xref: /sqlite-3.40.0/src/vdbemem.c (revision 7aa3ebee)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to manipulate "Mem" structure.  A "Mem"
14 ** stores a single value in the VDBE.  Mem is an opaque structure visible
15 ** only within the VDBE.  Interface routines refer to a Mem using the
16 ** name sqlite_value
17 */
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
20 
21 #ifdef SQLITE_DEBUG
22 /*
23 ** Check invariants on a Mem object.
24 **
25 ** This routine is intended for use inside of assert() statements, like
26 ** this:    assert( sqlite3VdbeCheckMemInvariants(pMem) );
27 */
28 int sqlite3VdbeCheckMemInvariants(Mem *p){
29   /* If MEM_Dyn is set then Mem.xDel!=0.
30   ** Mem.xDel is might not be initialized if MEM_Dyn is clear.
31   */
32   assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
33 
34   /* MEM_Dyn may only be set if Mem.szMalloc==0.  In this way we
35   ** ensure that if Mem.szMalloc>0 then it is safe to do
36   ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37   ** That saves a few cycles in inner loops. */
38   assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
39 
40   /* Cannot be both MEM_Int and MEM_Real at the same time */
41   assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );
42 
43   /* The szMalloc field holds the correct memory allocation size */
44   assert( p->szMalloc==0
45        || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
46 
47   /* If p holds a string or blob, the Mem.z must point to exactly
48   ** one of the following:
49   **
50   **   (1) Memory in Mem.zMalloc and managed by the Mem object
51   **   (2) Memory to be freed using Mem.xDel
52   **   (3) An ephemeral string or blob
53   **   (4) A static string or blob
54   */
55   if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
56     assert(
57       ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
58       ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
59       ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
60       ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
61     );
62   }
63   return 1;
64 }
65 #endif
66 
67 
68 /*
69 ** If pMem is an object with a valid string representation, this routine
70 ** ensures the internal encoding for the string representation is
71 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
72 **
73 ** If pMem is not a string object, or the encoding of the string
74 ** representation is already stored using the requested encoding, then this
75 ** routine is a no-op.
76 **
77 ** SQLITE_OK is returned if the conversion is successful (or not required).
78 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
79 ** between formats.
80 */
81 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
82 #ifndef SQLITE_OMIT_UTF16
83   int rc;
84 #endif
85   assert( (pMem->flags&MEM_RowSet)==0 );
86   assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
87            || desiredEnc==SQLITE_UTF16BE );
88   if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
89     return SQLITE_OK;
90   }
91   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
92 #ifdef SQLITE_OMIT_UTF16
93   return SQLITE_ERROR;
94 #else
95 
96   /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
97   ** then the encoding of the value may not have changed.
98   */
99   rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
100   assert(rc==SQLITE_OK    || rc==SQLITE_NOMEM);
101   assert(rc==SQLITE_OK    || pMem->enc!=desiredEnc);
102   assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
103   return rc;
104 #endif
105 }
106 
107 /*
108 ** Make sure pMem->z points to a writable allocation of at least
109 ** min(n,32) bytes.
110 **
111 ** If the bPreserve argument is true, then copy of the content of
112 ** pMem->z into the new allocation.  pMem must be either a string or
113 ** blob if bPreserve is true.  If bPreserve is false, any prior content
114 ** in pMem->z is discarded.
115 */
116 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
117   assert( sqlite3VdbeCheckMemInvariants(pMem) );
118   assert( (pMem->flags&MEM_RowSet)==0 );
119   testcase( pMem->db==0 );
120 
121   /* If the bPreserve flag is set to true, then the memory cell must already
122   ** contain a valid string or blob value.  */
123   assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
124   testcase( bPreserve && pMem->z==0 );
125 
126   assert( pMem->szMalloc==0
127        || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
128   if( pMem->szMalloc<n ){
129     if( n<32 ) n = 32;
130     if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){
131       pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
132       bPreserve = 0;
133     }else{
134       if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
135       pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
136     }
137     if( pMem->zMalloc==0 ){
138       sqlite3VdbeMemSetNull(pMem);
139       pMem->z = 0;
140       pMem->szMalloc = 0;
141       return SQLITE_NOMEM_BKPT;
142     }else{
143       pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
144     }
145   }
146 
147   if( bPreserve && pMem->z && pMem->z!=pMem->zMalloc ){
148     memcpy(pMem->zMalloc, pMem->z, pMem->n);
149   }
150   if( (pMem->flags&MEM_Dyn)!=0 ){
151     assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
152     pMem->xDel((void *)(pMem->z));
153   }
154 
155   pMem->z = pMem->zMalloc;
156   pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
157   return SQLITE_OK;
158 }
159 
160 /*
161 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
162 ** If pMem->zMalloc already meets or exceeds the requested size, this
163 ** routine is a no-op.
164 **
165 ** Any prior string or blob content in the pMem object may be discarded.
166 ** The pMem->xDel destructor is called, if it exists.  Though MEM_Str
167 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
168 ** values are preserved.
169 **
170 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
171 ** if unable to complete the resizing.
172 */
173 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
174   assert( szNew>0 );
175   assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
176   if( pMem->szMalloc<szNew ){
177     return sqlite3VdbeMemGrow(pMem, szNew, 0);
178   }
179   assert( (pMem->flags & MEM_Dyn)==0 );
180   pMem->z = pMem->zMalloc;
181   pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
182   return SQLITE_OK;
183 }
184 
185 /*
186 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
187 ** MEM.zMalloc, where it can be safely written.
188 **
189 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
190 */
191 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
192   int f;
193   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
194   assert( (pMem->flags&MEM_RowSet)==0 );
195   ExpandBlob(pMem);
196   f = pMem->flags;
197   if( (f&(MEM_Str|MEM_Blob)) && (pMem->szMalloc==0 || pMem->z!=pMem->zMalloc) ){
198     if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
199       return SQLITE_NOMEM_BKPT;
200     }
201     pMem->z[pMem->n] = 0;
202     pMem->z[pMem->n+1] = 0;
203     pMem->flags |= MEM_Term;
204   }
205   pMem->flags &= ~MEM_Ephem;
206 #ifdef SQLITE_DEBUG
207   pMem->pScopyFrom = 0;
208 #endif
209 
210   return SQLITE_OK;
211 }
212 
213 /*
214 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
215 ** blob stored in dynamically allocated space.
216 */
217 #ifndef SQLITE_OMIT_INCRBLOB
218 int sqlite3VdbeMemExpandBlob(Mem *pMem){
219   if( pMem->flags & MEM_Zero ){
220     int nByte;
221     assert( pMem->flags&MEM_Blob );
222     assert( (pMem->flags&MEM_RowSet)==0 );
223     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
224 
225     /* Set nByte to the number of bytes required to store the expanded blob. */
226     nByte = pMem->n + pMem->u.nZero;
227     if( nByte<=0 ){
228       nByte = 1;
229     }
230     if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
231       return SQLITE_NOMEM_BKPT;
232     }
233 
234     memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
235     pMem->n += pMem->u.nZero;
236     pMem->flags &= ~(MEM_Zero|MEM_Term);
237   }
238   return SQLITE_OK;
239 }
240 #endif
241 
242 /*
243 ** It is already known that pMem contains an unterminated string.
244 ** Add the zero terminator.
245 */
246 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
247   if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
248     return SQLITE_NOMEM_BKPT;
249   }
250   pMem->z[pMem->n] = 0;
251   pMem->z[pMem->n+1] = 0;
252   pMem->flags |= MEM_Term;
253   return SQLITE_OK;
254 }
255 
256 /*
257 ** Make sure the given Mem is \u0000 terminated.
258 */
259 int sqlite3VdbeMemNulTerminate(Mem *pMem){
260   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
261   testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
262   testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
263   if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
264     return SQLITE_OK;   /* Nothing to do */
265   }else{
266     return vdbeMemAddTerminator(pMem);
267   }
268 }
269 
270 /*
271 ** Add MEM_Str to the set of representations for the given Mem.  Numbers
272 ** are converted using sqlite3_snprintf().  Converting a BLOB to a string
273 ** is a no-op.
274 **
275 ** Existing representations MEM_Int and MEM_Real are invalidated if
276 ** bForce is true but are retained if bForce is false.
277 **
278 ** A MEM_Null value will never be passed to this function. This function is
279 ** used for converting values to text for returning to the user (i.e. via
280 ** sqlite3_value_text()), or for ensuring that values to be used as btree
281 ** keys are strings. In the former case a NULL pointer is returned the
282 ** user and the latter is an internal programming error.
283 */
284 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
285   int fg = pMem->flags;
286   const int nByte = 32;
287 
288   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
289   assert( !(fg&MEM_Zero) );
290   assert( !(fg&(MEM_Str|MEM_Blob)) );
291   assert( fg&(MEM_Int|MEM_Real) );
292   assert( (pMem->flags&MEM_RowSet)==0 );
293   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
294 
295 
296   if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
297     return SQLITE_NOMEM_BKPT;
298   }
299 
300   /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
301   ** string representation of the value. Then, if the required encoding
302   ** is UTF-16le or UTF-16be do a translation.
303   **
304   ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
305   */
306   if( fg & MEM_Int ){
307     sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
308   }else{
309     assert( fg & MEM_Real );
310     sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
311   }
312   pMem->n = sqlite3Strlen30(pMem->z);
313   pMem->enc = SQLITE_UTF8;
314   pMem->flags |= MEM_Str|MEM_Term;
315   if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
316   sqlite3VdbeChangeEncoding(pMem, enc);
317   return SQLITE_OK;
318 }
319 
320 /*
321 ** Memory cell pMem contains the context of an aggregate function.
322 ** This routine calls the finalize method for that function.  The
323 ** result of the aggregate is stored back into pMem.
324 **
325 ** Return SQLITE_ERROR if the finalizer reports an error.  SQLITE_OK
326 ** otherwise.
327 */
328 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
329   int rc = SQLITE_OK;
330   if( ALWAYS(pFunc && pFunc->xFinalize) ){
331     sqlite3_context ctx;
332     Mem t;
333     assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
334     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
335     memset(&ctx, 0, sizeof(ctx));
336     memset(&t, 0, sizeof(t));
337     t.flags = MEM_Null;
338     t.db = pMem->db;
339     ctx.pOut = &t;
340     ctx.pMem = pMem;
341     ctx.pFunc = pFunc;
342     pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
343     assert( (pMem->flags & MEM_Dyn)==0 );
344     if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
345     memcpy(pMem, &t, sizeof(t));
346     rc = ctx.isError;
347   }
348   return rc;
349 }
350 
351 /*
352 ** If the memory cell contains a value that must be freed by
353 ** invoking the external callback in Mem.xDel, then this routine
354 ** will free that value.  It also sets Mem.flags to MEM_Null.
355 **
356 ** This is a helper routine for sqlite3VdbeMemSetNull() and
357 ** for sqlite3VdbeMemRelease().  Use those other routines as the
358 ** entry point for releasing Mem resources.
359 */
360 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
361   assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
362   assert( VdbeMemDynamic(p) );
363   if( p->flags&MEM_Agg ){
364     sqlite3VdbeMemFinalize(p, p->u.pDef);
365     assert( (p->flags & MEM_Agg)==0 );
366     testcase( p->flags & MEM_Dyn );
367   }
368   if( p->flags&MEM_Dyn ){
369     assert( (p->flags&MEM_RowSet)==0 );
370     assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
371     p->xDel((void *)p->z);
372   }else if( p->flags&MEM_RowSet ){
373     sqlite3RowSetClear(p->u.pRowSet);
374   }else if( p->flags&MEM_Frame ){
375     VdbeFrame *pFrame = p->u.pFrame;
376     pFrame->pParent = pFrame->v->pDelFrame;
377     pFrame->v->pDelFrame = pFrame;
378   }
379   p->flags = MEM_Null;
380 }
381 
382 /*
383 ** Release memory held by the Mem p, both external memory cleared
384 ** by p->xDel and memory in p->zMalloc.
385 **
386 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
387 ** the unusual case where there really is memory in p that needs
388 ** to be freed.
389 */
390 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
391   if( VdbeMemDynamic(p) ){
392     vdbeMemClearExternAndSetNull(p);
393   }
394   if( p->szMalloc ){
395     sqlite3DbFree(p->db, p->zMalloc);
396     p->szMalloc = 0;
397   }
398   p->z = 0;
399 }
400 
401 /*
402 ** Release any memory resources held by the Mem.  Both the memory that is
403 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
404 **
405 ** Use this routine prior to clean up prior to abandoning a Mem, or to
406 ** reset a Mem back to its minimum memory utilization.
407 **
408 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
409 ** prior to inserting new content into the Mem.
410 */
411 void sqlite3VdbeMemRelease(Mem *p){
412   assert( sqlite3VdbeCheckMemInvariants(p) );
413   if( VdbeMemDynamic(p) || p->szMalloc ){
414     vdbeMemClear(p);
415   }
416 }
417 
418 /*
419 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
420 ** If the double is out of range of a 64-bit signed integer then
421 ** return the closest available 64-bit signed integer.
422 */
423 static i64 doubleToInt64(double r){
424 #ifdef SQLITE_OMIT_FLOATING_POINT
425   /* When floating-point is omitted, double and int64 are the same thing */
426   return r;
427 #else
428   /*
429   ** Many compilers we encounter do not define constants for the
430   ** minimum and maximum 64-bit integers, or they define them
431   ** inconsistently.  And many do not understand the "LL" notation.
432   ** So we define our own static constants here using nothing
433   ** larger than a 32-bit integer constant.
434   */
435   static const i64 maxInt = LARGEST_INT64;
436   static const i64 minInt = SMALLEST_INT64;
437 
438   if( r<=(double)minInt ){
439     return minInt;
440   }else if( r>=(double)maxInt ){
441     return maxInt;
442   }else{
443     return (i64)r;
444   }
445 #endif
446 }
447 
448 /*
449 ** Return some kind of integer value which is the best we can do
450 ** at representing the value that *pMem describes as an integer.
451 ** If pMem is an integer, then the value is exact.  If pMem is
452 ** a floating-point then the value returned is the integer part.
453 ** If pMem is a string or blob, then we make an attempt to convert
454 ** it into an integer and return that.  If pMem represents an
455 ** an SQL-NULL value, return 0.
456 **
457 ** If pMem represents a string value, its encoding might be changed.
458 */
459 i64 sqlite3VdbeIntValue(Mem *pMem){
460   int flags;
461   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
462   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
463   flags = pMem->flags;
464   if( flags & MEM_Int ){
465     return pMem->u.i;
466   }else if( flags & MEM_Real ){
467     return doubleToInt64(pMem->u.r);
468   }else if( flags & (MEM_Str|MEM_Blob) ){
469     i64 value = 0;
470     assert( pMem->z || pMem->n==0 );
471     sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
472     return value;
473   }else{
474     return 0;
475   }
476 }
477 
478 /*
479 ** Return the best representation of pMem that we can get into a
480 ** double.  If pMem is already a double or an integer, return its
481 ** value.  If it is a string or blob, try to convert it to a double.
482 ** If it is a NULL, return 0.0.
483 */
484 double sqlite3VdbeRealValue(Mem *pMem){
485   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
486   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
487   if( pMem->flags & MEM_Real ){
488     return pMem->u.r;
489   }else if( pMem->flags & MEM_Int ){
490     return (double)pMem->u.i;
491   }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
492     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
493     double val = (double)0;
494     sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
495     return val;
496   }else{
497     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
498     return (double)0;
499   }
500 }
501 
502 /*
503 ** The MEM structure is already a MEM_Real.  Try to also make it a
504 ** MEM_Int if we can.
505 */
506 void sqlite3VdbeIntegerAffinity(Mem *pMem){
507   i64 ix;
508   assert( pMem->flags & MEM_Real );
509   assert( (pMem->flags & MEM_RowSet)==0 );
510   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
511   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
512 
513   ix = doubleToInt64(pMem->u.r);
514 
515   /* Only mark the value as an integer if
516   **
517   **    (1) the round-trip conversion real->int->real is a no-op, and
518   **    (2) The integer is neither the largest nor the smallest
519   **        possible integer (ticket #3922)
520   **
521   ** The second and third terms in the following conditional enforces
522   ** the second condition under the assumption that addition overflow causes
523   ** values to wrap around.
524   */
525   if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
526     pMem->u.i = ix;
527     MemSetTypeFlag(pMem, MEM_Int);
528   }
529 }
530 
531 /*
532 ** Convert pMem to type integer.  Invalidate any prior representations.
533 */
534 int sqlite3VdbeMemIntegerify(Mem *pMem){
535   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
536   assert( (pMem->flags & MEM_RowSet)==0 );
537   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
538 
539   pMem->u.i = sqlite3VdbeIntValue(pMem);
540   MemSetTypeFlag(pMem, MEM_Int);
541   return SQLITE_OK;
542 }
543 
544 /*
545 ** Convert pMem so that it is of type MEM_Real.
546 ** Invalidate any prior representations.
547 */
548 int sqlite3VdbeMemRealify(Mem *pMem){
549   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
550   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
551 
552   pMem->u.r = sqlite3VdbeRealValue(pMem);
553   MemSetTypeFlag(pMem, MEM_Real);
554   return SQLITE_OK;
555 }
556 
557 /*
558 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
559 ** Invalidate any prior representations.
560 **
561 ** Every effort is made to force the conversion, even if the input
562 ** is a string that does not look completely like a number.  Convert
563 ** as much of the string as we can and ignore the rest.
564 */
565 int sqlite3VdbeMemNumerify(Mem *pMem){
566   if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
567     assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
568     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
569     if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){
570       MemSetTypeFlag(pMem, MEM_Int);
571     }else{
572       pMem->u.r = sqlite3VdbeRealValue(pMem);
573       MemSetTypeFlag(pMem, MEM_Real);
574       sqlite3VdbeIntegerAffinity(pMem);
575     }
576   }
577   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
578   pMem->flags &= ~(MEM_Str|MEM_Blob);
579   return SQLITE_OK;
580 }
581 
582 /*
583 ** Cast the datatype of the value in pMem according to the affinity
584 ** "aff".  Casting is different from applying affinity in that a cast
585 ** is forced.  In other words, the value is converted into the desired
586 ** affinity even if that results in loss of data.  This routine is
587 ** used (for example) to implement the SQL "cast()" operator.
588 */
589 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
590   if( pMem->flags & MEM_Null ) return;
591   switch( aff ){
592     case SQLITE_AFF_BLOB: {   /* Really a cast to BLOB */
593       if( (pMem->flags & MEM_Blob)==0 ){
594         sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
595         assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
596         MemSetTypeFlag(pMem, MEM_Blob);
597       }else{
598         pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
599       }
600       break;
601     }
602     case SQLITE_AFF_NUMERIC: {
603       sqlite3VdbeMemNumerify(pMem);
604       break;
605     }
606     case SQLITE_AFF_INTEGER: {
607       sqlite3VdbeMemIntegerify(pMem);
608       break;
609     }
610     case SQLITE_AFF_REAL: {
611       sqlite3VdbeMemRealify(pMem);
612       break;
613     }
614     default: {
615       assert( aff==SQLITE_AFF_TEXT );
616       assert( MEM_Str==(MEM_Blob>>3) );
617       pMem->flags |= (pMem->flags&MEM_Blob)>>3;
618       sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
619       assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
620       pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
621       break;
622     }
623   }
624 }
625 
626 /*
627 ** Initialize bulk memory to be a consistent Mem object.
628 **
629 ** The minimum amount of initialization feasible is performed.
630 */
631 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
632   assert( (flags & ~MEM_TypeMask)==0 );
633   pMem->flags = flags;
634   pMem->db = db;
635   pMem->szMalloc = 0;
636 }
637 
638 
639 /*
640 ** Delete any previous value and set the value stored in *pMem to NULL.
641 **
642 ** This routine calls the Mem.xDel destructor to dispose of values that
643 ** require the destructor.  But it preserves the Mem.zMalloc memory allocation.
644 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
645 ** routine to invoke the destructor and deallocates Mem.zMalloc.
646 **
647 ** Use this routine to reset the Mem prior to insert a new value.
648 **
649 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
650 */
651 void sqlite3VdbeMemSetNull(Mem *pMem){
652   if( VdbeMemDynamic(pMem) ){
653     vdbeMemClearExternAndSetNull(pMem);
654   }else{
655     pMem->flags = MEM_Null;
656   }
657 }
658 void sqlite3ValueSetNull(sqlite3_value *p){
659   sqlite3VdbeMemSetNull((Mem*)p);
660 }
661 
662 /*
663 ** Delete any previous value and set the value to be a BLOB of length
664 ** n containing all zeros.
665 */
666 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
667   sqlite3VdbeMemRelease(pMem);
668   pMem->flags = MEM_Blob|MEM_Zero;
669   pMem->n = 0;
670   if( n<0 ) n = 0;
671   pMem->u.nZero = n;
672   pMem->enc = SQLITE_UTF8;
673   pMem->z = 0;
674 }
675 
676 /*
677 ** The pMem is known to contain content that needs to be destroyed prior
678 ** to a value change.  So invoke the destructor, then set the value to
679 ** a 64-bit integer.
680 */
681 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
682   sqlite3VdbeMemSetNull(pMem);
683   pMem->u.i = val;
684   pMem->flags = MEM_Int;
685 }
686 
687 /*
688 ** Delete any previous value and set the value stored in *pMem to val,
689 ** manifest type INTEGER.
690 */
691 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
692   if( VdbeMemDynamic(pMem) ){
693     vdbeReleaseAndSetInt64(pMem, val);
694   }else{
695     pMem->u.i = val;
696     pMem->flags = MEM_Int;
697   }
698 }
699 
700 #ifndef SQLITE_OMIT_FLOATING_POINT
701 /*
702 ** Delete any previous value and set the value stored in *pMem to val,
703 ** manifest type REAL.
704 */
705 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
706   sqlite3VdbeMemSetNull(pMem);
707   if( !sqlite3IsNaN(val) ){
708     pMem->u.r = val;
709     pMem->flags = MEM_Real;
710   }
711 }
712 #endif
713 
714 /*
715 ** Delete any previous value and set the value of pMem to be an
716 ** empty boolean index.
717 */
718 void sqlite3VdbeMemSetRowSet(Mem *pMem){
719   sqlite3 *db = pMem->db;
720   assert( db!=0 );
721   assert( (pMem->flags & MEM_RowSet)==0 );
722   sqlite3VdbeMemRelease(pMem);
723   pMem->zMalloc = sqlite3DbMallocRawNN(db, 64);
724   if( db->mallocFailed ){
725     pMem->flags = MEM_Null;
726     pMem->szMalloc = 0;
727   }else{
728     assert( pMem->zMalloc );
729     pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
730     pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);
731     assert( pMem->u.pRowSet!=0 );
732     pMem->flags = MEM_RowSet;
733   }
734 }
735 
736 /*
737 ** Return true if the Mem object contains a TEXT or BLOB that is
738 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
739 */
740 int sqlite3VdbeMemTooBig(Mem *p){
741   assert( p->db!=0 );
742   if( p->flags & (MEM_Str|MEM_Blob) ){
743     int n = p->n;
744     if( p->flags & MEM_Zero ){
745       n += p->u.nZero;
746     }
747     return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
748   }
749   return 0;
750 }
751 
752 #ifdef SQLITE_DEBUG
753 /*
754 ** This routine prepares a memory cell for modification by breaking
755 ** its link to a shallow copy and by marking any current shallow
756 ** copies of this cell as invalid.
757 **
758 ** This is used for testing and debugging only - to make sure shallow
759 ** copies are not misused.
760 */
761 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
762   int i;
763   Mem *pX;
764   for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){
765     if( pX->pScopyFrom==pMem ){
766       pX->flags |= MEM_Undefined;
767       pX->pScopyFrom = 0;
768     }
769   }
770   pMem->pScopyFrom = 0;
771 }
772 #endif /* SQLITE_DEBUG */
773 
774 
775 /*
776 ** Make an shallow copy of pFrom into pTo.  Prior contents of
777 ** pTo are freed.  The pFrom->z field is not duplicated.  If
778 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
779 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
780 */
781 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
782   vdbeMemClearExternAndSetNull(pTo);
783   assert( !VdbeMemDynamic(pTo) );
784   sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
785 }
786 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
787   assert( (pFrom->flags & MEM_RowSet)==0 );
788   assert( pTo->db==pFrom->db );
789   if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
790   memcpy(pTo, pFrom, MEMCELLSIZE);
791   if( (pFrom->flags&MEM_Static)==0 ){
792     pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
793     assert( srcType==MEM_Ephem || srcType==MEM_Static );
794     pTo->flags |= srcType;
795   }
796 }
797 
798 /*
799 ** Make a full copy of pFrom into pTo.  Prior contents of pTo are
800 ** freed before the copy is made.
801 */
802 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
803   int rc = SQLITE_OK;
804 
805   /* The pFrom==0 case in the following assert() is when an sqlite3_value
806   ** from sqlite3_value_dup() is used as the argument
807   ** to sqlite3_result_value(). */
808   assert( pTo->db==pFrom->db || pFrom->db==0 );
809   assert( (pFrom->flags & MEM_RowSet)==0 );
810   if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
811   memcpy(pTo, pFrom, MEMCELLSIZE);
812   pTo->flags &= ~MEM_Dyn;
813   if( pTo->flags&(MEM_Str|MEM_Blob) ){
814     if( 0==(pFrom->flags&MEM_Static) ){
815       pTo->flags |= MEM_Ephem;
816       rc = sqlite3VdbeMemMakeWriteable(pTo);
817     }
818   }
819 
820   return rc;
821 }
822 
823 /*
824 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
825 ** freed. If pFrom contains ephemeral data, a copy is made.
826 **
827 ** pFrom contains an SQL NULL when this routine returns.
828 */
829 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
830   assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
831   assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
832   assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
833 
834   sqlite3VdbeMemRelease(pTo);
835   memcpy(pTo, pFrom, sizeof(Mem));
836   pFrom->flags = MEM_Null;
837   pFrom->szMalloc = 0;
838 }
839 
840 /*
841 ** Change the value of a Mem to be a string or a BLOB.
842 **
843 ** The memory management strategy depends on the value of the xDel
844 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
845 ** string is copied into a (possibly existing) buffer managed by the
846 ** Mem structure. Otherwise, any existing buffer is freed and the
847 ** pointer copied.
848 **
849 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
850 ** size limit) then no memory allocation occurs.  If the string can be
851 ** stored without allocating memory, then it is.  If a memory allocation
852 ** is required to store the string, then value of pMem is unchanged.  In
853 ** either case, SQLITE_TOOBIG is returned.
854 */
855 int sqlite3VdbeMemSetStr(
856   Mem *pMem,          /* Memory cell to set to string value */
857   const char *z,      /* String pointer */
858   int n,              /* Bytes in string, or negative */
859   u8 enc,             /* Encoding of z.  0 for BLOBs */
860   void (*xDel)(void*) /* Destructor function */
861 ){
862   int nByte = n;      /* New value for pMem->n */
863   int iLimit;         /* Maximum allowed string or blob size */
864   u16 flags = 0;      /* New value for pMem->flags */
865 
866   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
867   assert( (pMem->flags & MEM_RowSet)==0 );
868 
869   /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
870   if( !z ){
871     sqlite3VdbeMemSetNull(pMem);
872     return SQLITE_OK;
873   }
874 
875   if( pMem->db ){
876     iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
877   }else{
878     iLimit = SQLITE_MAX_LENGTH;
879   }
880   flags = (enc==0?MEM_Blob:MEM_Str);
881   if( nByte<0 ){
882     assert( enc!=0 );
883     if( enc==SQLITE_UTF8 ){
884       nByte = sqlite3Strlen30(z);
885       if( nByte>iLimit ) nByte = iLimit+1;
886     }else{
887       for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
888     }
889     flags |= MEM_Term;
890   }
891 
892   /* The following block sets the new values of Mem.z and Mem.xDel. It
893   ** also sets a flag in local variable "flags" to indicate the memory
894   ** management (one of MEM_Dyn or MEM_Static).
895   */
896   if( xDel==SQLITE_TRANSIENT ){
897     int nAlloc = nByte;
898     if( flags&MEM_Term ){
899       nAlloc += (enc==SQLITE_UTF8?1:2);
900     }
901     if( nByte>iLimit ){
902       return SQLITE_TOOBIG;
903     }
904     testcase( nAlloc==0 );
905     testcase( nAlloc==31 );
906     testcase( nAlloc==32 );
907     if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){
908       return SQLITE_NOMEM_BKPT;
909     }
910     memcpy(pMem->z, z, nAlloc);
911   }else if( xDel==SQLITE_DYNAMIC ){
912     sqlite3VdbeMemRelease(pMem);
913     pMem->zMalloc = pMem->z = (char *)z;
914     pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
915   }else{
916     sqlite3VdbeMemRelease(pMem);
917     pMem->z = (char *)z;
918     pMem->xDel = xDel;
919     flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
920   }
921 
922   pMem->n = nByte;
923   pMem->flags = flags;
924   pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
925 
926 #ifndef SQLITE_OMIT_UTF16
927   if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
928     return SQLITE_NOMEM_BKPT;
929   }
930 #endif
931 
932   if( nByte>iLimit ){
933     return SQLITE_TOOBIG;
934   }
935 
936   return SQLITE_OK;
937 }
938 
939 /*
940 ** Move data out of a btree key or data field and into a Mem structure.
941 ** The data or key is taken from the entry that pCur is currently pointing
942 ** to.  offset and amt determine what portion of the data or key to retrieve.
943 ** key is true to get the key or false to get data.  The result is written
944 ** into the pMem element.
945 **
946 ** The pMem object must have been initialized.  This routine will use
947 ** pMem->zMalloc to hold the content from the btree, if possible.  New
948 ** pMem->zMalloc space will be allocated if necessary.  The calling routine
949 ** is responsible for making sure that the pMem object is eventually
950 ** destroyed.
951 **
952 ** If this routine fails for any reason (malloc returns NULL or unable
953 ** to read from the disk) then the pMem is left in an inconsistent state.
954 */
955 static SQLITE_NOINLINE int vdbeMemFromBtreeResize(
956   BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
957   u32 offset,       /* Offset from the start of data to return bytes from. */
958   u32 amt,          /* Number of bytes to return. */
959   int key,          /* If true, retrieve from the btree key, not data. */
960   Mem *pMem         /* OUT: Return data in this Mem structure. */
961 ){
962   int rc;
963   pMem->flags = MEM_Null;
964   if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){
965     if( key ){
966       rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
967     }else{
968       rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
969     }
970     if( rc==SQLITE_OK ){
971       pMem->z[amt] = 0;
972       pMem->z[amt+1] = 0;
973       pMem->flags = MEM_Blob|MEM_Term;
974       pMem->n = (int)amt;
975     }else{
976       sqlite3VdbeMemRelease(pMem);
977     }
978   }
979   return rc;
980 }
981 int sqlite3VdbeMemFromBtree(
982   BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
983   u32 offset,       /* Offset from the start of data to return bytes from. */
984   u32 amt,          /* Number of bytes to return. */
985   int key,          /* If true, retrieve from the btree key, not data. */
986   Mem *pMem         /* OUT: Return data in this Mem structure. */
987 ){
988   char *zData;        /* Data from the btree layer */
989   u32 available = 0;  /* Number of bytes available on the local btree page */
990   int rc = SQLITE_OK; /* Return code */
991 
992   assert( sqlite3BtreeCursorIsValid(pCur) );
993   assert( !VdbeMemDynamic(pMem) );
994 
995   /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
996   ** that both the BtShared and database handle mutexes are held. */
997   assert( (pMem->flags & MEM_RowSet)==0 );
998   if( key ){
999     zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
1000   }else{
1001     zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
1002   }
1003   assert( zData!=0 );
1004 
1005   if( offset+amt<=available ){
1006     pMem->z = &zData[offset];
1007     pMem->flags = MEM_Blob|MEM_Ephem;
1008     pMem->n = (int)amt;
1009   }else{
1010     rc = vdbeMemFromBtreeResize(pCur, offset, amt, key, pMem);
1011   }
1012 
1013   return rc;
1014 }
1015 
1016 /*
1017 ** The pVal argument is known to be a value other than NULL.
1018 ** Convert it into a string with encoding enc and return a pointer
1019 ** to a zero-terminated version of that string.
1020 */
1021 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1022   assert( pVal!=0 );
1023   assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1024   assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1025   assert( (pVal->flags & MEM_RowSet)==0 );
1026   assert( (pVal->flags & (MEM_Null))==0 );
1027   if( pVal->flags & (MEM_Blob|MEM_Str) ){
1028     pVal->flags |= MEM_Str;
1029     if( pVal->flags & MEM_Zero ){
1030       sqlite3VdbeMemExpandBlob(pVal);
1031     }
1032     if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1033       sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1034     }
1035     if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1036       assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1037       if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1038         return 0;
1039       }
1040     }
1041     sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1042   }else{
1043     sqlite3VdbeMemStringify(pVal, enc, 0);
1044     assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1045   }
1046   assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1047               || pVal->db->mallocFailed );
1048   if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1049     return pVal->z;
1050   }else{
1051     return 0;
1052   }
1053 }
1054 
1055 /* This function is only available internally, it is not part of the
1056 ** external API. It works in a similar way to sqlite3_value_text(),
1057 ** except the data returned is in the encoding specified by the second
1058 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1059 ** SQLITE_UTF8.
1060 **
1061 ** (2006-02-16:)  The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1062 ** If that is the case, then the result must be aligned on an even byte
1063 ** boundary.
1064 */
1065 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1066   if( !pVal ) return 0;
1067   assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1068   assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1069   assert( (pVal->flags & MEM_RowSet)==0 );
1070   if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1071     return pVal->z;
1072   }
1073   if( pVal->flags&MEM_Null ){
1074     return 0;
1075   }
1076   return valueToText(pVal, enc);
1077 }
1078 
1079 /*
1080 ** Create a new sqlite3_value object.
1081 */
1082 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1083   Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1084   if( p ){
1085     p->flags = MEM_Null;
1086     p->db = db;
1087   }
1088   return p;
1089 }
1090 
1091 /*
1092 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1093 ** valueNew(). See comments above valueNew() for details.
1094 */
1095 struct ValueNewStat4Ctx {
1096   Parse *pParse;
1097   Index *pIdx;
1098   UnpackedRecord **ppRec;
1099   int iVal;
1100 };
1101 
1102 /*
1103 ** Allocate and return a pointer to a new sqlite3_value object. If
1104 ** the second argument to this function is NULL, the object is allocated
1105 ** by calling sqlite3ValueNew().
1106 **
1107 ** Otherwise, if the second argument is non-zero, then this function is
1108 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1109 ** already been allocated, allocate the UnpackedRecord structure that
1110 ** that function will return to its caller here. Then return a pointer to
1111 ** an sqlite3_value within the UnpackedRecord.a[] array.
1112 */
1113 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1114 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1115   if( p ){
1116     UnpackedRecord *pRec = p->ppRec[0];
1117 
1118     if( pRec==0 ){
1119       Index *pIdx = p->pIdx;      /* Index being probed */
1120       int nByte;                  /* Bytes of space to allocate */
1121       int i;                      /* Counter variable */
1122       int nCol = pIdx->nColumn;   /* Number of index columns including rowid */
1123 
1124       nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1125       pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1126       if( pRec ){
1127         pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1128         if( pRec->pKeyInfo ){
1129           assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol );
1130           assert( pRec->pKeyInfo->enc==ENC(db) );
1131           pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1132           for(i=0; i<nCol; i++){
1133             pRec->aMem[i].flags = MEM_Null;
1134             pRec->aMem[i].db = db;
1135           }
1136         }else{
1137           sqlite3DbFree(db, pRec);
1138           pRec = 0;
1139         }
1140       }
1141       if( pRec==0 ) return 0;
1142       p->ppRec[0] = pRec;
1143     }
1144 
1145     pRec->nField = p->iVal+1;
1146     return &pRec->aMem[p->iVal];
1147   }
1148 #else
1149   UNUSED_PARAMETER(p);
1150 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1151   return sqlite3ValueNew(db);
1152 }
1153 
1154 /*
1155 ** The expression object indicated by the second argument is guaranteed
1156 ** to be a scalar SQL function. If
1157 **
1158 **   * all function arguments are SQL literals,
1159 **   * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1160 **   * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1161 **
1162 ** then this routine attempts to invoke the SQL function. Assuming no
1163 ** error occurs, output parameter (*ppVal) is set to point to a value
1164 ** object containing the result before returning SQLITE_OK.
1165 **
1166 ** Affinity aff is applied to the result of the function before returning.
1167 ** If the result is a text value, the sqlite3_value object uses encoding
1168 ** enc.
1169 **
1170 ** If the conditions above are not met, this function returns SQLITE_OK
1171 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1172 ** NULL and an SQLite error code returned.
1173 */
1174 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1175 static int valueFromFunction(
1176   sqlite3 *db,                    /* The database connection */
1177   Expr *p,                        /* The expression to evaluate */
1178   u8 enc,                         /* Encoding to use */
1179   u8 aff,                         /* Affinity to use */
1180   sqlite3_value **ppVal,          /* Write the new value here */
1181   struct ValueNewStat4Ctx *pCtx   /* Second argument for valueNew() */
1182 ){
1183   sqlite3_context ctx;            /* Context object for function invocation */
1184   sqlite3_value **apVal = 0;      /* Function arguments */
1185   int nVal = 0;                   /* Size of apVal[] array */
1186   FuncDef *pFunc = 0;             /* Function definition */
1187   sqlite3_value *pVal = 0;        /* New value */
1188   int rc = SQLITE_OK;             /* Return code */
1189   ExprList *pList = 0;            /* Function arguments */
1190   int i;                          /* Iterator variable */
1191 
1192   assert( pCtx!=0 );
1193   assert( (p->flags & EP_TokenOnly)==0 );
1194   pList = p->x.pList;
1195   if( pList ) nVal = pList->nExpr;
1196   pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1197   assert( pFunc );
1198   if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1199    || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1200   ){
1201     return SQLITE_OK;
1202   }
1203 
1204   if( pList ){
1205     apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1206     if( apVal==0 ){
1207       rc = SQLITE_NOMEM_BKPT;
1208       goto value_from_function_out;
1209     }
1210     for(i=0; i<nVal; i++){
1211       rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1212       if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1213     }
1214   }
1215 
1216   pVal = valueNew(db, pCtx);
1217   if( pVal==0 ){
1218     rc = SQLITE_NOMEM_BKPT;
1219     goto value_from_function_out;
1220   }
1221 
1222   assert( pCtx->pParse->rc==SQLITE_OK );
1223   memset(&ctx, 0, sizeof(ctx));
1224   ctx.pOut = pVal;
1225   ctx.pFunc = pFunc;
1226   pFunc->xSFunc(&ctx, nVal, apVal);
1227   if( ctx.isError ){
1228     rc = ctx.isError;
1229     sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1230   }else{
1231     sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1232     assert( rc==SQLITE_OK );
1233     rc = sqlite3VdbeChangeEncoding(pVal, enc);
1234     if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1235       rc = SQLITE_TOOBIG;
1236       pCtx->pParse->nErr++;
1237     }
1238   }
1239   pCtx->pParse->rc = rc;
1240 
1241  value_from_function_out:
1242   if( rc!=SQLITE_OK ){
1243     pVal = 0;
1244   }
1245   if( apVal ){
1246     for(i=0; i<nVal; i++){
1247       sqlite3ValueFree(apVal[i]);
1248     }
1249     sqlite3DbFree(db, apVal);
1250   }
1251 
1252   *ppVal = pVal;
1253   return rc;
1254 }
1255 #else
1256 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1257 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1258 
1259 /*
1260 ** Extract a value from the supplied expression in the manner described
1261 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1262 ** using valueNew().
1263 **
1264 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1265 ** has been allocated, it is freed before returning. Or, if pCtx is not
1266 ** NULL, it is assumed that the caller will free any allocated object
1267 ** in all cases.
1268 */
1269 static int valueFromExpr(
1270   sqlite3 *db,                    /* The database connection */
1271   Expr *pExpr,                    /* The expression to evaluate */
1272   u8 enc,                         /* Encoding to use */
1273   u8 affinity,                    /* Affinity to use */
1274   sqlite3_value **ppVal,          /* Write the new value here */
1275   struct ValueNewStat4Ctx *pCtx   /* Second argument for valueNew() */
1276 ){
1277   int op;
1278   char *zVal = 0;
1279   sqlite3_value *pVal = 0;
1280   int negInt = 1;
1281   const char *zNeg = "";
1282   int rc = SQLITE_OK;
1283 
1284   if( !pExpr ){
1285     *ppVal = 0;
1286     return SQLITE_OK;
1287   }
1288   while( (op = pExpr->op)==TK_UPLUS ) pExpr = pExpr->pLeft;
1289   if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1290 
1291   /* Compressed expressions only appear when parsing the DEFAULT clause
1292   ** on a table column definition, and hence only when pCtx==0.  This
1293   ** check ensures that an EP_TokenOnly expression is never passed down
1294   ** into valueFromFunction(). */
1295   assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1296 
1297   if( op==TK_CAST ){
1298     u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1299     rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1300     testcase( rc!=SQLITE_OK );
1301     if( *ppVal ){
1302       sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1303       sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1304     }
1305     return rc;
1306   }
1307 
1308   /* Handle negative integers in a single step.  This is needed in the
1309   ** case when the value is -9223372036854775808.
1310   */
1311   if( op==TK_UMINUS
1312    && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1313     pExpr = pExpr->pLeft;
1314     op = pExpr->op;
1315     negInt = -1;
1316     zNeg = "-";
1317   }
1318 
1319   if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1320     pVal = valueNew(db, pCtx);
1321     if( pVal==0 ) goto no_mem;
1322     if( ExprHasProperty(pExpr, EP_IntValue) ){
1323       sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1324     }else{
1325       zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1326       if( zVal==0 ) goto no_mem;
1327       sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1328     }
1329     if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1330       sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1331     }else{
1332       sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1333     }
1334     if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
1335     if( enc!=SQLITE_UTF8 ){
1336       rc = sqlite3VdbeChangeEncoding(pVal, enc);
1337     }
1338   }else if( op==TK_UMINUS ) {
1339     /* This branch happens for multiple negative signs.  Ex: -(-5) */
1340     if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal)
1341      && pVal!=0
1342     ){
1343       sqlite3VdbeMemNumerify(pVal);
1344       if( pVal->flags & MEM_Real ){
1345         pVal->u.r = -pVal->u.r;
1346       }else if( pVal->u.i==SMALLEST_INT64 ){
1347         pVal->u.r = -(double)SMALLEST_INT64;
1348         MemSetTypeFlag(pVal, MEM_Real);
1349       }else{
1350         pVal->u.i = -pVal->u.i;
1351       }
1352       sqlite3ValueApplyAffinity(pVal, affinity, enc);
1353     }
1354   }else if( op==TK_NULL ){
1355     pVal = valueNew(db, pCtx);
1356     if( pVal==0 ) goto no_mem;
1357   }
1358 #ifndef SQLITE_OMIT_BLOB_LITERAL
1359   else if( op==TK_BLOB ){
1360     int nVal;
1361     assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1362     assert( pExpr->u.zToken[1]=='\'' );
1363     pVal = valueNew(db, pCtx);
1364     if( !pVal ) goto no_mem;
1365     zVal = &pExpr->u.zToken[2];
1366     nVal = sqlite3Strlen30(zVal)-1;
1367     assert( zVal[nVal]=='\'' );
1368     sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1369                          0, SQLITE_DYNAMIC);
1370   }
1371 #endif
1372 
1373 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1374   else if( op==TK_FUNCTION && pCtx!=0 ){
1375     rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1376   }
1377 #endif
1378 
1379   *ppVal = pVal;
1380   return rc;
1381 
1382 no_mem:
1383   sqlite3OomFault(db);
1384   sqlite3DbFree(db, zVal);
1385   assert( *ppVal==0 );
1386 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1387   if( pCtx==0 ) sqlite3ValueFree(pVal);
1388 #else
1389   assert( pCtx==0 ); sqlite3ValueFree(pVal);
1390 #endif
1391   return SQLITE_NOMEM_BKPT;
1392 }
1393 
1394 /*
1395 ** Create a new sqlite3_value object, containing the value of pExpr.
1396 **
1397 ** This only works for very simple expressions that consist of one constant
1398 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1399 ** be converted directly into a value, then the value is allocated and
1400 ** a pointer written to *ppVal. The caller is responsible for deallocating
1401 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1402 ** cannot be converted to a value, then *ppVal is set to NULL.
1403 */
1404 int sqlite3ValueFromExpr(
1405   sqlite3 *db,              /* The database connection */
1406   Expr *pExpr,              /* The expression to evaluate */
1407   u8 enc,                   /* Encoding to use */
1408   u8 affinity,              /* Affinity to use */
1409   sqlite3_value **ppVal     /* Write the new value here */
1410 ){
1411   return valueFromExpr(db, pExpr, enc, affinity, ppVal, 0);
1412 }
1413 
1414 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1415 /*
1416 ** The implementation of the sqlite_record() function. This function accepts
1417 ** a single argument of any type. The return value is a formatted database
1418 ** record (a blob) containing the argument value.
1419 **
1420 ** This is used to convert the value stored in the 'sample' column of the
1421 ** sqlite_stat3 table to the record format SQLite uses internally.
1422 */
1423 static void recordFunc(
1424   sqlite3_context *context,
1425   int argc,
1426   sqlite3_value **argv
1427 ){
1428   const int file_format = 1;
1429   u32 iSerial;                    /* Serial type */
1430   int nSerial;                    /* Bytes of space for iSerial as varint */
1431   u32 nVal;                       /* Bytes of space required for argv[0] */
1432   int nRet;
1433   sqlite3 *db;
1434   u8 *aRet;
1435 
1436   UNUSED_PARAMETER( argc );
1437   iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal);
1438   nSerial = sqlite3VarintLen(iSerial);
1439   db = sqlite3_context_db_handle(context);
1440 
1441   nRet = 1 + nSerial + nVal;
1442   aRet = sqlite3DbMallocRawNN(db, nRet);
1443   if( aRet==0 ){
1444     sqlite3_result_error_nomem(context);
1445   }else{
1446     aRet[0] = nSerial+1;
1447     putVarint32(&aRet[1], iSerial);
1448     sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
1449     sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
1450     sqlite3DbFree(db, aRet);
1451   }
1452 }
1453 
1454 /*
1455 ** Register built-in functions used to help read ANALYZE data.
1456 */
1457 void sqlite3AnalyzeFunctions(void){
1458   static FuncDef aAnalyzeTableFuncs[] = {
1459     FUNCTION(sqlite_record,   1, 0, 0, recordFunc),
1460   };
1461   sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs));
1462 }
1463 
1464 /*
1465 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1466 **
1467 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1468 ** pAlloc if one does not exist and the new value is added to the
1469 ** UnpackedRecord object.
1470 **
1471 ** A value is extracted in the following cases:
1472 **
1473 **  * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1474 **
1475 **  * The expression is a bound variable, and this is a reprepare, or
1476 **
1477 **  * The expression is a literal value.
1478 **
1479 ** On success, *ppVal is made to point to the extracted value.  The caller
1480 ** is responsible for ensuring that the value is eventually freed.
1481 */
1482 static int stat4ValueFromExpr(
1483   Parse *pParse,                  /* Parse context */
1484   Expr *pExpr,                    /* The expression to extract a value from */
1485   u8 affinity,                    /* Affinity to use */
1486   struct ValueNewStat4Ctx *pAlloc,/* How to allocate space.  Or NULL */
1487   sqlite3_value **ppVal           /* OUT: New value object (or NULL) */
1488 ){
1489   int rc = SQLITE_OK;
1490   sqlite3_value *pVal = 0;
1491   sqlite3 *db = pParse->db;
1492 
1493   /* Skip over any TK_COLLATE nodes */
1494   pExpr = sqlite3ExprSkipCollate(pExpr);
1495 
1496   if( !pExpr ){
1497     pVal = valueNew(db, pAlloc);
1498     if( pVal ){
1499       sqlite3VdbeMemSetNull((Mem*)pVal);
1500     }
1501   }else if( pExpr->op==TK_VARIABLE
1502         || NEVER(pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
1503   ){
1504     Vdbe *v;
1505     int iBindVar = pExpr->iColumn;
1506     sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1507     if( (v = pParse->pReprepare)!=0 ){
1508       pVal = valueNew(db, pAlloc);
1509       if( pVal ){
1510         rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1511         if( rc==SQLITE_OK ){
1512           sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1513         }
1514         pVal->db = pParse->db;
1515       }
1516     }
1517   }else{
1518     rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1519   }
1520 
1521   assert( pVal==0 || pVal->db==db );
1522   *ppVal = pVal;
1523   return rc;
1524 }
1525 
1526 /*
1527 ** This function is used to allocate and populate UnpackedRecord
1528 ** structures intended to be compared against sample index keys stored
1529 ** in the sqlite_stat4 table.
1530 **
1531 ** A single call to this function attempts to populates field iVal (leftmost
1532 ** is 0 etc.) of the unpacked record with a value extracted from expression
1533 ** pExpr. Extraction of values is possible if:
1534 **
1535 **  * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1536 **
1537 **  * The expression is a bound variable, and this is a reprepare, or
1538 **
1539 **  * The sqlite3ValueFromExpr() function is able to extract a value
1540 **    from the expression (i.e. the expression is a literal value).
1541 **
1542 ** If a value can be extracted, the affinity passed as the 5th argument
1543 ** is applied to it before it is copied into the UnpackedRecord. Output
1544 ** parameter *pbOk is set to true if a value is extracted, or false
1545 ** otherwise.
1546 **
1547 ** When this function is called, *ppRec must either point to an object
1548 ** allocated by an earlier call to this function, or must be NULL. If it
1549 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1550 ** is allocated (and *ppRec set to point to it) before returning.
1551 **
1552 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1553 ** error if a value cannot be extracted from pExpr. If an error does
1554 ** occur, an SQLite error code is returned.
1555 */
1556 int sqlite3Stat4ProbeSetValue(
1557   Parse *pParse,                  /* Parse context */
1558   Index *pIdx,                    /* Index being probed */
1559   UnpackedRecord **ppRec,         /* IN/OUT: Probe record */
1560   Expr *pExpr,                    /* The expression to extract a value from */
1561   u8 affinity,                    /* Affinity to use */
1562   int iVal,                       /* Array element to populate */
1563   int *pbOk                       /* OUT: True if value was extracted */
1564 ){
1565   int rc;
1566   sqlite3_value *pVal = 0;
1567   struct ValueNewStat4Ctx alloc;
1568 
1569   alloc.pParse = pParse;
1570   alloc.pIdx = pIdx;
1571   alloc.ppRec = ppRec;
1572   alloc.iVal = iVal;
1573 
1574   rc = stat4ValueFromExpr(pParse, pExpr, affinity, &alloc, &pVal);
1575   assert( pVal==0 || pVal->db==pParse->db );
1576   *pbOk = (pVal!=0);
1577   return rc;
1578 }
1579 
1580 /*
1581 ** Attempt to extract a value from expression pExpr using the methods
1582 ** as described for sqlite3Stat4ProbeSetValue() above.
1583 **
1584 ** If successful, set *ppVal to point to a new value object and return
1585 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1586 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1587 ** does occur, return an SQLite error code. The final value of *ppVal
1588 ** is undefined in this case.
1589 */
1590 int sqlite3Stat4ValueFromExpr(
1591   Parse *pParse,                  /* Parse context */
1592   Expr *pExpr,                    /* The expression to extract a value from */
1593   u8 affinity,                    /* Affinity to use */
1594   sqlite3_value **ppVal           /* OUT: New value object (or NULL) */
1595 ){
1596   return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1597 }
1598 
1599 /*
1600 ** Extract the iCol-th column from the nRec-byte record in pRec.  Write
1601 ** the column value into *ppVal.  If *ppVal is initially NULL then a new
1602 ** sqlite3_value object is allocated.
1603 **
1604 ** If *ppVal is initially NULL then the caller is responsible for
1605 ** ensuring that the value written into *ppVal is eventually freed.
1606 */
1607 int sqlite3Stat4Column(
1608   sqlite3 *db,                    /* Database handle */
1609   const void *pRec,               /* Pointer to buffer containing record */
1610   int nRec,                       /* Size of buffer pRec in bytes */
1611   int iCol,                       /* Column to extract */
1612   sqlite3_value **ppVal           /* OUT: Extracted value */
1613 ){
1614   u32 t;                          /* a column type code */
1615   int nHdr;                       /* Size of the header in the record */
1616   int iHdr;                       /* Next unread header byte */
1617   int iField;                     /* Next unread data byte */
1618   int szField;                    /* Size of the current data field */
1619   int i;                          /* Column index */
1620   u8 *a = (u8*)pRec;              /* Typecast byte array */
1621   Mem *pMem = *ppVal;             /* Write result into this Mem object */
1622 
1623   assert( iCol>0 );
1624   iHdr = getVarint32(a, nHdr);
1625   if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1626   iField = nHdr;
1627   for(i=0; i<=iCol; i++){
1628     iHdr += getVarint32(&a[iHdr], t);
1629     testcase( iHdr==nHdr );
1630     testcase( iHdr==nHdr+1 );
1631     if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1632     szField = sqlite3VdbeSerialTypeLen(t);
1633     iField += szField;
1634   }
1635   testcase( iField==nRec );
1636   testcase( iField==nRec+1 );
1637   if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1638   if( pMem==0 ){
1639     pMem = *ppVal = sqlite3ValueNew(db);
1640     if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1641   }
1642   sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1643   pMem->enc = ENC(db);
1644   return SQLITE_OK;
1645 }
1646 
1647 /*
1648 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1649 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1650 ** the object.
1651 */
1652 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1653   if( pRec ){
1654     int i;
1655     int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField;
1656     Mem *aMem = pRec->aMem;
1657     sqlite3 *db = aMem[0].db;
1658     for(i=0; i<nCol; i++){
1659       sqlite3VdbeMemRelease(&aMem[i]);
1660     }
1661     sqlite3KeyInfoUnref(pRec->pKeyInfo);
1662     sqlite3DbFree(db, pRec);
1663   }
1664 }
1665 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1666 
1667 /*
1668 ** Change the string value of an sqlite3_value object
1669 */
1670 void sqlite3ValueSetStr(
1671   sqlite3_value *v,     /* Value to be set */
1672   int n,                /* Length of string z */
1673   const void *z,        /* Text of the new string */
1674   u8 enc,               /* Encoding to use */
1675   void (*xDel)(void*)   /* Destructor for the string */
1676 ){
1677   if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1678 }
1679 
1680 /*
1681 ** Free an sqlite3_value object
1682 */
1683 void sqlite3ValueFree(sqlite3_value *v){
1684   if( !v ) return;
1685   sqlite3VdbeMemRelease((Mem *)v);
1686   sqlite3DbFree(((Mem*)v)->db, v);
1687 }
1688 
1689 /*
1690 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1691 ** sqlite3_value object assuming that it uses the encoding "enc".
1692 ** The valueBytes() routine is a helper function.
1693 */
1694 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1695   return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1696 }
1697 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1698   Mem *p = (Mem*)pVal;
1699   assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1700   if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1701     return p->n;
1702   }
1703   if( (p->flags & MEM_Blob)!=0 ){
1704     if( p->flags & MEM_Zero ){
1705       return p->n + p->u.nZero;
1706     }else{
1707       return p->n;
1708     }
1709   }
1710   if( p->flags & MEM_Null ) return 0;
1711   return valueBytes(pVal, enc);
1712 }
1713