVal) ) return 0; 1014 pVal->flags |= MEM_Str; 1015 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ 1016 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 1017 } 1018 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ 1019 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 1020 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 1021 return 0; 1022 } 1023 } 1024 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ 1025 }else{ 1026 sqlite3VdbeMemStringify(pVal, enc, 0); 1027 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); 1028 } 1029 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 1030 || pVal->db->mallocFailed ); 1031 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 1032 return pVal->z; 1033 }else{ 1034 return 0; 1035 } 1036 } 1037 1038 /* This function is only available internally, it is not part of the 1039 ** external API. It works in a similar way to sqlite3_value_text(), 1040 ** except the data returned is in the encoding specified by the second 1041 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 1042 ** SQLITE_UTF8. 1043 ** 1044 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 1045 ** If that is the case, then the result must be aligned on an even byte 1046 ** boundary. 1047 */ 1048 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 1049 if( !pVal ) return 0; 1050 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1051 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1052 assert( (pVal->flags & MEM_RowSet)==0 ); 1053 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ 1054 return pVal->z; 1055 } 1056 if( pVal->flags&MEM_Null ){ 1057 return 0; 1058 } 1059 return valueToText(pVal, enc); 1060 } 1061 1062 /* 1063 ** Create a new sqlite3_value object. 1064 */ 1065 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 1066 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 1067 if( p ){ 1068 p->flags = MEM_Null; 1069 p->db = db; 1070 } 1071 return p; 1072 } 1073 1074 /* 1075 ** Context object passed by sqlite3Stat4ProbeSetValue() through to 1076 ** valueNew(). See comments above valueNew() for details. 1077 */ 1078 struct ValueNewStat4Ctx { 1079 Parse *pParse; 1080 Index *pIdx; 1081 UnpackedRecord **ppRec; 1082 int iVal; 1083 }; 1084 1085 /* 1086 ** Allocate and return a pointer to a new sqlite3_value object. If 1087 ** the second argument to this function is NULL, the object is allocated 1088 ** by calling sqlite3ValueNew(). 1089 ** 1090 ** Otherwise, if the second argument is non-zero, then this function is 1091 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not 1092 ** already been allocated, allocate the UnpackedRecord structure that 1093 ** that function will return to its caller here. Then return a pointer to 1094 ** an sqlite3_value within the UnpackedRecord.a[] array. 1095 */ 1096 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ 1097 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1098 if( p ){ 1099 UnpackedRecord *pRec = p->ppRec[0]; 1100 1101 if( pRec==0 ){ 1102 Index *pIdx = p->pIdx; /* Index being probed */ 1103 int nByte; /* Bytes of space to allocate */ 1104 int i; /* Counter variable */ 1105 int nCol = pIdx->nColumn; /* Number of index columns including rowid */ 1106 1107 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); 1108 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); 1109 if( pRec ){ 1110 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); 1111 if( pRec->pKeyInfo ){ 1112 assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol ); 1113 assert( pRec->pKeyInfo->enc==ENC(db) ); 1114 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); 1115 for(i=0; i<nCol; i++){ 1116 pRec->aMem[i].flags = MEM_Null; 1117 pRec->aMem[i].db = db; 1118 } 1119 }else{ 1120 sqlite3DbFree(db, pRec); 1121 pRec = 0; 1122 } 1123 } 1124 if( pRec==0 ) return 0; 1125 p->ppRec[0] = pRec; 1126 } 1127 1128 pRec->nField = p->iVal+1; 1129 return &pRec->aMem[p->iVal]; 1130 } 1131 #else 1132 UNUSED_PARAMETER(p); 1133 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ 1134 return sqlite3ValueNew(db); 1135 } 1136 1137 /* 1138 ** The expression object indicated by the second argument is guaranteed 1139 ** to be a scalar SQL function. If 1140 ** 1141 ** * all function arguments are SQL literals, 1142 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and 1143 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, 1144 ** 1145 ** then this routine attempts to invoke the SQL function. Assuming no 1146 ** error occurs, output parameter (*ppVal) is set to point to a value 1147 ** object containing the result before returning SQLITE_OK. 1148 ** 1149 ** Affinity aff is applied to the result of the function before returning. 1150 ** If the result is a text value, the sqlite3_value object uses encoding 1151 ** enc. 1152 ** 1153 ** If the conditions above are not met, this function returns SQLITE_OK 1154 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to 1155 ** NULL and an SQLite error code returned. 1156 */ 1157 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1158 static int valueFromFunction( 1159 sqlite3 *db, /* The database connection */ 1160 Expr *p, /* The expression to evaluate */ 1161 u8 enc, /* Encoding to use */ 1162 u8 aff, /* Affinity to use */ 1163 sqlite3_value **ppVal, /* Write the new value here */ 1164 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1165 ){ 1166 sqlite3_context ctx; /* Context object for function invocation */ 1167 sqlite3_value **apVal = 0; /* Function arguments */ 1168 int nVal = 0; /* Size of apVal[] array */ 1169 FuncDef *pFunc = 0; /* Function definition */ 1170 sqlite3_value *pVal = 0; /* New value */ 1171 int rc = SQLITE_OK; /* Return code */ 1172 ExprList *pList = 0; /* Function arguments */ 1173 int i; /* Iterator variable */ 1174 1175 assert( pCtx!=0 ); 1176 assert( (p->flags & EP_TokenOnly)==0 ); 1177 pList = p->x.pList; 1178 if( pList ) nVal = pList->nExpr; 1179 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); 1180 assert( pFunc ); 1181 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 1182 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 1183 ){ 1184 return SQLITE_OK; 1185 } 1186 1187 if( pList ){ 1188 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); 1189 if( apVal==0 ){ 1190 rc = SQLITE_NOMEM_BKPT; 1191 goto value_from_function_out; 1192 } 1193 for(i=0; i<nVal; i++){ 1194 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); 1195 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; 1196 } 1197 } 1198 1199 pVal = valueNew(db, pCtx); 1200 if( pVal==0 ){ 1201 rc = SQLITE_NOMEM_BKPT; 1202 goto value_from_function_out; 1203 } 1204 1205 assert( pCtx->pParse->rc==SQLITE_OK ); 1206 memset(&ctx, 0, sizeof(ctx)); 1207 ctx.pOut = pVal; 1208 ctx.pFunc = pFunc; 1209 pFunc->xSFunc(&ctx, nVal, apVal); 1210 if( ctx.isError ){ 1211 rc = ctx.isError; 1212 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); 1213 }else{ 1214 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); 1215 assert( rc==SQLITE_OK ); 1216 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1217 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ 1218 rc = SQLITE_TOOBIG; 1219 pCtx->pParse->nErr++; 1220 } 1221 } 1222 pCtx->pParse->rc = rc; 1223 1224 value_from_function_out: 1225 if( rc!=SQLITE_OK ){ 1226 pVal = 0; 1227 } 1228 if( apVal ){ 1229 for(i=0; i<nVal; i++){ 1230 sqlite3ValueFree(apVal[i]); 1231 } 1232 sqlite3DbFree(db, apVal); 1233 } 1234 1235 *ppVal = pVal; 1236 return rc; 1237 } 1238 #else 1239 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK 1240 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ 1241 1242 /* 1243 ** Extract a value from the supplied expression in the manner described 1244 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object 1245 ** using valueNew(). 1246 ** 1247 ** If pCtx is NULL and an error occurs after the sqlite3_value object 1248 ** has been allocated, it is freed before returning. Or, if pCtx is not 1249 ** NULL, it is assumed that the caller will free any allocated object 1250 ** in all cases. 1251 */ 1252 static int valueFromExpr( 1253 sqlite3 *db, /* The database connection */ 1254 Expr *pExpr, /* The expression to evaluate */ 1255 u8 enc, /* Encoding to use */ 1256 u8 affinity, /* Affinity to use */ 1257 sqlite3_value **ppVal, /* Write the new value here */ 1258 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1259 ){ 1260 int op; 1261 char *zVal = 0; 1262 sqlite3_value *pVal = 0; 1263 int negInt = 1; 1264 const char *zNeg = ""; 1265 int rc = SQLITE_OK; 1266 1267 assert( pExpr!=0 ); 1268 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; 1269 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; 1270 1271 /* Compressed expressions only appear when parsing the DEFAULT clause 1272 ** on a table column definition, and hence only when pCtx==0. This 1273 ** check ensures that an EP_TokenOnly expression is never passed down 1274 ** into valueFromFunction(). */ 1275 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); 1276 1277 if( op==TK_CAST ){ 1278 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0); 1279 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); 1280 testcase( rc!=SQLITE_OK ); 1281 if( *ppVal ){ 1282 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); 1283 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); 1284 } 1285 return rc; 1286 } 1287 1288 /* Handle negative integers in a single step. This is needed in the 1289 ** case when the value is -9223372036854775808. 1290 */ 1291 if( op==TK_UMINUS 1292 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ 1293 pExpr = pExpr->pLeft; 1294 op = pExpr->op; 1295 negInt = -1; 1296 zNeg = "-"; 1297 } 1298 1299 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 1300 pVal = valueNew(db, pCtx); 1301 if( pVal==0 ) goto no_mem; 1302 if( ExprHasProperty(pExpr, EP_IntValue) ){ 1303 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); 1304 }else{ 1305 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); 1306 if( zVal==0 ) goto no_mem; 1307 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); 1308 } 1309 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ 1310 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); 1311 }else{ 1312 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); 1313 } 1314 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str; 1315 if( enc!=SQLITE_UTF8 ){ 1316 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1317 } 1318 }else if( op==TK_UMINUS ) { 1319 /* This branch happens for multiple negative signs. Ex: -(-5) */ 1320 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) 1321 && pVal!=0 1322 ){ 1323 sqlite3VdbeMemNumerify(pVal); 1324 if( pVal->flags & MEM_Real ){ 1325 pVal->u.r = -pVal->u.r; 1326 }else if( pVal->u.i==SMALLEST_INT64 ){ 1327 pVal->u.r = -(double)SMALLEST_INT64; 1328 MemSetTypeFlag(pVal, MEM_Real); 1329 }else{ 1330 pVal->u.i = -pVal->u.i; 1331 } 1332 sqlite3ValueApplyAffinity(pVal, affinity, enc); 1333 } 1334 }else if( op==TK_NULL ){ 1335 pVal = valueNew(db, pCtx); 1336 if( pVal==0 ) goto no_mem; 1337 sqlite3VdbeMemNumerify(pVal); 1338 } 1339 #ifndef SQLITE_OMIT_BLOB_LITERAL 1340 else if( op==TK_BLOB ){ 1341 int nVal; 1342 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 1343 assert( pExpr->u.zToken[1]=='\'' ); 1344 pVal = valueNew(db, pCtx); 1345 if( !pVal ) goto no_mem; 1346 zVal = &pExpr->u.zToken[2]; 1347 nVal = sqlite3Strlen30(zVal)-1; 1348 assert( zVal[nVal]=='\'' ); 1349 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 1350 0, SQLITE_DYNAMIC); 1351 } 1352 #endif 1353 1354 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1355 else if( op==TK_FUNCTION && pCtx!=0 ){ 1356 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); 1357 } 1358 #endif 1359 1360 *ppVal = pVal; 1361 return rc; 1362 1363 no_mem: 1364 sqlite3OomFault(db); 1365 sqlite3DbFree(db, zVal); 1366 assert( *ppVal==0 ); 1367 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1368 if( pCtx==0 ) sqlite3ValueFree(pVal); 1369 #else 1370 assert( pCtx==0 ); sqlite3ValueFree(pVal); 1371 #endif 1372 return SQLITE_NOMEM_BKPT; 1373 } 1374 1375 /* 1376 ** Create a new sqlite3_value object, containing the value of pExpr. 1377 ** 1378 ** This only works for very simple expressions that consist of one constant 1379 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 1380 ** be converted directly into a value, then the value is allocated and 1381 ** a pointer written to *ppVal. The caller is responsible for deallocating 1382 ** the value by passing it to sqlite3ValueFree() later on. If the expression 1383 ** cannot be converted to a value, then *ppVal is set to NULL. 1384 */ 1385 int sqlite3ValueFromExpr( 1386 sqlite3 *db, /* The database connection */ 1387 Expr *pExpr, /* The expression to evaluate */ 1388 u8 enc, /* Encoding to use */ 1389 u8 affinity, /* Affinity to use */ 1390 sqlite3_value **ppVal /* Write the new value here */ 1391 ){ 1392 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; 1393 } 1394 1395 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1396 /* 1397 ** The implementation of the sqlite_record() function. This function accepts 1398 ** a single argument of any type. The return value is a formatted database 1399 ** record (a blob) containing the argument value. 1400 ** 1401 ** This is used to convert the value stored in the 'sample' column of the 1402 ** sqlite_stat3 table to the record format SQLite uses internally. 1403 */ 1404 static void recordFunc( 1405 sqlite3_context *context, 1406 int argc, 1407 sqlite3_value **argv 1408 ){ 1409 const int file_format = 1; 1410 u32 iSerial; /* Serial type */ 1411 int nSerial; /* Bytes of space for iSerial as varint */ 1412 u32 nVal; /* Bytes of space required for argv[0] */ 1413 int nRet; 1414 sqlite3 *db; 1415 u8 *aRet; 1416 1417 UNUSED_PARAMETER( argc ); 1418 iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal); 1419 nSerial = sqlite3VarintLen(iSerial); 1420 db = sqlite3_context_db_handle(context); 1421 1422 nRet = 1 + nSerial + nVal; 1423 aRet = sqlite3DbMallocRawNN(db, nRet); 1424 if( aRet==0 ){ 1425 sqlite3_result_error_nomem(context); 1426 }else{ 1427 aRet[0] = nSerial+1; 1428 putVarint32(&aRet[1], iSerial); 1429 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial); 1430 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT); 1431 sqlite3DbFree(db, aRet); 1432 } 1433 } 1434 1435 /* 1436 ** Register built-in functions used to help read ANALYZE data. 1437 */ 1438 void sqlite3AnalyzeFunctions(void){ 1439 static FuncDef aAnalyzeTableFuncs[] = { 1440 FUNCTION(sqlite_record, 1, 0, 0, recordFunc), 1441 }; 1442 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs)); 1443 } 1444 1445 /* 1446 ** Attempt to extract a value from pExpr and use it to construct *ppVal. 1447 ** 1448 ** If pAlloc is not NULL, then an UnpackedRecord object is created for 1449 ** pAlloc if one does not exist and the new value is added to the 1450 ** UnpackedRecord object. 1451 ** 1452 ** A value is extracted in the following cases: 1453 ** 1454 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1455 ** 1456 ** * The expression is a bound variable, and this is a reprepare, or 1457 ** 1458 ** * The expression is a literal value. 1459 ** 1460 ** On success, *ppVal is made to point to the extracted value. The caller 1461 ** is responsible for ensuring that the value is eventually freed. 1462 */ 1463 static int stat4ValueFromExpr( 1464 Parse *pParse, /* Parse context */ 1465 Expr *pExpr, /* The expression to extract a value from */ 1466 u8 affinity, /* Affinity to use */ 1467 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ 1468 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1469 ){ 1470 int rc = SQLITE_OK; 1471 sqlite3_value *pVal = 0; 1472 sqlite3 *db = pParse->db; 1473 1474 /* Skip over any TK_COLLATE nodes */ 1475 pExpr = sqlite3ExprSkipCollate(pExpr); 1476 1477 if( !pExpr ){ 1478 pVal = valueNew(db, pAlloc); 1479 if( pVal ){ 1480 sqlite3VdbeMemSetNull((Mem*)pVal); 1481 } 1482 }else if( pExpr->op==TK_VARIABLE 1483 || NEVER(pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE) 1484 ){ 1485 Vdbe *v; 1486 int iBindVar = pExpr->iColumn; 1487 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); 1488 if( (v = pParse->pReprepare)!=0 ){ 1489 pVal = valueNew(db, pAlloc); 1490 if( pVal ){ 1491 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); 1492 if( rc==SQLITE_OK ){ 1493 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); 1494 } 1495 pVal->db = pParse->db; 1496 } 1497 } 1498 }else{ 1499 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); 1500 } 1501 1502 assert( pVal==0 || pVal->db==db ); 1503 *ppVal = pVal; 1504 return rc; 1505 } 1506 1507 /* 1508 ** This function is used to allocate and populate UnpackedRecord 1509 ** structures intended to be compared against sample index keys stored 1510 ** in the sqlite_stat4 table. 1511 ** 1512 ** A single call to this function populates zero or more fields of the 1513 ** record starting with field iVal (fields are numbered from left to 1514 ** right starting with 0). A single field is populated if: 1515 ** 1516 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1517 ** 1518 ** * The expression is a bound variable, and this is a reprepare, or 1519 ** 1520 ** * The sqlite3ValueFromExpr() function is able to extract a value 1521 ** from the expression (i.e. the expression is a literal value). 1522 ** 1523 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the 1524 ** vector components that match either of the two latter criteria listed 1525 ** above. 1526 ** 1527 ** Before any value is appended to the record, the affinity of the 1528 ** corresponding column within index pIdx is applied to it. Before 1529 ** this function returns, output parameter *pnExtract is set to the 1530 ** number of values appended to the record. 1531 ** 1532 ** When this function is called, *ppRec must either point to an object 1533 ** allocated by an earlier call to this function, or must be NULL. If it 1534 ** is NULL and a value can be successfully extracted, a new UnpackedRecord 1535 ** is allocated (and *ppRec set to point to it) before returning. 1536 ** 1537 ** Unless an error is encountered, SQLITE_OK is returned. It is not an 1538 ** error if a value cannot be extracted from pExpr. If an error does 1539 ** occur, an SQLite error code is returned. 1540 */ 1541 int sqlite3Stat4ProbeSetValue( 1542 Parse *pParse, /* Parse context */ 1543 Index *pIdx, /* Index being probed */ 1544 UnpackedRecord **ppRec, /* IN/OUT: Probe record */ 1545 Expr *pExpr, /* The expression to extract a value from */ 1546 int nElem, /* Maximum number of values to append */ 1547 int iVal, /* Array element to populate */ 1548 int *pnExtract /* OUT: Values appended to the record */ 1549 ){ 1550 int rc = SQLITE_OK; 1551 int nExtract = 0; 1552 1553 if( pExpr==0 || pExpr->op!=TK_SELECT ){ 1554 int i; 1555 struct ValueNewStat4Ctx alloc; 1556 1557 alloc.pParse = pParse; 1558 alloc.pIdx = pIdx; 1559 alloc.ppRec = ppRec; 1560 1561 for(i=0; i<nElem; i++){ 1562 sqlite3_value *pVal = 0; 1563 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0); 1564 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i); 1565 alloc.iVal = iVal+i; 1566 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); 1567 if( !pVal ) break; 1568 nExtract++; 1569 } 1570 } 1571 1572 *pnExtract = nExtract; 1573 return rc; 1574 } 1575 1576 /* 1577 ** Attempt to extract a value from expression pExpr using the methods 1578 ** as described for sqlite3Stat4ProbeSetValue() above. 1579 ** 1580 ** If successful, set *ppVal to point to a new value object and return 1581 ** SQLITE_OK. If no value can be extracted, but no other error occurs 1582 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error 1583 ** does occur, return an SQLite error code. The final value of *ppVal 1584 ** is undefined in this case. 1585 */ 1586 int sqlite3Stat4ValueFromExpr( 1587 Parse *pParse, /* Parse context */ 1588 Expr *pExpr, /* The expression to extract a value from */ 1589 u8 affinity, /* Affinity to use */ 1590 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1591 ){ 1592 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); 1593 } 1594 1595 /* 1596 ** Extract the iCol-th column from the nRec-byte record in pRec. Write 1597 ** the column value into *ppVal. If *ppVal is initially NULL then a new 1598 ** sqlite3_value object is allocated. 1599 ** 1600 ** If *ppVal is initially NULL then the caller is responsible for 1601 ** ensuring that the value written into *ppVal is eventually freed. 1602 */ 1603 int sqlite3Stat4Column( 1604 sqlite3 *db, /* Database handle */ 1605 const void *pRec, /* Pointer to buffer containing record */ 1606 int nRec, /* Size of buffer pRec in bytes */ 1607 int iCol, /* Column to extract */ 1608 sqlite3_value **ppVal /* OUT: Extracted value */ 1609 ){ 1610 u32 t; /* a column type code */ 1611 int nHdr; /* Size of the header in the record */ 1612 int iHdr; /* Next unread header byte */ 1613 int iField; /* Next unread data byte */ 1614 int szField; /* Size of the current data field */ 1615 int i; /* Column index */ 1616 u8 *a = (u8*)pRec; /* Typecast byte array */ 1617 Mem *pMem = *ppVal; /* Write result into this Mem object */ 1618 1619 assert( iCol>0 ); 1620 iHdr = getVarint32(a, nHdr); 1621 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; 1622 iField = nHdr; 1623 for(i=0; i<=iCol; i++){ 1624 iHdr += getVarint32(&a[iHdr], t); 1625 testcase( iHdr==nHdr ); 1626 testcase( iHdr==nHdr+1 ); 1627 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; 1628 szField = sqlite3VdbeSerialTypeLen(t); 1629 iField += szField; 1630 } 1631 testcase( iField==nRec ); 1632 testcase( iField==nRec+1 ); 1633 if( iField>nRec ) return SQLITE_CORRUPT_BKPT; 1634 if( pMem==0 ){ 1635 pMem = *ppVal = sqlite3ValueNew(db); 1636 if( pMem==0 ) return SQLITE_NOMEM_BKPT; 1637 } 1638 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); 1639 pMem->enc = ENC(db); 1640 return SQLITE_OK; 1641 } 1642 1643 /* 1644 ** Unless it is NULL, the argument must be an UnpackedRecord object returned 1645 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes 1646 ** the object. 1647 */ 1648 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ 1649 if( pRec ){ 1650 int i; 1651 int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField; 1652 Mem *aMem = pRec->aMem; 1653 sqlite3 *db = aMem[0].db; 1654 for(i=0; i<nCol; i++){ 1655 sqlite3VdbeMemRelease(&aMem[i]); 1656 } 1657 sqlite3KeyInfoUnref(pRec->pKeyInfo); 1658 sqlite3DbFree(db, pRec); 1659 } 1660 } 1661 #endif /* ifdef SQLITE_ENABLE_STAT4 */ 1662 1663 /* 1664 ** Change the string value of an sqlite3_value object 1665 */ 1666 void sqlite3ValueSetStr( 1667 sqlite3_value *v, /* Value to be set */ 1668 int n, /* Length of string z */ 1669 const void *z, /* Text of the new string */ 1670 u8 enc, /* Encoding to use */ 1671 void (*xDel)(void*) /* Destructor for the string */ 1672 ){ 1673 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 1674 } 1675 1676 /* 1677 ** Free an sqlite3_value object 1678 */ 1679 void sqlite3ValueFree(sqlite3_value *v){ 1680 if( !v ) return; 1681 sqlite3VdbeMemRelease((Mem *)v); 1682 sqlite3DbFree(((Mem*)v)->db, v); 1683 } 1684 1685 /* 1686 ** The sqlite3ValueBytes() routine returns the number of bytes in the 1687 ** sqlite3_value object assuming that it uses the encoding "enc". 1688 ** The valueBytes() routine is a helper function. 1689 */ 1690 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ 1691 return valueToText(pVal, enc)!=0 ? pVal->n : 0; 1692 } 1693 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1694 Mem *p = (Mem*)pVal; 1695 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); 1696 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ 1697 return p->n; 1698 } 1699 if( (p->flags & MEM_Blob)!=0 ){ 1700 if( p->flags & MEM_Zero ){ 1701 return p->n + p->u.nZero; 1702 }else{ 1703 return p->n; 1704 } 1705 } 1706 if( p->flags & MEM_Null ) return 0; 1707 return valueBytes(pVal, enc); 1708 } 1709