xref: /sqlite-3.40.0/src/vdbemem.c (revision 3f09beda)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to manipulate "Mem" structure.  A "Mem"
14 ** stores a single value in the VDBE.  Mem is an opaque structure visible
15 ** only within the VDBE.  Interface routines refer to a Mem using the
16 ** name sqlite_value
17 */
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
20 
21 #ifdef SQLITE_DEBUG
22 /*
23 ** Check invariants on a Mem object.
24 **
25 ** This routine is intended for use inside of assert() statements, like
26 ** this:    assert( sqlite3VdbeCheckMemInvariants(pMem) );
27 */
28 int sqlite3VdbeCheckMemInvariants(Mem *p){
29   /* If MEM_Dyn is set then Mem.xDel!=0.
30   ** Mem.xDel is might not be initialized if MEM_Dyn is clear.
31   */
32   assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
33 
34   /* MEM_Dyn may only be set if Mem.szMalloc==0.  In this way we
35   ** ensure that if Mem.szMalloc>0 then it is safe to do
36   ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37   ** That saves a few cycles in inner loops. */
38   assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
39 
40   /* Cannot be both MEM_Int and MEM_Real at the same time */
41   assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );
42 
43   /* The szMalloc field holds the correct memory allocation size */
44   assert( p->szMalloc==0
45        || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
46 
47   /* If p holds a string or blob, the Mem.z must point to exactly
48   ** one of the following:
49   **
50   **   (1) Memory in Mem.zMalloc and managed by the Mem object
51   **   (2) Memory to be freed using Mem.xDel
52   **   (3) An ephemeral string or blob
53   **   (4) A static string or blob
54   */
55   if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
56     assert(
57       ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
58       ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
59       ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
60       ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
61     );
62   }
63   return 1;
64 }
65 #endif
66 
67 
68 /*
69 ** If pMem is an object with a valid string representation, this routine
70 ** ensures the internal encoding for the string representation is
71 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
72 **
73 ** If pMem is not a string object, or the encoding of the string
74 ** representation is already stored using the requested encoding, then this
75 ** routine is a no-op.
76 **
77 ** SQLITE_OK is returned if the conversion is successful (or not required).
78 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
79 ** between formats.
80 */
81 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
82 #ifndef SQLITE_OMIT_UTF16
83   int rc;
84 #endif
85   assert( (pMem->flags&MEM_RowSet)==0 );
86   assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
87            || desiredEnc==SQLITE_UTF16BE );
88   if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
89     return SQLITE_OK;
90   }
91   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
92 #ifdef SQLITE_OMIT_UTF16
93   return SQLITE_ERROR;
94 #else
95 
96   /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
97   ** then the encoding of the value may not have changed.
98   */
99   rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
100   assert(rc==SQLITE_OK    || rc==SQLITE_NOMEM);
101   assert(rc==SQLITE_OK    || pMem->enc!=desiredEnc);
102   assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
103   return rc;
104 #endif
105 }
106 
107 /*
108 ** Make sure pMem->z points to a writable allocation of at least
109 ** min(n,32) bytes.
110 **
111 ** If the bPreserve argument is true, then copy of the content of
112 ** pMem->z into the new allocation.  pMem must be either a string or
113 ** blob if bPreserve is true.  If bPreserve is false, any prior content
114 ** in pMem->z is discarded.
115 */
116 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
117   assert( sqlite3VdbeCheckMemInvariants(pMem) );
118   assert( (pMem->flags&MEM_RowSet)==0 );
119 
120   /* If the bPreserve flag is set to true, then the memory cell must already
121   ** contain a valid string or blob value.  */
122   assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
123   testcase( bPreserve && pMem->z==0 );
124 
125   assert( pMem->szMalloc==0
126        || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
127   if( pMem->szMalloc<n ){
128     if( n<32 ) n = 32;
129     if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){
130       pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
131       bPreserve = 0;
132     }else{
133       if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
134       pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
135     }
136     if( pMem->zMalloc==0 ){
137       sqlite3VdbeMemSetNull(pMem);
138       pMem->z = 0;
139       pMem->szMalloc = 0;
140       return SQLITE_NOMEM;
141     }else{
142       pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
143     }
144   }
145 
146   if( bPreserve && pMem->z && pMem->z!=pMem->zMalloc ){
147     memcpy(pMem->zMalloc, pMem->z, pMem->n);
148   }
149   if( (pMem->flags&MEM_Dyn)!=0 ){
150     assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
151     pMem->xDel((void *)(pMem->z));
152   }
153 
154   pMem->z = pMem->zMalloc;
155   pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
156   return SQLITE_OK;
157 }
158 
159 /*
160 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
161 ** If pMem->zMalloc already meets or exceeds the requested size, this
162 ** routine is a no-op.
163 **
164 ** Any prior string or blob content in the pMem object may be discarded.
165 ** The pMem->xDel destructor is called, if it exists.  Though MEM_Str
166 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
167 ** values are preserved.
168 **
169 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
170 ** if unable to complete the resizing.
171 */
172 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
173   assert( szNew>0 );
174   assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
175   if( pMem->szMalloc<szNew ){
176     return sqlite3VdbeMemGrow(pMem, szNew, 0);
177   }
178   assert( (pMem->flags & MEM_Dyn)==0 );
179   pMem->z = pMem->zMalloc;
180   pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
181   return SQLITE_OK;
182 }
183 
184 /*
185 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
186 ** MEM.zMalloc, where it can be safely written.
187 **
188 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
189 */
190 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
191   int f;
192   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
193   assert( (pMem->flags&MEM_RowSet)==0 );
194   ExpandBlob(pMem);
195   f = pMem->flags;
196   if( (f&(MEM_Str|MEM_Blob)) && (pMem->szMalloc==0 || pMem->z!=pMem->zMalloc) ){
197     if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
198       return SQLITE_NOMEM;
199     }
200     pMem->z[pMem->n] = 0;
201     pMem->z[pMem->n+1] = 0;
202     pMem->flags |= MEM_Term;
203   }
204   pMem->flags &= ~MEM_Ephem;
205 #ifdef SQLITE_DEBUG
206   pMem->pScopyFrom = 0;
207 #endif
208 
209   return SQLITE_OK;
210 }
211 
212 /*
213 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
214 ** blob stored in dynamically allocated space.
215 */
216 #ifndef SQLITE_OMIT_INCRBLOB
217 int sqlite3VdbeMemExpandBlob(Mem *pMem){
218   if( pMem->flags & MEM_Zero ){
219     int nByte;
220     assert( pMem->flags&MEM_Blob );
221     assert( (pMem->flags&MEM_RowSet)==0 );
222     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
223 
224     /* Set nByte to the number of bytes required to store the expanded blob. */
225     nByte = pMem->n + pMem->u.nZero;
226     if( nByte<=0 ){
227       nByte = 1;
228     }
229     if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
230       return SQLITE_NOMEM;
231     }
232 
233     memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
234     pMem->n += pMem->u.nZero;
235     pMem->flags &= ~(MEM_Zero|MEM_Term);
236   }
237   return SQLITE_OK;
238 }
239 #endif
240 
241 /*
242 ** It is already known that pMem contains an unterminated string.
243 ** Add the zero terminator.
244 */
245 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
246   if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
247     return SQLITE_NOMEM;
248   }
249   pMem->z[pMem->n] = 0;
250   pMem->z[pMem->n+1] = 0;
251   pMem->flags |= MEM_Term;
252   return SQLITE_OK;
253 }
254 
255 /*
256 ** Make sure the given Mem is \u0000 terminated.
257 */
258 int sqlite3VdbeMemNulTerminate(Mem *pMem){
259   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
260   testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
261   testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
262   if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
263     return SQLITE_OK;   /* Nothing to do */
264   }else{
265     return vdbeMemAddTerminator(pMem);
266   }
267 }
268 
269 /*
270 ** Add MEM_Str to the set of representations for the given Mem.  Numbers
271 ** are converted using sqlite3_snprintf().  Converting a BLOB to a string
272 ** is a no-op.
273 **
274 ** Existing representations MEM_Int and MEM_Real are invalidated if
275 ** bForce is true but are retained if bForce is false.
276 **
277 ** A MEM_Null value will never be passed to this function. This function is
278 ** used for converting values to text for returning to the user (i.e. via
279 ** sqlite3_value_text()), or for ensuring that values to be used as btree
280 ** keys are strings. In the former case a NULL pointer is returned the
281 ** user and the latter is an internal programming error.
282 */
283 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
284   int fg = pMem->flags;
285   const int nByte = 32;
286 
287   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
288   assert( !(fg&MEM_Zero) );
289   assert( !(fg&(MEM_Str|MEM_Blob)) );
290   assert( fg&(MEM_Int|MEM_Real) );
291   assert( (pMem->flags&MEM_RowSet)==0 );
292   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
293 
294 
295   if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
296     return SQLITE_NOMEM;
297   }
298 
299   /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
300   ** string representation of the value. Then, if the required encoding
301   ** is UTF-16le or UTF-16be do a translation.
302   **
303   ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
304   */
305   if( fg & MEM_Int ){
306     sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
307   }else{
308     assert( fg & MEM_Real );
309     sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
310   }
311   pMem->n = sqlite3Strlen30(pMem->z);
312   pMem->enc = SQLITE_UTF8;
313   pMem->flags |= MEM_Str|MEM_Term;
314   if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
315   sqlite3VdbeChangeEncoding(pMem, enc);
316   return SQLITE_OK;
317 }
318 
319 /*
320 ** Memory cell pMem contains the context of an aggregate function.
321 ** This routine calls the finalize method for that function.  The
322 ** result of the aggregate is stored back into pMem.
323 **
324 ** Return SQLITE_ERROR if the finalizer reports an error.  SQLITE_OK
325 ** otherwise.
326 */
327 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
328   int rc = SQLITE_OK;
329   if( ALWAYS(pFunc && pFunc->xFinalize) ){
330     sqlite3_context ctx;
331     Mem t;
332     assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
333     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
334     memset(&ctx, 0, sizeof(ctx));
335     memset(&t, 0, sizeof(t));
336     t.flags = MEM_Null;
337     t.db = pMem->db;
338     ctx.pOut = &t;
339     ctx.pMem = pMem;
340     ctx.pFunc = pFunc;
341     pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
342     assert( (pMem->flags & MEM_Dyn)==0 );
343     if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
344     memcpy(pMem, &t, sizeof(t));
345     rc = ctx.isError;
346   }
347   return rc;
348 }
349 
350 /*
351 ** If the memory cell contains a value that must be freed by
352 ** invoking the external callback in Mem.xDel, then this routine
353 ** will free that value.  It also sets Mem.flags to MEM_Null.
354 **
355 ** This is a helper routine for sqlite3VdbeMemSetNull() and
356 ** for sqlite3VdbeMemRelease().  Use those other routines as the
357 ** entry point for releasing Mem resources.
358 */
359 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
360   assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
361   assert( VdbeMemDynamic(p) );
362   if( p->flags&MEM_Agg ){
363     sqlite3VdbeMemFinalize(p, p->u.pDef);
364     assert( (p->flags & MEM_Agg)==0 );
365     testcase( p->flags & MEM_Dyn );
366   }
367   if( p->flags&MEM_Dyn ){
368     assert( (p->flags&MEM_RowSet)==0 );
369     assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
370     p->xDel((void *)p->z);
371   }else if( p->flags&MEM_RowSet ){
372     sqlite3RowSetClear(p->u.pRowSet);
373   }else if( p->flags&MEM_Frame ){
374     VdbeFrame *pFrame = p->u.pFrame;
375     pFrame->pParent = pFrame->v->pDelFrame;
376     pFrame->v->pDelFrame = pFrame;
377   }
378   p->flags = MEM_Null;
379 }
380 
381 /*
382 ** Release memory held by the Mem p, both external memory cleared
383 ** by p->xDel and memory in p->zMalloc.
384 **
385 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
386 ** the unusual case where there really is memory in p that needs
387 ** to be freed.
388 */
389 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
390   if( VdbeMemDynamic(p) ){
391     vdbeMemClearExternAndSetNull(p);
392   }
393   if( p->szMalloc ){
394     sqlite3DbFree(p->db, p->zMalloc);
395     p->szMalloc = 0;
396   }
397   p->z = 0;
398 }
399 
400 /*
401 ** Release any memory resources held by the Mem.  Both the memory that is
402 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
403 **
404 ** Use this routine prior to clean up prior to abandoning a Mem, or to
405 ** reset a Mem back to its minimum memory utilization.
406 **
407 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
408 ** prior to inserting new content into the Mem.
409 */
410 void sqlite3VdbeMemRelease(Mem *p){
411   assert( sqlite3VdbeCheckMemInvariants(p) );
412   if( VdbeMemDynamic(p) || p->szMalloc ){
413     vdbeMemClear(p);
414   }
415 }
416 
417 /*
418 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
419 ** If the double is out of range of a 64-bit signed integer then
420 ** return the closest available 64-bit signed integer.
421 */
422 static i64 doubleToInt64(double r){
423 #ifdef SQLITE_OMIT_FLOATING_POINT
424   /* When floating-point is omitted, double and int64 are the same thing */
425   return r;
426 #else
427   /*
428   ** Many compilers we encounter do not define constants for the
429   ** minimum and maximum 64-bit integers, or they define them
430   ** inconsistently.  And many do not understand the "LL" notation.
431   ** So we define our own static constants here using nothing
432   ** larger than a 32-bit integer constant.
433   */
434   static const i64 maxInt = LARGEST_INT64;
435   static const i64 minInt = SMALLEST_INT64;
436 
437   if( r<=(double)minInt ){
438     return minInt;
439   }else if( r>=(double)maxInt ){
440     return maxInt;
441   }else{
442     return (i64)r;
443   }
444 #endif
445 }
446 
447 /*
448 ** Return some kind of integer value which is the best we can do
449 ** at representing the value that *pMem describes as an integer.
450 ** If pMem is an integer, then the value is exact.  If pMem is
451 ** a floating-point then the value returned is the integer part.
452 ** If pMem is a string or blob, then we make an attempt to convert
453 ** it into an integer and return that.  If pMem represents an
454 ** an SQL-NULL value, return 0.
455 **
456 ** If pMem represents a string value, its encoding might be changed.
457 */
458 i64 sqlite3VdbeIntValue(Mem *pMem){
459   int flags;
460   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
461   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
462   flags = pMem->flags;
463   if( flags & MEM_Int ){
464     return pMem->u.i;
465   }else if( flags & MEM_Real ){
466     return doubleToInt64(pMem->u.r);
467   }else if( flags & (MEM_Str|MEM_Blob) ){
468     i64 value = 0;
469     assert( pMem->z || pMem->n==0 );
470     sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
471     return value;
472   }else{
473     return 0;
474   }
475 }
476 
477 /*
478 ** Return the best representation of pMem that we can get into a
479 ** double.  If pMem is already a double or an integer, return its
480 ** value.  If it is a string or blob, try to convert it to a double.
481 ** If it is a NULL, return 0.0.
482 */
483 double sqlite3VdbeRealValue(Mem *pMem){
484   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
485   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
486   if( pMem->flags & MEM_Real ){
487     return pMem->u.r;
488   }else if( pMem->flags & MEM_Int ){
489     return (double)pMem->u.i;
490   }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
491     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
492     double val = (double)0;
493     sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
494     return val;
495   }else{
496     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
497     return (double)0;
498   }
499 }
500 
501 /*
502 ** The MEM structure is already a MEM_Real.  Try to also make it a
503 ** MEM_Int if we can.
504 */
505 void sqlite3VdbeIntegerAffinity(Mem *pMem){
506   i64 ix;
507   assert( pMem->flags & MEM_Real );
508   assert( (pMem->flags & MEM_RowSet)==0 );
509   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
510   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
511 
512   ix = doubleToInt64(pMem->u.r);
513 
514   /* Only mark the value as an integer if
515   **
516   **    (1) the round-trip conversion real->int->real is a no-op, and
517   **    (2) The integer is neither the largest nor the smallest
518   **        possible integer (ticket #3922)
519   **
520   ** The second and third terms in the following conditional enforces
521   ** the second condition under the assumption that addition overflow causes
522   ** values to wrap around.
523   */
524   if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
525     pMem->u.i = ix;
526     MemSetTypeFlag(pMem, MEM_Int);
527   }
528 }
529 
530 /*
531 ** Convert pMem to type integer.  Invalidate any prior representations.
532 */
533 int sqlite3VdbeMemIntegerify(Mem *pMem){
534   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
535   assert( (pMem->flags & MEM_RowSet)==0 );
536   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
537 
538   pMem->u.i = sqlite3VdbeIntValue(pMem);
539   MemSetTypeFlag(pMem, MEM_Int);
540   return SQLITE_OK;
541 }
542 
543 /*
544 ** Convert pMem so that it is of type MEM_Real.
545 ** Invalidate any prior representations.
546 */
547 int sqlite3VdbeMemRealify(Mem *pMem){
548   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
549   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
550 
551   pMem->u.r = sqlite3VdbeRealValue(pMem);
552   MemSetTypeFlag(pMem, MEM_Real);
553   return SQLITE_OK;
554 }
555 
556 /*
557 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
558 ** Invalidate any prior representations.
559 **
560 ** Every effort is made to force the conversion, even if the input
561 ** is a string that does not look completely like a number.  Convert
562 ** as much of the string as we can and ignore the rest.
563 */
564 int sqlite3VdbeMemNumerify(Mem *pMem){
565   if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
566     assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
567     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
568     if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){
569       MemSetTypeFlag(pMem, MEM_Int);
570     }else{
571       pMem->u.r = sqlite3VdbeRealValue(pMem);
572       MemSetTypeFlag(pMem, MEM_Real);
573       sqlite3VdbeIntegerAffinity(pMem);
574     }
575   }
576   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
577   pMem->flags &= ~(MEM_Str|MEM_Blob);
578   return SQLITE_OK;
579 }
580 
581 /*
582 ** Cast the datatype of the value in pMem according to the affinity
583 ** "aff".  Casting is different from applying affinity in that a cast
584 ** is forced.  In other words, the value is converted into the desired
585 ** affinity even if that results in loss of data.  This routine is
586 ** used (for example) to implement the SQL "cast()" operator.
587 */
588 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
589   if( pMem->flags & MEM_Null ) return;
590   switch( aff ){
591     case SQLITE_AFF_BLOB: {   /* Really a cast to BLOB */
592       if( (pMem->flags & MEM_Blob)==0 ){
593         sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
594         assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
595         MemSetTypeFlag(pMem, MEM_Blob);
596       }else{
597         pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
598       }
599       break;
600     }
601     case SQLITE_AFF_NUMERIC: {
602       sqlite3VdbeMemNumerify(pMem);
603       break;
604     }
605     case SQLITE_AFF_INTEGER: {
606       sqlite3VdbeMemIntegerify(pMem);
607       break;
608     }
609     case SQLITE_AFF_REAL: {
610       sqlite3VdbeMemRealify(pMem);
611       break;
612     }
613     default: {
614       assert( aff==SQLITE_AFF_TEXT );
615       assert( MEM_Str==(MEM_Blob>>3) );
616       pMem->flags |= (pMem->flags&MEM_Blob)>>3;
617       sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
618       assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
619       pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
620       break;
621     }
622   }
623 }
624 
625 /*
626 ** Initialize bulk memory to be a consistent Mem object.
627 **
628 ** The minimum amount of initialization feasible is performed.
629 */
630 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
631   assert( (flags & ~MEM_TypeMask)==0 );
632   pMem->flags = flags;
633   pMem->db = db;
634   pMem->szMalloc = 0;
635 }
636 
637 
638 /*
639 ** Delete any previous value and set the value stored in *pMem to NULL.
640 **
641 ** This routine calls the Mem.xDel destructor to dispose of values that
642 ** require the destructor.  But it preserves the Mem.zMalloc memory allocation.
643 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
644 ** routine to invoke the destructor and deallocates Mem.zMalloc.
645 **
646 ** Use this routine to reset the Mem prior to insert a new value.
647 **
648 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
649 */
650 void sqlite3VdbeMemSetNull(Mem *pMem){
651   if( VdbeMemDynamic(pMem) ){
652     vdbeMemClearExternAndSetNull(pMem);
653   }else{
654     pMem->flags = MEM_Null;
655   }
656 }
657 void sqlite3ValueSetNull(sqlite3_value *p){
658   sqlite3VdbeMemSetNull((Mem*)p);
659 }
660 
661 /*
662 ** Delete any previous value and set the value to be a BLOB of length
663 ** n containing all zeros.
664 */
665 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
666   sqlite3VdbeMemRelease(pMem);
667   pMem->flags = MEM_Blob|MEM_Zero;
668   pMem->n = 0;
669   if( n<0 ) n = 0;
670   pMem->u.nZero = n;
671   pMem->enc = SQLITE_UTF8;
672   pMem->z = 0;
673 }
674 
675 /*
676 ** The pMem is known to contain content that needs to be destroyed prior
677 ** to a value change.  So invoke the destructor, then set the value to
678 ** a 64-bit integer.
679 */
680 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
681   sqlite3VdbeMemSetNull(pMem);
682   pMem->u.i = val;
683   pMem->flags = MEM_Int;
684 }
685 
686 /*
687 ** Delete any previous value and set the value stored in *pMem to val,
688 ** manifest type INTEGER.
689 */
690 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
691   if( VdbeMemDynamic(pMem) ){
692     vdbeReleaseAndSetInt64(pMem, val);
693   }else{
694     pMem->u.i = val;
695     pMem->flags = MEM_Int;
696   }
697 }
698 
699 #ifndef SQLITE_OMIT_FLOATING_POINT
700 /*
701 ** Delete any previous value and set the value stored in *pMem to val,
702 ** manifest type REAL.
703 */
704 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
705   sqlite3VdbeMemSetNull(pMem);
706   if( !sqlite3IsNaN(val) ){
707     pMem->u.r = val;
708     pMem->flags = MEM_Real;
709   }
710 }
711 #endif
712 
713 /*
714 ** Delete any previous value and set the value of pMem to be an
715 ** empty boolean index.
716 */
717 void sqlite3VdbeMemSetRowSet(Mem *pMem){
718   sqlite3 *db = pMem->db;
719   assert( db!=0 );
720   assert( (pMem->flags & MEM_RowSet)==0 );
721   sqlite3VdbeMemRelease(pMem);
722   pMem->zMalloc = sqlite3DbMallocRaw(db, 64);
723   if( db->mallocFailed ){
724     pMem->flags = MEM_Null;
725     pMem->szMalloc = 0;
726   }else{
727     assert( pMem->zMalloc );
728     pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
729     pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);
730     assert( pMem->u.pRowSet!=0 );
731     pMem->flags = MEM_RowSet;
732   }
733 }
734 
735 /*
736 ** Return true if the Mem object contains a TEXT or BLOB that is
737 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
738 */
739 int sqlite3VdbeMemTooBig(Mem *p){
740   assert( p->db!=0 );
741   if( p->flags & (MEM_Str|MEM_Blob) ){
742     int n = p->n;
743     if( p->flags & MEM_Zero ){
744       n += p->u.nZero;
745     }
746     return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
747   }
748   return 0;
749 }
750 
751 #ifdef SQLITE_DEBUG
752 /*
753 ** This routine prepares a memory cell for modification by breaking
754 ** its link to a shallow copy and by marking any current shallow
755 ** copies of this cell as invalid.
756 **
757 ** This is used for testing and debugging only - to make sure shallow
758 ** copies are not misused.
759 */
760 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
761   int i;
762   Mem *pX;
763   for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){
764     if( pX->pScopyFrom==pMem ){
765       pX->flags |= MEM_Undefined;
766       pX->pScopyFrom = 0;
767     }
768   }
769   pMem->pScopyFrom = 0;
770 }
771 #endif /* SQLITE_DEBUG */
772 
773 
774 /*
775 ** Make an shallow copy of pFrom into pTo.  Prior contents of
776 ** pTo are freed.  The pFrom->z field is not duplicated.  If
777 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
778 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
779 */
780 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
781   vdbeMemClearExternAndSetNull(pTo);
782   assert( !VdbeMemDynamic(pTo) );
783   sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
784 }
785 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
786   assert( (pFrom->flags & MEM_RowSet)==0 );
787   assert( pTo->db==pFrom->db );
788   if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
789   memcpy(pTo, pFrom, MEMCELLSIZE);
790   if( (pFrom->flags&MEM_Static)==0 ){
791     pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
792     assert( srcType==MEM_Ephem || srcType==MEM_Static );
793     pTo->flags |= srcType;
794   }
795 }
796 
797 /*
798 ** Make a full copy of pFrom into pTo.  Prior contents of pTo are
799 ** freed before the copy is made.
800 */
801 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
802   int rc = SQLITE_OK;
803 
804   /* The pFrom==0 case in the following assert() is when an sqlite3_value
805   ** from sqlite3_value_dup() is used as the argument
806   ** to sqlite3_result_value(). */
807   assert( pTo->db==pFrom->db || pFrom->db==0 );
808   assert( (pFrom->flags & MEM_RowSet)==0 );
809   if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
810   memcpy(pTo, pFrom, MEMCELLSIZE);
811   pTo->flags &= ~MEM_Dyn;
812   if( pTo->flags&(MEM_Str|MEM_Blob) ){
813     if( 0==(pFrom->flags&MEM_Static) ){
814       pTo->flags |= MEM_Ephem;
815       rc = sqlite3VdbeMemMakeWriteable(pTo);
816     }
817   }
818 
819   return rc;
820 }
821 
822 /*
823 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
824 ** freed. If pFrom contains ephemeral data, a copy is made.
825 **
826 ** pFrom contains an SQL NULL when this routine returns.
827 */
828 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
829   assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
830   assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
831   assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
832 
833   sqlite3VdbeMemRelease(pTo);
834   memcpy(pTo, pFrom, sizeof(Mem));
835   pFrom->flags = MEM_Null;
836   pFrom->szMalloc = 0;
837 }
838 
839 /*
840 ** Change the value of a Mem to be a string or a BLOB.
841 **
842 ** The memory management strategy depends on the value of the xDel
843 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
844 ** string is copied into a (possibly existing) buffer managed by the
845 ** Mem structure. Otherwise, any existing buffer is freed and the
846 ** pointer copied.
847 **
848 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
849 ** size limit) then no memory allocation occurs.  If the string can be
850 ** stored without allocating memory, then it is.  If a memory allocation
851 ** is required to store the string, then value of pMem is unchanged.  In
852 ** either case, SQLITE_TOOBIG is returned.
853 */
854 int sqlite3VdbeMemSetStr(
855   Mem *pMem,          /* Memory cell to set to string value */
856   const char *z,      /* String pointer */
857   int n,              /* Bytes in string, or negative */
858   u8 enc,             /* Encoding of z.  0 for BLOBs */
859   void (*xDel)(void*) /* Destructor function */
860 ){
861   int nByte = n;      /* New value for pMem->n */
862   int iLimit;         /* Maximum allowed string or blob size */
863   u16 flags = 0;      /* New value for pMem->flags */
864 
865   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
866   assert( (pMem->flags & MEM_RowSet)==0 );
867 
868   /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
869   if( !z ){
870     sqlite3VdbeMemSetNull(pMem);
871     return SQLITE_OK;
872   }
873 
874   if( pMem->db ){
875     iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
876   }else{
877     iLimit = SQLITE_MAX_LENGTH;
878   }
879   flags = (enc==0?MEM_Blob:MEM_Str);
880   if( nByte<0 ){
881     assert( enc!=0 );
882     if( enc==SQLITE_UTF8 ){
883       nByte = sqlite3Strlen30(z);
884       if( nByte>iLimit ) nByte = iLimit+1;
885     }else{
886       for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
887     }
888     flags |= MEM_Term;
889   }
890 
891   /* The following block sets the new values of Mem.z and Mem.xDel. It
892   ** also sets a flag in local variable "flags" to indicate the memory
893   ** management (one of MEM_Dyn or MEM_Static).
894   */
895   if( xDel==SQLITE_TRANSIENT ){
896     int nAlloc = nByte;
897     if( flags&MEM_Term ){
898       nAlloc += (enc==SQLITE_UTF8?1:2);
899     }
900     if( nByte>iLimit ){
901       return SQLITE_TOOBIG;
902     }
903     testcase( nAlloc==0 );
904     testcase( nAlloc==31 );
905     testcase( nAlloc==32 );
906     if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){
907       return SQLITE_NOMEM;
908     }
909     memcpy(pMem->z, z, nAlloc);
910   }else if( xDel==SQLITE_DYNAMIC ){
911     sqlite3VdbeMemRelease(pMem);
912     pMem->zMalloc = pMem->z = (char *)z;
913     pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
914   }else{
915     sqlite3VdbeMemRelease(pMem);
916     pMem->z = (char *)z;
917     pMem->xDel = xDel;
918     flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
919   }
920 
921   pMem->n = nByte;
922   pMem->flags = flags;
923   pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
924 
925 #ifndef SQLITE_OMIT_UTF16
926   if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
927     return SQLITE_NOMEM;
928   }
929 #endif
930 
931   if( nByte>iLimit ){
932     return SQLITE_TOOBIG;
933   }
934 
935   return SQLITE_OK;
936 }
937 
938 /*
939 ** Move data out of a btree key or data field and into a Mem structure.
940 ** The data or key is taken from the entry that pCur is currently pointing
941 ** to.  offset and amt determine what portion of the data or key to retrieve.
942 ** key is true to get the key or false to get data.  The result is written
943 ** into the pMem element.
944 **
945 ** The pMem object must have been initialized.  This routine will use
946 ** pMem->zMalloc to hold the content from the btree, if possible.  New
947 ** pMem->zMalloc space will be allocated if necessary.  The calling routine
948 ** is responsible for making sure that the pMem object is eventually
949 ** destroyed.
950 **
951 ** If this routine fails for any reason (malloc returns NULL or unable
952 ** to read from the disk) then the pMem is left in an inconsistent state.
953 */
954 static SQLITE_NOINLINE int vdbeMemFromBtreeResize(
955   BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
956   u32 offset,       /* Offset from the start of data to return bytes from. */
957   u32 amt,          /* Number of bytes to return. */
958   int key,          /* If true, retrieve from the btree key, not data. */
959   Mem *pMem         /* OUT: Return data in this Mem structure. */
960 ){
961   int rc;
962   pMem->flags = MEM_Null;
963   if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){
964     if( key ){
965       rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
966     }else{
967       rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
968     }
969     if( rc==SQLITE_OK ){
970       pMem->z[amt] = 0;
971       pMem->z[amt+1] = 0;
972       pMem->flags = MEM_Blob|MEM_Term;
973       pMem->n = (int)amt;
974     }else{
975       sqlite3VdbeMemRelease(pMem);
976     }
977   }
978   return rc;
979 }
980 int sqlite3VdbeMemFromBtree(
981   BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
982   u32 offset,       /* Offset from the start of data to return bytes from. */
983   u32 amt,          /* Number of bytes to return. */
984   int key,          /* If true, retrieve from the btree key, not data. */
985   Mem *pMem         /* OUT: Return data in this Mem structure. */
986 ){
987   char *zData;        /* Data from the btree layer */
988   u32 available = 0;  /* Number of bytes available on the local btree page */
989   int rc = SQLITE_OK; /* Return code */
990 
991   assert( sqlite3BtreeCursorIsValid(pCur) );
992   assert( !VdbeMemDynamic(pMem) );
993 
994   /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
995   ** that both the BtShared and database handle mutexes are held. */
996   assert( (pMem->flags & MEM_RowSet)==0 );
997   if( key ){
998     zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
999   }else{
1000     zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
1001   }
1002   assert( zData!=0 );
1003 
1004   if( offset+amt<=available ){
1005     pMem->z = &zData[offset];
1006     pMem->flags = MEM_Blob|MEM_Ephem;
1007     pMem->n = (int)amt;
1008   }else{
1009     rc = vdbeMemFromBtreeResize(pCur, offset, amt, key, pMem);
1010   }
1011 
1012   return rc;
1013 }
1014 
1015 /*
1016 ** The pVal argument is known to be a value other than NULL.
1017 ** Convert it into a string with encoding enc and return a pointer
1018 ** to a zero-terminated version of that string.
1019 */
1020 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1021   assert( pVal!=0 );
1022   assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1023   assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1024   assert( (pVal->flags & MEM_RowSet)==0 );
1025   assert( (pVal->flags & (MEM_Null))==0 );
1026   if( pVal->flags & (MEM_Blob|MEM_Str) ){
1027     pVal->flags |= MEM_Str;
1028     if( pVal->flags & MEM_Zero ){
1029       sqlite3VdbeMemExpandBlob(pVal);
1030     }
1031     if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1032       sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1033     }
1034     if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1035       assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1036       if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1037         return 0;
1038       }
1039     }
1040     sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1041   }else{
1042     sqlite3VdbeMemStringify(pVal, enc, 0);
1043     assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1044   }
1045   assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1046               || pVal->db->mallocFailed );
1047   if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1048     return pVal->z;
1049   }else{
1050     return 0;
1051   }
1052 }
1053 
1054 /* This function is only available internally, it is not part of the
1055 ** external API. It works in a similar way to sqlite3_value_text(),
1056 ** except the data returned is in the encoding specified by the second
1057 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1058 ** SQLITE_UTF8.
1059 **
1060 ** (2006-02-16:)  The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1061 ** If that is the case, then the result must be aligned on an even byte
1062 ** boundary.
1063 */
1064 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1065   if( !pVal ) return 0;
1066   assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1067   assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1068   assert( (pVal->flags & MEM_RowSet)==0 );
1069   if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1070     return pVal->z;
1071   }
1072   if( pVal->flags&MEM_Null ){
1073     return 0;
1074   }
1075   return valueToText(pVal, enc);
1076 }
1077 
1078 /*
1079 ** Create a new sqlite3_value object.
1080 */
1081 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1082   Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1083   if( p ){
1084     p->flags = MEM_Null;
1085     p->db = db;
1086   }
1087   return p;
1088 }
1089 
1090 /*
1091 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1092 ** valueNew(). See comments above valueNew() for details.
1093 */
1094 struct ValueNewStat4Ctx {
1095   Parse *pParse;
1096   Index *pIdx;
1097   UnpackedRecord **ppRec;
1098   int iVal;
1099 };
1100 
1101 /*
1102 ** Allocate and return a pointer to a new sqlite3_value object. If
1103 ** the second argument to this function is NULL, the object is allocated
1104 ** by calling sqlite3ValueNew().
1105 **
1106 ** Otherwise, if the second argument is non-zero, then this function is
1107 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1108 ** already been allocated, allocate the UnpackedRecord structure that
1109 ** that function will return to its caller here. Then return a pointer to
1110 ** an sqlite3_value within the UnpackedRecord.a[] array.
1111 */
1112 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1113 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1114   if( p ){
1115     UnpackedRecord *pRec = p->ppRec[0];
1116 
1117     if( pRec==0 ){
1118       Index *pIdx = p->pIdx;      /* Index being probed */
1119       int nByte;                  /* Bytes of space to allocate */
1120       int i;                      /* Counter variable */
1121       int nCol = pIdx->nColumn;   /* Number of index columns including rowid */
1122 
1123       nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1124       pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1125       if( pRec ){
1126         pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1127         if( pRec->pKeyInfo ){
1128           assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol );
1129           assert( pRec->pKeyInfo->enc==ENC(db) );
1130           pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1131           for(i=0; i<nCol; i++){
1132             pRec->aMem[i].flags = MEM_Null;
1133             pRec->aMem[i].db = db;
1134           }
1135         }else{
1136           sqlite3DbFree(db, pRec);
1137           pRec = 0;
1138         }
1139       }
1140       if( pRec==0 ) return 0;
1141       p->ppRec[0] = pRec;
1142     }
1143 
1144     pRec->nField = p->iVal+1;
1145     return &pRec->aMem[p->iVal];
1146   }
1147 #else
1148   UNUSED_PARAMETER(p);
1149 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1150   return sqlite3ValueNew(db);
1151 }
1152 
1153 /*
1154 ** The expression object indicated by the second argument is guaranteed
1155 ** to be a scalar SQL function. If
1156 **
1157 **   * all function arguments are SQL literals,
1158 **   * the SQLITE_FUNC_CONSTANT function flag is set, and
1159 **   * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1160 **
1161 ** then this routine attempts to invoke the SQL function. Assuming no
1162 ** error occurs, output parameter (*ppVal) is set to point to a value
1163 ** object containing the result before returning SQLITE_OK.
1164 **
1165 ** Affinity aff is applied to the result of the function before returning.
1166 ** If the result is a text value, the sqlite3_value object uses encoding
1167 ** enc.
1168 **
1169 ** If the conditions above are not met, this function returns SQLITE_OK
1170 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1171 ** NULL and an SQLite error code returned.
1172 */
1173 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1174 static int valueFromFunction(
1175   sqlite3 *db,                    /* The database connection */
1176   Expr *p,                        /* The expression to evaluate */
1177   u8 enc,                         /* Encoding to use */
1178   u8 aff,                         /* Affinity to use */
1179   sqlite3_value **ppVal,          /* Write the new value here */
1180   struct ValueNewStat4Ctx *pCtx   /* Second argument for valueNew() */
1181 ){
1182   sqlite3_context ctx;            /* Context object for function invocation */
1183   sqlite3_value **apVal = 0;      /* Function arguments */
1184   int nVal = 0;                   /* Size of apVal[] array */
1185   FuncDef *pFunc = 0;             /* Function definition */
1186   sqlite3_value *pVal = 0;        /* New value */
1187   int rc = SQLITE_OK;             /* Return code */
1188   int nName;                      /* Size of function name in bytes */
1189   ExprList *pList = 0;            /* Function arguments */
1190   int i;                          /* Iterator variable */
1191 
1192   assert( pCtx!=0 );
1193   assert( (p->flags & EP_TokenOnly)==0 );
1194   pList = p->x.pList;
1195   if( pList ) nVal = pList->nExpr;
1196   nName = sqlite3Strlen30(p->u.zToken);
1197   pFunc = sqlite3FindFunction(db, p->u.zToken, nName, nVal, enc, 0);
1198   assert( pFunc );
1199   if( (pFunc->funcFlags & SQLITE_FUNC_CONSTANT)==0
1200    || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1201   ){
1202     return SQLITE_OK;
1203   }
1204 
1205   if( pList ){
1206     apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1207     if( apVal==0 ){
1208       rc = SQLITE_NOMEM;
1209       goto value_from_function_out;
1210     }
1211     for(i=0; i<nVal; i++){
1212       rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1213       if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1214     }
1215   }
1216 
1217   pVal = valueNew(db, pCtx);
1218   if( pVal==0 ){
1219     rc = SQLITE_NOMEM;
1220     goto value_from_function_out;
1221   }
1222 
1223   assert( pCtx->pParse->rc==SQLITE_OK );
1224   memset(&ctx, 0, sizeof(ctx));
1225   ctx.pOut = pVal;
1226   ctx.pFunc = pFunc;
1227   pFunc->xFunc(&ctx, nVal, apVal);
1228   if( ctx.isError ){
1229     rc = ctx.isError;
1230     sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1231   }else{
1232     sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1233     assert( rc==SQLITE_OK );
1234     rc = sqlite3VdbeChangeEncoding(pVal, enc);
1235     if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1236       rc = SQLITE_TOOBIG;
1237       pCtx->pParse->nErr++;
1238     }
1239   }
1240   pCtx->pParse->rc = rc;
1241 
1242  value_from_function_out:
1243   if( rc!=SQLITE_OK ){
1244     pVal = 0;
1245   }
1246   if( apVal ){
1247     for(i=0; i<nVal; i++){
1248       sqlite3ValueFree(apVal[i]);
1249     }
1250     sqlite3DbFree(db, apVal);
1251   }
1252 
1253   *ppVal = pVal;
1254   return rc;
1255 }
1256 #else
1257 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1258 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1259 
1260 /*
1261 ** Extract a value from the supplied expression in the manner described
1262 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1263 ** using valueNew().
1264 **
1265 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1266 ** has been allocated, it is freed before returning. Or, if pCtx is not
1267 ** NULL, it is assumed that the caller will free any allocated object
1268 ** in all cases.
1269 */
1270 static int valueFromExpr(
1271   sqlite3 *db,                    /* The database connection */
1272   Expr *pExpr,                    /* The expression to evaluate */
1273   u8 enc,                         /* Encoding to use */
1274   u8 affinity,                    /* Affinity to use */
1275   sqlite3_value **ppVal,          /* Write the new value here */
1276   struct ValueNewStat4Ctx *pCtx   /* Second argument for valueNew() */
1277 ){
1278   int op;
1279   char *zVal = 0;
1280   sqlite3_value *pVal = 0;
1281   int negInt = 1;
1282   const char *zNeg = "";
1283   int rc = SQLITE_OK;
1284 
1285   if( !pExpr ){
1286     *ppVal = 0;
1287     return SQLITE_OK;
1288   }
1289   while( (op = pExpr->op)==TK_UPLUS ) pExpr = pExpr->pLeft;
1290   if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1291 
1292   /* Compressed expressions only appear when parsing the DEFAULT clause
1293   ** on a table column definition, and hence only when pCtx==0.  This
1294   ** check ensures that an EP_TokenOnly expression is never passed down
1295   ** into valueFromFunction(). */
1296   assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1297 
1298   if( op==TK_CAST ){
1299     u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1300     rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1301     testcase( rc!=SQLITE_OK );
1302     if( *ppVal ){
1303       sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1304       sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1305     }
1306     return rc;
1307   }
1308 
1309   /* Handle negative integers in a single step.  This is needed in the
1310   ** case when the value is -9223372036854775808.
1311   */
1312   if( op==TK_UMINUS
1313    && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1314     pExpr = pExpr->pLeft;
1315     op = pExpr->op;
1316     negInt = -1;
1317     zNeg = "-";
1318   }
1319 
1320   if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1321     pVal = valueNew(db, pCtx);
1322     if( pVal==0 ) goto no_mem;
1323     if( ExprHasProperty(pExpr, EP_IntValue) ){
1324       sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1325     }else{
1326       zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1327       if( zVal==0 ) goto no_mem;
1328       sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1329     }
1330     if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1331       sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1332     }else{
1333       sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1334     }
1335     if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
1336     if( enc!=SQLITE_UTF8 ){
1337       rc = sqlite3VdbeChangeEncoding(pVal, enc);
1338     }
1339   }else if( op==TK_UMINUS ) {
1340     /* This branch happens for multiple negative signs.  Ex: -(-5) */
1341     if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal)
1342      && pVal!=0
1343     ){
1344       sqlite3VdbeMemNumerify(pVal);
1345       if( pVal->flags & MEM_Real ){
1346         pVal->u.r = -pVal->u.r;
1347       }else if( pVal->u.i==SMALLEST_INT64 ){
1348         pVal->u.r = -(double)SMALLEST_INT64;
1349         MemSetTypeFlag(pVal, MEM_Real);
1350       }else{
1351         pVal->u.i = -pVal->u.i;
1352       }
1353       sqlite3ValueApplyAffinity(pVal, affinity, enc);
1354     }
1355   }else if( op==TK_NULL ){
1356     pVal = valueNew(db, pCtx);
1357     if( pVal==0 ) goto no_mem;
1358   }
1359 #ifndef SQLITE_OMIT_BLOB_LITERAL
1360   else if( op==TK_BLOB ){
1361     int nVal;
1362     assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1363     assert( pExpr->u.zToken[1]=='\'' );
1364     pVal = valueNew(db, pCtx);
1365     if( !pVal ) goto no_mem;
1366     zVal = &pExpr->u.zToken[2];
1367     nVal = sqlite3Strlen30(zVal)-1;
1368     assert( zVal[nVal]=='\'' );
1369     sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1370                          0, SQLITE_DYNAMIC);
1371   }
1372 #endif
1373 
1374 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1375   else if( op==TK_FUNCTION && pCtx!=0 ){
1376     rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1377   }
1378 #endif
1379 
1380   *ppVal = pVal;
1381   return rc;
1382 
1383 no_mem:
1384   db->mallocFailed = 1;
1385   sqlite3DbFree(db, zVal);
1386   assert( *ppVal==0 );
1387 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1388   if( pCtx==0 ) sqlite3ValueFree(pVal);
1389 #else
1390   assert( pCtx==0 ); sqlite3ValueFree(pVal);
1391 #endif
1392   return SQLITE_NOMEM;
1393 }
1394 
1395 /*
1396 ** Create a new sqlite3_value object, containing the value of pExpr.
1397 **
1398 ** This only works for very simple expressions that consist of one constant
1399 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1400 ** be converted directly into a value, then the value is allocated and
1401 ** a pointer written to *ppVal. The caller is responsible for deallocating
1402 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1403 ** cannot be converted to a value, then *ppVal is set to NULL.
1404 */
1405 int sqlite3ValueFromExpr(
1406   sqlite3 *db,              /* The database connection */
1407   Expr *pExpr,              /* The expression to evaluate */
1408   u8 enc,                   /* Encoding to use */
1409   u8 affinity,              /* Affinity to use */
1410   sqlite3_value **ppVal     /* Write the new value here */
1411 ){
1412   return valueFromExpr(db, pExpr, enc, affinity, ppVal, 0);
1413 }
1414 
1415 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1416 /*
1417 ** The implementation of the sqlite_record() function. This function accepts
1418 ** a single argument of any type. The return value is a formatted database
1419 ** record (a blob) containing the argument value.
1420 **
1421 ** This is used to convert the value stored in the 'sample' column of the
1422 ** sqlite_stat3 table to the record format SQLite uses internally.
1423 */
1424 static void recordFunc(
1425   sqlite3_context *context,
1426   int argc,
1427   sqlite3_value **argv
1428 ){
1429   const int file_format = 1;
1430   int iSerial;                    /* Serial type */
1431   int nSerial;                    /* Bytes of space for iSerial as varint */
1432   int nVal;                       /* Bytes of space required for argv[0] */
1433   int nRet;
1434   sqlite3 *db;
1435   u8 *aRet;
1436 
1437   UNUSED_PARAMETER( argc );
1438   iSerial = sqlite3VdbeSerialType(argv[0], file_format);
1439   nSerial = sqlite3VarintLen(iSerial);
1440   nVal = sqlite3VdbeSerialTypeLen(iSerial);
1441   db = sqlite3_context_db_handle(context);
1442 
1443   nRet = 1 + nSerial + nVal;
1444   aRet = sqlite3DbMallocRaw(db, nRet);
1445   if( aRet==0 ){
1446     sqlite3_result_error_nomem(context);
1447   }else{
1448     aRet[0] = nSerial+1;
1449     putVarint32(&aRet[1], iSerial);
1450     sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
1451     sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
1452     sqlite3DbFree(db, aRet);
1453   }
1454 }
1455 
1456 /*
1457 ** Register built-in functions used to help read ANALYZE data.
1458 */
1459 void sqlite3AnalyzeFunctions(void){
1460   static SQLITE_WSD FuncDef aAnalyzeTableFuncs[] = {
1461     FUNCTION(sqlite_record,   1, 0, 0, recordFunc),
1462   };
1463   int i;
1464   FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
1465   FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aAnalyzeTableFuncs);
1466   for(i=0; i<ArraySize(aAnalyzeTableFuncs); i++){
1467     sqlite3FuncDefInsert(pHash, &aFunc[i]);
1468   }
1469 }
1470 
1471 /*
1472 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1473 **
1474 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1475 ** pAlloc if one does not exist and the new value is added to the
1476 ** UnpackedRecord object.
1477 **
1478 ** A value is extracted in the following cases:
1479 **
1480 **  * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1481 **
1482 **  * The expression is a bound variable, and this is a reprepare, or
1483 **
1484 **  * The expression is a literal value.
1485 **
1486 ** On success, *ppVal is made to point to the extracted value.  The caller
1487 ** is responsible for ensuring that the value is eventually freed.
1488 */
1489 static int stat4ValueFromExpr(
1490   Parse *pParse,                  /* Parse context */
1491   Expr *pExpr,                    /* The expression to extract a value from */
1492   u8 affinity,                    /* Affinity to use */
1493   struct ValueNewStat4Ctx *pAlloc,/* How to allocate space.  Or NULL */
1494   sqlite3_value **ppVal           /* OUT: New value object (or NULL) */
1495 ){
1496   int rc = SQLITE_OK;
1497   sqlite3_value *pVal = 0;
1498   sqlite3 *db = pParse->db;
1499 
1500   /* Skip over any TK_COLLATE nodes */
1501   pExpr = sqlite3ExprSkipCollate(pExpr);
1502 
1503   if( !pExpr ){
1504     pVal = valueNew(db, pAlloc);
1505     if( pVal ){
1506       sqlite3VdbeMemSetNull((Mem*)pVal);
1507     }
1508   }else if( pExpr->op==TK_VARIABLE
1509         || NEVER(pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
1510   ){
1511     Vdbe *v;
1512     int iBindVar = pExpr->iColumn;
1513     sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1514     if( (v = pParse->pReprepare)!=0 ){
1515       pVal = valueNew(db, pAlloc);
1516       if( pVal ){
1517         rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1518         if( rc==SQLITE_OK ){
1519           sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1520         }
1521         pVal->db = pParse->db;
1522       }
1523     }
1524   }else{
1525     rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1526   }
1527 
1528   assert( pVal==0 || pVal->db==db );
1529   *ppVal = pVal;
1530   return rc;
1531 }
1532 
1533 /*
1534 ** This function is used to allocate and populate UnpackedRecord
1535 ** structures intended to be compared against sample index keys stored
1536 ** in the sqlite_stat4 table.
1537 **
1538 ** A single call to this function attempts to populates field iVal (leftmost
1539 ** is 0 etc.) of the unpacked record with a value extracted from expression
1540 ** pExpr. Extraction of values is possible if:
1541 **
1542 **  * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1543 **
1544 **  * The expression is a bound variable, and this is a reprepare, or
1545 **
1546 **  * The sqlite3ValueFromExpr() function is able to extract a value
1547 **    from the expression (i.e. the expression is a literal value).
1548 **
1549 ** If a value can be extracted, the affinity passed as the 5th argument
1550 ** is applied to it before it is copied into the UnpackedRecord. Output
1551 ** parameter *pbOk is set to true if a value is extracted, or false
1552 ** otherwise.
1553 **
1554 ** When this function is called, *ppRec must either point to an object
1555 ** allocated by an earlier call to this function, or must be NULL. If it
1556 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1557 ** is allocated (and *ppRec set to point to it) before returning.
1558 **
1559 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1560 ** error if a value cannot be extracted from pExpr. If an error does
1561 ** occur, an SQLite error code is returned.
1562 */
1563 int sqlite3Stat4ProbeSetValue(
1564   Parse *pParse,                  /* Parse context */
1565   Index *pIdx,                    /* Index being probed */
1566   UnpackedRecord **ppRec,         /* IN/OUT: Probe record */
1567   Expr *pExpr,                    /* The expression to extract a value from */
1568   u8 affinity,                    /* Affinity to use */
1569   int iVal,                       /* Array element to populate */
1570   int *pbOk                       /* OUT: True if value was extracted */
1571 ){
1572   int rc;
1573   sqlite3_value *pVal = 0;
1574   struct ValueNewStat4Ctx alloc;
1575 
1576   alloc.pParse = pParse;
1577   alloc.pIdx = pIdx;
1578   alloc.ppRec = ppRec;
1579   alloc.iVal = iVal;
1580 
1581   rc = stat4ValueFromExpr(pParse, pExpr, affinity, &alloc, &pVal);
1582   assert( pVal==0 || pVal->db==pParse->db );
1583   *pbOk = (pVal!=0);
1584   return rc;
1585 }
1586 
1587 /*
1588 ** Attempt to extract a value from expression pExpr using the methods
1589 ** as described for sqlite3Stat4ProbeSetValue() above.
1590 **
1591 ** If successful, set *ppVal to point to a new value object and return
1592 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1593 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1594 ** does occur, return an SQLite error code. The final value of *ppVal
1595 ** is undefined in this case.
1596 */
1597 int sqlite3Stat4ValueFromExpr(
1598   Parse *pParse,                  /* Parse context */
1599   Expr *pExpr,                    /* The expression to extract a value from */
1600   u8 affinity,                    /* Affinity to use */
1601   sqlite3_value **ppVal           /* OUT: New value object (or NULL) */
1602 ){
1603   return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1604 }
1605 
1606 /*
1607 ** Extract the iCol-th column from the nRec-byte record in pRec.  Write
1608 ** the column value into *ppVal.  If *ppVal is initially NULL then a new
1609 ** sqlite3_value object is allocated.
1610 **
1611 ** If *ppVal is initially NULL then the caller is responsible for
1612 ** ensuring that the value written into *ppVal is eventually freed.
1613 */
1614 int sqlite3Stat4Column(
1615   sqlite3 *db,                    /* Database handle */
1616   const void *pRec,               /* Pointer to buffer containing record */
1617   int nRec,                       /* Size of buffer pRec in bytes */
1618   int iCol,                       /* Column to extract */
1619   sqlite3_value **ppVal           /* OUT: Extracted value */
1620 ){
1621   u32 t;                          /* a column type code */
1622   int nHdr;                       /* Size of the header in the record */
1623   int iHdr;                       /* Next unread header byte */
1624   int iField;                     /* Next unread data byte */
1625   int szField;                    /* Size of the current data field */
1626   int i;                          /* Column index */
1627   u8 *a = (u8*)pRec;              /* Typecast byte array */
1628   Mem *pMem = *ppVal;             /* Write result into this Mem object */
1629 
1630   assert( iCol>0 );
1631   iHdr = getVarint32(a, nHdr);
1632   if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1633   iField = nHdr;
1634   for(i=0; i<=iCol; i++){
1635     iHdr += getVarint32(&a[iHdr], t);
1636     testcase( iHdr==nHdr );
1637     testcase( iHdr==nHdr+1 );
1638     if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1639     szField = sqlite3VdbeSerialTypeLen(t);
1640     iField += szField;
1641   }
1642   testcase( iField==nRec );
1643   testcase( iField==nRec+1 );
1644   if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1645   if( pMem==0 ){
1646     pMem = *ppVal = sqlite3ValueNew(db);
1647     if( pMem==0 ) return SQLITE_NOMEM;
1648   }
1649   sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1650   pMem->enc = ENC(db);
1651   return SQLITE_OK;
1652 }
1653 
1654 /*
1655 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1656 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1657 ** the object.
1658 */
1659 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1660   if( pRec ){
1661     int i;
1662     int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField;
1663     Mem *aMem = pRec->aMem;
1664     sqlite3 *db = aMem[0].db;
1665     for(i=0; i<nCol; i++){
1666       sqlite3VdbeMemRelease(&aMem[i]);
1667     }
1668     sqlite3KeyInfoUnref(pRec->pKeyInfo);
1669     sqlite3DbFree(db, pRec);
1670   }
1671 }
1672 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1673 
1674 /*
1675 ** Change the string value of an sqlite3_value object
1676 */
1677 void sqlite3ValueSetStr(
1678   sqlite3_value *v,     /* Value to be set */
1679   int n,                /* Length of string z */
1680   const void *z,        /* Text of the new string */
1681   u8 enc,               /* Encoding to use */
1682   void (*xDel)(void*)   /* Destructor for the string */
1683 ){
1684   if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1685 }
1686 
1687 /*
1688 ** Free an sqlite3_value object
1689 */
1690 void sqlite3ValueFree(sqlite3_value *v){
1691   if( !v ) return;
1692   sqlite3VdbeMemRelease((Mem *)v);
1693   sqlite3DbFree(((Mem*)v)->db, v);
1694 }
1695 
1696 /*
1697 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1698 ** sqlite3_value object assuming that it uses the encoding "enc".
1699 ** The valueBytes() routine is a helper function.
1700 */
1701 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1702   return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1703 }
1704 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1705   Mem *p = (Mem*)pVal;
1706   assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1707   if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1708     return p->n;
1709   }
1710   if( (p->flags & MEM_Blob)!=0 ){
1711     if( p->flags & MEM_Zero ){
1712       return p->n + p->u.nZero;
1713     }else{
1714       return p->n;
1715     }
1716   }
1717   if( p->flags & MEM_Null ) return 0;
1718   return valueBytes(pVal, enc);
1719 }
1720