1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 #ifdef SQLITE_DEBUG 22 /* 23 ** Check invariants on a Mem object. 24 ** 25 ** This routine is intended for use inside of assert() statements, like 26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); 27 */ 28 int sqlite3VdbeCheckMemInvariants(Mem *p){ 29 /* If MEM_Dyn is set then Mem.xDel!=0. 30 ** Mem.xDel might not be initialized if MEM_Dyn is clear. 31 */ 32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); 33 34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we 35 ** ensure that if Mem.szMalloc>0 then it is safe to do 36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. 37 ** That saves a few cycles in inner loops. */ 38 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); 39 40 /* Cannot be both MEM_Int and MEM_Real at the same time */ 41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) ); 42 43 if( p->flags & MEM_Null ){ 44 /* Cannot be both MEM_Null and some other type */ 45 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob 46 |MEM_RowSet|MEM_Frame|MEM_Agg|MEM_Zero))==0 ); 47 48 /* If MEM_Null is set, then either the value is a pure NULL (the usual 49 ** case) or it is a pointer set using sqlite3_bind_pointer() or 50 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be 51 ** set. 52 */ 53 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){ 54 /* This is a pointer type. There may be a flag to indicate what to 55 ** do with the pointer. */ 56 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 57 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 58 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 ); 59 60 /* No other bits set */ 61 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype 62 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 ); 63 }else{ 64 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn, 65 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */ 66 } 67 }else{ 68 /* The MEM_Cleared bit is only allowed on NULLs */ 69 assert( (p->flags & MEM_Cleared)==0 ); 70 } 71 72 /* The szMalloc field holds the correct memory allocation size */ 73 assert( p->szMalloc==0 74 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) ); 75 76 /* If p holds a string or blob, the Mem.z must point to exactly 77 ** one of the following: 78 ** 79 ** (1) Memory in Mem.zMalloc and managed by the Mem object 80 ** (2) Memory to be freed using Mem.xDel 81 ** (3) An ephemeral string or blob 82 ** (4) A static string or blob 83 */ 84 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ 85 assert( 86 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + 87 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 88 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 89 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 90 ); 91 } 92 return 1; 93 } 94 #endif 95 96 97 /* 98 ** If pMem is an object with a valid string representation, this routine 99 ** ensures the internal encoding for the string representation is 100 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 101 ** 102 ** If pMem is not a string object, or the encoding of the string 103 ** representation is already stored using the requested encoding, then this 104 ** routine is a no-op. 105 ** 106 ** SQLITE_OK is returned if the conversion is successful (or not required). 107 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 108 ** between formats. 109 */ 110 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 111 #ifndef SQLITE_OMIT_UTF16 112 int rc; 113 #endif 114 assert( (pMem->flags&MEM_RowSet)==0 ); 115 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE 116 || desiredEnc==SQLITE_UTF16BE ); 117 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ 118 return SQLITE_OK; 119 } 120 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 121 #ifdef SQLITE_OMIT_UTF16 122 return SQLITE_ERROR; 123 #else 124 125 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 126 ** then the encoding of the value may not have changed. 127 */ 128 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); 129 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 130 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 131 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 132 return rc; 133 #endif 134 } 135 136 /* 137 ** Make sure pMem->z points to a writable allocation of at least 138 ** min(n,32) bytes. 139 ** 140 ** If the bPreserve argument is true, then copy of the content of 141 ** pMem->z into the new allocation. pMem must be either a string or 142 ** blob if bPreserve is true. If bPreserve is false, any prior content 143 ** in pMem->z is discarded. 144 */ 145 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ 146 assert( sqlite3VdbeCheckMemInvariants(pMem) ); 147 assert( (pMem->flags&MEM_RowSet)==0 ); 148 testcase( pMem->db==0 ); 149 150 /* If the bPreserve flag is set to true, then the memory cell must already 151 ** contain a valid string or blob value. */ 152 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); 153 testcase( bPreserve && pMem->z==0 ); 154 155 assert( pMem->szMalloc==0 156 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) ); 157 if( n<32 ) n = 32; 158 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){ 159 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 160 bPreserve = 0; 161 }else{ 162 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 163 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 164 } 165 if( pMem->zMalloc==0 ){ 166 sqlite3VdbeMemSetNull(pMem); 167 pMem->z = 0; 168 pMem->szMalloc = 0; 169 return SQLITE_NOMEM_BKPT; 170 }else{ 171 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 172 } 173 174 if( bPreserve && pMem->z ){ 175 assert( pMem->z!=pMem->zMalloc ); 176 memcpy(pMem->zMalloc, pMem->z, pMem->n); 177 } 178 if( (pMem->flags&MEM_Dyn)!=0 ){ 179 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); 180 pMem->xDel((void *)(pMem->z)); 181 } 182 183 pMem->z = pMem->zMalloc; 184 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); 185 return SQLITE_OK; 186 } 187 188 /* 189 ** Change the pMem->zMalloc allocation to be at least szNew bytes. 190 ** If pMem->zMalloc already meets or exceeds the requested size, this 191 ** routine is a no-op. 192 ** 193 ** Any prior string or blob content in the pMem object may be discarded. 194 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str 195 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null 196 ** values are preserved. 197 ** 198 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) 199 ** if unable to complete the resizing. 200 */ 201 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ 202 assert( szNew>0 ); 203 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); 204 if( pMem->szMalloc<szNew ){ 205 return sqlite3VdbeMemGrow(pMem, szNew, 0); 206 } 207 assert( (pMem->flags & MEM_Dyn)==0 ); 208 pMem->z = pMem->zMalloc; 209 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real); 210 return SQLITE_OK; 211 } 212 213 /* 214 ** It is already known that pMem contains an unterminated string. 215 ** Add the zero terminator. 216 */ 217 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ 218 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ 219 return SQLITE_NOMEM_BKPT; 220 } 221 pMem->z[pMem->n] = 0; 222 pMem->z[pMem->n+1] = 0; 223 pMem->flags |= MEM_Term; 224 return SQLITE_OK; 225 } 226 227 /* 228 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in 229 ** MEM.zMalloc, where it can be safely written. 230 ** 231 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 232 */ 233 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 234 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 235 assert( (pMem->flags&MEM_RowSet)==0 ); 236 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ 237 if( ExpandBlob(pMem) ) return SQLITE_NOMEM; 238 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ 239 int rc = vdbeMemAddTerminator(pMem); 240 if( rc ) return rc; 241 } 242 } 243 pMem->flags &= ~MEM_Ephem; 244 #ifdef SQLITE_DEBUG 245 pMem->pScopyFrom = 0; 246 #endif 247 248 return SQLITE_OK; 249 } 250 251 /* 252 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 253 ** blob stored in dynamically allocated space. 254 */ 255 #ifndef SQLITE_OMIT_INCRBLOB 256 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 257 int nByte; 258 assert( pMem->flags & MEM_Zero ); 259 assert( pMem->flags&MEM_Blob ); 260 assert( (pMem->flags&MEM_RowSet)==0 ); 261 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 262 263 /* Set nByte to the number of bytes required to store the expanded blob. */ 264 nByte = pMem->n + pMem->u.nZero; 265 if( nByte<=0 ){ 266 nByte = 1; 267 } 268 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 269 return SQLITE_NOMEM_BKPT; 270 } 271 272 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); 273 pMem->n += pMem->u.nZero; 274 pMem->flags &= ~(MEM_Zero|MEM_Term); 275 return SQLITE_OK; 276 } 277 #endif 278 279 /* 280 ** Make sure the given Mem is \u0000 terminated. 281 */ 282 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 283 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 284 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); 285 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); 286 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ 287 return SQLITE_OK; /* Nothing to do */ 288 }else{ 289 return vdbeMemAddTerminator(pMem); 290 } 291 } 292 293 /* 294 ** Add MEM_Str to the set of representations for the given Mem. Numbers 295 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string 296 ** is a no-op. 297 ** 298 ** Existing representations MEM_Int and MEM_Real are invalidated if 299 ** bForce is true but are retained if bForce is false. 300 ** 301 ** A MEM_Null value will never be passed to this function. This function is 302 ** used for converting values to text for returning to the user (i.e. via 303 ** sqlite3_value_text()), or for ensuring that values to be used as btree 304 ** keys are strings. In the former case a NULL pointer is returned the 305 ** user and the latter is an internal programming error. 306 */ 307 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ 308 int fg = pMem->flags; 309 const int nByte = 32; 310 311 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 312 assert( !(fg&MEM_Zero) ); 313 assert( !(fg&(MEM_Str|MEM_Blob)) ); 314 assert( fg&(MEM_Int|MEM_Real) ); 315 assert( (pMem->flags&MEM_RowSet)==0 ); 316 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 317 318 319 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 320 pMem->enc = 0; 321 return SQLITE_NOMEM_BKPT; 322 } 323 324 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8 325 ** string representation of the value. Then, if the required encoding 326 ** is UTF-16le or UTF-16be do a translation. 327 ** 328 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. 329 */ 330 if( fg & MEM_Int ){ 331 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); 332 }else{ 333 assert( fg & MEM_Real ); 334 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r); 335 } 336 pMem->n = sqlite3Strlen30(pMem->z); 337 pMem->enc = SQLITE_UTF8; 338 pMem->flags |= MEM_Str|MEM_Term; 339 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real); 340 sqlite3VdbeChangeEncoding(pMem, enc); 341 return SQLITE_OK; 342 } 343 344 /* 345 ** Memory cell pMem contains the context of an aggregate function. 346 ** This routine calls the finalize method for that function. The 347 ** result of the aggregate is stored back into pMem. 348 ** 349 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 350 ** otherwise. 351 */ 352 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 353 sqlite3_context ctx; 354 Mem t; 355 assert( pFunc!=0 ); 356 assert( pFunc->xFinalize!=0 ); 357 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 358 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 359 memset(&ctx, 0, sizeof(ctx)); 360 memset(&t, 0, sizeof(t)); 361 t.flags = MEM_Null; 362 t.db = pMem->db; 363 ctx.pOut = &t; 364 ctx.pMem = pMem; 365 ctx.pFunc = pFunc; 366 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ 367 assert( (pMem->flags & MEM_Dyn)==0 ); 368 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 369 memcpy(pMem, &t, sizeof(t)); 370 return ctx.isError; 371 } 372 373 /* 374 ** If the memory cell contains a value that must be freed by 375 ** invoking the external callback in Mem.xDel, then this routine 376 ** will free that value. It also sets Mem.flags to MEM_Null. 377 ** 378 ** This is a helper routine for sqlite3VdbeMemSetNull() and 379 ** for sqlite3VdbeMemRelease(). Use those other routines as the 380 ** entry point for releasing Mem resources. 381 */ 382 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ 383 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 384 assert( VdbeMemDynamic(p) ); 385 if( p->flags&MEM_Agg ){ 386 sqlite3VdbeMemFinalize(p, p->u.pDef); 387 assert( (p->flags & MEM_Agg)==0 ); 388 testcase( p->flags & MEM_Dyn ); 389 } 390 if( p->flags&MEM_Dyn ){ 391 assert( (p->flags&MEM_RowSet)==0 ); 392 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); 393 p->xDel((void *)p->z); 394 }else if( p->flags&MEM_RowSet ){ 395 sqlite3RowSetClear(p->u.pRowSet); 396 }else if( p->flags&MEM_Frame ){ 397 VdbeFrame *pFrame = p->u.pFrame; 398 pFrame->pParent = pFrame->v->pDelFrame; 399 pFrame->v->pDelFrame = pFrame; 400 } 401 p->flags = MEM_Null; 402 } 403 404 /* 405 ** Release memory held by the Mem p, both external memory cleared 406 ** by p->xDel and memory in p->zMalloc. 407 ** 408 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in 409 ** the unusual case where there really is memory in p that needs 410 ** to be freed. 411 */ 412 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ 413 if( VdbeMemDynamic(p) ){ 414 vdbeMemClearExternAndSetNull(p); 415 } 416 if( p->szMalloc ){ 417 sqlite3DbFreeNN(p->db, p->zMalloc); 418 p->szMalloc = 0; 419 } 420 p->z = 0; 421 } 422 423 /* 424 ** Release any memory resources held by the Mem. Both the memory that is 425 ** free by Mem.xDel and the Mem.zMalloc allocation are freed. 426 ** 427 ** Use this routine prior to clean up prior to abandoning a Mem, or to 428 ** reset a Mem back to its minimum memory utilization. 429 ** 430 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space 431 ** prior to inserting new content into the Mem. 432 */ 433 void sqlite3VdbeMemRelease(Mem *p){ 434 assert( sqlite3VdbeCheckMemInvariants(p) ); 435 if( VdbeMemDynamic(p) || p->szMalloc ){ 436 vdbeMemClear(p); 437 } 438 } 439 440 /* 441 ** Convert a 64-bit IEEE double into a 64-bit signed integer. 442 ** If the double is out of range of a 64-bit signed integer then 443 ** return the closest available 64-bit signed integer. 444 */ 445 static SQLITE_NOINLINE i64 doubleToInt64(double r){ 446 #ifdef SQLITE_OMIT_FLOATING_POINT 447 /* When floating-point is omitted, double and int64 are the same thing */ 448 return r; 449 #else 450 /* 451 ** Many compilers we encounter do not define constants for the 452 ** minimum and maximum 64-bit integers, or they define them 453 ** inconsistently. And many do not understand the "LL" notation. 454 ** So we define our own static constants here using nothing 455 ** larger than a 32-bit integer constant. 456 */ 457 static const i64 maxInt = LARGEST_INT64; 458 static const i64 minInt = SMALLEST_INT64; 459 460 if( r<=(double)minInt ){ 461 return minInt; 462 }else if( r>=(double)maxInt ){ 463 return maxInt; 464 }else{ 465 return (i64)r; 466 } 467 #endif 468 } 469 470 /* 471 ** Return some kind of integer value which is the best we can do 472 ** at representing the value that *pMem describes as an integer. 473 ** If pMem is an integer, then the value is exact. If pMem is 474 ** a floating-point then the value returned is the integer part. 475 ** If pMem is a string or blob, then we make an attempt to convert 476 ** it into an integer and return that. If pMem represents an 477 ** an SQL-NULL value, return 0. 478 ** 479 ** If pMem represents a string value, its encoding might be changed. 480 */ 481 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){ 482 i64 value = 0; 483 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); 484 return value; 485 } 486 i64 sqlite3VdbeIntValue(Mem *pMem){ 487 int flags; 488 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 489 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 490 flags = pMem->flags; 491 if( flags & MEM_Int ){ 492 return pMem->u.i; 493 }else if( flags & MEM_Real ){ 494 return doubleToInt64(pMem->u.r); 495 }else if( flags & (MEM_Str|MEM_Blob) ){ 496 assert( pMem->z || pMem->n==0 ); 497 return memIntValue(pMem); 498 }else{ 499 return 0; 500 } 501 } 502 503 /* 504 ** Return the best representation of pMem that we can get into a 505 ** double. If pMem is already a double or an integer, return its 506 ** value. If it is a string or blob, try to convert it to a double. 507 ** If it is a NULL, return 0.0. 508 */ 509 static SQLITE_NOINLINE double memRealValue(Mem *pMem){ 510 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 511 double val = (double)0; 512 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); 513 return val; 514 } 515 double sqlite3VdbeRealValue(Mem *pMem){ 516 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 517 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 518 if( pMem->flags & MEM_Real ){ 519 return pMem->u.r; 520 }else if( pMem->flags & MEM_Int ){ 521 return (double)pMem->u.i; 522 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 523 return memRealValue(pMem); 524 }else{ 525 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 526 return (double)0; 527 } 528 } 529 530 /* 531 ** The MEM structure is already a MEM_Real. Try to also make it a 532 ** MEM_Int if we can. 533 */ 534 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 535 i64 ix; 536 assert( pMem->flags & MEM_Real ); 537 assert( (pMem->flags & MEM_RowSet)==0 ); 538 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 539 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 540 541 ix = doubleToInt64(pMem->u.r); 542 543 /* Only mark the value as an integer if 544 ** 545 ** (1) the round-trip conversion real->int->real is a no-op, and 546 ** (2) The integer is neither the largest nor the smallest 547 ** possible integer (ticket #3922) 548 ** 549 ** The second and third terms in the following conditional enforces 550 ** the second condition under the assumption that addition overflow causes 551 ** values to wrap around. 552 */ 553 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ 554 pMem->u.i = ix; 555 MemSetTypeFlag(pMem, MEM_Int); 556 } 557 } 558 559 /* 560 ** Convert pMem to type integer. Invalidate any prior representations. 561 */ 562 int sqlite3VdbeMemIntegerify(Mem *pMem){ 563 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 564 assert( (pMem->flags & MEM_RowSet)==0 ); 565 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 566 567 pMem->u.i = sqlite3VdbeIntValue(pMem); 568 MemSetTypeFlag(pMem, MEM_Int); 569 return SQLITE_OK; 570 } 571 572 /* 573 ** Convert pMem so that it is of type MEM_Real. 574 ** Invalidate any prior representations. 575 */ 576 int sqlite3VdbeMemRealify(Mem *pMem){ 577 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 578 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 579 580 pMem->u.r = sqlite3VdbeRealValue(pMem); 581 MemSetTypeFlag(pMem, MEM_Real); 582 return SQLITE_OK; 583 } 584 585 /* 586 ** Convert pMem so that it has types MEM_Real or MEM_Int or both. 587 ** Invalidate any prior representations. 588 ** 589 ** Every effort is made to force the conversion, even if the input 590 ** is a string that does not look completely like a number. Convert 591 ** as much of the string as we can and ignore the rest. 592 */ 593 int sqlite3VdbeMemNumerify(Mem *pMem){ 594 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){ 595 int rc; 596 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 597 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 598 rc = sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc); 599 if( rc==0 ){ 600 MemSetTypeFlag(pMem, MEM_Int); 601 }else{ 602 i64 i = pMem->u.i; 603 sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 604 if( rc==1 && pMem->u.r==(double)i ){ 605 pMem->u.i = i; 606 MemSetTypeFlag(pMem, MEM_Int); 607 }else{ 608 MemSetTypeFlag(pMem, MEM_Real); 609 } 610 } 611 } 612 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 ); 613 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); 614 return SQLITE_OK; 615 } 616 617 /* 618 ** Cast the datatype of the value in pMem according to the affinity 619 ** "aff". Casting is different from applying affinity in that a cast 620 ** is forced. In other words, the value is converted into the desired 621 ** affinity even if that results in loss of data. This routine is 622 ** used (for example) to implement the SQL "cast()" operator. 623 */ 624 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ 625 if( pMem->flags & MEM_Null ) return; 626 switch( aff ){ 627 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ 628 if( (pMem->flags & MEM_Blob)==0 ){ 629 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 630 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 631 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); 632 }else{ 633 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); 634 } 635 break; 636 } 637 case SQLITE_AFF_NUMERIC: { 638 sqlite3VdbeMemNumerify(pMem); 639 break; 640 } 641 case SQLITE_AFF_INTEGER: { 642 sqlite3VdbeMemIntegerify(pMem); 643 break; 644 } 645 case SQLITE_AFF_REAL: { 646 sqlite3VdbeMemRealify(pMem); 647 break; 648 } 649 default: { 650 assert( aff==SQLITE_AFF_TEXT ); 651 assert( MEM_Str==(MEM_Blob>>3) ); 652 pMem->flags |= (pMem->flags&MEM_Blob)>>3; 653 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 654 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 655 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); 656 break; 657 } 658 } 659 } 660 661 /* 662 ** Initialize bulk memory to be a consistent Mem object. 663 ** 664 ** The minimum amount of initialization feasible is performed. 665 */ 666 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ 667 assert( (flags & ~MEM_TypeMask)==0 ); 668 pMem->flags = flags; 669 pMem->db = db; 670 pMem->szMalloc = 0; 671 } 672 673 674 /* 675 ** Delete any previous value and set the value stored in *pMem to NULL. 676 ** 677 ** This routine calls the Mem.xDel destructor to dispose of values that 678 ** require the destructor. But it preserves the Mem.zMalloc memory allocation. 679 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this 680 ** routine to invoke the destructor and deallocates Mem.zMalloc. 681 ** 682 ** Use this routine to reset the Mem prior to insert a new value. 683 ** 684 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. 685 */ 686 void sqlite3VdbeMemSetNull(Mem *pMem){ 687 if( VdbeMemDynamic(pMem) ){ 688 vdbeMemClearExternAndSetNull(pMem); 689 }else{ 690 pMem->flags = MEM_Null; 691 } 692 } 693 void sqlite3ValueSetNull(sqlite3_value *p){ 694 sqlite3VdbeMemSetNull((Mem*)p); 695 } 696 697 /* 698 ** Delete any previous value and set the value to be a BLOB of length 699 ** n containing all zeros. 700 */ 701 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 702 sqlite3VdbeMemRelease(pMem); 703 pMem->flags = MEM_Blob|MEM_Zero; 704 pMem->n = 0; 705 if( n<0 ) n = 0; 706 pMem->u.nZero = n; 707 pMem->enc = SQLITE_UTF8; 708 pMem->z = 0; 709 } 710 711 /* 712 ** The pMem is known to contain content that needs to be destroyed prior 713 ** to a value change. So invoke the destructor, then set the value to 714 ** a 64-bit integer. 715 */ 716 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ 717 sqlite3VdbeMemSetNull(pMem); 718 pMem->u.i = val; 719 pMem->flags = MEM_Int; 720 } 721 722 /* 723 ** Delete any previous value and set the value stored in *pMem to val, 724 ** manifest type INTEGER. 725 */ 726 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 727 if( VdbeMemDynamic(pMem) ){ 728 vdbeReleaseAndSetInt64(pMem, val); 729 }else{ 730 pMem->u.i = val; 731 pMem->flags = MEM_Int; 732 } 733 } 734 735 /* A no-op destructor */ 736 static void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } 737 738 /* 739 ** Set the value stored in *pMem should already be a NULL. 740 ** Also store a pointer to go with it. 741 */ 742 void sqlite3VdbeMemSetPointer( 743 Mem *pMem, 744 void *pPtr, 745 const char *zPType, 746 void (*xDestructor)(void*) 747 ){ 748 assert( pMem->flags==MEM_Null ); 749 pMem->u.zPType = zPType ? zPType : ""; 750 pMem->z = pPtr; 751 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term; 752 pMem->eSubtype = 'p'; 753 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor; 754 } 755 756 #ifndef SQLITE_OMIT_FLOATING_POINT 757 /* 758 ** Delete any previous value and set the value stored in *pMem to val, 759 ** manifest type REAL. 760 */ 761 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 762 sqlite3VdbeMemSetNull(pMem); 763 if( !sqlite3IsNaN(val) ){ 764 pMem->u.r = val; 765 pMem->flags = MEM_Real; 766 } 767 } 768 #endif 769 770 /* 771 ** Delete any previous value and set the value of pMem to be an 772 ** empty boolean index. 773 */ 774 void sqlite3VdbeMemSetRowSet(Mem *pMem){ 775 sqlite3 *db = pMem->db; 776 assert( db!=0 ); 777 assert( (pMem->flags & MEM_RowSet)==0 ); 778 sqlite3VdbeMemRelease(pMem); 779 pMem->zMalloc = sqlite3DbMallocRawNN(db, 64); 780 if( db->mallocFailed ){ 781 pMem->flags = MEM_Null; 782 pMem->szMalloc = 0; 783 }else{ 784 assert( pMem->zMalloc ); 785 pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc); 786 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc); 787 assert( pMem->u.pRowSet!=0 ); 788 pMem->flags = MEM_RowSet; 789 } 790 } 791 792 /* 793 ** Return true if the Mem object contains a TEXT or BLOB that is 794 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 795 */ 796 int sqlite3VdbeMemTooBig(Mem *p){ 797 assert( p->db!=0 ); 798 if( p->flags & (MEM_Str|MEM_Blob) ){ 799 int n = p->n; 800 if( p->flags & MEM_Zero ){ 801 n += p->u.nZero; 802 } 803 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 804 } 805 return 0; 806 } 807 808 #ifdef SQLITE_DEBUG 809 /* 810 ** This routine prepares a memory cell for modification by breaking 811 ** its link to a shallow copy and by marking any current shallow 812 ** copies of this cell as invalid. 813 ** 814 ** This is used for testing and debugging only - to make sure shallow 815 ** copies are not misused. 816 */ 817 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ 818 int i; 819 Mem *pX; 820 for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){ 821 if( pX->pScopyFrom==pMem ){ 822 pX->flags |= MEM_Undefined; 823 pX->pScopyFrom = 0; 824 } 825 } 826 pMem->pScopyFrom = 0; 827 } 828 #endif /* SQLITE_DEBUG */ 829 830 831 /* 832 ** Make an shallow copy of pFrom into pTo. Prior contents of 833 ** pTo are freed. The pFrom->z field is not duplicated. If 834 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 835 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 836 */ 837 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ 838 vdbeMemClearExternAndSetNull(pTo); 839 assert( !VdbeMemDynamic(pTo) ); 840 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); 841 } 842 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 843 assert( (pFrom->flags & MEM_RowSet)==0 ); 844 assert( pTo->db==pFrom->db ); 845 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } 846 memcpy(pTo, pFrom, MEMCELLSIZE); 847 if( (pFrom->flags&MEM_Static)==0 ){ 848 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 849 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 850 pTo->flags |= srcType; 851 } 852 } 853 854 /* 855 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 856 ** freed before the copy is made. 857 */ 858 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 859 int rc = SQLITE_OK; 860 861 assert( (pFrom->flags & MEM_RowSet)==0 ); 862 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); 863 memcpy(pTo, pFrom, MEMCELLSIZE); 864 pTo->flags &= ~MEM_Dyn; 865 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 866 if( 0==(pFrom->flags&MEM_Static) ){ 867 pTo->flags |= MEM_Ephem; 868 rc = sqlite3VdbeMemMakeWriteable(pTo); 869 } 870 } 871 872 return rc; 873 } 874 875 /* 876 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 877 ** freed. If pFrom contains ephemeral data, a copy is made. 878 ** 879 ** pFrom contains an SQL NULL when this routine returns. 880 */ 881 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 882 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 883 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 884 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 885 886 sqlite3VdbeMemRelease(pTo); 887 memcpy(pTo, pFrom, sizeof(Mem)); 888 pFrom->flags = MEM_Null; 889 pFrom->szMalloc = 0; 890 } 891 892 /* 893 ** Change the value of a Mem to be a string or a BLOB. 894 ** 895 ** The memory management strategy depends on the value of the xDel 896 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 897 ** string is copied into a (possibly existing) buffer managed by the 898 ** Mem structure. Otherwise, any existing buffer is freed and the 899 ** pointer copied. 900 ** 901 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH 902 ** size limit) then no memory allocation occurs. If the string can be 903 ** stored without allocating memory, then it is. If a memory allocation 904 ** is required to store the string, then value of pMem is unchanged. In 905 ** either case, SQLITE_TOOBIG is returned. 906 */ 907 int sqlite3VdbeMemSetStr( 908 Mem *pMem, /* Memory cell to set to string value */ 909 const char *z, /* String pointer */ 910 int n, /* Bytes in string, or negative */ 911 u8 enc, /* Encoding of z. 0 for BLOBs */ 912 void (*xDel)(void*) /* Destructor function */ 913 ){ 914 int nByte = n; /* New value for pMem->n */ 915 int iLimit; /* Maximum allowed string or blob size */ 916 u16 flags = 0; /* New value for pMem->flags */ 917 918 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 919 assert( (pMem->flags & MEM_RowSet)==0 ); 920 921 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 922 if( !z ){ 923 sqlite3VdbeMemSetNull(pMem); 924 return SQLITE_OK; 925 } 926 927 if( pMem->db ){ 928 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; 929 }else{ 930 iLimit = SQLITE_MAX_LENGTH; 931 } 932 flags = (enc==0?MEM_Blob:MEM_Str); 933 if( nByte<0 ){ 934 assert( enc!=0 ); 935 if( enc==SQLITE_UTF8 ){ 936 nByte = 0x7fffffff & (int)strlen(z); 937 if( nByte>iLimit ) nByte = iLimit+1; 938 }else{ 939 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} 940 } 941 flags |= MEM_Term; 942 } 943 944 /* The following block sets the new values of Mem.z and Mem.xDel. It 945 ** also sets a flag in local variable "flags" to indicate the memory 946 ** management (one of MEM_Dyn or MEM_Static). 947 */ 948 if( xDel==SQLITE_TRANSIENT ){ 949 int nAlloc = nByte; 950 if( flags&MEM_Term ){ 951 nAlloc += (enc==SQLITE_UTF8?1:2); 952 } 953 if( nByte>iLimit ){ 954 return SQLITE_TOOBIG; 955 } 956 testcase( nAlloc==0 ); 957 testcase( nAlloc==31 ); 958 testcase( nAlloc==32 ); 959 if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){ 960 return SQLITE_NOMEM_BKPT; 961 } 962 memcpy(pMem->z, z, nAlloc); 963 }else if( xDel==SQLITE_DYNAMIC ){ 964 sqlite3VdbeMemRelease(pMem); 965 pMem->zMalloc = pMem->z = (char *)z; 966 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 967 }else{ 968 sqlite3VdbeMemRelease(pMem); 969 pMem->z = (char *)z; 970 pMem->xDel = xDel; 971 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 972 } 973 974 pMem->n = nByte; 975 pMem->flags = flags; 976 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); 977 978 #ifndef SQLITE_OMIT_UTF16 979 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ 980 return SQLITE_NOMEM_BKPT; 981 } 982 #endif 983 984 if( nByte>iLimit ){ 985 return SQLITE_TOOBIG; 986 } 987 988 return SQLITE_OK; 989 } 990 991 /* 992 ** Move data out of a btree key or data field and into a Mem structure. 993 ** The data is payload from the entry that pCur is currently pointing 994 ** to. offset and amt determine what portion of the data or key to retrieve. 995 ** The result is written into the pMem element. 996 ** 997 ** The pMem object must have been initialized. This routine will use 998 ** pMem->zMalloc to hold the content from the btree, if possible. New 999 ** pMem->zMalloc space will be allocated if necessary. The calling routine 1000 ** is responsible for making sure that the pMem object is eventually 1001 ** destroyed. 1002 ** 1003 ** If this routine fails for any reason (malloc returns NULL or unable 1004 ** to read from the disk) then the pMem is left in an inconsistent state. 1005 */ 1006 static SQLITE_NOINLINE int vdbeMemFromBtreeResize( 1007 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1008 u32 offset, /* Offset from the start of data to return bytes from. */ 1009 u32 amt, /* Number of bytes to return. */ 1010 Mem *pMem /* OUT: Return data in this Mem structure. */ 1011 ){ 1012 int rc; 1013 pMem->flags = MEM_Null; 1014 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){ 1015 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z); 1016 if( rc==SQLITE_OK ){ 1017 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */ 1018 pMem->flags = MEM_Blob; 1019 pMem->n = (int)amt; 1020 }else{ 1021 sqlite3VdbeMemRelease(pMem); 1022 } 1023 } 1024 return rc; 1025 } 1026 int sqlite3VdbeMemFromBtree( 1027 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1028 u32 offset, /* Offset from the start of data to return bytes from. */ 1029 u32 amt, /* Number of bytes to return. */ 1030 Mem *pMem /* OUT: Return data in this Mem structure. */ 1031 ){ 1032 char *zData; /* Data from the btree layer */ 1033 u32 available = 0; /* Number of bytes available on the local btree page */ 1034 int rc = SQLITE_OK; /* Return code */ 1035 1036 assert( sqlite3BtreeCursorIsValid(pCur) ); 1037 assert( !VdbeMemDynamic(pMem) ); 1038 1039 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 1040 ** that both the BtShared and database handle mutexes are held. */ 1041 assert( (pMem->flags & MEM_RowSet)==0 ); 1042 zData = (char *)sqlite3BtreePayloadFetch(pCur, &available); 1043 assert( zData!=0 ); 1044 1045 if( offset+amt<=available ){ 1046 pMem->z = &zData[offset]; 1047 pMem->flags = MEM_Blob|MEM_Ephem; 1048 pMem->n = (int)amt; 1049 }else{ 1050 rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem); 1051 } 1052 1053 return rc; 1054 } 1055 1056 /* 1057 ** The pVal argument is known to be a value other than NULL. 1058 ** Convert it into a string with encoding enc and return a pointer 1059 ** to a zero-terminated version of that string. 1060 */ 1061 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ 1062 assert( pVal!=0 ); 1063 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1064 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1065 assert( (pVal->flags & MEM_RowSet)==0 ); 1066 assert( (pVal->flags & (MEM_Null))==0 ); 1067 if( pVal->flags & (MEM_Blob|MEM_Str) ){ 1068 if( ExpandBlob(pVal) ) return 0; 1069 pVal->flags |= MEM_Str; 1070 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ 1071 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 1072 } 1073 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ 1074 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 1075 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 1076 return 0; 1077 } 1078 } 1079 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ 1080 }else{ 1081 sqlite3VdbeMemStringify(pVal, enc, 0); 1082 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); 1083 } 1084 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 1085 || pVal->db->mallocFailed ); 1086 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 1087 return pVal->z; 1088 }else{ 1089 return 0; 1090 } 1091 } 1092 1093 /* This function is only available internally, it is not part of the 1094 ** external API. It works in a similar way to sqlite3_value_text(), 1095 ** except the data returned is in the encoding specified by the second 1096 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 1097 ** SQLITE_UTF8. 1098 ** 1099 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 1100 ** If that is the case, then the result must be aligned on an even byte 1101 ** boundary. 1102 */ 1103 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 1104 if( !pVal ) return 0; 1105 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1106 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1107 assert( (pVal->flags & MEM_RowSet)==0 ); 1108 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ 1109 return pVal->z; 1110 } 1111 if( pVal->flags&MEM_Null ){ 1112 return 0; 1113 } 1114 return valueToText(pVal, enc); 1115 } 1116 1117 /* 1118 ** Create a new sqlite3_value object. 1119 */ 1120 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 1121 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 1122 if( p ){ 1123 p->flags = MEM_Null; 1124 p->db = db; 1125 } 1126 return p; 1127 } 1128 1129 /* 1130 ** Context object passed by sqlite3Stat4ProbeSetValue() through to 1131 ** valueNew(). See comments above valueNew() for details. 1132 */ 1133 struct ValueNewStat4Ctx { 1134 Parse *pParse; 1135 Index *pIdx; 1136 UnpackedRecord **ppRec; 1137 int iVal; 1138 }; 1139 1140 /* 1141 ** Allocate and return a pointer to a new sqlite3_value object. If 1142 ** the second argument to this function is NULL, the object is allocated 1143 ** by calling sqlite3ValueNew(). 1144 ** 1145 ** Otherwise, if the second argument is non-zero, then this function is 1146 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not 1147 ** already been allocated, allocate the UnpackedRecord structure that 1148 ** that function will return to its caller here. Then return a pointer to 1149 ** an sqlite3_value within the UnpackedRecord.a[] array. 1150 */ 1151 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ 1152 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1153 if( p ){ 1154 UnpackedRecord *pRec = p->ppRec[0]; 1155 1156 if( pRec==0 ){ 1157 Index *pIdx = p->pIdx; /* Index being probed */ 1158 int nByte; /* Bytes of space to allocate */ 1159 int i; /* Counter variable */ 1160 int nCol = pIdx->nColumn; /* Number of index columns including rowid */ 1161 1162 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); 1163 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); 1164 if( pRec ){ 1165 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); 1166 if( pRec->pKeyInfo ){ 1167 assert( pRec->pKeyInfo->nAllField==nCol ); 1168 assert( pRec->pKeyInfo->enc==ENC(db) ); 1169 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); 1170 for(i=0; i<nCol; i++){ 1171 pRec->aMem[i].flags = MEM_Null; 1172 pRec->aMem[i].db = db; 1173 } 1174 }else{ 1175 sqlite3DbFreeNN(db, pRec); 1176 pRec = 0; 1177 } 1178 } 1179 if( pRec==0 ) return 0; 1180 p->ppRec[0] = pRec; 1181 } 1182 1183 pRec->nField = p->iVal+1; 1184 return &pRec->aMem[p->iVal]; 1185 } 1186 #else 1187 UNUSED_PARAMETER(p); 1188 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ 1189 return sqlite3ValueNew(db); 1190 } 1191 1192 /* 1193 ** The expression object indicated by the second argument is guaranteed 1194 ** to be a scalar SQL function. If 1195 ** 1196 ** * all function arguments are SQL literals, 1197 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and 1198 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, 1199 ** 1200 ** then this routine attempts to invoke the SQL function. Assuming no 1201 ** error occurs, output parameter (*ppVal) is set to point to a value 1202 ** object containing the result before returning SQLITE_OK. 1203 ** 1204 ** Affinity aff is applied to the result of the function before returning. 1205 ** If the result is a text value, the sqlite3_value object uses encoding 1206 ** enc. 1207 ** 1208 ** If the conditions above are not met, this function returns SQLITE_OK 1209 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to 1210 ** NULL and an SQLite error code returned. 1211 */ 1212 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1213 static int valueFromFunction( 1214 sqlite3 *db, /* The database connection */ 1215 Expr *p, /* The expression to evaluate */ 1216 u8 enc, /* Encoding to use */ 1217 u8 aff, /* Affinity to use */ 1218 sqlite3_value **ppVal, /* Write the new value here */ 1219 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1220 ){ 1221 sqlite3_context ctx; /* Context object for function invocation */ 1222 sqlite3_value **apVal = 0; /* Function arguments */ 1223 int nVal = 0; /* Size of apVal[] array */ 1224 FuncDef *pFunc = 0; /* Function definition */ 1225 sqlite3_value *pVal = 0; /* New value */ 1226 int rc = SQLITE_OK; /* Return code */ 1227 ExprList *pList = 0; /* Function arguments */ 1228 int i; /* Iterator variable */ 1229 1230 assert( pCtx!=0 ); 1231 assert( (p->flags & EP_TokenOnly)==0 ); 1232 pList = p->x.pList; 1233 if( pList ) nVal = pList->nExpr; 1234 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); 1235 assert( pFunc ); 1236 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 1237 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 1238 ){ 1239 return SQLITE_OK; 1240 } 1241 1242 if( pList ){ 1243 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); 1244 if( apVal==0 ){ 1245 rc = SQLITE_NOMEM_BKPT; 1246 goto value_from_function_out; 1247 } 1248 for(i=0; i<nVal; i++){ 1249 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); 1250 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; 1251 } 1252 } 1253 1254 pVal = valueNew(db, pCtx); 1255 if( pVal==0 ){ 1256 rc = SQLITE_NOMEM_BKPT; 1257 goto value_from_function_out; 1258 } 1259 1260 assert( pCtx->pParse->rc==SQLITE_OK ); 1261 memset(&ctx, 0, sizeof(ctx)); 1262 ctx.pOut = pVal; 1263 ctx.pFunc = pFunc; 1264 pFunc->xSFunc(&ctx, nVal, apVal); 1265 if( ctx.isError ){ 1266 rc = ctx.isError; 1267 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); 1268 }else{ 1269 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); 1270 assert( rc==SQLITE_OK ); 1271 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1272 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ 1273 rc = SQLITE_TOOBIG; 1274 pCtx->pParse->nErr++; 1275 } 1276 } 1277 pCtx->pParse->rc = rc; 1278 1279 value_from_function_out: 1280 if( rc!=SQLITE_OK ){ 1281 pVal = 0; 1282 } 1283 if( apVal ){ 1284 for(i=0; i<nVal; i++){ 1285 sqlite3ValueFree(apVal[i]); 1286 } 1287 sqlite3DbFreeNN(db, apVal); 1288 } 1289 1290 *ppVal = pVal; 1291 return rc; 1292 } 1293 #else 1294 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK 1295 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ 1296 1297 /* 1298 ** Extract a value from the supplied expression in the manner described 1299 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object 1300 ** using valueNew(). 1301 ** 1302 ** If pCtx is NULL and an error occurs after the sqlite3_value object 1303 ** has been allocated, it is freed before returning. Or, if pCtx is not 1304 ** NULL, it is assumed that the caller will free any allocated object 1305 ** in all cases. 1306 */ 1307 static int valueFromExpr( 1308 sqlite3 *db, /* The database connection */ 1309 Expr *pExpr, /* The expression to evaluate */ 1310 u8 enc, /* Encoding to use */ 1311 u8 affinity, /* Affinity to use */ 1312 sqlite3_value **ppVal, /* Write the new value here */ 1313 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1314 ){ 1315 int op; 1316 char *zVal = 0; 1317 sqlite3_value *pVal = 0; 1318 int negInt = 1; 1319 const char *zNeg = ""; 1320 int rc = SQLITE_OK; 1321 1322 assert( pExpr!=0 ); 1323 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; 1324 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; 1325 1326 /* Compressed expressions only appear when parsing the DEFAULT clause 1327 ** on a table column definition, and hence only when pCtx==0. This 1328 ** check ensures that an EP_TokenOnly expression is never passed down 1329 ** into valueFromFunction(). */ 1330 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); 1331 1332 if( op==TK_CAST ){ 1333 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0); 1334 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); 1335 testcase( rc!=SQLITE_OK ); 1336 if( *ppVal ){ 1337 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); 1338 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); 1339 } 1340 return rc; 1341 } 1342 1343 /* Handle negative integers in a single step. This is needed in the 1344 ** case when the value is -9223372036854775808. 1345 */ 1346 if( op==TK_UMINUS 1347 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ 1348 pExpr = pExpr->pLeft; 1349 op = pExpr->op; 1350 negInt = -1; 1351 zNeg = "-"; 1352 } 1353 1354 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 1355 pVal = valueNew(db, pCtx); 1356 if( pVal==0 ) goto no_mem; 1357 if( ExprHasProperty(pExpr, EP_IntValue) ){ 1358 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); 1359 }else{ 1360 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); 1361 if( zVal==0 ) goto no_mem; 1362 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); 1363 } 1364 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ 1365 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); 1366 }else{ 1367 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); 1368 } 1369 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str; 1370 if( enc!=SQLITE_UTF8 ){ 1371 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1372 } 1373 }else if( op==TK_UMINUS ) { 1374 /* This branch happens for multiple negative signs. Ex: -(-5) */ 1375 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) 1376 && pVal!=0 1377 ){ 1378 sqlite3VdbeMemNumerify(pVal); 1379 if( pVal->flags & MEM_Real ){ 1380 pVal->u.r = -pVal->u.r; 1381 }else if( pVal->u.i==SMALLEST_INT64 ){ 1382 pVal->u.r = -(double)SMALLEST_INT64; 1383 MemSetTypeFlag(pVal, MEM_Real); 1384 }else{ 1385 pVal->u.i = -pVal->u.i; 1386 } 1387 sqlite3ValueApplyAffinity(pVal, affinity, enc); 1388 } 1389 }else if( op==TK_NULL ){ 1390 pVal = valueNew(db, pCtx); 1391 if( pVal==0 ) goto no_mem; 1392 sqlite3VdbeMemNumerify(pVal); 1393 } 1394 #ifndef SQLITE_OMIT_BLOB_LITERAL 1395 else if( op==TK_BLOB ){ 1396 int nVal; 1397 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 1398 assert( pExpr->u.zToken[1]=='\'' ); 1399 pVal = valueNew(db, pCtx); 1400 if( !pVal ) goto no_mem; 1401 zVal = &pExpr->u.zToken[2]; 1402 nVal = sqlite3Strlen30(zVal)-1; 1403 assert( zVal[nVal]=='\'' ); 1404 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 1405 0, SQLITE_DYNAMIC); 1406 } 1407 #endif 1408 1409 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1410 else if( op==TK_FUNCTION && pCtx!=0 ){ 1411 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); 1412 } 1413 #endif 1414 1415 *ppVal = pVal; 1416 return rc; 1417 1418 no_mem: 1419 sqlite3OomFault(db); 1420 sqlite3DbFree(db, zVal); 1421 assert( *ppVal==0 ); 1422 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1423 if( pCtx==0 ) sqlite3ValueFree(pVal); 1424 #else 1425 assert( pCtx==0 ); sqlite3ValueFree(pVal); 1426 #endif 1427 return SQLITE_NOMEM_BKPT; 1428 } 1429 1430 /* 1431 ** Create a new sqlite3_value object, containing the value of pExpr. 1432 ** 1433 ** This only works for very simple expressions that consist of one constant 1434 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 1435 ** be converted directly into a value, then the value is allocated and 1436 ** a pointer written to *ppVal. The caller is responsible for deallocating 1437 ** the value by passing it to sqlite3ValueFree() later on. If the expression 1438 ** cannot be converted to a value, then *ppVal is set to NULL. 1439 */ 1440 int sqlite3ValueFromExpr( 1441 sqlite3 *db, /* The database connection */ 1442 Expr *pExpr, /* The expression to evaluate */ 1443 u8 enc, /* Encoding to use */ 1444 u8 affinity, /* Affinity to use */ 1445 sqlite3_value **ppVal /* Write the new value here */ 1446 ){ 1447 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; 1448 } 1449 1450 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1451 /* 1452 ** The implementation of the sqlite_record() function. This function accepts 1453 ** a single argument of any type. The return value is a formatted database 1454 ** record (a blob) containing the argument value. 1455 ** 1456 ** This is used to convert the value stored in the 'sample' column of the 1457 ** sqlite_stat3 table to the record format SQLite uses internally. 1458 */ 1459 static void recordFunc( 1460 sqlite3_context *context, 1461 int argc, 1462 sqlite3_value **argv 1463 ){ 1464 const int file_format = 1; 1465 u32 iSerial; /* Serial type */ 1466 int nSerial; /* Bytes of space for iSerial as varint */ 1467 u32 nVal; /* Bytes of space required for argv[0] */ 1468 int nRet; 1469 sqlite3 *db; 1470 u8 *aRet; 1471 1472 UNUSED_PARAMETER( argc ); 1473 iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal); 1474 nSerial = sqlite3VarintLen(iSerial); 1475 db = sqlite3_context_db_handle(context); 1476 1477 nRet = 1 + nSerial + nVal; 1478 aRet = sqlite3DbMallocRawNN(db, nRet); 1479 if( aRet==0 ){ 1480 sqlite3_result_error_nomem(context); 1481 }else{ 1482 aRet[0] = nSerial+1; 1483 putVarint32(&aRet[1], iSerial); 1484 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial); 1485 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT); 1486 sqlite3DbFreeNN(db, aRet); 1487 } 1488 } 1489 1490 /* 1491 ** Register built-in functions used to help read ANALYZE data. 1492 */ 1493 void sqlite3AnalyzeFunctions(void){ 1494 static FuncDef aAnalyzeTableFuncs[] = { 1495 FUNCTION(sqlite_record, 1, 0, 0, recordFunc), 1496 }; 1497 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs)); 1498 } 1499 1500 /* 1501 ** Attempt to extract a value from pExpr and use it to construct *ppVal. 1502 ** 1503 ** If pAlloc is not NULL, then an UnpackedRecord object is created for 1504 ** pAlloc if one does not exist and the new value is added to the 1505 ** UnpackedRecord object. 1506 ** 1507 ** A value is extracted in the following cases: 1508 ** 1509 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1510 ** 1511 ** * The expression is a bound variable, and this is a reprepare, or 1512 ** 1513 ** * The expression is a literal value. 1514 ** 1515 ** On success, *ppVal is made to point to the extracted value. The caller 1516 ** is responsible for ensuring that the value is eventually freed. 1517 */ 1518 static int stat4ValueFromExpr( 1519 Parse *pParse, /* Parse context */ 1520 Expr *pExpr, /* The expression to extract a value from */ 1521 u8 affinity, /* Affinity to use */ 1522 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ 1523 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1524 ){ 1525 int rc = SQLITE_OK; 1526 sqlite3_value *pVal = 0; 1527 sqlite3 *db = pParse->db; 1528 1529 /* Skip over any TK_COLLATE nodes */ 1530 pExpr = sqlite3ExprSkipCollate(pExpr); 1531 1532 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE ); 1533 if( !pExpr ){ 1534 pVal = valueNew(db, pAlloc); 1535 if( pVal ){ 1536 sqlite3VdbeMemSetNull((Mem*)pVal); 1537 } 1538 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 1539 Vdbe *v; 1540 int iBindVar = pExpr->iColumn; 1541 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); 1542 if( (v = pParse->pReprepare)!=0 ){ 1543 pVal = valueNew(db, pAlloc); 1544 if( pVal ){ 1545 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); 1546 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); 1547 pVal->db = pParse->db; 1548 } 1549 } 1550 }else{ 1551 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); 1552 } 1553 1554 assert( pVal==0 || pVal->db==db ); 1555 *ppVal = pVal; 1556 return rc; 1557 } 1558 1559 /* 1560 ** This function is used to allocate and populate UnpackedRecord 1561 ** structures intended to be compared against sample index keys stored 1562 ** in the sqlite_stat4 table. 1563 ** 1564 ** A single call to this function populates zero or more fields of the 1565 ** record starting with field iVal (fields are numbered from left to 1566 ** right starting with 0). A single field is populated if: 1567 ** 1568 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1569 ** 1570 ** * The expression is a bound variable, and this is a reprepare, or 1571 ** 1572 ** * The sqlite3ValueFromExpr() function is able to extract a value 1573 ** from the expression (i.e. the expression is a literal value). 1574 ** 1575 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the 1576 ** vector components that match either of the two latter criteria listed 1577 ** above. 1578 ** 1579 ** Before any value is appended to the record, the affinity of the 1580 ** corresponding column within index pIdx is applied to it. Before 1581 ** this function returns, output parameter *pnExtract is set to the 1582 ** number of values appended to the record. 1583 ** 1584 ** When this function is called, *ppRec must either point to an object 1585 ** allocated by an earlier call to this function, or must be NULL. If it 1586 ** is NULL and a value can be successfully extracted, a new UnpackedRecord 1587 ** is allocated (and *ppRec set to point to it) before returning. 1588 ** 1589 ** Unless an error is encountered, SQLITE_OK is returned. It is not an 1590 ** error if a value cannot be extracted from pExpr. If an error does 1591 ** occur, an SQLite error code is returned. 1592 */ 1593 int sqlite3Stat4ProbeSetValue( 1594 Parse *pParse, /* Parse context */ 1595 Index *pIdx, /* Index being probed */ 1596 UnpackedRecord **ppRec, /* IN/OUT: Probe record */ 1597 Expr *pExpr, /* The expression to extract a value from */ 1598 int nElem, /* Maximum number of values to append */ 1599 int iVal, /* Array element to populate */ 1600 int *pnExtract /* OUT: Values appended to the record */ 1601 ){ 1602 int rc = SQLITE_OK; 1603 int nExtract = 0; 1604 1605 if( pExpr==0 || pExpr->op!=TK_SELECT ){ 1606 int i; 1607 struct ValueNewStat4Ctx alloc; 1608 1609 alloc.pParse = pParse; 1610 alloc.pIdx = pIdx; 1611 alloc.ppRec = ppRec; 1612 1613 for(i=0; i<nElem; i++){ 1614 sqlite3_value *pVal = 0; 1615 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0); 1616 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i); 1617 alloc.iVal = iVal+i; 1618 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); 1619 if( !pVal ) break; 1620 nExtract++; 1621 } 1622 } 1623 1624 *pnExtract = nExtract; 1625 return rc; 1626 } 1627 1628 /* 1629 ** Attempt to extract a value from expression pExpr using the methods 1630 ** as described for sqlite3Stat4ProbeSetValue() above. 1631 ** 1632 ** If successful, set *ppVal to point to a new value object and return 1633 ** SQLITE_OK. If no value can be extracted, but no other error occurs 1634 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error 1635 ** does occur, return an SQLite error code. The final value of *ppVal 1636 ** is undefined in this case. 1637 */ 1638 int sqlite3Stat4ValueFromExpr( 1639 Parse *pParse, /* Parse context */ 1640 Expr *pExpr, /* The expression to extract a value from */ 1641 u8 affinity, /* Affinity to use */ 1642 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1643 ){ 1644 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); 1645 } 1646 1647 /* 1648 ** Extract the iCol-th column from the nRec-byte record in pRec. Write 1649 ** the column value into *ppVal. If *ppVal is initially NULL then a new 1650 ** sqlite3_value object is allocated. 1651 ** 1652 ** If *ppVal is initially NULL then the caller is responsible for 1653 ** ensuring that the value written into *ppVal is eventually freed. 1654 */ 1655 int sqlite3Stat4Column( 1656 sqlite3 *db, /* Database handle */ 1657 const void *pRec, /* Pointer to buffer containing record */ 1658 int nRec, /* Size of buffer pRec in bytes */ 1659 int iCol, /* Column to extract */ 1660 sqlite3_value **ppVal /* OUT: Extracted value */ 1661 ){ 1662 u32 t; /* a column type code */ 1663 int nHdr; /* Size of the header in the record */ 1664 int iHdr; /* Next unread header byte */ 1665 int iField; /* Next unread data byte */ 1666 int szField; /* Size of the current data field */ 1667 int i; /* Column index */ 1668 u8 *a = (u8*)pRec; /* Typecast byte array */ 1669 Mem *pMem = *ppVal; /* Write result into this Mem object */ 1670 1671 assert( iCol>0 ); 1672 iHdr = getVarint32(a, nHdr); 1673 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; 1674 iField = nHdr; 1675 for(i=0; i<=iCol; i++){ 1676 iHdr += getVarint32(&a[iHdr], t); 1677 testcase( iHdr==nHdr ); 1678 testcase( iHdr==nHdr+1 ); 1679 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; 1680 szField = sqlite3VdbeSerialTypeLen(t); 1681 iField += szField; 1682 } 1683 testcase( iField==nRec ); 1684 testcase( iField==nRec+1 ); 1685 if( iField>nRec ) return SQLITE_CORRUPT_BKPT; 1686 if( pMem==0 ){ 1687 pMem = *ppVal = sqlite3ValueNew(db); 1688 if( pMem==0 ) return SQLITE_NOMEM_BKPT; 1689 } 1690 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); 1691 pMem->enc = ENC(db); 1692 return SQLITE_OK; 1693 } 1694 1695 /* 1696 ** Unless it is NULL, the argument must be an UnpackedRecord object returned 1697 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes 1698 ** the object. 1699 */ 1700 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ 1701 if( pRec ){ 1702 int i; 1703 int nCol = pRec->pKeyInfo->nAllField; 1704 Mem *aMem = pRec->aMem; 1705 sqlite3 *db = aMem[0].db; 1706 for(i=0; i<nCol; i++){ 1707 sqlite3VdbeMemRelease(&aMem[i]); 1708 } 1709 sqlite3KeyInfoUnref(pRec->pKeyInfo); 1710 sqlite3DbFreeNN(db, pRec); 1711 } 1712 } 1713 #endif /* ifdef SQLITE_ENABLE_STAT4 */ 1714 1715 /* 1716 ** Change the string value of an sqlite3_value object 1717 */ 1718 void sqlite3ValueSetStr( 1719 sqlite3_value *v, /* Value to be set */ 1720 int n, /* Length of string z */ 1721 const void *z, /* Text of the new string */ 1722 u8 enc, /* Encoding to use */ 1723 void (*xDel)(void*) /* Destructor for the string */ 1724 ){ 1725 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 1726 } 1727 1728 /* 1729 ** Free an sqlite3_value object 1730 */ 1731 void sqlite3ValueFree(sqlite3_value *v){ 1732 if( !v ) return; 1733 sqlite3VdbeMemRelease((Mem *)v); 1734 sqlite3DbFreeNN(((Mem*)v)->db, v); 1735 } 1736 1737 /* 1738 ** The sqlite3ValueBytes() routine returns the number of bytes in the 1739 ** sqlite3_value object assuming that it uses the encoding "enc". 1740 ** The valueBytes() routine is a helper function. 1741 */ 1742 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ 1743 return valueToText(pVal, enc)!=0 ? pVal->n : 0; 1744 } 1745 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1746 Mem *p = (Mem*)pVal; 1747 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); 1748 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ 1749 return p->n; 1750 } 1751 if( (p->flags & MEM_Blob)!=0 ){ 1752 if( p->flags & MEM_Zero ){ 1753 return p->n + p->u.nZero; 1754 }else{ 1755 return p->n; 1756 } 1757 } 1758 if( p->flags & MEM_Null ) return 0; 1759 return valueBytes(pVal, enc); 1760 } 1761