1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 /* True if X is a power of two. 0 is considered a power of two here. 22 ** In other words, return true if X has at most one bit set. 23 */ 24 #define ISPOWEROF2(X) (((X)&((X)-1))==0) 25 26 #ifdef SQLITE_DEBUG 27 /* 28 ** Check invariants on a Mem object. 29 ** 30 ** This routine is intended for use inside of assert() statements, like 31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); 32 */ 33 int sqlite3VdbeCheckMemInvariants(Mem *p){ 34 /* If MEM_Dyn is set then Mem.xDel!=0. 35 ** Mem.xDel might not be initialized if MEM_Dyn is clear. 36 */ 37 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); 38 39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we 40 ** ensure that if Mem.szMalloc>0 then it is safe to do 41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. 42 ** That saves a few cycles in inner loops. */ 43 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); 44 45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */ 46 assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) ); 47 48 if( p->flags & MEM_Null ){ 49 /* Cannot be both MEM_Null and some other type */ 50 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 ); 51 52 /* If MEM_Null is set, then either the value is a pure NULL (the usual 53 ** case) or it is a pointer set using sqlite3_bind_pointer() or 54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be 55 ** set. 56 */ 57 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){ 58 /* This is a pointer type. There may be a flag to indicate what to 59 ** do with the pointer. */ 60 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 61 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 62 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 ); 63 64 /* No other bits set */ 65 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind 66 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 ); 67 }else{ 68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn, 69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */ 70 } 71 }else{ 72 /* The MEM_Cleared bit is only allowed on NULLs */ 73 assert( (p->flags & MEM_Cleared)==0 ); 74 } 75 76 /* The szMalloc field holds the correct memory allocation size */ 77 assert( p->szMalloc==0 78 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) ); 79 80 /* If p holds a string or blob, the Mem.z must point to exactly 81 ** one of the following: 82 ** 83 ** (1) Memory in Mem.zMalloc and managed by the Mem object 84 ** (2) Memory to be freed using Mem.xDel 85 ** (3) An ephemeral string or blob 86 ** (4) A static string or blob 87 */ 88 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ 89 assert( 90 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + 91 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 92 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 93 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 94 ); 95 } 96 return 1; 97 } 98 #endif 99 100 /* 101 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal 102 ** into a buffer. 103 */ 104 static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){ 105 StrAccum acc; 106 assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) ); 107 sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0); 108 if( p->flags & MEM_Int ){ 109 sqlite3_str_appendf(&acc, "%lld", p->u.i); 110 }else if( p->flags & MEM_IntReal ){ 111 sqlite3_str_appendf(&acc, "%!.15g", (double)p->u.i); 112 }else{ 113 sqlite3_str_appendf(&acc, "%!.15g", p->u.r); 114 } 115 assert( acc.zText==zBuf && acc.mxAlloc<=0 ); 116 zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */ 117 } 118 119 #ifdef SQLITE_DEBUG 120 /* 121 ** Validity checks on pMem. pMem holds a string. 122 ** 123 ** (1) Check that string value of pMem agrees with its integer or real value. 124 ** (2) Check that the string is correctly zero terminated 125 ** 126 ** A single int or real value always converts to the same strings. But 127 ** many different strings can be converted into the same int or real. 128 ** If a table contains a numeric value and an index is based on the 129 ** corresponding string value, then it is important that the string be 130 ** derived from the numeric value, not the other way around, to ensure 131 ** that the index and table are consistent. See ticket 132 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for 133 ** an example. 134 ** 135 ** This routine looks at pMem to verify that if it has both a numeric 136 ** representation and a string representation then the string rep has 137 ** been derived from the numeric and not the other way around. It returns 138 ** true if everything is ok and false if there is a problem. 139 ** 140 ** This routine is for use inside of assert() statements only. 141 */ 142 int sqlite3VdbeMemValidStrRep(Mem *p){ 143 char zBuf[100]; 144 char *z; 145 int i, j, incr; 146 if( (p->flags & MEM_Str)==0 ) return 1; 147 if( p->flags & MEM_Term ){ 148 /* Insure that the string is properly zero-terminated. Pay particular 149 ** attention to the case where p->n is odd */ 150 if( p->szMalloc>0 && p->z==p->zMalloc ){ 151 assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 ); 152 assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 ); 153 } 154 assert( p->z[p->n]==0 ); 155 assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 ); 156 assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 ); 157 } 158 if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1; 159 vdbeMemRenderNum(sizeof(zBuf), zBuf, p); 160 z = p->z; 161 i = j = 0; 162 incr = 1; 163 if( p->enc!=SQLITE_UTF8 ){ 164 incr = 2; 165 if( p->enc==SQLITE_UTF16BE ) z++; 166 } 167 while( zBuf[j] ){ 168 if( zBuf[j++]!=z[i] ) return 0; 169 i += incr; 170 } 171 return 1; 172 } 173 #endif /* SQLITE_DEBUG */ 174 175 /* 176 ** If pMem is an object with a valid string representation, this routine 177 ** ensures the internal encoding for the string representation is 178 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 179 ** 180 ** If pMem is not a string object, or the encoding of the string 181 ** representation is already stored using the requested encoding, then this 182 ** routine is a no-op. 183 ** 184 ** SQLITE_OK is returned if the conversion is successful (or not required). 185 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 186 ** between formats. 187 */ 188 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 189 #ifndef SQLITE_OMIT_UTF16 190 int rc; 191 #endif 192 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 193 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE 194 || desiredEnc==SQLITE_UTF16BE ); 195 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ 196 return SQLITE_OK; 197 } 198 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 199 #ifdef SQLITE_OMIT_UTF16 200 return SQLITE_ERROR; 201 #else 202 203 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 204 ** then the encoding of the value may not have changed. 205 */ 206 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); 207 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 208 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 209 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 210 return rc; 211 #endif 212 } 213 214 /* 215 ** Make sure pMem->z points to a writable allocation of at least n bytes. 216 ** 217 ** If the bPreserve argument is true, then copy of the content of 218 ** pMem->z into the new allocation. pMem must be either a string or 219 ** blob if bPreserve is true. If bPreserve is false, any prior content 220 ** in pMem->z is discarded. 221 */ 222 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ 223 assert( sqlite3VdbeCheckMemInvariants(pMem) ); 224 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 225 testcase( pMem->db==0 ); 226 227 /* If the bPreserve flag is set to true, then the memory cell must already 228 ** contain a valid string or blob value. */ 229 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); 230 testcase( bPreserve && pMem->z==0 ); 231 232 assert( pMem->szMalloc==0 233 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) ); 234 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){ 235 if( pMem->db ){ 236 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 237 }else{ 238 pMem->zMalloc = sqlite3Realloc(pMem->z, n); 239 if( pMem->zMalloc==0 ) sqlite3_free(pMem->z); 240 pMem->z = pMem->zMalloc; 241 } 242 bPreserve = 0; 243 }else{ 244 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 245 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 246 } 247 if( pMem->zMalloc==0 ){ 248 sqlite3VdbeMemSetNull(pMem); 249 pMem->z = 0; 250 pMem->szMalloc = 0; 251 return SQLITE_NOMEM_BKPT; 252 }else{ 253 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 254 } 255 256 if( bPreserve && pMem->z ){ 257 assert( pMem->z!=pMem->zMalloc ); 258 memcpy(pMem->zMalloc, pMem->z, pMem->n); 259 } 260 if( (pMem->flags&MEM_Dyn)!=0 ){ 261 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); 262 pMem->xDel((void *)(pMem->z)); 263 } 264 265 pMem->z = pMem->zMalloc; 266 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); 267 return SQLITE_OK; 268 } 269 270 /* 271 ** Change the pMem->zMalloc allocation to be at least szNew bytes. 272 ** If pMem->zMalloc already meets or exceeds the requested size, this 273 ** routine is a no-op. 274 ** 275 ** Any prior string or blob content in the pMem object may be discarded. 276 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str 277 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal, 278 ** and MEM_Null values are preserved. 279 ** 280 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) 281 ** if unable to complete the resizing. 282 */ 283 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ 284 assert( CORRUPT_DB || szNew>0 ); 285 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); 286 if( pMem->szMalloc<szNew ){ 287 return sqlite3VdbeMemGrow(pMem, szNew, 0); 288 } 289 assert( (pMem->flags & MEM_Dyn)==0 ); 290 pMem->z = pMem->zMalloc; 291 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal); 292 return SQLITE_OK; 293 } 294 295 /* 296 ** It is already known that pMem contains an unterminated string. 297 ** Add the zero terminator. 298 ** 299 ** Three bytes of zero are added. In this way, there is guaranteed 300 ** to be a double-zero byte at an even byte boundary in order to 301 ** terminate a UTF16 string, even if the initial size of the buffer 302 ** is an odd number of bytes. 303 */ 304 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ 305 if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){ 306 return SQLITE_NOMEM_BKPT; 307 } 308 pMem->z[pMem->n] = 0; 309 pMem->z[pMem->n+1] = 0; 310 pMem->z[pMem->n+2] = 0; 311 pMem->flags |= MEM_Term; 312 return SQLITE_OK; 313 } 314 315 /* 316 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in 317 ** MEM.zMalloc, where it can be safely written. 318 ** 319 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 320 */ 321 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 322 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 323 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 324 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ 325 if( ExpandBlob(pMem) ) return SQLITE_NOMEM; 326 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ 327 int rc = vdbeMemAddTerminator(pMem); 328 if( rc ) return rc; 329 } 330 } 331 pMem->flags &= ~MEM_Ephem; 332 #ifdef SQLITE_DEBUG 333 pMem->pScopyFrom = 0; 334 #endif 335 336 return SQLITE_OK; 337 } 338 339 /* 340 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 341 ** blob stored in dynamically allocated space. 342 */ 343 #ifndef SQLITE_OMIT_INCRBLOB 344 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 345 int nByte; 346 assert( pMem->flags & MEM_Zero ); 347 assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) ); 348 testcase( sqlite3_value_nochange(pMem) ); 349 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 350 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 351 352 /* Set nByte to the number of bytes required to store the expanded blob. */ 353 nByte = pMem->n + pMem->u.nZero; 354 if( nByte<=0 ){ 355 if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK; 356 nByte = 1; 357 } 358 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 359 return SQLITE_NOMEM_BKPT; 360 } 361 362 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); 363 pMem->n += pMem->u.nZero; 364 pMem->flags &= ~(MEM_Zero|MEM_Term); 365 return SQLITE_OK; 366 } 367 #endif 368 369 /* 370 ** Make sure the given Mem is \u0000 terminated. 371 */ 372 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 373 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 374 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); 375 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); 376 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ 377 return SQLITE_OK; /* Nothing to do */ 378 }else{ 379 return vdbeMemAddTerminator(pMem); 380 } 381 } 382 383 /* 384 ** Add MEM_Str to the set of representations for the given Mem. This 385 ** routine is only called if pMem is a number of some kind, not a NULL 386 ** or a BLOB. 387 ** 388 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated 389 ** if bForce is true but are retained if bForce is false. 390 ** 391 ** A MEM_Null value will never be passed to this function. This function is 392 ** used for converting values to text for returning to the user (i.e. via 393 ** sqlite3_value_text()), or for ensuring that values to be used as btree 394 ** keys are strings. In the former case a NULL pointer is returned the 395 ** user and the latter is an internal programming error. 396 */ 397 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ 398 const int nByte = 32; 399 400 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 401 assert( !(pMem->flags&MEM_Zero) ); 402 assert( !(pMem->flags&(MEM_Str|MEM_Blob)) ); 403 assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) ); 404 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 405 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 406 407 408 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 409 pMem->enc = 0; 410 return SQLITE_NOMEM_BKPT; 411 } 412 413 vdbeMemRenderNum(nByte, pMem->z, pMem); 414 assert( pMem->z!=0 ); 415 pMem->n = sqlite3Strlen30NN(pMem->z); 416 pMem->enc = SQLITE_UTF8; 417 pMem->flags |= MEM_Str|MEM_Term; 418 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); 419 sqlite3VdbeChangeEncoding(pMem, enc); 420 return SQLITE_OK; 421 } 422 423 /* 424 ** Memory cell pMem contains the context of an aggregate function. 425 ** This routine calls the finalize method for that function. The 426 ** result of the aggregate is stored back into pMem. 427 ** 428 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 429 ** otherwise. 430 */ 431 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 432 sqlite3_context ctx; 433 Mem t; 434 assert( pFunc!=0 ); 435 assert( pFunc->xFinalize!=0 ); 436 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 437 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 438 memset(&ctx, 0, sizeof(ctx)); 439 memset(&t, 0, sizeof(t)); 440 t.flags = MEM_Null; 441 t.db = pMem->db; 442 ctx.pOut = &t; 443 ctx.pMem = pMem; 444 ctx.pFunc = pFunc; 445 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ 446 assert( (pMem->flags & MEM_Dyn)==0 ); 447 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 448 memcpy(pMem, &t, sizeof(t)); 449 return ctx.isError; 450 } 451 452 /* 453 ** Memory cell pAccum contains the context of an aggregate function. 454 ** This routine calls the xValue method for that function and stores 455 ** the results in memory cell pMem. 456 ** 457 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK 458 ** otherwise. 459 */ 460 #ifndef SQLITE_OMIT_WINDOWFUNC 461 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){ 462 sqlite3_context ctx; 463 assert( pFunc!=0 ); 464 assert( pFunc->xValue!=0 ); 465 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef ); 466 assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) ); 467 memset(&ctx, 0, sizeof(ctx)); 468 sqlite3VdbeMemSetNull(pOut); 469 ctx.pOut = pOut; 470 ctx.pMem = pAccum; 471 ctx.pFunc = pFunc; 472 pFunc->xValue(&ctx); 473 return ctx.isError; 474 } 475 #endif /* SQLITE_OMIT_WINDOWFUNC */ 476 477 /* 478 ** If the memory cell contains a value that must be freed by 479 ** invoking the external callback in Mem.xDel, then this routine 480 ** will free that value. It also sets Mem.flags to MEM_Null. 481 ** 482 ** This is a helper routine for sqlite3VdbeMemSetNull() and 483 ** for sqlite3VdbeMemRelease(). Use those other routines as the 484 ** entry point for releasing Mem resources. 485 */ 486 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ 487 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 488 assert( VdbeMemDynamic(p) ); 489 if( p->flags&MEM_Agg ){ 490 sqlite3VdbeMemFinalize(p, p->u.pDef); 491 assert( (p->flags & MEM_Agg)==0 ); 492 testcase( p->flags & MEM_Dyn ); 493 } 494 if( p->flags&MEM_Dyn ){ 495 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); 496 p->xDel((void *)p->z); 497 } 498 p->flags = MEM_Null; 499 } 500 501 /* 502 ** Release memory held by the Mem p, both external memory cleared 503 ** by p->xDel and memory in p->zMalloc. 504 ** 505 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in 506 ** the unusual case where there really is memory in p that needs 507 ** to be freed. 508 */ 509 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ 510 if( VdbeMemDynamic(p) ){ 511 vdbeMemClearExternAndSetNull(p); 512 } 513 if( p->szMalloc ){ 514 sqlite3DbFreeNN(p->db, p->zMalloc); 515 p->szMalloc = 0; 516 } 517 p->z = 0; 518 } 519 520 /* 521 ** Release any memory resources held by the Mem. Both the memory that is 522 ** free by Mem.xDel and the Mem.zMalloc allocation are freed. 523 ** 524 ** Use this routine prior to clean up prior to abandoning a Mem, or to 525 ** reset a Mem back to its minimum memory utilization. 526 ** 527 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space 528 ** prior to inserting new content into the Mem. 529 */ 530 void sqlite3VdbeMemRelease(Mem *p){ 531 assert( sqlite3VdbeCheckMemInvariants(p) ); 532 if( VdbeMemDynamic(p) || p->szMalloc ){ 533 vdbeMemClear(p); 534 } 535 } 536 537 /* 538 ** Convert a 64-bit IEEE double into a 64-bit signed integer. 539 ** If the double is out of range of a 64-bit signed integer then 540 ** return the closest available 64-bit signed integer. 541 */ 542 static SQLITE_NOINLINE i64 doubleToInt64(double r){ 543 #ifdef SQLITE_OMIT_FLOATING_POINT 544 /* When floating-point is omitted, double and int64 are the same thing */ 545 return r; 546 #else 547 /* 548 ** Many compilers we encounter do not define constants for the 549 ** minimum and maximum 64-bit integers, or they define them 550 ** inconsistently. And many do not understand the "LL" notation. 551 ** So we define our own static constants here using nothing 552 ** larger than a 32-bit integer constant. 553 */ 554 static const i64 maxInt = LARGEST_INT64; 555 static const i64 minInt = SMALLEST_INT64; 556 557 if( r<=(double)minInt ){ 558 return minInt; 559 }else if( r>=(double)maxInt ){ 560 return maxInt; 561 }else{ 562 return (i64)r; 563 } 564 #endif 565 } 566 567 /* 568 ** Return some kind of integer value which is the best we can do 569 ** at representing the value that *pMem describes as an integer. 570 ** If pMem is an integer, then the value is exact. If pMem is 571 ** a floating-point then the value returned is the integer part. 572 ** If pMem is a string or blob, then we make an attempt to convert 573 ** it into an integer and return that. If pMem represents an 574 ** an SQL-NULL value, return 0. 575 ** 576 ** If pMem represents a string value, its encoding might be changed. 577 */ 578 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){ 579 i64 value = 0; 580 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); 581 return value; 582 } 583 i64 sqlite3VdbeIntValue(Mem *pMem){ 584 int flags; 585 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 586 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 587 flags = pMem->flags; 588 if( flags & (MEM_Int|MEM_IntReal) ){ 589 testcase( flags & MEM_IntReal ); 590 return pMem->u.i; 591 }else if( flags & MEM_Real ){ 592 return doubleToInt64(pMem->u.r); 593 }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){ 594 return memIntValue(pMem); 595 }else{ 596 return 0; 597 } 598 } 599 600 /* 601 ** Return the best representation of pMem that we can get into a 602 ** double. If pMem is already a double or an integer, return its 603 ** value. If it is a string or blob, try to convert it to a double. 604 ** If it is a NULL, return 0.0. 605 */ 606 static SQLITE_NOINLINE double memRealValue(Mem *pMem){ 607 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 608 double val = (double)0; 609 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); 610 return val; 611 } 612 double sqlite3VdbeRealValue(Mem *pMem){ 613 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 614 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 615 if( pMem->flags & MEM_Real ){ 616 return pMem->u.r; 617 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 618 testcase( pMem->flags & MEM_IntReal ); 619 return (double)pMem->u.i; 620 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 621 return memRealValue(pMem); 622 }else{ 623 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 624 return (double)0; 625 } 626 } 627 628 /* 629 ** Return 1 if pMem represents true, and return 0 if pMem represents false. 630 ** Return the value ifNull if pMem is NULL. 631 */ 632 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ 633 testcase( pMem->flags & MEM_IntReal ); 634 if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0; 635 if( pMem->flags & MEM_Null ) return ifNull; 636 return sqlite3VdbeRealValue(pMem)!=0.0; 637 } 638 639 /* 640 ** The MEM structure is already a MEM_Real. Try to also make it a 641 ** MEM_Int if we can. 642 */ 643 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 644 i64 ix; 645 assert( pMem->flags & MEM_Real ); 646 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 647 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 648 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 649 650 ix = doubleToInt64(pMem->u.r); 651 652 /* Only mark the value as an integer if 653 ** 654 ** (1) the round-trip conversion real->int->real is a no-op, and 655 ** (2) The integer is neither the largest nor the smallest 656 ** possible integer (ticket #3922) 657 ** 658 ** The second and third terms in the following conditional enforces 659 ** the second condition under the assumption that addition overflow causes 660 ** values to wrap around. 661 */ 662 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ 663 pMem->u.i = ix; 664 MemSetTypeFlag(pMem, MEM_Int); 665 } 666 } 667 668 /* 669 ** Convert pMem to type integer. Invalidate any prior representations. 670 */ 671 int sqlite3VdbeMemIntegerify(Mem *pMem){ 672 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 673 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 674 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 675 676 pMem->u.i = sqlite3VdbeIntValue(pMem); 677 MemSetTypeFlag(pMem, MEM_Int); 678 return SQLITE_OK; 679 } 680 681 /* 682 ** Convert pMem so that it is of type MEM_Real. 683 ** Invalidate any prior representations. 684 */ 685 int sqlite3VdbeMemRealify(Mem *pMem){ 686 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 687 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 688 689 pMem->u.r = sqlite3VdbeRealValue(pMem); 690 MemSetTypeFlag(pMem, MEM_Real); 691 return SQLITE_OK; 692 } 693 694 /* Compare a floating point value to an integer. Return true if the two 695 ** values are the same within the precision of the floating point value. 696 ** 697 ** This function assumes that i was obtained by assignment from r1. 698 ** 699 ** For some versions of GCC on 32-bit machines, if you do the more obvious 700 ** comparison of "r1==(double)i" you sometimes get an answer of false even 701 ** though the r1 and (double)i values are bit-for-bit the same. 702 */ 703 int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ 704 double r2 = (double)i; 705 return r1==0.0 706 || (memcmp(&r1, &r2, sizeof(r1))==0 707 && i >= -2251799813685248LL && i < 2251799813685248LL); 708 } 709 710 /* 711 ** Convert pMem so that it has type MEM_Real or MEM_Int. 712 ** Invalidate any prior representations. 713 ** 714 ** Every effort is made to force the conversion, even if the input 715 ** is a string that does not look completely like a number. Convert 716 ** as much of the string as we can and ignore the rest. 717 */ 718 int sqlite3VdbeMemNumerify(Mem *pMem){ 719 testcase( pMem->flags & MEM_Int ); 720 testcase( pMem->flags & MEM_Real ); 721 testcase( pMem->flags & MEM_IntReal ); 722 testcase( pMem->flags & MEM_Null ); 723 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){ 724 int rc; 725 sqlite3_int64 ix; 726 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 727 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 728 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 729 if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1) 730 || sqlite3RealSameAsInt(pMem->u.r, (ix = (i64)pMem->u.r)) 731 ){ 732 pMem->u.i = ix; 733 MemSetTypeFlag(pMem, MEM_Int); 734 }else{ 735 MemSetTypeFlag(pMem, MEM_Real); 736 } 737 } 738 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 ); 739 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); 740 return SQLITE_OK; 741 } 742 743 /* 744 ** Cast the datatype of the value in pMem according to the affinity 745 ** "aff". Casting is different from applying affinity in that a cast 746 ** is forced. In other words, the value is converted into the desired 747 ** affinity even if that results in loss of data. This routine is 748 ** used (for example) to implement the SQL "cast()" operator. 749 */ 750 int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ 751 if( pMem->flags & MEM_Null ) return SQLITE_OK; 752 switch( aff ){ 753 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ 754 if( (pMem->flags & MEM_Blob)==0 ){ 755 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 756 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 757 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); 758 }else{ 759 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); 760 } 761 break; 762 } 763 case SQLITE_AFF_NUMERIC: { 764 sqlite3VdbeMemNumerify(pMem); 765 break; 766 } 767 case SQLITE_AFF_INTEGER: { 768 sqlite3VdbeMemIntegerify(pMem); 769 break; 770 } 771 case SQLITE_AFF_REAL: { 772 sqlite3VdbeMemRealify(pMem); 773 break; 774 } 775 default: { 776 assert( aff==SQLITE_AFF_TEXT ); 777 assert( MEM_Str==(MEM_Blob>>3) ); 778 pMem->flags |= (pMem->flags&MEM_Blob)>>3; 779 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 780 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 781 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero); 782 return sqlite3VdbeChangeEncoding(pMem, encoding); 783 } 784 } 785 return SQLITE_OK; 786 } 787 788 /* 789 ** Initialize bulk memory to be a consistent Mem object. 790 ** 791 ** The minimum amount of initialization feasible is performed. 792 */ 793 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ 794 assert( (flags & ~MEM_TypeMask)==0 ); 795 pMem->flags = flags; 796 pMem->db = db; 797 pMem->szMalloc = 0; 798 } 799 800 801 /* 802 ** Delete any previous value and set the value stored in *pMem to NULL. 803 ** 804 ** This routine calls the Mem.xDel destructor to dispose of values that 805 ** require the destructor. But it preserves the Mem.zMalloc memory allocation. 806 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this 807 ** routine to invoke the destructor and deallocates Mem.zMalloc. 808 ** 809 ** Use this routine to reset the Mem prior to insert a new value. 810 ** 811 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. 812 */ 813 void sqlite3VdbeMemSetNull(Mem *pMem){ 814 if( VdbeMemDynamic(pMem) ){ 815 vdbeMemClearExternAndSetNull(pMem); 816 }else{ 817 pMem->flags = MEM_Null; 818 } 819 } 820 void sqlite3ValueSetNull(sqlite3_value *p){ 821 sqlite3VdbeMemSetNull((Mem*)p); 822 } 823 824 /* 825 ** Delete any previous value and set the value to be a BLOB of length 826 ** n containing all zeros. 827 */ 828 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 829 sqlite3VdbeMemRelease(pMem); 830 pMem->flags = MEM_Blob|MEM_Zero; 831 pMem->n = 0; 832 if( n<0 ) n = 0; 833 pMem->u.nZero = n; 834 pMem->enc = SQLITE_UTF8; 835 pMem->z = 0; 836 } 837 838 /* 839 ** The pMem is known to contain content that needs to be destroyed prior 840 ** to a value change. So invoke the destructor, then set the value to 841 ** a 64-bit integer. 842 */ 843 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ 844 sqlite3VdbeMemSetNull(pMem); 845 pMem->u.i = val; 846 pMem->flags = MEM_Int; 847 } 848 849 /* 850 ** Delete any previous value and set the value stored in *pMem to val, 851 ** manifest type INTEGER. 852 */ 853 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 854 if( VdbeMemDynamic(pMem) ){ 855 vdbeReleaseAndSetInt64(pMem, val); 856 }else{ 857 pMem->u.i = val; 858 pMem->flags = MEM_Int; 859 } 860 } 861 862 /* A no-op destructor */ 863 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } 864 865 /* 866 ** Set the value stored in *pMem should already be a NULL. 867 ** Also store a pointer to go with it. 868 */ 869 void sqlite3VdbeMemSetPointer( 870 Mem *pMem, 871 void *pPtr, 872 const char *zPType, 873 void (*xDestructor)(void*) 874 ){ 875 assert( pMem->flags==MEM_Null ); 876 pMem->u.zPType = zPType ? zPType : ""; 877 pMem->z = pPtr; 878 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term; 879 pMem->eSubtype = 'p'; 880 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor; 881 } 882 883 #ifndef SQLITE_OMIT_FLOATING_POINT 884 /* 885 ** Delete any previous value and set the value stored in *pMem to val, 886 ** manifest type REAL. 887 */ 888 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 889 sqlite3VdbeMemSetNull(pMem); 890 if( !sqlite3IsNaN(val) ){ 891 pMem->u.r = val; 892 pMem->flags = MEM_Real; 893 } 894 } 895 #endif 896 897 #ifdef SQLITE_DEBUG 898 /* 899 ** Return true if the Mem holds a RowSet object. This routine is intended 900 ** for use inside of assert() statements. 901 */ 902 int sqlite3VdbeMemIsRowSet(const Mem *pMem){ 903 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn) 904 && pMem->xDel==sqlite3RowSetDelete; 905 } 906 #endif 907 908 /* 909 ** Delete any previous value and set the value of pMem to be an 910 ** empty boolean index. 911 ** 912 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation 913 ** error occurs. 914 */ 915 int sqlite3VdbeMemSetRowSet(Mem *pMem){ 916 sqlite3 *db = pMem->db; 917 RowSet *p; 918 assert( db!=0 ); 919 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 920 sqlite3VdbeMemRelease(pMem); 921 p = sqlite3RowSetInit(db); 922 if( p==0 ) return SQLITE_NOMEM; 923 pMem->z = (char*)p; 924 pMem->flags = MEM_Blob|MEM_Dyn; 925 pMem->xDel = sqlite3RowSetDelete; 926 return SQLITE_OK; 927 } 928 929 /* 930 ** Return true if the Mem object contains a TEXT or BLOB that is 931 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 932 */ 933 int sqlite3VdbeMemTooBig(Mem *p){ 934 assert( p->db!=0 ); 935 if( p->flags & (MEM_Str|MEM_Blob) ){ 936 int n = p->n; 937 if( p->flags & MEM_Zero ){ 938 n += p->u.nZero; 939 } 940 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 941 } 942 return 0; 943 } 944 945 #ifdef SQLITE_DEBUG 946 /* 947 ** This routine prepares a memory cell for modification by breaking 948 ** its link to a shallow copy and by marking any current shallow 949 ** copies of this cell as invalid. 950 ** 951 ** This is used for testing and debugging only - to help ensure that shallow 952 ** copies (created by OP_SCopy) are not misused. 953 */ 954 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ 955 int i; 956 Mem *pX; 957 for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){ 958 if( pX->pScopyFrom==pMem ){ 959 u16 mFlags; 960 if( pVdbe->db->flags & SQLITE_VdbeTrace ){ 961 sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n", 962 (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem)); 963 } 964 /* If pX is marked as a shallow copy of pMem, then try to verify that 965 ** no significant changes have been made to pX since the OP_SCopy. 966 ** A significant change would indicated a missed call to this 967 ** function for pX. Minor changes, such as adding or removing a 968 ** dual type, are allowed, as long as the underlying value is the 969 ** same. */ 970 mFlags = pMem->flags & pX->flags & pX->mScopyFlags; 971 assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i ); 972 973 /* pMem is the register that is changing. But also mark pX as 974 ** undefined so that we can quickly detect the shallow-copy error */ 975 pX->flags = MEM_Undefined; 976 pX->pScopyFrom = 0; 977 } 978 } 979 pMem->pScopyFrom = 0; 980 } 981 #endif /* SQLITE_DEBUG */ 982 983 /* 984 ** Make an shallow copy of pFrom into pTo. Prior contents of 985 ** pTo are freed. The pFrom->z field is not duplicated. If 986 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 987 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 988 */ 989 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ 990 vdbeMemClearExternAndSetNull(pTo); 991 assert( !VdbeMemDynamic(pTo) ); 992 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); 993 } 994 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 995 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 996 assert( pTo->db==pFrom->db ); 997 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } 998 memcpy(pTo, pFrom, MEMCELLSIZE); 999 if( (pFrom->flags&MEM_Static)==0 ){ 1000 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 1001 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 1002 pTo->flags |= srcType; 1003 } 1004 } 1005 1006 /* 1007 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 1008 ** freed before the copy is made. 1009 */ 1010 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 1011 int rc = SQLITE_OK; 1012 1013 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 1014 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); 1015 memcpy(pTo, pFrom, MEMCELLSIZE); 1016 pTo->flags &= ~MEM_Dyn; 1017 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 1018 if( 0==(pFrom->flags&MEM_Static) ){ 1019 pTo->flags |= MEM_Ephem; 1020 rc = sqlite3VdbeMemMakeWriteable(pTo); 1021 } 1022 } 1023 1024 return rc; 1025 } 1026 1027 /* 1028 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 1029 ** freed. If pFrom contains ephemeral data, a copy is made. 1030 ** 1031 ** pFrom contains an SQL NULL when this routine returns. 1032 */ 1033 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 1034 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 1035 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 1036 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 1037 1038 sqlite3VdbeMemRelease(pTo); 1039 memcpy(pTo, pFrom, sizeof(Mem)); 1040 pFrom->flags = MEM_Null; 1041 pFrom->szMalloc = 0; 1042 } 1043 1044 /* 1045 ** Change the value of a Mem to be a string or a BLOB. 1046 ** 1047 ** The memory management strategy depends on the value of the xDel 1048 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 1049 ** string is copied into a (possibly existing) buffer managed by the 1050 ** Mem structure. Otherwise, any existing buffer is freed and the 1051 ** pointer copied. 1052 ** 1053 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH 1054 ** size limit) then no memory allocation occurs. If the string can be 1055 ** stored without allocating memory, then it is. If a memory allocation 1056 ** is required to store the string, then value of pMem is unchanged. In 1057 ** either case, SQLITE_TOOBIG is returned. 1058 */ 1059 int sqlite3VdbeMemSetStr( 1060 Mem *pMem, /* Memory cell to set to string value */ 1061 const char *z, /* String pointer */ 1062 int n, /* Bytes in string, or negative */ 1063 u8 enc, /* Encoding of z. 0 for BLOBs */ 1064 void (*xDel)(void*) /* Destructor function */ 1065 ){ 1066 int nByte = n; /* New value for pMem->n */ 1067 int iLimit; /* Maximum allowed string or blob size */ 1068 u16 flags = 0; /* New value for pMem->flags */ 1069 1070 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 1071 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1072 1073 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 1074 if( !z ){ 1075 sqlite3VdbeMemSetNull(pMem); 1076 return SQLITE_OK; 1077 } 1078 1079 if( pMem->db ){ 1080 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; 1081 }else{ 1082 iLimit = SQLITE_MAX_LENGTH; 1083 } 1084 flags = (enc==0?MEM_Blob:MEM_Str); 1085 if( nByte<0 ){ 1086 assert( enc!=0 ); 1087 if( enc==SQLITE_UTF8 ){ 1088 nByte = 0x7fffffff & (int)strlen(z); 1089 }else{ 1090 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} 1091 } 1092 flags |= MEM_Term; 1093 } 1094 1095 /* The following block sets the new values of Mem.z and Mem.xDel. It 1096 ** also sets a flag in local variable "flags" to indicate the memory 1097 ** management (one of MEM_Dyn or MEM_Static). 1098 */ 1099 if( xDel==SQLITE_TRANSIENT ){ 1100 u32 nAlloc = nByte; 1101 if( flags&MEM_Term ){ 1102 nAlloc += (enc==SQLITE_UTF8?1:2); 1103 } 1104 if( nByte>iLimit ){ 1105 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG); 1106 } 1107 testcase( nAlloc==0 ); 1108 testcase( nAlloc==31 ); 1109 testcase( nAlloc==32 ); 1110 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){ 1111 return SQLITE_NOMEM_BKPT; 1112 } 1113 memcpy(pMem->z, z, nAlloc); 1114 }else{ 1115 sqlite3VdbeMemRelease(pMem); 1116 pMem->z = (char *)z; 1117 if( xDel==SQLITE_DYNAMIC ){ 1118 pMem->zMalloc = pMem->z; 1119 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 1120 }else{ 1121 pMem->xDel = xDel; 1122 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 1123 } 1124 } 1125 1126 pMem->n = nByte; 1127 pMem->flags = flags; 1128 if( enc ){ 1129 pMem->enc = enc; 1130 #ifdef SQLITE_ENABLE_SESSION 1131 }else if( pMem->db==0 ){ 1132 pMem->enc = SQLITE_UTF8; 1133 #endif 1134 }else{ 1135 assert( pMem->db!=0 ); 1136 pMem->enc = ENC(pMem->db); 1137 } 1138 1139 #ifndef SQLITE_OMIT_UTF16 1140 if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ 1141 return SQLITE_NOMEM_BKPT; 1142 } 1143 #endif 1144 1145 if( nByte>iLimit ){ 1146 return SQLITE_TOOBIG; 1147 } 1148 1149 return SQLITE_OK; 1150 } 1151 1152 /* 1153 ** Move data out of a btree key or data field and into a Mem structure. 1154 ** The data is payload from the entry that pCur is currently pointing 1155 ** to. offset and amt determine what portion of the data or key to retrieve. 1156 ** The result is written into the pMem element. 1157 ** 1158 ** The pMem object must have been initialized. This routine will use 1159 ** pMem->zMalloc to hold the content from the btree, if possible. New 1160 ** pMem->zMalloc space will be allocated if necessary. The calling routine 1161 ** is responsible for making sure that the pMem object is eventually 1162 ** destroyed. 1163 ** 1164 ** If this routine fails for any reason (malloc returns NULL or unable 1165 ** to read from the disk) then the pMem is left in an inconsistent state. 1166 */ 1167 int sqlite3VdbeMemFromBtree( 1168 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1169 u32 offset, /* Offset from the start of data to return bytes from. */ 1170 u32 amt, /* Number of bytes to return. */ 1171 Mem *pMem /* OUT: Return data in this Mem structure. */ 1172 ){ 1173 int rc; 1174 pMem->flags = MEM_Null; 1175 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){ 1176 return SQLITE_CORRUPT_BKPT; 1177 } 1178 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){ 1179 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z); 1180 if( rc==SQLITE_OK ){ 1181 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */ 1182 pMem->flags = MEM_Blob; 1183 pMem->n = (int)amt; 1184 }else{ 1185 sqlite3VdbeMemRelease(pMem); 1186 } 1187 } 1188 return rc; 1189 } 1190 int sqlite3VdbeMemFromBtreeZeroOffset( 1191 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1192 u32 amt, /* Number of bytes to return. */ 1193 Mem *pMem /* OUT: Return data in this Mem structure. */ 1194 ){ 1195 u32 available = 0; /* Number of bytes available on the local btree page */ 1196 int rc = SQLITE_OK; /* Return code */ 1197 1198 assert( sqlite3BtreeCursorIsValid(pCur) ); 1199 assert( !VdbeMemDynamic(pMem) ); 1200 1201 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 1202 ** that both the BtShared and database handle mutexes are held. */ 1203 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1204 pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available); 1205 assert( pMem->z!=0 ); 1206 1207 if( amt<=available ){ 1208 pMem->flags = MEM_Blob|MEM_Ephem; 1209 pMem->n = (int)amt; 1210 }else{ 1211 rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem); 1212 } 1213 1214 return rc; 1215 } 1216 1217 /* 1218 ** The pVal argument is known to be a value other than NULL. 1219 ** Convert it into a string with encoding enc and return a pointer 1220 ** to a zero-terminated version of that string. 1221 */ 1222 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ 1223 assert( pVal!=0 ); 1224 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1225 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1226 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1227 assert( (pVal->flags & (MEM_Null))==0 ); 1228 if( pVal->flags & (MEM_Blob|MEM_Str) ){ 1229 if( ExpandBlob(pVal) ) return 0; 1230 pVal->flags |= MEM_Str; 1231 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ 1232 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 1233 } 1234 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ 1235 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 1236 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 1237 return 0; 1238 } 1239 } 1240 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ 1241 }else{ 1242 sqlite3VdbeMemStringify(pVal, enc, 0); 1243 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); 1244 } 1245 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 1246 || pVal->db->mallocFailed ); 1247 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 1248 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1249 return pVal->z; 1250 }else{ 1251 return 0; 1252 } 1253 } 1254 1255 /* This function is only available internally, it is not part of the 1256 ** external API. It works in a similar way to sqlite3_value_text(), 1257 ** except the data returned is in the encoding specified by the second 1258 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 1259 ** SQLITE_UTF8. 1260 ** 1261 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 1262 ** If that is the case, then the result must be aligned on an even byte 1263 ** boundary. 1264 */ 1265 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 1266 if( !pVal ) return 0; 1267 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1268 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1269 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1270 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ 1271 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1272 return pVal->z; 1273 } 1274 if( pVal->flags&MEM_Null ){ 1275 return 0; 1276 } 1277 return valueToText(pVal, enc); 1278 } 1279 1280 /* 1281 ** Create a new sqlite3_value object. 1282 */ 1283 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 1284 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 1285 if( p ){ 1286 p->flags = MEM_Null; 1287 p->db = db; 1288 } 1289 return p; 1290 } 1291 1292 /* 1293 ** Context object passed by sqlite3Stat4ProbeSetValue() through to 1294 ** valueNew(). See comments above valueNew() for details. 1295 */ 1296 struct ValueNewStat4Ctx { 1297 Parse *pParse; 1298 Index *pIdx; 1299 UnpackedRecord **ppRec; 1300 int iVal; 1301 }; 1302 1303 /* 1304 ** Allocate and return a pointer to a new sqlite3_value object. If 1305 ** the second argument to this function is NULL, the object is allocated 1306 ** by calling sqlite3ValueNew(). 1307 ** 1308 ** Otherwise, if the second argument is non-zero, then this function is 1309 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not 1310 ** already been allocated, allocate the UnpackedRecord structure that 1311 ** that function will return to its caller here. Then return a pointer to 1312 ** an sqlite3_value within the UnpackedRecord.a[] array. 1313 */ 1314 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ 1315 #ifdef SQLITE_ENABLE_STAT4 1316 if( p ){ 1317 UnpackedRecord *pRec = p->ppRec[0]; 1318 1319 if( pRec==0 ){ 1320 Index *pIdx = p->pIdx; /* Index being probed */ 1321 int nByte; /* Bytes of space to allocate */ 1322 int i; /* Counter variable */ 1323 int nCol = pIdx->nColumn; /* Number of index columns including rowid */ 1324 1325 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); 1326 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); 1327 if( pRec ){ 1328 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); 1329 if( pRec->pKeyInfo ){ 1330 assert( pRec->pKeyInfo->nAllField==nCol ); 1331 assert( pRec->pKeyInfo->enc==ENC(db) ); 1332 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); 1333 for(i=0; i<nCol; i++){ 1334 pRec->aMem[i].flags = MEM_Null; 1335 pRec->aMem[i].db = db; 1336 } 1337 }else{ 1338 sqlite3DbFreeNN(db, pRec); 1339 pRec = 0; 1340 } 1341 } 1342 if( pRec==0 ) return 0; 1343 p->ppRec[0] = pRec; 1344 } 1345 1346 pRec->nField = p->iVal+1; 1347 return &pRec->aMem[p->iVal]; 1348 } 1349 #else 1350 UNUSED_PARAMETER(p); 1351 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1352 return sqlite3ValueNew(db); 1353 } 1354 1355 /* 1356 ** The expression object indicated by the second argument is guaranteed 1357 ** to be a scalar SQL function. If 1358 ** 1359 ** * all function arguments are SQL literals, 1360 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and 1361 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, 1362 ** 1363 ** then this routine attempts to invoke the SQL function. Assuming no 1364 ** error occurs, output parameter (*ppVal) is set to point to a value 1365 ** object containing the result before returning SQLITE_OK. 1366 ** 1367 ** Affinity aff is applied to the result of the function before returning. 1368 ** If the result is a text value, the sqlite3_value object uses encoding 1369 ** enc. 1370 ** 1371 ** If the conditions above are not met, this function returns SQLITE_OK 1372 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to 1373 ** NULL and an SQLite error code returned. 1374 */ 1375 #ifdef SQLITE_ENABLE_STAT4 1376 static int valueFromFunction( 1377 sqlite3 *db, /* The database connection */ 1378 Expr *p, /* The expression to evaluate */ 1379 u8 enc, /* Encoding to use */ 1380 u8 aff, /* Affinity to use */ 1381 sqlite3_value **ppVal, /* Write the new value here */ 1382 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1383 ){ 1384 sqlite3_context ctx; /* Context object for function invocation */ 1385 sqlite3_value **apVal = 0; /* Function arguments */ 1386 int nVal = 0; /* Size of apVal[] array */ 1387 FuncDef *pFunc = 0; /* Function definition */ 1388 sqlite3_value *pVal = 0; /* New value */ 1389 int rc = SQLITE_OK; /* Return code */ 1390 ExprList *pList = 0; /* Function arguments */ 1391 int i; /* Iterator variable */ 1392 1393 assert( pCtx!=0 ); 1394 assert( (p->flags & EP_TokenOnly)==0 ); 1395 pList = p->x.pList; 1396 if( pList ) nVal = pList->nExpr; 1397 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); 1398 assert( pFunc ); 1399 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 1400 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 1401 ){ 1402 return SQLITE_OK; 1403 } 1404 1405 if( pList ){ 1406 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); 1407 if( apVal==0 ){ 1408 rc = SQLITE_NOMEM_BKPT; 1409 goto value_from_function_out; 1410 } 1411 for(i=0; i<nVal; i++){ 1412 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); 1413 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; 1414 } 1415 } 1416 1417 pVal = valueNew(db, pCtx); 1418 if( pVal==0 ){ 1419 rc = SQLITE_NOMEM_BKPT; 1420 goto value_from_function_out; 1421 } 1422 1423 assert( pCtx->pParse->rc==SQLITE_OK ); 1424 memset(&ctx, 0, sizeof(ctx)); 1425 ctx.pOut = pVal; 1426 ctx.pFunc = pFunc; 1427 pFunc->xSFunc(&ctx, nVal, apVal); 1428 if( ctx.isError ){ 1429 rc = ctx.isError; 1430 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); 1431 }else{ 1432 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); 1433 assert( rc==SQLITE_OK ); 1434 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1435 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ 1436 rc = SQLITE_TOOBIG; 1437 pCtx->pParse->nErr++; 1438 } 1439 } 1440 pCtx->pParse->rc = rc; 1441 1442 value_from_function_out: 1443 if( rc!=SQLITE_OK ){ 1444 pVal = 0; 1445 } 1446 if( apVal ){ 1447 for(i=0; i<nVal; i++){ 1448 sqlite3ValueFree(apVal[i]); 1449 } 1450 sqlite3DbFreeNN(db, apVal); 1451 } 1452 1453 *ppVal = pVal; 1454 return rc; 1455 } 1456 #else 1457 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK 1458 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1459 1460 /* 1461 ** Extract a value from the supplied expression in the manner described 1462 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object 1463 ** using valueNew(). 1464 ** 1465 ** If pCtx is NULL and an error occurs after the sqlite3_value object 1466 ** has been allocated, it is freed before returning. Or, if pCtx is not 1467 ** NULL, it is assumed that the caller will free any allocated object 1468 ** in all cases. 1469 */ 1470 static int valueFromExpr( 1471 sqlite3 *db, /* The database connection */ 1472 Expr *pExpr, /* The expression to evaluate */ 1473 u8 enc, /* Encoding to use */ 1474 u8 affinity, /* Affinity to use */ 1475 sqlite3_value **ppVal, /* Write the new value here */ 1476 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1477 ){ 1478 int op; 1479 char *zVal = 0; 1480 sqlite3_value *pVal = 0; 1481 int negInt = 1; 1482 const char *zNeg = ""; 1483 int rc = SQLITE_OK; 1484 1485 assert( pExpr!=0 ); 1486 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; 1487 #if defined(SQLITE_ENABLE_STAT4) 1488 if( op==TK_REGISTER ) op = pExpr->op2; 1489 #else 1490 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; 1491 #endif 1492 1493 /* Compressed expressions only appear when parsing the DEFAULT clause 1494 ** on a table column definition, and hence only when pCtx==0. This 1495 ** check ensures that an EP_TokenOnly expression is never passed down 1496 ** into valueFromFunction(). */ 1497 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); 1498 1499 if( op==TK_CAST ){ 1500 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0); 1501 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); 1502 testcase( rc!=SQLITE_OK ); 1503 if( *ppVal ){ 1504 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); 1505 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); 1506 } 1507 return rc; 1508 } 1509 1510 /* Handle negative integers in a single step. This is needed in the 1511 ** case when the value is -9223372036854775808. 1512 */ 1513 if( op==TK_UMINUS 1514 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ 1515 pExpr = pExpr->pLeft; 1516 op = pExpr->op; 1517 negInt = -1; 1518 zNeg = "-"; 1519 } 1520 1521 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 1522 pVal = valueNew(db, pCtx); 1523 if( pVal==0 ) goto no_mem; 1524 if( ExprHasProperty(pExpr, EP_IntValue) ){ 1525 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); 1526 }else{ 1527 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); 1528 if( zVal==0 ) goto no_mem; 1529 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); 1530 } 1531 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ 1532 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); 1533 }else{ 1534 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); 1535 } 1536 assert( (pVal->flags & MEM_IntReal)==0 ); 1537 if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){ 1538 testcase( pVal->flags & MEM_Int ); 1539 testcase( pVal->flags & MEM_Real ); 1540 pVal->flags &= ~MEM_Str; 1541 } 1542 if( enc!=SQLITE_UTF8 ){ 1543 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1544 } 1545 }else if( op==TK_UMINUS ) { 1546 /* This branch happens for multiple negative signs. Ex: -(-5) */ 1547 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) 1548 && pVal!=0 1549 ){ 1550 sqlite3VdbeMemNumerify(pVal); 1551 if( pVal->flags & MEM_Real ){ 1552 pVal->u.r = -pVal->u.r; 1553 }else if( pVal->u.i==SMALLEST_INT64 ){ 1554 #ifndef SQLITE_OMIT_FLOATING_POINT 1555 pVal->u.r = -(double)SMALLEST_INT64; 1556 #else 1557 pVal->u.r = LARGEST_INT64; 1558 #endif 1559 MemSetTypeFlag(pVal, MEM_Real); 1560 }else{ 1561 pVal->u.i = -pVal->u.i; 1562 } 1563 sqlite3ValueApplyAffinity(pVal, affinity, enc); 1564 } 1565 }else if( op==TK_NULL ){ 1566 pVal = valueNew(db, pCtx); 1567 if( pVal==0 ) goto no_mem; 1568 sqlite3VdbeMemSetNull(pVal); 1569 } 1570 #ifndef SQLITE_OMIT_BLOB_LITERAL 1571 else if( op==TK_BLOB ){ 1572 int nVal; 1573 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 1574 assert( pExpr->u.zToken[1]=='\'' ); 1575 pVal = valueNew(db, pCtx); 1576 if( !pVal ) goto no_mem; 1577 zVal = &pExpr->u.zToken[2]; 1578 nVal = sqlite3Strlen30(zVal)-1; 1579 assert( zVal[nVal]=='\'' ); 1580 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 1581 0, SQLITE_DYNAMIC); 1582 } 1583 #endif 1584 #ifdef SQLITE_ENABLE_STAT4 1585 else if( op==TK_FUNCTION && pCtx!=0 ){ 1586 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); 1587 } 1588 #endif 1589 else if( op==TK_TRUEFALSE ){ 1590 pVal = valueNew(db, pCtx); 1591 if( pVal ){ 1592 pVal->flags = MEM_Int; 1593 pVal->u.i = pExpr->u.zToken[4]==0; 1594 } 1595 } 1596 1597 *ppVal = pVal; 1598 return rc; 1599 1600 no_mem: 1601 #ifdef SQLITE_ENABLE_STAT4 1602 if( pCtx==0 || pCtx->pParse->nErr==0 ) 1603 #endif 1604 sqlite3OomFault(db); 1605 sqlite3DbFree(db, zVal); 1606 assert( *ppVal==0 ); 1607 #ifdef SQLITE_ENABLE_STAT4 1608 if( pCtx==0 ) sqlite3ValueFree(pVal); 1609 #else 1610 assert( pCtx==0 ); sqlite3ValueFree(pVal); 1611 #endif 1612 return SQLITE_NOMEM_BKPT; 1613 } 1614 1615 /* 1616 ** Create a new sqlite3_value object, containing the value of pExpr. 1617 ** 1618 ** This only works for very simple expressions that consist of one constant 1619 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 1620 ** be converted directly into a value, then the value is allocated and 1621 ** a pointer written to *ppVal. The caller is responsible for deallocating 1622 ** the value by passing it to sqlite3ValueFree() later on. If the expression 1623 ** cannot be converted to a value, then *ppVal is set to NULL. 1624 */ 1625 int sqlite3ValueFromExpr( 1626 sqlite3 *db, /* The database connection */ 1627 Expr *pExpr, /* The expression to evaluate */ 1628 u8 enc, /* Encoding to use */ 1629 u8 affinity, /* Affinity to use */ 1630 sqlite3_value **ppVal /* Write the new value here */ 1631 ){ 1632 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; 1633 } 1634 1635 #ifdef SQLITE_ENABLE_STAT4 1636 /* 1637 ** Attempt to extract a value from pExpr and use it to construct *ppVal. 1638 ** 1639 ** If pAlloc is not NULL, then an UnpackedRecord object is created for 1640 ** pAlloc if one does not exist and the new value is added to the 1641 ** UnpackedRecord object. 1642 ** 1643 ** A value is extracted in the following cases: 1644 ** 1645 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1646 ** 1647 ** * The expression is a bound variable, and this is a reprepare, or 1648 ** 1649 ** * The expression is a literal value. 1650 ** 1651 ** On success, *ppVal is made to point to the extracted value. The caller 1652 ** is responsible for ensuring that the value is eventually freed. 1653 */ 1654 static int stat4ValueFromExpr( 1655 Parse *pParse, /* Parse context */ 1656 Expr *pExpr, /* The expression to extract a value from */ 1657 u8 affinity, /* Affinity to use */ 1658 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ 1659 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1660 ){ 1661 int rc = SQLITE_OK; 1662 sqlite3_value *pVal = 0; 1663 sqlite3 *db = pParse->db; 1664 1665 /* Skip over any TK_COLLATE nodes */ 1666 pExpr = sqlite3ExprSkipCollate(pExpr); 1667 1668 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE ); 1669 if( !pExpr ){ 1670 pVal = valueNew(db, pAlloc); 1671 if( pVal ){ 1672 sqlite3VdbeMemSetNull((Mem*)pVal); 1673 } 1674 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 1675 Vdbe *v; 1676 int iBindVar = pExpr->iColumn; 1677 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); 1678 if( (v = pParse->pReprepare)!=0 ){ 1679 pVal = valueNew(db, pAlloc); 1680 if( pVal ){ 1681 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); 1682 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); 1683 pVal->db = pParse->db; 1684 } 1685 } 1686 }else{ 1687 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); 1688 } 1689 1690 assert( pVal==0 || pVal->db==db ); 1691 *ppVal = pVal; 1692 return rc; 1693 } 1694 1695 /* 1696 ** This function is used to allocate and populate UnpackedRecord 1697 ** structures intended to be compared against sample index keys stored 1698 ** in the sqlite_stat4 table. 1699 ** 1700 ** A single call to this function populates zero or more fields of the 1701 ** record starting with field iVal (fields are numbered from left to 1702 ** right starting with 0). A single field is populated if: 1703 ** 1704 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1705 ** 1706 ** * The expression is a bound variable, and this is a reprepare, or 1707 ** 1708 ** * The sqlite3ValueFromExpr() function is able to extract a value 1709 ** from the expression (i.e. the expression is a literal value). 1710 ** 1711 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the 1712 ** vector components that match either of the two latter criteria listed 1713 ** above. 1714 ** 1715 ** Before any value is appended to the record, the affinity of the 1716 ** corresponding column within index pIdx is applied to it. Before 1717 ** this function returns, output parameter *pnExtract is set to the 1718 ** number of values appended to the record. 1719 ** 1720 ** When this function is called, *ppRec must either point to an object 1721 ** allocated by an earlier call to this function, or must be NULL. If it 1722 ** is NULL and a value can be successfully extracted, a new UnpackedRecord 1723 ** is allocated (and *ppRec set to point to it) before returning. 1724 ** 1725 ** Unless an error is encountered, SQLITE_OK is returned. It is not an 1726 ** error if a value cannot be extracted from pExpr. If an error does 1727 ** occur, an SQLite error code is returned. 1728 */ 1729 int sqlite3Stat4ProbeSetValue( 1730 Parse *pParse, /* Parse context */ 1731 Index *pIdx, /* Index being probed */ 1732 UnpackedRecord **ppRec, /* IN/OUT: Probe record */ 1733 Expr *pExpr, /* The expression to extract a value from */ 1734 int nElem, /* Maximum number of values to append */ 1735 int iVal, /* Array element to populate */ 1736 int *pnExtract /* OUT: Values appended to the record */ 1737 ){ 1738 int rc = SQLITE_OK; 1739 int nExtract = 0; 1740 1741 if( pExpr==0 || pExpr->op!=TK_SELECT ){ 1742 int i; 1743 struct ValueNewStat4Ctx alloc; 1744 1745 alloc.pParse = pParse; 1746 alloc.pIdx = pIdx; 1747 alloc.ppRec = ppRec; 1748 1749 for(i=0; i<nElem; i++){ 1750 sqlite3_value *pVal = 0; 1751 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0); 1752 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i); 1753 alloc.iVal = iVal+i; 1754 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); 1755 if( !pVal ) break; 1756 nExtract++; 1757 } 1758 } 1759 1760 *pnExtract = nExtract; 1761 return rc; 1762 } 1763 1764 /* 1765 ** Attempt to extract a value from expression pExpr using the methods 1766 ** as described for sqlite3Stat4ProbeSetValue() above. 1767 ** 1768 ** If successful, set *ppVal to point to a new value object and return 1769 ** SQLITE_OK. If no value can be extracted, but no other error occurs 1770 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error 1771 ** does occur, return an SQLite error code. The final value of *ppVal 1772 ** is undefined in this case. 1773 */ 1774 int sqlite3Stat4ValueFromExpr( 1775 Parse *pParse, /* Parse context */ 1776 Expr *pExpr, /* The expression to extract a value from */ 1777 u8 affinity, /* Affinity to use */ 1778 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1779 ){ 1780 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); 1781 } 1782 1783 /* 1784 ** Extract the iCol-th column from the nRec-byte record in pRec. Write 1785 ** the column value into *ppVal. If *ppVal is initially NULL then a new 1786 ** sqlite3_value object is allocated. 1787 ** 1788 ** If *ppVal is initially NULL then the caller is responsible for 1789 ** ensuring that the value written into *ppVal is eventually freed. 1790 */ 1791 int sqlite3Stat4Column( 1792 sqlite3 *db, /* Database handle */ 1793 const void *pRec, /* Pointer to buffer containing record */ 1794 int nRec, /* Size of buffer pRec in bytes */ 1795 int iCol, /* Column to extract */ 1796 sqlite3_value **ppVal /* OUT: Extracted value */ 1797 ){ 1798 u32 t = 0; /* a column type code */ 1799 int nHdr; /* Size of the header in the record */ 1800 int iHdr; /* Next unread header byte */ 1801 int iField; /* Next unread data byte */ 1802 int szField = 0; /* Size of the current data field */ 1803 int i; /* Column index */ 1804 u8 *a = (u8*)pRec; /* Typecast byte array */ 1805 Mem *pMem = *ppVal; /* Write result into this Mem object */ 1806 1807 assert( iCol>0 ); 1808 iHdr = getVarint32(a, nHdr); 1809 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; 1810 iField = nHdr; 1811 for(i=0; i<=iCol; i++){ 1812 iHdr += getVarint32(&a[iHdr], t); 1813 testcase( iHdr==nHdr ); 1814 testcase( iHdr==nHdr+1 ); 1815 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; 1816 szField = sqlite3VdbeSerialTypeLen(t); 1817 iField += szField; 1818 } 1819 testcase( iField==nRec ); 1820 testcase( iField==nRec+1 ); 1821 if( iField>nRec ) return SQLITE_CORRUPT_BKPT; 1822 if( pMem==0 ){ 1823 pMem = *ppVal = sqlite3ValueNew(db); 1824 if( pMem==0 ) return SQLITE_NOMEM_BKPT; 1825 } 1826 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); 1827 pMem->enc = ENC(db); 1828 return SQLITE_OK; 1829 } 1830 1831 /* 1832 ** Unless it is NULL, the argument must be an UnpackedRecord object returned 1833 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes 1834 ** the object. 1835 */ 1836 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ 1837 if( pRec ){ 1838 int i; 1839 int nCol = pRec->pKeyInfo->nAllField; 1840 Mem *aMem = pRec->aMem; 1841 sqlite3 *db = aMem[0].db; 1842 for(i=0; i<nCol; i++){ 1843 sqlite3VdbeMemRelease(&aMem[i]); 1844 } 1845 sqlite3KeyInfoUnref(pRec->pKeyInfo); 1846 sqlite3DbFreeNN(db, pRec); 1847 } 1848 } 1849 #endif /* ifdef SQLITE_ENABLE_STAT4 */ 1850 1851 /* 1852 ** Change the string value of an sqlite3_value object 1853 */ 1854 void sqlite3ValueSetStr( 1855 sqlite3_value *v, /* Value to be set */ 1856 int n, /* Length of string z */ 1857 const void *z, /* Text of the new string */ 1858 u8 enc, /* Encoding to use */ 1859 void (*xDel)(void*) /* Destructor for the string */ 1860 ){ 1861 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 1862 } 1863 1864 /* 1865 ** Free an sqlite3_value object 1866 */ 1867 void sqlite3ValueFree(sqlite3_value *v){ 1868 if( !v ) return; 1869 sqlite3VdbeMemRelease((Mem *)v); 1870 sqlite3DbFreeNN(((Mem*)v)->db, v); 1871 } 1872 1873 /* 1874 ** The sqlite3ValueBytes() routine returns the number of bytes in the 1875 ** sqlite3_value object assuming that it uses the encoding "enc". 1876 ** The valueBytes() routine is a helper function. 1877 */ 1878 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ 1879 return valueToText(pVal, enc)!=0 ? pVal->n : 0; 1880 } 1881 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1882 Mem *p = (Mem*)pVal; 1883 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); 1884 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ 1885 return p->n; 1886 } 1887 if( (p->flags & MEM_Blob)!=0 ){ 1888 if( p->flags & MEM_Zero ){ 1889 return p->n + p->u.nZero; 1890 }else{ 1891 return p->n; 1892 } 1893 } 1894 if( p->flags & MEM_Null ) return 0; 1895 return valueBytes(pVal, enc); 1896 } 1897