1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior 14 ** to version 2.8.7, all this code was combined into the vdbe.c source file. 15 ** But that file was getting too big so this subroutines were split out. 16 */ 17 #include "sqliteInt.h" 18 #include "vdbeInt.h" 19 20 21 22 /* 23 ** When debugging the code generator in a symbolic debugger, one can 24 ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed 25 ** as they are added to the instruction stream. 26 */ 27 #ifdef SQLITE_DEBUG 28 int sqlite3VdbeAddopTrace = 0; 29 #endif 30 31 32 /* 33 ** Create a new virtual database engine. 34 */ 35 Vdbe *sqlite3VdbeCreate(sqlite3 *db){ 36 Vdbe *p; 37 p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); 38 if( p==0 ) return 0; 39 p->db = db; 40 if( db->pVdbe ){ 41 db->pVdbe->pPrev = p; 42 } 43 p->pNext = db->pVdbe; 44 p->pPrev = 0; 45 db->pVdbe = p; 46 p->magic = VDBE_MAGIC_INIT; 47 return p; 48 } 49 50 /* 51 ** Remember the SQL string for a prepared statement. 52 */ 53 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ 54 assert( isPrepareV2==1 || isPrepareV2==0 ); 55 if( p==0 ) return; 56 #ifdef SQLITE_OMIT_TRACE 57 if( !isPrepareV2 ) return; 58 #endif 59 assert( p->zSql==0 ); 60 p->zSql = sqlite3DbStrNDup(p->db, z, n); 61 p->isPrepareV2 = (u8)isPrepareV2; 62 } 63 64 /* 65 ** Return the SQL associated with a prepared statement 66 */ 67 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 68 Vdbe *p = (Vdbe *)pStmt; 69 return (p && p->isPrepareV2) ? p->zSql : 0; 70 } 71 72 /* 73 ** Swap all content between two VDBE structures. 74 */ 75 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 76 Vdbe tmp, *pTmp; 77 char *zTmp; 78 tmp = *pA; 79 *pA = *pB; 80 *pB = tmp; 81 pTmp = pA->pNext; 82 pA->pNext = pB->pNext; 83 pB->pNext = pTmp; 84 pTmp = pA->pPrev; 85 pA->pPrev = pB->pPrev; 86 pB->pPrev = pTmp; 87 zTmp = pA->zSql; 88 pA->zSql = pB->zSql; 89 pB->zSql = zTmp; 90 pB->isPrepareV2 = pA->isPrepareV2; 91 } 92 93 #ifdef SQLITE_DEBUG 94 /* 95 ** Turn tracing on or off 96 */ 97 void sqlite3VdbeTrace(Vdbe *p, FILE *trace){ 98 p->trace = trace; 99 } 100 #endif 101 102 /* 103 ** Resize the Vdbe.aOp array so that it is at least one op larger than 104 ** it was. 105 ** 106 ** If an out-of-memory error occurs while resizing the array, return 107 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain 108 ** unchanged (this is so that any opcodes already allocated can be 109 ** correctly deallocated along with the rest of the Vdbe). 110 */ 111 static int growOpArray(Vdbe *p){ 112 VdbeOp *pNew; 113 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 114 pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op)); 115 if( pNew ){ 116 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op); 117 p->aOp = pNew; 118 } 119 return (pNew ? SQLITE_OK : SQLITE_NOMEM); 120 } 121 122 /* 123 ** Add a new instruction to the list of instructions current in the 124 ** VDBE. Return the address of the new instruction. 125 ** 126 ** Parameters: 127 ** 128 ** p Pointer to the VDBE 129 ** 130 ** op The opcode for this instruction 131 ** 132 ** p1, p2, p3 Operands 133 ** 134 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 135 ** the sqlite3VdbeChangeP4() function to change the value of the P4 136 ** operand. 137 */ 138 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 139 int i; 140 VdbeOp *pOp; 141 142 i = p->nOp; 143 assert( p->magic==VDBE_MAGIC_INIT ); 144 assert( op>0 && op<0xff ); 145 if( p->nOpAlloc<=i ){ 146 if( growOpArray(p) ){ 147 return 1; 148 } 149 } 150 p->nOp++; 151 pOp = &p->aOp[i]; 152 pOp->opcode = (u8)op; 153 pOp->p5 = 0; 154 pOp->p1 = p1; 155 pOp->p2 = p2; 156 pOp->p3 = p3; 157 pOp->p4.p = 0; 158 pOp->p4type = P4_NOTUSED; 159 p->expired = 0; 160 if( op==OP_ParseSchema ){ 161 /* Any program that uses the OP_ParseSchema opcode needs to lock 162 ** all btrees. */ 163 p->btreeMask = ~(yDbMask)0; 164 } 165 #ifdef SQLITE_DEBUG 166 pOp->zComment = 0; 167 if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]); 168 #endif 169 #ifdef VDBE_PROFILE 170 pOp->cycles = 0; 171 pOp->cnt = 0; 172 #endif 173 return i; 174 } 175 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 176 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 177 } 178 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 179 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 180 } 181 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 182 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 183 } 184 185 186 /* 187 ** Add an opcode that includes the p4 value as a pointer. 188 */ 189 int sqlite3VdbeAddOp4( 190 Vdbe *p, /* Add the opcode to this VM */ 191 int op, /* The new opcode */ 192 int p1, /* The P1 operand */ 193 int p2, /* The P2 operand */ 194 int p3, /* The P3 operand */ 195 const char *zP4, /* The P4 operand */ 196 int p4type /* P4 operand type */ 197 ){ 198 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 199 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 200 return addr; 201 } 202 203 /* 204 ** Add an opcode that includes the p4 value as an integer. 205 */ 206 int sqlite3VdbeAddOp4Int( 207 Vdbe *p, /* Add the opcode to this VM */ 208 int op, /* The new opcode */ 209 int p1, /* The P1 operand */ 210 int p2, /* The P2 operand */ 211 int p3, /* The P3 operand */ 212 int p4 /* The P4 operand as an integer */ 213 ){ 214 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 215 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32); 216 return addr; 217 } 218 219 /* 220 ** Create a new symbolic label for an instruction that has yet to be 221 ** coded. The symbolic label is really just a negative number. The 222 ** label can be used as the P2 value of an operation. Later, when 223 ** the label is resolved to a specific address, the VDBE will scan 224 ** through its operation list and change all values of P2 which match 225 ** the label into the resolved address. 226 ** 227 ** The VDBE knows that a P2 value is a label because labels are 228 ** always negative and P2 values are suppose to be non-negative. 229 ** Hence, a negative P2 value is a label that has yet to be resolved. 230 ** 231 ** Zero is returned if a malloc() fails. 232 */ 233 int sqlite3VdbeMakeLabel(Vdbe *p){ 234 int i; 235 i = p->nLabel++; 236 assert( p->magic==VDBE_MAGIC_INIT ); 237 if( i>=p->nLabelAlloc ){ 238 int n = p->nLabelAlloc*2 + 5; 239 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 240 n*sizeof(p->aLabel[0])); 241 p->nLabelAlloc = sqlite3DbMallocSize(p->db, p->aLabel)/sizeof(p->aLabel[0]); 242 } 243 if( p->aLabel ){ 244 p->aLabel[i] = -1; 245 } 246 return -1-i; 247 } 248 249 /* 250 ** Resolve label "x" to be the address of the next instruction to 251 ** be inserted. The parameter "x" must have been obtained from 252 ** a prior call to sqlite3VdbeMakeLabel(). 253 */ 254 void sqlite3VdbeResolveLabel(Vdbe *p, int x){ 255 int j = -1-x; 256 assert( p->magic==VDBE_MAGIC_INIT ); 257 assert( j>=0 && j<p->nLabel ); 258 if( p->aLabel ){ 259 p->aLabel[j] = p->nOp; 260 } 261 } 262 263 /* 264 ** Mark the VDBE as one that can only be run one time. 265 */ 266 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 267 p->runOnlyOnce = 1; 268 } 269 270 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 271 272 /* 273 ** The following type and function are used to iterate through all opcodes 274 ** in a Vdbe main program and each of the sub-programs (triggers) it may 275 ** invoke directly or indirectly. It should be used as follows: 276 ** 277 ** Op *pOp; 278 ** VdbeOpIter sIter; 279 ** 280 ** memset(&sIter, 0, sizeof(sIter)); 281 ** sIter.v = v; // v is of type Vdbe* 282 ** while( (pOp = opIterNext(&sIter)) ){ 283 ** // Do something with pOp 284 ** } 285 ** sqlite3DbFree(v->db, sIter.apSub); 286 ** 287 */ 288 typedef struct VdbeOpIter VdbeOpIter; 289 struct VdbeOpIter { 290 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 291 SubProgram **apSub; /* Array of subprograms */ 292 int nSub; /* Number of entries in apSub */ 293 int iAddr; /* Address of next instruction to return */ 294 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 295 }; 296 static Op *opIterNext(VdbeOpIter *p){ 297 Vdbe *v = p->v; 298 Op *pRet = 0; 299 Op *aOp; 300 int nOp; 301 302 if( p->iSub<=p->nSub ){ 303 304 if( p->iSub==0 ){ 305 aOp = v->aOp; 306 nOp = v->nOp; 307 }else{ 308 aOp = p->apSub[p->iSub-1]->aOp; 309 nOp = p->apSub[p->iSub-1]->nOp; 310 } 311 assert( p->iAddr<nOp ); 312 313 pRet = &aOp[p->iAddr]; 314 p->iAddr++; 315 if( p->iAddr==nOp ){ 316 p->iSub++; 317 p->iAddr = 0; 318 } 319 320 if( pRet->p4type==P4_SUBPROGRAM ){ 321 int nByte = (p->nSub+1)*sizeof(SubProgram*); 322 int j; 323 for(j=0; j<p->nSub; j++){ 324 if( p->apSub[j]==pRet->p4.pProgram ) break; 325 } 326 if( j==p->nSub ){ 327 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 328 if( !p->apSub ){ 329 pRet = 0; 330 }else{ 331 p->apSub[p->nSub++] = pRet->p4.pProgram; 332 } 333 } 334 } 335 } 336 337 return pRet; 338 } 339 340 /* 341 ** Check if the program stored in the VM associated with pParse may 342 ** throw an ABORT exception (causing the statement, but not entire transaction 343 ** to be rolled back). This condition is true if the main program or any 344 ** sub-programs contains any of the following: 345 ** 346 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 347 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 348 ** * OP_Destroy 349 ** * OP_VUpdate 350 ** * OP_VRename 351 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 352 ** 353 ** Then check that the value of Parse.mayAbort is true if an 354 ** ABORT may be thrown, or false otherwise. Return true if it does 355 ** match, or false otherwise. This function is intended to be used as 356 ** part of an assert statement in the compiler. Similar to: 357 ** 358 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 359 */ 360 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 361 int hasAbort = 0; 362 Op *pOp; 363 VdbeOpIter sIter; 364 memset(&sIter, 0, sizeof(sIter)); 365 sIter.v = v; 366 367 while( (pOp = opIterNext(&sIter))!=0 ){ 368 int opcode = pOp->opcode; 369 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 370 #ifndef SQLITE_OMIT_FOREIGN_KEY 371 || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1) 372 #endif 373 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 374 && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 375 ){ 376 hasAbort = 1; 377 break; 378 } 379 } 380 sqlite3DbFree(v->db, sIter.apSub); 381 382 /* Return true if hasAbort==mayAbort. Or if a malloc failure occured. 383 ** If malloc failed, then the while() loop above may not have iterated 384 ** through all opcodes and hasAbort may be set incorrectly. Return 385 ** true for this case to prevent the assert() in the callers frame 386 ** from failing. */ 387 return ( v->db->mallocFailed || hasAbort==mayAbort ); 388 } 389 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 390 391 /* 392 ** Loop through the program looking for P2 values that are negative 393 ** on jump instructions. Each such value is a label. Resolve the 394 ** label by setting the P2 value to its correct non-zero value. 395 ** 396 ** This routine is called once after all opcodes have been inserted. 397 ** 398 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 399 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by 400 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array. 401 ** 402 ** The Op.opflags field is set on all opcodes. 403 */ 404 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 405 int i; 406 int nMaxArgs = *pMaxFuncArgs; 407 Op *pOp; 408 int *aLabel = p->aLabel; 409 p->readOnly = 1; 410 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ 411 u8 opcode = pOp->opcode; 412 413 pOp->opflags = sqlite3OpcodeProperty[opcode]; 414 if( opcode==OP_Function || opcode==OP_AggStep ){ 415 if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5; 416 }else if( (opcode==OP_Transaction && pOp->p2!=0) || opcode==OP_Vacuum ){ 417 p->readOnly = 0; 418 #ifndef SQLITE_OMIT_VIRTUALTABLE 419 }else if( opcode==OP_VUpdate ){ 420 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 421 }else if( opcode==OP_VFilter ){ 422 int n; 423 assert( p->nOp - i >= 3 ); 424 assert( pOp[-1].opcode==OP_Integer ); 425 n = pOp[-1].p1; 426 if( n>nMaxArgs ) nMaxArgs = n; 427 #endif 428 } 429 430 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){ 431 assert( -1-pOp->p2<p->nLabel ); 432 pOp->p2 = aLabel[-1-pOp->p2]; 433 } 434 } 435 sqlite3DbFree(p->db, p->aLabel); 436 p->aLabel = 0; 437 438 *pMaxFuncArgs = nMaxArgs; 439 } 440 441 /* 442 ** Return the address of the next instruction to be inserted. 443 */ 444 int sqlite3VdbeCurrentAddr(Vdbe *p){ 445 assert( p->magic==VDBE_MAGIC_INIT ); 446 return p->nOp; 447 } 448 449 /* 450 ** This function returns a pointer to the array of opcodes associated with 451 ** the Vdbe passed as the first argument. It is the callers responsibility 452 ** to arrange for the returned array to be eventually freed using the 453 ** vdbeFreeOpArray() function. 454 ** 455 ** Before returning, *pnOp is set to the number of entries in the returned 456 ** array. Also, *pnMaxArg is set to the larger of its current value and 457 ** the number of entries in the Vdbe.apArg[] array required to execute the 458 ** returned program. 459 */ 460 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 461 VdbeOp *aOp = p->aOp; 462 assert( aOp && !p->db->mallocFailed ); 463 464 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 465 assert( p->btreeMask==0 ); 466 467 resolveP2Values(p, pnMaxArg); 468 *pnOp = p->nOp; 469 p->aOp = 0; 470 return aOp; 471 } 472 473 /* 474 ** Add a whole list of operations to the operation stack. Return the 475 ** address of the first operation added. 476 */ 477 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ 478 int addr; 479 assert( p->magic==VDBE_MAGIC_INIT ); 480 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){ 481 return 0; 482 } 483 addr = p->nOp; 484 if( ALWAYS(nOp>0) ){ 485 int i; 486 VdbeOpList const *pIn = aOp; 487 for(i=0; i<nOp; i++, pIn++){ 488 int p2 = pIn->p2; 489 VdbeOp *pOut = &p->aOp[i+addr]; 490 pOut->opcode = pIn->opcode; 491 pOut->p1 = pIn->p1; 492 if( p2<0 && (sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP)!=0 ){ 493 pOut->p2 = addr + ADDR(p2); 494 }else{ 495 pOut->p2 = p2; 496 } 497 pOut->p3 = pIn->p3; 498 pOut->p4type = P4_NOTUSED; 499 pOut->p4.p = 0; 500 pOut->p5 = 0; 501 #ifdef SQLITE_DEBUG 502 pOut->zComment = 0; 503 if( sqlite3VdbeAddopTrace ){ 504 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); 505 } 506 #endif 507 } 508 p->nOp += nOp; 509 } 510 return addr; 511 } 512 513 /* 514 ** Change the value of the P1 operand for a specific instruction. 515 ** This routine is useful when a large program is loaded from a 516 ** static array using sqlite3VdbeAddOpList but we want to make a 517 ** few minor changes to the program. 518 */ 519 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ 520 assert( p!=0 ); 521 assert( addr>=0 ); 522 if( p->nOp>addr ){ 523 p->aOp[addr].p1 = val; 524 } 525 } 526 527 /* 528 ** Change the value of the P2 operand for a specific instruction. 529 ** This routine is useful for setting a jump destination. 530 */ 531 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ 532 assert( p!=0 ); 533 assert( addr>=0 ); 534 if( p->nOp>addr ){ 535 p->aOp[addr].p2 = val; 536 } 537 } 538 539 /* 540 ** Change the value of the P3 operand for a specific instruction. 541 */ 542 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ 543 assert( p!=0 ); 544 assert( addr>=0 ); 545 if( p->nOp>addr ){ 546 p->aOp[addr].p3 = val; 547 } 548 } 549 550 /* 551 ** Change the value of the P5 operand for the most recently 552 ** added operation. 553 */ 554 void sqlite3VdbeChangeP5(Vdbe *p, u8 val){ 555 assert( p!=0 ); 556 if( p->aOp ){ 557 assert( p->nOp>0 ); 558 p->aOp[p->nOp-1].p5 = val; 559 } 560 } 561 562 /* 563 ** Change the P2 operand of instruction addr so that it points to 564 ** the address of the next instruction to be coded. 565 */ 566 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 567 assert( addr>=0 ); 568 sqlite3VdbeChangeP2(p, addr, p->nOp); 569 } 570 571 572 /* 573 ** If the input FuncDef structure is ephemeral, then free it. If 574 ** the FuncDef is not ephermal, then do nothing. 575 */ 576 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 577 if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){ 578 sqlite3DbFree(db, pDef); 579 } 580 } 581 582 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 583 584 /* 585 ** Delete a P4 value if necessary. 586 */ 587 static void freeP4(sqlite3 *db, int p4type, void *p4){ 588 if( p4 ){ 589 assert( db ); 590 switch( p4type ){ 591 case P4_REAL: 592 case P4_INT64: 593 case P4_DYNAMIC: 594 case P4_KEYINFO: 595 case P4_INTARRAY: 596 case P4_KEYINFO_HANDOFF: { 597 sqlite3DbFree(db, p4); 598 break; 599 } 600 case P4_MPRINTF: { 601 if( db->pnBytesFreed==0 ) sqlite3_free(p4); 602 break; 603 } 604 case P4_VDBEFUNC: { 605 VdbeFunc *pVdbeFunc = (VdbeFunc *)p4; 606 freeEphemeralFunction(db, pVdbeFunc->pFunc); 607 if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0); 608 sqlite3DbFree(db, pVdbeFunc); 609 break; 610 } 611 case P4_FUNCDEF: { 612 freeEphemeralFunction(db, (FuncDef*)p4); 613 break; 614 } 615 case P4_MEM: { 616 if( db->pnBytesFreed==0 ){ 617 sqlite3ValueFree((sqlite3_value*)p4); 618 }else{ 619 Mem *p = (Mem*)p4; 620 sqlite3DbFree(db, p->zMalloc); 621 sqlite3DbFree(db, p); 622 } 623 break; 624 } 625 case P4_VTAB : { 626 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 627 break; 628 } 629 } 630 } 631 } 632 633 /* 634 ** Free the space allocated for aOp and any p4 values allocated for the 635 ** opcodes contained within. If aOp is not NULL it is assumed to contain 636 ** nOp entries. 637 */ 638 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 639 if( aOp ){ 640 Op *pOp; 641 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ 642 freeP4(db, pOp->p4type, pOp->p4.p); 643 #ifdef SQLITE_DEBUG 644 sqlite3DbFree(db, pOp->zComment); 645 #endif 646 } 647 } 648 sqlite3DbFree(db, aOp); 649 } 650 651 /* 652 ** Link the SubProgram object passed as the second argument into the linked 653 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 654 ** objects when the VM is no longer required. 655 */ 656 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 657 p->pNext = pVdbe->pProgram; 658 pVdbe->pProgram = p; 659 } 660 661 /* 662 ** Change N opcodes starting at addr to No-ops. 663 */ 664 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){ 665 if( p->aOp ){ 666 VdbeOp *pOp = &p->aOp[addr]; 667 sqlite3 *db = p->db; 668 while( N-- ){ 669 freeP4(db, pOp->p4type, pOp->p4.p); 670 memset(pOp, 0, sizeof(pOp[0])); 671 pOp->opcode = OP_Noop; 672 pOp++; 673 } 674 } 675 } 676 677 /* 678 ** Change the value of the P4 operand for a specific instruction. 679 ** This routine is useful when a large program is loaded from a 680 ** static array using sqlite3VdbeAddOpList but we want to make a 681 ** few minor changes to the program. 682 ** 683 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 684 ** the string is made into memory obtained from sqlite3_malloc(). 685 ** A value of n==0 means copy bytes of zP4 up to and including the 686 ** first null byte. If n>0 then copy n+1 bytes of zP4. 687 ** 688 ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure. 689 ** A copy is made of the KeyInfo structure into memory obtained from 690 ** sqlite3_malloc, to be freed when the Vdbe is finalized. 691 ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure 692 ** stored in memory that the caller has obtained from sqlite3_malloc. The 693 ** caller should not free the allocation, it will be freed when the Vdbe is 694 ** finalized. 695 ** 696 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 697 ** to a string or structure that is guaranteed to exist for the lifetime of 698 ** the Vdbe. In these cases we can just copy the pointer. 699 ** 700 ** If addr<0 then change P4 on the most recently inserted instruction. 701 */ 702 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 703 Op *pOp; 704 sqlite3 *db; 705 assert( p!=0 ); 706 db = p->db; 707 assert( p->magic==VDBE_MAGIC_INIT ); 708 if( p->aOp==0 || db->mallocFailed ){ 709 if ( n!=P4_KEYINFO && n!=P4_VTAB ) { 710 freeP4(db, n, (void*)*(char**)&zP4); 711 } 712 return; 713 } 714 assert( p->nOp>0 ); 715 assert( addr<p->nOp ); 716 if( addr<0 ){ 717 addr = p->nOp - 1; 718 } 719 pOp = &p->aOp[addr]; 720 freeP4(db, pOp->p4type, pOp->p4.p); 721 pOp->p4.p = 0; 722 if( n==P4_INT32 ){ 723 /* Note: this cast is safe, because the origin data point was an int 724 ** that was cast to a (const char *). */ 725 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 726 pOp->p4type = P4_INT32; 727 }else if( zP4==0 ){ 728 pOp->p4.p = 0; 729 pOp->p4type = P4_NOTUSED; 730 }else if( n==P4_KEYINFO ){ 731 KeyInfo *pKeyInfo; 732 int nField, nByte; 733 734 nField = ((KeyInfo*)zP4)->nField; 735 nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField; 736 pKeyInfo = sqlite3DbMallocRaw(0, nByte); 737 pOp->p4.pKeyInfo = pKeyInfo; 738 if( pKeyInfo ){ 739 u8 *aSortOrder; 740 memcpy((char*)pKeyInfo, zP4, nByte - nField); 741 aSortOrder = pKeyInfo->aSortOrder; 742 if( aSortOrder ){ 743 pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField]; 744 memcpy(pKeyInfo->aSortOrder, aSortOrder, nField); 745 } 746 pOp->p4type = P4_KEYINFO; 747 }else{ 748 p->db->mallocFailed = 1; 749 pOp->p4type = P4_NOTUSED; 750 } 751 }else if( n==P4_KEYINFO_HANDOFF ){ 752 pOp->p4.p = (void*)zP4; 753 pOp->p4type = P4_KEYINFO; 754 }else if( n==P4_VTAB ){ 755 pOp->p4.p = (void*)zP4; 756 pOp->p4type = P4_VTAB; 757 sqlite3VtabLock((VTable *)zP4); 758 assert( ((VTable *)zP4)->db==p->db ); 759 }else if( n<0 ){ 760 pOp->p4.p = (void*)zP4; 761 pOp->p4type = (signed char)n; 762 }else{ 763 if( n==0 ) n = sqlite3Strlen30(zP4); 764 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 765 pOp->p4type = P4_DYNAMIC; 766 } 767 } 768 769 #ifndef NDEBUG 770 /* 771 ** Change the comment on the the most recently coded instruction. Or 772 ** insert a No-op and add the comment to that new instruction. This 773 ** makes the code easier to read during debugging. None of this happens 774 ** in a production build. 775 */ 776 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 777 va_list ap; 778 if( !p ) return; 779 assert( p->nOp>0 || p->aOp==0 ); 780 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 781 if( p->nOp ){ 782 char **pz = &p->aOp[p->nOp-1].zComment; 783 va_start(ap, zFormat); 784 sqlite3DbFree(p->db, *pz); 785 *pz = sqlite3VMPrintf(p->db, zFormat, ap); 786 va_end(ap); 787 } 788 } 789 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 790 va_list ap; 791 if( !p ) return; 792 sqlite3VdbeAddOp0(p, OP_Noop); 793 assert( p->nOp>0 || p->aOp==0 ); 794 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 795 if( p->nOp ){ 796 char **pz = &p->aOp[p->nOp-1].zComment; 797 va_start(ap, zFormat); 798 sqlite3DbFree(p->db, *pz); 799 *pz = sqlite3VMPrintf(p->db, zFormat, ap); 800 va_end(ap); 801 } 802 } 803 #endif /* NDEBUG */ 804 805 /* 806 ** Return the opcode for a given address. If the address is -1, then 807 ** return the most recently inserted opcode. 808 ** 809 ** If a memory allocation error has occurred prior to the calling of this 810 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 811 ** is readable but not writable, though it is cast to a writable value. 812 ** The return of a dummy opcode allows the call to continue functioning 813 ** after a OOM fault without having to check to see if the return from 814 ** this routine is a valid pointer. But because the dummy.opcode is 0, 815 ** dummy will never be written to. This is verified by code inspection and 816 ** by running with Valgrind. 817 ** 818 ** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called 819 ** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE, 820 ** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as 821 ** a new VDBE is created. So we are free to set addr to p->nOp-1 without 822 ** having to double-check to make sure that the result is non-negative. But 823 ** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to 824 ** check the value of p->nOp-1 before continuing. 825 */ 826 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 827 /* C89 specifies that the constant "dummy" will be initialized to all 828 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 829 static const VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 830 assert( p->magic==VDBE_MAGIC_INIT ); 831 if( addr<0 ){ 832 #ifdef SQLITE_OMIT_TRACE 833 if( p->nOp==0 ) return (VdbeOp*)&dummy; 834 #endif 835 addr = p->nOp - 1; 836 } 837 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 838 if( p->db->mallocFailed ){ 839 return (VdbeOp*)&dummy; 840 }else{ 841 return &p->aOp[addr]; 842 } 843 } 844 845 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ 846 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 847 /* 848 ** Compute a string that describes the P4 parameter for an opcode. 849 ** Use zTemp for any required temporary buffer space. 850 */ 851 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 852 char *zP4 = zTemp; 853 assert( nTemp>=20 ); 854 switch( pOp->p4type ){ 855 case P4_KEYINFO_STATIC: 856 case P4_KEYINFO: { 857 int i, j; 858 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 859 sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField); 860 i = sqlite3Strlen30(zTemp); 861 for(j=0; j<pKeyInfo->nField; j++){ 862 CollSeq *pColl = pKeyInfo->aColl[j]; 863 if( pColl ){ 864 int n = sqlite3Strlen30(pColl->zName); 865 if( i+n>nTemp-6 ){ 866 memcpy(&zTemp[i],",...",4); 867 break; 868 } 869 zTemp[i++] = ','; 870 if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){ 871 zTemp[i++] = '-'; 872 } 873 memcpy(&zTemp[i], pColl->zName,n+1); 874 i += n; 875 }else if( i+4<nTemp-6 ){ 876 memcpy(&zTemp[i],",nil",4); 877 i += 4; 878 } 879 } 880 zTemp[i++] = ')'; 881 zTemp[i] = 0; 882 assert( i<nTemp ); 883 break; 884 } 885 case P4_COLLSEQ: { 886 CollSeq *pColl = pOp->p4.pColl; 887 sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName); 888 break; 889 } 890 case P4_FUNCDEF: { 891 FuncDef *pDef = pOp->p4.pFunc; 892 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); 893 break; 894 } 895 case P4_INT64: { 896 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); 897 break; 898 } 899 case P4_INT32: { 900 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); 901 break; 902 } 903 case P4_REAL: { 904 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal); 905 break; 906 } 907 case P4_MEM: { 908 Mem *pMem = pOp->p4.pMem; 909 assert( (pMem->flags & MEM_Null)==0 ); 910 if( pMem->flags & MEM_Str ){ 911 zP4 = pMem->z; 912 }else if( pMem->flags & MEM_Int ){ 913 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); 914 }else if( pMem->flags & MEM_Real ){ 915 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r); 916 }else{ 917 assert( pMem->flags & MEM_Blob ); 918 zP4 = "(blob)"; 919 } 920 break; 921 } 922 #ifndef SQLITE_OMIT_VIRTUALTABLE 923 case P4_VTAB: { 924 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 925 sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule); 926 break; 927 } 928 #endif 929 case P4_INTARRAY: { 930 sqlite3_snprintf(nTemp, zTemp, "intarray"); 931 break; 932 } 933 case P4_SUBPROGRAM: { 934 sqlite3_snprintf(nTemp, zTemp, "program"); 935 break; 936 } 937 default: { 938 zP4 = pOp->p4.z; 939 if( zP4==0 ){ 940 zP4 = zTemp; 941 zTemp[0] = 0; 942 } 943 } 944 } 945 assert( zP4!=0 ); 946 return zP4; 947 } 948 #endif 949 950 /* 951 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 952 ** 953 ** The prepared statements need to know in advance the complete set of 954 ** attached databases that they will be using. A mask of these databases 955 ** is maintained in p->btreeMask and is used for locking and other purposes. 956 */ 957 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 958 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 959 assert( i<(int)sizeof(p->btreeMask)*8 ); 960 p->btreeMask |= ((yDbMask)1)<<i; 961 } 962 963 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 964 /* 965 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 966 ** this routine obtains the mutex associated with each BtShared structure 967 ** that may be accessed by the VM passed as an argument. In doing so it also 968 ** sets the BtShared.db member of each of the BtShared structures, ensuring 969 ** that the correct busy-handler callback is invoked if required. 970 ** 971 ** If SQLite is not threadsafe but does support shared-cache mode, then 972 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 973 ** of all of BtShared structures accessible via the database handle 974 ** associated with the VM. 975 ** 976 ** If SQLite is not threadsafe and does not support shared-cache mode, this 977 ** function is a no-op. 978 ** 979 ** The p->btreeMask field is a bitmask of all btrees that the prepared 980 ** statement p will ever use. Let N be the number of bits in p->btreeMask 981 ** corresponding to btrees that use shared cache. Then the runtime of 982 ** this routine is N*N. But as N is rarely more than 1, this should not 983 ** be a problem. 984 */ 985 void sqlite3VdbeEnter(Vdbe *p){ 986 int i; 987 yDbMask mask; 988 sqlite3 *db = p->db; 989 Db *aDb = db->aDb; 990 int nDb = db->nDb; 991 for(i=0, mask=1; i<nDb; i++, mask += mask){ 992 if( i!=1 && (mask & p->btreeMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){ 993 sqlite3BtreeEnter(aDb[i].pBt); 994 } 995 } 996 } 997 #endif 998 999 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1000 /* 1001 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1002 */ 1003 void sqlite3VdbeLeave(Vdbe *p){ 1004 int i; 1005 yDbMask mask; 1006 sqlite3 *db = p->db; 1007 Db *aDb = db->aDb; 1008 int nDb = db->nDb; 1009 1010 for(i=0, mask=1; i<nDb; i++, mask += mask){ 1011 if( i!=1 && (mask & p->btreeMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){ 1012 sqlite3BtreeLeave(aDb[i].pBt); 1013 } 1014 } 1015 } 1016 #endif 1017 1018 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1019 /* 1020 ** Print a single opcode. This routine is used for debugging only. 1021 */ 1022 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ 1023 char *zP4; 1024 char zPtr[50]; 1025 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n"; 1026 if( pOut==0 ) pOut = stdout; 1027 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1028 fprintf(pOut, zFormat1, pc, 1029 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1030 #ifdef SQLITE_DEBUG 1031 pOp->zComment ? pOp->zComment : "" 1032 #else 1033 "" 1034 #endif 1035 ); 1036 fflush(pOut); 1037 } 1038 #endif 1039 1040 /* 1041 ** Release an array of N Mem elements 1042 */ 1043 static void releaseMemArray(Mem *p, int N){ 1044 if( p && N ){ 1045 Mem *pEnd; 1046 sqlite3 *db = p->db; 1047 u8 malloc_failed = db->mallocFailed; 1048 if( db->pnBytesFreed ){ 1049 for(pEnd=&p[N]; p<pEnd; p++){ 1050 sqlite3DbFree(db, p->zMalloc); 1051 } 1052 return; 1053 } 1054 for(pEnd=&p[N]; p<pEnd; p++){ 1055 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1056 1057 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1058 ** that takes advantage of the fact that the memory cell value is 1059 ** being set to NULL after releasing any dynamic resources. 1060 ** 1061 ** The justification for duplicating code is that according to 1062 ** callgrind, this causes a certain test case to hit the CPU 4.7 1063 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1064 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1065 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1066 ** with no indexes using a single prepared INSERT statement, bind() 1067 ** and reset(). Inserts are grouped into a transaction. 1068 */ 1069 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ 1070 sqlite3VdbeMemRelease(p); 1071 }else if( p->zMalloc ){ 1072 sqlite3DbFree(db, p->zMalloc); 1073 p->zMalloc = 0; 1074 } 1075 1076 p->flags = MEM_Null; 1077 } 1078 db->mallocFailed = malloc_failed; 1079 } 1080 } 1081 1082 /* 1083 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1084 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1085 */ 1086 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1087 int i; 1088 Mem *aMem = VdbeFrameMem(p); 1089 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1090 for(i=0; i<p->nChildCsr; i++){ 1091 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1092 } 1093 releaseMemArray(aMem, p->nChildMem); 1094 sqlite3DbFree(p->v->db, p); 1095 } 1096 1097 #ifndef SQLITE_OMIT_EXPLAIN 1098 /* 1099 ** Give a listing of the program in the virtual machine. 1100 ** 1101 ** The interface is the same as sqlite3VdbeExec(). But instead of 1102 ** running the code, it invokes the callback once for each instruction. 1103 ** This feature is used to implement "EXPLAIN". 1104 ** 1105 ** When p->explain==1, each instruction is listed. When 1106 ** p->explain==2, only OP_Explain instructions are listed and these 1107 ** are shown in a different format. p->explain==2 is used to implement 1108 ** EXPLAIN QUERY PLAN. 1109 ** 1110 ** When p->explain==1, first the main program is listed, then each of 1111 ** the trigger subprograms are listed one by one. 1112 */ 1113 int sqlite3VdbeList( 1114 Vdbe *p /* The VDBE */ 1115 ){ 1116 int nRow; /* Stop when row count reaches this */ 1117 int nSub = 0; /* Number of sub-vdbes seen so far */ 1118 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1119 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1120 sqlite3 *db = p->db; /* The database connection */ 1121 int i; /* Loop counter */ 1122 int rc = SQLITE_OK; /* Return code */ 1123 Mem *pMem = p->pResultSet = &p->aMem[1]; /* First Mem of result set */ 1124 1125 assert( p->explain ); 1126 assert( p->magic==VDBE_MAGIC_RUN ); 1127 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1128 1129 /* Even though this opcode does not use dynamic strings for 1130 ** the result, result columns may become dynamic if the user calls 1131 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1132 */ 1133 releaseMemArray(pMem, 8); 1134 1135 if( p->rc==SQLITE_NOMEM ){ 1136 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1137 ** sqlite3_column_text16() failed. */ 1138 db->mallocFailed = 1; 1139 return SQLITE_ERROR; 1140 } 1141 1142 /* When the number of output rows reaches nRow, that means the 1143 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1144 ** nRow is the sum of the number of rows in the main program, plus 1145 ** the sum of the number of rows in all trigger subprograms encountered 1146 ** so far. The nRow value will increase as new trigger subprograms are 1147 ** encountered, but p->pc will eventually catch up to nRow. 1148 */ 1149 nRow = p->nOp; 1150 if( p->explain==1 ){ 1151 /* The first 8 memory cells are used for the result set. So we will 1152 ** commandeer the 9th cell to use as storage for an array of pointers 1153 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1154 ** cells. */ 1155 assert( p->nMem>9 ); 1156 pSub = &p->aMem[9]; 1157 if( pSub->flags&MEM_Blob ){ 1158 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1159 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1160 nSub = pSub->n/sizeof(Vdbe*); 1161 apSub = (SubProgram **)pSub->z; 1162 } 1163 for(i=0; i<nSub; i++){ 1164 nRow += apSub[i]->nOp; 1165 } 1166 } 1167 1168 do{ 1169 i = p->pc++; 1170 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); 1171 if( i>=nRow ){ 1172 p->rc = SQLITE_OK; 1173 rc = SQLITE_DONE; 1174 }else if( db->u1.isInterrupted ){ 1175 p->rc = SQLITE_INTERRUPT; 1176 rc = SQLITE_ERROR; 1177 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc)); 1178 }else{ 1179 char *z; 1180 Op *pOp; 1181 if( i<p->nOp ){ 1182 /* The output line number is small enough that we are still in the 1183 ** main program. */ 1184 pOp = &p->aOp[i]; 1185 }else{ 1186 /* We are currently listing subprograms. Figure out which one and 1187 ** pick up the appropriate opcode. */ 1188 int j; 1189 i -= p->nOp; 1190 for(j=0; i>=apSub[j]->nOp; j++){ 1191 i -= apSub[j]->nOp; 1192 } 1193 pOp = &apSub[j]->aOp[i]; 1194 } 1195 if( p->explain==1 ){ 1196 pMem->flags = MEM_Int; 1197 pMem->type = SQLITE_INTEGER; 1198 pMem->u.i = i; /* Program counter */ 1199 pMem++; 1200 1201 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1202 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1203 assert( pMem->z!=0 ); 1204 pMem->n = sqlite3Strlen30(pMem->z); 1205 pMem->type = SQLITE_TEXT; 1206 pMem->enc = SQLITE_UTF8; 1207 pMem++; 1208 1209 /* When an OP_Program opcode is encounter (the only opcode that has 1210 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1211 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1212 ** has not already been seen. 1213 */ 1214 if( pOp->p4type==P4_SUBPROGRAM ){ 1215 int nByte = (nSub+1)*sizeof(SubProgram*); 1216 int j; 1217 for(j=0; j<nSub; j++){ 1218 if( apSub[j]==pOp->p4.pProgram ) break; 1219 } 1220 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){ 1221 apSub = (SubProgram **)pSub->z; 1222 apSub[nSub++] = pOp->p4.pProgram; 1223 pSub->flags |= MEM_Blob; 1224 pSub->n = nSub*sizeof(SubProgram*); 1225 } 1226 } 1227 } 1228 1229 pMem->flags = MEM_Int; 1230 pMem->u.i = pOp->p1; /* P1 */ 1231 pMem->type = SQLITE_INTEGER; 1232 pMem++; 1233 1234 pMem->flags = MEM_Int; 1235 pMem->u.i = pOp->p2; /* P2 */ 1236 pMem->type = SQLITE_INTEGER; 1237 pMem++; 1238 1239 pMem->flags = MEM_Int; 1240 pMem->u.i = pOp->p3; /* P3 */ 1241 pMem->type = SQLITE_INTEGER; 1242 pMem++; 1243 1244 if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */ 1245 assert( p->db->mallocFailed ); 1246 return SQLITE_ERROR; 1247 } 1248 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; 1249 z = displayP4(pOp, pMem->z, 32); 1250 if( z!=pMem->z ){ 1251 sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0); 1252 }else{ 1253 assert( pMem->z!=0 ); 1254 pMem->n = sqlite3Strlen30(pMem->z); 1255 pMem->enc = SQLITE_UTF8; 1256 } 1257 pMem->type = SQLITE_TEXT; 1258 pMem++; 1259 1260 if( p->explain==1 ){ 1261 if( sqlite3VdbeMemGrow(pMem, 4, 0) ){ 1262 assert( p->db->mallocFailed ); 1263 return SQLITE_ERROR; 1264 } 1265 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; 1266 pMem->n = 2; 1267 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1268 pMem->type = SQLITE_TEXT; 1269 pMem->enc = SQLITE_UTF8; 1270 pMem++; 1271 1272 #ifdef SQLITE_DEBUG 1273 if( pOp->zComment ){ 1274 pMem->flags = MEM_Str|MEM_Term; 1275 pMem->z = pOp->zComment; 1276 pMem->n = sqlite3Strlen30(pMem->z); 1277 pMem->enc = SQLITE_UTF8; 1278 pMem->type = SQLITE_TEXT; 1279 }else 1280 #endif 1281 { 1282 pMem->flags = MEM_Null; /* Comment */ 1283 pMem->type = SQLITE_NULL; 1284 } 1285 } 1286 1287 p->nResColumn = 8 - 4*(p->explain-1); 1288 p->rc = SQLITE_OK; 1289 rc = SQLITE_ROW; 1290 } 1291 return rc; 1292 } 1293 #endif /* SQLITE_OMIT_EXPLAIN */ 1294 1295 #ifdef SQLITE_DEBUG 1296 /* 1297 ** Print the SQL that was used to generate a VDBE program. 1298 */ 1299 void sqlite3VdbePrintSql(Vdbe *p){ 1300 int nOp = p->nOp; 1301 VdbeOp *pOp; 1302 if( nOp<1 ) return; 1303 pOp = &p->aOp[0]; 1304 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ 1305 const char *z = pOp->p4.z; 1306 while( sqlite3Isspace(*z) ) z++; 1307 printf("SQL: [%s]\n", z); 1308 } 1309 } 1310 #endif 1311 1312 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 1313 /* 1314 ** Print an IOTRACE message showing SQL content. 1315 */ 1316 void sqlite3VdbeIOTraceSql(Vdbe *p){ 1317 int nOp = p->nOp; 1318 VdbeOp *pOp; 1319 if( sqlite3IoTrace==0 ) return; 1320 if( nOp<1 ) return; 1321 pOp = &p->aOp[0]; 1322 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ 1323 int i, j; 1324 char z[1000]; 1325 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 1326 for(i=0; sqlite3Isspace(z[i]); i++){} 1327 for(j=0; z[i]; i++){ 1328 if( sqlite3Isspace(z[i]) ){ 1329 if( z[i-1]!=' ' ){ 1330 z[j++] = ' '; 1331 } 1332 }else{ 1333 z[j++] = z[i]; 1334 } 1335 } 1336 z[j] = 0; 1337 sqlite3IoTrace("SQL %s\n", z); 1338 } 1339 } 1340 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 1341 1342 /* 1343 ** Allocate space from a fixed size buffer and return a pointer to 1344 ** that space. If insufficient space is available, return NULL. 1345 ** 1346 ** The pBuf parameter is the initial value of a pointer which will 1347 ** receive the new memory. pBuf is normally NULL. If pBuf is not 1348 ** NULL, it means that memory space has already been allocated and that 1349 ** this routine should not allocate any new memory. When pBuf is not 1350 ** NULL simply return pBuf. Only allocate new memory space when pBuf 1351 ** is NULL. 1352 ** 1353 ** nByte is the number of bytes of space needed. 1354 ** 1355 ** *ppFrom points to available space and pEnd points to the end of the 1356 ** available space. When space is allocated, *ppFrom is advanced past 1357 ** the end of the allocated space. 1358 ** 1359 ** *pnByte is a counter of the number of bytes of space that have failed 1360 ** to allocate. If there is insufficient space in *ppFrom to satisfy the 1361 ** request, then increment *pnByte by the amount of the request. 1362 */ 1363 static void *allocSpace( 1364 void *pBuf, /* Where return pointer will be stored */ 1365 int nByte, /* Number of bytes to allocate */ 1366 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */ 1367 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */ 1368 int *pnByte /* If allocation cannot be made, increment *pnByte */ 1369 ){ 1370 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) ); 1371 if( pBuf ) return pBuf; 1372 nByte = ROUND8(nByte); 1373 if( &(*ppFrom)[nByte] <= pEnd ){ 1374 pBuf = (void*)*ppFrom; 1375 *ppFrom += nByte; 1376 }else{ 1377 *pnByte += nByte; 1378 } 1379 return pBuf; 1380 } 1381 1382 /* 1383 ** Prepare a virtual machine for execution. This involves things such 1384 ** as allocating stack space and initializing the program counter. 1385 ** After the VDBE has be prepped, it can be executed by one or more 1386 ** calls to sqlite3VdbeExec(). 1387 ** 1388 ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to 1389 ** VDBE_MAGIC_RUN. 1390 ** 1391 ** This function may be called more than once on a single virtual machine. 1392 ** The first call is made while compiling the SQL statement. Subsequent 1393 ** calls are made as part of the process of resetting a statement to be 1394 ** re-executed (from a call to sqlite3_reset()). The nVar, nMem, nCursor 1395 ** and isExplain parameters are only passed correct values the first time 1396 ** the function is called. On subsequent calls, from sqlite3_reset(), nVar 1397 ** is passed -1 and nMem, nCursor and isExplain are all passed zero. 1398 */ 1399 void sqlite3VdbeMakeReady( 1400 Vdbe *p, /* The VDBE */ 1401 int nVar, /* Number of '?' see in the SQL statement */ 1402 int nMem, /* Number of memory cells to allocate */ 1403 int nCursor, /* Number of cursors to allocate */ 1404 int nArg, /* Maximum number of args in SubPrograms */ 1405 int isExplain, /* True if the EXPLAIN keywords is present */ 1406 int usesStmtJournal /* True to set Vdbe.usesStmtJournal */ 1407 ){ 1408 int n; 1409 sqlite3 *db = p->db; 1410 1411 assert( p!=0 ); 1412 assert( p->magic==VDBE_MAGIC_INIT ); 1413 1414 /* There should be at least one opcode. 1415 */ 1416 assert( p->nOp>0 ); 1417 1418 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 1419 p->magic = VDBE_MAGIC_RUN; 1420 1421 /* For each cursor required, also allocate a memory cell. Memory 1422 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by 1423 ** the vdbe program. Instead they are used to allocate space for 1424 ** VdbeCursor/BtCursor structures. The blob of memory associated with 1425 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) 1426 ** stores the blob of memory associated with cursor 1, etc. 1427 ** 1428 ** See also: allocateCursor(). 1429 */ 1430 nMem += nCursor; 1431 1432 /* Allocate space for memory registers, SQL variables, VDBE cursors and 1433 ** an array to marshal SQL function arguments in. This is only done the 1434 ** first time this function is called for a given VDBE, not when it is 1435 ** being called from sqlite3_reset() to reset the virtual machine. 1436 */ 1437 if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){ 1438 u8 *zCsr = (u8 *)&p->aOp[p->nOp]; /* Memory avaliable for alloation */ 1439 u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc]; /* First byte past available mem */ 1440 int nByte; /* How much extra memory needed */ 1441 1442 resolveP2Values(p, &nArg); 1443 p->usesStmtJournal = (u8)usesStmtJournal; 1444 if( isExplain && nMem<10 ){ 1445 nMem = 10; 1446 } 1447 memset(zCsr, 0, zEnd-zCsr); 1448 zCsr += (zCsr - (u8*)0)&7; 1449 assert( EIGHT_BYTE_ALIGNMENT(zCsr) ); 1450 1451 /* Memory for registers, parameters, cursor, etc, is allocated in two 1452 ** passes. On the first pass, we try to reuse unused space at the 1453 ** end of the opcode array. If we are unable to satisfy all memory 1454 ** requirements by reusing the opcode array tail, then the second 1455 ** pass will fill in the rest using a fresh allocation. 1456 ** 1457 ** This two-pass approach that reuses as much memory as possible from 1458 ** the leftover space at the end of the opcode array can significantly 1459 ** reduce the amount of memory held by a prepared statement. 1460 */ 1461 do { 1462 nByte = 0; 1463 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte); 1464 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte); 1465 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte); 1466 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte); 1467 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*), 1468 &zCsr, zEnd, &nByte); 1469 if( nByte ){ 1470 p->pFree = sqlite3DbMallocZero(db, nByte); 1471 } 1472 zCsr = p->pFree; 1473 zEnd = &zCsr[nByte]; 1474 }while( nByte && !db->mallocFailed ); 1475 1476 p->nCursor = (u16)nCursor; 1477 if( p->aVar ){ 1478 p->nVar = (ynVar)nVar; 1479 for(n=0; n<nVar; n++){ 1480 p->aVar[n].flags = MEM_Null; 1481 p->aVar[n].db = db; 1482 } 1483 } 1484 if( p->aMem ){ 1485 p->aMem--; /* aMem[] goes from 1..nMem */ 1486 p->nMem = nMem; /* not from 0..nMem-1 */ 1487 for(n=1; n<=nMem; n++){ 1488 p->aMem[n].flags = MEM_Null; 1489 p->aMem[n].db = db; 1490 } 1491 } 1492 } 1493 #ifdef SQLITE_DEBUG 1494 for(n=1; n<p->nMem; n++){ 1495 assert( p->aMem[n].db==db ); 1496 } 1497 #endif 1498 1499 p->pc = -1; 1500 p->rc = SQLITE_OK; 1501 p->errorAction = OE_Abort; 1502 p->explain |= isExplain; 1503 p->magic = VDBE_MAGIC_RUN; 1504 p->nChange = 0; 1505 p->cacheCtr = 1; 1506 p->minWriteFileFormat = 255; 1507 p->iStatement = 0; 1508 p->nFkConstraint = 0; 1509 #ifdef VDBE_PROFILE 1510 { 1511 int i; 1512 for(i=0; i<p->nOp; i++){ 1513 p->aOp[i].cnt = 0; 1514 p->aOp[i].cycles = 0; 1515 } 1516 } 1517 #endif 1518 } 1519 1520 /* 1521 ** Close a VDBE cursor and release all the resources that cursor 1522 ** happens to hold. 1523 */ 1524 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 1525 if( pCx==0 ){ 1526 return; 1527 } 1528 if( pCx->pBt ){ 1529 sqlite3BtreeClose(pCx->pBt); 1530 /* The pCx->pCursor will be close automatically, if it exists, by 1531 ** the call above. */ 1532 }else if( pCx->pCursor ){ 1533 sqlite3BtreeCloseCursor(pCx->pCursor); 1534 } 1535 #ifndef SQLITE_OMIT_VIRTUALTABLE 1536 if( pCx->pVtabCursor ){ 1537 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; 1538 const sqlite3_module *pModule = pCx->pModule; 1539 p->inVtabMethod = 1; 1540 pModule->xClose(pVtabCursor); 1541 p->inVtabMethod = 0; 1542 } 1543 #endif 1544 } 1545 1546 /* 1547 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 1548 ** is used, for example, when a trigger sub-program is halted to restore 1549 ** control to the main program. 1550 */ 1551 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 1552 Vdbe *v = pFrame->v; 1553 v->aOp = pFrame->aOp; 1554 v->nOp = pFrame->nOp; 1555 v->aMem = pFrame->aMem; 1556 v->nMem = pFrame->nMem; 1557 v->apCsr = pFrame->apCsr; 1558 v->nCursor = pFrame->nCursor; 1559 v->db->lastRowid = pFrame->lastRowid; 1560 v->nChange = pFrame->nChange; 1561 return pFrame->pc; 1562 } 1563 1564 /* 1565 ** Close all cursors. 1566 ** 1567 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 1568 ** cell array. This is necessary as the memory cell array may contain 1569 ** pointers to VdbeFrame objects, which may in turn contain pointers to 1570 ** open cursors. 1571 */ 1572 static void closeAllCursors(Vdbe *p){ 1573 if( p->pFrame ){ 1574 VdbeFrame *pFrame; 1575 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 1576 sqlite3VdbeFrameRestore(pFrame); 1577 } 1578 p->pFrame = 0; 1579 p->nFrame = 0; 1580 1581 if( p->apCsr ){ 1582 int i; 1583 for(i=0; i<p->nCursor; i++){ 1584 VdbeCursor *pC = p->apCsr[i]; 1585 if( pC ){ 1586 sqlite3VdbeFreeCursor(p, pC); 1587 p->apCsr[i] = 0; 1588 } 1589 } 1590 } 1591 if( p->aMem ){ 1592 releaseMemArray(&p->aMem[1], p->nMem); 1593 } 1594 while( p->pDelFrame ){ 1595 VdbeFrame *pDel = p->pDelFrame; 1596 p->pDelFrame = pDel->pParent; 1597 sqlite3VdbeFrameDelete(pDel); 1598 } 1599 } 1600 1601 /* 1602 ** Clean up the VM after execution. 1603 ** 1604 ** This routine will automatically close any cursors, lists, and/or 1605 ** sorters that were left open. It also deletes the values of 1606 ** variables in the aVar[] array. 1607 */ 1608 static void Cleanup(Vdbe *p){ 1609 sqlite3 *db = p->db; 1610 1611 #ifdef SQLITE_DEBUG 1612 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 1613 ** Vdbe.aMem[] arrays have already been cleaned up. */ 1614 int i; 1615 for(i=0; i<p->nCursor; i++) assert( p->apCsr==0 || p->apCsr[i]==0 ); 1616 for(i=1; i<=p->nMem; i++) assert( p->aMem==0 || p->aMem[i].flags==MEM_Null ); 1617 #endif 1618 1619 sqlite3DbFree(db, p->zErrMsg); 1620 p->zErrMsg = 0; 1621 p->pResultSet = 0; 1622 } 1623 1624 /* 1625 ** Set the number of result columns that will be returned by this SQL 1626 ** statement. This is now set at compile time, rather than during 1627 ** execution of the vdbe program so that sqlite3_column_count() can 1628 ** be called on an SQL statement before sqlite3_step(). 1629 */ 1630 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 1631 Mem *pColName; 1632 int n; 1633 sqlite3 *db = p->db; 1634 1635 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 1636 sqlite3DbFree(db, p->aColName); 1637 n = nResColumn*COLNAME_N; 1638 p->nResColumn = (u16)nResColumn; 1639 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n ); 1640 if( p->aColName==0 ) return; 1641 while( n-- > 0 ){ 1642 pColName->flags = MEM_Null; 1643 pColName->db = p->db; 1644 pColName++; 1645 } 1646 } 1647 1648 /* 1649 ** Set the name of the idx'th column to be returned by the SQL statement. 1650 ** zName must be a pointer to a nul terminated string. 1651 ** 1652 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 1653 ** 1654 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 1655 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 1656 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 1657 */ 1658 int sqlite3VdbeSetColName( 1659 Vdbe *p, /* Vdbe being configured */ 1660 int idx, /* Index of column zName applies to */ 1661 int var, /* One of the COLNAME_* constants */ 1662 const char *zName, /* Pointer to buffer containing name */ 1663 void (*xDel)(void*) /* Memory management strategy for zName */ 1664 ){ 1665 int rc; 1666 Mem *pColName; 1667 assert( idx<p->nResColumn ); 1668 assert( var<COLNAME_N ); 1669 if( p->db->mallocFailed ){ 1670 assert( !zName || xDel!=SQLITE_DYNAMIC ); 1671 return SQLITE_NOMEM; 1672 } 1673 assert( p->aColName!=0 ); 1674 pColName = &(p->aColName[idx+var*p->nResColumn]); 1675 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 1676 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 1677 return rc; 1678 } 1679 1680 /* 1681 ** A read or write transaction may or may not be active on database handle 1682 ** db. If a transaction is active, commit it. If there is a 1683 ** write-transaction spanning more than one database file, this routine 1684 ** takes care of the master journal trickery. 1685 */ 1686 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 1687 int i; 1688 int nTrans = 0; /* Number of databases with an active write-transaction */ 1689 int rc = SQLITE_OK; 1690 int needXcommit = 0; 1691 1692 #ifdef SQLITE_OMIT_VIRTUALTABLE 1693 /* With this option, sqlite3VtabSync() is defined to be simply 1694 ** SQLITE_OK so p is not used. 1695 */ 1696 UNUSED_PARAMETER(p); 1697 #endif 1698 1699 /* Before doing anything else, call the xSync() callback for any 1700 ** virtual module tables written in this transaction. This has to 1701 ** be done before determining whether a master journal file is 1702 ** required, as an xSync() callback may add an attached database 1703 ** to the transaction. 1704 */ 1705 rc = sqlite3VtabSync(db, &p->zErrMsg); 1706 1707 /* This loop determines (a) if the commit hook should be invoked and 1708 ** (b) how many database files have open write transactions, not 1709 ** including the temp database. (b) is important because if more than 1710 ** one database file has an open write transaction, a master journal 1711 ** file is required for an atomic commit. 1712 */ 1713 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 1714 Btree *pBt = db->aDb[i].pBt; 1715 if( sqlite3BtreeIsInTrans(pBt) ){ 1716 needXcommit = 1; 1717 if( i!=1 ) nTrans++; 1718 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt)); 1719 } 1720 } 1721 if( rc!=SQLITE_OK ){ 1722 return rc; 1723 } 1724 1725 /* If there are any write-transactions at all, invoke the commit hook */ 1726 if( needXcommit && db->xCommitCallback ){ 1727 rc = db->xCommitCallback(db->pCommitArg); 1728 if( rc ){ 1729 return SQLITE_CONSTRAINT; 1730 } 1731 } 1732 1733 /* The simple case - no more than one database file (not counting the 1734 ** TEMP database) has a transaction active. There is no need for the 1735 ** master-journal. 1736 ** 1737 ** If the return value of sqlite3BtreeGetFilename() is a zero length 1738 ** string, it means the main database is :memory: or a temp file. In 1739 ** that case we do not support atomic multi-file commits, so use the 1740 ** simple case then too. 1741 */ 1742 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 1743 || nTrans<=1 1744 ){ 1745 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 1746 Btree *pBt = db->aDb[i].pBt; 1747 if( pBt ){ 1748 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 1749 } 1750 } 1751 1752 /* Do the commit only if all databases successfully complete phase 1. 1753 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 1754 ** IO error while deleting or truncating a journal file. It is unlikely, 1755 ** but could happen. In this case abandon processing and return the error. 1756 */ 1757 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 1758 Btree *pBt = db->aDb[i].pBt; 1759 if( pBt ){ 1760 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 1761 } 1762 } 1763 if( rc==SQLITE_OK ){ 1764 sqlite3VtabCommit(db); 1765 } 1766 } 1767 1768 /* The complex case - There is a multi-file write-transaction active. 1769 ** This requires a master journal file to ensure the transaction is 1770 ** committed atomicly. 1771 */ 1772 #ifndef SQLITE_OMIT_DISKIO 1773 else{ 1774 sqlite3_vfs *pVfs = db->pVfs; 1775 int needSync = 0; 1776 char *zMaster = 0; /* File-name for the master journal */ 1777 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 1778 sqlite3_file *pMaster = 0; 1779 i64 offset = 0; 1780 int res; 1781 1782 /* Select a master journal file name */ 1783 do { 1784 u32 iRandom; 1785 sqlite3DbFree(db, zMaster); 1786 sqlite3_randomness(sizeof(iRandom), &iRandom); 1787 zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, iRandom&0x7fffffff); 1788 if( !zMaster ){ 1789 return SQLITE_NOMEM; 1790 } 1791 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 1792 }while( rc==SQLITE_OK && res ); 1793 if( rc==SQLITE_OK ){ 1794 /* Open the master journal. */ 1795 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 1796 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 1797 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 1798 ); 1799 } 1800 if( rc!=SQLITE_OK ){ 1801 sqlite3DbFree(db, zMaster); 1802 return rc; 1803 } 1804 1805 /* Write the name of each database file in the transaction into the new 1806 ** master journal file. If an error occurs at this point close 1807 ** and delete the master journal file. All the individual journal files 1808 ** still have 'null' as the master journal pointer, so they will roll 1809 ** back independently if a failure occurs. 1810 */ 1811 for(i=0; i<db->nDb; i++){ 1812 Btree *pBt = db->aDb[i].pBt; 1813 if( sqlite3BtreeIsInTrans(pBt) ){ 1814 char const *zFile = sqlite3BtreeGetJournalname(pBt); 1815 if( zFile==0 ){ 1816 continue; /* Ignore TEMP and :memory: databases */ 1817 } 1818 assert( zFile[0]!=0 ); 1819 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){ 1820 needSync = 1; 1821 } 1822 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 1823 offset += sqlite3Strlen30(zFile)+1; 1824 if( rc!=SQLITE_OK ){ 1825 sqlite3OsCloseFree(pMaster); 1826 sqlite3OsDelete(pVfs, zMaster, 0); 1827 sqlite3DbFree(db, zMaster); 1828 return rc; 1829 } 1830 } 1831 } 1832 1833 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 1834 ** flag is set this is not required. 1835 */ 1836 if( needSync 1837 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 1838 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 1839 ){ 1840 sqlite3OsCloseFree(pMaster); 1841 sqlite3OsDelete(pVfs, zMaster, 0); 1842 sqlite3DbFree(db, zMaster); 1843 return rc; 1844 } 1845 1846 /* Sync all the db files involved in the transaction. The same call 1847 ** sets the master journal pointer in each individual journal. If 1848 ** an error occurs here, do not delete the master journal file. 1849 ** 1850 ** If the error occurs during the first call to 1851 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 1852 ** master journal file will be orphaned. But we cannot delete it, 1853 ** in case the master journal file name was written into the journal 1854 ** file before the failure occurred. 1855 */ 1856 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 1857 Btree *pBt = db->aDb[i].pBt; 1858 if( pBt ){ 1859 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 1860 } 1861 } 1862 sqlite3OsCloseFree(pMaster); 1863 assert( rc!=SQLITE_BUSY ); 1864 if( rc!=SQLITE_OK ){ 1865 sqlite3DbFree(db, zMaster); 1866 return rc; 1867 } 1868 1869 /* Delete the master journal file. This commits the transaction. After 1870 ** doing this the directory is synced again before any individual 1871 ** transaction files are deleted. 1872 */ 1873 rc = sqlite3OsDelete(pVfs, zMaster, 1); 1874 sqlite3DbFree(db, zMaster); 1875 zMaster = 0; 1876 if( rc ){ 1877 return rc; 1878 } 1879 1880 /* All files and directories have already been synced, so the following 1881 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 1882 ** deleting or truncating journals. If something goes wrong while 1883 ** this is happening we don't really care. The integrity of the 1884 ** transaction is already guaranteed, but some stray 'cold' journals 1885 ** may be lying around. Returning an error code won't help matters. 1886 */ 1887 disable_simulated_io_errors(); 1888 sqlite3BeginBenignMalloc(); 1889 for(i=0; i<db->nDb; i++){ 1890 Btree *pBt = db->aDb[i].pBt; 1891 if( pBt ){ 1892 sqlite3BtreeCommitPhaseTwo(pBt, 1); 1893 } 1894 } 1895 sqlite3EndBenignMalloc(); 1896 enable_simulated_io_errors(); 1897 1898 sqlite3VtabCommit(db); 1899 } 1900 #endif 1901 1902 return rc; 1903 } 1904 1905 /* 1906 ** This routine checks that the sqlite3.activeVdbeCnt count variable 1907 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 1908 ** currently active. An assertion fails if the two counts do not match. 1909 ** This is an internal self-check only - it is not an essential processing 1910 ** step. 1911 ** 1912 ** This is a no-op if NDEBUG is defined. 1913 */ 1914 #ifndef NDEBUG 1915 static void checkActiveVdbeCnt(sqlite3 *db){ 1916 Vdbe *p; 1917 int cnt = 0; 1918 int nWrite = 0; 1919 p = db->pVdbe; 1920 while( p ){ 1921 if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){ 1922 cnt++; 1923 if( p->readOnly==0 ) nWrite++; 1924 } 1925 p = p->pNext; 1926 } 1927 assert( cnt==db->activeVdbeCnt ); 1928 assert( nWrite==db->writeVdbeCnt ); 1929 } 1930 #else 1931 #define checkActiveVdbeCnt(x) 1932 #endif 1933 1934 /* 1935 ** For every Btree that in database connection db which 1936 ** has been modified, "trip" or invalidate each cursor in 1937 ** that Btree might have been modified so that the cursor 1938 ** can never be used again. This happens when a rollback 1939 *** occurs. We have to trip all the other cursors, even 1940 ** cursor from other VMs in different database connections, 1941 ** so that none of them try to use the data at which they 1942 ** were pointing and which now may have been changed due 1943 ** to the rollback. 1944 ** 1945 ** Remember that a rollback can delete tables complete and 1946 ** reorder rootpages. So it is not sufficient just to save 1947 ** the state of the cursor. We have to invalidate the cursor 1948 ** so that it is never used again. 1949 */ 1950 static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){ 1951 int i; 1952 for(i=0; i<db->nDb; i++){ 1953 Btree *p = db->aDb[i].pBt; 1954 if( p && sqlite3BtreeIsInTrans(p) ){ 1955 sqlite3BtreeTripAllCursors(p, SQLITE_ABORT); 1956 } 1957 } 1958 } 1959 1960 /* 1961 ** If the Vdbe passed as the first argument opened a statement-transaction, 1962 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 1963 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 1964 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 1965 ** statement transaction is commtted. 1966 ** 1967 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 1968 ** Otherwise SQLITE_OK. 1969 */ 1970 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 1971 sqlite3 *const db = p->db; 1972 int rc = SQLITE_OK; 1973 1974 /* If p->iStatement is greater than zero, then this Vdbe opened a 1975 ** statement transaction that should be closed here. The only exception 1976 ** is that an IO error may have occured, causing an emergency rollback. 1977 ** In this case (db->nStatement==0), and there is nothing to do. 1978 */ 1979 if( db->nStatement && p->iStatement ){ 1980 int i; 1981 const int iSavepoint = p->iStatement-1; 1982 1983 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 1984 assert( db->nStatement>0 ); 1985 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 1986 1987 for(i=0; i<db->nDb; i++){ 1988 int rc2 = SQLITE_OK; 1989 Btree *pBt = db->aDb[i].pBt; 1990 if( pBt ){ 1991 if( eOp==SAVEPOINT_ROLLBACK ){ 1992 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 1993 } 1994 if( rc2==SQLITE_OK ){ 1995 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 1996 } 1997 if( rc==SQLITE_OK ){ 1998 rc = rc2; 1999 } 2000 } 2001 } 2002 db->nStatement--; 2003 p->iStatement = 0; 2004 2005 /* If the statement transaction is being rolled back, also restore the 2006 ** database handles deferred constraint counter to the value it had when 2007 ** the statement transaction was opened. */ 2008 if( eOp==SAVEPOINT_ROLLBACK ){ 2009 db->nDeferredCons = p->nStmtDefCons; 2010 } 2011 } 2012 return rc; 2013 } 2014 2015 /* 2016 ** This function is called when a transaction opened by the database 2017 ** handle associated with the VM passed as an argument is about to be 2018 ** committed. If there are outstanding deferred foreign key constraint 2019 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2020 ** 2021 ** If there are outstanding FK violations and this function returns 2022 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT and write 2023 ** an error message to it. Then return SQLITE_ERROR. 2024 */ 2025 #ifndef SQLITE_OMIT_FOREIGN_KEY 2026 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2027 sqlite3 *db = p->db; 2028 if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){ 2029 p->rc = SQLITE_CONSTRAINT; 2030 p->errorAction = OE_Abort; 2031 sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed"); 2032 return SQLITE_ERROR; 2033 } 2034 return SQLITE_OK; 2035 } 2036 #endif 2037 2038 /* 2039 ** This routine is called the when a VDBE tries to halt. If the VDBE 2040 ** has made changes and is in autocommit mode, then commit those 2041 ** changes. If a rollback is needed, then do the rollback. 2042 ** 2043 ** This routine is the only way to move the state of a VM from 2044 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2045 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2046 ** 2047 ** Return an error code. If the commit could not complete because of 2048 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2049 ** means the close did not happen and needs to be repeated. 2050 */ 2051 int sqlite3VdbeHalt(Vdbe *p){ 2052 int rc; /* Used to store transient return codes */ 2053 sqlite3 *db = p->db; 2054 2055 /* This function contains the logic that determines if a statement or 2056 ** transaction will be committed or rolled back as a result of the 2057 ** execution of this virtual machine. 2058 ** 2059 ** If any of the following errors occur: 2060 ** 2061 ** SQLITE_NOMEM 2062 ** SQLITE_IOERR 2063 ** SQLITE_FULL 2064 ** SQLITE_INTERRUPT 2065 ** 2066 ** Then the internal cache might have been left in an inconsistent 2067 ** state. We need to rollback the statement transaction, if there is 2068 ** one, or the complete transaction if there is no statement transaction. 2069 */ 2070 2071 if( p->db->mallocFailed ){ 2072 p->rc = SQLITE_NOMEM; 2073 } 2074 closeAllCursors(p); 2075 if( p->magic!=VDBE_MAGIC_RUN ){ 2076 return SQLITE_OK; 2077 } 2078 checkActiveVdbeCnt(db); 2079 2080 /* No commit or rollback needed if the program never started */ 2081 if( p->pc>=0 ){ 2082 int mrc; /* Primary error code from p->rc */ 2083 int eStatementOp = 0; 2084 int isSpecialError; /* Set to true if a 'special' error */ 2085 2086 /* Lock all btrees used by the statement */ 2087 sqlite3VdbeEnter(p); 2088 2089 /* Check for one of the special errors */ 2090 mrc = p->rc & 0xff; 2091 assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */ 2092 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2093 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2094 if( isSpecialError ){ 2095 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2096 ** no rollback is necessary. Otherwise, at least a savepoint 2097 ** transaction must be rolled back to restore the database to a 2098 ** consistent state. 2099 ** 2100 ** Even if the statement is read-only, it is important to perform 2101 ** a statement or transaction rollback operation. If the error 2102 ** occured while writing to the journal, sub-journal or database 2103 ** file as part of an effort to free up cache space (see function 2104 ** pagerStress() in pager.c), the rollback is required to restore 2105 ** the pager to a consistent state. 2106 */ 2107 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2108 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2109 eStatementOp = SAVEPOINT_ROLLBACK; 2110 }else{ 2111 /* We are forced to roll back the active transaction. Before doing 2112 ** so, abort any other statements this handle currently has active. 2113 */ 2114 invalidateCursorsOnModifiedBtrees(db); 2115 sqlite3RollbackAll(db); 2116 sqlite3CloseSavepoints(db); 2117 db->autoCommit = 1; 2118 } 2119 } 2120 } 2121 2122 /* Check for immediate foreign key violations. */ 2123 if( p->rc==SQLITE_OK ){ 2124 sqlite3VdbeCheckFk(p, 0); 2125 } 2126 2127 /* If the auto-commit flag is set and this is the only active writer 2128 ** VM, then we do either a commit or rollback of the current transaction. 2129 ** 2130 ** Note: This block also runs if one of the special errors handled 2131 ** above has occurred. 2132 */ 2133 if( !sqlite3VtabInSync(db) 2134 && db->autoCommit 2135 && db->writeVdbeCnt==(p->readOnly==0) 2136 ){ 2137 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2138 rc = sqlite3VdbeCheckFk(p, 1); 2139 if( rc!=SQLITE_OK ){ 2140 if( NEVER(p->readOnly) ){ 2141 sqlite3VdbeLeave(p); 2142 return SQLITE_ERROR; 2143 } 2144 rc = SQLITE_CONSTRAINT; 2145 }else{ 2146 /* The auto-commit flag is true, the vdbe program was successful 2147 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2148 ** key constraints to hold up the transaction. This means a commit 2149 ** is required. */ 2150 rc = vdbeCommit(db, p); 2151 } 2152 if( rc==SQLITE_BUSY && p->readOnly ){ 2153 sqlite3VdbeLeave(p); 2154 return SQLITE_BUSY; 2155 }else if( rc!=SQLITE_OK ){ 2156 p->rc = rc; 2157 sqlite3RollbackAll(db); 2158 }else{ 2159 db->nDeferredCons = 0; 2160 sqlite3CommitInternalChanges(db); 2161 } 2162 }else{ 2163 sqlite3RollbackAll(db); 2164 } 2165 db->nStatement = 0; 2166 }else if( eStatementOp==0 ){ 2167 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2168 eStatementOp = SAVEPOINT_RELEASE; 2169 }else if( p->errorAction==OE_Abort ){ 2170 eStatementOp = SAVEPOINT_ROLLBACK; 2171 }else{ 2172 invalidateCursorsOnModifiedBtrees(db); 2173 sqlite3RollbackAll(db); 2174 sqlite3CloseSavepoints(db); 2175 db->autoCommit = 1; 2176 } 2177 } 2178 2179 /* If eStatementOp is non-zero, then a statement transaction needs to 2180 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2181 ** do so. If this operation returns an error, and the current statement 2182 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2183 ** current statement error code. 2184 ** 2185 ** Note that sqlite3VdbeCloseStatement() can only fail if eStatementOp 2186 ** is SAVEPOINT_ROLLBACK. But if p->rc==SQLITE_OK then eStatementOp 2187 ** must be SAVEPOINT_RELEASE. Hence the NEVER(p->rc==SQLITE_OK) in 2188 ** the following code. 2189 */ 2190 if( eStatementOp ){ 2191 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2192 if( rc ){ 2193 assert( eStatementOp==SAVEPOINT_ROLLBACK ); 2194 if( NEVER(p->rc==SQLITE_OK) || p->rc==SQLITE_CONSTRAINT ){ 2195 p->rc = rc; 2196 sqlite3DbFree(db, p->zErrMsg); 2197 p->zErrMsg = 0; 2198 } 2199 invalidateCursorsOnModifiedBtrees(db); 2200 sqlite3RollbackAll(db); 2201 sqlite3CloseSavepoints(db); 2202 db->autoCommit = 1; 2203 } 2204 } 2205 2206 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2207 ** has been rolled back, update the database connection change-counter. 2208 */ 2209 if( p->changeCntOn ){ 2210 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2211 sqlite3VdbeSetChanges(db, p->nChange); 2212 }else{ 2213 sqlite3VdbeSetChanges(db, 0); 2214 } 2215 p->nChange = 0; 2216 } 2217 2218 /* Rollback or commit any schema changes that occurred. */ 2219 if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){ 2220 sqlite3ResetInternalSchema(db, -1); 2221 db->flags = (db->flags | SQLITE_InternChanges); 2222 } 2223 2224 /* Release the locks */ 2225 sqlite3VdbeLeave(p); 2226 } 2227 2228 /* We have successfully halted and closed the VM. Record this fact. */ 2229 if( p->pc>=0 ){ 2230 db->activeVdbeCnt--; 2231 if( !p->readOnly ){ 2232 db->writeVdbeCnt--; 2233 } 2234 assert( db->activeVdbeCnt>=db->writeVdbeCnt ); 2235 } 2236 p->magic = VDBE_MAGIC_HALT; 2237 checkActiveVdbeCnt(db); 2238 if( p->db->mallocFailed ){ 2239 p->rc = SQLITE_NOMEM; 2240 } 2241 2242 /* If the auto-commit flag is set to true, then any locks that were held 2243 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2244 ** to invoke any required unlock-notify callbacks. 2245 */ 2246 if( db->autoCommit ){ 2247 sqlite3ConnectionUnlocked(db); 2248 } 2249 2250 assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 ); 2251 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 2252 } 2253 2254 2255 /* 2256 ** Each VDBE holds the result of the most recent sqlite3_step() call 2257 ** in p->rc. This routine sets that result back to SQLITE_OK. 2258 */ 2259 void sqlite3VdbeResetStepResult(Vdbe *p){ 2260 p->rc = SQLITE_OK; 2261 } 2262 2263 /* 2264 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 2265 ** Write any error messages into *pzErrMsg. Return the result code. 2266 ** 2267 ** After this routine is run, the VDBE should be ready to be executed 2268 ** again. 2269 ** 2270 ** To look at it another way, this routine resets the state of the 2271 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 2272 ** VDBE_MAGIC_INIT. 2273 */ 2274 int sqlite3VdbeReset(Vdbe *p){ 2275 sqlite3 *db; 2276 db = p->db; 2277 2278 /* If the VM did not run to completion or if it encountered an 2279 ** error, then it might not have been halted properly. So halt 2280 ** it now. 2281 */ 2282 sqlite3VdbeHalt(p); 2283 2284 /* If the VDBE has be run even partially, then transfer the error code 2285 ** and error message from the VDBE into the main database structure. But 2286 ** if the VDBE has just been set to run but has not actually executed any 2287 ** instructions yet, leave the main database error information unchanged. 2288 */ 2289 if( p->pc>=0 ){ 2290 if( p->zErrMsg ){ 2291 sqlite3BeginBenignMalloc(); 2292 sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT); 2293 sqlite3EndBenignMalloc(); 2294 db->errCode = p->rc; 2295 sqlite3DbFree(db, p->zErrMsg); 2296 p->zErrMsg = 0; 2297 }else if( p->rc ){ 2298 sqlite3Error(db, p->rc, 0); 2299 }else{ 2300 sqlite3Error(db, SQLITE_OK, 0); 2301 } 2302 if( p->runOnlyOnce ) p->expired = 1; 2303 }else if( p->rc && p->expired ){ 2304 /* The expired flag was set on the VDBE before the first call 2305 ** to sqlite3_step(). For consistency (since sqlite3_step() was 2306 ** called), set the database error in this case as well. 2307 */ 2308 sqlite3Error(db, p->rc, 0); 2309 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 2310 sqlite3DbFree(db, p->zErrMsg); 2311 p->zErrMsg = 0; 2312 } 2313 2314 /* Reclaim all memory used by the VDBE 2315 */ 2316 Cleanup(p); 2317 2318 /* Save profiling information from this VDBE run. 2319 */ 2320 #ifdef VDBE_PROFILE 2321 { 2322 FILE *out = fopen("vdbe_profile.out", "a"); 2323 if( out ){ 2324 int i; 2325 fprintf(out, "---- "); 2326 for(i=0; i<p->nOp; i++){ 2327 fprintf(out, "%02x", p->aOp[i].opcode); 2328 } 2329 fprintf(out, "\n"); 2330 for(i=0; i<p->nOp; i++){ 2331 fprintf(out, "%6d %10lld %8lld ", 2332 p->aOp[i].cnt, 2333 p->aOp[i].cycles, 2334 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 2335 ); 2336 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 2337 } 2338 fclose(out); 2339 } 2340 } 2341 #endif 2342 p->magic = VDBE_MAGIC_INIT; 2343 return p->rc & db->errMask; 2344 } 2345 2346 /* 2347 ** Clean up and delete a VDBE after execution. Return an integer which is 2348 ** the result code. Write any error message text into *pzErrMsg. 2349 */ 2350 int sqlite3VdbeFinalize(Vdbe *p){ 2351 int rc = SQLITE_OK; 2352 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 2353 rc = sqlite3VdbeReset(p); 2354 assert( (rc & p->db->errMask)==rc ); 2355 } 2356 sqlite3VdbeDelete(p); 2357 return rc; 2358 } 2359 2360 /* 2361 ** Call the destructor for each auxdata entry in pVdbeFunc for which 2362 ** the corresponding bit in mask is clear. Auxdata entries beyond 31 2363 ** are always destroyed. To destroy all auxdata entries, call this 2364 ** routine with mask==0. 2365 */ 2366 void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){ 2367 int i; 2368 for(i=0; i<pVdbeFunc->nAux; i++){ 2369 struct AuxData *pAux = &pVdbeFunc->apAux[i]; 2370 if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){ 2371 if( pAux->xDelete ){ 2372 pAux->xDelete(pAux->pAux); 2373 } 2374 pAux->pAux = 0; 2375 } 2376 } 2377 } 2378 2379 /* 2380 ** Free all memory associated with the Vdbe passed as the second argument. 2381 ** The difference between this function and sqlite3VdbeDelete() is that 2382 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 2383 ** the database connection. 2384 */ 2385 void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){ 2386 SubProgram *pSub, *pNext; 2387 assert( p->db==0 || p->db==db ); 2388 releaseMemArray(p->aVar, p->nVar); 2389 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2390 for(pSub=p->pProgram; pSub; pSub=pNext){ 2391 pNext = pSub->pNext; 2392 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 2393 sqlite3DbFree(db, pSub); 2394 } 2395 vdbeFreeOpArray(db, p->aOp, p->nOp); 2396 sqlite3DbFree(db, p->aLabel); 2397 sqlite3DbFree(db, p->aColName); 2398 sqlite3DbFree(db, p->zSql); 2399 sqlite3DbFree(db, p->pFree); 2400 sqlite3DbFree(db, p); 2401 } 2402 2403 /* 2404 ** Delete an entire VDBE. 2405 */ 2406 void sqlite3VdbeDelete(Vdbe *p){ 2407 sqlite3 *db; 2408 2409 if( NEVER(p==0) ) return; 2410 db = p->db; 2411 if( p->pPrev ){ 2412 p->pPrev->pNext = p->pNext; 2413 }else{ 2414 assert( db->pVdbe==p ); 2415 db->pVdbe = p->pNext; 2416 } 2417 if( p->pNext ){ 2418 p->pNext->pPrev = p->pPrev; 2419 } 2420 p->magic = VDBE_MAGIC_DEAD; 2421 p->db = 0; 2422 sqlite3VdbeDeleteObject(db, p); 2423 } 2424 2425 /* 2426 ** Make sure the cursor p is ready to read or write the row to which it 2427 ** was last positioned. Return an error code if an OOM fault or I/O error 2428 ** prevents us from positioning the cursor to its correct position. 2429 ** 2430 ** If a MoveTo operation is pending on the given cursor, then do that 2431 ** MoveTo now. If no move is pending, check to see if the row has been 2432 ** deleted out from under the cursor and if it has, mark the row as 2433 ** a NULL row. 2434 ** 2435 ** If the cursor is already pointing to the correct row and that row has 2436 ** not been deleted out from under the cursor, then this routine is a no-op. 2437 */ 2438 int sqlite3VdbeCursorMoveto(VdbeCursor *p){ 2439 if( p->deferredMoveto ){ 2440 int res, rc; 2441 #ifdef SQLITE_TEST 2442 extern int sqlite3_search_count; 2443 #endif 2444 assert( p->isTable ); 2445 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res); 2446 if( rc ) return rc; 2447 p->lastRowid = p->movetoTarget; 2448 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 2449 p->rowidIsValid = 1; 2450 #ifdef SQLITE_TEST 2451 sqlite3_search_count++; 2452 #endif 2453 p->deferredMoveto = 0; 2454 p->cacheStatus = CACHE_STALE; 2455 }else if( ALWAYS(p->pCursor) ){ 2456 int hasMoved; 2457 int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved); 2458 if( rc ) return rc; 2459 if( hasMoved ){ 2460 p->cacheStatus = CACHE_STALE; 2461 p->nullRow = 1; 2462 } 2463 } 2464 return SQLITE_OK; 2465 } 2466 2467 /* 2468 ** The following functions: 2469 ** 2470 ** sqlite3VdbeSerialType() 2471 ** sqlite3VdbeSerialTypeLen() 2472 ** sqlite3VdbeSerialLen() 2473 ** sqlite3VdbeSerialPut() 2474 ** sqlite3VdbeSerialGet() 2475 ** 2476 ** encapsulate the code that serializes values for storage in SQLite 2477 ** data and index records. Each serialized value consists of a 2478 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 2479 ** integer, stored as a varint. 2480 ** 2481 ** In an SQLite index record, the serial type is stored directly before 2482 ** the blob of data that it corresponds to. In a table record, all serial 2483 ** types are stored at the start of the record, and the blobs of data at 2484 ** the end. Hence these functions allow the caller to handle the 2485 ** serial-type and data blob seperately. 2486 ** 2487 ** The following table describes the various storage classes for data: 2488 ** 2489 ** serial type bytes of data type 2490 ** -------------- --------------- --------------- 2491 ** 0 0 NULL 2492 ** 1 1 signed integer 2493 ** 2 2 signed integer 2494 ** 3 3 signed integer 2495 ** 4 4 signed integer 2496 ** 5 6 signed integer 2497 ** 6 8 signed integer 2498 ** 7 8 IEEE float 2499 ** 8 0 Integer constant 0 2500 ** 9 0 Integer constant 1 2501 ** 10,11 reserved for expansion 2502 ** N>=12 and even (N-12)/2 BLOB 2503 ** N>=13 and odd (N-13)/2 text 2504 ** 2505 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 2506 ** of SQLite will not understand those serial types. 2507 */ 2508 2509 /* 2510 ** Return the serial-type for the value stored in pMem. 2511 */ 2512 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ 2513 int flags = pMem->flags; 2514 int n; 2515 2516 if( flags&MEM_Null ){ 2517 return 0; 2518 } 2519 if( flags&MEM_Int ){ 2520 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 2521 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 2522 i64 i = pMem->u.i; 2523 u64 u; 2524 if( file_format>=4 && (i&1)==i ){ 2525 return 8+(u32)i; 2526 } 2527 if( i<0 ){ 2528 if( i<(-MAX_6BYTE) ) return 6; 2529 /* Previous test prevents: u = -(-9223372036854775808) */ 2530 u = -i; 2531 }else{ 2532 u = i; 2533 } 2534 if( u<=127 ) return 1; 2535 if( u<=32767 ) return 2; 2536 if( u<=8388607 ) return 3; 2537 if( u<=2147483647 ) return 4; 2538 if( u<=MAX_6BYTE ) return 5; 2539 return 6; 2540 } 2541 if( flags&MEM_Real ){ 2542 return 7; 2543 } 2544 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 2545 n = pMem->n; 2546 if( flags & MEM_Zero ){ 2547 n += pMem->u.nZero; 2548 } 2549 assert( n>=0 ); 2550 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 2551 } 2552 2553 /* 2554 ** Return the length of the data corresponding to the supplied serial-type. 2555 */ 2556 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 2557 if( serial_type>=12 ){ 2558 return (serial_type-12)/2; 2559 }else{ 2560 static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 }; 2561 return aSize[serial_type]; 2562 } 2563 } 2564 2565 /* 2566 ** If we are on an architecture with mixed-endian floating 2567 ** points (ex: ARM7) then swap the lower 4 bytes with the 2568 ** upper 4 bytes. Return the result. 2569 ** 2570 ** For most architectures, this is a no-op. 2571 ** 2572 ** (later): It is reported to me that the mixed-endian problem 2573 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 2574 ** that early versions of GCC stored the two words of a 64-bit 2575 ** float in the wrong order. And that error has been propagated 2576 ** ever since. The blame is not necessarily with GCC, though. 2577 ** GCC might have just copying the problem from a prior compiler. 2578 ** I am also told that newer versions of GCC that follow a different 2579 ** ABI get the byte order right. 2580 ** 2581 ** Developers using SQLite on an ARM7 should compile and run their 2582 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 2583 ** enabled, some asserts below will ensure that the byte order of 2584 ** floating point values is correct. 2585 ** 2586 ** (2007-08-30) Frank van Vugt has studied this problem closely 2587 ** and has send his findings to the SQLite developers. Frank 2588 ** writes that some Linux kernels offer floating point hardware 2589 ** emulation that uses only 32-bit mantissas instead of a full 2590 ** 48-bits as required by the IEEE standard. (This is the 2591 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 2592 ** byte swapping becomes very complicated. To avoid problems, 2593 ** the necessary byte swapping is carried out using a 64-bit integer 2594 ** rather than a 64-bit float. Frank assures us that the code here 2595 ** works for him. We, the developers, have no way to independently 2596 ** verify this, but Frank seems to know what he is talking about 2597 ** so we trust him. 2598 */ 2599 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 2600 static u64 floatSwap(u64 in){ 2601 union { 2602 u64 r; 2603 u32 i[2]; 2604 } u; 2605 u32 t; 2606 2607 u.r = in; 2608 t = u.i[0]; 2609 u.i[0] = u.i[1]; 2610 u.i[1] = t; 2611 return u.r; 2612 } 2613 # define swapMixedEndianFloat(X) X = floatSwap(X) 2614 #else 2615 # define swapMixedEndianFloat(X) 2616 #endif 2617 2618 /* 2619 ** Write the serialized data blob for the value stored in pMem into 2620 ** buf. It is assumed that the caller has allocated sufficient space. 2621 ** Return the number of bytes written. 2622 ** 2623 ** nBuf is the amount of space left in buf[]. nBuf must always be 2624 ** large enough to hold the entire field. Except, if the field is 2625 ** a blob with a zero-filled tail, then buf[] might be just the right 2626 ** size to hold everything except for the zero-filled tail. If buf[] 2627 ** is only big enough to hold the non-zero prefix, then only write that 2628 ** prefix into buf[]. But if buf[] is large enough to hold both the 2629 ** prefix and the tail then write the prefix and set the tail to all 2630 ** zeros. 2631 ** 2632 ** Return the number of bytes actually written into buf[]. The number 2633 ** of bytes in the zero-filled tail is included in the return value only 2634 ** if those bytes were zeroed in buf[]. 2635 */ 2636 u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){ 2637 u32 serial_type = sqlite3VdbeSerialType(pMem, file_format); 2638 u32 len; 2639 2640 /* Integer and Real */ 2641 if( serial_type<=7 && serial_type>0 ){ 2642 u64 v; 2643 u32 i; 2644 if( serial_type==7 ){ 2645 assert( sizeof(v)==sizeof(pMem->r) ); 2646 memcpy(&v, &pMem->r, sizeof(v)); 2647 swapMixedEndianFloat(v); 2648 }else{ 2649 v = pMem->u.i; 2650 } 2651 len = i = sqlite3VdbeSerialTypeLen(serial_type); 2652 assert( len<=(u32)nBuf ); 2653 while( i-- ){ 2654 buf[i] = (u8)(v&0xFF); 2655 v >>= 8; 2656 } 2657 return len; 2658 } 2659 2660 /* String or blob */ 2661 if( serial_type>=12 ){ 2662 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 2663 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 2664 assert( pMem->n<=nBuf ); 2665 len = pMem->n; 2666 memcpy(buf, pMem->z, len); 2667 if( pMem->flags & MEM_Zero ){ 2668 len += pMem->u.nZero; 2669 assert( nBuf>=0 ); 2670 if( len > (u32)nBuf ){ 2671 len = (u32)nBuf; 2672 } 2673 memset(&buf[pMem->n], 0, len-pMem->n); 2674 } 2675 return len; 2676 } 2677 2678 /* NULL or constants 0 or 1 */ 2679 return 0; 2680 } 2681 2682 /* 2683 ** Deserialize the data blob pointed to by buf as serial type serial_type 2684 ** and store the result in pMem. Return the number of bytes read. 2685 */ 2686 u32 sqlite3VdbeSerialGet( 2687 const unsigned char *buf, /* Buffer to deserialize from */ 2688 u32 serial_type, /* Serial type to deserialize */ 2689 Mem *pMem /* Memory cell to write value into */ 2690 ){ 2691 switch( serial_type ){ 2692 case 10: /* Reserved for future use */ 2693 case 11: /* Reserved for future use */ 2694 case 0: { /* NULL */ 2695 pMem->flags = MEM_Null; 2696 break; 2697 } 2698 case 1: { /* 1-byte signed integer */ 2699 pMem->u.i = (signed char)buf[0]; 2700 pMem->flags = MEM_Int; 2701 return 1; 2702 } 2703 case 2: { /* 2-byte signed integer */ 2704 pMem->u.i = (((signed char)buf[0])<<8) | buf[1]; 2705 pMem->flags = MEM_Int; 2706 return 2; 2707 } 2708 case 3: { /* 3-byte signed integer */ 2709 pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2]; 2710 pMem->flags = MEM_Int; 2711 return 3; 2712 } 2713 case 4: { /* 4-byte signed integer */ 2714 pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; 2715 pMem->flags = MEM_Int; 2716 return 4; 2717 } 2718 case 5: { /* 6-byte signed integer */ 2719 u64 x = (((signed char)buf[0])<<8) | buf[1]; 2720 u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5]; 2721 x = (x<<32) | y; 2722 pMem->u.i = *(i64*)&x; 2723 pMem->flags = MEM_Int; 2724 return 6; 2725 } 2726 case 6: /* 8-byte signed integer */ 2727 case 7: { /* IEEE floating point */ 2728 u64 x; 2729 u32 y; 2730 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 2731 /* Verify that integers and floating point values use the same 2732 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 2733 ** defined that 64-bit floating point values really are mixed 2734 ** endian. 2735 */ 2736 static const u64 t1 = ((u64)0x3ff00000)<<32; 2737 static const double r1 = 1.0; 2738 u64 t2 = t1; 2739 swapMixedEndianFloat(t2); 2740 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 2741 #endif 2742 2743 x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; 2744 y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7]; 2745 x = (x<<32) | y; 2746 if( serial_type==6 ){ 2747 pMem->u.i = *(i64*)&x; 2748 pMem->flags = MEM_Int; 2749 }else{ 2750 assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); 2751 swapMixedEndianFloat(x); 2752 memcpy(&pMem->r, &x, sizeof(x)); 2753 pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real; 2754 } 2755 return 8; 2756 } 2757 case 8: /* Integer 0 */ 2758 case 9: { /* Integer 1 */ 2759 pMem->u.i = serial_type-8; 2760 pMem->flags = MEM_Int; 2761 return 0; 2762 } 2763 default: { 2764 u32 len = (serial_type-12)/2; 2765 pMem->z = (char *)buf; 2766 pMem->n = len; 2767 pMem->xDel = 0; 2768 if( serial_type&0x01 ){ 2769 pMem->flags = MEM_Str | MEM_Ephem; 2770 }else{ 2771 pMem->flags = MEM_Blob | MEM_Ephem; 2772 } 2773 return len; 2774 } 2775 } 2776 return 0; 2777 } 2778 2779 2780 /* 2781 ** Given the nKey-byte encoding of a record in pKey[], parse the 2782 ** record into a UnpackedRecord structure. Return a pointer to 2783 ** that structure. 2784 ** 2785 ** The calling function might provide szSpace bytes of memory 2786 ** space at pSpace. This space can be used to hold the returned 2787 ** VDbeParsedRecord structure if it is large enough. If it is 2788 ** not big enough, space is obtained from sqlite3_malloc(). 2789 ** 2790 ** The returned structure should be closed by a call to 2791 ** sqlite3VdbeDeleteUnpackedRecord(). 2792 */ 2793 UnpackedRecord *sqlite3VdbeRecordUnpack( 2794 KeyInfo *pKeyInfo, /* Information about the record format */ 2795 int nKey, /* Size of the binary record */ 2796 const void *pKey, /* The binary record */ 2797 char *pSpace, /* Unaligned space available to hold the object */ 2798 int szSpace /* Size of pSpace[] in bytes */ 2799 ){ 2800 const unsigned char *aKey = (const unsigned char *)pKey; 2801 UnpackedRecord *p; /* The unpacked record that we will return */ 2802 int nByte; /* Memory space needed to hold p, in bytes */ 2803 int d; 2804 u32 idx; 2805 u16 u; /* Unsigned loop counter */ 2806 u32 szHdr; 2807 Mem *pMem; 2808 int nOff; /* Increase pSpace by this much to 8-byte align it */ 2809 2810 /* 2811 ** We want to shift the pointer pSpace up such that it is 8-byte aligned. 2812 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift 2813 ** it by. If pSpace is already 8-byte aligned, nOff should be zero. 2814 */ 2815 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7; 2816 pSpace += nOff; 2817 szSpace -= nOff; 2818 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); 2819 if( nByte>szSpace ){ 2820 p = sqlite3DbMallocRaw(pKeyInfo->db, nByte); 2821 if( p==0 ) return 0; 2822 p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY; 2823 }else{ 2824 p = (UnpackedRecord*)pSpace; 2825 p->flags = UNPACKED_NEED_DESTROY; 2826 } 2827 p->pKeyInfo = pKeyInfo; 2828 p->nField = pKeyInfo->nField + 1; 2829 p->aMem = pMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 2830 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 2831 idx = getVarint32(aKey, szHdr); 2832 d = szHdr; 2833 u = 0; 2834 while( idx<szHdr && u<p->nField && d<=nKey ){ 2835 u32 serial_type; 2836 2837 idx += getVarint32(&aKey[idx], serial_type); 2838 pMem->enc = pKeyInfo->enc; 2839 pMem->db = pKeyInfo->db; 2840 pMem->flags = 0; 2841 pMem->zMalloc = 0; 2842 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 2843 pMem++; 2844 u++; 2845 } 2846 assert( u<=pKeyInfo->nField + 1 ); 2847 p->nField = u; 2848 return (void*)p; 2849 } 2850 2851 /* 2852 ** This routine destroys a UnpackedRecord object. 2853 */ 2854 void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){ 2855 int i; 2856 Mem *pMem; 2857 2858 assert( p!=0 ); 2859 assert( p->flags & UNPACKED_NEED_DESTROY ); 2860 for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){ 2861 /* The unpacked record is always constructed by the 2862 ** sqlite3VdbeUnpackRecord() function above, which makes all 2863 ** strings and blobs static. And none of the elements are 2864 ** ever transformed, so there is never anything to delete. 2865 */ 2866 if( NEVER(pMem->zMalloc) ) sqlite3VdbeMemRelease(pMem); 2867 } 2868 if( p->flags & UNPACKED_NEED_FREE ){ 2869 sqlite3DbFree(p->pKeyInfo->db, p); 2870 } 2871 } 2872 2873 /* 2874 ** This function compares the two table rows or index records 2875 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 2876 ** or positive integer if key1 is less than, equal to or 2877 ** greater than key2. The {nKey1, pKey1} key must be a blob 2878 ** created by th OP_MakeRecord opcode of the VDBE. The pPKey2 2879 ** key must be a parsed key such as obtained from 2880 ** sqlite3VdbeParseRecord. 2881 ** 2882 ** Key1 and Key2 do not have to contain the same number of fields. 2883 ** The key with fewer fields is usually compares less than the 2884 ** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set 2885 ** and the common prefixes are equal, then key1 is less than key2. 2886 ** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are 2887 ** equal, then the keys are considered to be equal and 2888 ** the parts beyond the common prefix are ignored. 2889 ** 2890 ** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of 2891 ** the header of pKey1 is ignored. It is assumed that pKey1 is 2892 ** an index key, and thus ends with a rowid value. The last byte 2893 ** of the header will therefore be the serial type of the rowid: 2894 ** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types. 2895 ** The serial type of the final rowid will always be a single byte. 2896 ** By ignoring this last byte of the header, we force the comparison 2897 ** to ignore the rowid at the end of key1. 2898 */ 2899 int sqlite3VdbeRecordCompare( 2900 int nKey1, const void *pKey1, /* Left key */ 2901 UnpackedRecord *pPKey2 /* Right key */ 2902 ){ 2903 int d1; /* Offset into aKey[] of next data element */ 2904 u32 idx1; /* Offset into aKey[] of next header element */ 2905 u32 szHdr1; /* Number of bytes in header */ 2906 int i = 0; 2907 int nField; 2908 int rc = 0; 2909 const unsigned char *aKey1 = (const unsigned char *)pKey1; 2910 KeyInfo *pKeyInfo; 2911 Mem mem1; 2912 2913 pKeyInfo = pPKey2->pKeyInfo; 2914 mem1.enc = pKeyInfo->enc; 2915 mem1.db = pKeyInfo->db; 2916 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 2917 VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */ 2918 2919 /* Compilers may complain that mem1.u.i is potentially uninitialized. 2920 ** We could initialize it, as shown here, to silence those complaints. 2921 ** But in fact, mem1.u.i will never actually be used initialized, and doing 2922 ** the unnecessary initialization has a measurable negative performance 2923 ** impact, since this routine is a very high runner. And so, we choose 2924 ** to ignore the compiler warnings and leave this variable uninitialized. 2925 */ 2926 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 2927 2928 idx1 = getVarint32(aKey1, szHdr1); 2929 d1 = szHdr1; 2930 if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){ 2931 szHdr1--; 2932 } 2933 nField = pKeyInfo->nField; 2934 while( idx1<szHdr1 && i<pPKey2->nField ){ 2935 u32 serial_type1; 2936 2937 /* Read the serial types for the next element in each key. */ 2938 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 2939 if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break; 2940 2941 /* Extract the values to be compared. 2942 */ 2943 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 2944 2945 /* Do the comparison 2946 */ 2947 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], 2948 i<nField ? pKeyInfo->aColl[i] : 0); 2949 if( rc!=0 ){ 2950 assert( mem1.zMalloc==0 ); /* See comment below */ 2951 2952 /* Invert the result if we are using DESC sort order. */ 2953 if( pKeyInfo->aSortOrder && i<nField && pKeyInfo->aSortOrder[i] ){ 2954 rc = -rc; 2955 } 2956 2957 /* If the PREFIX_SEARCH flag is set and all fields except the final 2958 ** rowid field were equal, then clear the PREFIX_SEARCH flag and set 2959 ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1). 2960 ** This is used by the OP_IsUnique opcode. 2961 */ 2962 if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){ 2963 assert( idx1==szHdr1 && rc ); 2964 assert( mem1.flags & MEM_Int ); 2965 pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH; 2966 pPKey2->rowid = mem1.u.i; 2967 } 2968 2969 return rc; 2970 } 2971 i++; 2972 } 2973 2974 /* No memory allocation is ever used on mem1. Prove this using 2975 ** the following assert(). If the assert() fails, it indicates a 2976 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 2977 */ 2978 assert( mem1.zMalloc==0 ); 2979 2980 /* rc==0 here means that one of the keys ran out of fields and 2981 ** all the fields up to that point were equal. If the UNPACKED_INCRKEY 2982 ** flag is set, then break the tie by treating key2 as larger. 2983 ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes 2984 ** are considered to be equal. Otherwise, the longer key is the 2985 ** larger. As it happens, the pPKey2 will always be the longer 2986 ** if there is a difference. 2987 */ 2988 assert( rc==0 ); 2989 if( pPKey2->flags & UNPACKED_INCRKEY ){ 2990 rc = -1; 2991 }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){ 2992 /* Leave rc==0 */ 2993 }else if( idx1<szHdr1 ){ 2994 rc = 1; 2995 } 2996 return rc; 2997 } 2998 2999 3000 /* 3001 ** pCur points at an index entry created using the OP_MakeRecord opcode. 3002 ** Read the rowid (the last field in the record) and store it in *rowid. 3003 ** Return SQLITE_OK if everything works, or an error code otherwise. 3004 ** 3005 ** pCur might be pointing to text obtained from a corrupt database file. 3006 ** So the content cannot be trusted. Do appropriate checks on the content. 3007 */ 3008 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 3009 i64 nCellKey = 0; 3010 int rc; 3011 u32 szHdr; /* Size of the header */ 3012 u32 typeRowid; /* Serial type of the rowid */ 3013 u32 lenRowid; /* Size of the rowid */ 3014 Mem m, v; 3015 3016 UNUSED_PARAMETER(db); 3017 3018 /* Get the size of the index entry. Only indices entries of less 3019 ** than 2GiB are support - anything large must be database corruption. 3020 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 3021 ** this code can safely assume that nCellKey is 32-bits 3022 */ 3023 assert( sqlite3BtreeCursorIsValid(pCur) ); 3024 rc = sqlite3BtreeKeySize(pCur, &nCellKey); 3025 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 3026 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 3027 3028 /* Read in the complete content of the index entry */ 3029 memset(&m, 0, sizeof(m)); 3030 rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m); 3031 if( rc ){ 3032 return rc; 3033 } 3034 3035 /* The index entry must begin with a header size */ 3036 (void)getVarint32((u8*)m.z, szHdr); 3037 testcase( szHdr==3 ); 3038 testcase( szHdr==m.n ); 3039 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ 3040 goto idx_rowid_corruption; 3041 } 3042 3043 /* The last field of the index should be an integer - the ROWID. 3044 ** Verify that the last entry really is an integer. */ 3045 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 3046 testcase( typeRowid==1 ); 3047 testcase( typeRowid==2 ); 3048 testcase( typeRowid==3 ); 3049 testcase( typeRowid==4 ); 3050 testcase( typeRowid==5 ); 3051 testcase( typeRowid==6 ); 3052 testcase( typeRowid==8 ); 3053 testcase( typeRowid==9 ); 3054 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 3055 goto idx_rowid_corruption; 3056 } 3057 lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); 3058 testcase( (u32)m.n==szHdr+lenRowid ); 3059 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 3060 goto idx_rowid_corruption; 3061 } 3062 3063 /* Fetch the integer off the end of the index record */ 3064 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 3065 *rowid = v.u.i; 3066 sqlite3VdbeMemRelease(&m); 3067 return SQLITE_OK; 3068 3069 /* Jump here if database corruption is detected after m has been 3070 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 3071 idx_rowid_corruption: 3072 testcase( m.zMalloc!=0 ); 3073 sqlite3VdbeMemRelease(&m); 3074 return SQLITE_CORRUPT_BKPT; 3075 } 3076 3077 /* 3078 ** Compare the key of the index entry that cursor pC is pointing to against 3079 ** the key string in pUnpacked. Write into *pRes a number 3080 ** that is negative, zero, or positive if pC is less than, equal to, 3081 ** or greater than pUnpacked. Return SQLITE_OK on success. 3082 ** 3083 ** pUnpacked is either created without a rowid or is truncated so that it 3084 ** omits the rowid at the end. The rowid at the end of the index entry 3085 ** is ignored as well. Hence, this routine only compares the prefixes 3086 ** of the keys prior to the final rowid, not the entire key. 3087 */ 3088 int sqlite3VdbeIdxKeyCompare( 3089 VdbeCursor *pC, /* The cursor to compare against */ 3090 UnpackedRecord *pUnpacked, /* Unpacked version of key to compare against */ 3091 int *res /* Write the comparison result here */ 3092 ){ 3093 i64 nCellKey = 0; 3094 int rc; 3095 BtCursor *pCur = pC->pCursor; 3096 Mem m; 3097 3098 assert( sqlite3BtreeCursorIsValid(pCur) ); 3099 rc = sqlite3BtreeKeySize(pCur, &nCellKey); 3100 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 3101 /* nCellKey will always be between 0 and 0xffffffff because of the say 3102 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 3103 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 3104 *res = 0; 3105 return SQLITE_CORRUPT_BKPT; 3106 } 3107 memset(&m, 0, sizeof(m)); 3108 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m); 3109 if( rc ){ 3110 return rc; 3111 } 3112 assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID ); 3113 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); 3114 sqlite3VdbeMemRelease(&m); 3115 return SQLITE_OK; 3116 } 3117 3118 /* 3119 ** This routine sets the value to be returned by subsequent calls to 3120 ** sqlite3_changes() on the database handle 'db'. 3121 */ 3122 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 3123 assert( sqlite3_mutex_held(db->mutex) ); 3124 db->nChange = nChange; 3125 db->nTotalChange += nChange; 3126 } 3127 3128 /* 3129 ** Set a flag in the vdbe to update the change counter when it is finalised 3130 ** or reset. 3131 */ 3132 void sqlite3VdbeCountChanges(Vdbe *v){ 3133 v->changeCntOn = 1; 3134 } 3135 3136 /* 3137 ** Mark every prepared statement associated with a database connection 3138 ** as expired. 3139 ** 3140 ** An expired statement means that recompilation of the statement is 3141 ** recommend. Statements expire when things happen that make their 3142 ** programs obsolete. Removing user-defined functions or collating 3143 ** sequences, or changing an authorization function are the types of 3144 ** things that make prepared statements obsolete. 3145 */ 3146 void sqlite3ExpirePreparedStatements(sqlite3 *db){ 3147 Vdbe *p; 3148 for(p = db->pVdbe; p; p=p->pNext){ 3149 p->expired = 1; 3150 } 3151 } 3152 3153 /* 3154 ** Return the database associated with the Vdbe. 3155 */ 3156 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 3157 return v->db; 3158 } 3159 3160 /* 3161 ** Return a pointer to an sqlite3_value structure containing the value bound 3162 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 3163 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 3164 ** constants) to the value before returning it. 3165 ** 3166 ** The returned value must be freed by the caller using sqlite3ValueFree(). 3167 */ 3168 sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){ 3169 assert( iVar>0 ); 3170 if( v ){ 3171 Mem *pMem = &v->aVar[iVar-1]; 3172 if( 0==(pMem->flags & MEM_Null) ){ 3173 sqlite3_value *pRet = sqlite3ValueNew(v->db); 3174 if( pRet ){ 3175 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 3176 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 3177 sqlite3VdbeMemStoreType((Mem *)pRet); 3178 } 3179 return pRet; 3180 } 3181 } 3182 return 0; 3183 } 3184 3185 /* 3186 ** Configure SQL variable iVar so that binding a new value to it signals 3187 ** to sqlite3_reoptimize() that re-preparing the statement may result 3188 ** in a better query plan. 3189 */ 3190 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 3191 assert( iVar>0 ); 3192 if( iVar>32 ){ 3193 v->expmask = 0xffffffff; 3194 }else{ 3195 v->expmask |= ((u32)1 << (iVar-1)); 3196 } 3197 } 3198