1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 #ifdef SQLITE_DEBUG 22 /* 23 ** Check invariants on a Mem object. 24 ** 25 ** This routine is intended for use inside of assert() statements, like 26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); 27 */ 28 int sqlite3VdbeCheckMemInvariants(Mem *p){ 29 /* If MEM_Dyn is set then Mem.xDel!=0. 30 ** Mem.xDel is might not be initialized if MEM_Dyn is clear. 31 */ 32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); 33 34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we 35 ** ensure that if Mem.szMalloc>0 then it is safe to do 36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. 37 ** That saves a few cycles in inner loops. */ 38 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); 39 40 /* Cannot be both MEM_Int and MEM_Real at the same time */ 41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) ); 42 43 /* The szMalloc field holds the correct memory allocation size */ 44 assert( p->szMalloc==0 45 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) ); 46 47 /* If p holds a string or blob, the Mem.z must point to exactly 48 ** one of the following: 49 ** 50 ** (1) Memory in Mem.zMalloc and managed by the Mem object 51 ** (2) Memory to be freed using Mem.xDel 52 ** (3) An ephemeral string or blob 53 ** (4) A static string or blob 54 */ 55 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ 56 assert( 57 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + 58 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 59 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 60 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 61 ); 62 } 63 return 1; 64 } 65 #endif 66 67 68 /* 69 ** If pMem is an object with a valid string representation, this routine 70 ** ensures the internal encoding for the string representation is 71 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 72 ** 73 ** If pMem is not a string object, or the encoding of the string 74 ** representation is already stored using the requested encoding, then this 75 ** routine is a no-op. 76 ** 77 ** SQLITE_OK is returned if the conversion is successful (or not required). 78 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 79 ** between formats. 80 */ 81 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 82 #ifndef SQLITE_OMIT_UTF16 83 int rc; 84 #endif 85 assert( (pMem->flags&MEM_RowSet)==0 ); 86 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE 87 || desiredEnc==SQLITE_UTF16BE ); 88 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ 89 return SQLITE_OK; 90 } 91 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 92 #ifdef SQLITE_OMIT_UTF16 93 return SQLITE_ERROR; 94 #else 95 96 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 97 ** then the encoding of the value may not have changed. 98 */ 99 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); 100 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 101 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 102 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 103 return rc; 104 #endif 105 } 106 107 /* 108 ** Make sure pMem->z points to a writable allocation of at least 109 ** min(n,32) bytes. 110 ** 111 ** If the bPreserve argument is true, then copy of the content of 112 ** pMem->z into the new allocation. pMem must be either a string or 113 ** blob if bPreserve is true. If bPreserve is false, any prior content 114 ** in pMem->z is discarded. 115 */ 116 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ 117 assert( sqlite3VdbeCheckMemInvariants(pMem) ); 118 assert( (pMem->flags&MEM_RowSet)==0 ); 119 120 /* If the bPreserve flag is set to true, then the memory cell must already 121 ** contain a valid string or blob value. */ 122 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); 123 testcase( bPreserve && pMem->z==0 ); 124 125 assert( pMem->szMalloc==0 126 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) ); 127 if( pMem->szMalloc<n ){ 128 if( n<32 ) n = 32; 129 if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){ 130 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 131 bPreserve = 0; 132 }else{ 133 if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc); 134 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 135 } 136 if( pMem->zMalloc==0 ){ 137 sqlite3VdbeMemSetNull(pMem); 138 pMem->z = 0; 139 pMem->szMalloc = 0; 140 return SQLITE_NOMEM; 141 }else{ 142 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 143 } 144 } 145 146 if( bPreserve && pMem->z && pMem->z!=pMem->zMalloc ){ 147 memcpy(pMem->zMalloc, pMem->z, pMem->n); 148 } 149 if( (pMem->flags&MEM_Dyn)!=0 ){ 150 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); 151 pMem->xDel((void *)(pMem->z)); 152 } 153 154 pMem->z = pMem->zMalloc; 155 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); 156 return SQLITE_OK; 157 } 158 159 /* 160 ** Change the pMem->zMalloc allocation to be at least szNew bytes. 161 ** If pMem->zMalloc already meets or exceeds the requested size, this 162 ** routine is a no-op. 163 ** 164 ** Any prior string or blob content in the pMem object may be discarded. 165 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str 166 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null 167 ** values are preserved. 168 ** 169 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) 170 ** if unable to complete the resizing. 171 */ 172 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ 173 assert( szNew>0 ); 174 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); 175 if( pMem->szMalloc<szNew ){ 176 return sqlite3VdbeMemGrow(pMem, szNew, 0); 177 } 178 assert( (pMem->flags & MEM_Dyn)==0 ); 179 pMem->z = pMem->zMalloc; 180 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real); 181 return SQLITE_OK; 182 } 183 184 /* 185 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in 186 ** MEM.zMalloc, where it can be safely written. 187 ** 188 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 189 */ 190 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 191 int f; 192 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 193 assert( (pMem->flags&MEM_RowSet)==0 ); 194 ExpandBlob(pMem); 195 f = pMem->flags; 196 if( (f&(MEM_Str|MEM_Blob)) && (pMem->szMalloc==0 || pMem->z!=pMem->zMalloc) ){ 197 if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){ 198 return SQLITE_NOMEM; 199 } 200 pMem->z[pMem->n] = 0; 201 pMem->z[pMem->n+1] = 0; 202 pMem->flags |= MEM_Term; 203 } 204 pMem->flags &= ~MEM_Ephem; 205 #ifdef SQLITE_DEBUG 206 pMem->pScopyFrom = 0; 207 #endif 208 209 return SQLITE_OK; 210 } 211 212 /* 213 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 214 ** blob stored in dynamically allocated space. 215 */ 216 #ifndef SQLITE_OMIT_INCRBLOB 217 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 218 if( pMem->flags & MEM_Zero ){ 219 int nByte; 220 assert( pMem->flags&MEM_Blob ); 221 assert( (pMem->flags&MEM_RowSet)==0 ); 222 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 223 224 /* Set nByte to the number of bytes required to store the expanded blob. */ 225 nByte = pMem->n + pMem->u.nZero; 226 if( nByte<=0 ){ 227 nByte = 1; 228 } 229 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 230 return SQLITE_NOMEM; 231 } 232 233 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); 234 pMem->n += pMem->u.nZero; 235 pMem->flags &= ~(MEM_Zero|MEM_Term); 236 } 237 return SQLITE_OK; 238 } 239 #endif 240 241 /* 242 ** It is already known that pMem contains an unterminated string. 243 ** Add the zero terminator. 244 */ 245 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ 246 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ 247 return SQLITE_NOMEM; 248 } 249 pMem->z[pMem->n] = 0; 250 pMem->z[pMem->n+1] = 0; 251 pMem->flags |= MEM_Term; 252 return SQLITE_OK; 253 } 254 255 /* 256 ** Make sure the given Mem is \u0000 terminated. 257 */ 258 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 259 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 260 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); 261 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); 262 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ 263 return SQLITE_OK; /* Nothing to do */ 264 }else{ 265 return vdbeMemAddTerminator(pMem); 266 } 267 } 268 269 /* 270 ** Add MEM_Str to the set of representations for the given Mem. Numbers 271 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string 272 ** is a no-op. 273 ** 274 ** Existing representations MEM_Int and MEM_Real are invalidated if 275 ** bForce is true but are retained if bForce is false. 276 ** 277 ** A MEM_Null value will never be passed to this function. This function is 278 ** used for converting values to text for returning to the user (i.e. via 279 ** sqlite3_value_text()), or for ensuring that values to be used as btree 280 ** keys are strings. In the former case a NULL pointer is returned the 281 ** user and the latter is an internal programming error. 282 */ 283 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ 284 int fg = pMem->flags; 285 const int nByte = 32; 286 287 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 288 assert( !(fg&MEM_Zero) ); 289 assert( !(fg&(MEM_Str|MEM_Blob)) ); 290 assert( fg&(MEM_Int|MEM_Real) ); 291 assert( (pMem->flags&MEM_RowSet)==0 ); 292 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 293 294 295 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 296 return SQLITE_NOMEM; 297 } 298 299 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8 300 ** string representation of the value. Then, if the required encoding 301 ** is UTF-16le or UTF-16be do a translation. 302 ** 303 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. 304 */ 305 if( fg & MEM_Int ){ 306 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); 307 }else{ 308 assert( fg & MEM_Real ); 309 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r); 310 } 311 pMem->n = sqlite3Strlen30(pMem->z); 312 pMem->enc = SQLITE_UTF8; 313 pMem->flags |= MEM_Str|MEM_Term; 314 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real); 315 sqlite3VdbeChangeEncoding(pMem, enc); 316 return SQLITE_OK; 317 } 318 319 /* 320 ** Memory cell pMem contains the context of an aggregate function. 321 ** This routine calls the finalize method for that function. The 322 ** result of the aggregate is stored back into pMem. 323 ** 324 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 325 ** otherwise. 326 */ 327 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 328 int rc = SQLITE_OK; 329 if( ALWAYS(pFunc && pFunc->xFinalize) ){ 330 sqlite3_context ctx; 331 Mem t; 332 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 333 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 334 memset(&ctx, 0, sizeof(ctx)); 335 memset(&t, 0, sizeof(t)); 336 t.flags = MEM_Null; 337 t.db = pMem->db; 338 ctx.pOut = &t; 339 ctx.pMem = pMem; 340 ctx.pFunc = pFunc; 341 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ 342 assert( (pMem->flags & MEM_Dyn)==0 ); 343 if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc); 344 memcpy(pMem, &t, sizeof(t)); 345 rc = ctx.isError; 346 } 347 return rc; 348 } 349 350 /* 351 ** If the memory cell contains a value that must be freed by 352 ** invoking the external callback in Mem.xDel, then this routine 353 ** will free that value. It also sets Mem.flags to MEM_Null. 354 ** 355 ** This is a helper routine for sqlite3VdbeMemSetNull() and 356 ** for sqlite3VdbeMemRelease(). Use those other routines as the 357 ** entry point for releasing Mem resources. 358 */ 359 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ 360 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 361 assert( VdbeMemDynamic(p) ); 362 if( p->flags&MEM_Agg ){ 363 sqlite3VdbeMemFinalize(p, p->u.pDef); 364 assert( (p->flags & MEM_Agg)==0 ); 365 testcase( p->flags & MEM_Dyn ); 366 } 367 if( p->flags&MEM_Dyn ){ 368 assert( (p->flags&MEM_RowSet)==0 ); 369 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); 370 p->xDel((void *)p->z); 371 }else if( p->flags&MEM_RowSet ){ 372 sqlite3RowSetClear(p->u.pRowSet); 373 }else if( p->flags&MEM_Frame ){ 374 VdbeFrame *pFrame = p->u.pFrame; 375 pFrame->pParent = pFrame->v->pDelFrame; 376 pFrame->v->pDelFrame = pFrame; 377 } 378 p->flags = MEM_Null; 379 } 380 381 /* 382 ** Release memory held by the Mem p, both external memory cleared 383 ** by p->xDel and memory in p->zMalloc. 384 ** 385 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in 386 ** the unusual case where there really is memory in p that needs 387 ** to be freed. 388 */ 389 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ 390 if( VdbeMemDynamic(p) ){ 391 vdbeMemClearExternAndSetNull(p); 392 } 393 if( p->szMalloc ){ 394 sqlite3DbFree(p->db, p->zMalloc); 395 p->szMalloc = 0; 396 } 397 p->z = 0; 398 } 399 400 /* 401 ** Release any memory resources held by the Mem. Both the memory that is 402 ** free by Mem.xDel and the Mem.zMalloc allocation are freed. 403 ** 404 ** Use this routine prior to clean up prior to abandoning a Mem, or to 405 ** reset a Mem back to its minimum memory utilization. 406 ** 407 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space 408 ** prior to inserting new content into the Mem. 409 */ 410 void sqlite3VdbeMemRelease(Mem *p){ 411 assert( sqlite3VdbeCheckMemInvariants(p) ); 412 if( VdbeMemDynamic(p) || p->szMalloc ){ 413 vdbeMemClear(p); 414 } 415 } 416 417 /* 418 ** Convert a 64-bit IEEE double into a 64-bit signed integer. 419 ** If the double is out of range of a 64-bit signed integer then 420 ** return the closest available 64-bit signed integer. 421 */ 422 static i64 doubleToInt64(double r){ 423 #ifdef SQLITE_OMIT_FLOATING_POINT 424 /* When floating-point is omitted, double and int64 are the same thing */ 425 return r; 426 #else 427 /* 428 ** Many compilers we encounter do not define constants for the 429 ** minimum and maximum 64-bit integers, or they define them 430 ** inconsistently. And many do not understand the "LL" notation. 431 ** So we define our own static constants here using nothing 432 ** larger than a 32-bit integer constant. 433 */ 434 static const i64 maxInt = LARGEST_INT64; 435 static const i64 minInt = SMALLEST_INT64; 436 437 if( r<=(double)minInt ){ 438 return minInt; 439 }else if( r>=(double)maxInt ){ 440 return maxInt; 441 }else{ 442 return (i64)r; 443 } 444 #endif 445 } 446 447 /* 448 ** Return some kind of integer value which is the best we can do 449 ** at representing the value that *pMem describes as an integer. 450 ** If pMem is an integer, then the value is exact. If pMem is 451 ** a floating-point then the value returned is the integer part. 452 ** If pMem is a string or blob, then we make an attempt to convert 453 ** it into an integer and return that. If pMem represents an 454 ** an SQL-NULL value, return 0. 455 ** 456 ** If pMem represents a string value, its encoding might be changed. 457 */ 458 i64 sqlite3VdbeIntValue(Mem *pMem){ 459 int flags; 460 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 461 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 462 flags = pMem->flags; 463 if( flags & MEM_Int ){ 464 return pMem->u.i; 465 }else if( flags & MEM_Real ){ 466 return doubleToInt64(pMem->u.r); 467 }else if( flags & (MEM_Str|MEM_Blob) ){ 468 i64 value = 0; 469 assert( pMem->z || pMem->n==0 ); 470 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); 471 return value; 472 }else{ 473 return 0; 474 } 475 } 476 477 /* 478 ** Return the best representation of pMem that we can get into a 479 ** double. If pMem is already a double or an integer, return its 480 ** value. If it is a string or blob, try to convert it to a double. 481 ** If it is a NULL, return 0.0. 482 */ 483 double sqlite3VdbeRealValue(Mem *pMem){ 484 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 485 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 486 if( pMem->flags & MEM_Real ){ 487 return pMem->u.r; 488 }else if( pMem->flags & MEM_Int ){ 489 return (double)pMem->u.i; 490 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 491 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 492 double val = (double)0; 493 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); 494 return val; 495 }else{ 496 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 497 return (double)0; 498 } 499 } 500 501 /* 502 ** The MEM structure is already a MEM_Real. Try to also make it a 503 ** MEM_Int if we can. 504 */ 505 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 506 i64 ix; 507 assert( pMem->flags & MEM_Real ); 508 assert( (pMem->flags & MEM_RowSet)==0 ); 509 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 510 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 511 512 ix = doubleToInt64(pMem->u.r); 513 514 /* Only mark the value as an integer if 515 ** 516 ** (1) the round-trip conversion real->int->real is a no-op, and 517 ** (2) The integer is neither the largest nor the smallest 518 ** possible integer (ticket #3922) 519 ** 520 ** The second and third terms in the following conditional enforces 521 ** the second condition under the assumption that addition overflow causes 522 ** values to wrap around. 523 */ 524 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ 525 pMem->u.i = ix; 526 MemSetTypeFlag(pMem, MEM_Int); 527 } 528 } 529 530 /* 531 ** Convert pMem to type integer. Invalidate any prior representations. 532 */ 533 int sqlite3VdbeMemIntegerify(Mem *pMem){ 534 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 535 assert( (pMem->flags & MEM_RowSet)==0 ); 536 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 537 538 pMem->u.i = sqlite3VdbeIntValue(pMem); 539 MemSetTypeFlag(pMem, MEM_Int); 540 return SQLITE_OK; 541 } 542 543 /* 544 ** Convert pMem so that it is of type MEM_Real. 545 ** Invalidate any prior representations. 546 */ 547 int sqlite3VdbeMemRealify(Mem *pMem){ 548 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 549 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 550 551 pMem->u.r = sqlite3VdbeRealValue(pMem); 552 MemSetTypeFlag(pMem, MEM_Real); 553 return SQLITE_OK; 554 } 555 556 /* 557 ** Convert pMem so that it has types MEM_Real or MEM_Int or both. 558 ** Invalidate any prior representations. 559 ** 560 ** Every effort is made to force the conversion, even if the input 561 ** is a string that does not look completely like a number. Convert 562 ** as much of the string as we can and ignore the rest. 563 */ 564 int sqlite3VdbeMemNumerify(Mem *pMem){ 565 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){ 566 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 567 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 568 if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){ 569 MemSetTypeFlag(pMem, MEM_Int); 570 }else{ 571 pMem->u.r = sqlite3VdbeRealValue(pMem); 572 MemSetTypeFlag(pMem, MEM_Real); 573 sqlite3VdbeIntegerAffinity(pMem); 574 } 575 } 576 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 ); 577 pMem->flags &= ~(MEM_Str|MEM_Blob); 578 return SQLITE_OK; 579 } 580 581 /* 582 ** Cast the datatype of the value in pMem according to the affinity 583 ** "aff". Casting is different from applying affinity in that a cast 584 ** is forced. In other words, the value is converted into the desired 585 ** affinity even if that results in loss of data. This routine is 586 ** used (for example) to implement the SQL "cast()" operator. 587 */ 588 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ 589 if( pMem->flags & MEM_Null ) return; 590 switch( aff ){ 591 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ 592 if( (pMem->flags & MEM_Blob)==0 ){ 593 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 594 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 595 MemSetTypeFlag(pMem, MEM_Blob); 596 }else{ 597 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); 598 } 599 break; 600 } 601 case SQLITE_AFF_NUMERIC: { 602 sqlite3VdbeMemNumerify(pMem); 603 break; 604 } 605 case SQLITE_AFF_INTEGER: { 606 sqlite3VdbeMemIntegerify(pMem); 607 break; 608 } 609 case SQLITE_AFF_REAL: { 610 sqlite3VdbeMemRealify(pMem); 611 break; 612 } 613 default: { 614 assert( aff==SQLITE_AFF_TEXT ); 615 assert( MEM_Str==(MEM_Blob>>3) ); 616 pMem->flags |= (pMem->flags&MEM_Blob)>>3; 617 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 618 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 619 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); 620 break; 621 } 622 } 623 } 624 625 /* 626 ** Initialize bulk memory to be a consistent Mem object. 627 ** 628 ** The minimum amount of initialization feasible is performed. 629 */ 630 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ 631 assert( (flags & ~MEM_TypeMask)==0 ); 632 pMem->flags = flags; 633 pMem->db = db; 634 pMem->szMalloc = 0; 635 } 636 637 638 /* 639 ** Delete any previous value and set the value stored in *pMem to NULL. 640 ** 641 ** This routine calls the Mem.xDel destructor to dispose of values that 642 ** require the destructor. But it preserves the Mem.zMalloc memory allocation. 643 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this 644 ** routine to invoke the destructor and deallocates Mem.zMalloc. 645 ** 646 ** Use this routine to reset the Mem prior to insert a new value. 647 ** 648 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. 649 */ 650 void sqlite3VdbeMemSetNull(Mem *pMem){ 651 if( VdbeMemDynamic(pMem) ){ 652 vdbeMemClearExternAndSetNull(pMem); 653 }else{ 654 pMem->flags = MEM_Null; 655 } 656 } 657 void sqlite3ValueSetNull(sqlite3_value *p){ 658 sqlite3VdbeMemSetNull((Mem*)p); 659 } 660 661 /* 662 ** Delete any previous value and set the value to be a BLOB of length 663 ** n containing all zeros. 664 */ 665 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 666 sqlite3VdbeMemRelease(pMem); 667 pMem->flags = MEM_Blob|MEM_Zero; 668 pMem->n = 0; 669 if( n<0 ) n = 0; 670 pMem->u.nZero = n; 671 pMem->enc = SQLITE_UTF8; 672 pMem->z = 0; 673 } 674 675 /* 676 ** The pMem is known to contain content that needs to be destroyed prior 677 ** to a value change. So invoke the destructor, then set the value to 678 ** a 64-bit integer. 679 */ 680 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ 681 sqlite3VdbeMemSetNull(pMem); 682 pMem->u.i = val; 683 pMem->flags = MEM_Int; 684 } 685 686 /* 687 ** Delete any previous value and set the value stored in *pMem to val, 688 ** manifest type INTEGER. 689 */ 690 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 691 if( VdbeMemDynamic(pMem) ){ 692 vdbeReleaseAndSetInt64(pMem, val); 693 }else{ 694 pMem->u.i = val; 695 pMem->flags = MEM_Int; 696 } 697 } 698 699 #ifndef SQLITE_OMIT_FLOATING_POINT 700 /* 701 ** Delete any previous value and set the value stored in *pMem to val, 702 ** manifest type REAL. 703 */ 704 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 705 sqlite3VdbeMemSetNull(pMem); 706 if( !sqlite3IsNaN(val) ){ 707 pMem->u.r = val; 708 pMem->flags = MEM_Real; 709 } 710 } 711 #endif 712 713 /* 714 ** Delete any previous value and set the value of pMem to be an 715 ** empty boolean index. 716 */ 717 void sqlite3VdbeMemSetRowSet(Mem *pMem){ 718 sqlite3 *db = pMem->db; 719 assert( db!=0 ); 720 assert( (pMem->flags & MEM_RowSet)==0 ); 721 sqlite3VdbeMemRelease(pMem); 722 pMem->zMalloc = sqlite3DbMallocRaw(db, 64); 723 if( db->mallocFailed ){ 724 pMem->flags = MEM_Null; 725 pMem->szMalloc = 0; 726 }else{ 727 assert( pMem->zMalloc ); 728 pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc); 729 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc); 730 assert( pMem->u.pRowSet!=0 ); 731 pMem->flags = MEM_RowSet; 732 } 733 } 734 735 /* 736 ** Return true if the Mem object contains a TEXT or BLOB that is 737 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 738 */ 739 int sqlite3VdbeMemTooBig(Mem *p){ 740 assert( p->db!=0 ); 741 if( p->flags & (MEM_Str|MEM_Blob) ){ 742 int n = p->n; 743 if( p->flags & MEM_Zero ){ 744 n += p->u.nZero; 745 } 746 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 747 } 748 return 0; 749 } 750 751 #ifdef SQLITE_DEBUG 752 /* 753 ** This routine prepares a memory cell for modification by breaking 754 ** its link to a shallow copy and by marking any current shallow 755 ** copies of this cell as invalid. 756 ** 757 ** This is used for testing and debugging only - to make sure shallow 758 ** copies are not misused. 759 */ 760 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ 761 int i; 762 Mem *pX; 763 for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){ 764 if( pX->pScopyFrom==pMem ){ 765 pX->flags |= MEM_Undefined; 766 pX->pScopyFrom = 0; 767 } 768 } 769 pMem->pScopyFrom = 0; 770 } 771 #endif /* SQLITE_DEBUG */ 772 773 774 /* 775 ** Make an shallow copy of pFrom into pTo. Prior contents of 776 ** pTo are freed. The pFrom->z field is not duplicated. If 777 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 778 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 779 */ 780 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ 781 vdbeMemClearExternAndSetNull(pTo); 782 assert( !VdbeMemDynamic(pTo) ); 783 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); 784 } 785 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 786 assert( (pFrom->flags & MEM_RowSet)==0 ); 787 assert( pTo->db==pFrom->db ); 788 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } 789 memcpy(pTo, pFrom, MEMCELLSIZE); 790 if( (pFrom->flags&MEM_Static)==0 ){ 791 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 792 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 793 pTo->flags |= srcType; 794 } 795 } 796 797 /* 798 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 799 ** freed before the copy is made. 800 */ 801 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 802 int rc = SQLITE_OK; 803 804 /* The pFrom==0 case in the following assert() is when an sqlite3_value 805 ** from sqlite3_value_dup() is used as the argument 806 ** to sqlite3_result_value(). */ 807 assert( pTo->db==pFrom->db || pFrom->db==0 ); 808 assert( (pFrom->flags & MEM_RowSet)==0 ); 809 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); 810 memcpy(pTo, pFrom, MEMCELLSIZE); 811 pTo->flags &= ~MEM_Dyn; 812 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 813 if( 0==(pFrom->flags&MEM_Static) ){ 814 pTo->flags |= MEM_Ephem; 815 rc = sqlite3VdbeMemMakeWriteable(pTo); 816 } 817 } 818 819 return rc; 820 } 821 822 /* 823 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 824 ** freed. If pFrom contains ephemeral data, a copy is made. 825 ** 826 ** pFrom contains an SQL NULL when this routine returns. 827 */ 828 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 829 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 830 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 831 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 832 833 sqlite3VdbeMemRelease(pTo); 834 memcpy(pTo, pFrom, sizeof(Mem)); 835 pFrom->flags = MEM_Null; 836 pFrom->szMalloc = 0; 837 } 838 839 /* 840 ** Change the value of a Mem to be a string or a BLOB. 841 ** 842 ** The memory management strategy depends on the value of the xDel 843 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 844 ** string is copied into a (possibly existing) buffer managed by the 845 ** Mem structure. Otherwise, any existing buffer is freed and the 846 ** pointer copied. 847 ** 848 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH 849 ** size limit) then no memory allocation occurs. If the string can be 850 ** stored without allocating memory, then it is. If a memory allocation 851 ** is required to store the string, then value of pMem is unchanged. In 852 ** either case, SQLITE_TOOBIG is returned. 853 */ 854 int sqlite3VdbeMemSetStr( 855 Mem *pMem, /* Memory cell to set to string value */ 856 const char *z, /* String pointer */ 857 int n, /* Bytes in string, or negative */ 858 u8 enc, /* Encoding of z. 0 for BLOBs */ 859 void (*xDel)(void*) /* Destructor function */ 860 ){ 861 int nByte = n; /* New value for pMem->n */ 862 int iLimit; /* Maximum allowed string or blob size */ 863 u16 flags = 0; /* New value for pMem->flags */ 864 865 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 866 assert( (pMem->flags & MEM_RowSet)==0 ); 867 868 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 869 if( !z ){ 870 sqlite3VdbeMemSetNull(pMem); 871 return SQLITE_OK; 872 } 873 874 if( pMem->db ){ 875 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; 876 }else{ 877 iLimit = SQLITE_MAX_LENGTH; 878 } 879 flags = (enc==0?MEM_Blob:MEM_Str); 880 if( nByte<0 ){ 881 assert( enc!=0 ); 882 if( enc==SQLITE_UTF8 ){ 883 nByte = sqlite3Strlen30(z); 884 if( nByte>iLimit ) nByte = iLimit+1; 885 }else{ 886 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} 887 } 888 flags |= MEM_Term; 889 } 890 891 /* The following block sets the new values of Mem.z and Mem.xDel. It 892 ** also sets a flag in local variable "flags" to indicate the memory 893 ** management (one of MEM_Dyn or MEM_Static). 894 */ 895 if( xDel==SQLITE_TRANSIENT ){ 896 int nAlloc = nByte; 897 if( flags&MEM_Term ){ 898 nAlloc += (enc==SQLITE_UTF8?1:2); 899 } 900 if( nByte>iLimit ){ 901 return SQLITE_TOOBIG; 902 } 903 testcase( nAlloc==0 ); 904 testcase( nAlloc==31 ); 905 testcase( nAlloc==32 ); 906 if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){ 907 return SQLITE_NOMEM; 908 } 909 memcpy(pMem->z, z, nAlloc); 910 }else if( xDel==SQLITE_DYNAMIC ){ 911 sqlite3VdbeMemRelease(pMem); 912 pMem->zMalloc = pMem->z = (char *)z; 913 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 914 }else{ 915 sqlite3VdbeMemRelease(pMem); 916 pMem->z = (char *)z; 917 pMem->xDel = xDel; 918 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 919 } 920 921 pMem->n = nByte; 922 pMem->flags = flags; 923 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); 924 925 #ifndef SQLITE_OMIT_UTF16 926 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ 927 return SQLITE_NOMEM; 928 } 929 #endif 930 931 if( nByte>iLimit ){ 932 return SQLITE_TOOBIG; 933 } 934 935 return SQLITE_OK; 936 } 937 938 /* 939 ** Move data out of a btree key or data field and into a Mem structure. 940 ** The data or key is taken from the entry that pCur is currently pointing 941 ** to. offset and amt determine what portion of the data or key to retrieve. 942 ** key is true to get the key or false to get data. The result is written 943 ** into the pMem element. 944 ** 945 ** The pMem object must have been initialized. This routine will use 946 ** pMem->zMalloc to hold the content from the btree, if possible. New 947 ** pMem->zMalloc space will be allocated if necessary. The calling routine 948 ** is responsible for making sure that the pMem object is eventually 949 ** destroyed. 950 ** 951 ** If this routine fails for any reason (malloc returns NULL or unable 952 ** to read from the disk) then the pMem is left in an inconsistent state. 953 */ 954 static SQLITE_NOINLINE int vdbeMemFromBtreeResize( 955 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 956 u32 offset, /* Offset from the start of data to return bytes from. */ 957 u32 amt, /* Number of bytes to return. */ 958 int key, /* If true, retrieve from the btree key, not data. */ 959 Mem *pMem /* OUT: Return data in this Mem structure. */ 960 ){ 961 int rc; 962 pMem->flags = MEM_Null; 963 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){ 964 if( key ){ 965 rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); 966 }else{ 967 rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); 968 } 969 if( rc==SQLITE_OK ){ 970 pMem->z[amt] = 0; 971 pMem->z[amt+1] = 0; 972 pMem->flags = MEM_Blob|MEM_Term; 973 pMem->n = (int)amt; 974 }else{ 975 sqlite3VdbeMemRelease(pMem); 976 } 977 } 978 return rc; 979 } 980 int sqlite3VdbeMemFromBtree( 981 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 982 u32 offset, /* Offset from the start of data to return bytes from. */ 983 u32 amt, /* Number of bytes to return. */ 984 int key, /* If true, retrieve from the btree key, not data. */ 985 Mem *pMem /* OUT: Return data in this Mem structure. */ 986 ){ 987 char *zData; /* Data from the btree layer */ 988 u32 available = 0; /* Number of bytes available on the local btree page */ 989 int rc = SQLITE_OK; /* Return code */ 990 991 assert( sqlite3BtreeCursorIsValid(pCur) ); 992 assert( !VdbeMemDynamic(pMem) ); 993 994 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 995 ** that both the BtShared and database handle mutexes are held. */ 996 assert( (pMem->flags & MEM_RowSet)==0 ); 997 if( key ){ 998 zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); 999 }else{ 1000 zData = (char *)sqlite3BtreeDataFetch(pCur, &available); 1001 } 1002 assert( zData!=0 ); 1003 1004 if( offset+amt<=available ){ 1005 pMem->z = &zData[offset]; 1006 pMem->flags = MEM_Blob|MEM_Ephem; 1007 pMem->n = (int)amt; 1008 }else{ 1009 rc = vdbeMemFromBtreeResize(pCur, offset, amt, key, pMem); 1010 } 1011 1012 return rc; 1013 } 1014 1015 /* 1016 ** The pVal argument is known to be a value other than NULL. 1017 ** Convert it into a string with encoding enc and return a pointer 1018 ** to a zero-terminated version of that string. 1019 */ 1020 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ 1021 assert( pVal!=0 ); 1022 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1023 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1024 assert( (pVal->flags & MEM_RowSet)==0 ); 1025 assert( (pVal->flags & (MEM_Null))==0 ); 1026 if( pVal->flags & (MEM_Blob|MEM_Str) ){ 1027 pVal->flags |= MEM_Str; 1028 if( pVal->flags & MEM_Zero ){ 1029 sqlite3VdbeMemExpandBlob(pVal); 1030 } 1031 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ 1032 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 1033 } 1034 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ 1035 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 1036 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 1037 return 0; 1038 } 1039 } 1040 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ 1041 }else{ 1042 sqlite3VdbeMemStringify(pVal, enc, 0); 1043 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); 1044 } 1045 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 1046 || pVal->db->mallocFailed ); 1047 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 1048 return pVal->z; 1049 }else{ 1050 return 0; 1051 } 1052 } 1053 1054 /* This function is only available internally, it is not part of the 1055 ** external API. It works in a similar way to sqlite3_value_text(), 1056 ** except the data returned is in the encoding specified by the second 1057 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 1058 ** SQLITE_UTF8. 1059 ** 1060 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 1061 ** If that is the case, then the result must be aligned on an even byte 1062 ** boundary. 1063 */ 1064 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 1065 if( !pVal ) return 0; 1066 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1067 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1068 assert( (pVal->flags & MEM_RowSet)==0 ); 1069 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ 1070 return pVal->z; 1071 } 1072 if( pVal->flags&MEM_Null ){ 1073 return 0; 1074 } 1075 return valueToText(pVal, enc); 1076 } 1077 1078 /* 1079 ** Create a new sqlite3_value object. 1080 */ 1081 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 1082 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 1083 if( p ){ 1084 p->flags = MEM_Null; 1085 p->db = db; 1086 } 1087 return p; 1088 } 1089 1090 /* 1091 ** Context object passed by sqlite3Stat4ProbeSetValue() through to 1092 ** valueNew(). See comments above valueNew() for details. 1093 */ 1094 struct ValueNewStat4Ctx { 1095 Parse *pParse; 1096 Index *pIdx; 1097 UnpackedRecord **ppRec; 1098 int iVal; 1099 }; 1100 1101 /* 1102 ** Allocate and return a pointer to a new sqlite3_value object. If 1103 ** the second argument to this function is NULL, the object is allocated 1104 ** by calling sqlite3ValueNew(). 1105 ** 1106 ** Otherwise, if the second argument is non-zero, then this function is 1107 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not 1108 ** already been allocated, allocate the UnpackedRecord structure that 1109 ** that function will return to its caller here. Then return a pointer to 1110 ** an sqlite3_value within the UnpackedRecord.a[] array. 1111 */ 1112 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ 1113 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1114 if( p ){ 1115 UnpackedRecord *pRec = p->ppRec[0]; 1116 1117 if( pRec==0 ){ 1118 Index *pIdx = p->pIdx; /* Index being probed */ 1119 int nByte; /* Bytes of space to allocate */ 1120 int i; /* Counter variable */ 1121 int nCol = pIdx->nColumn; /* Number of index columns including rowid */ 1122 1123 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); 1124 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); 1125 if( pRec ){ 1126 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); 1127 if( pRec->pKeyInfo ){ 1128 assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol ); 1129 assert( pRec->pKeyInfo->enc==ENC(db) ); 1130 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); 1131 for(i=0; i<nCol; i++){ 1132 pRec->aMem[i].flags = MEM_Null; 1133 pRec->aMem[i].db = db; 1134 } 1135 }else{ 1136 sqlite3DbFree(db, pRec); 1137 pRec = 0; 1138 } 1139 } 1140 if( pRec==0 ) return 0; 1141 p->ppRec[0] = pRec; 1142 } 1143 1144 pRec->nField = p->iVal+1; 1145 return &pRec->aMem[p->iVal]; 1146 } 1147 #else 1148 UNUSED_PARAMETER(p); 1149 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ 1150 return sqlite3ValueNew(db); 1151 } 1152 1153 /* 1154 ** The expression object indicated by the second argument is guaranteed 1155 ** to be a scalar SQL function. If 1156 ** 1157 ** * all function arguments are SQL literals, 1158 ** * the SQLITE_FUNC_CONSTANT function flag is set, and 1159 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, 1160 ** 1161 ** then this routine attempts to invoke the SQL function. Assuming no 1162 ** error occurs, output parameter (*ppVal) is set to point to a value 1163 ** object containing the result before returning SQLITE_OK. 1164 ** 1165 ** Affinity aff is applied to the result of the function before returning. 1166 ** If the result is a text value, the sqlite3_value object uses encoding 1167 ** enc. 1168 ** 1169 ** If the conditions above are not met, this function returns SQLITE_OK 1170 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to 1171 ** NULL and an SQLite error code returned. 1172 */ 1173 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1174 static int valueFromFunction( 1175 sqlite3 *db, /* The database connection */ 1176 Expr *p, /* The expression to evaluate */ 1177 u8 enc, /* Encoding to use */ 1178 u8 aff, /* Affinity to use */ 1179 sqlite3_value **ppVal, /* Write the new value here */ 1180 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1181 ){ 1182 sqlite3_context ctx; /* Context object for function invocation */ 1183 sqlite3_value **apVal = 0; /* Function arguments */ 1184 int nVal = 0; /* Size of apVal[] array */ 1185 FuncDef *pFunc = 0; /* Function definition */ 1186 sqlite3_value *pVal = 0; /* New value */ 1187 int rc = SQLITE_OK; /* Return code */ 1188 int nName; /* Size of function name in bytes */ 1189 ExprList *pList = 0; /* Function arguments */ 1190 int i; /* Iterator variable */ 1191 1192 assert( pCtx!=0 ); 1193 assert( (p->flags & EP_TokenOnly)==0 ); 1194 pList = p->x.pList; 1195 if( pList ) nVal = pList->nExpr; 1196 nName = sqlite3Strlen30(p->u.zToken); 1197 pFunc = sqlite3FindFunction(db, p->u.zToken, nName, nVal, enc, 0); 1198 assert( pFunc ); 1199 if( (pFunc->funcFlags & SQLITE_FUNC_CONSTANT)==0 1200 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 1201 ){ 1202 return SQLITE_OK; 1203 } 1204 1205 if( pList ){ 1206 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); 1207 if( apVal==0 ){ 1208 rc = SQLITE_NOMEM; 1209 goto value_from_function_out; 1210 } 1211 for(i=0; i<nVal; i++){ 1212 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); 1213 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; 1214 } 1215 } 1216 1217 pVal = valueNew(db, pCtx); 1218 if( pVal==0 ){ 1219 rc = SQLITE_NOMEM; 1220 goto value_from_function_out; 1221 } 1222 1223 assert( pCtx->pParse->rc==SQLITE_OK ); 1224 memset(&ctx, 0, sizeof(ctx)); 1225 ctx.pOut = pVal; 1226 ctx.pFunc = pFunc; 1227 pFunc->xFunc(&ctx, nVal, apVal); 1228 if( ctx.isError ){ 1229 rc = ctx.isError; 1230 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); 1231 }else{ 1232 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); 1233 assert( rc==SQLITE_OK ); 1234 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1235 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ 1236 rc = SQLITE_TOOBIG; 1237 pCtx->pParse->nErr++; 1238 } 1239 } 1240 pCtx->pParse->rc = rc; 1241 1242 value_from_function_out: 1243 if( rc!=SQLITE_OK ){ 1244 pVal = 0; 1245 } 1246 if( apVal ){ 1247 for(i=0; i<nVal; i++){ 1248 sqlite3ValueFree(apVal[i]); 1249 } 1250 sqlite3DbFree(db, apVal); 1251 } 1252 1253 *ppVal = pVal; 1254 return rc; 1255 } 1256 #else 1257 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK 1258 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ 1259 1260 /* 1261 ** Extract a value from the supplied expression in the manner described 1262 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object 1263 ** using valueNew(). 1264 ** 1265 ** If pCtx is NULL and an error occurs after the sqlite3_value object 1266 ** has been allocated, it is freed before returning. Or, if pCtx is not 1267 ** NULL, it is assumed that the caller will free any allocated object 1268 ** in all cases. 1269 */ 1270 static int valueFromExpr( 1271 sqlite3 *db, /* The database connection */ 1272 Expr *pExpr, /* The expression to evaluate */ 1273 u8 enc, /* Encoding to use */ 1274 u8 affinity, /* Affinity to use */ 1275 sqlite3_value **ppVal, /* Write the new value here */ 1276 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1277 ){ 1278 int op; 1279 char *zVal = 0; 1280 sqlite3_value *pVal = 0; 1281 int negInt = 1; 1282 const char *zNeg = ""; 1283 int rc = SQLITE_OK; 1284 1285 if( !pExpr ){ 1286 *ppVal = 0; 1287 return SQLITE_OK; 1288 } 1289 while( (op = pExpr->op)==TK_UPLUS ) pExpr = pExpr->pLeft; 1290 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; 1291 1292 /* Compressed expressions only appear when parsing the DEFAULT clause 1293 ** on a table column definition, and hence only when pCtx==0. This 1294 ** check ensures that an EP_TokenOnly expression is never passed down 1295 ** into valueFromFunction(). */ 1296 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); 1297 1298 if( op==TK_CAST ){ 1299 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0); 1300 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); 1301 testcase( rc!=SQLITE_OK ); 1302 if( *ppVal ){ 1303 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); 1304 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); 1305 } 1306 return rc; 1307 } 1308 1309 /* Handle negative integers in a single step. This is needed in the 1310 ** case when the value is -9223372036854775808. 1311 */ 1312 if( op==TK_UMINUS 1313 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ 1314 pExpr = pExpr->pLeft; 1315 op = pExpr->op; 1316 negInt = -1; 1317 zNeg = "-"; 1318 } 1319 1320 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 1321 pVal = valueNew(db, pCtx); 1322 if( pVal==0 ) goto no_mem; 1323 if( ExprHasProperty(pExpr, EP_IntValue) ){ 1324 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); 1325 }else{ 1326 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); 1327 if( zVal==0 ) goto no_mem; 1328 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); 1329 } 1330 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ 1331 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); 1332 }else{ 1333 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); 1334 } 1335 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str; 1336 if( enc!=SQLITE_UTF8 ){ 1337 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1338 } 1339 }else if( op==TK_UMINUS ) { 1340 /* This branch happens for multiple negative signs. Ex: -(-5) */ 1341 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) 1342 && pVal!=0 1343 ){ 1344 sqlite3VdbeMemNumerify(pVal); 1345 if( pVal->flags & MEM_Real ){ 1346 pVal->u.r = -pVal->u.r; 1347 }else if( pVal->u.i==SMALLEST_INT64 ){ 1348 pVal->u.r = -(double)SMALLEST_INT64; 1349 MemSetTypeFlag(pVal, MEM_Real); 1350 }else{ 1351 pVal->u.i = -pVal->u.i; 1352 } 1353 sqlite3ValueApplyAffinity(pVal, affinity, enc); 1354 } 1355 }else if( op==TK_NULL ){ 1356 pVal = valueNew(db, pCtx); 1357 if( pVal==0 ) goto no_mem; 1358 } 1359 #ifndef SQLITE_OMIT_BLOB_LITERAL 1360 else if( op==TK_BLOB ){ 1361 int nVal; 1362 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 1363 assert( pExpr->u.zToken[1]=='\'' ); 1364 pVal = valueNew(db, pCtx); 1365 if( !pVal ) goto no_mem; 1366 zVal = &pExpr->u.zToken[2]; 1367 nVal = sqlite3Strlen30(zVal)-1; 1368 assert( zVal[nVal]=='\'' ); 1369 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 1370 0, SQLITE_DYNAMIC); 1371 } 1372 #endif 1373 1374 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1375 else if( op==TK_FUNCTION && pCtx!=0 ){ 1376 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); 1377 } 1378 #endif 1379 1380 *ppVal = pVal; 1381 return rc; 1382 1383 no_mem: 1384 db->mallocFailed = 1; 1385 sqlite3DbFree(db, zVal); 1386 assert( *ppVal==0 ); 1387 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1388 if( pCtx==0 ) sqlite3ValueFree(pVal); 1389 #else 1390 assert( pCtx==0 ); sqlite3ValueFree(pVal); 1391 #endif 1392 return SQLITE_NOMEM; 1393 } 1394 1395 /* 1396 ** Create a new sqlite3_value object, containing the value of pExpr. 1397 ** 1398 ** This only works for very simple expressions that consist of one constant 1399 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 1400 ** be converted directly into a value, then the value is allocated and 1401 ** a pointer written to *ppVal. The caller is responsible for deallocating 1402 ** the value by passing it to sqlite3ValueFree() later on. If the expression 1403 ** cannot be converted to a value, then *ppVal is set to NULL. 1404 */ 1405 int sqlite3ValueFromExpr( 1406 sqlite3 *db, /* The database connection */ 1407 Expr *pExpr, /* The expression to evaluate */ 1408 u8 enc, /* Encoding to use */ 1409 u8 affinity, /* Affinity to use */ 1410 sqlite3_value **ppVal /* Write the new value here */ 1411 ){ 1412 return valueFromExpr(db, pExpr, enc, affinity, ppVal, 0); 1413 } 1414 1415 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1416 /* 1417 ** The implementation of the sqlite_record() function. This function accepts 1418 ** a single argument of any type. The return value is a formatted database 1419 ** record (a blob) containing the argument value. 1420 ** 1421 ** This is used to convert the value stored in the 'sample' column of the 1422 ** sqlite_stat3 table to the record format SQLite uses internally. 1423 */ 1424 static void recordFunc( 1425 sqlite3_context *context, 1426 int argc, 1427 sqlite3_value **argv 1428 ){ 1429 const int file_format = 1; 1430 int iSerial; /* Serial type */ 1431 int nSerial; /* Bytes of space for iSerial as varint */ 1432 int nVal; /* Bytes of space required for argv[0] */ 1433 int nRet; 1434 sqlite3 *db; 1435 u8 *aRet; 1436 1437 UNUSED_PARAMETER( argc ); 1438 iSerial = sqlite3VdbeSerialType(argv[0], file_format); 1439 nSerial = sqlite3VarintLen(iSerial); 1440 nVal = sqlite3VdbeSerialTypeLen(iSerial); 1441 db = sqlite3_context_db_handle(context); 1442 1443 nRet = 1 + nSerial + nVal; 1444 aRet = sqlite3DbMallocRaw(db, nRet); 1445 if( aRet==0 ){ 1446 sqlite3_result_error_nomem(context); 1447 }else{ 1448 aRet[0] = nSerial+1; 1449 putVarint32(&aRet[1], iSerial); 1450 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial); 1451 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT); 1452 sqlite3DbFree(db, aRet); 1453 } 1454 } 1455 1456 /* 1457 ** Register built-in functions used to help read ANALYZE data. 1458 */ 1459 void sqlite3AnalyzeFunctions(void){ 1460 static SQLITE_WSD FuncDef aAnalyzeTableFuncs[] = { 1461 FUNCTION(sqlite_record, 1, 0, 0, recordFunc), 1462 }; 1463 int i; 1464 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); 1465 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aAnalyzeTableFuncs); 1466 for(i=0; i<ArraySize(aAnalyzeTableFuncs); i++){ 1467 sqlite3FuncDefInsert(pHash, &aFunc[i]); 1468 } 1469 } 1470 1471 /* 1472 ** Attempt to extract a value from pExpr and use it to construct *ppVal. 1473 ** 1474 ** If pAlloc is not NULL, then an UnpackedRecord object is created for 1475 ** pAlloc if one does not exist and the new value is added to the 1476 ** UnpackedRecord object. 1477 ** 1478 ** A value is extracted in the following cases: 1479 ** 1480 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1481 ** 1482 ** * The expression is a bound variable, and this is a reprepare, or 1483 ** 1484 ** * The expression is a literal value. 1485 ** 1486 ** On success, *ppVal is made to point to the extracted value. The caller 1487 ** is responsible for ensuring that the value is eventually freed. 1488 */ 1489 static int stat4ValueFromExpr( 1490 Parse *pParse, /* Parse context */ 1491 Expr *pExpr, /* The expression to extract a value from */ 1492 u8 affinity, /* Affinity to use */ 1493 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ 1494 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1495 ){ 1496 int rc = SQLITE_OK; 1497 sqlite3_value *pVal = 0; 1498 sqlite3 *db = pParse->db; 1499 1500 /* Skip over any TK_COLLATE nodes */ 1501 pExpr = sqlite3ExprSkipCollate(pExpr); 1502 1503 if( !pExpr ){ 1504 pVal = valueNew(db, pAlloc); 1505 if( pVal ){ 1506 sqlite3VdbeMemSetNull((Mem*)pVal); 1507 } 1508 }else if( pExpr->op==TK_VARIABLE 1509 || NEVER(pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE) 1510 ){ 1511 Vdbe *v; 1512 int iBindVar = pExpr->iColumn; 1513 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); 1514 if( (v = pParse->pReprepare)!=0 ){ 1515 pVal = valueNew(db, pAlloc); 1516 if( pVal ){ 1517 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); 1518 if( rc==SQLITE_OK ){ 1519 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); 1520 } 1521 pVal->db = pParse->db; 1522 } 1523 } 1524 }else{ 1525 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); 1526 } 1527 1528 assert( pVal==0 || pVal->db==db ); 1529 *ppVal = pVal; 1530 return rc; 1531 } 1532 1533 /* 1534 ** This function is used to allocate and populate UnpackedRecord 1535 ** structures intended to be compared against sample index keys stored 1536 ** in the sqlite_stat4 table. 1537 ** 1538 ** A single call to this function attempts to populates field iVal (leftmost 1539 ** is 0 etc.) of the unpacked record with a value extracted from expression 1540 ** pExpr. Extraction of values is possible if: 1541 ** 1542 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1543 ** 1544 ** * The expression is a bound variable, and this is a reprepare, or 1545 ** 1546 ** * The sqlite3ValueFromExpr() function is able to extract a value 1547 ** from the expression (i.e. the expression is a literal value). 1548 ** 1549 ** If a value can be extracted, the affinity passed as the 5th argument 1550 ** is applied to it before it is copied into the UnpackedRecord. Output 1551 ** parameter *pbOk is set to true if a value is extracted, or false 1552 ** otherwise. 1553 ** 1554 ** When this function is called, *ppRec must either point to an object 1555 ** allocated by an earlier call to this function, or must be NULL. If it 1556 ** is NULL and a value can be successfully extracted, a new UnpackedRecord 1557 ** is allocated (and *ppRec set to point to it) before returning. 1558 ** 1559 ** Unless an error is encountered, SQLITE_OK is returned. It is not an 1560 ** error if a value cannot be extracted from pExpr. If an error does 1561 ** occur, an SQLite error code is returned. 1562 */ 1563 int sqlite3Stat4ProbeSetValue( 1564 Parse *pParse, /* Parse context */ 1565 Index *pIdx, /* Index being probed */ 1566 UnpackedRecord **ppRec, /* IN/OUT: Probe record */ 1567 Expr *pExpr, /* The expression to extract a value from */ 1568 u8 affinity, /* Affinity to use */ 1569 int iVal, /* Array element to populate */ 1570 int *pbOk /* OUT: True if value was extracted */ 1571 ){ 1572 int rc; 1573 sqlite3_value *pVal = 0; 1574 struct ValueNewStat4Ctx alloc; 1575 1576 alloc.pParse = pParse; 1577 alloc.pIdx = pIdx; 1578 alloc.ppRec = ppRec; 1579 alloc.iVal = iVal; 1580 1581 rc = stat4ValueFromExpr(pParse, pExpr, affinity, &alloc, &pVal); 1582 assert( pVal==0 || pVal->db==pParse->db ); 1583 *pbOk = (pVal!=0); 1584 return rc; 1585 } 1586 1587 /* 1588 ** Attempt to extract a value from expression pExpr using the methods 1589 ** as described for sqlite3Stat4ProbeSetValue() above. 1590 ** 1591 ** If successful, set *ppVal to point to a new value object and return 1592 ** SQLITE_OK. If no value can be extracted, but no other error occurs 1593 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error 1594 ** does occur, return an SQLite error code. The final value of *ppVal 1595 ** is undefined in this case. 1596 */ 1597 int sqlite3Stat4ValueFromExpr( 1598 Parse *pParse, /* Parse context */ 1599 Expr *pExpr, /* The expression to extract a value from */ 1600 u8 affinity, /* Affinity to use */ 1601 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1602 ){ 1603 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); 1604 } 1605 1606 /* 1607 ** Extract the iCol-th column from the nRec-byte record in pRec. Write 1608 ** the column value into *ppVal. If *ppVal is initially NULL then a new 1609 ** sqlite3_value object is allocated. 1610 ** 1611 ** If *ppVal is initially NULL then the caller is responsible for 1612 ** ensuring that the value written into *ppVal is eventually freed. 1613 */ 1614 int sqlite3Stat4Column( 1615 sqlite3 *db, /* Database handle */ 1616 const void *pRec, /* Pointer to buffer containing record */ 1617 int nRec, /* Size of buffer pRec in bytes */ 1618 int iCol, /* Column to extract */ 1619 sqlite3_value **ppVal /* OUT: Extracted value */ 1620 ){ 1621 u32 t; /* a column type code */ 1622 int nHdr; /* Size of the header in the record */ 1623 int iHdr; /* Next unread header byte */ 1624 int iField; /* Next unread data byte */ 1625 int szField; /* Size of the current data field */ 1626 int i; /* Column index */ 1627 u8 *a = (u8*)pRec; /* Typecast byte array */ 1628 Mem *pMem = *ppVal; /* Write result into this Mem object */ 1629 1630 assert( iCol>0 ); 1631 iHdr = getVarint32(a, nHdr); 1632 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; 1633 iField = nHdr; 1634 for(i=0; i<=iCol; i++){ 1635 iHdr += getVarint32(&a[iHdr], t); 1636 testcase( iHdr==nHdr ); 1637 testcase( iHdr==nHdr+1 ); 1638 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; 1639 szField = sqlite3VdbeSerialTypeLen(t); 1640 iField += szField; 1641 } 1642 testcase( iField==nRec ); 1643 testcase( iField==nRec+1 ); 1644 if( iField>nRec ) return SQLITE_CORRUPT_BKPT; 1645 if( pMem==0 ){ 1646 pMem = *ppVal = sqlite3ValueNew(db); 1647 if( pMem==0 ) return SQLITE_NOMEM; 1648 } 1649 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); 1650 pMem->enc = ENC(db); 1651 return SQLITE_OK; 1652 } 1653 1654 /* 1655 ** Unless it is NULL, the argument must be an UnpackedRecord object returned 1656 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes 1657 ** the object. 1658 */ 1659 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ 1660 if( pRec ){ 1661 int i; 1662 int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField; 1663 Mem *aMem = pRec->aMem; 1664 sqlite3 *db = aMem[0].db; 1665 for(i=0; i<nCol; i++){ 1666 sqlite3VdbeMemRelease(&aMem[i]); 1667 } 1668 sqlite3KeyInfoUnref(pRec->pKeyInfo); 1669 sqlite3DbFree(db, pRec); 1670 } 1671 } 1672 #endif /* ifdef SQLITE_ENABLE_STAT4 */ 1673 1674 /* 1675 ** Change the string value of an sqlite3_value object 1676 */ 1677 void sqlite3ValueSetStr( 1678 sqlite3_value *v, /* Value to be set */ 1679 int n, /* Length of string z */ 1680 const void *z, /* Text of the new string */ 1681 u8 enc, /* Encoding to use */ 1682 void (*xDel)(void*) /* Destructor for the string */ 1683 ){ 1684 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 1685 } 1686 1687 /* 1688 ** Free an sqlite3_value object 1689 */ 1690 void sqlite3ValueFree(sqlite3_value *v){ 1691 if( !v ) return; 1692 sqlite3VdbeMemRelease((Mem *)v); 1693 sqlite3DbFree(((Mem*)v)->db, v); 1694 } 1695 1696 /* 1697 ** The sqlite3ValueBytes() routine returns the number of bytes in the 1698 ** sqlite3_value object assuming that it uses the encoding "enc". 1699 ** The valueBytes() routine is a helper function. 1700 */ 1701 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ 1702 return valueToText(pVal, enc)!=0 ? pVal->n : 0; 1703 } 1704 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1705 Mem *p = (Mem*)pVal; 1706 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); 1707 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ 1708 return p->n; 1709 } 1710 if( (p->flags & MEM_Blob)!=0 ){ 1711 if( p->flags & MEM_Zero ){ 1712 return p->n + p->u.nZero; 1713 }else{ 1714 return p->n; 1715 } 1716 } 1717 if( p->flags & MEM_Null ) return 0; 1718 return valueBytes(pVal, enc); 1719 } 1720