1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include "os.h" 20 #include <ctype.h> 21 #include "vdbeInt.h" 22 23 /* 24 ** If pMem is an object with a valid string representation, this routine 25 ** ensures the internal encoding for the string representation is 26 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 27 ** 28 ** If pMem is not a string object, or the encoding of the string 29 ** representation is already stored using the requested encoding, then this 30 ** routine is a no-op. 31 ** 32 ** SQLITE_OK is returned if the conversion is successful (or not required). 33 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 34 ** between formats. 35 */ 36 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 37 int rc; 38 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ 39 return SQLITE_OK; 40 } 41 #ifdef SQLITE_OMIT_UTF16 42 return SQLITE_ERROR; 43 #else 44 rc = sqlite3VdbeMemTranslate(pMem, desiredEnc); 45 if( rc==SQLITE_NOMEM ){ 46 sqlite3VdbeMemRelease(pMem); 47 pMem->flags = MEM_Null; 48 pMem->z = 0; 49 } 50 return rc; 51 #endif 52 } 53 54 /* 55 ** Make the given Mem object MEM_Dyn. 56 ** 57 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 58 */ 59 int sqlite3VdbeMemDynamicify(Mem *pMem){ 60 int n = pMem->n; 61 u8 *z; 62 if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){ 63 return SQLITE_OK; 64 } 65 assert( (pMem->flags & MEM_Dyn)==0 ); 66 assert( pMem->flags & (MEM_Str|MEM_Blob) ); 67 z = sqliteMallocRaw( n+2 ); 68 if( z==0 ){ 69 return SQLITE_NOMEM; 70 } 71 pMem->flags |= MEM_Dyn|MEM_Term; 72 pMem->xDel = 0; 73 memcpy(z, pMem->z, n ); 74 z[n] = 0; 75 z[n+1] = 0; 76 pMem->z = z; 77 pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short); 78 return SQLITE_OK; 79 } 80 81 /* 82 ** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes 83 ** of the Mem.z[] array can be modified. 84 ** 85 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 86 */ 87 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 88 int n; 89 u8 *z; 90 if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){ 91 return SQLITE_OK; 92 } 93 assert( (pMem->flags & MEM_Dyn)==0 ); 94 assert( pMem->flags & (MEM_Str|MEM_Blob) ); 95 if( (n = pMem->n)+2<sizeof(pMem->zShort) ){ 96 z = pMem->zShort; 97 pMem->flags |= MEM_Short|MEM_Term; 98 }else{ 99 z = sqliteMallocRaw( n+2 ); 100 if( z==0 ){ 101 return SQLITE_NOMEM; 102 } 103 pMem->flags |= MEM_Dyn|MEM_Term; 104 pMem->xDel = 0; 105 } 106 memcpy(z, pMem->z, n ); 107 z[n] = 0; 108 z[n+1] = 0; 109 pMem->z = z; 110 pMem->flags &= ~(MEM_Ephem|MEM_Static); 111 return SQLITE_OK; 112 } 113 114 /* 115 ** Make sure the given Mem is \u0000 terminated. 116 */ 117 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 118 /* In SQLite, a string without a nul terminator occurs when a string 119 ** is loaded from disk (in this case the memory management is ephemeral), 120 ** or when it is supplied by the user as a bound variable or function 121 ** return value. Therefore, the memory management of the string must be 122 ** either ephemeral, static or controlled by a user-supplied destructor. 123 */ 124 assert( 125 !(pMem->flags&MEM_Str) || /* it's not a string, or */ 126 (pMem->flags&MEM_Term) || /* it's nul term. already, or */ 127 (pMem->flags&(MEM_Ephem|MEM_Static)) || /* it's static or ephem, or */ 128 (pMem->flags&MEM_Dyn && pMem->xDel) /* external management */ 129 ); 130 if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ 131 return SQLITE_OK; /* Nothing to do */ 132 } 133 134 if( pMem->flags & (MEM_Static|MEM_Ephem) ){ 135 return sqlite3VdbeMemMakeWriteable(pMem); 136 }else{ 137 char *z = sqliteMalloc(pMem->n+2); 138 if( !z ) return SQLITE_NOMEM; 139 memcpy(z, pMem->z, pMem->n); 140 z[pMem->n] = 0; 141 z[pMem->n+1] = 0; 142 pMem->xDel(pMem->z); 143 pMem->xDel = 0; 144 pMem->z = z; 145 } 146 return SQLITE_OK; 147 } 148 149 /* 150 ** Add MEM_Str to the set of representations for the given Mem. Numbers 151 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string 152 ** is a no-op. 153 ** 154 ** Existing representations MEM_Int and MEM_Real are *not* invalidated. 155 ** 156 ** A MEM_Null value will never be passed to this function. This function is 157 ** used for converting values to text for returning to the user (i.e. via 158 ** sqlite3_value_text()), or for ensuring that values to be used as btree 159 ** keys are strings. In the former case a NULL pointer is returned the 160 ** user and the later is an internal programming error. 161 */ 162 int sqlite3VdbeMemStringify(Mem *pMem, int enc){ 163 int rc = SQLITE_OK; 164 int fg = pMem->flags; 165 u8 *z = pMem->zShort; 166 167 assert( !(fg&(MEM_Str|MEM_Blob)) ); 168 assert( fg&(MEM_Int|MEM_Real) ); 169 170 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8 171 ** string representation of the value. Then, if the required encoding 172 ** is UTF-16le or UTF-16be do a translation. 173 ** 174 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. 175 */ 176 if( fg & MEM_Real ){ 177 sqlite3_snprintf(NBFS, z, "%.15g", pMem->r); 178 }else{ 179 assert( fg & MEM_Int ); 180 sqlite3_snprintf(NBFS, z, "%lld", pMem->i); 181 } 182 pMem->n = strlen(z); 183 pMem->z = z; 184 pMem->enc = SQLITE_UTF8; 185 pMem->flags |= MEM_Str | MEM_Short | MEM_Term; 186 sqlite3VdbeChangeEncoding(pMem, enc); 187 return rc; 188 } 189 190 /* 191 ** Release any memory held by the Mem. This may leave the Mem in an 192 ** inconsistent state, for example with (Mem.z==0) and 193 ** (Mem.type==SQLITE_TEXT). 194 */ 195 void sqlite3VdbeMemRelease(Mem *p){ 196 if( p->flags & MEM_Dyn ){ 197 if( p->xDel ){ 198 p->xDel((void *)p->z); 199 }else{ 200 sqliteFree(p->z); 201 } 202 p->z = 0; 203 p->xDel = 0; 204 } 205 } 206 207 /* 208 ** Return some kind of integer value which is the best we can do 209 ** at representing the value that *pMem describes as an integer. 210 ** If pMem is an integer, then the value is exact. If pMem is 211 ** a floating-point then the value returned is the integer part. 212 ** If pMem is a string or blob, then we make an attempt to convert 213 ** it into a integer and return that. If pMem is NULL, return 0. 214 ** 215 ** If pMem is a string, its encoding might be changed. 216 */ 217 i64 sqlite3VdbeIntValue(Mem *pMem){ 218 int flags = pMem->flags; 219 if( flags & MEM_Int ){ 220 return pMem->i; 221 }else if( flags & MEM_Real ){ 222 return (i64)pMem->r; 223 }else if( flags & (MEM_Str|MEM_Blob) ){ 224 i64 value; 225 if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) 226 || sqlite3VdbeMemNulTerminate(pMem) ){ 227 return SQLITE_NOMEM; 228 } 229 assert( pMem->z ); 230 sqlite3atoi64(pMem->z, &value); 231 return value; 232 }else{ 233 return 0; 234 } 235 } 236 237 /* 238 ** Convert pMem to type integer. Invalidate any prior representations. 239 */ 240 int sqlite3VdbeMemIntegerify(Mem *pMem){ 241 pMem->i = sqlite3VdbeIntValue(pMem); 242 sqlite3VdbeMemRelease(pMem); 243 pMem->flags = MEM_Int; 244 return SQLITE_OK; 245 } 246 247 /* 248 ** Return the best representation of pMem that we can get into a 249 ** double. If pMem is already a double or an integer, return its 250 ** value. If it is a string or blob, try to convert it to a double. 251 ** If it is a NULL, return 0.0. 252 */ 253 double sqlite3VdbeRealValue(Mem *pMem){ 254 if( pMem->flags & MEM_Real ){ 255 return pMem->r; 256 }else if( pMem->flags & MEM_Int ){ 257 return (double)pMem->i; 258 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 259 double val = 0.0; 260 if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) 261 || sqlite3VdbeMemNulTerminate(pMem) ){ 262 return SQLITE_NOMEM; 263 } 264 assert( pMem->z ); 265 sqlite3AtoF(pMem->z, &val); 266 return val; 267 }else{ 268 return 0.0; 269 } 270 } 271 272 /* 273 ** Convert pMem so that it is of type MEM_Real. Invalidate any 274 ** prior representations. 275 */ 276 int sqlite3VdbeMemRealify(Mem *pMem){ 277 pMem->r = sqlite3VdbeRealValue(pMem); 278 sqlite3VdbeMemRelease(pMem); 279 pMem->flags = MEM_Real; 280 return SQLITE_OK; 281 } 282 283 /* 284 ** Delete any previous value and set the value stored in *pMem to NULL. 285 */ 286 void sqlite3VdbeMemSetNull(Mem *pMem){ 287 sqlite3VdbeMemRelease(pMem); 288 pMem->flags = MEM_Null; 289 pMem->type = SQLITE_NULL; 290 } 291 292 /* 293 ** Delete any previous value and set the value stored in *pMem to val, 294 ** manifest type INTEGER. 295 */ 296 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 297 sqlite3VdbeMemRelease(pMem); 298 pMem->i = val; 299 pMem->flags = MEM_Int; 300 pMem->type = SQLITE_INTEGER; 301 } 302 303 /* 304 ** Delete any previous value and set the value stored in *pMem to val, 305 ** manifest type REAL. 306 */ 307 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 308 sqlite3VdbeMemRelease(pMem); 309 pMem->r = val; 310 pMem->flags = MEM_Real; 311 pMem->type = SQLITE_FLOAT; 312 } 313 314 /* 315 ** Make an shallow copy of pFrom into pTo. Prior contents of 316 ** pTo are overwritten. The pFrom->z field is not duplicated. If 317 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 318 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 319 */ 320 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 321 memcpy(pTo, pFrom, sizeof(*pFrom)-sizeof(pFrom->zShort)); 322 pTo->xDel = 0; 323 if( pTo->flags & (MEM_Str|MEM_Blob) ){ 324 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short|MEM_Ephem); 325 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 326 pTo->flags |= srcType; 327 } 328 } 329 330 /* 331 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 332 ** freed before the copy is made. 333 */ 334 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 335 int rc; 336 if( pTo->flags & MEM_Dyn ){ 337 sqlite3VdbeMemRelease(pTo); 338 } 339 sqlite3VdbeMemShallowCopy(pTo, pFrom, MEM_Ephem); 340 if( pTo->flags & MEM_Ephem ){ 341 rc = sqlite3VdbeMemMakeWriteable(pTo); 342 }else{ 343 rc = SQLITE_OK; 344 } 345 return rc; 346 } 347 348 /* 349 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 350 ** freed. If pFrom contains ephemeral data, a copy is made. 351 ** 352 ** pFrom contains an SQL NULL when this routine returns. SQLITE_NOMEM 353 ** might be returned if pFrom held ephemeral data and we were unable 354 ** to allocate enough space to make a copy. 355 */ 356 int sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 357 int rc; 358 if( pTo->flags & MEM_Dyn ){ 359 sqlite3VdbeMemRelease(pTo); 360 } 361 memcpy(pTo, pFrom, sizeof(Mem)); 362 if( pFrom->flags & MEM_Short ){ 363 pTo->z = pTo->zShort; 364 } 365 pFrom->flags = MEM_Null; 366 pFrom->xDel = 0; 367 if( pTo->flags & MEM_Ephem ){ 368 rc = sqlite3VdbeMemMakeWriteable(pTo); 369 }else{ 370 rc = SQLITE_OK; 371 } 372 return rc; 373 } 374 375 /* 376 ** Change the value of a Mem to be a string or a BLOB. 377 */ 378 int sqlite3VdbeMemSetStr( 379 Mem *pMem, /* Memory cell to set to string value */ 380 const char *z, /* String pointer */ 381 int n, /* Bytes in string, or negative */ 382 u8 enc, /* Encoding of z. 0 for BLOBs */ 383 void (*xDel)(void*) /* Destructor function */ 384 ){ 385 sqlite3VdbeMemRelease(pMem); 386 if( !z ){ 387 pMem->flags = MEM_Null; 388 pMem->type = SQLITE_NULL; 389 return SQLITE_OK; 390 } 391 392 pMem->z = (char *)z; 393 if( xDel==SQLITE_STATIC ){ 394 pMem->flags = MEM_Static; 395 }else if( xDel==SQLITE_TRANSIENT ){ 396 pMem->flags = MEM_Ephem; 397 }else{ 398 pMem->flags = MEM_Dyn; 399 pMem->xDel = xDel; 400 } 401 402 pMem->enc = enc; 403 pMem->type = enc==0 ? SQLITE_BLOB : SQLITE_TEXT; 404 pMem->n = n; 405 406 assert( enc==0 || enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE 407 || enc==SQLITE_UTF16BE ); 408 switch( enc ){ 409 case 0: 410 pMem->flags |= MEM_Blob; 411 pMem->enc = SQLITE_UTF8; 412 break; 413 414 case SQLITE_UTF8: 415 pMem->flags |= MEM_Str; 416 if( n<0 ){ 417 pMem->n = strlen(z); 418 pMem->flags |= MEM_Term; 419 } 420 break; 421 422 #ifndef SQLITE_OMIT_UTF16 423 case SQLITE_UTF16LE: 424 case SQLITE_UTF16BE: 425 pMem->flags |= MEM_Str; 426 if( pMem->n<0 ){ 427 pMem->n = sqlite3utf16ByteLen(pMem->z,-1); 428 pMem->flags |= MEM_Term; 429 } 430 if( sqlite3VdbeMemHandleBom(pMem) ){ 431 return SQLITE_NOMEM; 432 } 433 #endif /* SQLITE_OMIT_UTF16 */ 434 } 435 if( pMem->flags&MEM_Ephem ){ 436 return sqlite3VdbeMemMakeWriteable(pMem); 437 } 438 return SQLITE_OK; 439 } 440 441 /* 442 ** Compare the values contained by the two memory cells, returning 443 ** negative, zero or positive if pMem1 is less than, equal to, or greater 444 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 445 ** and reals) sorted numerically, followed by text ordered by the collating 446 ** sequence pColl and finally blob's ordered by memcmp(). 447 ** 448 ** Two NULL values are considered equal by this function. 449 */ 450 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 451 int rc; 452 int f1, f2; 453 int combined_flags; 454 455 /* Interchange pMem1 and pMem2 if the collating sequence specifies 456 ** DESC order. 457 */ 458 f1 = pMem1->flags; 459 f2 = pMem2->flags; 460 combined_flags = f1|f2; 461 462 /* If one value is NULL, it is less than the other. If both values 463 ** are NULL, return 0. 464 */ 465 if( combined_flags&MEM_Null ){ 466 return (f2&MEM_Null) - (f1&MEM_Null); 467 } 468 469 /* If one value is a number and the other is not, the number is less. 470 ** If both are numbers, compare as reals if one is a real, or as integers 471 ** if both values are integers. 472 */ 473 if( combined_flags&(MEM_Int|MEM_Real) ){ 474 if( !(f1&(MEM_Int|MEM_Real)) ){ 475 return 1; 476 } 477 if( !(f2&(MEM_Int|MEM_Real)) ){ 478 return -1; 479 } 480 if( (f1 & f2 & MEM_Int)==0 ){ 481 double r1, r2; 482 if( (f1&MEM_Real)==0 ){ 483 r1 = pMem1->i; 484 }else{ 485 r1 = pMem1->r; 486 } 487 if( (f2&MEM_Real)==0 ){ 488 r2 = pMem2->i; 489 }else{ 490 r2 = pMem2->r; 491 } 492 if( r1<r2 ) return -1; 493 if( r1>r2 ) return 1; 494 return 0; 495 }else{ 496 assert( f1&MEM_Int ); 497 assert( f2&MEM_Int ); 498 if( pMem1->i < pMem2->i ) return -1; 499 if( pMem1->i > pMem2->i ) return 1; 500 return 0; 501 } 502 } 503 504 /* If one value is a string and the other is a blob, the string is less. 505 ** If both are strings, compare using the collating functions. 506 */ 507 if( combined_flags&MEM_Str ){ 508 if( (f1 & MEM_Str)==0 ){ 509 return 1; 510 } 511 if( (f2 & MEM_Str)==0 ){ 512 return -1; 513 } 514 515 assert( pMem1->enc==pMem2->enc ); 516 assert( pMem1->enc==SQLITE_UTF8 || 517 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 518 519 /* This assert may fail if the collation sequence is deleted after this 520 ** vdbe program is compiled. The documentation defines this as an 521 ** undefined condition. A crash is usual result. 522 */ 523 assert( !pColl || pColl->xCmp ); 524 525 if( pColl ){ 526 if( pMem1->enc==pColl->enc ){ 527 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 528 }else{ 529 u8 origEnc = pMem1->enc; 530 rc = pColl->xCmp( 531 pColl->pUser, 532 sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc), 533 sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc), 534 sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc), 535 sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc) 536 ); 537 sqlite3ValueBytes((sqlite3_value*)pMem1, origEnc); 538 sqlite3ValueText((sqlite3_value*)pMem1, origEnc); 539 sqlite3ValueBytes((sqlite3_value*)pMem2, origEnc); 540 sqlite3ValueText((sqlite3_value*)pMem2, origEnc); 541 return rc; 542 } 543 } 544 /* If a NULL pointer was passed as the collate function, fall through 545 ** to the blob case and use memcmp(). */ 546 } 547 548 /* Both values must be blobs. Compare using memcmp(). */ 549 rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n); 550 if( rc==0 ){ 551 rc = pMem1->n - pMem2->n; 552 } 553 return rc; 554 } 555 556 /* 557 ** Move data out of a btree key or data field and into a Mem structure. 558 ** The data or key is taken from the entry that pCur is currently pointing 559 ** to. offset and amt determine what portion of the data or key to retrieve. 560 ** key is true to get the key or false to get data. The result is written 561 ** into the pMem element. 562 ** 563 ** The pMem structure is assumed to be uninitialized. Any prior content 564 ** is overwritten without being freed. 565 ** 566 ** If this routine fails for any reason (malloc returns NULL or unable 567 ** to read from the disk) then the pMem is left in an inconsistent state. 568 */ 569 int sqlite3VdbeMemFromBtree( 570 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 571 int offset, /* Offset from the start of data to return bytes from. */ 572 int amt, /* Number of bytes to return. */ 573 int key, /* If true, retrieve from the btree key, not data. */ 574 Mem *pMem /* OUT: Return data in this Mem structure. */ 575 ){ 576 char *zData; /* Data from the btree layer */ 577 int available; /* Number of bytes available on the local btree page */ 578 579 if( key ){ 580 zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); 581 }else{ 582 zData = (char *)sqlite3BtreeDataFetch(pCur, &available); 583 } 584 585 pMem->n = amt; 586 if( offset+amt<=available ){ 587 pMem->z = &zData[offset]; 588 pMem->flags = MEM_Blob|MEM_Ephem; 589 }else{ 590 int rc; 591 if( amt>NBFS-2 ){ 592 zData = (char *)sqliteMallocRaw(amt+2); 593 if( !zData ){ 594 return SQLITE_NOMEM; 595 } 596 pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term; 597 pMem->xDel = 0; 598 }else{ 599 zData = &(pMem->zShort[0]); 600 pMem->flags = MEM_Blob|MEM_Short|MEM_Term; 601 } 602 pMem->z = zData; 603 pMem->enc = 0; 604 pMem->type = SQLITE_BLOB; 605 606 if( key ){ 607 rc = sqlite3BtreeKey(pCur, offset, amt, zData); 608 }else{ 609 rc = sqlite3BtreeData(pCur, offset, amt, zData); 610 } 611 zData[amt] = 0; 612 zData[amt+1] = 0; 613 if( rc!=SQLITE_OK ){ 614 if( amt>NBFS-2 ){ 615 assert( zData!=pMem->zShort ); 616 assert( pMem->flags & MEM_Dyn ); 617 sqliteFree(zData); 618 } else { 619 assert( zData==pMem->zShort ); 620 assert( pMem->flags & MEM_Short ); 621 } 622 return rc; 623 } 624 } 625 626 return SQLITE_OK; 627 } 628 629 #ifndef NDEBUG 630 /* 631 ** Perform various checks on the memory cell pMem. An assert() will 632 ** fail if pMem is internally inconsistent. 633 */ 634 void sqlite3VdbeMemSanity(Mem *pMem, u8 db_enc){ 635 int flags = pMem->flags; 636 assert( flags!=0 ); /* Must define some type */ 637 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 638 int x = pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); 639 assert( x!=0 ); /* Strings must define a string subtype */ 640 assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */ 641 assert( pMem->z!=0 ); /* Strings must have a value */ 642 /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */ 643 assert( (pMem->flags & MEM_Short)==0 || pMem->z==pMem->zShort ); 644 assert( (pMem->flags & MEM_Short)!=0 || pMem->z!=pMem->zShort ); 645 /* No destructor unless there is MEM_Dyn */ 646 assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 ); 647 648 if( (flags & MEM_Str) ){ 649 assert( pMem->enc==SQLITE_UTF8 || 650 pMem->enc==SQLITE_UTF16BE || 651 pMem->enc==SQLITE_UTF16LE 652 ); 653 /* If the string is UTF-8 encoded and nul terminated, then pMem->n 654 ** must be the length of the string. (Later:) If the database file 655 ** has been corrupted, '\000' characters might have been inserted 656 ** into the middle of the string. In that case, the strlen() might 657 ** be less. 658 */ 659 if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){ 660 assert( strlen(pMem->z)<=pMem->n ); 661 assert( pMem->z[pMem->n]==0 ); 662 } 663 } 664 }else{ 665 /* Cannot define a string subtype for non-string objects */ 666 assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 ); 667 assert( pMem->xDel==0 ); 668 } 669 /* MEM_Null excludes all other types */ 670 assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0 671 || (pMem->flags&MEM_Null)==0 ); 672 if( (pMem->flags & (MEM_Int|MEM_Real))==(MEM_Int|MEM_Real) ){ 673 assert( pMem->r==pMem->i ); 674 } 675 } 676 #endif 677 678 /* This function is only available internally, it is not part of the 679 ** external API. It works in a similar way to sqlite3_value_text(), 680 ** except the data returned is in the encoding specified by the second 681 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 682 ** SQLITE_UTF8. 683 */ 684 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 685 if( !pVal ) return 0; 686 assert( enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE || enc==SQLITE_UTF8); 687 688 if( pVal->flags&MEM_Null ){ 689 return 0; 690 } 691 if( pVal->flags&MEM_Str ){ 692 sqlite3VdbeChangeEncoding(pVal, enc); 693 }else if( !(pVal->flags&MEM_Blob) ){ 694 sqlite3VdbeMemStringify(pVal, enc); 695 } 696 return (const void *)(pVal->z); 697 } 698 699 /* 700 ** Create a new sqlite3_value object. 701 */ 702 sqlite3_value* sqlite3ValueNew(){ 703 Mem *p = sqliteMalloc(sizeof(*p)); 704 if( p ){ 705 p->flags = MEM_Null; 706 p->type = SQLITE_NULL; 707 } 708 return p; 709 } 710 711 /* 712 ** Create a new sqlite3_value object, containing the value of pExpr. 713 ** 714 ** This only works for very simple expressions that consist of one constant 715 ** token (i.e. "5", "5.1", "NULL", "'a string'"). If the expression can 716 ** be converted directly into a value, then the value is allocated and 717 ** a pointer written to *ppVal. The caller is responsible for deallocating 718 ** the value by passing it to sqlite3ValueFree() later on. If the expression 719 ** cannot be converted to a value, then *ppVal is set to NULL. 720 */ 721 int sqlite3ValueFromExpr( 722 Expr *pExpr, 723 u8 enc, 724 u8 affinity, 725 sqlite3_value **ppVal 726 ){ 727 int op; 728 char *zVal = 0; 729 sqlite3_value *pVal = 0; 730 731 if( !pExpr ){ 732 *ppVal = 0; 733 return SQLITE_OK; 734 } 735 op = pExpr->op; 736 737 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 738 zVal = sqliteStrNDup(pExpr->token.z, pExpr->token.n); 739 pVal = sqlite3ValueNew(); 740 if( !zVal || !pVal ) goto no_mem; 741 sqlite3Dequote(zVal); 742 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3FreeX); 743 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ 744 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc); 745 }else{ 746 sqlite3ValueApplyAffinity(pVal, affinity, enc); 747 } 748 }else if( op==TK_UMINUS ) { 749 if( SQLITE_OK==sqlite3ValueFromExpr(pExpr->pLeft, enc, affinity, &pVal) ){ 750 pVal->i = -1 * pVal->i; 751 pVal->r = -1.0 * pVal->r; 752 } 753 } 754 #ifndef SQLITE_OMIT_BLOB_LITERAL 755 else if( op==TK_BLOB ){ 756 int nVal; 757 pVal = sqlite3ValueNew(); 758 zVal = sqliteStrNDup(pExpr->token.z+1, pExpr->token.n-1); 759 if( !zVal || !pVal ) goto no_mem; 760 sqlite3Dequote(zVal); 761 nVal = strlen(zVal)/2; 762 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(zVal), nVal, 0, sqlite3FreeX); 763 sqliteFree(zVal); 764 } 765 #endif 766 767 *ppVal = pVal; 768 return SQLITE_OK; 769 770 no_mem: 771 sqliteFree(zVal); 772 sqlite3ValueFree(pVal); 773 *ppVal = 0; 774 return SQLITE_NOMEM; 775 } 776 777 /* 778 ** Change the string value of an sqlite3_value object 779 */ 780 void sqlite3ValueSetStr( 781 sqlite3_value *v, 782 int n, 783 const void *z, 784 u8 enc, 785 void (*xDel)(void*) 786 ){ 787 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 788 } 789 790 /* 791 ** Free an sqlite3_value object 792 */ 793 void sqlite3ValueFree(sqlite3_value *v){ 794 if( !v ) return; 795 sqlite3ValueSetStr(v, 0, 0, SQLITE_UTF8, SQLITE_STATIC); 796 sqliteFree(v); 797 } 798 799 /* 800 ** Return the number of bytes in the sqlite3_value object assuming 801 ** that it uses the encoding "enc" 802 */ 803 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 804 Mem *p = (Mem*)pVal; 805 if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){ 806 return p->n; 807 } 808 return 0; 809 } 810