1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 #ifdef SQLITE_DEBUG 22 /* 23 ** Check invariants on a Mem object. 24 ** 25 ** This routine is intended for use inside of assert() statements, like 26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); 27 */ 28 int sqlite3VdbeCheckMemInvariants(Mem *p){ 29 /* If MEM_Dyn is set then Mem.xDel!=0. 30 ** Mem.xDel is might not be initialized if MEM_Dyn is clear. 31 */ 32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); 33 34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we 35 ** ensure that if Mem.szMalloc>0 then it is safe to do 36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. 37 ** That saves a few cycles in inner loops. */ 38 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); 39 40 /* Cannot be both MEM_Int and MEM_Real at the same time */ 41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) ); 42 43 /* The szMalloc field holds the correct memory allocation size */ 44 assert( p->szMalloc==0 45 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) ); 46 47 /* If p holds a string or blob, the Mem.z must point to exactly 48 ** one of the following: 49 ** 50 ** (1) Memory in Mem.zMalloc and managed by the Mem object 51 ** (2) Memory to be freed using Mem.xDel 52 ** (3) An ephemeral string or blob 53 ** (4) A static string or blob 54 */ 55 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ 56 assert( 57 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + 58 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 59 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 60 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 61 ); 62 } 63 return 1; 64 } 65 #endif 66 67 68 /* 69 ** If pMem is an object with a valid string representation, this routine 70 ** ensures the internal encoding for the string representation is 71 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 72 ** 73 ** If pMem is not a string object, or the encoding of the string 74 ** representation is already stored using the requested encoding, then this 75 ** routine is a no-op. 76 ** 77 ** SQLITE_OK is returned if the conversion is successful (or not required). 78 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 79 ** between formats. 80 */ 81 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 82 #ifndef SQLITE_OMIT_UTF16 83 int rc; 84 #endif 85 assert( (pMem->flags&MEM_RowSet)==0 ); 86 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE 87 || desiredEnc==SQLITE_UTF16BE ); 88 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ 89 return SQLITE_OK; 90 } 91 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 92 #ifdef SQLITE_OMIT_UTF16 93 return SQLITE_ERROR; 94 #else 95 96 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 97 ** then the encoding of the value may not have changed. 98 */ 99 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); 100 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 101 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 102 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 103 return rc; 104 #endif 105 } 106 107 /* 108 ** Make sure pMem->z points to a writable allocation of at least 109 ** min(n,32) bytes. 110 ** 111 ** If the bPreserve argument is true, then copy of the content of 112 ** pMem->z into the new allocation. pMem must be either a string or 113 ** blob if bPreserve is true. If bPreserve is false, any prior content 114 ** in pMem->z is discarded. 115 */ 116 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ 117 assert( sqlite3VdbeCheckMemInvariants(pMem) ); 118 assert( (pMem->flags&MEM_RowSet)==0 ); 119 testcase( pMem->db==0 ); 120 121 /* If the bPreserve flag is set to true, then the memory cell must already 122 ** contain a valid string or blob value. */ 123 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); 124 testcase( bPreserve && pMem->z==0 ); 125 126 assert( pMem->szMalloc==0 127 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) ); 128 if( pMem->szMalloc<n ){ 129 if( n<32 ) n = 32; 130 if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){ 131 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 132 bPreserve = 0; 133 }else{ 134 if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc); 135 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 136 } 137 if( pMem->zMalloc==0 ){ 138 sqlite3VdbeMemSetNull(pMem); 139 pMem->z = 0; 140 pMem->szMalloc = 0; 141 return SQLITE_NOMEM_BKPT; 142 }else{ 143 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 144 } 145 } 146 147 if( bPreserve && pMem->z && pMem->z!=pMem->zMalloc ){ 148 memcpy(pMem->zMalloc, pMem->z, pMem->n); 149 } 150 if( (pMem->flags&MEM_Dyn)!=0 ){ 151 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); 152 pMem->xDel((void *)(pMem->z)); 153 } 154 155 pMem->z = pMem->zMalloc; 156 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); 157 return SQLITE_OK; 158 } 159 160 /* 161 ** Change the pMem->zMalloc allocation to be at least szNew bytes. 162 ** If pMem->zMalloc already meets or exceeds the requested size, this 163 ** routine is a no-op. 164 ** 165 ** Any prior string or blob content in the pMem object may be discarded. 166 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str 167 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null 168 ** values are preserved. 169 ** 170 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) 171 ** if unable to complete the resizing. 172 */ 173 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ 174 assert( szNew>0 ); 175 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); 176 if( pMem->szMalloc<szNew ){ 177 return sqlite3VdbeMemGrow(pMem, szNew, 0); 178 } 179 assert( (pMem->flags & MEM_Dyn)==0 ); 180 pMem->z = pMem->zMalloc; 181 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real); 182 return SQLITE_OK; 183 } 184 185 /* 186 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in 187 ** MEM.zMalloc, where it can be safely written. 188 ** 189 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 190 */ 191 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 192 int f; 193 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 194 assert( (pMem->flags&MEM_RowSet)==0 ); 195 ExpandBlob(pMem); 196 f = pMem->flags; 197 if( (f&(MEM_Str|MEM_Blob)) && (pMem->szMalloc==0 || pMem->z!=pMem->zMalloc) ){ 198 if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){ 199 return SQLITE_NOMEM_BKPT; 200 } 201 pMem->z[pMem->n] = 0; 202 pMem->z[pMem->n+1] = 0; 203 pMem->flags |= MEM_Term; 204 } 205 pMem->flags &= ~MEM_Ephem; 206 #ifdef SQLITE_DEBUG 207 pMem->pScopyFrom = 0; 208 #endif 209 210 return SQLITE_OK; 211 } 212 213 /* 214 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 215 ** blob stored in dynamically allocated space. 216 */ 217 #ifndef SQLITE_OMIT_INCRBLOB 218 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 219 if( pMem->flags & MEM_Zero ){ 220 int nByte; 221 assert( pMem->flags&MEM_Blob ); 222 assert( (pMem->flags&MEM_RowSet)==0 ); 223 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 224 225 /* Set nByte to the number of bytes required to store the expanded blob. */ 226 nByte = pMem->n + pMem->u.nZero; 227 if( nByte<=0 ){ 228 nByte = 1; 229 } 230 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 231 return SQLITE_NOMEM_BKPT; 232 } 233 234 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); 235 pMem->n += pMem->u.nZero; 236 pMem->flags &= ~(MEM_Zero|MEM_Term); 237 } 238 return SQLITE_OK; 239 } 240 #endif 241 242 /* 243 ** It is already known that pMem contains an unterminated string. 244 ** Add the zero terminator. 245 */ 246 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ 247 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ 248 return SQLITE_NOMEM_BKPT; 249 } 250 pMem->z[pMem->n] = 0; 251 pMem->z[pMem->n+1] = 0; 252 pMem->flags |= MEM_Term; 253 return SQLITE_OK; 254 } 255 256 /* 257 ** Make sure the given Mem is \u0000 terminated. 258 */ 259 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 260 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 261 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); 262 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); 263 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ 264 return SQLITE_OK; /* Nothing to do */ 265 }else{ 266 return vdbeMemAddTerminator(pMem); 267 } 268 } 269 270 /* 271 ** Add MEM_Str to the set of representations for the given Mem. Numbers 272 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string 273 ** is a no-op. 274 ** 275 ** Existing representations MEM_Int and MEM_Real are invalidated if 276 ** bForce is true but are retained if bForce is false. 277 ** 278 ** A MEM_Null value will never be passed to this function. This function is 279 ** used for converting values to text for returning to the user (i.e. via 280 ** sqlite3_value_text()), or for ensuring that values to be used as btree 281 ** keys are strings. In the former case a NULL pointer is returned the 282 ** user and the latter is an internal programming error. 283 */ 284 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ 285 int fg = pMem->flags; 286 const int nByte = 32; 287 288 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 289 assert( !(fg&MEM_Zero) ); 290 assert( !(fg&(MEM_Str|MEM_Blob)) ); 291 assert( fg&(MEM_Int|MEM_Real) ); 292 assert( (pMem->flags&MEM_RowSet)==0 ); 293 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 294 295 296 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 297 return SQLITE_NOMEM_BKPT; 298 } 299 300 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8 301 ** string representation of the value. Then, if the required encoding 302 ** is UTF-16le or UTF-16be do a translation. 303 ** 304 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. 305 */ 306 if( fg & MEM_Int ){ 307 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); 308 }else{ 309 assert( fg & MEM_Real ); 310 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r); 311 } 312 pMem->n = sqlite3Strlen30(pMem->z); 313 pMem->enc = SQLITE_UTF8; 314 pMem->flags |= MEM_Str|MEM_Term; 315 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real); 316 sqlite3VdbeChangeEncoding(pMem, enc); 317 return SQLITE_OK; 318 } 319 320 /* 321 ** Memory cell pMem contains the context of an aggregate function. 322 ** This routine calls the finalize method for that function. The 323 ** result of the aggregate is stored back into pMem. 324 ** 325 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 326 ** otherwise. 327 */ 328 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 329 int rc = SQLITE_OK; 330 if( ALWAYS(pFunc && pFunc->xFinalize) ){ 331 sqlite3_context ctx; 332 Mem t; 333 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 334 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 335 memset(&ctx, 0, sizeof(ctx)); 336 memset(&t, 0, sizeof(t)); 337 t.flags = MEM_Null; 338 t.db = pMem->db; 339 ctx.pOut = &t; 340 ctx.pMem = pMem; 341 ctx.pFunc = pFunc; 342 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ 343 assert( (pMem->flags & MEM_Dyn)==0 ); 344 if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc); 345 memcpy(pMem, &t, sizeof(t)); 346 rc = ctx.isError; 347 } 348 return rc; 349 } 350 351 /* 352 ** If the memory cell contains a value that must be freed by 353 ** invoking the external callback in Mem.xDel, then this routine 354 ** will free that value. It also sets Mem.flags to MEM_Null. 355 ** 356 ** This is a helper routine for sqlite3VdbeMemSetNull() and 357 ** for sqlite3VdbeMemRelease(). Use those other routines as the 358 ** entry point for releasing Mem resources. 359 */ 360 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ 361 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 362 assert( VdbeMemDynamic(p) ); 363 if( p->flags&MEM_Agg ){ 364 sqlite3VdbeMemFinalize(p, p->u.pDef); 365 assert( (p->flags & MEM_Agg)==0 ); 366 testcase( p->flags & MEM_Dyn ); 367 } 368 if( p->flags&MEM_Dyn ){ 369 assert( (p->flags&MEM_RowSet)==0 ); 370 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); 371 p->xDel((void *)p->z); 372 }else if( p->flags&MEM_RowSet ){ 373 sqlite3RowSetClear(p->u.pRowSet); 374 }else if( p->flags&MEM_Frame ){ 375 VdbeFrame *pFrame = p->u.pFrame; 376 pFrame->pParent = pFrame->v->pDelFrame; 377 pFrame->v->pDelFrame = pFrame; 378 } 379 p->flags = MEM_Null; 380 } 381 382 /* 383 ** Release memory held by the Mem p, both external memory cleared 384 ** by p->xDel and memory in p->zMalloc. 385 ** 386 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in 387 ** the unusual case where there really is memory in p that needs 388 ** to be freed. 389 */ 390 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ 391 if( VdbeMemDynamic(p) ){ 392 vdbeMemClearExternAndSetNull(p); 393 } 394 if( p->szMalloc ){ 395 sqlite3DbFree(p->db, p->zMalloc); 396 p->szMalloc = 0; 397 } 398 p->z = 0; 399 } 400 401 /* 402 ** Release any memory resources held by the Mem. Both the memory that is 403 ** free by Mem.xDel and the Mem.zMalloc allocation are freed. 404 ** 405 ** Use this routine prior to clean up prior to abandoning a Mem, or to 406 ** reset a Mem back to its minimum memory utilization. 407 ** 408 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space 409 ** prior to inserting new content into the Mem. 410 */ 411 void sqlite3VdbeMemRelease(Mem *p){ 412 assert( sqlite3VdbeCheckMemInvariants(p) ); 413 if( VdbeMemDynamic(p) || p->szMalloc ){ 414 vdbeMemClear(p); 415 } 416 } 417 418 /* 419 ** Convert a 64-bit IEEE double into a 64-bit signed integer. 420 ** If the double is out of range of a 64-bit signed integer then 421 ** return the closest available 64-bit signed integer. 422 */ 423 static i64 doubleToInt64(double r){ 424 #ifdef SQLITE_OMIT_FLOATING_POINT 425 /* When floating-point is omitted, double and int64 are the same thing */ 426 return r; 427 #else 428 /* 429 ** Many compilers we encounter do not define constants for the 430 ** minimum and maximum 64-bit integers, or they define them 431 ** inconsistently. And many do not understand the "LL" notation. 432 ** So we define our own static constants here using nothing 433 ** larger than a 32-bit integer constant. 434 */ 435 static const i64 maxInt = LARGEST_INT64; 436 static const i64 minInt = SMALLEST_INT64; 437 438 if( r<=(double)minInt ){ 439 return minInt; 440 }else if( r>=(double)maxInt ){ 441 return maxInt; 442 }else{ 443 return (i64)r; 444 } 445 #endif 446 } 447 448 /* 449 ** Return some kind of integer value which is the best we can do 450 ** at representing the value that *pMem describes as an integer. 451 ** If pMem is an integer, then the value is exact. If pMem is 452 ** a floating-point then the value returned is the integer part. 453 ** If pMem is a string or blob, then we make an attempt to convert 454 ** it into an integer and return that. If pMem represents an 455 ** an SQL-NULL value, return 0. 456 ** 457 ** If pMem represents a string value, its encoding might be changed. 458 */ 459 i64 sqlite3VdbeIntValue(Mem *pMem){ 460 int flags; 461 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 462 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 463 flags = pMem->flags; 464 if( flags & MEM_Int ){ 465 return pMem->u.i; 466 }else if( flags & MEM_Real ){ 467 return doubleToInt64(pMem->u.r); 468 }else if( flags & (MEM_Str|MEM_Blob) ){ 469 i64 value = 0; 470 assert( pMem->z || pMem->n==0 ); 471 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); 472 return value; 473 }else{ 474 return 0; 475 } 476 } 477 478 /* 479 ** Return the best representation of pMem that we can get into a 480 ** double. If pMem is already a double or an integer, return its 481 ** value. If it is a string or blob, try to convert it to a double. 482 ** If it is a NULL, return 0.0. 483 */ 484 double sqlite3VdbeRealValue(Mem *pMem){ 485 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 486 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 487 if( pMem->flags & MEM_Real ){ 488 return pMem->u.r; 489 }else if( pMem->flags & MEM_Int ){ 490 return (double)pMem->u.i; 491 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 492 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 493 double val = (double)0; 494 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); 495 return val; 496 }else{ 497 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 498 return (double)0; 499 } 500 } 501 502 /* 503 ** The MEM structure is already a MEM_Real. Try to also make it a 504 ** MEM_Int if we can. 505 */ 506 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 507 i64 ix; 508 assert( pMem->flags & MEM_Real ); 509 assert( (pMem->flags & MEM_RowSet)==0 ); 510 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 511 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 512 513 ix = doubleToInt64(pMem->u.r); 514 515 /* Only mark the value as an integer if 516 ** 517 ** (1) the round-trip conversion real->int->real is a no-op, and 518 ** (2) The integer is neither the largest nor the smallest 519 ** possible integer (ticket #3922) 520 ** 521 ** The second and third terms in the following conditional enforces 522 ** the second condition under the assumption that addition overflow causes 523 ** values to wrap around. 524 */ 525 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ 526 pMem->u.i = ix; 527 MemSetTypeFlag(pMem, MEM_Int); 528 } 529 } 530 531 /* 532 ** Convert pMem to type integer. Invalidate any prior representations. 533 */ 534 int sqlite3VdbeMemIntegerify(Mem *pMem){ 535 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 536 assert( (pMem->flags & MEM_RowSet)==0 ); 537 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 538 539 pMem->u.i = sqlite3VdbeIntValue(pMem); 540 MemSetTypeFlag(pMem, MEM_Int); 541 return SQLITE_OK; 542 } 543 544 /* 545 ** Convert pMem so that it is of type MEM_Real. 546 ** Invalidate any prior representations. 547 */ 548 int sqlite3VdbeMemRealify(Mem *pMem){ 549 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 550 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 551 552 pMem->u.r = sqlite3VdbeRealValue(pMem); 553 MemSetTypeFlag(pMem, MEM_Real); 554 return SQLITE_OK; 555 } 556 557 /* 558 ** Convert pMem so that it has types MEM_Real or MEM_Int or both. 559 ** Invalidate any prior representations. 560 ** 561 ** Every effort is made to force the conversion, even if the input 562 ** is a string that does not look completely like a number. Convert 563 ** as much of the string as we can and ignore the rest. 564 */ 565 int sqlite3VdbeMemNumerify(Mem *pMem){ 566 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){ 567 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 568 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 569 if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){ 570 MemSetTypeFlag(pMem, MEM_Int); 571 }else{ 572 pMem->u.r = sqlite3VdbeRealValue(pMem); 573 MemSetTypeFlag(pMem, MEM_Real); 574 sqlite3VdbeIntegerAffinity(pMem); 575 } 576 } 577 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 ); 578 pMem->flags &= ~(MEM_Str|MEM_Blob); 579 return SQLITE_OK; 580 } 581 582 /* 583 ** Cast the datatype of the value in pMem according to the affinity 584 ** "aff". Casting is different from applying affinity in that a cast 585 ** is forced. In other words, the value is converted into the desired 586 ** affinity even if that results in loss of data. This routine is 587 ** used (for example) to implement the SQL "cast()" operator. 588 */ 589 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ 590 if( pMem->flags & MEM_Null ) return; 591 switch( aff ){ 592 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ 593 if( (pMem->flags & MEM_Blob)==0 ){ 594 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 595 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 596 MemSetTypeFlag(pMem, MEM_Blob); 597 }else{ 598 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); 599 } 600 break; 601 } 602 case SQLITE_AFF_NUMERIC: { 603 sqlite3VdbeMemNumerify(pMem); 604 break; 605 } 606 case SQLITE_AFF_INTEGER: { 607 sqlite3VdbeMemIntegerify(pMem); 608 break; 609 } 610 case SQLITE_AFF_REAL: { 611 sqlite3VdbeMemRealify(pMem); 612 break; 613 } 614 default: { 615 assert( aff==SQLITE_AFF_TEXT ); 616 assert( MEM_Str==(MEM_Blob>>3) ); 617 pMem->flags |= (pMem->flags&MEM_Blob)>>3; 618 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 619 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 620 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); 621 break; 622 } 623 } 624 } 625 626 /* 627 ** Initialize bulk memory to be a consistent Mem object. 628 ** 629 ** The minimum amount of initialization feasible is performed. 630 */ 631 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ 632 assert( (flags & ~MEM_TypeMask)==0 ); 633 pMem->flags = flags; 634 pMem->db = db; 635 pMem->szMalloc = 0; 636 } 637 638 639 /* 640 ** Delete any previous value and set the value stored in *pMem to NULL. 641 ** 642 ** This routine calls the Mem.xDel destructor to dispose of values that 643 ** require the destructor. But it preserves the Mem.zMalloc memory allocation. 644 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this 645 ** routine to invoke the destructor and deallocates Mem.zMalloc. 646 ** 647 ** Use this routine to reset the Mem prior to insert a new value. 648 ** 649 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. 650 */ 651 void sqlite3VdbeMemSetNull(Mem *pMem){ 652 if( VdbeMemDynamic(pMem) ){ 653 vdbeMemClearExternAndSetNull(pMem); 654 }else{ 655 pMem->flags = MEM_Null; 656 } 657 } 658 void sqlite3ValueSetNull(sqlite3_value *p){ 659 sqlite3VdbeMemSetNull((Mem*)p); 660 } 661 662 /* 663 ** Delete any previous value and set the value to be a BLOB of length 664 ** n containing all zeros. 665 */ 666 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 667 sqlite3VdbeMemRelease(pMem); 668 pMem->flags = MEM_Blob|MEM_Zero; 669 pMem->n = 0; 670 if( n<0 ) n = 0; 671 pMem->u.nZero = n; 672 pMem->enc = SQLITE_UTF8; 673 pMem->z = 0; 674 } 675 676 /* 677 ** The pMem is known to contain content that needs to be destroyed prior 678 ** to a value change. So invoke the destructor, then set the value to 679 ** a 64-bit integer. 680 */ 681 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ 682 sqlite3VdbeMemSetNull(pMem); 683 pMem->u.i = val; 684 pMem->flags = MEM_Int; 685 } 686 687 /* 688 ** Delete any previous value and set the value stored in *pMem to val, 689 ** manifest type INTEGER. 690 */ 691 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 692 if( VdbeMemDynamic(pMem) ){ 693 vdbeReleaseAndSetInt64(pMem, val); 694 }else{ 695 pMem->u.i = val; 696 pMem->flags = MEM_Int; 697 } 698 } 699 700 #ifndef SQLITE_OMIT_FLOATING_POINT 701 /* 702 ** Delete any previous value and set the value stored in *pMem to val, 703 ** manifest type REAL. 704 */ 705 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 706 sqlite3VdbeMemSetNull(pMem); 707 if( !sqlite3IsNaN(val) ){ 708 pMem->u.r = val; 709 pMem->flags = MEM_Real; 710 } 711 } 712 #endif 713 714 /* 715 ** Delete any previous value and set the value of pMem to be an 716 ** empty boolean index. 717 */ 718 void sqlite3VdbeMemSetRowSet(Mem *pMem){ 719 sqlite3 *db = pMem->db; 720 assert( db!=0 ); 721 assert( (pMem->flags & MEM_RowSet)==0 ); 722 sqlite3VdbeMemRelease(pMem); 723 pMem->zMalloc = sqlite3DbMallocRawNN(db, 64); 724 if( db->mallocFailed ){ 725 pMem->flags = MEM_Null; 726 pMem->szMalloc = 0; 727 }else{ 728 assert( pMem->zMalloc ); 729 pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc); 730 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc); 731 assert( pMem->u.pRowSet!=0 ); 732 pMem->flags = MEM_RowSet; 733 } 734 } 735 736 /* 737 ** Return true if the Mem object contains a TEXT or BLOB that is 738 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 739 */ 740 int sqlite3VdbeMemTooBig(Mem *p){ 741 assert( p->db!=0 ); 742 if( p->flags & (MEM_Str|MEM_Blob) ){ 743 int n = p->n; 744 if( p->flags & MEM_Zero ){ 745 n += p->u.nZero; 746 } 747 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 748 } 749 return 0; 750 } 751 752 #ifdef SQLITE_DEBUG 753 /* 754 ** This routine prepares a memory cell for modification by breaking 755 ** its link to a shallow copy and by marking any current shallow 756 ** copies of this cell as invalid. 757 ** 758 ** This is used for testing and debugging only - to make sure shallow 759 ** copies are not misused. 760 */ 761 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ 762 int i; 763 Mem *pX; 764 for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){ 765 if( pX->pScopyFrom==pMem ){ 766 pX->flags |= MEM_Undefined; 767 pX->pScopyFrom = 0; 768 } 769 } 770 pMem->pScopyFrom = 0; 771 } 772 #endif /* SQLITE_DEBUG */ 773 774 775 /* 776 ** Make an shallow copy of pFrom into pTo. Prior contents of 777 ** pTo are freed. The pFrom->z field is not duplicated. If 778 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 779 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 780 */ 781 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ 782 vdbeMemClearExternAndSetNull(pTo); 783 assert( !VdbeMemDynamic(pTo) ); 784 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); 785 } 786 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 787 assert( (pFrom->flags & MEM_RowSet)==0 ); 788 assert( pTo->db==pFrom->db ); 789 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } 790 memcpy(pTo, pFrom, MEMCELLSIZE); 791 if( (pFrom->flags&MEM_Static)==0 ){ 792 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 793 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 794 pTo->flags |= srcType; 795 } 796 } 797 798 /* 799 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 800 ** freed before the copy is made. 801 */ 802 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 803 int rc = SQLITE_OK; 804 805 /* The pFrom==0 case in the following assert() is when an sqlite3_value 806 ** from sqlite3_value_dup() is used as the argument 807 ** to sqlite3_result_value(). */ 808 assert( pTo->db==pFrom->db || pFrom->db==0 ); 809 assert( (pFrom->flags & MEM_RowSet)==0 ); 810 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); 811 memcpy(pTo, pFrom, MEMCELLSIZE); 812 pTo->flags &= ~MEM_Dyn; 813 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 814 if( 0==(pFrom->flags&MEM_Static) ){ 815 pTo->flags |= MEM_Ephem; 816 rc = sqlite3VdbeMemMakeWriteable(pTo); 817 } 818 } 819 820 return rc; 821 } 822 823 /* 824 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 825 ** freed. If pFrom contains ephemeral data, a copy is made. 826 ** 827 ** pFrom contains an SQL NULL when this routine returns. 828 */ 829 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 830 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 831 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 832 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 833 834 sqlite3VdbeMemRelease(pTo); 835 memcpy(pTo, pFrom, sizeof(Mem)); 836 pFrom->flags = MEM_Null; 837 pFrom->szMalloc = 0; 838 } 839 840 /* 841 ** Change the value of a Mem to be a string or a BLOB. 842 ** 843 ** The memory management strategy depends on the value of the xDel 844 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 845 ** string is copied into a (possibly existing) buffer managed by the 846 ** Mem structure. Otherwise, any existing buffer is freed and the 847 ** pointer copied. 848 ** 849 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH 850 ** size limit) then no memory allocation occurs. If the string can be 851 ** stored without allocating memory, then it is. If a memory allocation 852 ** is required to store the string, then value of pMem is unchanged. In 853 ** either case, SQLITE_TOOBIG is returned. 854 */ 855 int sqlite3VdbeMemSetStr( 856 Mem *pMem, /* Memory cell to set to string value */ 857 const char *z, /* String pointer */ 858 int n, /* Bytes in string, or negative */ 859 u8 enc, /* Encoding of z. 0 for BLOBs */ 860 void (*xDel)(void*) /* Destructor function */ 861 ){ 862 int nByte = n; /* New value for pMem->n */ 863 int iLimit; /* Maximum allowed string or blob size */ 864 u16 flags = 0; /* New value for pMem->flags */ 865 866 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 867 assert( (pMem->flags & MEM_RowSet)==0 ); 868 869 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 870 if( !z ){ 871 sqlite3VdbeMemSetNull(pMem); 872 return SQLITE_OK; 873 } 874 875 if( pMem->db ){ 876 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; 877 }else{ 878 iLimit = SQLITE_MAX_LENGTH; 879 } 880 flags = (enc==0?MEM_Blob:MEM_Str); 881 if( nByte<0 ){ 882 assert( enc!=0 ); 883 if( enc==SQLITE_UTF8 ){ 884 nByte = sqlite3Strlen30(z); 885 if( nByte>iLimit ) nByte = iLimit+1; 886 }else{ 887 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} 888 } 889 flags |= MEM_Term; 890 } 891 892 /* The following block sets the new values of Mem.z and Mem.xDel. It 893 ** also sets a flag in local variable "flags" to indicate the memory 894 ** management (one of MEM_Dyn or MEM_Static). 895 */ 896 if( xDel==SQLITE_TRANSIENT ){ 897 int nAlloc = nByte; 898 if( flags&MEM_Term ){ 899 nAlloc += (enc==SQLITE_UTF8?1:2); 900 } 901 if( nByte>iLimit ){ 902 return SQLITE_TOOBIG; 903 } 904 testcase( nAlloc==0 ); 905 testcase( nAlloc==31 ); 906 testcase( nAlloc==32 ); 907 if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){ 908 return SQLITE_NOMEM_BKPT; 909 } 910 memcpy(pMem->z, z, nAlloc); 911 }else if( xDel==SQLITE_DYNAMIC ){ 912 sqlite3VdbeMemRelease(pMem); 913 pMem->zMalloc = pMem->z = (char *)z; 914 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 915 }else{ 916 sqlite3VdbeMemRelease(pMem); 917 pMem->z = (char *)z; 918 pMem->xDel = xDel; 919 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 920 } 921 922 pMem->n = nByte; 923 pMem->flags = flags; 924 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); 925 926 #ifndef SQLITE_OMIT_UTF16 927 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ 928 return SQLITE_NOMEM_BKPT; 929 } 930 #endif 931 932 if( nByte>iLimit ){ 933 return SQLITE_TOOBIG; 934 } 935 936 return SQLITE_OK; 937 } 938 939 /* 940 ** Move data out of a btree key or data field and into a Mem structure. 941 ** The data or key is taken from the entry that pCur is currently pointing 942 ** to. offset and amt determine what portion of the data or key to retrieve. 943 ** key is true to get the key or false to get data. The result is written 944 ** into the pMem element. 945 ** 946 ** The pMem object must have been initialized. This routine will use 947 ** pMem->zMalloc to hold the content from the btree, if possible. New 948 ** pMem->zMalloc space will be allocated if necessary. The calling routine 949 ** is responsible for making sure that the pMem object is eventually 950 ** destroyed. 951 ** 952 ** If this routine fails for any reason (malloc returns NULL or unable 953 ** to read from the disk) then the pMem is left in an inconsistent state. 954 */ 955 static SQLITE_NOINLINE int vdbeMemFromBtreeResize( 956 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 957 u32 offset, /* Offset from the start of data to return bytes from. */ 958 u32 amt, /* Number of bytes to return. */ 959 int key, /* If true, retrieve from the btree key, not data. */ 960 Mem *pMem /* OUT: Return data in this Mem structure. */ 961 ){ 962 int rc; 963 pMem->flags = MEM_Null; 964 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){ 965 if( key ){ 966 rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); 967 }else{ 968 rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); 969 } 970 if( rc==SQLITE_OK ){ 971 pMem->z[amt] = 0; 972 pMem->z[amt+1] = 0; 973 pMem->flags = MEM_Blob|MEM_Term; 974 pMem->n = (int)amt; 975 }else{ 976 sqlite3VdbeMemRelease(pMem); 977 } 978 } 979 return rc; 980 } 981 int sqlite3VdbeMemFromBtree( 982 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 983 u32 offset, /* Offset from the start of data to return bytes from. */ 984 u32 amt, /* Number of bytes to return. */ 985 int key, /* If true, retrieve from the btree key, not data. */ 986 Mem *pMem /* OUT: Return data in this Mem structure. */ 987 ){ 988 char *zData; /* Data from the btree layer */ 989 u32 available = 0; /* Number of bytes available on the local btree page */ 990 int rc = SQLITE_OK; /* Return code */ 991 992 assert( sqlite3BtreeCursorIsValid(pCur) ); 993 assert( !VdbeMemDynamic(pMem) ); 994 995 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 996 ** that both the BtShared and database handle mutexes are held. */ 997 assert( (pMem->flags & MEM_RowSet)==0 ); 998 if( key ){ 999 zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); 1000 }else{ 1001 zData = (char *)sqlite3BtreeDataFetch(pCur, &available); 1002 } 1003 assert( zData!=0 ); 1004 1005 if( offset+amt<=available ){ 1006 pMem->z = &zData[offset]; 1007 pMem->flags = MEM_Blob|MEM_Ephem; 1008 pMem->n = (int)amt; 1009 }else{ 1010 rc = vdbeMemFromBtreeResize(pCur, offset, amt, key, pMem); 1011 } 1012 1013 return rc; 1014 } 1015 1016 /* 1017 ** The pVal argument is known to be a value other than NULL. 1018 ** Convert it into a string with encoding enc and return a pointer 1019 ** to a zero-terminated version of that string. 1020 */ 1021 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ 1022 assert( pVal!=0 ); 1023 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1024 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1025 assert( (pVal->flags & MEM_RowSet)==0 ); 1026 assert( (pVal->flags & (MEM_Null))==0 ); 1027 if( pVal->flags & (MEM_Blob|MEM_Str) ){ 1028 pVal->flags |= MEM_Str; 1029 if( pVal->flags & MEM_Zero ){ 1030 sqlite3VdbeMemExpandBlob(pVal); 1031 } 1032 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ 1033 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 1034 } 1035 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ 1036 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 1037 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 1038 return 0; 1039 } 1040 } 1041 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ 1042 }else{ 1043 sqlite3VdbeMemStringify(pVal, enc, 0); 1044 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); 1045 } 1046 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 1047 || pVal->db->mallocFailed ); 1048 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 1049 return pVal->z; 1050 }else{ 1051 return 0; 1052 } 1053 } 1054 1055 /* This function is only available internally, it is not part of the 1056 ** external API. It works in a similar way to sqlite3_value_text(), 1057 ** except the data returned is in the encoding specified by the second 1058 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 1059 ** SQLITE_UTF8. 1060 ** 1061 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 1062 ** If that is the case, then the result must be aligned on an even byte 1063 ** boundary. 1064 */ 1065 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 1066 if( !pVal ) return 0; 1067 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1068 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1069 assert( (pVal->flags & MEM_RowSet)==0 ); 1070 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ 1071 return pVal->z; 1072 } 1073 if( pVal->flags&MEM_Null ){ 1074 return 0; 1075 } 1076 return valueToText(pVal, enc); 1077 } 1078 1079 /* 1080 ** Create a new sqlite3_value object. 1081 */ 1082 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 1083 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 1084 if( p ){ 1085 p->flags = MEM_Null; 1086 p->db = db; 1087 } 1088 return p; 1089 } 1090 1091 /* 1092 ** Context object passed by sqlite3Stat4ProbeSetValue() through to 1093 ** valueNew(). See comments above valueNew() for details. 1094 */ 1095 struct ValueNewStat4Ctx { 1096 Parse *pParse; 1097 Index *pIdx; 1098 UnpackedRecord **ppRec; 1099 int iVal; 1100 }; 1101 1102 /* 1103 ** Allocate and return a pointer to a new sqlite3_value object. If 1104 ** the second argument to this function is NULL, the object is allocated 1105 ** by calling sqlite3ValueNew(). 1106 ** 1107 ** Otherwise, if the second argument is non-zero, then this function is 1108 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not 1109 ** already been allocated, allocate the UnpackedRecord structure that 1110 ** that function will return to its caller here. Then return a pointer to 1111 ** an sqlite3_value within the UnpackedRecord.a[] array. 1112 */ 1113 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ 1114 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1115 if( p ){ 1116 UnpackedRecord *pRec = p->ppRec[0]; 1117 1118 if( pRec==0 ){ 1119 Index *pIdx = p->pIdx; /* Index being probed */ 1120 int nByte; /* Bytes of space to allocate */ 1121 int i; /* Counter variable */ 1122 int nCol = pIdx->nColumn; /* Number of index columns including rowid */ 1123 1124 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); 1125 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); 1126 if( pRec ){ 1127 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); 1128 if( pRec->pKeyInfo ){ 1129 assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol ); 1130 assert( pRec->pKeyInfo->enc==ENC(db) ); 1131 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); 1132 for(i=0; i<nCol; i++){ 1133 pRec->aMem[i].flags = MEM_Null; 1134 pRec->aMem[i].db = db; 1135 } 1136 }else{ 1137 sqlite3DbFree(db, pRec); 1138 pRec = 0; 1139 } 1140 } 1141 if( pRec==0 ) return 0; 1142 p->ppRec[0] = pRec; 1143 } 1144 1145 pRec->nField = p->iVal+1; 1146 return &pRec->aMem[p->iVal]; 1147 } 1148 #else 1149 UNUSED_PARAMETER(p); 1150 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ 1151 return sqlite3ValueNew(db); 1152 } 1153 1154 /* 1155 ** The expression object indicated by the second argument is guaranteed 1156 ** to be a scalar SQL function. If 1157 ** 1158 ** * all function arguments are SQL literals, 1159 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and 1160 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, 1161 ** 1162 ** then this routine attempts to invoke the SQL function. Assuming no 1163 ** error occurs, output parameter (*ppVal) is set to point to a value 1164 ** object containing the result before returning SQLITE_OK. 1165 ** 1166 ** Affinity aff is applied to the result of the function before returning. 1167 ** If the result is a text value, the sqlite3_value object uses encoding 1168 ** enc. 1169 ** 1170 ** If the conditions above are not met, this function returns SQLITE_OK 1171 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to 1172 ** NULL and an SQLite error code returned. 1173 */ 1174 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1175 static int valueFromFunction( 1176 sqlite3 *db, /* The database connection */ 1177 Expr *p, /* The expression to evaluate */ 1178 u8 enc, /* Encoding to use */ 1179 u8 aff, /* Affinity to use */ 1180 sqlite3_value **ppVal, /* Write the new value here */ 1181 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1182 ){ 1183 sqlite3_context ctx; /* Context object for function invocation */ 1184 sqlite3_value **apVal = 0; /* Function arguments */ 1185 int nVal = 0; /* Size of apVal[] array */ 1186 FuncDef *pFunc = 0; /* Function definition */ 1187 sqlite3_value *pVal = 0; /* New value */ 1188 int rc = SQLITE_OK; /* Return code */ 1189 ExprList *pList = 0; /* Function arguments */ 1190 int i; /* Iterator variable */ 1191 1192 assert( pCtx!=0 ); 1193 assert( (p->flags & EP_TokenOnly)==0 ); 1194 pList = p->x.pList; 1195 if( pList ) nVal = pList->nExpr; 1196 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); 1197 assert( pFunc ); 1198 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 1199 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 1200 ){ 1201 return SQLITE_OK; 1202 } 1203 1204 if( pList ){ 1205 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); 1206 if( apVal==0 ){ 1207 rc = SQLITE_NOMEM_BKPT; 1208 goto value_from_function_out; 1209 } 1210 for(i=0; i<nVal; i++){ 1211 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); 1212 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; 1213 } 1214 } 1215 1216 pVal = valueNew(db, pCtx); 1217 if( pVal==0 ){ 1218 rc = SQLITE_NOMEM_BKPT; 1219 goto value_from_function_out; 1220 } 1221 1222 assert( pCtx->pParse->rc==SQLITE_OK ); 1223 memset(&ctx, 0, sizeof(ctx)); 1224 ctx.pOut = pVal; 1225 ctx.pFunc = pFunc; 1226 pFunc->xSFunc(&ctx, nVal, apVal); 1227 if( ctx.isError ){ 1228 rc = ctx.isError; 1229 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); 1230 }else{ 1231 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); 1232 assert( rc==SQLITE_OK ); 1233 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1234 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ 1235 rc = SQLITE_TOOBIG; 1236 pCtx->pParse->nErr++; 1237 } 1238 } 1239 pCtx->pParse->rc = rc; 1240 1241 value_from_function_out: 1242 if( rc!=SQLITE_OK ){ 1243 pVal = 0; 1244 } 1245 if( apVal ){ 1246 for(i=0; i<nVal; i++){ 1247 sqlite3ValueFree(apVal[i]); 1248 } 1249 sqlite3DbFree(db, apVal); 1250 } 1251 1252 *ppVal = pVal; 1253 return rc; 1254 } 1255 #else 1256 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK 1257 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ 1258 1259 /* 1260 ** Extract a value from the supplied expression in the manner described 1261 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object 1262 ** using valueNew(). 1263 ** 1264 ** If pCtx is NULL and an error occurs after the sqlite3_value object 1265 ** has been allocated, it is freed before returning. Or, if pCtx is not 1266 ** NULL, it is assumed that the caller will free any allocated object 1267 ** in all cases. 1268 */ 1269 static int valueFromExpr( 1270 sqlite3 *db, /* The database connection */ 1271 Expr *pExpr, /* The expression to evaluate */ 1272 u8 enc, /* Encoding to use */ 1273 u8 affinity, /* Affinity to use */ 1274 sqlite3_value **ppVal, /* Write the new value here */ 1275 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1276 ){ 1277 int op; 1278 char *zVal = 0; 1279 sqlite3_value *pVal = 0; 1280 int negInt = 1; 1281 const char *zNeg = ""; 1282 int rc = SQLITE_OK; 1283 1284 if( !pExpr ){ 1285 *ppVal = 0; 1286 return SQLITE_OK; 1287 } 1288 while( (op = pExpr->op)==TK_UPLUS ) pExpr = pExpr->pLeft; 1289 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; 1290 1291 /* Compressed expressions only appear when parsing the DEFAULT clause 1292 ** on a table column definition, and hence only when pCtx==0. This 1293 ** check ensures that an EP_TokenOnly expression is never passed down 1294 ** into valueFromFunction(). */ 1295 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); 1296 1297 if( op==TK_CAST ){ 1298 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0); 1299 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); 1300 testcase( rc!=SQLITE_OK ); 1301 if( *ppVal ){ 1302 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); 1303 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); 1304 } 1305 return rc; 1306 } 1307 1308 /* Handle negative integers in a single step. This is needed in the 1309 ** case when the value is -9223372036854775808. 1310 */ 1311 if( op==TK_UMINUS 1312 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ 1313 pExpr = pExpr->pLeft; 1314 op = pExpr->op; 1315 negInt = -1; 1316 zNeg = "-"; 1317 } 1318 1319 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 1320 pVal = valueNew(db, pCtx); 1321 if( pVal==0 ) goto no_mem; 1322 if( ExprHasProperty(pExpr, EP_IntValue) ){ 1323 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); 1324 }else{ 1325 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); 1326 if( zVal==0 ) goto no_mem; 1327 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); 1328 } 1329 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ 1330 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); 1331 }else{ 1332 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); 1333 } 1334 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str; 1335 if( enc!=SQLITE_UTF8 ){ 1336 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1337 } 1338 }else if( op==TK_UMINUS ) { 1339 /* This branch happens for multiple negative signs. Ex: -(-5) */ 1340 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) 1341 && pVal!=0 1342 ){ 1343 sqlite3VdbeMemNumerify(pVal); 1344 if( pVal->flags & MEM_Real ){ 1345 pVal->u.r = -pVal->u.r; 1346 }else if( pVal->u.i==SMALLEST_INT64 ){ 1347 pVal->u.r = -(double)SMALLEST_INT64; 1348 MemSetTypeFlag(pVal, MEM_Real); 1349 }else{ 1350 pVal->u.i = -pVal->u.i; 1351 } 1352 sqlite3ValueApplyAffinity(pVal, affinity, enc); 1353 } 1354 }else if( op==TK_NULL ){ 1355 pVal = valueNew(db, pCtx); 1356 if( pVal==0 ) goto no_mem; 1357 } 1358 #ifndef SQLITE_OMIT_BLOB_LITERAL 1359 else if( op==TK_BLOB ){ 1360 int nVal; 1361 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 1362 assert( pExpr->u.zToken[1]=='\'' ); 1363 pVal = valueNew(db, pCtx); 1364 if( !pVal ) goto no_mem; 1365 zVal = &pExpr->u.zToken[2]; 1366 nVal = sqlite3Strlen30(zVal)-1; 1367 assert( zVal[nVal]=='\'' ); 1368 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 1369 0, SQLITE_DYNAMIC); 1370 } 1371 #endif 1372 1373 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1374 else if( op==TK_FUNCTION && pCtx!=0 ){ 1375 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); 1376 } 1377 #endif 1378 1379 *ppVal = pVal; 1380 return rc; 1381 1382 no_mem: 1383 sqlite3OomFault(db); 1384 sqlite3DbFree(db, zVal); 1385 assert( *ppVal==0 ); 1386 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1387 if( pCtx==0 ) sqlite3ValueFree(pVal); 1388 #else 1389 assert( pCtx==0 ); sqlite3ValueFree(pVal); 1390 #endif 1391 return SQLITE_NOMEM_BKPT; 1392 } 1393 1394 /* 1395 ** Create a new sqlite3_value object, containing the value of pExpr. 1396 ** 1397 ** This only works for very simple expressions that consist of one constant 1398 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 1399 ** be converted directly into a value, then the value is allocated and 1400 ** a pointer written to *ppVal. The caller is responsible for deallocating 1401 ** the value by passing it to sqlite3ValueFree() later on. If the expression 1402 ** cannot be converted to a value, then *ppVal is set to NULL. 1403 */ 1404 int sqlite3ValueFromExpr( 1405 sqlite3 *db, /* The database connection */ 1406 Expr *pExpr, /* The expression to evaluate */ 1407 u8 enc, /* Encoding to use */ 1408 u8 affinity, /* Affinity to use */ 1409 sqlite3_value **ppVal /* Write the new value here */ 1410 ){ 1411 return valueFromExpr(db, pExpr, enc, affinity, ppVal, 0); 1412 } 1413 1414 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1415 /* 1416 ** The implementation of the sqlite_record() function. This function accepts 1417 ** a single argument of any type. The return value is a formatted database 1418 ** record (a blob) containing the argument value. 1419 ** 1420 ** This is used to convert the value stored in the 'sample' column of the 1421 ** sqlite_stat3 table to the record format SQLite uses internally. 1422 */ 1423 static void recordFunc( 1424 sqlite3_context *context, 1425 int argc, 1426 sqlite3_value **argv 1427 ){ 1428 const int file_format = 1; 1429 u32 iSerial; /* Serial type */ 1430 int nSerial; /* Bytes of space for iSerial as varint */ 1431 u32 nVal; /* Bytes of space required for argv[0] */ 1432 int nRet; 1433 sqlite3 *db; 1434 u8 *aRet; 1435 1436 UNUSED_PARAMETER( argc ); 1437 iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal); 1438 nSerial = sqlite3VarintLen(iSerial); 1439 db = sqlite3_context_db_handle(context); 1440 1441 nRet = 1 + nSerial + nVal; 1442 aRet = sqlite3DbMallocRawNN(db, nRet); 1443 if( aRet==0 ){ 1444 sqlite3_result_error_nomem(context); 1445 }else{ 1446 aRet[0] = nSerial+1; 1447 putVarint32(&aRet[1], iSerial); 1448 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial); 1449 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT); 1450 sqlite3DbFree(db, aRet); 1451 } 1452 } 1453 1454 /* 1455 ** Register built-in functions used to help read ANALYZE data. 1456 */ 1457 void sqlite3AnalyzeFunctions(void){ 1458 static FuncDef aAnalyzeTableFuncs[] = { 1459 FUNCTION(sqlite_record, 1, 0, 0, recordFunc), 1460 }; 1461 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs)); 1462 } 1463 1464 /* 1465 ** Attempt to extract a value from pExpr and use it to construct *ppVal. 1466 ** 1467 ** If pAlloc is not NULL, then an UnpackedRecord object is created for 1468 ** pAlloc if one does not exist and the new value is added to the 1469 ** UnpackedRecord object. 1470 ** 1471 ** A value is extracted in the following cases: 1472 ** 1473 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1474 ** 1475 ** * The expression is a bound variable, and this is a reprepare, or 1476 ** 1477 ** * The expression is a literal value. 1478 ** 1479 ** On success, *ppVal is made to point to the extracted value. The caller 1480 ** is responsible for ensuring that the value is eventually freed. 1481 */ 1482 static int stat4ValueFromExpr( 1483 Parse *pParse, /* Parse context */ 1484 Expr *pExpr, /* The expression to extract a value from */ 1485 u8 affinity, /* Affinity to use */ 1486 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ 1487 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1488 ){ 1489 int rc = SQLITE_OK; 1490 sqlite3_value *pVal = 0; 1491 sqlite3 *db = pParse->db; 1492 1493 /* Skip over any TK_COLLATE nodes */ 1494 pExpr = sqlite3ExprSkipCollate(pExpr); 1495 1496 if( !pExpr ){ 1497 pVal = valueNew(db, pAlloc); 1498 if( pVal ){ 1499 sqlite3VdbeMemSetNull((Mem*)pVal); 1500 } 1501 }else if( pExpr->op==TK_VARIABLE 1502 || NEVER(pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE) 1503 ){ 1504 Vdbe *v; 1505 int iBindVar = pExpr->iColumn; 1506 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); 1507 if( (v = pParse->pReprepare)!=0 ){ 1508 pVal = valueNew(db, pAlloc); 1509 if( pVal ){ 1510 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); 1511 if( rc==SQLITE_OK ){ 1512 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); 1513 } 1514 pVal->db = pParse->db; 1515 } 1516 } 1517 }else{ 1518 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); 1519 } 1520 1521 assert( pVal==0 || pVal->db==db ); 1522 *ppVal = pVal; 1523 return rc; 1524 } 1525 1526 /* 1527 ** This function is used to allocate and populate UnpackedRecord 1528 ** structures intended to be compared against sample index keys stored 1529 ** in the sqlite_stat4 table. 1530 ** 1531 ** A single call to this function attempts to populates field iVal (leftmost 1532 ** is 0 etc.) of the unpacked record with a value extracted from expression 1533 ** pExpr. Extraction of values is possible if: 1534 ** 1535 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1536 ** 1537 ** * The expression is a bound variable, and this is a reprepare, or 1538 ** 1539 ** * The sqlite3ValueFromExpr() function is able to extract a value 1540 ** from the expression (i.e. the expression is a literal value). 1541 ** 1542 ** If a value can be extracted, the affinity passed as the 5th argument 1543 ** is applied to it before it is copied into the UnpackedRecord. Output 1544 ** parameter *pbOk is set to true if a value is extracted, or false 1545 ** otherwise. 1546 ** 1547 ** When this function is called, *ppRec must either point to an object 1548 ** allocated by an earlier call to this function, or must be NULL. If it 1549 ** is NULL and a value can be successfully extracted, a new UnpackedRecord 1550 ** is allocated (and *ppRec set to point to it) before returning. 1551 ** 1552 ** Unless an error is encountered, SQLITE_OK is returned. It is not an 1553 ** error if a value cannot be extracted from pExpr. If an error does 1554 ** occur, an SQLite error code is returned. 1555 */ 1556 int sqlite3Stat4ProbeSetValue( 1557 Parse *pParse, /* Parse context */ 1558 Index *pIdx, /* Index being probed */ 1559 UnpackedRecord **ppRec, /* IN/OUT: Probe record */ 1560 Expr *pExpr, /* The expression to extract a value from */ 1561 u8 affinity, /* Affinity to use */ 1562 int iVal, /* Array element to populate */ 1563 int *pbOk /* OUT: True if value was extracted */ 1564 ){ 1565 int rc; 1566 sqlite3_value *pVal = 0; 1567 struct ValueNewStat4Ctx alloc; 1568 1569 alloc.pParse = pParse; 1570 alloc.pIdx = pIdx; 1571 alloc.ppRec = ppRec; 1572 alloc.iVal = iVal; 1573 1574 rc = stat4ValueFromExpr(pParse, pExpr, affinity, &alloc, &pVal); 1575 assert( pVal==0 || pVal->db==pParse->db ); 1576 *pbOk = (pVal!=0); 1577 return rc; 1578 } 1579 1580 /* 1581 ** Attempt to extract a value from expression pExpr using the methods 1582 ** as described for sqlite3Stat4ProbeSetValue() above. 1583 ** 1584 ** If successful, set *ppVal to point to a new value object and return 1585 ** SQLITE_OK. If no value can be extracted, but no other error occurs 1586 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error 1587 ** does occur, return an SQLite error code. The final value of *ppVal 1588 ** is undefined in this case. 1589 */ 1590 int sqlite3Stat4ValueFromExpr( 1591 Parse *pParse, /* Parse context */ 1592 Expr *pExpr, /* The expression to extract a value from */ 1593 u8 affinity, /* Affinity to use */ 1594 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1595 ){ 1596 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); 1597 } 1598 1599 /* 1600 ** Extract the iCol-th column from the nRec-byte record in pRec. Write 1601 ** the column value into *ppVal. If *ppVal is initially NULL then a new 1602 ** sqlite3_value object is allocated. 1603 ** 1604 ** If *ppVal is initially NULL then the caller is responsible for 1605 ** ensuring that the value written into *ppVal is eventually freed. 1606 */ 1607 int sqlite3Stat4Column( 1608 sqlite3 *db, /* Database handle */ 1609 const void *pRec, /* Pointer to buffer containing record */ 1610 int nRec, /* Size of buffer pRec in bytes */ 1611 int iCol, /* Column to extract */ 1612 sqlite3_value **ppVal /* OUT: Extracted value */ 1613 ){ 1614 u32 t; /* a column type code */ 1615 int nHdr; /* Size of the header in the record */ 1616 int iHdr; /* Next unread header byte */ 1617 int iField; /* Next unread data byte */ 1618 int szField; /* Size of the current data field */ 1619 int i; /* Column index */ 1620 u8 *a = (u8*)pRec; /* Typecast byte array */ 1621 Mem *pMem = *ppVal; /* Write result into this Mem object */ 1622 1623 assert( iCol>0 ); 1624 iHdr = getVarint32(a, nHdr); 1625 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; 1626 iField = nHdr; 1627 for(i=0; i<=iCol; i++){ 1628 iHdr += getVarint32(&a[iHdr], t); 1629 testcase( iHdr==nHdr ); 1630 testcase( iHdr==nHdr+1 ); 1631 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; 1632 szField = sqlite3VdbeSerialTypeLen(t); 1633 iField += szField; 1634 } 1635 testcase( iField==nRec ); 1636 testcase( iField==nRec+1 ); 1637 if( iField>nRec ) return SQLITE_CORRUPT_BKPT; 1638 if( pMem==0 ){ 1639 pMem = *ppVal = sqlite3ValueNew(db); 1640 if( pMem==0 ) return SQLITE_NOMEM_BKPT; 1641 } 1642 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); 1643 pMem->enc = ENC(db); 1644 return SQLITE_OK; 1645 } 1646 1647 /* 1648 ** Unless it is NULL, the argument must be an UnpackedRecord object returned 1649 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes 1650 ** the object. 1651 */ 1652 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ 1653 if( pRec ){ 1654 int i; 1655 int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField; 1656 Mem *aMem = pRec->aMem; 1657 sqlite3 *db = aMem[0].db; 1658 for(i=0; i<nCol; i++){ 1659 sqlite3VdbeMemRelease(&aMem[i]); 1660 } 1661 sqlite3KeyInfoUnref(pRec->pKeyInfo); 1662 sqlite3DbFree(db, pRec); 1663 } 1664 } 1665 #endif /* ifdef SQLITE_ENABLE_STAT4 */ 1666 1667 /* 1668 ** Change the string value of an sqlite3_value object 1669 */ 1670 void sqlite3ValueSetStr( 1671 sqlite3_value *v, /* Value to be set */ 1672 int n, /* Length of string z */ 1673 const void *z, /* Text of the new string */ 1674 u8 enc, /* Encoding to use */ 1675 void (*xDel)(void*) /* Destructor for the string */ 1676 ){ 1677 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 1678 } 1679 1680 /* 1681 ** Free an sqlite3_value object 1682 */ 1683 void sqlite3ValueFree(sqlite3_value *v){ 1684 if( !v ) return; 1685 sqlite3VdbeMemRelease((Mem *)v); 1686 sqlite3DbFree(((Mem*)v)->db, v); 1687 } 1688 1689 /* 1690 ** The sqlite3ValueBytes() routine returns the number of bytes in the 1691 ** sqlite3_value object assuming that it uses the encoding "enc". 1692 ** The valueBytes() routine is a helper function. 1693 */ 1694 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ 1695 return valueToText(pVal, enc)!=0 ? pVal->n : 0; 1696 } 1697 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1698 Mem *p = (Mem*)pVal; 1699 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); 1700 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ 1701 return p->n; 1702 } 1703 if( (p->flags & MEM_Blob)!=0 ){ 1704 if( p->flags & MEM_Zero ){ 1705 return p->n + p->u.nZero; 1706 }else{ 1707 return p->n; 1708 } 1709 } 1710 if( p->flags & MEM_Null ) return 0; 1711 return valueBytes(pVal, enc); 1712 } 1713