xref: /sqlite-3.40.0/src/vdbemem.c (revision 554cb87d)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to manipulate "Mem" structure.  A "Mem"
14 ** stores a single value in the VDBE.  Mem is an opaque structure visible
15 ** only within the VDBE.  Interface routines refer to a Mem using the
16 ** name sqlite_value
17 */
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
20 
21 /* True if X is a power of two.  0 is considered a power of two here.
22 ** In other words, return true if X has at most one bit set.
23 */
24 #define ISPOWEROF2(X)  (((X)&((X)-1))==0)
25 
26 #ifdef SQLITE_DEBUG
27 /*
28 ** Check invariants on a Mem object.
29 **
30 ** This routine is intended for use inside of assert() statements, like
31 ** this:    assert( sqlite3VdbeCheckMemInvariants(pMem) );
32 */
33 int sqlite3VdbeCheckMemInvariants(Mem *p){
34   /* If MEM_Dyn is set then Mem.xDel!=0.
35   ** Mem.xDel might not be initialized if MEM_Dyn is clear.
36   */
37   assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
38 
39   /* MEM_Dyn may only be set if Mem.szMalloc==0.  In this way we
40   ** ensure that if Mem.szMalloc>0 then it is safe to do
41   ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
42   ** That saves a few cycles in inner loops. */
43   assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
44 
45   /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */
46   assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) );
47 
48   if( p->flags & MEM_Null ){
49     /* Cannot be both MEM_Null and some other type */
50     assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 );
51 
52     /* If MEM_Null is set, then either the value is a pure NULL (the usual
53     ** case) or it is a pointer set using sqlite3_bind_pointer() or
54     ** sqlite3_result_pointer().  If a pointer, then MEM_Term must also be
55     ** set.
56     */
57     if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
58       /* This is a pointer type.  There may be a flag to indicate what to
59       ** do with the pointer. */
60       assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
61               ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
62               ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
63 
64       /* No other bits set */
65       assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind
66                            |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
67     }else{
68       /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
69       ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
70     }
71   }else{
72     /* The MEM_Cleared bit is only allowed on NULLs */
73     assert( (p->flags & MEM_Cleared)==0 );
74   }
75 
76   /* The szMalloc field holds the correct memory allocation size */
77   assert( p->szMalloc==0
78        || (p->flags==MEM_Undefined
79            && p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc))
80        || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc));
81 
82   /* If p holds a string or blob, the Mem.z must point to exactly
83   ** one of the following:
84   **
85   **   (1) Memory in Mem.zMalloc and managed by the Mem object
86   **   (2) Memory to be freed using Mem.xDel
87   **   (3) An ephemeral string or blob
88   **   (4) A static string or blob
89   */
90   if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
91     assert(
92       ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
93       ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
94       ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
95       ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
96     );
97   }
98   return 1;
99 }
100 #endif
101 
102 /*
103 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal
104 ** into a buffer.
105 */
106 static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){
107   StrAccum acc;
108   assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) );
109   assert( sz>22 );
110   if( p->flags & MEM_Int ){
111 #if GCC_VERSION>=7000000
112     /* Work-around for GCC bug
113     ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */
114     i64 x;
115     assert( (p->flags&MEM_Int)*2==sizeof(x) );
116     memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2);
117     sqlite3Int64ToText(x, zBuf);
118 #else
119     sqlite3Int64ToText(p->u.i, zBuf);
120 #endif
121   }else{
122     sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0);
123     sqlite3_str_appendf(&acc, "%!.15g",
124          (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r);
125     assert( acc.zText==zBuf && acc.mxAlloc<=0 );
126     zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */
127   }
128 }
129 
130 #ifdef SQLITE_DEBUG
131 /*
132 ** Validity checks on pMem.  pMem holds a string.
133 **
134 ** (1) Check that string value of pMem agrees with its integer or real value.
135 ** (2) Check that the string is correctly zero terminated
136 **
137 ** A single int or real value always converts to the same strings.  But
138 ** many different strings can be converted into the same int or real.
139 ** If a table contains a numeric value and an index is based on the
140 ** corresponding string value, then it is important that the string be
141 ** derived from the numeric value, not the other way around, to ensure
142 ** that the index and table are consistent.  See ticket
143 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
144 ** an example.
145 **
146 ** This routine looks at pMem to verify that if it has both a numeric
147 ** representation and a string representation then the string rep has
148 ** been derived from the numeric and not the other way around.  It returns
149 ** true if everything is ok and false if there is a problem.
150 **
151 ** This routine is for use inside of assert() statements only.
152 */
153 int sqlite3VdbeMemValidStrRep(Mem *p){
154   char zBuf[100];
155   char *z;
156   int i, j, incr;
157   if( (p->flags & MEM_Str)==0 ) return 1;
158   if( p->flags & MEM_Term ){
159     /* Insure that the string is properly zero-terminated.  Pay particular
160     ** attention to the case where p->n is odd */
161     if( p->szMalloc>0 && p->z==p->zMalloc ){
162       assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 );
163       assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 );
164     }
165     assert( p->z[p->n]==0 );
166     assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 );
167     assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 );
168   }
169   if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1;
170   vdbeMemRenderNum(sizeof(zBuf), zBuf, p);
171   z = p->z;
172   i = j = 0;
173   incr = 1;
174   if( p->enc!=SQLITE_UTF8 ){
175     incr = 2;
176     if( p->enc==SQLITE_UTF16BE ) z++;
177   }
178   while( zBuf[j] ){
179     if( zBuf[j++]!=z[i] ) return 0;
180     i += incr;
181   }
182   return 1;
183 }
184 #endif /* SQLITE_DEBUG */
185 
186 /*
187 ** If pMem is an object with a valid string representation, this routine
188 ** ensures the internal encoding for the string representation is
189 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
190 **
191 ** If pMem is not a string object, or the encoding of the string
192 ** representation is already stored using the requested encoding, then this
193 ** routine is a no-op.
194 **
195 ** SQLITE_OK is returned if the conversion is successful (or not required).
196 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
197 ** between formats.
198 */
199 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
200 #ifndef SQLITE_OMIT_UTF16
201   int rc;
202 #endif
203   assert( pMem!=0 );
204   assert( !sqlite3VdbeMemIsRowSet(pMem) );
205   assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
206            || desiredEnc==SQLITE_UTF16BE );
207   if( !(pMem->flags&MEM_Str) ){
208     pMem->enc = desiredEnc;
209     return SQLITE_OK;
210   }
211   if( pMem->enc==desiredEnc ){
212     return SQLITE_OK;
213   }
214   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
215 #ifdef SQLITE_OMIT_UTF16
216   return SQLITE_ERROR;
217 #else
218 
219   /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
220   ** then the encoding of the value may not have changed.
221   */
222   rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
223   assert(rc==SQLITE_OK    || rc==SQLITE_NOMEM);
224   assert(rc==SQLITE_OK    || pMem->enc!=desiredEnc);
225   assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
226   return rc;
227 #endif
228 }
229 
230 /*
231 ** Make sure pMem->z points to a writable allocation of at least n bytes.
232 **
233 ** If the bPreserve argument is true, then copy of the content of
234 ** pMem->z into the new allocation.  pMem must be either a string or
235 ** blob if bPreserve is true.  If bPreserve is false, any prior content
236 ** in pMem->z is discarded.
237 */
238 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
239   assert( sqlite3VdbeCheckMemInvariants(pMem) );
240   assert( !sqlite3VdbeMemIsRowSet(pMem) );
241   testcase( pMem->db==0 );
242 
243   /* If the bPreserve flag is set to true, then the memory cell must already
244   ** contain a valid string or blob value.  */
245   assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
246   testcase( bPreserve && pMem->z==0 );
247 
248   assert( pMem->szMalloc==0
249        || (pMem->flags==MEM_Undefined
250            && pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc))
251        || pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc));
252   if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
253     if( pMem->db ){
254       pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
255     }else{
256       pMem->zMalloc = sqlite3Realloc(pMem->z, n);
257       if( pMem->zMalloc==0 ) sqlite3_free(pMem->z);
258       pMem->z = pMem->zMalloc;
259     }
260     bPreserve = 0;
261   }else{
262     if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
263     pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
264   }
265   if( pMem->zMalloc==0 ){
266     sqlite3VdbeMemSetNull(pMem);
267     pMem->z = 0;
268     pMem->szMalloc = 0;
269     return SQLITE_NOMEM_BKPT;
270   }else{
271     pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
272   }
273 
274   if( bPreserve && pMem->z ){
275     assert( pMem->z!=pMem->zMalloc );
276     memcpy(pMem->zMalloc, pMem->z, pMem->n);
277   }
278   if( (pMem->flags&MEM_Dyn)!=0 ){
279     assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
280     pMem->xDel((void *)(pMem->z));
281   }
282 
283   pMem->z = pMem->zMalloc;
284   pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
285   return SQLITE_OK;
286 }
287 
288 /*
289 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
290 ** If pMem->zMalloc already meets or exceeds the requested size, this
291 ** routine is a no-op.
292 **
293 ** Any prior string or blob content in the pMem object may be discarded.
294 ** The pMem->xDel destructor is called, if it exists.  Though MEM_Str
295 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal,
296 ** and MEM_Null values are preserved.
297 **
298 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
299 ** if unable to complete the resizing.
300 */
301 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
302   assert( CORRUPT_DB || szNew>0 );
303   assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
304   if( pMem->szMalloc<szNew ){
305     return sqlite3VdbeMemGrow(pMem, szNew, 0);
306   }
307   assert( (pMem->flags & MEM_Dyn)==0 );
308   pMem->z = pMem->zMalloc;
309   pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal);
310   return SQLITE_OK;
311 }
312 
313 /*
314 ** It is already known that pMem contains an unterminated string.
315 ** Add the zero terminator.
316 **
317 ** Three bytes of zero are added.  In this way, there is guaranteed
318 ** to be a double-zero byte at an even byte boundary in order to
319 ** terminate a UTF16 string, even if the initial size of the buffer
320 ** is an odd number of bytes.
321 */
322 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
323   if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){
324     return SQLITE_NOMEM_BKPT;
325   }
326   pMem->z[pMem->n] = 0;
327   pMem->z[pMem->n+1] = 0;
328   pMem->z[pMem->n+2] = 0;
329   pMem->flags |= MEM_Term;
330   return SQLITE_OK;
331 }
332 
333 /*
334 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
335 ** MEM.zMalloc, where it can be safely written.
336 **
337 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
338 */
339 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
340   assert( pMem!=0 );
341   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
342   assert( !sqlite3VdbeMemIsRowSet(pMem) );
343   if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
344     if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
345     if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
346       int rc = vdbeMemAddTerminator(pMem);
347       if( rc ) return rc;
348     }
349   }
350   pMem->flags &= ~MEM_Ephem;
351 #ifdef SQLITE_DEBUG
352   pMem->pScopyFrom = 0;
353 #endif
354 
355   return SQLITE_OK;
356 }
357 
358 /*
359 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
360 ** blob stored in dynamically allocated space.
361 */
362 #ifndef SQLITE_OMIT_INCRBLOB
363 int sqlite3VdbeMemExpandBlob(Mem *pMem){
364   int nByte;
365   assert( pMem!=0 );
366   assert( pMem->flags & MEM_Zero );
367   assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) );
368   testcase( sqlite3_value_nochange(pMem) );
369   assert( !sqlite3VdbeMemIsRowSet(pMem) );
370   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
371 
372   /* Set nByte to the number of bytes required to store the expanded blob. */
373   nByte = pMem->n + pMem->u.nZero;
374   if( nByte<=0 ){
375     if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK;
376     nByte = 1;
377   }
378   if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
379     return SQLITE_NOMEM_BKPT;
380   }
381   assert( pMem->z!=0 );
382   assert( sqlite3DbMallocSize(pMem->db,pMem->z) >= nByte );
383 
384   memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
385   pMem->n += pMem->u.nZero;
386   pMem->flags &= ~(MEM_Zero|MEM_Term);
387   return SQLITE_OK;
388 }
389 #endif
390 
391 /*
392 ** Make sure the given Mem is \u0000 terminated.
393 */
394 int sqlite3VdbeMemNulTerminate(Mem *pMem){
395   assert( pMem!=0 );
396   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
397   testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
398   testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
399   if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
400     return SQLITE_OK;   /* Nothing to do */
401   }else{
402     return vdbeMemAddTerminator(pMem);
403   }
404 }
405 
406 /*
407 ** Add MEM_Str to the set of representations for the given Mem.  This
408 ** routine is only called if pMem is a number of some kind, not a NULL
409 ** or a BLOB.
410 **
411 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated
412 ** if bForce is true but are retained if bForce is false.
413 **
414 ** A MEM_Null value will never be passed to this function. This function is
415 ** used for converting values to text for returning to the user (i.e. via
416 ** sqlite3_value_text()), or for ensuring that values to be used as btree
417 ** keys are strings. In the former case a NULL pointer is returned the
418 ** user and the latter is an internal programming error.
419 */
420 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
421   const int nByte = 32;
422 
423   assert( pMem!=0 );
424   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
425   assert( !(pMem->flags&MEM_Zero) );
426   assert( !(pMem->flags&(MEM_Str|MEM_Blob)) );
427   assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) );
428   assert( !sqlite3VdbeMemIsRowSet(pMem) );
429   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
430 
431 
432   if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
433     pMem->enc = 0;
434     return SQLITE_NOMEM_BKPT;
435   }
436 
437   vdbeMemRenderNum(nByte, pMem->z, pMem);
438   assert( pMem->z!=0 );
439   pMem->n = sqlite3Strlen30NN(pMem->z);
440   pMem->enc = SQLITE_UTF8;
441   pMem->flags |= MEM_Str|MEM_Term;
442   if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
443   sqlite3VdbeChangeEncoding(pMem, enc);
444   return SQLITE_OK;
445 }
446 
447 /*
448 ** Memory cell pMem contains the context of an aggregate function.
449 ** This routine calls the finalize method for that function.  The
450 ** result of the aggregate is stored back into pMem.
451 **
452 ** Return SQLITE_ERROR if the finalizer reports an error.  SQLITE_OK
453 ** otherwise.
454 */
455 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
456   sqlite3_context ctx;
457   Mem t;
458   assert( pFunc!=0 );
459   assert( pMem!=0 );
460   assert( pMem->db!=0 );
461   assert( pFunc->xFinalize!=0 );
462   assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
463   assert( sqlite3_mutex_held(pMem->db->mutex) );
464   memset(&ctx, 0, sizeof(ctx));
465   memset(&t, 0, sizeof(t));
466   t.flags = MEM_Null;
467   t.db = pMem->db;
468   ctx.pOut = &t;
469   ctx.pMem = pMem;
470   ctx.pFunc = pFunc;
471   ctx.enc = ENC(t.db);
472   pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
473   assert( (pMem->flags & MEM_Dyn)==0 );
474   if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
475   memcpy(pMem, &t, sizeof(t));
476   return ctx.isError;
477 }
478 
479 /*
480 ** Memory cell pAccum contains the context of an aggregate function.
481 ** This routine calls the xValue method for that function and stores
482 ** the results in memory cell pMem.
483 **
484 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
485 ** otherwise.
486 */
487 #ifndef SQLITE_OMIT_WINDOWFUNC
488 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
489   sqlite3_context ctx;
490   assert( pFunc!=0 );
491   assert( pFunc->xValue!=0 );
492   assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
493   assert( pAccum->db!=0 );
494   assert( sqlite3_mutex_held(pAccum->db->mutex) );
495   memset(&ctx, 0, sizeof(ctx));
496   sqlite3VdbeMemSetNull(pOut);
497   ctx.pOut = pOut;
498   ctx.pMem = pAccum;
499   ctx.pFunc = pFunc;
500   ctx.enc = ENC(pAccum->db);
501   pFunc->xValue(&ctx);
502   return ctx.isError;
503 }
504 #endif /* SQLITE_OMIT_WINDOWFUNC */
505 
506 /*
507 ** If the memory cell contains a value that must be freed by
508 ** invoking the external callback in Mem.xDel, then this routine
509 ** will free that value.  It also sets Mem.flags to MEM_Null.
510 **
511 ** This is a helper routine for sqlite3VdbeMemSetNull() and
512 ** for sqlite3VdbeMemRelease().  Use those other routines as the
513 ** entry point for releasing Mem resources.
514 */
515 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
516   assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
517   assert( VdbeMemDynamic(p) );
518   if( p->flags&MEM_Agg ){
519     sqlite3VdbeMemFinalize(p, p->u.pDef);
520     assert( (p->flags & MEM_Agg)==0 );
521     testcase( p->flags & MEM_Dyn );
522   }
523   if( p->flags&MEM_Dyn ){
524     assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
525     p->xDel((void *)p->z);
526   }
527   p->flags = MEM_Null;
528 }
529 
530 /*
531 ** Release memory held by the Mem p, both external memory cleared
532 ** by p->xDel and memory in p->zMalloc.
533 **
534 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
535 ** the unusual case where there really is memory in p that needs
536 ** to be freed.
537 */
538 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
539   if( VdbeMemDynamic(p) ){
540     vdbeMemClearExternAndSetNull(p);
541   }
542   if( p->szMalloc ){
543     sqlite3DbFreeNN(p->db, p->zMalloc);
544     p->szMalloc = 0;
545   }
546   p->z = 0;
547 }
548 
549 /*
550 ** Release any memory resources held by the Mem.  Both the memory that is
551 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
552 **
553 ** Use this routine prior to clean up prior to abandoning a Mem, or to
554 ** reset a Mem back to its minimum memory utilization.
555 **
556 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
557 ** prior to inserting new content into the Mem.
558 */
559 void sqlite3VdbeMemRelease(Mem *p){
560   assert( sqlite3VdbeCheckMemInvariants(p) );
561   if( VdbeMemDynamic(p) || p->szMalloc ){
562     vdbeMemClear(p);
563   }
564 }
565 
566 /* Like sqlite3VdbeMemRelease() but faster for cases where we
567 ** know in advance that the Mem is not MEM_Dyn or MEM_Agg.
568 */
569 void sqlite3VdbeMemReleaseMalloc(Mem *p){
570   assert( !VdbeMemDynamic(p) );
571   if( p->szMalloc ) vdbeMemClear(p);
572 }
573 
574 /*
575 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
576 ** If the double is out of range of a 64-bit signed integer then
577 ** return the closest available 64-bit signed integer.
578 */
579 static SQLITE_NOINLINE i64 doubleToInt64(double r){
580 #ifdef SQLITE_OMIT_FLOATING_POINT
581   /* When floating-point is omitted, double and int64 are the same thing */
582   return r;
583 #else
584   /*
585   ** Many compilers we encounter do not define constants for the
586   ** minimum and maximum 64-bit integers, or they define them
587   ** inconsistently.  And many do not understand the "LL" notation.
588   ** So we define our own static constants here using nothing
589   ** larger than a 32-bit integer constant.
590   */
591   static const i64 maxInt = LARGEST_INT64;
592   static const i64 minInt = SMALLEST_INT64;
593 
594   if( r<=(double)minInt ){
595     return minInt;
596   }else if( r>=(double)maxInt ){
597     return maxInt;
598   }else{
599     return (i64)r;
600   }
601 #endif
602 }
603 
604 /*
605 ** Return some kind of integer value which is the best we can do
606 ** at representing the value that *pMem describes as an integer.
607 ** If pMem is an integer, then the value is exact.  If pMem is
608 ** a floating-point then the value returned is the integer part.
609 ** If pMem is a string or blob, then we make an attempt to convert
610 ** it into an integer and return that.  If pMem represents an
611 ** an SQL-NULL value, return 0.
612 **
613 ** If pMem represents a string value, its encoding might be changed.
614 */
615 static SQLITE_NOINLINE i64 memIntValue(const Mem *pMem){
616   i64 value = 0;
617   sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
618   return value;
619 }
620 i64 sqlite3VdbeIntValue(const Mem *pMem){
621   int flags;
622   assert( pMem!=0 );
623   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
624   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
625   flags = pMem->flags;
626   if( flags & (MEM_Int|MEM_IntReal) ){
627     testcase( flags & MEM_IntReal );
628     return pMem->u.i;
629   }else if( flags & MEM_Real ){
630     return doubleToInt64(pMem->u.r);
631   }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){
632     return memIntValue(pMem);
633   }else{
634     return 0;
635   }
636 }
637 
638 /*
639 ** Return the best representation of pMem that we can get into a
640 ** double.  If pMem is already a double or an integer, return its
641 ** value.  If it is a string or blob, try to convert it to a double.
642 ** If it is a NULL, return 0.0.
643 */
644 static SQLITE_NOINLINE double memRealValue(Mem *pMem){
645   /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
646   double val = (double)0;
647   sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
648   return val;
649 }
650 double sqlite3VdbeRealValue(Mem *pMem){
651   assert( pMem!=0 );
652   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
653   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
654   if( pMem->flags & MEM_Real ){
655     return pMem->u.r;
656   }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
657     testcase( pMem->flags & MEM_IntReal );
658     return (double)pMem->u.i;
659   }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
660     return memRealValue(pMem);
661   }else{
662     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
663     return (double)0;
664   }
665 }
666 
667 /*
668 ** Return 1 if pMem represents true, and return 0 if pMem represents false.
669 ** Return the value ifNull if pMem is NULL.
670 */
671 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
672   testcase( pMem->flags & MEM_IntReal );
673   if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0;
674   if( pMem->flags & MEM_Null ) return ifNull;
675   return sqlite3VdbeRealValue(pMem)!=0.0;
676 }
677 
678 /*
679 ** The MEM structure is already a MEM_Real.  Try to also make it a
680 ** MEM_Int if we can.
681 */
682 void sqlite3VdbeIntegerAffinity(Mem *pMem){
683   i64 ix;
684   assert( pMem!=0 );
685   assert( pMem->flags & MEM_Real );
686   assert( !sqlite3VdbeMemIsRowSet(pMem) );
687   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
688   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
689 
690   ix = doubleToInt64(pMem->u.r);
691 
692   /* Only mark the value as an integer if
693   **
694   **    (1) the round-trip conversion real->int->real is a no-op, and
695   **    (2) The integer is neither the largest nor the smallest
696   **        possible integer (ticket #3922)
697   **
698   ** The second and third terms in the following conditional enforces
699   ** the second condition under the assumption that addition overflow causes
700   ** values to wrap around.
701   */
702   if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
703     pMem->u.i = ix;
704     MemSetTypeFlag(pMem, MEM_Int);
705   }
706 }
707 
708 /*
709 ** Convert pMem to type integer.  Invalidate any prior representations.
710 */
711 int sqlite3VdbeMemIntegerify(Mem *pMem){
712   assert( pMem!=0 );
713   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
714   assert( !sqlite3VdbeMemIsRowSet(pMem) );
715   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
716 
717   pMem->u.i = sqlite3VdbeIntValue(pMem);
718   MemSetTypeFlag(pMem, MEM_Int);
719   return SQLITE_OK;
720 }
721 
722 /*
723 ** Convert pMem so that it is of type MEM_Real.
724 ** Invalidate any prior representations.
725 */
726 int sqlite3VdbeMemRealify(Mem *pMem){
727   assert( pMem!=0 );
728   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
729   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
730 
731   pMem->u.r = sqlite3VdbeRealValue(pMem);
732   MemSetTypeFlag(pMem, MEM_Real);
733   return SQLITE_OK;
734 }
735 
736 /* Compare a floating point value to an integer.  Return true if the two
737 ** values are the same within the precision of the floating point value.
738 **
739 ** This function assumes that i was obtained by assignment from r1.
740 **
741 ** For some versions of GCC on 32-bit machines, if you do the more obvious
742 ** comparison of "r1==(double)i" you sometimes get an answer of false even
743 ** though the r1 and (double)i values are bit-for-bit the same.
744 */
745 int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
746   double r2 = (double)i;
747   return r1==0.0
748       || (memcmp(&r1, &r2, sizeof(r1))==0
749           && i >= -2251799813685248LL && i < 2251799813685248LL);
750 }
751 
752 /*
753 ** Convert pMem so that it has type MEM_Real or MEM_Int.
754 ** Invalidate any prior representations.
755 **
756 ** Every effort is made to force the conversion, even if the input
757 ** is a string that does not look completely like a number.  Convert
758 ** as much of the string as we can and ignore the rest.
759 */
760 int sqlite3VdbeMemNumerify(Mem *pMem){
761   assert( pMem!=0 );
762   testcase( pMem->flags & MEM_Int );
763   testcase( pMem->flags & MEM_Real );
764   testcase( pMem->flags & MEM_IntReal );
765   testcase( pMem->flags & MEM_Null );
766   if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){
767     int rc;
768     sqlite3_int64 ix;
769     assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
770     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
771     rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
772     if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1)
773      || sqlite3RealSameAsInt(pMem->u.r, (ix = (i64)pMem->u.r))
774     ){
775       pMem->u.i = ix;
776       MemSetTypeFlag(pMem, MEM_Int);
777     }else{
778       MemSetTypeFlag(pMem, MEM_Real);
779     }
780   }
781   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 );
782   pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
783   return SQLITE_OK;
784 }
785 
786 /*
787 ** Cast the datatype of the value in pMem according to the affinity
788 ** "aff".  Casting is different from applying affinity in that a cast
789 ** is forced.  In other words, the value is converted into the desired
790 ** affinity even if that results in loss of data.  This routine is
791 ** used (for example) to implement the SQL "cast()" operator.
792 */
793 int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
794   if( pMem->flags & MEM_Null ) return SQLITE_OK;
795   switch( aff ){
796     case SQLITE_AFF_BLOB: {   /* Really a cast to BLOB */
797       if( (pMem->flags & MEM_Blob)==0 ){
798         sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
799         assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
800         if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
801       }else{
802         pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
803       }
804       break;
805     }
806     case SQLITE_AFF_NUMERIC: {
807       sqlite3VdbeMemNumerify(pMem);
808       break;
809     }
810     case SQLITE_AFF_INTEGER: {
811       sqlite3VdbeMemIntegerify(pMem);
812       break;
813     }
814     case SQLITE_AFF_REAL: {
815       sqlite3VdbeMemRealify(pMem);
816       break;
817     }
818     default: {
819       assert( aff==SQLITE_AFF_TEXT );
820       assert( MEM_Str==(MEM_Blob>>3) );
821       pMem->flags |= (pMem->flags&MEM_Blob)>>3;
822       sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
823       assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
824       pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero);
825       return sqlite3VdbeChangeEncoding(pMem, encoding);
826     }
827   }
828   return SQLITE_OK;
829 }
830 
831 /*
832 ** Initialize bulk memory to be a consistent Mem object.
833 **
834 ** The minimum amount of initialization feasible is performed.
835 */
836 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
837   assert( (flags & ~MEM_TypeMask)==0 );
838   pMem->flags = flags;
839   pMem->db = db;
840   pMem->szMalloc = 0;
841 }
842 
843 
844 /*
845 ** Delete any previous value and set the value stored in *pMem to NULL.
846 **
847 ** This routine calls the Mem.xDel destructor to dispose of values that
848 ** require the destructor.  But it preserves the Mem.zMalloc memory allocation.
849 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
850 ** routine to invoke the destructor and deallocates Mem.zMalloc.
851 **
852 ** Use this routine to reset the Mem prior to insert a new value.
853 **
854 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
855 */
856 void sqlite3VdbeMemSetNull(Mem *pMem){
857   if( VdbeMemDynamic(pMem) ){
858     vdbeMemClearExternAndSetNull(pMem);
859   }else{
860     pMem->flags = MEM_Null;
861   }
862 }
863 void sqlite3ValueSetNull(sqlite3_value *p){
864   sqlite3VdbeMemSetNull((Mem*)p);
865 }
866 
867 /*
868 ** Delete any previous value and set the value to be a BLOB of length
869 ** n containing all zeros.
870 */
871 #ifndef SQLITE_OMIT_INCRBLOB
872 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
873   sqlite3VdbeMemRelease(pMem);
874   pMem->flags = MEM_Blob|MEM_Zero;
875   pMem->n = 0;
876   if( n<0 ) n = 0;
877   pMem->u.nZero = n;
878   pMem->enc = SQLITE_UTF8;
879   pMem->z = 0;
880 }
881 #else
882 int sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
883   int nByte = n>0?n:1;
884   if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
885     return SQLITE_NOMEM_BKPT;
886   }
887   assert( pMem->z!=0 );
888   assert( sqlite3DbMallocSize(pMem->db, pMem->z)>=nByte );
889   memset(pMem->z, 0, nByte);
890   pMem->n = n>0?n:0;
891   pMem->flags = MEM_Blob;
892   pMem->enc = SQLITE_UTF8;
893   return SQLITE_OK;
894 }
895 #endif
896 
897 /*
898 ** The pMem is known to contain content that needs to be destroyed prior
899 ** to a value change.  So invoke the destructor, then set the value to
900 ** a 64-bit integer.
901 */
902 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
903   sqlite3VdbeMemSetNull(pMem);
904   pMem->u.i = val;
905   pMem->flags = MEM_Int;
906 }
907 
908 /*
909 ** Delete any previous value and set the value stored in *pMem to val,
910 ** manifest type INTEGER.
911 */
912 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
913   if( VdbeMemDynamic(pMem) ){
914     vdbeReleaseAndSetInt64(pMem, val);
915   }else{
916     pMem->u.i = val;
917     pMem->flags = MEM_Int;
918   }
919 }
920 
921 /* A no-op destructor */
922 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
923 
924 /*
925 ** Set the value stored in *pMem should already be a NULL.
926 ** Also store a pointer to go with it.
927 */
928 void sqlite3VdbeMemSetPointer(
929   Mem *pMem,
930   void *pPtr,
931   const char *zPType,
932   void (*xDestructor)(void*)
933 ){
934   assert( pMem->flags==MEM_Null );
935   vdbeMemClear(pMem);
936   pMem->u.zPType = zPType ? zPType : "";
937   pMem->z = pPtr;
938   pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
939   pMem->eSubtype = 'p';
940   pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
941 }
942 
943 #ifndef SQLITE_OMIT_FLOATING_POINT
944 /*
945 ** Delete any previous value and set the value stored in *pMem to val,
946 ** manifest type REAL.
947 */
948 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
949   sqlite3VdbeMemSetNull(pMem);
950   if( !sqlite3IsNaN(val) ){
951     pMem->u.r = val;
952     pMem->flags = MEM_Real;
953   }
954 }
955 #endif
956 
957 #ifdef SQLITE_DEBUG
958 /*
959 ** Return true if the Mem holds a RowSet object.  This routine is intended
960 ** for use inside of assert() statements.
961 */
962 int sqlite3VdbeMemIsRowSet(const Mem *pMem){
963   return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn)
964          && pMem->xDel==sqlite3RowSetDelete;
965 }
966 #endif
967 
968 /*
969 ** Delete any previous value and set the value of pMem to be an
970 ** empty boolean index.
971 **
972 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation
973 ** error occurs.
974 */
975 int sqlite3VdbeMemSetRowSet(Mem *pMem){
976   sqlite3 *db = pMem->db;
977   RowSet *p;
978   assert( db!=0 );
979   assert( !sqlite3VdbeMemIsRowSet(pMem) );
980   sqlite3VdbeMemRelease(pMem);
981   p = sqlite3RowSetInit(db);
982   if( p==0 ) return SQLITE_NOMEM;
983   pMem->z = (char*)p;
984   pMem->flags = MEM_Blob|MEM_Dyn;
985   pMem->xDel = sqlite3RowSetDelete;
986   return SQLITE_OK;
987 }
988 
989 /*
990 ** Return true if the Mem object contains a TEXT or BLOB that is
991 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
992 */
993 int sqlite3VdbeMemTooBig(Mem *p){
994   assert( p->db!=0 );
995   if( p->flags & (MEM_Str|MEM_Blob) ){
996     int n = p->n;
997     if( p->flags & MEM_Zero ){
998       n += p->u.nZero;
999     }
1000     return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
1001   }
1002   return 0;
1003 }
1004 
1005 #ifdef SQLITE_DEBUG
1006 /*
1007 ** This routine prepares a memory cell for modification by breaking
1008 ** its link to a shallow copy and by marking any current shallow
1009 ** copies of this cell as invalid.
1010 **
1011 ** This is used for testing and debugging only - to help ensure that shallow
1012 ** copies (created by OP_SCopy) are not misused.
1013 */
1014 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
1015   int i;
1016   Mem *pX;
1017   for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){
1018     if( pX->pScopyFrom==pMem ){
1019       u16 mFlags;
1020       if( pVdbe->db->flags & SQLITE_VdbeTrace ){
1021         sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n",
1022           (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem));
1023       }
1024       /* If pX is marked as a shallow copy of pMem, then try to verify that
1025       ** no significant changes have been made to pX since the OP_SCopy.
1026       ** A significant change would indicated a missed call to this
1027       ** function for pX.  Minor changes, such as adding or removing a
1028       ** dual type, are allowed, as long as the underlying value is the
1029       ** same. */
1030       mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
1031       assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i );
1032 
1033       /* pMem is the register that is changing.  But also mark pX as
1034       ** undefined so that we can quickly detect the shallow-copy error */
1035       pX->flags = MEM_Undefined;
1036       pX->pScopyFrom = 0;
1037     }
1038   }
1039   pMem->pScopyFrom = 0;
1040 }
1041 #endif /* SQLITE_DEBUG */
1042 
1043 /*
1044 ** Make an shallow copy of pFrom into pTo.  Prior contents of
1045 ** pTo are freed.  The pFrom->z field is not duplicated.  If
1046 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
1047 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
1048 */
1049 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
1050   vdbeMemClearExternAndSetNull(pTo);
1051   assert( !VdbeMemDynamic(pTo) );
1052   sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
1053 }
1054 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
1055   assert( !sqlite3VdbeMemIsRowSet(pFrom) );
1056   assert( pTo->db==pFrom->db );
1057   if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
1058   memcpy(pTo, pFrom, MEMCELLSIZE);
1059   if( (pFrom->flags&MEM_Static)==0 ){
1060     pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
1061     assert( srcType==MEM_Ephem || srcType==MEM_Static );
1062     pTo->flags |= srcType;
1063   }
1064 }
1065 
1066 /*
1067 ** Make a full copy of pFrom into pTo.  Prior contents of pTo are
1068 ** freed before the copy is made.
1069 */
1070 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
1071   int rc = SQLITE_OK;
1072 
1073   assert( !sqlite3VdbeMemIsRowSet(pFrom) );
1074   if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
1075   memcpy(pTo, pFrom, MEMCELLSIZE);
1076   pTo->flags &= ~MEM_Dyn;
1077   if( pTo->flags&(MEM_Str|MEM_Blob) ){
1078     if( 0==(pFrom->flags&MEM_Static) ){
1079       pTo->flags |= MEM_Ephem;
1080       rc = sqlite3VdbeMemMakeWriteable(pTo);
1081     }
1082   }
1083 
1084   return rc;
1085 }
1086 
1087 /*
1088 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
1089 ** freed. If pFrom contains ephemeral data, a copy is made.
1090 **
1091 ** pFrom contains an SQL NULL when this routine returns.
1092 */
1093 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
1094   assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
1095   assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
1096   assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
1097 
1098   sqlite3VdbeMemRelease(pTo);
1099   memcpy(pTo, pFrom, sizeof(Mem));
1100   pFrom->flags = MEM_Null;
1101   pFrom->szMalloc = 0;
1102 }
1103 
1104 /*
1105 ** Change the value of a Mem to be a string or a BLOB.
1106 **
1107 ** The memory management strategy depends on the value of the xDel
1108 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
1109 ** string is copied into a (possibly existing) buffer managed by the
1110 ** Mem structure. Otherwise, any existing buffer is freed and the
1111 ** pointer copied.
1112 **
1113 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1114 ** size limit) then no memory allocation occurs.  If the string can be
1115 ** stored without allocating memory, then it is.  If a memory allocation
1116 ** is required to store the string, then value of pMem is unchanged.  In
1117 ** either case, SQLITE_TOOBIG is returned.
1118 **
1119 ** The "enc" parameter is the text encoding for the string, or zero
1120 ** to store a blob.
1121 **
1122 ** If n is negative, then the string consists of all bytes up to but
1123 ** excluding the first zero character.  The n parameter must be
1124 ** non-negative for blobs.
1125 */
1126 int sqlite3VdbeMemSetStr(
1127   Mem *pMem,          /* Memory cell to set to string value */
1128   const char *z,      /* String pointer */
1129   i64 n,              /* Bytes in string, or negative */
1130   u8 enc,             /* Encoding of z.  0 for BLOBs */
1131   void (*xDel)(void*) /* Destructor function */
1132 ){
1133   i64 nByte = n;      /* New value for pMem->n */
1134   int iLimit;         /* Maximum allowed string or blob size */
1135   u16 flags;          /* New value for pMem->flags */
1136 
1137   assert( pMem!=0 );
1138   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
1139   assert( !sqlite3VdbeMemIsRowSet(pMem) );
1140   assert( enc!=0 || n>=0 );
1141 
1142   /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
1143   if( !z ){
1144     sqlite3VdbeMemSetNull(pMem);
1145     return SQLITE_OK;
1146   }
1147 
1148   if( pMem->db ){
1149     iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
1150   }else{
1151     iLimit = SQLITE_MAX_LENGTH;
1152   }
1153   if( nByte<0 ){
1154     assert( enc!=0 );
1155     if( enc==SQLITE_UTF8 ){
1156       nByte = strlen(z);
1157     }else{
1158       for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
1159     }
1160     flags= MEM_Str|MEM_Term;
1161   }else if( enc==0 ){
1162     flags = MEM_Blob;
1163     enc = SQLITE_UTF8;
1164   }else{
1165     flags = MEM_Str;
1166   }
1167   if( nByte>iLimit ){
1168     if( xDel && xDel!=SQLITE_TRANSIENT ){
1169       if( xDel==SQLITE_DYNAMIC ){
1170         sqlite3DbFree(pMem->db, (void*)z);
1171       }else{
1172         xDel((void*)z);
1173       }
1174     }
1175     sqlite3VdbeMemSetNull(pMem);
1176     return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG);
1177   }
1178 
1179   /* The following block sets the new values of Mem.z and Mem.xDel. It
1180   ** also sets a flag in local variable "flags" to indicate the memory
1181   ** management (one of MEM_Dyn or MEM_Static).
1182   */
1183   if( xDel==SQLITE_TRANSIENT ){
1184     i64 nAlloc = nByte;
1185     if( flags&MEM_Term ){
1186       nAlloc += (enc==SQLITE_UTF8?1:2);
1187     }
1188     testcase( nAlloc==0 );
1189     testcase( nAlloc==31 );
1190     testcase( nAlloc==32 );
1191     if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){
1192       return SQLITE_NOMEM_BKPT;
1193     }
1194     memcpy(pMem->z, z, nAlloc);
1195   }else{
1196     sqlite3VdbeMemRelease(pMem);
1197     pMem->z = (char *)z;
1198     if( xDel==SQLITE_DYNAMIC ){
1199       pMem->zMalloc = pMem->z;
1200       pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
1201     }else{
1202       pMem->xDel = xDel;
1203       flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
1204     }
1205   }
1206 
1207   pMem->n = (int)(nByte & 0x7fffffff);
1208   pMem->flags = flags;
1209   pMem->enc = enc;
1210 
1211 #ifndef SQLITE_OMIT_UTF16
1212   if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
1213     return SQLITE_NOMEM_BKPT;
1214   }
1215 #endif
1216 
1217 
1218   return SQLITE_OK;
1219 }
1220 
1221 /*
1222 ** Move data out of a btree key or data field and into a Mem structure.
1223 ** The data is payload from the entry that pCur is currently pointing
1224 ** to.  offset and amt determine what portion of the data or key to retrieve.
1225 ** The result is written into the pMem element.
1226 **
1227 ** The pMem object must have been initialized.  This routine will use
1228 ** pMem->zMalloc to hold the content from the btree, if possible.  New
1229 ** pMem->zMalloc space will be allocated if necessary.  The calling routine
1230 ** is responsible for making sure that the pMem object is eventually
1231 ** destroyed.
1232 **
1233 ** If this routine fails for any reason (malloc returns NULL or unable
1234 ** to read from the disk) then the pMem is left in an inconsistent state.
1235 */
1236 int sqlite3VdbeMemFromBtree(
1237   BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
1238   u32 offset,       /* Offset from the start of data to return bytes from. */
1239   u32 amt,          /* Number of bytes to return. */
1240   Mem *pMem         /* OUT: Return data in this Mem structure. */
1241 ){
1242   int rc;
1243   pMem->flags = MEM_Null;
1244   if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){
1245     return SQLITE_CORRUPT_BKPT;
1246   }
1247   if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
1248     rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
1249     if( rc==SQLITE_OK ){
1250       pMem->z[amt] = 0;   /* Overrun area used when reading malformed records */
1251       pMem->flags = MEM_Blob;
1252       pMem->n = (int)amt;
1253     }else{
1254       sqlite3VdbeMemRelease(pMem);
1255     }
1256   }
1257   return rc;
1258 }
1259 int sqlite3VdbeMemFromBtreeZeroOffset(
1260   BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
1261   u32 amt,          /* Number of bytes to return. */
1262   Mem *pMem         /* OUT: Return data in this Mem structure. */
1263 ){
1264   u32 available = 0;  /* Number of bytes available on the local btree page */
1265   int rc = SQLITE_OK; /* Return code */
1266 
1267   assert( sqlite3BtreeCursorIsValid(pCur) );
1268   assert( !VdbeMemDynamic(pMem) );
1269 
1270   /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1271   ** that both the BtShared and database handle mutexes are held. */
1272   assert( !sqlite3VdbeMemIsRowSet(pMem) );
1273   pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available);
1274   assert( pMem->z!=0 );
1275 
1276   if( amt<=available ){
1277     pMem->flags = MEM_Blob|MEM_Ephem;
1278     pMem->n = (int)amt;
1279   }else{
1280     rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem);
1281   }
1282 
1283   return rc;
1284 }
1285 
1286 /*
1287 ** The pVal argument is known to be a value other than NULL.
1288 ** Convert it into a string with encoding enc and return a pointer
1289 ** to a zero-terminated version of that string.
1290 */
1291 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1292   assert( pVal!=0 );
1293   assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1294   assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1295   assert( !sqlite3VdbeMemIsRowSet(pVal) );
1296   assert( (pVal->flags & (MEM_Null))==0 );
1297   if( pVal->flags & (MEM_Blob|MEM_Str) ){
1298     if( ExpandBlob(pVal) ) return 0;
1299     pVal->flags |= MEM_Str;
1300     if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1301       sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1302     }
1303     if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1304       assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1305       if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1306         return 0;
1307       }
1308     }
1309     sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1310   }else{
1311     sqlite3VdbeMemStringify(pVal, enc, 0);
1312     assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1313   }
1314   assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1315               || pVal->db->mallocFailed );
1316   if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1317     assert( sqlite3VdbeMemValidStrRep(pVal) );
1318     return pVal->z;
1319   }else{
1320     return 0;
1321   }
1322 }
1323 
1324 /* This function is only available internally, it is not part of the
1325 ** external API. It works in a similar way to sqlite3_value_text(),
1326 ** except the data returned is in the encoding specified by the second
1327 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1328 ** SQLITE_UTF8.
1329 **
1330 ** (2006-02-16:)  The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1331 ** If that is the case, then the result must be aligned on an even byte
1332 ** boundary.
1333 */
1334 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1335   if( !pVal ) return 0;
1336   assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1337   assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1338   assert( !sqlite3VdbeMemIsRowSet(pVal) );
1339   if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1340     assert( sqlite3VdbeMemValidStrRep(pVal) );
1341     return pVal->z;
1342   }
1343   if( pVal->flags&MEM_Null ){
1344     return 0;
1345   }
1346   return valueToText(pVal, enc);
1347 }
1348 
1349 /*
1350 ** Create a new sqlite3_value object.
1351 */
1352 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1353   Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1354   if( p ){
1355     p->flags = MEM_Null;
1356     p->db = db;
1357   }
1358   return p;
1359 }
1360 
1361 /*
1362 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1363 ** valueNew(). See comments above valueNew() for details.
1364 */
1365 struct ValueNewStat4Ctx {
1366   Parse *pParse;
1367   Index *pIdx;
1368   UnpackedRecord **ppRec;
1369   int iVal;
1370 };
1371 
1372 /*
1373 ** Allocate and return a pointer to a new sqlite3_value object. If
1374 ** the second argument to this function is NULL, the object is allocated
1375 ** by calling sqlite3ValueNew().
1376 **
1377 ** Otherwise, if the second argument is non-zero, then this function is
1378 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1379 ** already been allocated, allocate the UnpackedRecord structure that
1380 ** that function will return to its caller here. Then return a pointer to
1381 ** an sqlite3_value within the UnpackedRecord.a[] array.
1382 */
1383 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1384 #ifdef SQLITE_ENABLE_STAT4
1385   if( p ){
1386     UnpackedRecord *pRec = p->ppRec[0];
1387 
1388     if( pRec==0 ){
1389       Index *pIdx = p->pIdx;      /* Index being probed */
1390       int nByte;                  /* Bytes of space to allocate */
1391       int i;                      /* Counter variable */
1392       int nCol = pIdx->nColumn;   /* Number of index columns including rowid */
1393 
1394       nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1395       pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1396       if( pRec ){
1397         pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1398         if( pRec->pKeyInfo ){
1399           assert( pRec->pKeyInfo->nAllField==nCol );
1400           assert( pRec->pKeyInfo->enc==ENC(db) );
1401           pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1402           for(i=0; i<nCol; i++){
1403             pRec->aMem[i].flags = MEM_Null;
1404             pRec->aMem[i].db = db;
1405           }
1406         }else{
1407           sqlite3DbFreeNN(db, pRec);
1408           pRec = 0;
1409         }
1410       }
1411       if( pRec==0 ) return 0;
1412       p->ppRec[0] = pRec;
1413     }
1414 
1415     pRec->nField = p->iVal+1;
1416     return &pRec->aMem[p->iVal];
1417   }
1418 #else
1419   UNUSED_PARAMETER(p);
1420 #endif /* defined(SQLITE_ENABLE_STAT4) */
1421   return sqlite3ValueNew(db);
1422 }
1423 
1424 /*
1425 ** The expression object indicated by the second argument is guaranteed
1426 ** to be a scalar SQL function. If
1427 **
1428 **   * all function arguments are SQL literals,
1429 **   * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1430 **   * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1431 **
1432 ** then this routine attempts to invoke the SQL function. Assuming no
1433 ** error occurs, output parameter (*ppVal) is set to point to a value
1434 ** object containing the result before returning SQLITE_OK.
1435 **
1436 ** Affinity aff is applied to the result of the function before returning.
1437 ** If the result is a text value, the sqlite3_value object uses encoding
1438 ** enc.
1439 **
1440 ** If the conditions above are not met, this function returns SQLITE_OK
1441 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1442 ** NULL and an SQLite error code returned.
1443 */
1444 #ifdef SQLITE_ENABLE_STAT4
1445 static int valueFromFunction(
1446   sqlite3 *db,                    /* The database connection */
1447   const Expr *p,                  /* The expression to evaluate */
1448   u8 enc,                         /* Encoding to use */
1449   u8 aff,                         /* Affinity to use */
1450   sqlite3_value **ppVal,          /* Write the new value here */
1451   struct ValueNewStat4Ctx *pCtx   /* Second argument for valueNew() */
1452 ){
1453   sqlite3_context ctx;            /* Context object for function invocation */
1454   sqlite3_value **apVal = 0;      /* Function arguments */
1455   int nVal = 0;                   /* Size of apVal[] array */
1456   FuncDef *pFunc = 0;             /* Function definition */
1457   sqlite3_value *pVal = 0;        /* New value */
1458   int rc = SQLITE_OK;             /* Return code */
1459   ExprList *pList = 0;            /* Function arguments */
1460   int i;                          /* Iterator variable */
1461 
1462   assert( pCtx!=0 );
1463   assert( (p->flags & EP_TokenOnly)==0 );
1464   assert( ExprUseXList(p) );
1465   pList = p->x.pList;
1466   if( pList ) nVal = pList->nExpr;
1467   assert( !ExprHasProperty(p, EP_IntValue) );
1468   pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1469   assert( pFunc );
1470   if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1471    || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1472   ){
1473     return SQLITE_OK;
1474   }
1475 
1476   if( pList ){
1477     apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1478     if( apVal==0 ){
1479       rc = SQLITE_NOMEM_BKPT;
1480       goto value_from_function_out;
1481     }
1482     for(i=0; i<nVal; i++){
1483       rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1484       if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1485     }
1486   }
1487 
1488   pVal = valueNew(db, pCtx);
1489   if( pVal==0 ){
1490     rc = SQLITE_NOMEM_BKPT;
1491     goto value_from_function_out;
1492   }
1493 
1494   testcase( pCtx->pParse->rc==SQLITE_ERROR );
1495   testcase( pCtx->pParse->rc==SQLITE_OK );
1496   memset(&ctx, 0, sizeof(ctx));
1497   ctx.pOut = pVal;
1498   ctx.pFunc = pFunc;
1499   ctx.enc = ENC(db);
1500   pFunc->xSFunc(&ctx, nVal, apVal);
1501   if( ctx.isError ){
1502     rc = ctx.isError;
1503     sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1504   }else{
1505     sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1506     assert( rc==SQLITE_OK );
1507     rc = sqlite3VdbeChangeEncoding(pVal, enc);
1508     if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1509       rc = SQLITE_TOOBIG;
1510       pCtx->pParse->nErr++;
1511     }
1512   }
1513   pCtx->pParse->rc = rc;
1514 
1515  value_from_function_out:
1516   if( rc!=SQLITE_OK ){
1517     pVal = 0;
1518   }
1519   if( apVal ){
1520     for(i=0; i<nVal; i++){
1521       sqlite3ValueFree(apVal[i]);
1522     }
1523     sqlite3DbFreeNN(db, apVal);
1524   }
1525 
1526   *ppVal = pVal;
1527   return rc;
1528 }
1529 #else
1530 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1531 #endif /* defined(SQLITE_ENABLE_STAT4) */
1532 
1533 /*
1534 ** Extract a value from the supplied expression in the manner described
1535 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1536 ** using valueNew().
1537 **
1538 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1539 ** has been allocated, it is freed before returning. Or, if pCtx is not
1540 ** NULL, it is assumed that the caller will free any allocated object
1541 ** in all cases.
1542 */
1543 static int valueFromExpr(
1544   sqlite3 *db,                    /* The database connection */
1545   const Expr *pExpr,              /* The expression to evaluate */
1546   u8 enc,                         /* Encoding to use */
1547   u8 affinity,                    /* Affinity to use */
1548   sqlite3_value **ppVal,          /* Write the new value here */
1549   struct ValueNewStat4Ctx *pCtx   /* Second argument for valueNew() */
1550 ){
1551   int op;
1552   char *zVal = 0;
1553   sqlite3_value *pVal = 0;
1554   int negInt = 1;
1555   const char *zNeg = "";
1556   int rc = SQLITE_OK;
1557 
1558   assert( pExpr!=0 );
1559   while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
1560   if( op==TK_REGISTER ) op = pExpr->op2;
1561 
1562   /* Compressed expressions only appear when parsing the DEFAULT clause
1563   ** on a table column definition, and hence only when pCtx==0.  This
1564   ** check ensures that an EP_TokenOnly expression is never passed down
1565   ** into valueFromFunction(). */
1566   assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1567 
1568   if( op==TK_CAST ){
1569     u8 aff;
1570     assert( !ExprHasProperty(pExpr, EP_IntValue) );
1571     aff = sqlite3AffinityType(pExpr->u.zToken,0);
1572     rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1573     testcase( rc!=SQLITE_OK );
1574     if( *ppVal ){
1575       sqlite3VdbeMemCast(*ppVal, aff, enc);
1576       sqlite3ValueApplyAffinity(*ppVal, affinity, enc);
1577     }
1578     return rc;
1579   }
1580 
1581   /* Handle negative integers in a single step.  This is needed in the
1582   ** case when the value is -9223372036854775808.
1583   */
1584   if( op==TK_UMINUS
1585    && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1586     pExpr = pExpr->pLeft;
1587     op = pExpr->op;
1588     negInt = -1;
1589     zNeg = "-";
1590   }
1591 
1592   if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1593     pVal = valueNew(db, pCtx);
1594     if( pVal==0 ) goto no_mem;
1595     if( ExprHasProperty(pExpr, EP_IntValue) ){
1596       sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1597     }else{
1598       zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1599       if( zVal==0 ) goto no_mem;
1600       sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1601     }
1602     if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1603       sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1604     }else{
1605       sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1606     }
1607     assert( (pVal->flags & MEM_IntReal)==0 );
1608     if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){
1609       testcase( pVal->flags & MEM_Int );
1610       testcase( pVal->flags & MEM_Real );
1611       pVal->flags &= ~MEM_Str;
1612     }
1613     if( enc!=SQLITE_UTF8 ){
1614       rc = sqlite3VdbeChangeEncoding(pVal, enc);
1615     }
1616   }else if( op==TK_UMINUS ) {
1617     /* This branch happens for multiple negative signs.  Ex: -(-5) */
1618     if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
1619      && pVal!=0
1620     ){
1621       sqlite3VdbeMemNumerify(pVal);
1622       if( pVal->flags & MEM_Real ){
1623         pVal->u.r = -pVal->u.r;
1624       }else if( pVal->u.i==SMALLEST_INT64 ){
1625 #ifndef SQLITE_OMIT_FLOATING_POINT
1626         pVal->u.r = -(double)SMALLEST_INT64;
1627 #else
1628         pVal->u.r = LARGEST_INT64;
1629 #endif
1630         MemSetTypeFlag(pVal, MEM_Real);
1631       }else{
1632         pVal->u.i = -pVal->u.i;
1633       }
1634       sqlite3ValueApplyAffinity(pVal, affinity, enc);
1635     }
1636   }else if( op==TK_NULL ){
1637     pVal = valueNew(db, pCtx);
1638     if( pVal==0 ) goto no_mem;
1639     sqlite3VdbeMemSetNull(pVal);
1640   }
1641 #ifndef SQLITE_OMIT_BLOB_LITERAL
1642   else if( op==TK_BLOB ){
1643     int nVal;
1644     assert( !ExprHasProperty(pExpr, EP_IntValue) );
1645     assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1646     assert( pExpr->u.zToken[1]=='\'' );
1647     pVal = valueNew(db, pCtx);
1648     if( !pVal ) goto no_mem;
1649     zVal = &pExpr->u.zToken[2];
1650     nVal = sqlite3Strlen30(zVal)-1;
1651     assert( zVal[nVal]=='\'' );
1652     sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1653                          0, SQLITE_DYNAMIC);
1654   }
1655 #endif
1656 #ifdef SQLITE_ENABLE_STAT4
1657   else if( op==TK_FUNCTION && pCtx!=0 ){
1658     rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1659   }
1660 #endif
1661   else if( op==TK_TRUEFALSE ){
1662     assert( !ExprHasProperty(pExpr, EP_IntValue) );
1663     pVal = valueNew(db, pCtx);
1664     if( pVal ){
1665       pVal->flags = MEM_Int;
1666       pVal->u.i = pExpr->u.zToken[4]==0;
1667     }
1668   }
1669 
1670   *ppVal = pVal;
1671   return rc;
1672 
1673 no_mem:
1674 #ifdef SQLITE_ENABLE_STAT4
1675   if( pCtx==0 || NEVER(pCtx->pParse->nErr==0) )
1676 #endif
1677     sqlite3OomFault(db);
1678   sqlite3DbFree(db, zVal);
1679   assert( *ppVal==0 );
1680 #ifdef SQLITE_ENABLE_STAT4
1681   if( pCtx==0 ) sqlite3ValueFree(pVal);
1682 #else
1683   assert( pCtx==0 ); sqlite3ValueFree(pVal);
1684 #endif
1685   return SQLITE_NOMEM_BKPT;
1686 }
1687 
1688 /*
1689 ** Create a new sqlite3_value object, containing the value of pExpr.
1690 **
1691 ** This only works for very simple expressions that consist of one constant
1692 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1693 ** be converted directly into a value, then the value is allocated and
1694 ** a pointer written to *ppVal. The caller is responsible for deallocating
1695 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1696 ** cannot be converted to a value, then *ppVal is set to NULL.
1697 */
1698 int sqlite3ValueFromExpr(
1699   sqlite3 *db,              /* The database connection */
1700   const Expr *pExpr,        /* The expression to evaluate */
1701   u8 enc,                   /* Encoding to use */
1702   u8 affinity,              /* Affinity to use */
1703   sqlite3_value **ppVal     /* Write the new value here */
1704 ){
1705   return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
1706 }
1707 
1708 #ifdef SQLITE_ENABLE_STAT4
1709 /*
1710 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1711 **
1712 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1713 ** pAlloc if one does not exist and the new value is added to the
1714 ** UnpackedRecord object.
1715 **
1716 ** A value is extracted in the following cases:
1717 **
1718 **  * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1719 **
1720 **  * The expression is a bound variable, and this is a reprepare, or
1721 **
1722 **  * The expression is a literal value.
1723 **
1724 ** On success, *ppVal is made to point to the extracted value.  The caller
1725 ** is responsible for ensuring that the value is eventually freed.
1726 */
1727 static int stat4ValueFromExpr(
1728   Parse *pParse,                  /* Parse context */
1729   Expr *pExpr,                    /* The expression to extract a value from */
1730   u8 affinity,                    /* Affinity to use */
1731   struct ValueNewStat4Ctx *pAlloc,/* How to allocate space.  Or NULL */
1732   sqlite3_value **ppVal           /* OUT: New value object (or NULL) */
1733 ){
1734   int rc = SQLITE_OK;
1735   sqlite3_value *pVal = 0;
1736   sqlite3 *db = pParse->db;
1737 
1738   /* Skip over any TK_COLLATE nodes */
1739   pExpr = sqlite3ExprSkipCollate(pExpr);
1740 
1741   assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
1742   if( !pExpr ){
1743     pVal = valueNew(db, pAlloc);
1744     if( pVal ){
1745       sqlite3VdbeMemSetNull((Mem*)pVal);
1746     }
1747   }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
1748     Vdbe *v;
1749     int iBindVar = pExpr->iColumn;
1750     sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1751     if( (v = pParse->pReprepare)!=0 ){
1752       pVal = valueNew(db, pAlloc);
1753       if( pVal ){
1754         rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1755         sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1756         pVal->db = pParse->db;
1757       }
1758     }
1759   }else{
1760     rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1761   }
1762 
1763   assert( pVal==0 || pVal->db==db );
1764   *ppVal = pVal;
1765   return rc;
1766 }
1767 
1768 /*
1769 ** This function is used to allocate and populate UnpackedRecord
1770 ** structures intended to be compared against sample index keys stored
1771 ** in the sqlite_stat4 table.
1772 **
1773 ** A single call to this function populates zero or more fields of the
1774 ** record starting with field iVal (fields are numbered from left to
1775 ** right starting with 0). A single field is populated if:
1776 **
1777 **  * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1778 **
1779 **  * The expression is a bound variable, and this is a reprepare, or
1780 **
1781 **  * The sqlite3ValueFromExpr() function is able to extract a value
1782 **    from the expression (i.e. the expression is a literal value).
1783 **
1784 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1785 ** vector components that match either of the two latter criteria listed
1786 ** above.
1787 **
1788 ** Before any value is appended to the record, the affinity of the
1789 ** corresponding column within index pIdx is applied to it. Before
1790 ** this function returns, output parameter *pnExtract is set to the
1791 ** number of values appended to the record.
1792 **
1793 ** When this function is called, *ppRec must either point to an object
1794 ** allocated by an earlier call to this function, or must be NULL. If it
1795 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1796 ** is allocated (and *ppRec set to point to it) before returning.
1797 **
1798 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1799 ** error if a value cannot be extracted from pExpr. If an error does
1800 ** occur, an SQLite error code is returned.
1801 */
1802 int sqlite3Stat4ProbeSetValue(
1803   Parse *pParse,                  /* Parse context */
1804   Index *pIdx,                    /* Index being probed */
1805   UnpackedRecord **ppRec,         /* IN/OUT: Probe record */
1806   Expr *pExpr,                    /* The expression to extract a value from */
1807   int nElem,                      /* Maximum number of values to append */
1808   int iVal,                       /* Array element to populate */
1809   int *pnExtract                  /* OUT: Values appended to the record */
1810 ){
1811   int rc = SQLITE_OK;
1812   int nExtract = 0;
1813 
1814   if( pExpr==0 || pExpr->op!=TK_SELECT ){
1815     int i;
1816     struct ValueNewStat4Ctx alloc;
1817 
1818     alloc.pParse = pParse;
1819     alloc.pIdx = pIdx;
1820     alloc.ppRec = ppRec;
1821 
1822     for(i=0; i<nElem; i++){
1823       sqlite3_value *pVal = 0;
1824       Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
1825       u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1826       alloc.iVal = iVal+i;
1827       rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1828       if( !pVal ) break;
1829       nExtract++;
1830     }
1831   }
1832 
1833   *pnExtract = nExtract;
1834   return rc;
1835 }
1836 
1837 /*
1838 ** Attempt to extract a value from expression pExpr using the methods
1839 ** as described for sqlite3Stat4ProbeSetValue() above.
1840 **
1841 ** If successful, set *ppVal to point to a new value object and return
1842 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1843 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1844 ** does occur, return an SQLite error code. The final value of *ppVal
1845 ** is undefined in this case.
1846 */
1847 int sqlite3Stat4ValueFromExpr(
1848   Parse *pParse,                  /* Parse context */
1849   Expr *pExpr,                    /* The expression to extract a value from */
1850   u8 affinity,                    /* Affinity to use */
1851   sqlite3_value **ppVal           /* OUT: New value object (or NULL) */
1852 ){
1853   return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1854 }
1855 
1856 /*
1857 ** Extract the iCol-th column from the nRec-byte record in pRec.  Write
1858 ** the column value into *ppVal.  If *ppVal is initially NULL then a new
1859 ** sqlite3_value object is allocated.
1860 **
1861 ** If *ppVal is initially NULL then the caller is responsible for
1862 ** ensuring that the value written into *ppVal is eventually freed.
1863 */
1864 int sqlite3Stat4Column(
1865   sqlite3 *db,                    /* Database handle */
1866   const void *pRec,               /* Pointer to buffer containing record */
1867   int nRec,                       /* Size of buffer pRec in bytes */
1868   int iCol,                       /* Column to extract */
1869   sqlite3_value **ppVal           /* OUT: Extracted value */
1870 ){
1871   u32 t = 0;                      /* a column type code */
1872   int nHdr;                       /* Size of the header in the record */
1873   int iHdr;                       /* Next unread header byte */
1874   int iField;                     /* Next unread data byte */
1875   int szField = 0;                /* Size of the current data field */
1876   int i;                          /* Column index */
1877   u8 *a = (u8*)pRec;              /* Typecast byte array */
1878   Mem *pMem = *ppVal;             /* Write result into this Mem object */
1879 
1880   assert( iCol>0 );
1881   iHdr = getVarint32(a, nHdr);
1882   if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1883   iField = nHdr;
1884   for(i=0; i<=iCol; i++){
1885     iHdr += getVarint32(&a[iHdr], t);
1886     testcase( iHdr==nHdr );
1887     testcase( iHdr==nHdr+1 );
1888     if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1889     szField = sqlite3VdbeSerialTypeLen(t);
1890     iField += szField;
1891   }
1892   testcase( iField==nRec );
1893   testcase( iField==nRec+1 );
1894   if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1895   if( pMem==0 ){
1896     pMem = *ppVal = sqlite3ValueNew(db);
1897     if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1898   }
1899   sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1900   pMem->enc = ENC(db);
1901   return SQLITE_OK;
1902 }
1903 
1904 /*
1905 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1906 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1907 ** the object.
1908 */
1909 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1910   if( pRec ){
1911     int i;
1912     int nCol = pRec->pKeyInfo->nAllField;
1913     Mem *aMem = pRec->aMem;
1914     sqlite3 *db = aMem[0].db;
1915     for(i=0; i<nCol; i++){
1916       sqlite3VdbeMemRelease(&aMem[i]);
1917     }
1918     sqlite3KeyInfoUnref(pRec->pKeyInfo);
1919     sqlite3DbFreeNN(db, pRec);
1920   }
1921 }
1922 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1923 
1924 /*
1925 ** Change the string value of an sqlite3_value object
1926 */
1927 void sqlite3ValueSetStr(
1928   sqlite3_value *v,     /* Value to be set */
1929   int n,                /* Length of string z */
1930   const void *z,        /* Text of the new string */
1931   u8 enc,               /* Encoding to use */
1932   void (*xDel)(void*)   /* Destructor for the string */
1933 ){
1934   if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1935 }
1936 
1937 /*
1938 ** Free an sqlite3_value object
1939 */
1940 void sqlite3ValueFree(sqlite3_value *v){
1941   if( !v ) return;
1942   sqlite3VdbeMemRelease((Mem *)v);
1943   sqlite3DbFreeNN(((Mem*)v)->db, v);
1944 }
1945 
1946 /*
1947 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1948 ** sqlite3_value object assuming that it uses the encoding "enc".
1949 ** The valueBytes() routine is a helper function.
1950 */
1951 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1952   return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1953 }
1954 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1955   Mem *p = (Mem*)pVal;
1956   assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1957   if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1958     return p->n;
1959   }
1960   if( (p->flags & MEM_Blob)!=0 ){
1961     if( p->flags & MEM_Zero ){
1962       return p->n + p->u.nZero;
1963     }else{
1964       return p->n;
1965     }
1966   }
1967   if( p->flags & MEM_Null ) return 0;
1968   return valueBytes(pVal, enc);
1969 }
1970