1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* Forward references */ 19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef); 20 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 21 22 /* 23 ** Create a new virtual database engine. 24 */ 25 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 26 sqlite3 *db = pParse->db; 27 Vdbe *p; 28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 29 if( p==0 ) return 0; 30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 31 p->db = db; 32 if( db->pVdbe ){ 33 db->pVdbe->ppVPrev = &p->pVNext; 34 } 35 p->pVNext = db->pVdbe; 36 p->ppVPrev = &db->pVdbe; 37 db->pVdbe = p; 38 assert( p->eVdbeState==VDBE_INIT_STATE ); 39 p->pParse = pParse; 40 pParse->pVdbe = p; 41 assert( pParse->aLabel==0 ); 42 assert( pParse->nLabel==0 ); 43 assert( p->nOpAlloc==0 ); 44 assert( pParse->szOpAlloc==0 ); 45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1); 46 return p; 47 } 48 49 /* 50 ** Return the Parse object that owns a Vdbe object. 51 */ 52 Parse *sqlite3VdbeParser(Vdbe *p){ 53 return p->pParse; 54 } 55 56 /* 57 ** Change the error string stored in Vdbe.zErrMsg 58 */ 59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 60 va_list ap; 61 sqlite3DbFree(p->db, p->zErrMsg); 62 va_start(ap, zFormat); 63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 64 va_end(ap); 65 } 66 67 /* 68 ** Remember the SQL string for a prepared statement. 69 */ 70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 71 if( p==0 ) return; 72 p->prepFlags = prepFlags; 73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 74 p->expmask = 0; 75 } 76 assert( p->zSql==0 ); 77 p->zSql = sqlite3DbStrNDup(p->db, z, n); 78 } 79 80 #ifdef SQLITE_ENABLE_NORMALIZE 81 /* 82 ** Add a new element to the Vdbe->pDblStr list. 83 */ 84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ 85 if( p ){ 86 int n = sqlite3Strlen30(z); 87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db, 88 sizeof(*pStr)+n+1-sizeof(pStr->z)); 89 if( pStr ){ 90 pStr->pNextStr = p->pDblStr; 91 p->pDblStr = pStr; 92 memcpy(pStr->z, z, n+1); 93 } 94 } 95 } 96 #endif 97 98 #ifdef SQLITE_ENABLE_NORMALIZE 99 /* 100 ** zId of length nId is a double-quoted identifier. Check to see if 101 ** that identifier is really used as a string literal. 102 */ 103 int sqlite3VdbeUsesDoubleQuotedString( 104 Vdbe *pVdbe, /* The prepared statement */ 105 const char *zId /* The double-quoted identifier, already dequoted */ 106 ){ 107 DblquoteStr *pStr; 108 assert( zId!=0 ); 109 if( pVdbe->pDblStr==0 ) return 0; 110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ 111 if( strcmp(zId, pStr->z)==0 ) return 1; 112 } 113 return 0; 114 } 115 #endif 116 117 /* 118 ** Swap byte-code between two VDBE structures. 119 ** 120 ** This happens after pB was previously run and returned 121 ** SQLITE_SCHEMA. The statement was then reprepared in pA. 122 ** This routine transfers the new bytecode in pA over to pB 123 ** so that pB can be run again. The old pB byte code is 124 ** moved back to pA so that it will be cleaned up when pA is 125 ** finalized. 126 */ 127 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 128 Vdbe tmp, *pTmp, **ppTmp; 129 char *zTmp; 130 assert( pA->db==pB->db ); 131 tmp = *pA; 132 *pA = *pB; 133 *pB = tmp; 134 pTmp = pA->pVNext; 135 pA->pVNext = pB->pVNext; 136 pB->pVNext = pTmp; 137 ppTmp = pA->ppVPrev; 138 pA->ppVPrev = pB->ppVPrev; 139 pB->ppVPrev = ppTmp; 140 zTmp = pA->zSql; 141 pA->zSql = pB->zSql; 142 pB->zSql = zTmp; 143 #ifdef SQLITE_ENABLE_NORMALIZE 144 zTmp = pA->zNormSql; 145 pA->zNormSql = pB->zNormSql; 146 pB->zNormSql = zTmp; 147 #endif 148 pB->expmask = pA->expmask; 149 pB->prepFlags = pA->prepFlags; 150 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 151 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 152 } 153 154 /* 155 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 156 ** than its current size. nOp is guaranteed to be less than or equal 157 ** to 1024/sizeof(Op). 158 ** 159 ** If an out-of-memory error occurs while resizing the array, return 160 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain 161 ** unchanged (this is so that any opcodes already allocated can be 162 ** correctly deallocated along with the rest of the Vdbe). 163 */ 164 static int growOpArray(Vdbe *v, int nOp){ 165 VdbeOp *pNew; 166 Parse *p = v->pParse; 167 168 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 169 ** more frequent reallocs and hence provide more opportunities for 170 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 171 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 172 ** by the minimum* amount required until the size reaches 512. Normal 173 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 174 ** size of the op array or add 1KB of space, whichever is smaller. */ 175 #ifdef SQLITE_TEST_REALLOC_STRESS 176 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc 177 : (sqlite3_int64)v->nOpAlloc+nOp); 178 #else 179 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc 180 : (sqlite3_int64)(1024/sizeof(Op))); 181 UNUSED_PARAMETER(nOp); 182 #endif 183 184 /* Ensure that the size of a VDBE does not grow too large */ 185 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 186 sqlite3OomFault(p->db); 187 return SQLITE_NOMEM; 188 } 189 190 assert( nOp<=(int)(1024/sizeof(Op)) ); 191 assert( nNew>=(v->nOpAlloc+nOp) ); 192 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 193 if( pNew ){ 194 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 195 v->nOpAlloc = p->szOpAlloc/sizeof(Op); 196 v->aOp = pNew; 197 } 198 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 199 } 200 201 #ifdef SQLITE_DEBUG 202 /* This routine is just a convenient place to set a breakpoint that will 203 ** fire after each opcode is inserted and displayed using 204 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and 205 ** pOp are available to make the breakpoint conditional. 206 ** 207 ** Other useful labels for breakpoints include: 208 ** test_trace_breakpoint(pc,pOp) 209 ** sqlite3CorruptError(lineno) 210 ** sqlite3MisuseError(lineno) 211 ** sqlite3CantopenError(lineno) 212 */ 213 static void test_addop_breakpoint(int pc, Op *pOp){ 214 static int n = 0; 215 n++; 216 } 217 #endif 218 219 /* 220 ** Add a new instruction to the list of instructions current in the 221 ** VDBE. Return the address of the new instruction. 222 ** 223 ** Parameters: 224 ** 225 ** p Pointer to the VDBE 226 ** 227 ** op The opcode for this instruction 228 ** 229 ** p1, p2, p3 Operands 230 ** 231 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 232 ** the sqlite3VdbeChangeP4() function to change the value of the P4 233 ** operand. 234 */ 235 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 236 assert( p->nOpAlloc<=p->nOp ); 237 if( growOpArray(p, 1) ) return 1; 238 assert( p->nOpAlloc>p->nOp ); 239 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 240 } 241 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 242 int i; 243 VdbeOp *pOp; 244 245 i = p->nOp; 246 assert( p->eVdbeState==VDBE_INIT_STATE ); 247 assert( op>=0 && op<0xff ); 248 if( p->nOpAlloc<=i ){ 249 return growOp3(p, op, p1, p2, p3); 250 } 251 assert( p->aOp!=0 ); 252 p->nOp++; 253 pOp = &p->aOp[i]; 254 assert( pOp!=0 ); 255 pOp->opcode = (u8)op; 256 pOp->p5 = 0; 257 pOp->p1 = p1; 258 pOp->p2 = p2; 259 pOp->p3 = p3; 260 pOp->p4.p = 0; 261 pOp->p4type = P4_NOTUSED; 262 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 263 pOp->zComment = 0; 264 #endif 265 #ifdef SQLITE_DEBUG 266 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 267 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 268 test_addop_breakpoint(i, &p->aOp[i]); 269 } 270 #endif 271 #ifdef VDBE_PROFILE 272 pOp->cycles = 0; 273 pOp->cnt = 0; 274 #endif 275 #ifdef SQLITE_VDBE_COVERAGE 276 pOp->iSrcLine = 0; 277 #endif 278 return i; 279 } 280 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 281 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 282 } 283 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 284 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 285 } 286 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 287 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 288 } 289 290 /* Generate code for an unconditional jump to instruction iDest 291 */ 292 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 293 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 294 } 295 296 /* Generate code to cause the string zStr to be loaded into 297 ** register iDest 298 */ 299 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 300 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 301 } 302 303 /* 304 ** Generate code that initializes multiple registers to string or integer 305 ** constants. The registers begin with iDest and increase consecutively. 306 ** One register is initialized for each characgter in zTypes[]. For each 307 ** "s" character in zTypes[], the register is a string if the argument is 308 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 309 ** in zTypes[], the register is initialized to an integer. 310 ** 311 ** If the input string does not end with "X" then an OP_ResultRow instruction 312 ** is generated for the values inserted. 313 */ 314 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 315 va_list ap; 316 int i; 317 char c; 318 va_start(ap, zTypes); 319 for(i=0; (c = zTypes[i])!=0; i++){ 320 if( c=='s' ){ 321 const char *z = va_arg(ap, const char*); 322 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 323 }else if( c=='i' ){ 324 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 325 }else{ 326 goto skip_op_resultrow; 327 } 328 } 329 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 330 skip_op_resultrow: 331 va_end(ap); 332 } 333 334 /* 335 ** Add an opcode that includes the p4 value as a pointer. 336 */ 337 int sqlite3VdbeAddOp4( 338 Vdbe *p, /* Add the opcode to this VM */ 339 int op, /* The new opcode */ 340 int p1, /* The P1 operand */ 341 int p2, /* The P2 operand */ 342 int p3, /* The P3 operand */ 343 const char *zP4, /* The P4 operand */ 344 int p4type /* P4 operand type */ 345 ){ 346 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 347 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 348 return addr; 349 } 350 351 /* 352 ** Add an OP_Function or OP_PureFunc opcode. 353 ** 354 ** The eCallCtx argument is information (typically taken from Expr.op2) 355 ** that describes the calling context of the function. 0 means a general 356 ** function call. NC_IsCheck means called by a check constraint, 357 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx 358 ** means in the WHERE clause of a partial index. NC_GenCol means called 359 ** while computing a generated column value. 0 is the usual case. 360 */ 361 int sqlite3VdbeAddFunctionCall( 362 Parse *pParse, /* Parsing context */ 363 int p1, /* Constant argument mask */ 364 int p2, /* First argument register */ 365 int p3, /* Register into which results are written */ 366 int nArg, /* Number of argument */ 367 const FuncDef *pFunc, /* The function to be invoked */ 368 int eCallCtx /* Calling context */ 369 ){ 370 Vdbe *v = pParse->pVdbe; 371 int nByte; 372 int addr; 373 sqlite3_context *pCtx; 374 assert( v ); 375 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*); 376 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte); 377 if( pCtx==0 ){ 378 assert( pParse->db->mallocFailed ); 379 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc); 380 return 0; 381 } 382 pCtx->pOut = 0; 383 pCtx->pFunc = (FuncDef*)pFunc; 384 pCtx->pVdbe = 0; 385 pCtx->isError = 0; 386 pCtx->argc = nArg; 387 pCtx->iOp = sqlite3VdbeCurrentAddr(v); 388 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function, 389 p1, p2, p3, (char*)pCtx, P4_FUNCCTX); 390 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef); 391 return addr; 392 } 393 394 /* 395 ** Add an opcode that includes the p4 value with a P4_INT64 or 396 ** P4_REAL type. 397 */ 398 int sqlite3VdbeAddOp4Dup8( 399 Vdbe *p, /* Add the opcode to this VM */ 400 int op, /* The new opcode */ 401 int p1, /* The P1 operand */ 402 int p2, /* The P2 operand */ 403 int p3, /* The P3 operand */ 404 const u8 *zP4, /* The P4 operand */ 405 int p4type /* P4 operand type */ 406 ){ 407 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 408 if( p4copy ) memcpy(p4copy, zP4, 8); 409 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 410 } 411 412 #ifndef SQLITE_OMIT_EXPLAIN 413 /* 414 ** Return the address of the current EXPLAIN QUERY PLAN baseline. 415 ** 0 means "none". 416 */ 417 int sqlite3VdbeExplainParent(Parse *pParse){ 418 VdbeOp *pOp; 419 if( pParse->addrExplain==0 ) return 0; 420 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); 421 return pOp->p2; 422 } 423 424 /* 425 ** Set a debugger breakpoint on the following routine in order to 426 ** monitor the EXPLAIN QUERY PLAN code generation. 427 */ 428 #if defined(SQLITE_DEBUG) 429 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ 430 (void)z1; 431 (void)z2; 432 } 433 #endif 434 435 /* 436 ** Add a new OP_Explain opcode. 437 ** 438 ** If the bPush flag is true, then make this opcode the parent for 439 ** subsequent Explains until sqlite3VdbeExplainPop() is called. 440 */ 441 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ 442 #ifndef SQLITE_DEBUG 443 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined. 444 ** But omit them (for performance) during production builds */ 445 if( pParse->explain==2 ) 446 #endif 447 { 448 char *zMsg; 449 Vdbe *v; 450 va_list ap; 451 int iThis; 452 va_start(ap, zFmt); 453 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); 454 va_end(ap); 455 v = pParse->pVdbe; 456 iThis = v->nOp; 457 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, 458 zMsg, P4_DYNAMIC); 459 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z); 460 if( bPush){ 461 pParse->addrExplain = iThis; 462 } 463 } 464 } 465 466 /* 467 ** Pop the EXPLAIN QUERY PLAN stack one level. 468 */ 469 void sqlite3VdbeExplainPop(Parse *pParse){ 470 sqlite3ExplainBreakpoint("POP", 0); 471 pParse->addrExplain = sqlite3VdbeExplainParent(pParse); 472 } 473 #endif /* SQLITE_OMIT_EXPLAIN */ 474 475 /* 476 ** Add an OP_ParseSchema opcode. This routine is broken out from 477 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 478 ** as having been used. 479 ** 480 ** The zWhere string must have been obtained from sqlite3_malloc(). 481 ** This routine will take ownership of the allocated memory. 482 */ 483 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){ 484 int j; 485 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 486 sqlite3VdbeChangeP5(p, p5); 487 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 488 sqlite3MayAbort(p->pParse); 489 } 490 491 /* 492 ** Add an opcode that includes the p4 value as an integer. 493 */ 494 int sqlite3VdbeAddOp4Int( 495 Vdbe *p, /* Add the opcode to this VM */ 496 int op, /* The new opcode */ 497 int p1, /* The P1 operand */ 498 int p2, /* The P2 operand */ 499 int p3, /* The P3 operand */ 500 int p4 /* The P4 operand as an integer */ 501 ){ 502 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 503 if( p->db->mallocFailed==0 ){ 504 VdbeOp *pOp = &p->aOp[addr]; 505 pOp->p4type = P4_INT32; 506 pOp->p4.i = p4; 507 } 508 return addr; 509 } 510 511 /* Insert the end of a co-routine 512 */ 513 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 514 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 515 516 /* Clear the temporary register cache, thereby ensuring that each 517 ** co-routine has its own independent set of registers, because co-routines 518 ** might expect their registers to be preserved across an OP_Yield, and 519 ** that could cause problems if two or more co-routines are using the same 520 ** temporary register. 521 */ 522 v->pParse->nTempReg = 0; 523 v->pParse->nRangeReg = 0; 524 } 525 526 /* 527 ** Create a new symbolic label for an instruction that has yet to be 528 ** coded. The symbolic label is really just a negative number. The 529 ** label can be used as the P2 value of an operation. Later, when 530 ** the label is resolved to a specific address, the VDBE will scan 531 ** through its operation list and change all values of P2 which match 532 ** the label into the resolved address. 533 ** 534 ** The VDBE knows that a P2 value is a label because labels are 535 ** always negative and P2 values are suppose to be non-negative. 536 ** Hence, a negative P2 value is a label that has yet to be resolved. 537 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP 538 ** property. 539 ** 540 ** Variable usage notes: 541 ** 542 ** Parse.aLabel[x] Stores the address that the x-th label resolves 543 ** into. For testing (SQLITE_DEBUG), unresolved 544 ** labels stores -1, but that is not required. 545 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[] 546 ** Parse.nLabel The *negative* of the number of labels that have 547 ** been issued. The negative is stored because 548 ** that gives a performance improvement over storing 549 ** the equivalent positive value. 550 */ 551 int sqlite3VdbeMakeLabel(Parse *pParse){ 552 return --pParse->nLabel; 553 } 554 555 /* 556 ** Resolve label "x" to be the address of the next instruction to 557 ** be inserted. The parameter "x" must have been obtained from 558 ** a prior call to sqlite3VdbeMakeLabel(). 559 */ 560 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){ 561 int nNewSize = 10 - p->nLabel; 562 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 563 nNewSize*sizeof(p->aLabel[0])); 564 if( p->aLabel==0 ){ 565 p->nLabelAlloc = 0; 566 }else{ 567 #ifdef SQLITE_DEBUG 568 int i; 569 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1; 570 #endif 571 p->nLabelAlloc = nNewSize; 572 p->aLabel[j] = v->nOp; 573 } 574 } 575 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 576 Parse *p = v->pParse; 577 int j = ADDR(x); 578 assert( v->eVdbeState==VDBE_INIT_STATE ); 579 assert( j<-p->nLabel ); 580 assert( j>=0 ); 581 #ifdef SQLITE_DEBUG 582 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 583 printf("RESOLVE LABEL %d to %d\n", x, v->nOp); 584 } 585 #endif 586 if( p->nLabelAlloc + p->nLabel < 0 ){ 587 resizeResolveLabel(p,v,j); 588 }else{ 589 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ 590 p->aLabel[j] = v->nOp; 591 } 592 } 593 594 /* 595 ** Mark the VDBE as one that can only be run one time. 596 */ 597 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 598 sqlite3VdbeAddOp2(p, OP_Expire, 1, 1); 599 } 600 601 /* 602 ** Mark the VDBE as one that can be run multiple times. 603 */ 604 void sqlite3VdbeReusable(Vdbe *p){ 605 int i; 606 for(i=1; ALWAYS(i<p->nOp); i++){ 607 if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){ 608 p->aOp[1].opcode = OP_Noop; 609 break; 610 } 611 } 612 } 613 614 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 615 616 /* 617 ** The following type and function are used to iterate through all opcodes 618 ** in a Vdbe main program and each of the sub-programs (triggers) it may 619 ** invoke directly or indirectly. It should be used as follows: 620 ** 621 ** Op *pOp; 622 ** VdbeOpIter sIter; 623 ** 624 ** memset(&sIter, 0, sizeof(sIter)); 625 ** sIter.v = v; // v is of type Vdbe* 626 ** while( (pOp = opIterNext(&sIter)) ){ 627 ** // Do something with pOp 628 ** } 629 ** sqlite3DbFree(v->db, sIter.apSub); 630 ** 631 */ 632 typedef struct VdbeOpIter VdbeOpIter; 633 struct VdbeOpIter { 634 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 635 SubProgram **apSub; /* Array of subprograms */ 636 int nSub; /* Number of entries in apSub */ 637 int iAddr; /* Address of next instruction to return */ 638 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 639 }; 640 static Op *opIterNext(VdbeOpIter *p){ 641 Vdbe *v = p->v; 642 Op *pRet = 0; 643 Op *aOp; 644 int nOp; 645 646 if( p->iSub<=p->nSub ){ 647 648 if( p->iSub==0 ){ 649 aOp = v->aOp; 650 nOp = v->nOp; 651 }else{ 652 aOp = p->apSub[p->iSub-1]->aOp; 653 nOp = p->apSub[p->iSub-1]->nOp; 654 } 655 assert( p->iAddr<nOp ); 656 657 pRet = &aOp[p->iAddr]; 658 p->iAddr++; 659 if( p->iAddr==nOp ){ 660 p->iSub++; 661 p->iAddr = 0; 662 } 663 664 if( pRet->p4type==P4_SUBPROGRAM ){ 665 int nByte = (p->nSub+1)*sizeof(SubProgram*); 666 int j; 667 for(j=0; j<p->nSub; j++){ 668 if( p->apSub[j]==pRet->p4.pProgram ) break; 669 } 670 if( j==p->nSub ){ 671 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 672 if( !p->apSub ){ 673 pRet = 0; 674 }else{ 675 p->apSub[p->nSub++] = pRet->p4.pProgram; 676 } 677 } 678 } 679 } 680 681 return pRet; 682 } 683 684 /* 685 ** Check if the program stored in the VM associated with pParse may 686 ** throw an ABORT exception (causing the statement, but not entire transaction 687 ** to be rolled back). This condition is true if the main program or any 688 ** sub-programs contains any of the following: 689 ** 690 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 691 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 692 ** * OP_Destroy 693 ** * OP_VUpdate 694 ** * OP_VCreate 695 ** * OP_VRename 696 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 697 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 698 ** (for CREATE TABLE AS SELECT ...) 699 ** 700 ** Then check that the value of Parse.mayAbort is true if an 701 ** ABORT may be thrown, or false otherwise. Return true if it does 702 ** match, or false otherwise. This function is intended to be used as 703 ** part of an assert statement in the compiler. Similar to: 704 ** 705 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 706 */ 707 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 708 int hasAbort = 0; 709 int hasFkCounter = 0; 710 int hasCreateTable = 0; 711 int hasCreateIndex = 0; 712 int hasInitCoroutine = 0; 713 Op *pOp; 714 VdbeOpIter sIter; 715 716 if( v==0 ) return 0; 717 memset(&sIter, 0, sizeof(sIter)); 718 sIter.v = v; 719 720 while( (pOp = opIterNext(&sIter))!=0 ){ 721 int opcode = pOp->opcode; 722 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 723 || opcode==OP_VDestroy 724 || opcode==OP_VCreate 725 || opcode==OP_ParseSchema 726 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 727 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort)) 728 ){ 729 hasAbort = 1; 730 break; 731 } 732 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; 733 if( mayAbort ){ 734 /* hasCreateIndex may also be set for some DELETE statements that use 735 ** OP_Clear. So this routine may end up returning true in the case 736 ** where a "DELETE FROM tbl" has a statement-journal but does not 737 ** require one. This is not so bad - it is an inefficiency, not a bug. */ 738 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1; 739 if( opcode==OP_Clear ) hasCreateIndex = 1; 740 } 741 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 742 #ifndef SQLITE_OMIT_FOREIGN_KEY 743 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 744 hasFkCounter = 1; 745 } 746 #endif 747 } 748 sqlite3DbFree(v->db, sIter.apSub); 749 750 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 751 ** If malloc failed, then the while() loop above may not have iterated 752 ** through all opcodes and hasAbort may be set incorrectly. Return 753 ** true for this case to prevent the assert() in the callers frame 754 ** from failing. */ 755 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 756 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex 757 ); 758 } 759 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 760 761 #ifdef SQLITE_DEBUG 762 /* 763 ** Increment the nWrite counter in the VDBE if the cursor is not an 764 ** ephemeral cursor, or if the cursor argument is NULL. 765 */ 766 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ 767 if( pC==0 768 || (pC->eCurType!=CURTYPE_SORTER 769 && pC->eCurType!=CURTYPE_PSEUDO 770 && !pC->isEphemeral) 771 ){ 772 p->nWrite++; 773 } 774 } 775 #endif 776 777 #ifdef SQLITE_DEBUG 778 /* 779 ** Assert if an Abort at this point in time might result in a corrupt 780 ** database. 781 */ 782 void sqlite3VdbeAssertAbortable(Vdbe *p){ 783 assert( p->nWrite==0 || p->usesStmtJournal ); 784 } 785 #endif 786 787 /* 788 ** This routine is called after all opcodes have been inserted. It loops 789 ** through all the opcodes and fixes up some details. 790 ** 791 ** (1) For each jump instruction with a negative P2 value (a label) 792 ** resolve the P2 value to an actual address. 793 ** 794 ** (2) Compute the maximum number of arguments used by any SQL function 795 ** and store that value in *pMaxFuncArgs. 796 ** 797 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 798 ** indicate what the prepared statement actually does. 799 ** 800 ** (4) (discontinued) 801 ** 802 ** (5) Reclaim the memory allocated for storing labels. 803 ** 804 ** This routine will only function correctly if the mkopcodeh.tcl generator 805 ** script numbers the opcodes correctly. Changes to this routine must be 806 ** coordinated with changes to mkopcodeh.tcl. 807 */ 808 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 809 int nMaxArgs = *pMaxFuncArgs; 810 Op *pOp; 811 Parse *pParse = p->pParse; 812 int *aLabel = pParse->aLabel; 813 p->readOnly = 1; 814 p->bIsReader = 0; 815 pOp = &p->aOp[p->nOp-1]; 816 assert( p->aOp[0].opcode==OP_Init ); 817 while( 1 /* Loop termates when it reaches the OP_Init opcode */ ){ 818 /* Only JUMP opcodes and the short list of special opcodes in the switch 819 ** below need to be considered. The mkopcodeh.tcl generator script groups 820 ** all these opcodes together near the front of the opcode list. Skip 821 ** any opcode that does not need processing by virtual of the fact that 822 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 823 */ 824 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 825 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 826 ** cases from this switch! */ 827 switch( pOp->opcode ){ 828 case OP_Transaction: { 829 if( pOp->p2!=0 ) p->readOnly = 0; 830 /* no break */ deliberate_fall_through 831 } 832 case OP_AutoCommit: 833 case OP_Savepoint: { 834 p->bIsReader = 1; 835 break; 836 } 837 #ifndef SQLITE_OMIT_WAL 838 case OP_Checkpoint: 839 #endif 840 case OP_Vacuum: 841 case OP_JournalMode: { 842 p->readOnly = 0; 843 p->bIsReader = 1; 844 break; 845 } 846 case OP_Init: { 847 assert( pOp->p2>=0 ); 848 goto resolve_p2_values_loop_exit; 849 } 850 #ifndef SQLITE_OMIT_VIRTUALTABLE 851 case OP_VUpdate: { 852 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 853 break; 854 } 855 case OP_VFilter: { 856 int n; 857 assert( (pOp - p->aOp) >= 3 ); 858 assert( pOp[-1].opcode==OP_Integer ); 859 n = pOp[-1].p1; 860 if( n>nMaxArgs ) nMaxArgs = n; 861 /* Fall through into the default case */ 862 /* no break */ deliberate_fall_through 863 } 864 #endif 865 default: { 866 if( pOp->p2<0 ){ 867 /* The mkopcodeh.tcl script has so arranged things that the only 868 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 869 ** have non-negative values for P2. */ 870 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 871 assert( ADDR(pOp->p2)<-pParse->nLabel ); 872 pOp->p2 = aLabel[ADDR(pOp->p2)]; 873 } 874 break; 875 } 876 } 877 /* The mkopcodeh.tcl script has so arranged things that the only 878 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 879 ** have non-negative values for P2. */ 880 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 881 } 882 assert( pOp>p->aOp ); 883 pOp--; 884 } 885 resolve_p2_values_loop_exit: 886 if( aLabel ){ 887 sqlite3DbNNFreeNN(p->db, pParse->aLabel); 888 pParse->aLabel = 0; 889 } 890 pParse->nLabel = 0; 891 *pMaxFuncArgs = nMaxArgs; 892 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 893 } 894 895 #ifdef SQLITE_DEBUG 896 /* 897 ** Check to see if a subroutine contains a jump to a location outside of 898 ** the subroutine. If a jump outside the subroutine is detected, add code 899 ** that will cause the program to halt with an error message. 900 ** 901 ** The subroutine consists of opcodes between iFirst and iLast. Jumps to 902 ** locations within the subroutine are acceptable. iRetReg is a register 903 ** that contains the return address. Jumps to outside the range of iFirst 904 ** through iLast are also acceptable as long as the jump destination is 905 ** an OP_Return to iReturnAddr. 906 ** 907 ** A jump to an unresolved label means that the jump destination will be 908 ** beyond the current address. That is normally a jump to an early 909 ** termination and is consider acceptable. 910 ** 911 ** This routine only runs during debug builds. The purpose is (of course) 912 ** to detect invalid escapes out of a subroutine. The OP_Halt opcode 913 ** is generated rather than an assert() or other error, so that ".eqp full" 914 ** will still work to show the original bytecode, to aid in debugging. 915 */ 916 void sqlite3VdbeNoJumpsOutsideSubrtn( 917 Vdbe *v, /* The byte-code program under construction */ 918 int iFirst, /* First opcode of the subroutine */ 919 int iLast, /* Last opcode of the subroutine */ 920 int iRetReg /* Subroutine return address register */ 921 ){ 922 VdbeOp *pOp; 923 Parse *pParse; 924 int i; 925 sqlite3_str *pErr = 0; 926 assert( v!=0 ); 927 pParse = v->pParse; 928 assert( pParse!=0 ); 929 if( pParse->nErr ) return; 930 assert( iLast>=iFirst ); 931 assert( iLast<v->nOp ); 932 pOp = &v->aOp[iFirst]; 933 for(i=iFirst; i<=iLast; i++, pOp++){ 934 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){ 935 int iDest = pOp->p2; /* Jump destination */ 936 if( iDest==0 ) continue; 937 if( pOp->opcode==OP_Gosub ) continue; 938 if( iDest<0 ){ 939 int j = ADDR(iDest); 940 assert( j>=0 ); 941 if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){ 942 continue; 943 } 944 iDest = pParse->aLabel[j]; 945 } 946 if( iDest<iFirst || iDest>iLast ){ 947 int j = iDest; 948 for(; j<v->nOp; j++){ 949 VdbeOp *pX = &v->aOp[j]; 950 if( pX->opcode==OP_Return ){ 951 if( pX->p1==iRetReg ) break; 952 continue; 953 } 954 if( pX->opcode==OP_Noop ) continue; 955 if( pX->opcode==OP_Explain ) continue; 956 if( pErr==0 ){ 957 pErr = sqlite3_str_new(0); 958 }else{ 959 sqlite3_str_appendchar(pErr, 1, '\n'); 960 } 961 sqlite3_str_appendf(pErr, 962 "Opcode at %d jumps to %d which is outside the " 963 "subroutine at %d..%d", 964 i, iDest, iFirst, iLast); 965 break; 966 } 967 } 968 } 969 } 970 if( pErr ){ 971 char *zErr = sqlite3_str_finish(pErr); 972 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0); 973 sqlite3_free(zErr); 974 sqlite3MayAbort(pParse); 975 } 976 } 977 #endif /* SQLITE_DEBUG */ 978 979 /* 980 ** Return the address of the next instruction to be inserted. 981 */ 982 int sqlite3VdbeCurrentAddr(Vdbe *p){ 983 assert( p->eVdbeState==VDBE_INIT_STATE ); 984 return p->nOp; 985 } 986 987 /* 988 ** Verify that at least N opcode slots are available in p without 989 ** having to malloc for more space (except when compiled using 990 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 991 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 992 ** fail due to a OOM fault and hence that the return value from 993 ** sqlite3VdbeAddOpList() will always be non-NULL. 994 */ 995 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 996 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 997 assert( p->nOp + N <= p->nOpAlloc ); 998 } 999 #endif 1000 1001 /* 1002 ** Verify that the VM passed as the only argument does not contain 1003 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 1004 ** by code in pragma.c to ensure that the implementation of certain 1005 ** pragmas comports with the flags specified in the mkpragmatab.tcl 1006 ** script. 1007 */ 1008 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 1009 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 1010 int i; 1011 for(i=0; i<p->nOp; i++){ 1012 assert( p->aOp[i].opcode!=OP_ResultRow ); 1013 } 1014 } 1015 #endif 1016 1017 /* 1018 ** Generate code (a single OP_Abortable opcode) that will 1019 ** verify that the VDBE program can safely call Abort in the current 1020 ** context. 1021 */ 1022 #if defined(SQLITE_DEBUG) 1023 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ 1024 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); 1025 } 1026 #endif 1027 1028 /* 1029 ** This function returns a pointer to the array of opcodes associated with 1030 ** the Vdbe passed as the first argument. It is the callers responsibility 1031 ** to arrange for the returned array to be eventually freed using the 1032 ** vdbeFreeOpArray() function. 1033 ** 1034 ** Before returning, *pnOp is set to the number of entries in the returned 1035 ** array. Also, *pnMaxArg is set to the larger of its current value and 1036 ** the number of entries in the Vdbe.apArg[] array required to execute the 1037 ** returned program. 1038 */ 1039 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 1040 VdbeOp *aOp = p->aOp; 1041 assert( aOp && !p->db->mallocFailed ); 1042 1043 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 1044 assert( DbMaskAllZero(p->btreeMask) ); 1045 1046 resolveP2Values(p, pnMaxArg); 1047 *pnOp = p->nOp; 1048 p->aOp = 0; 1049 return aOp; 1050 } 1051 1052 /* 1053 ** Add a whole list of operations to the operation stack. Return a 1054 ** pointer to the first operation inserted. 1055 ** 1056 ** Non-zero P2 arguments to jump instructions are automatically adjusted 1057 ** so that the jump target is relative to the first operation inserted. 1058 */ 1059 VdbeOp *sqlite3VdbeAddOpList( 1060 Vdbe *p, /* Add opcodes to the prepared statement */ 1061 int nOp, /* Number of opcodes to add */ 1062 VdbeOpList const *aOp, /* The opcodes to be added */ 1063 int iLineno /* Source-file line number of first opcode */ 1064 ){ 1065 int i; 1066 VdbeOp *pOut, *pFirst; 1067 assert( nOp>0 ); 1068 assert( p->eVdbeState==VDBE_INIT_STATE ); 1069 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){ 1070 return 0; 1071 } 1072 pFirst = pOut = &p->aOp[p->nOp]; 1073 for(i=0; i<nOp; i++, aOp++, pOut++){ 1074 pOut->opcode = aOp->opcode; 1075 pOut->p1 = aOp->p1; 1076 pOut->p2 = aOp->p2; 1077 assert( aOp->p2>=0 ); 1078 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 1079 pOut->p2 += p->nOp; 1080 } 1081 pOut->p3 = aOp->p3; 1082 pOut->p4type = P4_NOTUSED; 1083 pOut->p4.p = 0; 1084 pOut->p5 = 0; 1085 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1086 pOut->zComment = 0; 1087 #endif 1088 #ifdef SQLITE_VDBE_COVERAGE 1089 pOut->iSrcLine = iLineno+i; 1090 #else 1091 (void)iLineno; 1092 #endif 1093 #ifdef SQLITE_DEBUG 1094 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 1095 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 1096 } 1097 #endif 1098 } 1099 p->nOp += nOp; 1100 return pFirst; 1101 } 1102 1103 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 1104 /* 1105 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 1106 */ 1107 void sqlite3VdbeScanStatus( 1108 Vdbe *p, /* VM to add scanstatus() to */ 1109 int addrExplain, /* Address of OP_Explain (or 0) */ 1110 int addrLoop, /* Address of loop counter */ 1111 int addrVisit, /* Address of rows visited counter */ 1112 LogEst nEst, /* Estimated number of output rows */ 1113 const char *zName /* Name of table or index being scanned */ 1114 ){ 1115 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus); 1116 ScanStatus *aNew; 1117 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 1118 if( aNew ){ 1119 ScanStatus *pNew = &aNew[p->nScan++]; 1120 pNew->addrExplain = addrExplain; 1121 pNew->addrLoop = addrLoop; 1122 pNew->addrVisit = addrVisit; 1123 pNew->nEst = nEst; 1124 pNew->zName = sqlite3DbStrDup(p->db, zName); 1125 p->aScan = aNew; 1126 } 1127 } 1128 #endif 1129 1130 1131 /* 1132 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 1133 ** for a specific instruction. 1134 */ 1135 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){ 1136 assert( addr>=0 ); 1137 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 1138 } 1139 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ 1140 assert( addr>=0 ); 1141 sqlite3VdbeGetOp(p,addr)->p1 = val; 1142 } 1143 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ 1144 assert( addr>=0 || p->db->mallocFailed ); 1145 sqlite3VdbeGetOp(p,addr)->p2 = val; 1146 } 1147 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ 1148 assert( addr>=0 ); 1149 sqlite3VdbeGetOp(p,addr)->p3 = val; 1150 } 1151 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 1152 assert( p->nOp>0 || p->db->mallocFailed ); 1153 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 1154 } 1155 1156 /* 1157 ** Change the P2 operand of instruction addr so that it points to 1158 ** the address of the next instruction to be coded. 1159 */ 1160 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 1161 sqlite3VdbeChangeP2(p, addr, p->nOp); 1162 } 1163 1164 /* 1165 ** Change the P2 operand of the jump instruction at addr so that 1166 ** the jump lands on the next opcode. Or if the jump instruction was 1167 ** the previous opcode (and is thus a no-op) then simply back up 1168 ** the next instruction counter by one slot so that the jump is 1169 ** overwritten by the next inserted opcode. 1170 ** 1171 ** This routine is an optimization of sqlite3VdbeJumpHere() that 1172 ** strives to omit useless byte-code like this: 1173 ** 1174 ** 7 Once 0 8 0 1175 ** 8 ... 1176 */ 1177 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){ 1178 if( addr==p->nOp-1 ){ 1179 assert( p->aOp[addr].opcode==OP_Once 1180 || p->aOp[addr].opcode==OP_If 1181 || p->aOp[addr].opcode==OP_FkIfZero ); 1182 assert( p->aOp[addr].p4type==0 ); 1183 #ifdef SQLITE_VDBE_COVERAGE 1184 sqlite3VdbeGetLastOp(p)->iSrcLine = 0; /* Erase VdbeCoverage() macros */ 1185 #endif 1186 p->nOp--; 1187 }else{ 1188 sqlite3VdbeChangeP2(p, addr, p->nOp); 1189 } 1190 } 1191 1192 1193 /* 1194 ** If the input FuncDef structure is ephemeral, then free it. If 1195 ** the FuncDef is not ephermal, then do nothing. 1196 */ 1197 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 1198 assert( db!=0 ); 1199 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 1200 sqlite3DbNNFreeNN(db, pDef); 1201 } 1202 } 1203 1204 /* 1205 ** Delete a P4 value if necessary. 1206 */ 1207 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 1208 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1209 sqlite3DbNNFreeNN(db, p); 1210 } 1211 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 1212 assert( db!=0 ); 1213 freeEphemeralFunction(db, p->pFunc); 1214 sqlite3DbNNFreeNN(db, p); 1215 } 1216 static void freeP4(sqlite3 *db, int p4type, void *p4){ 1217 assert( db ); 1218 switch( p4type ){ 1219 case P4_FUNCCTX: { 1220 freeP4FuncCtx(db, (sqlite3_context*)p4); 1221 break; 1222 } 1223 case P4_REAL: 1224 case P4_INT64: 1225 case P4_DYNAMIC: 1226 case P4_INTARRAY: { 1227 if( p4 ) sqlite3DbNNFreeNN(db, p4); 1228 break; 1229 } 1230 case P4_KEYINFO: { 1231 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 1232 break; 1233 } 1234 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1235 case P4_EXPR: { 1236 sqlite3ExprDelete(db, (Expr*)p4); 1237 break; 1238 } 1239 #endif 1240 case P4_FUNCDEF: { 1241 freeEphemeralFunction(db, (FuncDef*)p4); 1242 break; 1243 } 1244 case P4_MEM: { 1245 if( db->pnBytesFreed==0 ){ 1246 sqlite3ValueFree((sqlite3_value*)p4); 1247 }else{ 1248 freeP4Mem(db, (Mem*)p4); 1249 } 1250 break; 1251 } 1252 case P4_VTAB : { 1253 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 1254 break; 1255 } 1256 } 1257 } 1258 1259 /* 1260 ** Free the space allocated for aOp and any p4 values allocated for the 1261 ** opcodes contained within. If aOp is not NULL it is assumed to contain 1262 ** nOp entries. 1263 */ 1264 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 1265 assert( nOp>=0 ); 1266 assert( db!=0 ); 1267 if( aOp ){ 1268 Op *pOp = &aOp[nOp-1]; 1269 while(1){ /* Exit via break */ 1270 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 1271 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1272 sqlite3DbFree(db, pOp->zComment); 1273 #endif 1274 if( pOp==aOp ) break; 1275 pOp--; 1276 } 1277 sqlite3DbNNFreeNN(db, aOp); 1278 } 1279 } 1280 1281 /* 1282 ** Link the SubProgram object passed as the second argument into the linked 1283 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 1284 ** objects when the VM is no longer required. 1285 */ 1286 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 1287 p->pNext = pVdbe->pProgram; 1288 pVdbe->pProgram = p; 1289 } 1290 1291 /* 1292 ** Return true if the given Vdbe has any SubPrograms. 1293 */ 1294 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){ 1295 return pVdbe->pProgram!=0; 1296 } 1297 1298 /* 1299 ** Change the opcode at addr into OP_Noop 1300 */ 1301 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 1302 VdbeOp *pOp; 1303 if( p->db->mallocFailed ) return 0; 1304 assert( addr>=0 && addr<p->nOp ); 1305 pOp = &p->aOp[addr]; 1306 freeP4(p->db, pOp->p4type, pOp->p4.p); 1307 pOp->p4type = P4_NOTUSED; 1308 pOp->p4.z = 0; 1309 pOp->opcode = OP_Noop; 1310 return 1; 1311 } 1312 1313 /* 1314 ** If the last opcode is "op" and it is not a jump destination, 1315 ** then remove it. Return true if and only if an opcode was removed. 1316 */ 1317 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 1318 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 1319 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 1320 }else{ 1321 return 0; 1322 } 1323 } 1324 1325 #ifdef SQLITE_DEBUG 1326 /* 1327 ** Generate an OP_ReleaseReg opcode to indicate that a range of 1328 ** registers, except any identified by mask, are no longer in use. 1329 */ 1330 void sqlite3VdbeReleaseRegisters( 1331 Parse *pParse, /* Parsing context */ 1332 int iFirst, /* Index of first register to be released */ 1333 int N, /* Number of registers to release */ 1334 u32 mask, /* Mask of registers to NOT release */ 1335 int bUndefine /* If true, mark registers as undefined */ 1336 ){ 1337 if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return; 1338 assert( pParse->pVdbe ); 1339 assert( iFirst>=1 ); 1340 assert( iFirst+N-1<=pParse->nMem ); 1341 if( N<=31 && mask!=0 ){ 1342 while( N>0 && (mask&1)!=0 ){ 1343 mask >>= 1; 1344 iFirst++; 1345 N--; 1346 } 1347 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){ 1348 mask &= ~MASKBIT32(N-1); 1349 N--; 1350 } 1351 } 1352 if( N>0 ){ 1353 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); 1354 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); 1355 } 1356 } 1357 #endif /* SQLITE_DEBUG */ 1358 1359 1360 /* 1361 ** Change the value of the P4 operand for a specific instruction. 1362 ** This routine is useful when a large program is loaded from a 1363 ** static array using sqlite3VdbeAddOpList but we want to make a 1364 ** few minor changes to the program. 1365 ** 1366 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 1367 ** the string is made into memory obtained from sqlite3_malloc(). 1368 ** A value of n==0 means copy bytes of zP4 up to and including the 1369 ** first null byte. If n>0 then copy n+1 bytes of zP4. 1370 ** 1371 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 1372 ** to a string or structure that is guaranteed to exist for the lifetime of 1373 ** the Vdbe. In these cases we can just copy the pointer. 1374 ** 1375 ** If addr<0 then change P4 on the most recently inserted instruction. 1376 */ 1377 static void SQLITE_NOINLINE vdbeChangeP4Full( 1378 Vdbe *p, 1379 Op *pOp, 1380 const char *zP4, 1381 int n 1382 ){ 1383 if( pOp->p4type ){ 1384 freeP4(p->db, pOp->p4type, pOp->p4.p); 1385 pOp->p4type = 0; 1386 pOp->p4.p = 0; 1387 } 1388 if( n<0 ){ 1389 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 1390 }else{ 1391 if( n==0 ) n = sqlite3Strlen30(zP4); 1392 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 1393 pOp->p4type = P4_DYNAMIC; 1394 } 1395 } 1396 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 1397 Op *pOp; 1398 sqlite3 *db; 1399 assert( p!=0 ); 1400 db = p->db; 1401 assert( p->eVdbeState==VDBE_INIT_STATE ); 1402 assert( p->aOp!=0 || db->mallocFailed ); 1403 if( db->mallocFailed ){ 1404 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 1405 return; 1406 } 1407 assert( p->nOp>0 ); 1408 assert( addr<p->nOp ); 1409 if( addr<0 ){ 1410 addr = p->nOp - 1; 1411 } 1412 pOp = &p->aOp[addr]; 1413 if( n>=0 || pOp->p4type ){ 1414 vdbeChangeP4Full(p, pOp, zP4, n); 1415 return; 1416 } 1417 if( n==P4_INT32 ){ 1418 /* Note: this cast is safe, because the origin data point was an int 1419 ** that was cast to a (const char *). */ 1420 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 1421 pOp->p4type = P4_INT32; 1422 }else if( zP4!=0 ){ 1423 assert( n<0 ); 1424 pOp->p4.p = (void*)zP4; 1425 pOp->p4type = (signed char)n; 1426 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 1427 } 1428 } 1429 1430 /* 1431 ** Change the P4 operand of the most recently coded instruction 1432 ** to the value defined by the arguments. This is a high-speed 1433 ** version of sqlite3VdbeChangeP4(). 1434 ** 1435 ** The P4 operand must not have been previously defined. And the new 1436 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 1437 ** those cases. 1438 */ 1439 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1440 VdbeOp *pOp; 1441 assert( n!=P4_INT32 && n!=P4_VTAB ); 1442 assert( n<=0 ); 1443 if( p->db->mallocFailed ){ 1444 freeP4(p->db, n, pP4); 1445 }else{ 1446 assert( pP4!=0 ); 1447 assert( p->nOp>0 ); 1448 pOp = &p->aOp[p->nOp-1]; 1449 assert( pOp->p4type==P4_NOTUSED ); 1450 pOp->p4type = n; 1451 pOp->p4.p = pP4; 1452 } 1453 } 1454 1455 /* 1456 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1457 ** index given. 1458 */ 1459 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1460 Vdbe *v = pParse->pVdbe; 1461 KeyInfo *pKeyInfo; 1462 assert( v!=0 ); 1463 assert( pIdx!=0 ); 1464 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1465 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1466 } 1467 1468 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1469 /* 1470 ** Change the comment on the most recently coded instruction. Or 1471 ** insert a No-op and add the comment to that new instruction. This 1472 ** makes the code easier to read during debugging. None of this happens 1473 ** in a production build. 1474 */ 1475 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1476 assert( p->nOp>0 || p->aOp==0 ); 1477 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 ); 1478 if( p->nOp ){ 1479 assert( p->aOp ); 1480 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1481 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1482 } 1483 } 1484 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1485 va_list ap; 1486 if( p ){ 1487 va_start(ap, zFormat); 1488 vdbeVComment(p, zFormat, ap); 1489 va_end(ap); 1490 } 1491 } 1492 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1493 va_list ap; 1494 if( p ){ 1495 sqlite3VdbeAddOp0(p, OP_Noop); 1496 va_start(ap, zFormat); 1497 vdbeVComment(p, zFormat, ap); 1498 va_end(ap); 1499 } 1500 } 1501 #endif /* NDEBUG */ 1502 1503 #ifdef SQLITE_VDBE_COVERAGE 1504 /* 1505 ** Set the value if the iSrcLine field for the previously coded instruction. 1506 */ 1507 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1508 sqlite3VdbeGetLastOp(v)->iSrcLine = iLine; 1509 } 1510 #endif /* SQLITE_VDBE_COVERAGE */ 1511 1512 /* 1513 ** Return the opcode for a given address. The address must be non-negative. 1514 ** See sqlite3VdbeGetLastOp() to get the most recently added opcode. 1515 ** 1516 ** If a memory allocation error has occurred prior to the calling of this 1517 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1518 ** is readable but not writable, though it is cast to a writable value. 1519 ** The return of a dummy opcode allows the call to continue functioning 1520 ** after an OOM fault without having to check to see if the return from 1521 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1522 ** dummy will never be written to. This is verified by code inspection and 1523 ** by running with Valgrind. 1524 */ 1525 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1526 /* C89 specifies that the constant "dummy" will be initialized to all 1527 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1528 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1529 assert( p->eVdbeState==VDBE_INIT_STATE ); 1530 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1531 if( p->db->mallocFailed ){ 1532 return (VdbeOp*)&dummy; 1533 }else{ 1534 return &p->aOp[addr]; 1535 } 1536 } 1537 1538 /* Return the most recently added opcode 1539 */ 1540 VdbeOp * sqlite3VdbeGetLastOp(Vdbe *p){ 1541 return sqlite3VdbeGetOp(p, p->nOp - 1); 1542 } 1543 1544 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1545 /* 1546 ** Return an integer value for one of the parameters to the opcode pOp 1547 ** determined by character c. 1548 */ 1549 static int translateP(char c, const Op *pOp){ 1550 if( c=='1' ) return pOp->p1; 1551 if( c=='2' ) return pOp->p2; 1552 if( c=='3' ) return pOp->p3; 1553 if( c=='4' ) return pOp->p4.i; 1554 return pOp->p5; 1555 } 1556 1557 /* 1558 ** Compute a string for the "comment" field of a VDBE opcode listing. 1559 ** 1560 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1561 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1562 ** absence of other comments, this synopsis becomes the comment on the opcode. 1563 ** Some translation occurs: 1564 ** 1565 ** "PX" -> "r[X]" 1566 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1567 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1568 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1569 */ 1570 char *sqlite3VdbeDisplayComment( 1571 sqlite3 *db, /* Optional - Oom error reporting only */ 1572 const Op *pOp, /* The opcode to be commented */ 1573 const char *zP4 /* Previously obtained value for P4 */ 1574 ){ 1575 const char *zOpName; 1576 const char *zSynopsis; 1577 int nOpName; 1578 int ii; 1579 char zAlt[50]; 1580 StrAccum x; 1581 1582 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1583 zOpName = sqlite3OpcodeName(pOp->opcode); 1584 nOpName = sqlite3Strlen30(zOpName); 1585 if( zOpName[nOpName+1] ){ 1586 int seenCom = 0; 1587 char c; 1588 zSynopsis = zOpName + nOpName + 1; 1589 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1590 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1591 zSynopsis = zAlt; 1592 } 1593 for(ii=0; (c = zSynopsis[ii])!=0; ii++){ 1594 if( c=='P' ){ 1595 c = zSynopsis[++ii]; 1596 if( c=='4' ){ 1597 sqlite3_str_appendall(&x, zP4); 1598 }else if( c=='X' ){ 1599 if( pOp->zComment && pOp->zComment[0] ){ 1600 sqlite3_str_appendall(&x, pOp->zComment); 1601 seenCom = 1; 1602 break; 1603 } 1604 }else{ 1605 int v1 = translateP(c, pOp); 1606 int v2; 1607 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1608 ii += 3; 1609 v2 = translateP(zSynopsis[ii], pOp); 1610 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1611 ii += 2; 1612 v2++; 1613 } 1614 if( v2<2 ){ 1615 sqlite3_str_appendf(&x, "%d", v1); 1616 }else{ 1617 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1); 1618 } 1619 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){ 1620 sqlite3_context *pCtx = pOp->p4.pCtx; 1621 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){ 1622 sqlite3_str_appendf(&x, "%d", v1); 1623 }else if( pCtx->argc>1 ){ 1624 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1); 1625 }else if( x.accError==0 ){ 1626 assert( x.nChar>2 ); 1627 x.nChar -= 2; 1628 ii++; 1629 } 1630 ii += 3; 1631 }else{ 1632 sqlite3_str_appendf(&x, "%d", v1); 1633 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1634 ii += 4; 1635 } 1636 } 1637 } 1638 }else{ 1639 sqlite3_str_appendchar(&x, 1, c); 1640 } 1641 } 1642 if( !seenCom && pOp->zComment ){ 1643 sqlite3_str_appendf(&x, "; %s", pOp->zComment); 1644 } 1645 }else if( pOp->zComment ){ 1646 sqlite3_str_appendall(&x, pOp->zComment); 1647 } 1648 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){ 1649 sqlite3OomFault(db); 1650 } 1651 return sqlite3StrAccumFinish(&x); 1652 } 1653 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */ 1654 1655 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1656 /* 1657 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1658 ** that can be displayed in the P4 column of EXPLAIN output. 1659 */ 1660 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1661 const char *zOp = 0; 1662 switch( pExpr->op ){ 1663 case TK_STRING: 1664 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1665 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); 1666 break; 1667 case TK_INTEGER: 1668 sqlite3_str_appendf(p, "%d", pExpr->u.iValue); 1669 break; 1670 case TK_NULL: 1671 sqlite3_str_appendf(p, "NULL"); 1672 break; 1673 case TK_REGISTER: { 1674 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); 1675 break; 1676 } 1677 case TK_COLUMN: { 1678 if( pExpr->iColumn<0 ){ 1679 sqlite3_str_appendf(p, "rowid"); 1680 }else{ 1681 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); 1682 } 1683 break; 1684 } 1685 case TK_LT: zOp = "LT"; break; 1686 case TK_LE: zOp = "LE"; break; 1687 case TK_GT: zOp = "GT"; break; 1688 case TK_GE: zOp = "GE"; break; 1689 case TK_NE: zOp = "NE"; break; 1690 case TK_EQ: zOp = "EQ"; break; 1691 case TK_IS: zOp = "IS"; break; 1692 case TK_ISNOT: zOp = "ISNOT"; break; 1693 case TK_AND: zOp = "AND"; break; 1694 case TK_OR: zOp = "OR"; break; 1695 case TK_PLUS: zOp = "ADD"; break; 1696 case TK_STAR: zOp = "MUL"; break; 1697 case TK_MINUS: zOp = "SUB"; break; 1698 case TK_REM: zOp = "REM"; break; 1699 case TK_BITAND: zOp = "BITAND"; break; 1700 case TK_BITOR: zOp = "BITOR"; break; 1701 case TK_SLASH: zOp = "DIV"; break; 1702 case TK_LSHIFT: zOp = "LSHIFT"; break; 1703 case TK_RSHIFT: zOp = "RSHIFT"; break; 1704 case TK_CONCAT: zOp = "CONCAT"; break; 1705 case TK_UMINUS: zOp = "MINUS"; break; 1706 case TK_UPLUS: zOp = "PLUS"; break; 1707 case TK_BITNOT: zOp = "BITNOT"; break; 1708 case TK_NOT: zOp = "NOT"; break; 1709 case TK_ISNULL: zOp = "ISNULL"; break; 1710 case TK_NOTNULL: zOp = "NOTNULL"; break; 1711 1712 default: 1713 sqlite3_str_appendf(p, "%s", "expr"); 1714 break; 1715 } 1716 1717 if( zOp ){ 1718 sqlite3_str_appendf(p, "%s(", zOp); 1719 displayP4Expr(p, pExpr->pLeft); 1720 if( pExpr->pRight ){ 1721 sqlite3_str_append(p, ",", 1); 1722 displayP4Expr(p, pExpr->pRight); 1723 } 1724 sqlite3_str_append(p, ")", 1); 1725 } 1726 } 1727 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1728 1729 1730 #if VDBE_DISPLAY_P4 1731 /* 1732 ** Compute a string that describes the P4 parameter for an opcode. 1733 ** Use zTemp for any required temporary buffer space. 1734 */ 1735 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){ 1736 char *zP4 = 0; 1737 StrAccum x; 1738 1739 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1740 switch( pOp->p4type ){ 1741 case P4_KEYINFO: { 1742 int j; 1743 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1744 assert( pKeyInfo->aSortFlags!=0 ); 1745 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); 1746 for(j=0; j<pKeyInfo->nKeyField; j++){ 1747 CollSeq *pColl = pKeyInfo->aColl[j]; 1748 const char *zColl = pColl ? pColl->zName : ""; 1749 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1750 sqlite3_str_appendf(&x, ",%s%s%s", 1751 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "", 1752 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "", 1753 zColl); 1754 } 1755 sqlite3_str_append(&x, ")", 1); 1756 break; 1757 } 1758 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1759 case P4_EXPR: { 1760 displayP4Expr(&x, pOp->p4.pExpr); 1761 break; 1762 } 1763 #endif 1764 case P4_COLLSEQ: { 1765 static const char *const encnames[] = {"?", "8", "16LE", "16BE"}; 1766 CollSeq *pColl = pOp->p4.pColl; 1767 assert( pColl->enc<4 ); 1768 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName, 1769 encnames[pColl->enc]); 1770 break; 1771 } 1772 case P4_FUNCDEF: { 1773 FuncDef *pDef = pOp->p4.pFunc; 1774 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1775 break; 1776 } 1777 case P4_FUNCCTX: { 1778 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1779 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1780 break; 1781 } 1782 case P4_INT64: { 1783 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); 1784 break; 1785 } 1786 case P4_INT32: { 1787 sqlite3_str_appendf(&x, "%d", pOp->p4.i); 1788 break; 1789 } 1790 case P4_REAL: { 1791 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); 1792 break; 1793 } 1794 case P4_MEM: { 1795 Mem *pMem = pOp->p4.pMem; 1796 if( pMem->flags & MEM_Str ){ 1797 zP4 = pMem->z; 1798 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1799 sqlite3_str_appendf(&x, "%lld", pMem->u.i); 1800 }else if( pMem->flags & MEM_Real ){ 1801 sqlite3_str_appendf(&x, "%.16g", pMem->u.r); 1802 }else if( pMem->flags & MEM_Null ){ 1803 zP4 = "NULL"; 1804 }else{ 1805 assert( pMem->flags & MEM_Blob ); 1806 zP4 = "(blob)"; 1807 } 1808 break; 1809 } 1810 #ifndef SQLITE_OMIT_VIRTUALTABLE 1811 case P4_VTAB: { 1812 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1813 sqlite3_str_appendf(&x, "vtab:%p", pVtab); 1814 break; 1815 } 1816 #endif 1817 case P4_INTARRAY: { 1818 u32 i; 1819 u32 *ai = pOp->p4.ai; 1820 u32 n = ai[0]; /* The first element of an INTARRAY is always the 1821 ** count of the number of elements to follow */ 1822 for(i=1; i<=n; i++){ 1823 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]); 1824 } 1825 sqlite3_str_append(&x, "]", 1); 1826 break; 1827 } 1828 case P4_SUBPROGRAM: { 1829 zP4 = "program"; 1830 break; 1831 } 1832 case P4_TABLE: { 1833 zP4 = pOp->p4.pTab->zName; 1834 break; 1835 } 1836 default: { 1837 zP4 = pOp->p4.z; 1838 } 1839 } 1840 if( zP4 ) sqlite3_str_appendall(&x, zP4); 1841 if( (x.accError & SQLITE_NOMEM)!=0 ){ 1842 sqlite3OomFault(db); 1843 } 1844 return sqlite3StrAccumFinish(&x); 1845 } 1846 #endif /* VDBE_DISPLAY_P4 */ 1847 1848 /* 1849 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1850 ** 1851 ** The prepared statements need to know in advance the complete set of 1852 ** attached databases that will be use. A mask of these databases 1853 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1854 ** p->btreeMask of databases that will require a lock. 1855 */ 1856 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1857 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1858 assert( i<(int)sizeof(p->btreeMask)*8 ); 1859 DbMaskSet(p->btreeMask, i); 1860 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1861 DbMaskSet(p->lockMask, i); 1862 } 1863 } 1864 1865 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1866 /* 1867 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1868 ** this routine obtains the mutex associated with each BtShared structure 1869 ** that may be accessed by the VM passed as an argument. In doing so it also 1870 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1871 ** that the correct busy-handler callback is invoked if required. 1872 ** 1873 ** If SQLite is not threadsafe but does support shared-cache mode, then 1874 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1875 ** of all of BtShared structures accessible via the database handle 1876 ** associated with the VM. 1877 ** 1878 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1879 ** function is a no-op. 1880 ** 1881 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1882 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1883 ** corresponding to btrees that use shared cache. Then the runtime of 1884 ** this routine is N*N. But as N is rarely more than 1, this should not 1885 ** be a problem. 1886 */ 1887 void sqlite3VdbeEnter(Vdbe *p){ 1888 int i; 1889 sqlite3 *db; 1890 Db *aDb; 1891 int nDb; 1892 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1893 db = p->db; 1894 aDb = db->aDb; 1895 nDb = db->nDb; 1896 for(i=0; i<nDb; i++){ 1897 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1898 sqlite3BtreeEnter(aDb[i].pBt); 1899 } 1900 } 1901 } 1902 #endif 1903 1904 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1905 /* 1906 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1907 */ 1908 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1909 int i; 1910 sqlite3 *db; 1911 Db *aDb; 1912 int nDb; 1913 db = p->db; 1914 aDb = db->aDb; 1915 nDb = db->nDb; 1916 for(i=0; i<nDb; i++){ 1917 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1918 sqlite3BtreeLeave(aDb[i].pBt); 1919 } 1920 } 1921 } 1922 void sqlite3VdbeLeave(Vdbe *p){ 1923 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1924 vdbeLeave(p); 1925 } 1926 #endif 1927 1928 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1929 /* 1930 ** Print a single opcode. This routine is used for debugging only. 1931 */ 1932 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ 1933 char *zP4; 1934 char *zCom; 1935 sqlite3 dummyDb; 1936 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1937 if( pOut==0 ) pOut = stdout; 1938 sqlite3BeginBenignMalloc(); 1939 dummyDb.mallocFailed = 1; 1940 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp); 1941 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1942 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4); 1943 #else 1944 zCom = 0; 1945 #endif 1946 /* NB: The sqlite3OpcodeName() function is implemented by code created 1947 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1948 ** information from the vdbe.c source text */ 1949 fprintf(pOut, zFormat1, pc, 1950 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, 1951 zP4 ? zP4 : "", pOp->p5, 1952 zCom ? zCom : "" 1953 ); 1954 fflush(pOut); 1955 sqlite3_free(zP4); 1956 sqlite3_free(zCom); 1957 sqlite3EndBenignMalloc(); 1958 } 1959 #endif 1960 1961 /* 1962 ** Initialize an array of N Mem element. 1963 ** 1964 ** This is a high-runner, so only those fields that really do need to 1965 ** be initialized are set. The Mem structure is organized so that 1966 ** the fields that get initialized are nearby and hopefully on the same 1967 ** cache line. 1968 ** 1969 ** Mem.flags = flags 1970 ** Mem.db = db 1971 ** Mem.szMalloc = 0 1972 ** 1973 ** All other fields of Mem can safely remain uninitialized for now. They 1974 ** will be initialized before use. 1975 */ 1976 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1977 if( N>0 ){ 1978 do{ 1979 p->flags = flags; 1980 p->db = db; 1981 p->szMalloc = 0; 1982 #ifdef SQLITE_DEBUG 1983 p->pScopyFrom = 0; 1984 #endif 1985 p++; 1986 }while( (--N)>0 ); 1987 } 1988 } 1989 1990 /* 1991 ** Release auxiliary memory held in an array of N Mem elements. 1992 ** 1993 ** After this routine returns, all Mem elements in the array will still 1994 ** be valid. Those Mem elements that were not holding auxiliary resources 1995 ** will be unchanged. Mem elements which had something freed will be 1996 ** set to MEM_Undefined. 1997 */ 1998 static void releaseMemArray(Mem *p, int N){ 1999 if( p && N ){ 2000 Mem *pEnd = &p[N]; 2001 sqlite3 *db = p->db; 2002 if( db->pnBytesFreed ){ 2003 do{ 2004 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 2005 }while( (++p)<pEnd ); 2006 return; 2007 } 2008 do{ 2009 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 2010 assert( sqlite3VdbeCheckMemInvariants(p) ); 2011 2012 /* This block is really an inlined version of sqlite3VdbeMemRelease() 2013 ** that takes advantage of the fact that the memory cell value is 2014 ** being set to NULL after releasing any dynamic resources. 2015 ** 2016 ** The justification for duplicating code is that according to 2017 ** callgrind, this causes a certain test case to hit the CPU 4.7 2018 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 2019 ** sqlite3MemRelease() were called from here. With -O2, this jumps 2020 ** to 6.6 percent. The test case is inserting 1000 rows into a table 2021 ** with no indexes using a single prepared INSERT statement, bind() 2022 ** and reset(). Inserts are grouped into a transaction. 2023 */ 2024 testcase( p->flags & MEM_Agg ); 2025 testcase( p->flags & MEM_Dyn ); 2026 if( p->flags&(MEM_Agg|MEM_Dyn) ){ 2027 testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel ); 2028 sqlite3VdbeMemRelease(p); 2029 p->flags = MEM_Undefined; 2030 }else if( p->szMalloc ){ 2031 sqlite3DbNNFreeNN(db, p->zMalloc); 2032 p->szMalloc = 0; 2033 p->flags = MEM_Undefined; 2034 } 2035 #ifdef SQLITE_DEBUG 2036 else{ 2037 p->flags = MEM_Undefined; 2038 } 2039 #endif 2040 }while( (++p)<pEnd ); 2041 } 2042 } 2043 2044 #ifdef SQLITE_DEBUG 2045 /* 2046 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is 2047 ** and false if something is wrong. 2048 ** 2049 ** This routine is intended for use inside of assert() statements only. 2050 */ 2051 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){ 2052 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; 2053 return 1; 2054 } 2055 #endif 2056 2057 2058 /* 2059 ** This is a destructor on a Mem object (which is really an sqlite3_value) 2060 ** that deletes the Frame object that is attached to it as a blob. 2061 ** 2062 ** This routine does not delete the Frame right away. It merely adds the 2063 ** frame to a list of frames to be deleted when the Vdbe halts. 2064 */ 2065 void sqlite3VdbeFrameMemDel(void *pArg){ 2066 VdbeFrame *pFrame = (VdbeFrame*)pArg; 2067 assert( sqlite3VdbeFrameIsValid(pFrame) ); 2068 pFrame->pParent = pFrame->v->pDelFrame; 2069 pFrame->v->pDelFrame = pFrame; 2070 } 2071 2072 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN) 2073 /* 2074 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN 2075 ** QUERY PLAN output. 2076 ** 2077 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no 2078 ** more opcodes to be displayed. 2079 */ 2080 int sqlite3VdbeNextOpcode( 2081 Vdbe *p, /* The statement being explained */ 2082 Mem *pSub, /* Storage for keeping track of subprogram nesting */ 2083 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */ 2084 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */ 2085 int *piAddr, /* OUT: Write index into (*paOp)[] here */ 2086 Op **paOp /* OUT: Write the opcode array here */ 2087 ){ 2088 int nRow; /* Stop when row count reaches this */ 2089 int nSub = 0; /* Number of sub-vdbes seen so far */ 2090 SubProgram **apSub = 0; /* Array of sub-vdbes */ 2091 int i; /* Next instruction address */ 2092 int rc = SQLITE_OK; /* Result code */ 2093 Op *aOp = 0; /* Opcode array */ 2094 int iPc; /* Rowid. Copy of value in *piPc */ 2095 2096 /* When the number of output rows reaches nRow, that means the 2097 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 2098 ** nRow is the sum of the number of rows in the main program, plus 2099 ** the sum of the number of rows in all trigger subprograms encountered 2100 ** so far. The nRow value will increase as new trigger subprograms are 2101 ** encountered, but p->pc will eventually catch up to nRow. 2102 */ 2103 nRow = p->nOp; 2104 if( pSub!=0 ){ 2105 if( pSub->flags&MEM_Blob ){ 2106 /* pSub is initiallly NULL. It is initialized to a BLOB by 2107 ** the P4_SUBPROGRAM processing logic below */ 2108 nSub = pSub->n/sizeof(Vdbe*); 2109 apSub = (SubProgram **)pSub->z; 2110 } 2111 for(i=0; i<nSub; i++){ 2112 nRow += apSub[i]->nOp; 2113 } 2114 } 2115 iPc = *piPc; 2116 while(1){ /* Loop exits via break */ 2117 i = iPc++; 2118 if( i>=nRow ){ 2119 p->rc = SQLITE_OK; 2120 rc = SQLITE_DONE; 2121 break; 2122 } 2123 if( i<p->nOp ){ 2124 /* The rowid is small enough that we are still in the 2125 ** main program. */ 2126 aOp = p->aOp; 2127 }else{ 2128 /* We are currently listing subprograms. Figure out which one and 2129 ** pick up the appropriate opcode. */ 2130 int j; 2131 i -= p->nOp; 2132 assert( apSub!=0 ); 2133 assert( nSub>0 ); 2134 for(j=0; i>=apSub[j]->nOp; j++){ 2135 i -= apSub[j]->nOp; 2136 assert( i<apSub[j]->nOp || j+1<nSub ); 2137 } 2138 aOp = apSub[j]->aOp; 2139 } 2140 2141 /* When an OP_Program opcode is encounter (the only opcode that has 2142 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 2143 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 2144 ** has not already been seen. 2145 */ 2146 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){ 2147 int nByte = (nSub+1)*sizeof(SubProgram*); 2148 int j; 2149 for(j=0; j<nSub; j++){ 2150 if( apSub[j]==aOp[i].p4.pProgram ) break; 2151 } 2152 if( j==nSub ){ 2153 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); 2154 if( p->rc!=SQLITE_OK ){ 2155 rc = SQLITE_ERROR; 2156 break; 2157 } 2158 apSub = (SubProgram **)pSub->z; 2159 apSub[nSub++] = aOp[i].p4.pProgram; 2160 MemSetTypeFlag(pSub, MEM_Blob); 2161 pSub->n = nSub*sizeof(SubProgram*); 2162 nRow += aOp[i].p4.pProgram->nOp; 2163 } 2164 } 2165 if( eMode==0 ) break; 2166 #ifdef SQLITE_ENABLE_BYTECODE_VTAB 2167 if( eMode==2 ){ 2168 Op *pOp = aOp + i; 2169 if( pOp->opcode==OP_OpenRead ) break; 2170 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break; 2171 if( pOp->opcode==OP_ReopenIdx ) break; 2172 }else 2173 #endif 2174 { 2175 assert( eMode==1 ); 2176 if( aOp[i].opcode==OP_Explain ) break; 2177 if( aOp[i].opcode==OP_Init && iPc>1 ) break; 2178 } 2179 } 2180 *piPc = iPc; 2181 *piAddr = i; 2182 *paOp = aOp; 2183 return rc; 2184 } 2185 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */ 2186 2187 2188 /* 2189 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 2190 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 2191 */ 2192 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 2193 int i; 2194 Mem *aMem = VdbeFrameMem(p); 2195 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 2196 assert( sqlite3VdbeFrameIsValid(p) ); 2197 for(i=0; i<p->nChildCsr; i++){ 2198 if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]); 2199 } 2200 releaseMemArray(aMem, p->nChildMem); 2201 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 2202 sqlite3DbFree(p->v->db, p); 2203 } 2204 2205 #ifndef SQLITE_OMIT_EXPLAIN 2206 /* 2207 ** Give a listing of the program in the virtual machine. 2208 ** 2209 ** The interface is the same as sqlite3VdbeExec(). But instead of 2210 ** running the code, it invokes the callback once for each instruction. 2211 ** This feature is used to implement "EXPLAIN". 2212 ** 2213 ** When p->explain==1, each instruction is listed. When 2214 ** p->explain==2, only OP_Explain instructions are listed and these 2215 ** are shown in a different format. p->explain==2 is used to implement 2216 ** EXPLAIN QUERY PLAN. 2217 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers 2218 ** are also shown, so that the boundaries between the main program and 2219 ** each trigger are clear. 2220 ** 2221 ** When p->explain==1, first the main program is listed, then each of 2222 ** the trigger subprograms are listed one by one. 2223 */ 2224 int sqlite3VdbeList( 2225 Vdbe *p /* The VDBE */ 2226 ){ 2227 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 2228 sqlite3 *db = p->db; /* The database connection */ 2229 int i; /* Loop counter */ 2230 int rc = SQLITE_OK; /* Return code */ 2231 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 2232 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); 2233 Op *aOp; /* Array of opcodes */ 2234 Op *pOp; /* Current opcode */ 2235 2236 assert( p->explain ); 2237 assert( p->eVdbeState==VDBE_RUN_STATE ); 2238 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 2239 2240 /* Even though this opcode does not use dynamic strings for 2241 ** the result, result columns may become dynamic if the user calls 2242 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 2243 */ 2244 releaseMemArray(pMem, 8); 2245 p->pResultSet = 0; 2246 2247 if( p->rc==SQLITE_NOMEM ){ 2248 /* This happens if a malloc() inside a call to sqlite3_column_text() or 2249 ** sqlite3_column_text16() failed. */ 2250 sqlite3OomFault(db); 2251 return SQLITE_ERROR; 2252 } 2253 2254 if( bListSubprogs ){ 2255 /* The first 8 memory cells are used for the result set. So we will 2256 ** commandeer the 9th cell to use as storage for an array of pointers 2257 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 2258 ** cells. */ 2259 assert( p->nMem>9 ); 2260 pSub = &p->aMem[9]; 2261 }else{ 2262 pSub = 0; 2263 } 2264 2265 /* Figure out which opcode is next to display */ 2266 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp); 2267 2268 if( rc==SQLITE_OK ){ 2269 pOp = aOp + i; 2270 if( AtomicLoad(&db->u1.isInterrupted) ){ 2271 p->rc = SQLITE_INTERRUPT; 2272 rc = SQLITE_ERROR; 2273 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 2274 }else{ 2275 char *zP4 = sqlite3VdbeDisplayP4(db, pOp); 2276 if( p->explain==2 ){ 2277 sqlite3VdbeMemSetInt64(pMem, pOp->p1); 2278 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2); 2279 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3); 2280 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free); 2281 p->nResColumn = 4; 2282 }else{ 2283 sqlite3VdbeMemSetInt64(pMem+0, i); 2284 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode), 2285 -1, SQLITE_UTF8, SQLITE_STATIC); 2286 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1); 2287 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2); 2288 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3); 2289 /* pMem+5 for p4 is done last */ 2290 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5); 2291 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2292 { 2293 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4); 2294 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free); 2295 } 2296 #else 2297 sqlite3VdbeMemSetNull(pMem+7); 2298 #endif 2299 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free); 2300 p->nResColumn = 8; 2301 } 2302 p->pResultSet = pMem; 2303 if( db->mallocFailed ){ 2304 p->rc = SQLITE_NOMEM; 2305 rc = SQLITE_ERROR; 2306 }else{ 2307 p->rc = SQLITE_OK; 2308 rc = SQLITE_ROW; 2309 } 2310 } 2311 } 2312 return rc; 2313 } 2314 #endif /* SQLITE_OMIT_EXPLAIN */ 2315 2316 #ifdef SQLITE_DEBUG 2317 /* 2318 ** Print the SQL that was used to generate a VDBE program. 2319 */ 2320 void sqlite3VdbePrintSql(Vdbe *p){ 2321 const char *z = 0; 2322 if( p->zSql ){ 2323 z = p->zSql; 2324 }else if( p->nOp>=1 ){ 2325 const VdbeOp *pOp = &p->aOp[0]; 2326 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2327 z = pOp->p4.z; 2328 while( sqlite3Isspace(*z) ) z++; 2329 } 2330 } 2331 if( z ) printf("SQL: [%s]\n", z); 2332 } 2333 #endif 2334 2335 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 2336 /* 2337 ** Print an IOTRACE message showing SQL content. 2338 */ 2339 void sqlite3VdbeIOTraceSql(Vdbe *p){ 2340 int nOp = p->nOp; 2341 VdbeOp *pOp; 2342 if( sqlite3IoTrace==0 ) return; 2343 if( nOp<1 ) return; 2344 pOp = &p->aOp[0]; 2345 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2346 int i, j; 2347 char z[1000]; 2348 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 2349 for(i=0; sqlite3Isspace(z[i]); i++){} 2350 for(j=0; z[i]; i++){ 2351 if( sqlite3Isspace(z[i]) ){ 2352 if( z[i-1]!=' ' ){ 2353 z[j++] = ' '; 2354 } 2355 }else{ 2356 z[j++] = z[i]; 2357 } 2358 } 2359 z[j] = 0; 2360 sqlite3IoTrace("SQL %s\n", z); 2361 } 2362 } 2363 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 2364 2365 /* An instance of this object describes bulk memory available for use 2366 ** by subcomponents of a prepared statement. Space is allocated out 2367 ** of a ReusableSpace object by the allocSpace() routine below. 2368 */ 2369 struct ReusableSpace { 2370 u8 *pSpace; /* Available memory */ 2371 sqlite3_int64 nFree; /* Bytes of available memory */ 2372 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */ 2373 }; 2374 2375 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 2376 ** from the ReusableSpace object. Return a pointer to the allocated 2377 ** memory on success. If insufficient memory is available in the 2378 ** ReusableSpace object, increase the ReusableSpace.nNeeded 2379 ** value by the amount needed and return NULL. 2380 ** 2381 ** If pBuf is not initially NULL, that means that the memory has already 2382 ** been allocated by a prior call to this routine, so just return a copy 2383 ** of pBuf and leave ReusableSpace unchanged. 2384 ** 2385 ** This allocator is employed to repurpose unused slots at the end of the 2386 ** opcode array of prepared state for other memory needs of the prepared 2387 ** statement. 2388 */ 2389 static void *allocSpace( 2390 struct ReusableSpace *p, /* Bulk memory available for allocation */ 2391 void *pBuf, /* Pointer to a prior allocation */ 2392 sqlite3_int64 nByte /* Bytes of memory needed. */ 2393 ){ 2394 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 2395 if( pBuf==0 ){ 2396 nByte = ROUND8P(nByte); 2397 if( nByte <= p->nFree ){ 2398 p->nFree -= nByte; 2399 pBuf = &p->pSpace[p->nFree]; 2400 }else{ 2401 p->nNeeded += nByte; 2402 } 2403 } 2404 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 2405 return pBuf; 2406 } 2407 2408 /* 2409 ** Rewind the VDBE back to the beginning in preparation for 2410 ** running it. 2411 */ 2412 void sqlite3VdbeRewind(Vdbe *p){ 2413 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 2414 int i; 2415 #endif 2416 assert( p!=0 ); 2417 assert( p->eVdbeState==VDBE_INIT_STATE 2418 || p->eVdbeState==VDBE_READY_STATE 2419 || p->eVdbeState==VDBE_HALT_STATE ); 2420 2421 /* There should be at least one opcode. 2422 */ 2423 assert( p->nOp>0 ); 2424 2425 p->eVdbeState = VDBE_READY_STATE; 2426 2427 #ifdef SQLITE_DEBUG 2428 for(i=0; i<p->nMem; i++){ 2429 assert( p->aMem[i].db==p->db ); 2430 } 2431 #endif 2432 p->pc = -1; 2433 p->rc = SQLITE_OK; 2434 p->errorAction = OE_Abort; 2435 p->nChange = 0; 2436 p->cacheCtr = 1; 2437 p->minWriteFileFormat = 255; 2438 p->iStatement = 0; 2439 p->nFkConstraint = 0; 2440 #ifdef VDBE_PROFILE 2441 for(i=0; i<p->nOp; i++){ 2442 p->aOp[i].cnt = 0; 2443 p->aOp[i].cycles = 0; 2444 } 2445 #endif 2446 } 2447 2448 /* 2449 ** Prepare a virtual machine for execution for the first time after 2450 ** creating the virtual machine. This involves things such 2451 ** as allocating registers and initializing the program counter. 2452 ** After the VDBE has be prepped, it can be executed by one or more 2453 ** calls to sqlite3VdbeExec(). 2454 ** 2455 ** This function may be called exactly once on each virtual machine. 2456 ** After this routine is called the VM has been "packaged" and is ready 2457 ** to run. After this routine is called, further calls to 2458 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 2459 ** the Vdbe from the Parse object that helped generate it so that the 2460 ** the Vdbe becomes an independent entity and the Parse object can be 2461 ** destroyed. 2462 ** 2463 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 2464 ** to its initial state after it has been run. 2465 */ 2466 void sqlite3VdbeMakeReady( 2467 Vdbe *p, /* The VDBE */ 2468 Parse *pParse /* Parsing context */ 2469 ){ 2470 sqlite3 *db; /* The database connection */ 2471 int nVar; /* Number of parameters */ 2472 int nMem; /* Number of VM memory registers */ 2473 int nCursor; /* Number of cursors required */ 2474 int nArg; /* Number of arguments in subprograms */ 2475 int n; /* Loop counter */ 2476 struct ReusableSpace x; /* Reusable bulk memory */ 2477 2478 assert( p!=0 ); 2479 assert( p->nOp>0 ); 2480 assert( pParse!=0 ); 2481 assert( p->eVdbeState==VDBE_INIT_STATE ); 2482 assert( pParse==p->pParse ); 2483 p->pVList = pParse->pVList; 2484 pParse->pVList = 0; 2485 db = p->db; 2486 assert( db->mallocFailed==0 ); 2487 nVar = pParse->nVar; 2488 nMem = pParse->nMem; 2489 nCursor = pParse->nTab; 2490 nArg = pParse->nMaxArg; 2491 2492 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 2493 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 2494 ** space at the end of aMem[] for cursors 1 and greater. 2495 ** See also: allocateCursor(). 2496 */ 2497 nMem += nCursor; 2498 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 2499 2500 /* Figure out how much reusable memory is available at the end of the 2501 ** opcode array. This extra memory will be reallocated for other elements 2502 ** of the prepared statement. 2503 */ 2504 n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 2505 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 2506 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 2507 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 2508 assert( x.nFree>=0 ); 2509 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 2510 2511 resolveP2Values(p, &nArg); 2512 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 2513 if( pParse->explain ){ 2514 static const char * const azColName[] = { 2515 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", 2516 "id", "parent", "notused", "detail" 2517 }; 2518 int iFirst, mx, i; 2519 if( nMem<10 ) nMem = 10; 2520 p->explain = pParse->explain; 2521 if( pParse->explain==2 ){ 2522 sqlite3VdbeSetNumCols(p, 4); 2523 iFirst = 8; 2524 mx = 12; 2525 }else{ 2526 sqlite3VdbeSetNumCols(p, 8); 2527 iFirst = 0; 2528 mx = 8; 2529 } 2530 for(i=iFirst; i<mx; i++){ 2531 sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME, 2532 azColName[i], SQLITE_STATIC); 2533 } 2534 } 2535 p->expired = 0; 2536 2537 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 2538 ** passes. On the first pass, we try to reuse unused memory at the 2539 ** end of the opcode array. If we are unable to satisfy all memory 2540 ** requirements by reusing the opcode array tail, then the second 2541 ** pass will fill in the remainder using a fresh memory allocation. 2542 ** 2543 ** This two-pass approach that reuses as much memory as possible from 2544 ** the leftover memory at the end of the opcode array. This can significantly 2545 ** reduce the amount of memory held by a prepared statement. 2546 */ 2547 x.nNeeded = 0; 2548 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem)); 2549 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem)); 2550 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*)); 2551 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*)); 2552 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2553 p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64)); 2554 #endif 2555 if( x.nNeeded ){ 2556 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 2557 x.nFree = x.nNeeded; 2558 if( !db->mallocFailed ){ 2559 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 2560 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 2561 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 2562 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 2563 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2564 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 2565 #endif 2566 } 2567 } 2568 2569 if( db->mallocFailed ){ 2570 p->nVar = 0; 2571 p->nCursor = 0; 2572 p->nMem = 0; 2573 }else{ 2574 p->nCursor = nCursor; 2575 p->nVar = (ynVar)nVar; 2576 initMemArray(p->aVar, nVar, db, MEM_Null); 2577 p->nMem = nMem; 2578 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2579 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2580 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2581 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2582 #endif 2583 } 2584 sqlite3VdbeRewind(p); 2585 } 2586 2587 /* 2588 ** Close a VDBE cursor and release all the resources that cursor 2589 ** happens to hold. 2590 */ 2591 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2592 if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx); 2593 } 2594 void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){ 2595 switch( pCx->eCurType ){ 2596 case CURTYPE_SORTER: { 2597 sqlite3VdbeSorterClose(p->db, pCx); 2598 break; 2599 } 2600 case CURTYPE_BTREE: { 2601 assert( pCx->uc.pCursor!=0 ); 2602 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2603 break; 2604 } 2605 #ifndef SQLITE_OMIT_VIRTUALTABLE 2606 case CURTYPE_VTAB: { 2607 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2608 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2609 assert( pVCur->pVtab->nRef>0 ); 2610 pVCur->pVtab->nRef--; 2611 pModule->xClose(pVCur); 2612 break; 2613 } 2614 #endif 2615 } 2616 } 2617 2618 /* 2619 ** Close all cursors in the current frame. 2620 */ 2621 static void closeCursorsInFrame(Vdbe *p){ 2622 int i; 2623 for(i=0; i<p->nCursor; i++){ 2624 VdbeCursor *pC = p->apCsr[i]; 2625 if( pC ){ 2626 sqlite3VdbeFreeCursorNN(p, pC); 2627 p->apCsr[i] = 0; 2628 } 2629 } 2630 } 2631 2632 /* 2633 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2634 ** is used, for example, when a trigger sub-program is halted to restore 2635 ** control to the main program. 2636 */ 2637 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2638 Vdbe *v = pFrame->v; 2639 closeCursorsInFrame(v); 2640 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2641 v->anExec = pFrame->anExec; 2642 #endif 2643 v->aOp = pFrame->aOp; 2644 v->nOp = pFrame->nOp; 2645 v->aMem = pFrame->aMem; 2646 v->nMem = pFrame->nMem; 2647 v->apCsr = pFrame->apCsr; 2648 v->nCursor = pFrame->nCursor; 2649 v->db->lastRowid = pFrame->lastRowid; 2650 v->nChange = pFrame->nChange; 2651 v->db->nChange = pFrame->nDbChange; 2652 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2653 v->pAuxData = pFrame->pAuxData; 2654 pFrame->pAuxData = 0; 2655 return pFrame->pc; 2656 } 2657 2658 /* 2659 ** Close all cursors. 2660 ** 2661 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2662 ** cell array. This is necessary as the memory cell array may contain 2663 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2664 ** open cursors. 2665 */ 2666 static void closeAllCursors(Vdbe *p){ 2667 if( p->pFrame ){ 2668 VdbeFrame *pFrame; 2669 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2670 sqlite3VdbeFrameRestore(pFrame); 2671 p->pFrame = 0; 2672 p->nFrame = 0; 2673 } 2674 assert( p->nFrame==0 ); 2675 closeCursorsInFrame(p); 2676 releaseMemArray(p->aMem, p->nMem); 2677 while( p->pDelFrame ){ 2678 VdbeFrame *pDel = p->pDelFrame; 2679 p->pDelFrame = pDel->pParent; 2680 sqlite3VdbeFrameDelete(pDel); 2681 } 2682 2683 /* Delete any auxdata allocations made by the VM */ 2684 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2685 assert( p->pAuxData==0 ); 2686 } 2687 2688 /* 2689 ** Set the number of result columns that will be returned by this SQL 2690 ** statement. This is now set at compile time, rather than during 2691 ** execution of the vdbe program so that sqlite3_column_count() can 2692 ** be called on an SQL statement before sqlite3_step(). 2693 */ 2694 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2695 int n; 2696 sqlite3 *db = p->db; 2697 2698 if( p->nResColumn ){ 2699 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2700 sqlite3DbFree(db, p->aColName); 2701 } 2702 n = nResColumn*COLNAME_N; 2703 p->nResColumn = (u16)nResColumn; 2704 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2705 if( p->aColName==0 ) return; 2706 initMemArray(p->aColName, n, db, MEM_Null); 2707 } 2708 2709 /* 2710 ** Set the name of the idx'th column to be returned by the SQL statement. 2711 ** zName must be a pointer to a nul terminated string. 2712 ** 2713 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2714 ** 2715 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2716 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2717 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2718 */ 2719 int sqlite3VdbeSetColName( 2720 Vdbe *p, /* Vdbe being configured */ 2721 int idx, /* Index of column zName applies to */ 2722 int var, /* One of the COLNAME_* constants */ 2723 const char *zName, /* Pointer to buffer containing name */ 2724 void (*xDel)(void*) /* Memory management strategy for zName */ 2725 ){ 2726 int rc; 2727 Mem *pColName; 2728 assert( idx<p->nResColumn ); 2729 assert( var<COLNAME_N ); 2730 if( p->db->mallocFailed ){ 2731 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2732 return SQLITE_NOMEM_BKPT; 2733 } 2734 assert( p->aColName!=0 ); 2735 pColName = &(p->aColName[idx+var*p->nResColumn]); 2736 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2737 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2738 return rc; 2739 } 2740 2741 /* 2742 ** A read or write transaction may or may not be active on database handle 2743 ** db. If a transaction is active, commit it. If there is a 2744 ** write-transaction spanning more than one database file, this routine 2745 ** takes care of the super-journal trickery. 2746 */ 2747 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2748 int i; 2749 int nTrans = 0; /* Number of databases with an active write-transaction 2750 ** that are candidates for a two-phase commit using a 2751 ** super-journal */ 2752 int rc = SQLITE_OK; 2753 int needXcommit = 0; 2754 2755 #ifdef SQLITE_OMIT_VIRTUALTABLE 2756 /* With this option, sqlite3VtabSync() is defined to be simply 2757 ** SQLITE_OK so p is not used. 2758 */ 2759 UNUSED_PARAMETER(p); 2760 #endif 2761 2762 /* Before doing anything else, call the xSync() callback for any 2763 ** virtual module tables written in this transaction. This has to 2764 ** be done before determining whether a super-journal file is 2765 ** required, as an xSync() callback may add an attached database 2766 ** to the transaction. 2767 */ 2768 rc = sqlite3VtabSync(db, p); 2769 2770 /* This loop determines (a) if the commit hook should be invoked and 2771 ** (b) how many database files have open write transactions, not 2772 ** including the temp database. (b) is important because if more than 2773 ** one database file has an open write transaction, a super-journal 2774 ** file is required for an atomic commit. 2775 */ 2776 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2777 Btree *pBt = db->aDb[i].pBt; 2778 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 2779 /* Whether or not a database might need a super-journal depends upon 2780 ** its journal mode (among other things). This matrix determines which 2781 ** journal modes use a super-journal and which do not */ 2782 static const u8 aMJNeeded[] = { 2783 /* DELETE */ 1, 2784 /* PERSIST */ 1, 2785 /* OFF */ 0, 2786 /* TRUNCATE */ 1, 2787 /* MEMORY */ 0, 2788 /* WAL */ 0 2789 }; 2790 Pager *pPager; /* Pager associated with pBt */ 2791 needXcommit = 1; 2792 sqlite3BtreeEnter(pBt); 2793 pPager = sqlite3BtreePager(pBt); 2794 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2795 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2796 && sqlite3PagerIsMemdb(pPager)==0 2797 ){ 2798 assert( i!=1 ); 2799 nTrans++; 2800 } 2801 rc = sqlite3PagerExclusiveLock(pPager); 2802 sqlite3BtreeLeave(pBt); 2803 } 2804 } 2805 if( rc!=SQLITE_OK ){ 2806 return rc; 2807 } 2808 2809 /* If there are any write-transactions at all, invoke the commit hook */ 2810 if( needXcommit && db->xCommitCallback ){ 2811 rc = db->xCommitCallback(db->pCommitArg); 2812 if( rc ){ 2813 return SQLITE_CONSTRAINT_COMMITHOOK; 2814 } 2815 } 2816 2817 /* The simple case - no more than one database file (not counting the 2818 ** TEMP database) has a transaction active. There is no need for the 2819 ** super-journal. 2820 ** 2821 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2822 ** string, it means the main database is :memory: or a temp file. In 2823 ** that case we do not support atomic multi-file commits, so use the 2824 ** simple case then too. 2825 */ 2826 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2827 || nTrans<=1 2828 ){ 2829 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2830 Btree *pBt = db->aDb[i].pBt; 2831 if( pBt ){ 2832 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2833 } 2834 } 2835 2836 /* Do the commit only if all databases successfully complete phase 1. 2837 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2838 ** IO error while deleting or truncating a journal file. It is unlikely, 2839 ** but could happen. In this case abandon processing and return the error. 2840 */ 2841 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2842 Btree *pBt = db->aDb[i].pBt; 2843 if( pBt ){ 2844 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2845 } 2846 } 2847 if( rc==SQLITE_OK ){ 2848 sqlite3VtabCommit(db); 2849 } 2850 } 2851 2852 /* The complex case - There is a multi-file write-transaction active. 2853 ** This requires a super-journal file to ensure the transaction is 2854 ** committed atomically. 2855 */ 2856 #ifndef SQLITE_OMIT_DISKIO 2857 else{ 2858 sqlite3_vfs *pVfs = db->pVfs; 2859 char *zSuper = 0; /* File-name for the super-journal */ 2860 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2861 sqlite3_file *pSuperJrnl = 0; 2862 i64 offset = 0; 2863 int res; 2864 int retryCount = 0; 2865 int nMainFile; 2866 2867 /* Select a super-journal file name */ 2868 nMainFile = sqlite3Strlen30(zMainFile); 2869 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0); 2870 if( zSuper==0 ) return SQLITE_NOMEM_BKPT; 2871 zSuper += 4; 2872 do { 2873 u32 iRandom; 2874 if( retryCount ){ 2875 if( retryCount>100 ){ 2876 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper); 2877 sqlite3OsDelete(pVfs, zSuper, 0); 2878 break; 2879 }else if( retryCount==1 ){ 2880 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper); 2881 } 2882 } 2883 retryCount++; 2884 sqlite3_randomness(sizeof(iRandom), &iRandom); 2885 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X", 2886 (iRandom>>8)&0xffffff, iRandom&0xff); 2887 /* The antipenultimate character of the super-journal name must 2888 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2889 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' ); 2890 sqlite3FileSuffix3(zMainFile, zSuper); 2891 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); 2892 }while( rc==SQLITE_OK && res ); 2893 if( rc==SQLITE_OK ){ 2894 /* Open the super-journal. */ 2895 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl, 2896 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2897 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0 2898 ); 2899 } 2900 if( rc!=SQLITE_OK ){ 2901 sqlite3DbFree(db, zSuper-4); 2902 return rc; 2903 } 2904 2905 /* Write the name of each database file in the transaction into the new 2906 ** super-journal file. If an error occurs at this point close 2907 ** and delete the super-journal file. All the individual journal files 2908 ** still have 'null' as the super-journal pointer, so they will roll 2909 ** back independently if a failure occurs. 2910 */ 2911 for(i=0; i<db->nDb; i++){ 2912 Btree *pBt = db->aDb[i].pBt; 2913 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 2914 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2915 if( zFile==0 ){ 2916 continue; /* Ignore TEMP and :memory: databases */ 2917 } 2918 assert( zFile[0]!=0 ); 2919 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset); 2920 offset += sqlite3Strlen30(zFile)+1; 2921 if( rc!=SQLITE_OK ){ 2922 sqlite3OsCloseFree(pSuperJrnl); 2923 sqlite3OsDelete(pVfs, zSuper, 0); 2924 sqlite3DbFree(db, zSuper-4); 2925 return rc; 2926 } 2927 } 2928 } 2929 2930 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device 2931 ** flag is set this is not required. 2932 */ 2933 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL) 2934 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL)) 2935 ){ 2936 sqlite3OsCloseFree(pSuperJrnl); 2937 sqlite3OsDelete(pVfs, zSuper, 0); 2938 sqlite3DbFree(db, zSuper-4); 2939 return rc; 2940 } 2941 2942 /* Sync all the db files involved in the transaction. The same call 2943 ** sets the super-journal pointer in each individual journal. If 2944 ** an error occurs here, do not delete the super-journal file. 2945 ** 2946 ** If the error occurs during the first call to 2947 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2948 ** super-journal file will be orphaned. But we cannot delete it, 2949 ** in case the super-journal file name was written into the journal 2950 ** file before the failure occurred. 2951 */ 2952 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2953 Btree *pBt = db->aDb[i].pBt; 2954 if( pBt ){ 2955 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper); 2956 } 2957 } 2958 sqlite3OsCloseFree(pSuperJrnl); 2959 assert( rc!=SQLITE_BUSY ); 2960 if( rc!=SQLITE_OK ){ 2961 sqlite3DbFree(db, zSuper-4); 2962 return rc; 2963 } 2964 2965 /* Delete the super-journal file. This commits the transaction. After 2966 ** doing this the directory is synced again before any individual 2967 ** transaction files are deleted. 2968 */ 2969 rc = sqlite3OsDelete(pVfs, zSuper, 1); 2970 sqlite3DbFree(db, zSuper-4); 2971 zSuper = 0; 2972 if( rc ){ 2973 return rc; 2974 } 2975 2976 /* All files and directories have already been synced, so the following 2977 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2978 ** deleting or truncating journals. If something goes wrong while 2979 ** this is happening we don't really care. The integrity of the 2980 ** transaction is already guaranteed, but some stray 'cold' journals 2981 ** may be lying around. Returning an error code won't help matters. 2982 */ 2983 disable_simulated_io_errors(); 2984 sqlite3BeginBenignMalloc(); 2985 for(i=0; i<db->nDb; i++){ 2986 Btree *pBt = db->aDb[i].pBt; 2987 if( pBt ){ 2988 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2989 } 2990 } 2991 sqlite3EndBenignMalloc(); 2992 enable_simulated_io_errors(); 2993 2994 sqlite3VtabCommit(db); 2995 } 2996 #endif 2997 2998 return rc; 2999 } 3000 3001 /* 3002 ** This routine checks that the sqlite3.nVdbeActive count variable 3003 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 3004 ** currently active. An assertion fails if the two counts do not match. 3005 ** This is an internal self-check only - it is not an essential processing 3006 ** step. 3007 ** 3008 ** This is a no-op if NDEBUG is defined. 3009 */ 3010 #ifndef NDEBUG 3011 static void checkActiveVdbeCnt(sqlite3 *db){ 3012 Vdbe *p; 3013 int cnt = 0; 3014 int nWrite = 0; 3015 int nRead = 0; 3016 p = db->pVdbe; 3017 while( p ){ 3018 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 3019 cnt++; 3020 if( p->readOnly==0 ) nWrite++; 3021 if( p->bIsReader ) nRead++; 3022 } 3023 p = p->pVNext; 3024 } 3025 assert( cnt==db->nVdbeActive ); 3026 assert( nWrite==db->nVdbeWrite ); 3027 assert( nRead==db->nVdbeRead ); 3028 } 3029 #else 3030 #define checkActiveVdbeCnt(x) 3031 #endif 3032 3033 /* 3034 ** If the Vdbe passed as the first argument opened a statement-transaction, 3035 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 3036 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 3037 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 3038 ** statement transaction is committed. 3039 ** 3040 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 3041 ** Otherwise SQLITE_OK. 3042 */ 3043 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 3044 sqlite3 *const db = p->db; 3045 int rc = SQLITE_OK; 3046 int i; 3047 const int iSavepoint = p->iStatement-1; 3048 3049 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 3050 assert( db->nStatement>0 ); 3051 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 3052 3053 for(i=0; i<db->nDb; i++){ 3054 int rc2 = SQLITE_OK; 3055 Btree *pBt = db->aDb[i].pBt; 3056 if( pBt ){ 3057 if( eOp==SAVEPOINT_ROLLBACK ){ 3058 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 3059 } 3060 if( rc2==SQLITE_OK ){ 3061 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 3062 } 3063 if( rc==SQLITE_OK ){ 3064 rc = rc2; 3065 } 3066 } 3067 } 3068 db->nStatement--; 3069 p->iStatement = 0; 3070 3071 if( rc==SQLITE_OK ){ 3072 if( eOp==SAVEPOINT_ROLLBACK ){ 3073 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 3074 } 3075 if( rc==SQLITE_OK ){ 3076 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 3077 } 3078 } 3079 3080 /* If the statement transaction is being rolled back, also restore the 3081 ** database handles deferred constraint counter to the value it had when 3082 ** the statement transaction was opened. */ 3083 if( eOp==SAVEPOINT_ROLLBACK ){ 3084 db->nDeferredCons = p->nStmtDefCons; 3085 db->nDeferredImmCons = p->nStmtDefImmCons; 3086 } 3087 return rc; 3088 } 3089 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 3090 if( p->db->nStatement && p->iStatement ){ 3091 return vdbeCloseStatement(p, eOp); 3092 } 3093 return SQLITE_OK; 3094 } 3095 3096 3097 /* 3098 ** This function is called when a transaction opened by the database 3099 ** handle associated with the VM passed as an argument is about to be 3100 ** committed. If there are outstanding deferred foreign key constraint 3101 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 3102 ** 3103 ** If there are outstanding FK violations and this function returns 3104 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 3105 ** and write an error message to it. Then return SQLITE_ERROR. 3106 */ 3107 #ifndef SQLITE_OMIT_FOREIGN_KEY 3108 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 3109 sqlite3 *db = p->db; 3110 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 3111 || (!deferred && p->nFkConstraint>0) 3112 ){ 3113 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 3114 p->errorAction = OE_Abort; 3115 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 3116 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR; 3117 return SQLITE_CONSTRAINT_FOREIGNKEY; 3118 } 3119 return SQLITE_OK; 3120 } 3121 #endif 3122 3123 /* 3124 ** This routine is called the when a VDBE tries to halt. If the VDBE 3125 ** has made changes and is in autocommit mode, then commit those 3126 ** changes. If a rollback is needed, then do the rollback. 3127 ** 3128 ** This routine is the only way to move the sqlite3eOpenState of a VM from 3129 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to 3130 ** call this on a VM that is in the SQLITE_STATE_HALT state. 3131 ** 3132 ** Return an error code. If the commit could not complete because of 3133 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 3134 ** means the close did not happen and needs to be repeated. 3135 */ 3136 int sqlite3VdbeHalt(Vdbe *p){ 3137 int rc; /* Used to store transient return codes */ 3138 sqlite3 *db = p->db; 3139 3140 /* This function contains the logic that determines if a statement or 3141 ** transaction will be committed or rolled back as a result of the 3142 ** execution of this virtual machine. 3143 ** 3144 ** If any of the following errors occur: 3145 ** 3146 ** SQLITE_NOMEM 3147 ** SQLITE_IOERR 3148 ** SQLITE_FULL 3149 ** SQLITE_INTERRUPT 3150 ** 3151 ** Then the internal cache might have been left in an inconsistent 3152 ** state. We need to rollback the statement transaction, if there is 3153 ** one, or the complete transaction if there is no statement transaction. 3154 */ 3155 3156 assert( p->eVdbeState==VDBE_RUN_STATE ); 3157 if( db->mallocFailed ){ 3158 p->rc = SQLITE_NOMEM_BKPT; 3159 } 3160 closeAllCursors(p); 3161 checkActiveVdbeCnt(db); 3162 3163 /* No commit or rollback needed if the program never started or if the 3164 ** SQL statement does not read or write a database file. */ 3165 if( p->bIsReader ){ 3166 int mrc; /* Primary error code from p->rc */ 3167 int eStatementOp = 0; 3168 int isSpecialError; /* Set to true if a 'special' error */ 3169 3170 /* Lock all btrees used by the statement */ 3171 sqlite3VdbeEnter(p); 3172 3173 /* Check for one of the special errors */ 3174 if( p->rc ){ 3175 mrc = p->rc & 0xff; 3176 isSpecialError = mrc==SQLITE_NOMEM 3177 || mrc==SQLITE_IOERR 3178 || mrc==SQLITE_INTERRUPT 3179 || mrc==SQLITE_FULL; 3180 }else{ 3181 mrc = isSpecialError = 0; 3182 } 3183 if( isSpecialError ){ 3184 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 3185 ** no rollback is necessary. Otherwise, at least a savepoint 3186 ** transaction must be rolled back to restore the database to a 3187 ** consistent state. 3188 ** 3189 ** Even if the statement is read-only, it is important to perform 3190 ** a statement or transaction rollback operation. If the error 3191 ** occurred while writing to the journal, sub-journal or database 3192 ** file as part of an effort to free up cache space (see function 3193 ** pagerStress() in pager.c), the rollback is required to restore 3194 ** the pager to a consistent state. 3195 */ 3196 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 3197 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 3198 eStatementOp = SAVEPOINT_ROLLBACK; 3199 }else{ 3200 /* We are forced to roll back the active transaction. Before doing 3201 ** so, abort any other statements this handle currently has active. 3202 */ 3203 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3204 sqlite3CloseSavepoints(db); 3205 db->autoCommit = 1; 3206 p->nChange = 0; 3207 } 3208 } 3209 } 3210 3211 /* Check for immediate foreign key violations. */ 3212 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3213 sqlite3VdbeCheckFk(p, 0); 3214 } 3215 3216 /* If the auto-commit flag is set and this is the only active writer 3217 ** VM, then we do either a commit or rollback of the current transaction. 3218 ** 3219 ** Note: This block also runs if one of the special errors handled 3220 ** above has occurred. 3221 */ 3222 if( !sqlite3VtabInSync(db) 3223 && db->autoCommit 3224 && db->nVdbeWrite==(p->readOnly==0) 3225 ){ 3226 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3227 rc = sqlite3VdbeCheckFk(p, 1); 3228 if( rc!=SQLITE_OK ){ 3229 if( NEVER(p->readOnly) ){ 3230 sqlite3VdbeLeave(p); 3231 return SQLITE_ERROR; 3232 } 3233 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 3234 }else if( db->flags & SQLITE_CorruptRdOnly ){ 3235 rc = SQLITE_CORRUPT; 3236 db->flags &= ~SQLITE_CorruptRdOnly; 3237 }else{ 3238 /* The auto-commit flag is true, the vdbe program was successful 3239 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 3240 ** key constraints to hold up the transaction. This means a commit 3241 ** is required. */ 3242 rc = vdbeCommit(db, p); 3243 } 3244 if( rc==SQLITE_BUSY && p->readOnly ){ 3245 sqlite3VdbeLeave(p); 3246 return SQLITE_BUSY; 3247 }else if( rc!=SQLITE_OK ){ 3248 p->rc = rc; 3249 sqlite3RollbackAll(db, SQLITE_OK); 3250 p->nChange = 0; 3251 }else{ 3252 db->nDeferredCons = 0; 3253 db->nDeferredImmCons = 0; 3254 db->flags &= ~(u64)SQLITE_DeferFKs; 3255 sqlite3CommitInternalChanges(db); 3256 } 3257 }else{ 3258 sqlite3RollbackAll(db, SQLITE_OK); 3259 p->nChange = 0; 3260 } 3261 db->nStatement = 0; 3262 }else if( eStatementOp==0 ){ 3263 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 3264 eStatementOp = SAVEPOINT_RELEASE; 3265 }else if( p->errorAction==OE_Abort ){ 3266 eStatementOp = SAVEPOINT_ROLLBACK; 3267 }else{ 3268 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3269 sqlite3CloseSavepoints(db); 3270 db->autoCommit = 1; 3271 p->nChange = 0; 3272 } 3273 } 3274 3275 /* If eStatementOp is non-zero, then a statement transaction needs to 3276 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 3277 ** do so. If this operation returns an error, and the current statement 3278 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 3279 ** current statement error code. 3280 */ 3281 if( eStatementOp ){ 3282 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 3283 if( rc ){ 3284 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 3285 p->rc = rc; 3286 sqlite3DbFree(db, p->zErrMsg); 3287 p->zErrMsg = 0; 3288 } 3289 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3290 sqlite3CloseSavepoints(db); 3291 db->autoCommit = 1; 3292 p->nChange = 0; 3293 } 3294 } 3295 3296 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 3297 ** has been rolled back, update the database connection change-counter. 3298 */ 3299 if( p->changeCntOn ){ 3300 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 3301 sqlite3VdbeSetChanges(db, p->nChange); 3302 }else{ 3303 sqlite3VdbeSetChanges(db, 0); 3304 } 3305 p->nChange = 0; 3306 } 3307 3308 /* Release the locks */ 3309 sqlite3VdbeLeave(p); 3310 } 3311 3312 /* We have successfully halted and closed the VM. Record this fact. */ 3313 db->nVdbeActive--; 3314 if( !p->readOnly ) db->nVdbeWrite--; 3315 if( p->bIsReader ) db->nVdbeRead--; 3316 assert( db->nVdbeActive>=db->nVdbeRead ); 3317 assert( db->nVdbeRead>=db->nVdbeWrite ); 3318 assert( db->nVdbeWrite>=0 ); 3319 p->eVdbeState = VDBE_HALT_STATE; 3320 checkActiveVdbeCnt(db); 3321 if( db->mallocFailed ){ 3322 p->rc = SQLITE_NOMEM_BKPT; 3323 } 3324 3325 /* If the auto-commit flag is set to true, then any locks that were held 3326 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 3327 ** to invoke any required unlock-notify callbacks. 3328 */ 3329 if( db->autoCommit ){ 3330 sqlite3ConnectionUnlocked(db); 3331 } 3332 3333 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 3334 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 3335 } 3336 3337 3338 /* 3339 ** Each VDBE holds the result of the most recent sqlite3_step() call 3340 ** in p->rc. This routine sets that result back to SQLITE_OK. 3341 */ 3342 void sqlite3VdbeResetStepResult(Vdbe *p){ 3343 p->rc = SQLITE_OK; 3344 } 3345 3346 /* 3347 ** Copy the error code and error message belonging to the VDBE passed 3348 ** as the first argument to its database handle (so that they will be 3349 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 3350 ** 3351 ** This function does not clear the VDBE error code or message, just 3352 ** copies them to the database handle. 3353 */ 3354 int sqlite3VdbeTransferError(Vdbe *p){ 3355 sqlite3 *db = p->db; 3356 int rc = p->rc; 3357 if( p->zErrMsg ){ 3358 db->bBenignMalloc++; 3359 sqlite3BeginBenignMalloc(); 3360 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 3361 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 3362 sqlite3EndBenignMalloc(); 3363 db->bBenignMalloc--; 3364 }else if( db->pErr ){ 3365 sqlite3ValueSetNull(db->pErr); 3366 } 3367 db->errCode = rc; 3368 db->errByteOffset = -1; 3369 return rc; 3370 } 3371 3372 #ifdef SQLITE_ENABLE_SQLLOG 3373 /* 3374 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 3375 ** invoke it. 3376 */ 3377 static void vdbeInvokeSqllog(Vdbe *v){ 3378 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 3379 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 3380 assert( v->db->init.busy==0 ); 3381 if( zExpanded ){ 3382 sqlite3GlobalConfig.xSqllog( 3383 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 3384 ); 3385 sqlite3DbFree(v->db, zExpanded); 3386 } 3387 } 3388 } 3389 #else 3390 # define vdbeInvokeSqllog(x) 3391 #endif 3392 3393 /* 3394 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 3395 ** Write any error messages into *pzErrMsg. Return the result code. 3396 ** 3397 ** After this routine is run, the VDBE should be ready to be executed 3398 ** again. 3399 ** 3400 ** To look at it another way, this routine resets the state of the 3401 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to 3402 ** VDBE_READY_STATE. 3403 */ 3404 int sqlite3VdbeReset(Vdbe *p){ 3405 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 3406 int i; 3407 #endif 3408 3409 sqlite3 *db; 3410 db = p->db; 3411 3412 /* If the VM did not run to completion or if it encountered an 3413 ** error, then it might not have been halted properly. So halt 3414 ** it now. 3415 */ 3416 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); 3417 3418 /* If the VDBE has been run even partially, then transfer the error code 3419 ** and error message from the VDBE into the main database structure. But 3420 ** if the VDBE has just been set to run but has not actually executed any 3421 ** instructions yet, leave the main database error information unchanged. 3422 */ 3423 if( p->pc>=0 ){ 3424 vdbeInvokeSqllog(p); 3425 if( db->pErr || p->zErrMsg ){ 3426 sqlite3VdbeTransferError(p); 3427 }else{ 3428 db->errCode = p->rc; 3429 } 3430 } 3431 3432 /* Reset register contents and reclaim error message memory. 3433 */ 3434 #ifdef SQLITE_DEBUG 3435 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 3436 ** Vdbe.aMem[] arrays have already been cleaned up. */ 3437 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 3438 if( p->aMem ){ 3439 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 3440 } 3441 #endif 3442 if( p->zErrMsg ){ 3443 sqlite3DbFree(db, p->zErrMsg); 3444 p->zErrMsg = 0; 3445 } 3446 p->pResultSet = 0; 3447 #ifdef SQLITE_DEBUG 3448 p->nWrite = 0; 3449 #endif 3450 3451 /* Save profiling information from this VDBE run. 3452 */ 3453 #ifdef VDBE_PROFILE 3454 { 3455 FILE *out = fopen("vdbe_profile.out", "a"); 3456 if( out ){ 3457 fprintf(out, "---- "); 3458 for(i=0; i<p->nOp; i++){ 3459 fprintf(out, "%02x", p->aOp[i].opcode); 3460 } 3461 fprintf(out, "\n"); 3462 if( p->zSql ){ 3463 char c, pc = 0; 3464 fprintf(out, "-- "); 3465 for(i=0; (c = p->zSql[i])!=0; i++){ 3466 if( pc=='\n' ) fprintf(out, "-- "); 3467 putc(c, out); 3468 pc = c; 3469 } 3470 if( pc!='\n' ) fprintf(out, "\n"); 3471 } 3472 for(i=0; i<p->nOp; i++){ 3473 char zHdr[100]; 3474 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 3475 p->aOp[i].cnt, 3476 p->aOp[i].cycles, 3477 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 3478 ); 3479 fprintf(out, "%s", zHdr); 3480 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 3481 } 3482 fclose(out); 3483 } 3484 } 3485 #endif 3486 return p->rc & db->errMask; 3487 } 3488 3489 /* 3490 ** Clean up and delete a VDBE after execution. Return an integer which is 3491 ** the result code. Write any error message text into *pzErrMsg. 3492 */ 3493 int sqlite3VdbeFinalize(Vdbe *p){ 3494 int rc = SQLITE_OK; 3495 assert( VDBE_RUN_STATE>VDBE_READY_STATE ); 3496 assert( VDBE_HALT_STATE>VDBE_READY_STATE ); 3497 assert( VDBE_INIT_STATE<VDBE_READY_STATE ); 3498 if( p->eVdbeState>=VDBE_READY_STATE ){ 3499 rc = sqlite3VdbeReset(p); 3500 assert( (rc & p->db->errMask)==rc ); 3501 } 3502 sqlite3VdbeDelete(p); 3503 return rc; 3504 } 3505 3506 /* 3507 ** If parameter iOp is less than zero, then invoke the destructor for 3508 ** all auxiliary data pointers currently cached by the VM passed as 3509 ** the first argument. 3510 ** 3511 ** Or, if iOp is greater than or equal to zero, then the destructor is 3512 ** only invoked for those auxiliary data pointers created by the user 3513 ** function invoked by the OP_Function opcode at instruction iOp of 3514 ** VM pVdbe, and only then if: 3515 ** 3516 ** * the associated function parameter is the 32nd or later (counting 3517 ** from left to right), or 3518 ** 3519 ** * the corresponding bit in argument mask is clear (where the first 3520 ** function parameter corresponds to bit 0 etc.). 3521 */ 3522 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 3523 while( *pp ){ 3524 AuxData *pAux = *pp; 3525 if( (iOp<0) 3526 || (pAux->iAuxOp==iOp 3527 && pAux->iAuxArg>=0 3528 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 3529 ){ 3530 testcase( pAux->iAuxArg==31 ); 3531 if( pAux->xDeleteAux ){ 3532 pAux->xDeleteAux(pAux->pAux); 3533 } 3534 *pp = pAux->pNextAux; 3535 sqlite3DbFree(db, pAux); 3536 }else{ 3537 pp= &pAux->pNextAux; 3538 } 3539 } 3540 } 3541 3542 /* 3543 ** Free all memory associated with the Vdbe passed as the second argument, 3544 ** except for object itself, which is preserved. 3545 ** 3546 ** The difference between this function and sqlite3VdbeDelete() is that 3547 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 3548 ** the database connection and frees the object itself. 3549 */ 3550 static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 3551 SubProgram *pSub, *pNext; 3552 assert( db!=0 ); 3553 assert( p->db==0 || p->db==db ); 3554 if( p->aColName ){ 3555 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 3556 sqlite3DbNNFreeNN(db, p->aColName); 3557 } 3558 for(pSub=p->pProgram; pSub; pSub=pNext){ 3559 pNext = pSub->pNext; 3560 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 3561 sqlite3DbFree(db, pSub); 3562 } 3563 if( p->eVdbeState!=VDBE_INIT_STATE ){ 3564 releaseMemArray(p->aVar, p->nVar); 3565 if( p->pVList ) sqlite3DbNNFreeNN(db, p->pVList); 3566 if( p->pFree ) sqlite3DbNNFreeNN(db, p->pFree); 3567 } 3568 vdbeFreeOpArray(db, p->aOp, p->nOp); 3569 if( p->zSql ) sqlite3DbNNFreeNN(db, p->zSql); 3570 #ifdef SQLITE_ENABLE_NORMALIZE 3571 sqlite3DbFree(db, p->zNormSql); 3572 { 3573 DblquoteStr *pThis, *pNext; 3574 for(pThis=p->pDblStr; pThis; pThis=pNext){ 3575 pNext = pThis->pNextStr; 3576 sqlite3DbFree(db, pThis); 3577 } 3578 } 3579 #endif 3580 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3581 { 3582 int i; 3583 for(i=0; i<p->nScan; i++){ 3584 sqlite3DbFree(db, p->aScan[i].zName); 3585 } 3586 sqlite3DbFree(db, p->aScan); 3587 } 3588 #endif 3589 } 3590 3591 /* 3592 ** Delete an entire VDBE. 3593 */ 3594 void sqlite3VdbeDelete(Vdbe *p){ 3595 sqlite3 *db; 3596 3597 assert( p!=0 ); 3598 db = p->db; 3599 assert( db!=0 ); 3600 assert( sqlite3_mutex_held(db->mutex) ); 3601 sqlite3VdbeClearObject(db, p); 3602 if( db->pnBytesFreed==0 ){ 3603 assert( p->ppVPrev!=0 ); 3604 *p->ppVPrev = p->pVNext; 3605 if( p->pVNext ){ 3606 p->pVNext->ppVPrev = p->ppVPrev; 3607 } 3608 } 3609 sqlite3DbNNFreeNN(db, p); 3610 } 3611 3612 /* 3613 ** The cursor "p" has a pending seek operation that has not yet been 3614 ** carried out. Seek the cursor now. If an error occurs, return 3615 ** the appropriate error code. 3616 */ 3617 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){ 3618 int res, rc; 3619 #ifdef SQLITE_TEST 3620 extern int sqlite3_search_count; 3621 #endif 3622 assert( p->deferredMoveto ); 3623 assert( p->isTable ); 3624 assert( p->eCurType==CURTYPE_BTREE ); 3625 rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res); 3626 if( rc ) return rc; 3627 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3628 #ifdef SQLITE_TEST 3629 sqlite3_search_count++; 3630 #endif 3631 p->deferredMoveto = 0; 3632 p->cacheStatus = CACHE_STALE; 3633 return SQLITE_OK; 3634 } 3635 3636 /* 3637 ** Something has moved cursor "p" out of place. Maybe the row it was 3638 ** pointed to was deleted out from under it. Or maybe the btree was 3639 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3640 ** is supposed to be pointing. If the row was deleted out from under the 3641 ** cursor, set the cursor to point to a NULL row. 3642 */ 3643 int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){ 3644 int isDifferentRow, rc; 3645 assert( p->eCurType==CURTYPE_BTREE ); 3646 assert( p->uc.pCursor!=0 ); 3647 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3648 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3649 p->cacheStatus = CACHE_STALE; 3650 if( isDifferentRow ) p->nullRow = 1; 3651 return rc; 3652 } 3653 3654 /* 3655 ** Check to ensure that the cursor is valid. Restore the cursor 3656 ** if need be. Return any I/O error from the restore operation. 3657 */ 3658 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3659 assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) ); 3660 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3661 return sqlite3VdbeHandleMovedCursor(p); 3662 } 3663 return SQLITE_OK; 3664 } 3665 3666 /* 3667 ** The following functions: 3668 ** 3669 ** sqlite3VdbeSerialType() 3670 ** sqlite3VdbeSerialTypeLen() 3671 ** sqlite3VdbeSerialLen() 3672 ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02 3673 ** sqlite3VdbeSerialGet() 3674 ** 3675 ** encapsulate the code that serializes values for storage in SQLite 3676 ** data and index records. Each serialized value consists of a 3677 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3678 ** integer, stored as a varint. 3679 ** 3680 ** In an SQLite index record, the serial type is stored directly before 3681 ** the blob of data that it corresponds to. In a table record, all serial 3682 ** types are stored at the start of the record, and the blobs of data at 3683 ** the end. Hence these functions allow the caller to handle the 3684 ** serial-type and data blob separately. 3685 ** 3686 ** The following table describes the various storage classes for data: 3687 ** 3688 ** serial type bytes of data type 3689 ** -------------- --------------- --------------- 3690 ** 0 0 NULL 3691 ** 1 1 signed integer 3692 ** 2 2 signed integer 3693 ** 3 3 signed integer 3694 ** 4 4 signed integer 3695 ** 5 6 signed integer 3696 ** 6 8 signed integer 3697 ** 7 8 IEEE float 3698 ** 8 0 Integer constant 0 3699 ** 9 0 Integer constant 1 3700 ** 10,11 reserved for expansion 3701 ** N>=12 and even (N-12)/2 BLOB 3702 ** N>=13 and odd (N-13)/2 text 3703 ** 3704 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3705 ** of SQLite will not understand those serial types. 3706 */ 3707 3708 #if 0 /* Inlined into the OP_MakeRecord opcode */ 3709 /* 3710 ** Return the serial-type for the value stored in pMem. 3711 ** 3712 ** This routine might convert a large MEM_IntReal value into MEM_Real. 3713 ** 3714 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord 3715 ** opcode in the byte-code engine. But by moving this routine in-line, we 3716 ** can omit some redundant tests and make that opcode a lot faster. So 3717 ** this routine is now only used by the STAT3 logic and STAT3 support has 3718 ** ended. The code is kept here for historical reference only. 3719 */ 3720 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3721 int flags = pMem->flags; 3722 u32 n; 3723 3724 assert( pLen!=0 ); 3725 if( flags&MEM_Null ){ 3726 *pLen = 0; 3727 return 0; 3728 } 3729 if( flags&(MEM_Int|MEM_IntReal) ){ 3730 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3731 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3732 i64 i = pMem->u.i; 3733 u64 u; 3734 testcase( flags & MEM_Int ); 3735 testcase( flags & MEM_IntReal ); 3736 if( i<0 ){ 3737 u = ~i; 3738 }else{ 3739 u = i; 3740 } 3741 if( u<=127 ){ 3742 if( (i&1)==i && file_format>=4 ){ 3743 *pLen = 0; 3744 return 8+(u32)u; 3745 }else{ 3746 *pLen = 1; 3747 return 1; 3748 } 3749 } 3750 if( u<=32767 ){ *pLen = 2; return 2; } 3751 if( u<=8388607 ){ *pLen = 3; return 3; } 3752 if( u<=2147483647 ){ *pLen = 4; return 4; } 3753 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3754 *pLen = 8; 3755 if( flags&MEM_IntReal ){ 3756 /* If the value is IntReal and is going to take up 8 bytes to store 3757 ** as an integer, then we might as well make it an 8-byte floating 3758 ** point value */ 3759 pMem->u.r = (double)pMem->u.i; 3760 pMem->flags &= ~MEM_IntReal; 3761 pMem->flags |= MEM_Real; 3762 return 7; 3763 } 3764 return 6; 3765 } 3766 if( flags&MEM_Real ){ 3767 *pLen = 8; 3768 return 7; 3769 } 3770 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3771 assert( pMem->n>=0 ); 3772 n = (u32)pMem->n; 3773 if( flags & MEM_Zero ){ 3774 n += pMem->u.nZero; 3775 } 3776 *pLen = n; 3777 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3778 } 3779 #endif /* inlined into OP_MakeRecord */ 3780 3781 /* 3782 ** The sizes for serial types less than 128 3783 */ 3784 const u8 sqlite3SmallTypeSizes[128] = { 3785 /* 0 1 2 3 4 5 6 7 8 9 */ 3786 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3787 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3788 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3789 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3790 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3791 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3792 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3793 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3794 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3795 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3796 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3797 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3798 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3799 }; 3800 3801 /* 3802 ** Return the length of the data corresponding to the supplied serial-type. 3803 */ 3804 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3805 if( serial_type>=128 ){ 3806 return (serial_type-12)/2; 3807 }else{ 3808 assert( serial_type<12 3809 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3810 return sqlite3SmallTypeSizes[serial_type]; 3811 } 3812 } 3813 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3814 assert( serial_type<128 ); 3815 return sqlite3SmallTypeSizes[serial_type]; 3816 } 3817 3818 /* 3819 ** If we are on an architecture with mixed-endian floating 3820 ** points (ex: ARM7) then swap the lower 4 bytes with the 3821 ** upper 4 bytes. Return the result. 3822 ** 3823 ** For most architectures, this is a no-op. 3824 ** 3825 ** (later): It is reported to me that the mixed-endian problem 3826 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3827 ** that early versions of GCC stored the two words of a 64-bit 3828 ** float in the wrong order. And that error has been propagated 3829 ** ever since. The blame is not necessarily with GCC, though. 3830 ** GCC might have just copying the problem from a prior compiler. 3831 ** I am also told that newer versions of GCC that follow a different 3832 ** ABI get the byte order right. 3833 ** 3834 ** Developers using SQLite on an ARM7 should compile and run their 3835 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3836 ** enabled, some asserts below will ensure that the byte order of 3837 ** floating point values is correct. 3838 ** 3839 ** (2007-08-30) Frank van Vugt has studied this problem closely 3840 ** and has send his findings to the SQLite developers. Frank 3841 ** writes that some Linux kernels offer floating point hardware 3842 ** emulation that uses only 32-bit mantissas instead of a full 3843 ** 48-bits as required by the IEEE standard. (This is the 3844 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3845 ** byte swapping becomes very complicated. To avoid problems, 3846 ** the necessary byte swapping is carried out using a 64-bit integer 3847 ** rather than a 64-bit float. Frank assures us that the code here 3848 ** works for him. We, the developers, have no way to independently 3849 ** verify this, but Frank seems to know what he is talking about 3850 ** so we trust him. 3851 */ 3852 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3853 u64 sqlite3FloatSwap(u64 in){ 3854 union { 3855 u64 r; 3856 u32 i[2]; 3857 } u; 3858 u32 t; 3859 3860 u.r = in; 3861 t = u.i[0]; 3862 u.i[0] = u.i[1]; 3863 u.i[1] = t; 3864 return u.r; 3865 } 3866 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */ 3867 3868 3869 /* Input "x" is a sequence of unsigned characters that represent a 3870 ** big-endian integer. Return the equivalent native integer 3871 */ 3872 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3873 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3874 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3875 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3876 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3877 3878 /* 3879 ** Deserialize the data blob pointed to by buf as serial type serial_type 3880 ** and store the result in pMem. 3881 ** 3882 ** This function is implemented as two separate routines for performance. 3883 ** The few cases that require local variables are broken out into a separate 3884 ** routine so that in most cases the overhead of moving the stack pointer 3885 ** is avoided. 3886 */ 3887 static void serialGet( 3888 const unsigned char *buf, /* Buffer to deserialize from */ 3889 u32 serial_type, /* Serial type to deserialize */ 3890 Mem *pMem /* Memory cell to write value into */ 3891 ){ 3892 u64 x = FOUR_BYTE_UINT(buf); 3893 u32 y = FOUR_BYTE_UINT(buf+4); 3894 x = (x<<32) + y; 3895 if( serial_type==6 ){ 3896 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3897 ** twos-complement integer. */ 3898 pMem->u.i = *(i64*)&x; 3899 pMem->flags = MEM_Int; 3900 testcase( pMem->u.i<0 ); 3901 }else{ 3902 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3903 ** floating point number. */ 3904 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3905 /* Verify that integers and floating point values use the same 3906 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3907 ** defined that 64-bit floating point values really are mixed 3908 ** endian. 3909 */ 3910 static const u64 t1 = ((u64)0x3ff00000)<<32; 3911 static const double r1 = 1.0; 3912 u64 t2 = t1; 3913 swapMixedEndianFloat(t2); 3914 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3915 #endif 3916 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3917 swapMixedEndianFloat(x); 3918 memcpy(&pMem->u.r, &x, sizeof(x)); 3919 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real; 3920 } 3921 } 3922 void sqlite3VdbeSerialGet( 3923 const unsigned char *buf, /* Buffer to deserialize from */ 3924 u32 serial_type, /* Serial type to deserialize */ 3925 Mem *pMem /* Memory cell to write value into */ 3926 ){ 3927 switch( serial_type ){ 3928 case 10: { /* Internal use only: NULL with virtual table 3929 ** UPDATE no-change flag set */ 3930 pMem->flags = MEM_Null|MEM_Zero; 3931 pMem->n = 0; 3932 pMem->u.nZero = 0; 3933 return; 3934 } 3935 case 11: /* Reserved for future use */ 3936 case 0: { /* Null */ 3937 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3938 pMem->flags = MEM_Null; 3939 return; 3940 } 3941 case 1: { 3942 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3943 ** integer. */ 3944 pMem->u.i = ONE_BYTE_INT(buf); 3945 pMem->flags = MEM_Int; 3946 testcase( pMem->u.i<0 ); 3947 return; 3948 } 3949 case 2: { /* 2-byte signed integer */ 3950 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3951 ** twos-complement integer. */ 3952 pMem->u.i = TWO_BYTE_INT(buf); 3953 pMem->flags = MEM_Int; 3954 testcase( pMem->u.i<0 ); 3955 return; 3956 } 3957 case 3: { /* 3-byte signed integer */ 3958 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3959 ** twos-complement integer. */ 3960 pMem->u.i = THREE_BYTE_INT(buf); 3961 pMem->flags = MEM_Int; 3962 testcase( pMem->u.i<0 ); 3963 return; 3964 } 3965 case 4: { /* 4-byte signed integer */ 3966 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3967 ** twos-complement integer. */ 3968 pMem->u.i = FOUR_BYTE_INT(buf); 3969 #ifdef __HP_cc 3970 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3971 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3972 #endif 3973 pMem->flags = MEM_Int; 3974 testcase( pMem->u.i<0 ); 3975 return; 3976 } 3977 case 5: { /* 6-byte signed integer */ 3978 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3979 ** twos-complement integer. */ 3980 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3981 pMem->flags = MEM_Int; 3982 testcase( pMem->u.i<0 ); 3983 return; 3984 } 3985 case 6: /* 8-byte signed integer */ 3986 case 7: { /* IEEE floating point */ 3987 /* These use local variables, so do them in a separate routine 3988 ** to avoid having to move the frame pointer in the common case */ 3989 serialGet(buf,serial_type,pMem); 3990 return; 3991 } 3992 case 8: /* Integer 0 */ 3993 case 9: { /* Integer 1 */ 3994 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3995 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3996 pMem->u.i = serial_type-8; 3997 pMem->flags = MEM_Int; 3998 return; 3999 } 4000 default: { 4001 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 4002 ** length. 4003 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 4004 ** (N-13)/2 bytes in length. */ 4005 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 4006 pMem->z = (char *)buf; 4007 pMem->n = (serial_type-12)/2; 4008 pMem->flags = aFlag[serial_type&1]; 4009 return; 4010 } 4011 } 4012 return; 4013 } 4014 /* 4015 ** This routine is used to allocate sufficient space for an UnpackedRecord 4016 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 4017 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 4018 ** 4019 ** The space is either allocated using sqlite3DbMallocRaw() or from within 4020 ** the unaligned buffer passed via the second and third arguments (presumably 4021 ** stack space). If the former, then *ppFree is set to a pointer that should 4022 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 4023 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 4024 ** before returning. 4025 ** 4026 ** If an OOM error occurs, NULL is returned. 4027 */ 4028 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 4029 KeyInfo *pKeyInfo /* Description of the record */ 4030 ){ 4031 UnpackedRecord *p; /* Unpacked record to return */ 4032 int nByte; /* Number of bytes required for *p */ 4033 nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 4034 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 4035 if( !p ) return 0; 4036 p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))]; 4037 assert( pKeyInfo->aSortFlags!=0 ); 4038 p->pKeyInfo = pKeyInfo; 4039 p->nField = pKeyInfo->nKeyField + 1; 4040 return p; 4041 } 4042 4043 /* 4044 ** Given the nKey-byte encoding of a record in pKey[], populate the 4045 ** UnpackedRecord structure indicated by the fourth argument with the 4046 ** contents of the decoded record. 4047 */ 4048 void sqlite3VdbeRecordUnpack( 4049 KeyInfo *pKeyInfo, /* Information about the record format */ 4050 int nKey, /* Size of the binary record */ 4051 const void *pKey, /* The binary record */ 4052 UnpackedRecord *p /* Populate this structure before returning. */ 4053 ){ 4054 const unsigned char *aKey = (const unsigned char *)pKey; 4055 u32 d; 4056 u32 idx; /* Offset in aKey[] to read from */ 4057 u16 u; /* Unsigned loop counter */ 4058 u32 szHdr; 4059 Mem *pMem = p->aMem; 4060 4061 p->default_rc = 0; 4062 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 4063 idx = getVarint32(aKey, szHdr); 4064 d = szHdr; 4065 u = 0; 4066 while( idx<szHdr && d<=(u32)nKey ){ 4067 u32 serial_type; 4068 4069 idx += getVarint32(&aKey[idx], serial_type); 4070 pMem->enc = pKeyInfo->enc; 4071 pMem->db = pKeyInfo->db; 4072 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 4073 pMem->szMalloc = 0; 4074 pMem->z = 0; 4075 sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 4076 d += sqlite3VdbeSerialTypeLen(serial_type); 4077 pMem++; 4078 if( (++u)>=p->nField ) break; 4079 } 4080 if( d>(u32)nKey && u ){ 4081 assert( CORRUPT_DB ); 4082 /* In a corrupt record entry, the last pMem might have been set up using 4083 ** uninitialized memory. Overwrite its value with NULL, to prevent 4084 ** warnings from MSAN. */ 4085 sqlite3VdbeMemSetNull(pMem-1); 4086 } 4087 assert( u<=pKeyInfo->nKeyField + 1 ); 4088 p->nField = u; 4089 } 4090 4091 #ifdef SQLITE_DEBUG 4092 /* 4093 ** This function compares two index or table record keys in the same way 4094 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 4095 ** this function deserializes and compares values using the 4096 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 4097 ** in assert() statements to ensure that the optimized code in 4098 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 4099 ** 4100 ** Return true if the result of comparison is equivalent to desiredResult. 4101 ** Return false if there is a disagreement. 4102 */ 4103 static int vdbeRecordCompareDebug( 4104 int nKey1, const void *pKey1, /* Left key */ 4105 const UnpackedRecord *pPKey2, /* Right key */ 4106 int desiredResult /* Correct answer */ 4107 ){ 4108 u32 d1; /* Offset into aKey[] of next data element */ 4109 u32 idx1; /* Offset into aKey[] of next header element */ 4110 u32 szHdr1; /* Number of bytes in header */ 4111 int i = 0; 4112 int rc = 0; 4113 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4114 KeyInfo *pKeyInfo; 4115 Mem mem1; 4116 4117 pKeyInfo = pPKey2->pKeyInfo; 4118 if( pKeyInfo->db==0 ) return 1; 4119 mem1.enc = pKeyInfo->enc; 4120 mem1.db = pKeyInfo->db; 4121 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 4122 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4123 4124 /* Compilers may complain that mem1.u.i is potentially uninitialized. 4125 ** We could initialize it, as shown here, to silence those complaints. 4126 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 4127 ** the unnecessary initialization has a measurable negative performance 4128 ** impact, since this routine is a very high runner. And so, we choose 4129 ** to ignore the compiler warnings and leave this variable uninitialized. 4130 */ 4131 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 4132 4133 idx1 = getVarint32(aKey1, szHdr1); 4134 if( szHdr1>98307 ) return SQLITE_CORRUPT; 4135 d1 = szHdr1; 4136 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 4137 assert( pKeyInfo->aSortFlags!=0 ); 4138 assert( pKeyInfo->nKeyField>0 ); 4139 assert( idx1<=szHdr1 || CORRUPT_DB ); 4140 do{ 4141 u32 serial_type1; 4142 4143 /* Read the serial types for the next element in each key. */ 4144 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 4145 4146 /* Verify that there is enough key space remaining to avoid 4147 ** a buffer overread. The "d1+serial_type1+2" subexpression will 4148 ** always be greater than or equal to the amount of required key space. 4149 ** Use that approximation to avoid the more expensive call to 4150 ** sqlite3VdbeSerialTypeLen() in the common case. 4151 */ 4152 if( d1+(u64)serial_type1+2>(u64)nKey1 4153 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 4154 ){ 4155 break; 4156 } 4157 4158 /* Extract the values to be compared. 4159 */ 4160 sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 4161 d1 += sqlite3VdbeSerialTypeLen(serial_type1); 4162 4163 /* Do the comparison 4164 */ 4165 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], 4166 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0); 4167 if( rc!=0 ){ 4168 assert( mem1.szMalloc==0 ); /* See comment below */ 4169 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 4170 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null)) 4171 ){ 4172 rc = -rc; 4173 } 4174 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){ 4175 rc = -rc; /* Invert the result for DESC sort order. */ 4176 } 4177 goto debugCompareEnd; 4178 } 4179 i++; 4180 }while( idx1<szHdr1 && i<pPKey2->nField ); 4181 4182 /* No memory allocation is ever used on mem1. Prove this using 4183 ** the following assert(). If the assert() fails, it indicates a 4184 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 4185 */ 4186 assert( mem1.szMalloc==0 ); 4187 4188 /* rc==0 here means that one of the keys ran out of fields and 4189 ** all the fields up to that point were equal. Return the default_rc 4190 ** value. */ 4191 rc = pPKey2->default_rc; 4192 4193 debugCompareEnd: 4194 if( desiredResult==0 && rc==0 ) return 1; 4195 if( desiredResult<0 && rc<0 ) return 1; 4196 if( desiredResult>0 && rc>0 ) return 1; 4197 if( CORRUPT_DB ) return 1; 4198 if( pKeyInfo->db->mallocFailed ) return 1; 4199 return 0; 4200 } 4201 #endif 4202 4203 #ifdef SQLITE_DEBUG 4204 /* 4205 ** Count the number of fields (a.k.a. columns) in the record given by 4206 ** pKey,nKey. The verify that this count is less than or equal to the 4207 ** limit given by pKeyInfo->nAllField. 4208 ** 4209 ** If this constraint is not satisfied, it means that the high-speed 4210 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 4211 ** not work correctly. If this assert() ever fires, it probably means 4212 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 4213 ** incorrectly. 4214 */ 4215 static void vdbeAssertFieldCountWithinLimits( 4216 int nKey, const void *pKey, /* The record to verify */ 4217 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 4218 ){ 4219 int nField = 0; 4220 u32 szHdr; 4221 u32 idx; 4222 u32 notUsed; 4223 const unsigned char *aKey = (const unsigned char*)pKey; 4224 4225 if( CORRUPT_DB ) return; 4226 idx = getVarint32(aKey, szHdr); 4227 assert( nKey>=0 ); 4228 assert( szHdr<=(u32)nKey ); 4229 while( idx<szHdr ){ 4230 idx += getVarint32(aKey+idx, notUsed); 4231 nField++; 4232 } 4233 assert( nField <= pKeyInfo->nAllField ); 4234 } 4235 #else 4236 # define vdbeAssertFieldCountWithinLimits(A,B,C) 4237 #endif 4238 4239 /* 4240 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 4241 ** using the collation sequence pColl. As usual, return a negative , zero 4242 ** or positive value if *pMem1 is less than, equal to or greater than 4243 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 4244 */ 4245 static int vdbeCompareMemString( 4246 const Mem *pMem1, 4247 const Mem *pMem2, 4248 const CollSeq *pColl, 4249 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 4250 ){ 4251 if( pMem1->enc==pColl->enc ){ 4252 /* The strings are already in the correct encoding. Call the 4253 ** comparison function directly */ 4254 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 4255 }else{ 4256 int rc; 4257 const void *v1, *v2; 4258 Mem c1; 4259 Mem c2; 4260 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 4261 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 4262 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 4263 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 4264 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 4265 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 4266 if( (v1==0 || v2==0) ){ 4267 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 4268 rc = 0; 4269 }else{ 4270 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 4271 } 4272 sqlite3VdbeMemReleaseMalloc(&c1); 4273 sqlite3VdbeMemReleaseMalloc(&c2); 4274 return rc; 4275 } 4276 } 4277 4278 /* 4279 ** The input pBlob is guaranteed to be a Blob that is not marked 4280 ** with MEM_Zero. Return true if it could be a zero-blob. 4281 */ 4282 static int isAllZero(const char *z, int n){ 4283 int i; 4284 for(i=0; i<n; i++){ 4285 if( z[i] ) return 0; 4286 } 4287 return 1; 4288 } 4289 4290 /* 4291 ** Compare two blobs. Return negative, zero, or positive if the first 4292 ** is less than, equal to, or greater than the second, respectively. 4293 ** If one blob is a prefix of the other, then the shorter is the lessor. 4294 */ 4295 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 4296 int c; 4297 int n1 = pB1->n; 4298 int n2 = pB2->n; 4299 4300 /* It is possible to have a Blob value that has some non-zero content 4301 ** followed by zero content. But that only comes up for Blobs formed 4302 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 4303 ** sqlite3MemCompare(). */ 4304 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 4305 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 4306 4307 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 4308 if( pB1->flags & pB2->flags & MEM_Zero ){ 4309 return pB1->u.nZero - pB2->u.nZero; 4310 }else if( pB1->flags & MEM_Zero ){ 4311 if( !isAllZero(pB2->z, pB2->n) ) return -1; 4312 return pB1->u.nZero - n2; 4313 }else{ 4314 if( !isAllZero(pB1->z, pB1->n) ) return +1; 4315 return n1 - pB2->u.nZero; 4316 } 4317 } 4318 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 4319 if( c ) return c; 4320 return n1 - n2; 4321 } 4322 4323 /* 4324 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 4325 ** number. Return negative, zero, or positive if the first (i64) is less than, 4326 ** equal to, or greater than the second (double). 4327 */ 4328 int sqlite3IntFloatCompare(i64 i, double r){ 4329 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 4330 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 4331 testcase( x<r ); 4332 testcase( x>r ); 4333 testcase( x==r ); 4334 if( x<r ) return -1; 4335 if( x>r ) return +1; /*NO_TEST*/ /* work around bugs in gcov */ 4336 return 0; /*NO_TEST*/ /* work around bugs in gcov */ 4337 }else{ 4338 i64 y; 4339 double s; 4340 if( r<-9223372036854775808.0 ) return +1; 4341 if( r>=9223372036854775808.0 ) return -1; 4342 y = (i64)r; 4343 if( i<y ) return -1; 4344 if( i>y ) return +1; 4345 s = (double)i; 4346 if( s<r ) return -1; 4347 if( s>r ) return +1; 4348 return 0; 4349 } 4350 } 4351 4352 /* 4353 ** Compare the values contained by the two memory cells, returning 4354 ** negative, zero or positive if pMem1 is less than, equal to, or greater 4355 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 4356 ** and reals) sorted numerically, followed by text ordered by the collating 4357 ** sequence pColl and finally blob's ordered by memcmp(). 4358 ** 4359 ** Two NULL values are considered equal by this function. 4360 */ 4361 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 4362 int f1, f2; 4363 int combined_flags; 4364 4365 f1 = pMem1->flags; 4366 f2 = pMem2->flags; 4367 combined_flags = f1|f2; 4368 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); 4369 4370 /* If one value is NULL, it is less than the other. If both values 4371 ** are NULL, return 0. 4372 */ 4373 if( combined_flags&MEM_Null ){ 4374 return (f2&MEM_Null) - (f1&MEM_Null); 4375 } 4376 4377 /* At least one of the two values is a number 4378 */ 4379 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ 4380 testcase( combined_flags & MEM_Int ); 4381 testcase( combined_flags & MEM_Real ); 4382 testcase( combined_flags & MEM_IntReal ); 4383 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ 4384 testcase( f1 & f2 & MEM_Int ); 4385 testcase( f1 & f2 & MEM_IntReal ); 4386 if( pMem1->u.i < pMem2->u.i ) return -1; 4387 if( pMem1->u.i > pMem2->u.i ) return +1; 4388 return 0; 4389 } 4390 if( (f1 & f2 & MEM_Real)!=0 ){ 4391 if( pMem1->u.r < pMem2->u.r ) return -1; 4392 if( pMem1->u.r > pMem2->u.r ) return +1; 4393 return 0; 4394 } 4395 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ 4396 testcase( f1 & MEM_Int ); 4397 testcase( f1 & MEM_IntReal ); 4398 if( (f2&MEM_Real)!=0 ){ 4399 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 4400 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4401 if( pMem1->u.i < pMem2->u.i ) return -1; 4402 if( pMem1->u.i > pMem2->u.i ) return +1; 4403 return 0; 4404 }else{ 4405 return -1; 4406 } 4407 } 4408 if( (f1&MEM_Real)!=0 ){ 4409 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4410 testcase( f2 & MEM_Int ); 4411 testcase( f2 & MEM_IntReal ); 4412 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 4413 }else{ 4414 return -1; 4415 } 4416 } 4417 return +1; 4418 } 4419 4420 /* If one value is a string and the other is a blob, the string is less. 4421 ** If both are strings, compare using the collating functions. 4422 */ 4423 if( combined_flags&MEM_Str ){ 4424 if( (f1 & MEM_Str)==0 ){ 4425 return 1; 4426 } 4427 if( (f2 & MEM_Str)==0 ){ 4428 return -1; 4429 } 4430 4431 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 4432 assert( pMem1->enc==SQLITE_UTF8 || 4433 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 4434 4435 /* The collation sequence must be defined at this point, even if 4436 ** the user deletes the collation sequence after the vdbe program is 4437 ** compiled (this was not always the case). 4438 */ 4439 assert( !pColl || pColl->xCmp ); 4440 4441 if( pColl ){ 4442 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 4443 } 4444 /* If a NULL pointer was passed as the collate function, fall through 4445 ** to the blob case and use memcmp(). */ 4446 } 4447 4448 /* Both values must be blobs. Compare using memcmp(). */ 4449 return sqlite3BlobCompare(pMem1, pMem2); 4450 } 4451 4452 4453 /* 4454 ** The first argument passed to this function is a serial-type that 4455 ** corresponds to an integer - all values between 1 and 9 inclusive 4456 ** except 7. The second points to a buffer containing an integer value 4457 ** serialized according to serial_type. This function deserializes 4458 ** and returns the value. 4459 */ 4460 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 4461 u32 y; 4462 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 4463 switch( serial_type ){ 4464 case 0: 4465 case 1: 4466 testcase( aKey[0]&0x80 ); 4467 return ONE_BYTE_INT(aKey); 4468 case 2: 4469 testcase( aKey[0]&0x80 ); 4470 return TWO_BYTE_INT(aKey); 4471 case 3: 4472 testcase( aKey[0]&0x80 ); 4473 return THREE_BYTE_INT(aKey); 4474 case 4: { 4475 testcase( aKey[0]&0x80 ); 4476 y = FOUR_BYTE_UINT(aKey); 4477 return (i64)*(int*)&y; 4478 } 4479 case 5: { 4480 testcase( aKey[0]&0x80 ); 4481 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4482 } 4483 case 6: { 4484 u64 x = FOUR_BYTE_UINT(aKey); 4485 testcase( aKey[0]&0x80 ); 4486 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4487 return (i64)*(i64*)&x; 4488 } 4489 } 4490 4491 return (serial_type - 8); 4492 } 4493 4494 /* 4495 ** This function compares the two table rows or index records 4496 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 4497 ** or positive integer if key1 is less than, equal to or 4498 ** greater than key2. The {nKey1, pKey1} key must be a blob 4499 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 4500 ** key must be a parsed key such as obtained from 4501 ** sqlite3VdbeParseRecord. 4502 ** 4503 ** If argument bSkip is non-zero, it is assumed that the caller has already 4504 ** determined that the first fields of the keys are equal. 4505 ** 4506 ** Key1 and Key2 do not have to contain the same number of fields. If all 4507 ** fields that appear in both keys are equal, then pPKey2->default_rc is 4508 ** returned. 4509 ** 4510 ** If database corruption is discovered, set pPKey2->errCode to 4511 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 4512 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 4513 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 4514 */ 4515 int sqlite3VdbeRecordCompareWithSkip( 4516 int nKey1, const void *pKey1, /* Left key */ 4517 UnpackedRecord *pPKey2, /* Right key */ 4518 int bSkip /* If true, skip the first field */ 4519 ){ 4520 u32 d1; /* Offset into aKey[] of next data element */ 4521 int i; /* Index of next field to compare */ 4522 u32 szHdr1; /* Size of record header in bytes */ 4523 u32 idx1; /* Offset of first type in header */ 4524 int rc = 0; /* Return value */ 4525 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 4526 KeyInfo *pKeyInfo; 4527 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4528 Mem mem1; 4529 4530 /* If bSkip is true, then the caller has already determined that the first 4531 ** two elements in the keys are equal. Fix the various stack variables so 4532 ** that this routine begins comparing at the second field. */ 4533 if( bSkip ){ 4534 u32 s1 = aKey1[1]; 4535 if( s1<0x80 ){ 4536 idx1 = 2; 4537 }else{ 4538 idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1); 4539 } 4540 szHdr1 = aKey1[0]; 4541 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 4542 i = 1; 4543 pRhs++; 4544 }else{ 4545 if( (szHdr1 = aKey1[0])<0x80 ){ 4546 idx1 = 1; 4547 }else{ 4548 idx1 = sqlite3GetVarint32(aKey1, &szHdr1); 4549 } 4550 d1 = szHdr1; 4551 i = 0; 4552 } 4553 if( d1>(unsigned)nKey1 ){ 4554 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4555 return 0; /* Corruption */ 4556 } 4557 4558 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4559 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 4560 || CORRUPT_DB ); 4561 assert( pPKey2->pKeyInfo->aSortFlags!=0 ); 4562 assert( pPKey2->pKeyInfo->nKeyField>0 ); 4563 assert( idx1<=szHdr1 || CORRUPT_DB ); 4564 do{ 4565 u32 serial_type; 4566 4567 /* RHS is an integer */ 4568 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ 4569 testcase( pRhs->flags & MEM_Int ); 4570 testcase( pRhs->flags & MEM_IntReal ); 4571 serial_type = aKey1[idx1]; 4572 testcase( serial_type==12 ); 4573 if( serial_type>=10 ){ 4574 rc = +1; 4575 }else if( serial_type==0 ){ 4576 rc = -1; 4577 }else if( serial_type==7 ){ 4578 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4579 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4580 }else{ 4581 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4582 i64 rhs = pRhs->u.i; 4583 if( lhs<rhs ){ 4584 rc = -1; 4585 }else if( lhs>rhs ){ 4586 rc = +1; 4587 } 4588 } 4589 } 4590 4591 /* RHS is real */ 4592 else if( pRhs->flags & MEM_Real ){ 4593 serial_type = aKey1[idx1]; 4594 if( serial_type>=10 ){ 4595 /* Serial types 12 or greater are strings and blobs (greater than 4596 ** numbers). Types 10 and 11 are currently "reserved for future 4597 ** use", so it doesn't really matter what the results of comparing 4598 ** them to numberic values are. */ 4599 rc = +1; 4600 }else if( serial_type==0 ){ 4601 rc = -1; 4602 }else{ 4603 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4604 if( serial_type==7 ){ 4605 if( mem1.u.r<pRhs->u.r ){ 4606 rc = -1; 4607 }else if( mem1.u.r>pRhs->u.r ){ 4608 rc = +1; 4609 } 4610 }else{ 4611 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4612 } 4613 } 4614 } 4615 4616 /* RHS is a string */ 4617 else if( pRhs->flags & MEM_Str ){ 4618 getVarint32NR(&aKey1[idx1], serial_type); 4619 testcase( serial_type==12 ); 4620 if( serial_type<12 ){ 4621 rc = -1; 4622 }else if( !(serial_type & 0x01) ){ 4623 rc = +1; 4624 }else{ 4625 mem1.n = (serial_type - 12) / 2; 4626 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4627 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4628 if( (d1+mem1.n) > (unsigned)nKey1 4629 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i 4630 ){ 4631 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4632 return 0; /* Corruption */ 4633 }else if( pKeyInfo->aColl[i] ){ 4634 mem1.enc = pKeyInfo->enc; 4635 mem1.db = pKeyInfo->db; 4636 mem1.flags = MEM_Str; 4637 mem1.z = (char*)&aKey1[d1]; 4638 rc = vdbeCompareMemString( 4639 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4640 ); 4641 }else{ 4642 int nCmp = MIN(mem1.n, pRhs->n); 4643 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4644 if( rc==0 ) rc = mem1.n - pRhs->n; 4645 } 4646 } 4647 } 4648 4649 /* RHS is a blob */ 4650 else if( pRhs->flags & MEM_Blob ){ 4651 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4652 getVarint32NR(&aKey1[idx1], serial_type); 4653 testcase( serial_type==12 ); 4654 if( serial_type<12 || (serial_type & 0x01) ){ 4655 rc = -1; 4656 }else{ 4657 int nStr = (serial_type - 12) / 2; 4658 testcase( (d1+nStr)==(unsigned)nKey1 ); 4659 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4660 if( (d1+nStr) > (unsigned)nKey1 ){ 4661 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4662 return 0; /* Corruption */ 4663 }else if( pRhs->flags & MEM_Zero ){ 4664 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4665 rc = 1; 4666 }else{ 4667 rc = nStr - pRhs->u.nZero; 4668 } 4669 }else{ 4670 int nCmp = MIN(nStr, pRhs->n); 4671 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4672 if( rc==0 ) rc = nStr - pRhs->n; 4673 } 4674 } 4675 } 4676 4677 /* RHS is null */ 4678 else{ 4679 serial_type = aKey1[idx1]; 4680 rc = (serial_type!=0); 4681 } 4682 4683 if( rc!=0 ){ 4684 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i]; 4685 if( sortFlags ){ 4686 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0 4687 || ((sortFlags & KEYINFO_ORDER_DESC) 4688 !=(serial_type==0 || (pRhs->flags&MEM_Null))) 4689 ){ 4690 rc = -rc; 4691 } 4692 } 4693 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4694 assert( mem1.szMalloc==0 ); /* See comment below */ 4695 return rc; 4696 } 4697 4698 i++; 4699 if( i==pPKey2->nField ) break; 4700 pRhs++; 4701 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4702 idx1 += sqlite3VarintLen(serial_type); 4703 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 ); 4704 4705 /* No memory allocation is ever used on mem1. Prove this using 4706 ** the following assert(). If the assert() fails, it indicates a 4707 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4708 assert( mem1.szMalloc==0 ); 4709 4710 /* rc==0 here means that one or both of the keys ran out of fields and 4711 ** all the fields up to that point were equal. Return the default_rc 4712 ** value. */ 4713 assert( CORRUPT_DB 4714 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4715 || pPKey2->pKeyInfo->db->mallocFailed 4716 ); 4717 pPKey2->eqSeen = 1; 4718 return pPKey2->default_rc; 4719 } 4720 int sqlite3VdbeRecordCompare( 4721 int nKey1, const void *pKey1, /* Left key */ 4722 UnpackedRecord *pPKey2 /* Right key */ 4723 ){ 4724 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4725 } 4726 4727 4728 /* 4729 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4730 ** that (a) the first field of pPKey2 is an integer, and (b) the 4731 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4732 ** byte (i.e. is less than 128). 4733 ** 4734 ** To avoid concerns about buffer overreads, this routine is only used 4735 ** on schemas where the maximum valid header size is 63 bytes or less. 4736 */ 4737 static int vdbeRecordCompareInt( 4738 int nKey1, const void *pKey1, /* Left key */ 4739 UnpackedRecord *pPKey2 /* Right key */ 4740 ){ 4741 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4742 int serial_type = ((const u8*)pKey1)[1]; 4743 int res; 4744 u32 y; 4745 u64 x; 4746 i64 v; 4747 i64 lhs; 4748 4749 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4750 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4751 switch( serial_type ){ 4752 case 1: { /* 1-byte signed integer */ 4753 lhs = ONE_BYTE_INT(aKey); 4754 testcase( lhs<0 ); 4755 break; 4756 } 4757 case 2: { /* 2-byte signed integer */ 4758 lhs = TWO_BYTE_INT(aKey); 4759 testcase( lhs<0 ); 4760 break; 4761 } 4762 case 3: { /* 3-byte signed integer */ 4763 lhs = THREE_BYTE_INT(aKey); 4764 testcase( lhs<0 ); 4765 break; 4766 } 4767 case 4: { /* 4-byte signed integer */ 4768 y = FOUR_BYTE_UINT(aKey); 4769 lhs = (i64)*(int*)&y; 4770 testcase( lhs<0 ); 4771 break; 4772 } 4773 case 5: { /* 6-byte signed integer */ 4774 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4775 testcase( lhs<0 ); 4776 break; 4777 } 4778 case 6: { /* 8-byte signed integer */ 4779 x = FOUR_BYTE_UINT(aKey); 4780 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4781 lhs = *(i64*)&x; 4782 testcase( lhs<0 ); 4783 break; 4784 } 4785 case 8: 4786 lhs = 0; 4787 break; 4788 case 9: 4789 lhs = 1; 4790 break; 4791 4792 /* This case could be removed without changing the results of running 4793 ** this code. Including it causes gcc to generate a faster switch 4794 ** statement (since the range of switch targets now starts at zero and 4795 ** is contiguous) but does not cause any duplicate code to be generated 4796 ** (as gcc is clever enough to combine the two like cases). Other 4797 ** compilers might be similar. */ 4798 case 0: case 7: 4799 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4800 4801 default: 4802 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4803 } 4804 4805 assert( pPKey2->u.i == pPKey2->aMem[0].u.i ); 4806 v = pPKey2->u.i; 4807 if( v>lhs ){ 4808 res = pPKey2->r1; 4809 }else if( v<lhs ){ 4810 res = pPKey2->r2; 4811 }else if( pPKey2->nField>1 ){ 4812 /* The first fields of the two keys are equal. Compare the trailing 4813 ** fields. */ 4814 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4815 }else{ 4816 /* The first fields of the two keys are equal and there are no trailing 4817 ** fields. Return pPKey2->default_rc in this case. */ 4818 res = pPKey2->default_rc; 4819 pPKey2->eqSeen = 1; 4820 } 4821 4822 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4823 return res; 4824 } 4825 4826 /* 4827 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4828 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4829 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4830 ** at the start of (pKey1/nKey1) fits in a single byte. 4831 */ 4832 static int vdbeRecordCompareString( 4833 int nKey1, const void *pKey1, /* Left key */ 4834 UnpackedRecord *pPKey2 /* Right key */ 4835 ){ 4836 const u8 *aKey1 = (const u8*)pKey1; 4837 int serial_type; 4838 int res; 4839 4840 assert( pPKey2->aMem[0].flags & MEM_Str ); 4841 assert( pPKey2->aMem[0].n == pPKey2->n ); 4842 assert( pPKey2->aMem[0].z == pPKey2->u.z ); 4843 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4844 serial_type = (signed char)(aKey1[1]); 4845 4846 vrcs_restart: 4847 if( serial_type<12 ){ 4848 if( serial_type<0 ){ 4849 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type); 4850 if( serial_type>=12 ) goto vrcs_restart; 4851 assert( CORRUPT_DB ); 4852 } 4853 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4854 }else if( !(serial_type & 0x01) ){ 4855 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4856 }else{ 4857 int nCmp; 4858 int nStr; 4859 int szHdr = aKey1[0]; 4860 4861 nStr = (serial_type-12) / 2; 4862 if( (szHdr + nStr) > nKey1 ){ 4863 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4864 return 0; /* Corruption */ 4865 } 4866 nCmp = MIN( pPKey2->n, nStr ); 4867 res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp); 4868 4869 if( res>0 ){ 4870 res = pPKey2->r2; 4871 }else if( res<0 ){ 4872 res = pPKey2->r1; 4873 }else{ 4874 res = nStr - pPKey2->n; 4875 if( res==0 ){ 4876 if( pPKey2->nField>1 ){ 4877 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4878 }else{ 4879 res = pPKey2->default_rc; 4880 pPKey2->eqSeen = 1; 4881 } 4882 }else if( res>0 ){ 4883 res = pPKey2->r2; 4884 }else{ 4885 res = pPKey2->r1; 4886 } 4887 } 4888 } 4889 4890 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4891 || CORRUPT_DB 4892 || pPKey2->pKeyInfo->db->mallocFailed 4893 ); 4894 return res; 4895 } 4896 4897 /* 4898 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4899 ** suitable for comparing serialized records to the unpacked record passed 4900 ** as the only argument. 4901 */ 4902 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4903 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4904 ** that the size-of-header varint that occurs at the start of each record 4905 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4906 ** also assumes that it is safe to overread a buffer by at least the 4907 ** maximum possible legal header size plus 8 bytes. Because there is 4908 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4909 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4910 ** limit the size of the header to 64 bytes in cases where the first field 4911 ** is an integer. 4912 ** 4913 ** The easiest way to enforce this limit is to consider only records with 4914 ** 13 fields or less. If the first field is an integer, the maximum legal 4915 ** header size is (12*5 + 1 + 1) bytes. */ 4916 if( p->pKeyInfo->nAllField<=13 ){ 4917 int flags = p->aMem[0].flags; 4918 if( p->pKeyInfo->aSortFlags[0] ){ 4919 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){ 4920 return sqlite3VdbeRecordCompare; 4921 } 4922 p->r1 = 1; 4923 p->r2 = -1; 4924 }else{ 4925 p->r1 = -1; 4926 p->r2 = 1; 4927 } 4928 if( (flags & MEM_Int) ){ 4929 p->u.i = p->aMem[0].u.i; 4930 return vdbeRecordCompareInt; 4931 } 4932 testcase( flags & MEM_Real ); 4933 testcase( flags & MEM_Null ); 4934 testcase( flags & MEM_Blob ); 4935 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 4936 && p->pKeyInfo->aColl[0]==0 4937 ){ 4938 assert( flags & MEM_Str ); 4939 p->u.z = p->aMem[0].z; 4940 p->n = p->aMem[0].n; 4941 return vdbeRecordCompareString; 4942 } 4943 } 4944 4945 return sqlite3VdbeRecordCompare; 4946 } 4947 4948 /* 4949 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4950 ** Read the rowid (the last field in the record) and store it in *rowid. 4951 ** Return SQLITE_OK if everything works, or an error code otherwise. 4952 ** 4953 ** pCur might be pointing to text obtained from a corrupt database file. 4954 ** So the content cannot be trusted. Do appropriate checks on the content. 4955 */ 4956 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4957 i64 nCellKey = 0; 4958 int rc; 4959 u32 szHdr; /* Size of the header */ 4960 u32 typeRowid; /* Serial type of the rowid */ 4961 u32 lenRowid; /* Size of the rowid */ 4962 Mem m, v; 4963 4964 /* Get the size of the index entry. Only indices entries of less 4965 ** than 2GiB are support - anything large must be database corruption. 4966 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4967 ** this code can safely assume that nCellKey is 32-bits 4968 */ 4969 assert( sqlite3BtreeCursorIsValid(pCur) ); 4970 nCellKey = sqlite3BtreePayloadSize(pCur); 4971 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4972 4973 /* Read in the complete content of the index entry */ 4974 sqlite3VdbeMemInit(&m, db, 0); 4975 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 4976 if( rc ){ 4977 return rc; 4978 } 4979 4980 /* The index entry must begin with a header size */ 4981 getVarint32NR((u8*)m.z, szHdr); 4982 testcase( szHdr==3 ); 4983 testcase( szHdr==(u32)m.n ); 4984 testcase( szHdr>0x7fffffff ); 4985 assert( m.n>=0 ); 4986 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ 4987 goto idx_rowid_corruption; 4988 } 4989 4990 /* The last field of the index should be an integer - the ROWID. 4991 ** Verify that the last entry really is an integer. */ 4992 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid); 4993 testcase( typeRowid==1 ); 4994 testcase( typeRowid==2 ); 4995 testcase( typeRowid==3 ); 4996 testcase( typeRowid==4 ); 4997 testcase( typeRowid==5 ); 4998 testcase( typeRowid==6 ); 4999 testcase( typeRowid==8 ); 5000 testcase( typeRowid==9 ); 5001 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 5002 goto idx_rowid_corruption; 5003 } 5004 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 5005 testcase( (u32)m.n==szHdr+lenRowid ); 5006 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 5007 goto idx_rowid_corruption; 5008 } 5009 5010 /* Fetch the integer off the end of the index record */ 5011 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 5012 *rowid = v.u.i; 5013 sqlite3VdbeMemReleaseMalloc(&m); 5014 return SQLITE_OK; 5015 5016 /* Jump here if database corruption is detected after m has been 5017 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 5018 idx_rowid_corruption: 5019 testcase( m.szMalloc!=0 ); 5020 sqlite3VdbeMemReleaseMalloc(&m); 5021 return SQLITE_CORRUPT_BKPT; 5022 } 5023 5024 /* 5025 ** Compare the key of the index entry that cursor pC is pointing to against 5026 ** the key string in pUnpacked. Write into *pRes a number 5027 ** that is negative, zero, or positive if pC is less than, equal to, 5028 ** or greater than pUnpacked. Return SQLITE_OK on success. 5029 ** 5030 ** pUnpacked is either created without a rowid or is truncated so that it 5031 ** omits the rowid at the end. The rowid at the end of the index entry 5032 ** is ignored as well. Hence, this routine only compares the prefixes 5033 ** of the keys prior to the final rowid, not the entire key. 5034 */ 5035 int sqlite3VdbeIdxKeyCompare( 5036 sqlite3 *db, /* Database connection */ 5037 VdbeCursor *pC, /* The cursor to compare against */ 5038 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 5039 int *res /* Write the comparison result here */ 5040 ){ 5041 i64 nCellKey = 0; 5042 int rc; 5043 BtCursor *pCur; 5044 Mem m; 5045 5046 assert( pC->eCurType==CURTYPE_BTREE ); 5047 pCur = pC->uc.pCursor; 5048 assert( sqlite3BtreeCursorIsValid(pCur) ); 5049 nCellKey = sqlite3BtreePayloadSize(pCur); 5050 /* nCellKey will always be between 0 and 0xffffffff because of the way 5051 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 5052 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 5053 *res = 0; 5054 return SQLITE_CORRUPT_BKPT; 5055 } 5056 sqlite3VdbeMemInit(&m, db, 0); 5057 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 5058 if( rc ){ 5059 return rc; 5060 } 5061 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); 5062 sqlite3VdbeMemReleaseMalloc(&m); 5063 return SQLITE_OK; 5064 } 5065 5066 /* 5067 ** This routine sets the value to be returned by subsequent calls to 5068 ** sqlite3_changes() on the database handle 'db'. 5069 */ 5070 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){ 5071 assert( sqlite3_mutex_held(db->mutex) ); 5072 db->nChange = nChange; 5073 db->nTotalChange += nChange; 5074 } 5075 5076 /* 5077 ** Set a flag in the vdbe to update the change counter when it is finalised 5078 ** or reset. 5079 */ 5080 void sqlite3VdbeCountChanges(Vdbe *v){ 5081 v->changeCntOn = 1; 5082 } 5083 5084 /* 5085 ** Mark every prepared statement associated with a database connection 5086 ** as expired. 5087 ** 5088 ** An expired statement means that recompilation of the statement is 5089 ** recommend. Statements expire when things happen that make their 5090 ** programs obsolete. Removing user-defined functions or collating 5091 ** sequences, or changing an authorization function are the types of 5092 ** things that make prepared statements obsolete. 5093 ** 5094 ** If iCode is 1, then expiration is advisory. The statement should 5095 ** be reprepared before being restarted, but if it is already running 5096 ** it is allowed to run to completion. 5097 ** 5098 ** Internally, this function just sets the Vdbe.expired flag on all 5099 ** prepared statements. The flag is set to 1 for an immediate expiration 5100 ** and set to 2 for an advisory expiration. 5101 */ 5102 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ 5103 Vdbe *p; 5104 for(p = db->pVdbe; p; p=p->pVNext){ 5105 p->expired = iCode+1; 5106 } 5107 } 5108 5109 /* 5110 ** Return the database associated with the Vdbe. 5111 */ 5112 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 5113 return v->db; 5114 } 5115 5116 /* 5117 ** Return the SQLITE_PREPARE flags for a Vdbe. 5118 */ 5119 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 5120 return v->prepFlags; 5121 } 5122 5123 /* 5124 ** Return a pointer to an sqlite3_value structure containing the value bound 5125 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 5126 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 5127 ** constants) to the value before returning it. 5128 ** 5129 ** The returned value must be freed by the caller using sqlite3ValueFree(). 5130 */ 5131 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 5132 assert( iVar>0 ); 5133 if( v ){ 5134 Mem *pMem = &v->aVar[iVar-1]; 5135 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5136 if( 0==(pMem->flags & MEM_Null) ){ 5137 sqlite3_value *pRet = sqlite3ValueNew(v->db); 5138 if( pRet ){ 5139 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 5140 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 5141 } 5142 return pRet; 5143 } 5144 } 5145 return 0; 5146 } 5147 5148 /* 5149 ** Configure SQL variable iVar so that binding a new value to it signals 5150 ** to sqlite3_reoptimize() that re-preparing the statement may result 5151 ** in a better query plan. 5152 */ 5153 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 5154 assert( iVar>0 ); 5155 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5156 if( iVar>=32 ){ 5157 v->expmask |= 0x80000000; 5158 }else{ 5159 v->expmask |= ((u32)1 << (iVar-1)); 5160 } 5161 } 5162 5163 /* 5164 ** Cause a function to throw an error if it was call from OP_PureFunc 5165 ** rather than OP_Function. 5166 ** 5167 ** OP_PureFunc means that the function must be deterministic, and should 5168 ** throw an error if it is given inputs that would make it non-deterministic. 5169 ** This routine is invoked by date/time functions that use non-deterministic 5170 ** features such as 'now'. 5171 */ 5172 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 5173 const VdbeOp *pOp; 5174 #ifdef SQLITE_ENABLE_STAT4 5175 if( pCtx->pVdbe==0 ) return 1; 5176 #endif 5177 pOp = pCtx->pVdbe->aOp + pCtx->iOp; 5178 if( pOp->opcode==OP_PureFunc ){ 5179 const char *zContext; 5180 char *zMsg; 5181 if( pOp->p5 & NC_IsCheck ){ 5182 zContext = "a CHECK constraint"; 5183 }else if( pOp->p5 & NC_GenCol ){ 5184 zContext = "a generated column"; 5185 }else{ 5186 zContext = "an index"; 5187 } 5188 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s", 5189 pCtx->pFunc->zName, zContext); 5190 sqlite3_result_error(pCtx, zMsg, -1); 5191 sqlite3_free(zMsg); 5192 return 0; 5193 } 5194 return 1; 5195 } 5196 5197 #ifndef SQLITE_OMIT_VIRTUALTABLE 5198 /* 5199 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 5200 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 5201 ** in memory obtained from sqlite3DbMalloc). 5202 */ 5203 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 5204 if( pVtab->zErrMsg ){ 5205 sqlite3 *db = p->db; 5206 sqlite3DbFree(db, p->zErrMsg); 5207 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 5208 sqlite3_free(pVtab->zErrMsg); 5209 pVtab->zErrMsg = 0; 5210 } 5211 } 5212 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5213 5214 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5215 5216 /* 5217 ** If the second argument is not NULL, release any allocations associated 5218 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 5219 ** structure itself, using sqlite3DbFree(). 5220 ** 5221 ** This function is used to free UnpackedRecord structures allocated by 5222 ** the vdbeUnpackRecord() function found in vdbeapi.c. 5223 */ 5224 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 5225 assert( db!=0 ); 5226 if( p ){ 5227 int i; 5228 for(i=0; i<nField; i++){ 5229 Mem *pMem = &p->aMem[i]; 5230 if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem); 5231 } 5232 sqlite3DbNNFreeNN(db, p); 5233 } 5234 } 5235 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5236 5237 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5238 /* 5239 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 5240 ** then cursor passed as the second argument should point to the row about 5241 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 5242 ** the required value will be read from the row the cursor points to. 5243 */ 5244 void sqlite3VdbePreUpdateHook( 5245 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 5246 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 5247 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 5248 const char *zDb, /* Database name */ 5249 Table *pTab, /* Modified table */ 5250 i64 iKey1, /* Initial key value */ 5251 int iReg, /* Register for new.* record */ 5252 int iBlobWrite 5253 ){ 5254 sqlite3 *db = v->db; 5255 i64 iKey2; 5256 PreUpdate preupdate; 5257 const char *zTbl = pTab->zName; 5258 static const u8 fakeSortOrder = 0; 5259 5260 assert( db->pPreUpdate==0 ); 5261 memset(&preupdate, 0, sizeof(PreUpdate)); 5262 if( HasRowid(pTab)==0 ){ 5263 iKey1 = iKey2 = 0; 5264 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 5265 }else{ 5266 if( op==SQLITE_UPDATE ){ 5267 iKey2 = v->aMem[iReg].u.i; 5268 }else{ 5269 iKey2 = iKey1; 5270 } 5271 } 5272 5273 assert( pCsr!=0 ); 5274 assert( pCsr->eCurType==CURTYPE_BTREE ); 5275 assert( pCsr->nField==pTab->nCol 5276 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 5277 ); 5278 5279 preupdate.v = v; 5280 preupdate.pCsr = pCsr; 5281 preupdate.op = op; 5282 preupdate.iNewReg = iReg; 5283 preupdate.keyinfo.db = db; 5284 preupdate.keyinfo.enc = ENC(db); 5285 preupdate.keyinfo.nKeyField = pTab->nCol; 5286 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder; 5287 preupdate.iKey1 = iKey1; 5288 preupdate.iKey2 = iKey2; 5289 preupdate.pTab = pTab; 5290 preupdate.iBlobWrite = iBlobWrite; 5291 5292 db->pPreUpdate = &preupdate; 5293 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 5294 db->pPreUpdate = 0; 5295 sqlite3DbFree(db, preupdate.aRecord); 5296 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 5297 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 5298 if( preupdate.aNew ){ 5299 int i; 5300 for(i=0; i<pCsr->nField; i++){ 5301 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 5302 } 5303 sqlite3DbNNFreeNN(db, preupdate.aNew); 5304 } 5305 } 5306 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5307