1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* Forward references */ 19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef); 20 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 21 22 /* 23 ** Create a new virtual database engine. 24 */ 25 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 26 sqlite3 *db = pParse->db; 27 Vdbe *p; 28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 29 if( p==0 ) return 0; 30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 31 p->db = db; 32 if( db->pVdbe ){ 33 db->pVdbe->pPrev = p; 34 } 35 p->pNext = db->pVdbe; 36 p->pPrev = 0; 37 db->pVdbe = p; 38 p->iVdbeMagic = VDBE_MAGIC_INIT; 39 p->pParse = pParse; 40 pParse->pVdbe = p; 41 assert( pParse->aLabel==0 ); 42 assert( pParse->nLabel==0 ); 43 assert( p->nOpAlloc==0 ); 44 assert( pParse->szOpAlloc==0 ); 45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1); 46 return p; 47 } 48 49 /* 50 ** Return the Parse object that owns a Vdbe object. 51 */ 52 Parse *sqlite3VdbeParser(Vdbe *p){ 53 return p->pParse; 54 } 55 56 /* 57 ** Change the error string stored in Vdbe.zErrMsg 58 */ 59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 60 va_list ap; 61 sqlite3DbFree(p->db, p->zErrMsg); 62 va_start(ap, zFormat); 63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 64 va_end(ap); 65 } 66 67 /* 68 ** Remember the SQL string for a prepared statement. 69 */ 70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 71 if( p==0 ) return; 72 p->prepFlags = prepFlags; 73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 74 p->expmask = 0; 75 } 76 assert( p->zSql==0 ); 77 p->zSql = sqlite3DbStrNDup(p->db, z, n); 78 } 79 80 #ifdef SQLITE_ENABLE_NORMALIZE 81 /* 82 ** Add a new element to the Vdbe->pDblStr list. 83 */ 84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ 85 if( p ){ 86 int n = sqlite3Strlen30(z); 87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db, 88 sizeof(*pStr)+n+1-sizeof(pStr->z)); 89 if( pStr ){ 90 pStr->pNextStr = p->pDblStr; 91 p->pDblStr = pStr; 92 memcpy(pStr->z, z, n+1); 93 } 94 } 95 } 96 #endif 97 98 #ifdef SQLITE_ENABLE_NORMALIZE 99 /* 100 ** zId of length nId is a double-quoted identifier. Check to see if 101 ** that identifier is really used as a string literal. 102 */ 103 int sqlite3VdbeUsesDoubleQuotedString( 104 Vdbe *pVdbe, /* The prepared statement */ 105 const char *zId /* The double-quoted identifier, already dequoted */ 106 ){ 107 DblquoteStr *pStr; 108 assert( zId!=0 ); 109 if( pVdbe->pDblStr==0 ) return 0; 110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ 111 if( strcmp(zId, pStr->z)==0 ) return 1; 112 } 113 return 0; 114 } 115 #endif 116 117 /* 118 ** Swap all content between two VDBE structures. 119 */ 120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 121 Vdbe tmp, *pTmp; 122 char *zTmp; 123 assert( pA->db==pB->db ); 124 tmp = *pA; 125 *pA = *pB; 126 *pB = tmp; 127 pTmp = pA->pNext; 128 pA->pNext = pB->pNext; 129 pB->pNext = pTmp; 130 pTmp = pA->pPrev; 131 pA->pPrev = pB->pPrev; 132 pB->pPrev = pTmp; 133 zTmp = pA->zSql; 134 pA->zSql = pB->zSql; 135 pB->zSql = zTmp; 136 #ifdef SQLITE_ENABLE_NORMALIZE 137 zTmp = pA->zNormSql; 138 pA->zNormSql = pB->zNormSql; 139 pB->zNormSql = zTmp; 140 #endif 141 pB->expmask = pA->expmask; 142 pB->prepFlags = pA->prepFlags; 143 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 144 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 145 } 146 147 /* 148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 149 ** than its current size. nOp is guaranteed to be less than or equal 150 ** to 1024/sizeof(Op). 151 ** 152 ** If an out-of-memory error occurs while resizing the array, return 153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain 154 ** unchanged (this is so that any opcodes already allocated can be 155 ** correctly deallocated along with the rest of the Vdbe). 156 */ 157 static int growOpArray(Vdbe *v, int nOp){ 158 VdbeOp *pNew; 159 Parse *p = v->pParse; 160 161 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 162 ** more frequent reallocs and hence provide more opportunities for 163 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 164 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 165 ** by the minimum* amount required until the size reaches 512. Normal 166 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 167 ** size of the op array or add 1KB of space, whichever is smaller. */ 168 #ifdef SQLITE_TEST_REALLOC_STRESS 169 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc 170 : (sqlite3_int64)v->nOpAlloc+nOp); 171 #else 172 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc 173 : (sqlite3_int64)(1024/sizeof(Op))); 174 UNUSED_PARAMETER(nOp); 175 #endif 176 177 /* Ensure that the size of a VDBE does not grow too large */ 178 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 179 sqlite3OomFault(p->db); 180 return SQLITE_NOMEM; 181 } 182 183 assert( nOp<=(1024/sizeof(Op)) ); 184 assert( nNew>=(v->nOpAlloc+nOp) ); 185 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 186 if( pNew ){ 187 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 188 v->nOpAlloc = p->szOpAlloc/sizeof(Op); 189 v->aOp = pNew; 190 } 191 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 192 } 193 194 #ifdef SQLITE_DEBUG 195 /* This routine is just a convenient place to set a breakpoint that will 196 ** fire after each opcode is inserted and displayed using 197 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and 198 ** pOp are available to make the breakpoint conditional. 199 ** 200 ** Other useful labels for breakpoints include: 201 ** test_trace_breakpoint(pc,pOp) 202 ** sqlite3CorruptError(lineno) 203 ** sqlite3MisuseError(lineno) 204 ** sqlite3CantopenError(lineno) 205 */ 206 static void test_addop_breakpoint(int pc, Op *pOp){ 207 static int n = 0; 208 n++; 209 } 210 #endif 211 212 /* 213 ** Add a new instruction to the list of instructions current in the 214 ** VDBE. Return the address of the new instruction. 215 ** 216 ** Parameters: 217 ** 218 ** p Pointer to the VDBE 219 ** 220 ** op The opcode for this instruction 221 ** 222 ** p1, p2, p3 Operands 223 ** 224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 225 ** the sqlite3VdbeChangeP4() function to change the value of the P4 226 ** operand. 227 */ 228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 229 assert( p->nOpAlloc<=p->nOp ); 230 if( growOpArray(p, 1) ) return 1; 231 assert( p->nOpAlloc>p->nOp ); 232 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 233 } 234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 235 int i; 236 VdbeOp *pOp; 237 238 i = p->nOp; 239 assert( p->iVdbeMagic==VDBE_MAGIC_INIT ); 240 assert( op>=0 && op<0xff ); 241 if( p->nOpAlloc<=i ){ 242 return growOp3(p, op, p1, p2, p3); 243 } 244 p->nOp++; 245 pOp = &p->aOp[i]; 246 pOp->opcode = (u8)op; 247 pOp->p5 = 0; 248 pOp->p1 = p1; 249 pOp->p2 = p2; 250 pOp->p3 = p3; 251 pOp->p4.p = 0; 252 pOp->p4type = P4_NOTUSED; 253 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 254 pOp->zComment = 0; 255 #endif 256 #ifdef SQLITE_DEBUG 257 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 258 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 259 test_addop_breakpoint(i, &p->aOp[i]); 260 } 261 #endif 262 #ifdef VDBE_PROFILE 263 pOp->cycles = 0; 264 pOp->cnt = 0; 265 #endif 266 #ifdef SQLITE_VDBE_COVERAGE 267 pOp->iSrcLine = 0; 268 #endif 269 return i; 270 } 271 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 272 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 273 } 274 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 275 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 276 } 277 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 278 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 279 } 280 281 /* Generate code for an unconditional jump to instruction iDest 282 */ 283 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 284 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 285 } 286 287 /* Generate code to cause the string zStr to be loaded into 288 ** register iDest 289 */ 290 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 291 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 292 } 293 294 /* 295 ** Generate code that initializes multiple registers to string or integer 296 ** constants. The registers begin with iDest and increase consecutively. 297 ** One register is initialized for each characgter in zTypes[]. For each 298 ** "s" character in zTypes[], the register is a string if the argument is 299 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 300 ** in zTypes[], the register is initialized to an integer. 301 ** 302 ** If the input string does not end with "X" then an OP_ResultRow instruction 303 ** is generated for the values inserted. 304 */ 305 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 306 va_list ap; 307 int i; 308 char c; 309 va_start(ap, zTypes); 310 for(i=0; (c = zTypes[i])!=0; i++){ 311 if( c=='s' ){ 312 const char *z = va_arg(ap, const char*); 313 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 314 }else if( c=='i' ){ 315 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 316 }else{ 317 goto skip_op_resultrow; 318 } 319 } 320 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 321 skip_op_resultrow: 322 va_end(ap); 323 } 324 325 /* 326 ** Add an opcode that includes the p4 value as a pointer. 327 */ 328 int sqlite3VdbeAddOp4( 329 Vdbe *p, /* Add the opcode to this VM */ 330 int op, /* The new opcode */ 331 int p1, /* The P1 operand */ 332 int p2, /* The P2 operand */ 333 int p3, /* The P3 operand */ 334 const char *zP4, /* The P4 operand */ 335 int p4type /* P4 operand type */ 336 ){ 337 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 338 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 339 return addr; 340 } 341 342 /* 343 ** Add an OP_Function or OP_PureFunc opcode. 344 ** 345 ** The eCallCtx argument is information (typically taken from Expr.op2) 346 ** that describes the calling context of the function. 0 means a general 347 ** function call. NC_IsCheck means called by a check constraint, 348 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx 349 ** means in the WHERE clause of a partial index. NC_GenCol means called 350 ** while computing a generated column value. 0 is the usual case. 351 */ 352 int sqlite3VdbeAddFunctionCall( 353 Parse *pParse, /* Parsing context */ 354 int p1, /* Constant argument mask */ 355 int p2, /* First argument register */ 356 int p3, /* Register into which results are written */ 357 int nArg, /* Number of argument */ 358 const FuncDef *pFunc, /* The function to be invoked */ 359 int eCallCtx /* Calling context */ 360 ){ 361 Vdbe *v = pParse->pVdbe; 362 int nByte; 363 int addr; 364 sqlite3_context *pCtx; 365 assert( v ); 366 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*); 367 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte); 368 if( pCtx==0 ){ 369 assert( pParse->db->mallocFailed ); 370 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc); 371 return 0; 372 } 373 pCtx->pOut = 0; 374 pCtx->pFunc = (FuncDef*)pFunc; 375 pCtx->pVdbe = 0; 376 pCtx->isError = 0; 377 pCtx->argc = nArg; 378 pCtx->iOp = sqlite3VdbeCurrentAddr(v); 379 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function, 380 p1, p2, p3, (char*)pCtx, P4_FUNCCTX); 381 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef); 382 return addr; 383 } 384 385 /* 386 ** Add an opcode that includes the p4 value with a P4_INT64 or 387 ** P4_REAL type. 388 */ 389 int sqlite3VdbeAddOp4Dup8( 390 Vdbe *p, /* Add the opcode to this VM */ 391 int op, /* The new opcode */ 392 int p1, /* The P1 operand */ 393 int p2, /* The P2 operand */ 394 int p3, /* The P3 operand */ 395 const u8 *zP4, /* The P4 operand */ 396 int p4type /* P4 operand type */ 397 ){ 398 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 399 if( p4copy ) memcpy(p4copy, zP4, 8); 400 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 401 } 402 403 #ifndef SQLITE_OMIT_EXPLAIN 404 /* 405 ** Return the address of the current EXPLAIN QUERY PLAN baseline. 406 ** 0 means "none". 407 */ 408 int sqlite3VdbeExplainParent(Parse *pParse){ 409 VdbeOp *pOp; 410 if( pParse->addrExplain==0 ) return 0; 411 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); 412 return pOp->p2; 413 } 414 415 /* 416 ** Set a debugger breakpoint on the following routine in order to 417 ** monitor the EXPLAIN QUERY PLAN code generation. 418 */ 419 #if defined(SQLITE_DEBUG) 420 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ 421 (void)z1; 422 (void)z2; 423 } 424 #endif 425 426 /* 427 ** Add a new OP_Explain opcode. 428 ** 429 ** If the bPush flag is true, then make this opcode the parent for 430 ** subsequent Explains until sqlite3VdbeExplainPop() is called. 431 */ 432 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ 433 #ifndef SQLITE_DEBUG 434 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined. 435 ** But omit them (for performance) during production builds */ 436 if( pParse->explain==2 ) 437 #endif 438 { 439 char *zMsg; 440 Vdbe *v; 441 va_list ap; 442 int iThis; 443 va_start(ap, zFmt); 444 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); 445 va_end(ap); 446 v = pParse->pVdbe; 447 iThis = v->nOp; 448 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, 449 zMsg, P4_DYNAMIC); 450 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z); 451 if( bPush){ 452 pParse->addrExplain = iThis; 453 } 454 } 455 } 456 457 /* 458 ** Pop the EXPLAIN QUERY PLAN stack one level. 459 */ 460 void sqlite3VdbeExplainPop(Parse *pParse){ 461 sqlite3ExplainBreakpoint("POP", 0); 462 pParse->addrExplain = sqlite3VdbeExplainParent(pParse); 463 } 464 #endif /* SQLITE_OMIT_EXPLAIN */ 465 466 /* 467 ** Add an OP_ParseSchema opcode. This routine is broken out from 468 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 469 ** as having been used. 470 ** 471 ** The zWhere string must have been obtained from sqlite3_malloc(). 472 ** This routine will take ownership of the allocated memory. 473 */ 474 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){ 475 int j; 476 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 477 sqlite3VdbeChangeP5(p, p5); 478 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 479 sqlite3MayAbort(p->pParse); 480 } 481 482 /* 483 ** Add an opcode that includes the p4 value as an integer. 484 */ 485 int sqlite3VdbeAddOp4Int( 486 Vdbe *p, /* Add the opcode to this VM */ 487 int op, /* The new opcode */ 488 int p1, /* The P1 operand */ 489 int p2, /* The P2 operand */ 490 int p3, /* The P3 operand */ 491 int p4 /* The P4 operand as an integer */ 492 ){ 493 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 494 if( p->db->mallocFailed==0 ){ 495 VdbeOp *pOp = &p->aOp[addr]; 496 pOp->p4type = P4_INT32; 497 pOp->p4.i = p4; 498 } 499 return addr; 500 } 501 502 /* Insert the end of a co-routine 503 */ 504 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 505 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 506 507 /* Clear the temporary register cache, thereby ensuring that each 508 ** co-routine has its own independent set of registers, because co-routines 509 ** might expect their registers to be preserved across an OP_Yield, and 510 ** that could cause problems if two or more co-routines are using the same 511 ** temporary register. 512 */ 513 v->pParse->nTempReg = 0; 514 v->pParse->nRangeReg = 0; 515 } 516 517 /* 518 ** Create a new symbolic label for an instruction that has yet to be 519 ** coded. The symbolic label is really just a negative number. The 520 ** label can be used as the P2 value of an operation. Later, when 521 ** the label is resolved to a specific address, the VDBE will scan 522 ** through its operation list and change all values of P2 which match 523 ** the label into the resolved address. 524 ** 525 ** The VDBE knows that a P2 value is a label because labels are 526 ** always negative and P2 values are suppose to be non-negative. 527 ** Hence, a negative P2 value is a label that has yet to be resolved. 528 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP 529 ** property. 530 ** 531 ** Variable usage notes: 532 ** 533 ** Parse.aLabel[x] Stores the address that the x-th label resolves 534 ** into. For testing (SQLITE_DEBUG), unresolved 535 ** labels stores -1, but that is not required. 536 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[] 537 ** Parse.nLabel The *negative* of the number of labels that have 538 ** been issued. The negative is stored because 539 ** that gives a performance improvement over storing 540 ** the equivalent positive value. 541 */ 542 int sqlite3VdbeMakeLabel(Parse *pParse){ 543 return --pParse->nLabel; 544 } 545 546 /* 547 ** Resolve label "x" to be the address of the next instruction to 548 ** be inserted. The parameter "x" must have been obtained from 549 ** a prior call to sqlite3VdbeMakeLabel(). 550 */ 551 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){ 552 int nNewSize = 10 - p->nLabel; 553 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 554 nNewSize*sizeof(p->aLabel[0])); 555 if( p->aLabel==0 ){ 556 p->nLabelAlloc = 0; 557 }else{ 558 #ifdef SQLITE_DEBUG 559 int i; 560 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1; 561 #endif 562 p->nLabelAlloc = nNewSize; 563 p->aLabel[j] = v->nOp; 564 } 565 } 566 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 567 Parse *p = v->pParse; 568 int j = ADDR(x); 569 assert( v->iVdbeMagic==VDBE_MAGIC_INIT ); 570 assert( j<-p->nLabel ); 571 assert( j>=0 ); 572 #ifdef SQLITE_DEBUG 573 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 574 printf("RESOLVE LABEL %d to %d\n", x, v->nOp); 575 } 576 #endif 577 if( p->nLabelAlloc + p->nLabel < 0 ){ 578 resizeResolveLabel(p,v,j); 579 }else{ 580 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ 581 p->aLabel[j] = v->nOp; 582 } 583 } 584 585 /* 586 ** Mark the VDBE as one that can only be run one time. 587 */ 588 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 589 p->runOnlyOnce = 1; 590 } 591 592 /* 593 ** Mark the VDBE as one that can only be run multiple times. 594 */ 595 void sqlite3VdbeReusable(Vdbe *p){ 596 p->runOnlyOnce = 0; 597 } 598 599 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 600 601 /* 602 ** The following type and function are used to iterate through all opcodes 603 ** in a Vdbe main program and each of the sub-programs (triggers) it may 604 ** invoke directly or indirectly. It should be used as follows: 605 ** 606 ** Op *pOp; 607 ** VdbeOpIter sIter; 608 ** 609 ** memset(&sIter, 0, sizeof(sIter)); 610 ** sIter.v = v; // v is of type Vdbe* 611 ** while( (pOp = opIterNext(&sIter)) ){ 612 ** // Do something with pOp 613 ** } 614 ** sqlite3DbFree(v->db, sIter.apSub); 615 ** 616 */ 617 typedef struct VdbeOpIter VdbeOpIter; 618 struct VdbeOpIter { 619 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 620 SubProgram **apSub; /* Array of subprograms */ 621 int nSub; /* Number of entries in apSub */ 622 int iAddr; /* Address of next instruction to return */ 623 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 624 }; 625 static Op *opIterNext(VdbeOpIter *p){ 626 Vdbe *v = p->v; 627 Op *pRet = 0; 628 Op *aOp; 629 int nOp; 630 631 if( p->iSub<=p->nSub ){ 632 633 if( p->iSub==0 ){ 634 aOp = v->aOp; 635 nOp = v->nOp; 636 }else{ 637 aOp = p->apSub[p->iSub-1]->aOp; 638 nOp = p->apSub[p->iSub-1]->nOp; 639 } 640 assert( p->iAddr<nOp ); 641 642 pRet = &aOp[p->iAddr]; 643 p->iAddr++; 644 if( p->iAddr==nOp ){ 645 p->iSub++; 646 p->iAddr = 0; 647 } 648 649 if( pRet->p4type==P4_SUBPROGRAM ){ 650 int nByte = (p->nSub+1)*sizeof(SubProgram*); 651 int j; 652 for(j=0; j<p->nSub; j++){ 653 if( p->apSub[j]==pRet->p4.pProgram ) break; 654 } 655 if( j==p->nSub ){ 656 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 657 if( !p->apSub ){ 658 pRet = 0; 659 }else{ 660 p->apSub[p->nSub++] = pRet->p4.pProgram; 661 } 662 } 663 } 664 } 665 666 return pRet; 667 } 668 669 /* 670 ** Check if the program stored in the VM associated with pParse may 671 ** throw an ABORT exception (causing the statement, but not entire transaction 672 ** to be rolled back). This condition is true if the main program or any 673 ** sub-programs contains any of the following: 674 ** 675 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 676 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 677 ** * OP_Destroy 678 ** * OP_VUpdate 679 ** * OP_VCreate 680 ** * OP_VRename 681 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 682 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 683 ** (for CREATE TABLE AS SELECT ...) 684 ** 685 ** Then check that the value of Parse.mayAbort is true if an 686 ** ABORT may be thrown, or false otherwise. Return true if it does 687 ** match, or false otherwise. This function is intended to be used as 688 ** part of an assert statement in the compiler. Similar to: 689 ** 690 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 691 */ 692 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 693 int hasAbort = 0; 694 int hasFkCounter = 0; 695 int hasCreateTable = 0; 696 int hasCreateIndex = 0; 697 int hasInitCoroutine = 0; 698 Op *pOp; 699 VdbeOpIter sIter; 700 memset(&sIter, 0, sizeof(sIter)); 701 sIter.v = v; 702 703 while( (pOp = opIterNext(&sIter))!=0 ){ 704 int opcode = pOp->opcode; 705 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 706 || opcode==OP_VDestroy 707 || opcode==OP_VCreate 708 || opcode==OP_ParseSchema 709 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 710 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort)) 711 ){ 712 hasAbort = 1; 713 break; 714 } 715 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; 716 if( mayAbort ){ 717 /* hasCreateIndex may also be set for some DELETE statements that use 718 ** OP_Clear. So this routine may end up returning true in the case 719 ** where a "DELETE FROM tbl" has a statement-journal but does not 720 ** require one. This is not so bad - it is an inefficiency, not a bug. */ 721 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1; 722 if( opcode==OP_Clear ) hasCreateIndex = 1; 723 } 724 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 725 #ifndef SQLITE_OMIT_FOREIGN_KEY 726 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 727 hasFkCounter = 1; 728 } 729 #endif 730 } 731 sqlite3DbFree(v->db, sIter.apSub); 732 733 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 734 ** If malloc failed, then the while() loop above may not have iterated 735 ** through all opcodes and hasAbort may be set incorrectly. Return 736 ** true for this case to prevent the assert() in the callers frame 737 ** from failing. */ 738 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 739 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex 740 ); 741 } 742 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 743 744 #ifdef SQLITE_DEBUG 745 /* 746 ** Increment the nWrite counter in the VDBE if the cursor is not an 747 ** ephemeral cursor, or if the cursor argument is NULL. 748 */ 749 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ 750 if( pC==0 751 || (pC->eCurType!=CURTYPE_SORTER 752 && pC->eCurType!=CURTYPE_PSEUDO 753 && !pC->isEphemeral) 754 ){ 755 p->nWrite++; 756 } 757 } 758 #endif 759 760 #ifdef SQLITE_DEBUG 761 /* 762 ** Assert if an Abort at this point in time might result in a corrupt 763 ** database. 764 */ 765 void sqlite3VdbeAssertAbortable(Vdbe *p){ 766 assert( p->nWrite==0 || p->usesStmtJournal ); 767 } 768 #endif 769 770 /* 771 ** This routine is called after all opcodes have been inserted. It loops 772 ** through all the opcodes and fixes up some details. 773 ** 774 ** (1) For each jump instruction with a negative P2 value (a label) 775 ** resolve the P2 value to an actual address. 776 ** 777 ** (2) Compute the maximum number of arguments used by any SQL function 778 ** and store that value in *pMaxFuncArgs. 779 ** 780 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 781 ** indicate what the prepared statement actually does. 782 ** 783 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 784 ** 785 ** (5) Reclaim the memory allocated for storing labels. 786 ** 787 ** This routine will only function correctly if the mkopcodeh.tcl generator 788 ** script numbers the opcodes correctly. Changes to this routine must be 789 ** coordinated with changes to mkopcodeh.tcl. 790 */ 791 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 792 int nMaxArgs = *pMaxFuncArgs; 793 Op *pOp; 794 Parse *pParse = p->pParse; 795 int *aLabel = pParse->aLabel; 796 p->readOnly = 1; 797 p->bIsReader = 0; 798 pOp = &p->aOp[p->nOp-1]; 799 while(1){ 800 801 /* Only JUMP opcodes and the short list of special opcodes in the switch 802 ** below need to be considered. The mkopcodeh.tcl generator script groups 803 ** all these opcodes together near the front of the opcode list. Skip 804 ** any opcode that does not need processing by virtual of the fact that 805 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 806 */ 807 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 808 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 809 ** cases from this switch! */ 810 switch( pOp->opcode ){ 811 case OP_Transaction: { 812 if( pOp->p2!=0 ) p->readOnly = 0; 813 /* no break */ deliberate_fall_through 814 } 815 case OP_AutoCommit: 816 case OP_Savepoint: { 817 p->bIsReader = 1; 818 break; 819 } 820 #ifndef SQLITE_OMIT_WAL 821 case OP_Checkpoint: 822 #endif 823 case OP_Vacuum: 824 case OP_JournalMode: { 825 p->readOnly = 0; 826 p->bIsReader = 1; 827 break; 828 } 829 case OP_Next: 830 case OP_SorterNext: { 831 pOp->p4.xAdvance = sqlite3BtreeNext; 832 pOp->p4type = P4_ADVANCE; 833 /* The code generator never codes any of these opcodes as a jump 834 ** to a label. They are always coded as a jump backwards to a 835 ** known address */ 836 assert( pOp->p2>=0 ); 837 break; 838 } 839 case OP_Prev: { 840 pOp->p4.xAdvance = sqlite3BtreePrevious; 841 pOp->p4type = P4_ADVANCE; 842 /* The code generator never codes any of these opcodes as a jump 843 ** to a label. They are always coded as a jump backwards to a 844 ** known address */ 845 assert( pOp->p2>=0 ); 846 break; 847 } 848 #ifndef SQLITE_OMIT_VIRTUALTABLE 849 case OP_VUpdate: { 850 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 851 break; 852 } 853 case OP_VFilter: { 854 int n; 855 assert( (pOp - p->aOp) >= 3 ); 856 assert( pOp[-1].opcode==OP_Integer ); 857 n = pOp[-1].p1; 858 if( n>nMaxArgs ) nMaxArgs = n; 859 /* Fall through into the default case */ 860 /* no break */ deliberate_fall_through 861 } 862 #endif 863 default: { 864 if( pOp->p2<0 ){ 865 /* The mkopcodeh.tcl script has so arranged things that the only 866 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 867 ** have non-negative values for P2. */ 868 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 869 assert( ADDR(pOp->p2)<-pParse->nLabel ); 870 pOp->p2 = aLabel[ADDR(pOp->p2)]; 871 } 872 break; 873 } 874 } 875 /* The mkopcodeh.tcl script has so arranged things that the only 876 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 877 ** have non-negative values for P2. */ 878 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 879 } 880 if( pOp==p->aOp ) break; 881 pOp--; 882 } 883 sqlite3DbFree(p->db, pParse->aLabel); 884 pParse->aLabel = 0; 885 pParse->nLabel = 0; 886 *pMaxFuncArgs = nMaxArgs; 887 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 888 } 889 890 /* 891 ** Return the address of the next instruction to be inserted. 892 */ 893 int sqlite3VdbeCurrentAddr(Vdbe *p){ 894 assert( p->iVdbeMagic==VDBE_MAGIC_INIT ); 895 return p->nOp; 896 } 897 898 /* 899 ** Verify that at least N opcode slots are available in p without 900 ** having to malloc for more space (except when compiled using 901 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 902 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 903 ** fail due to a OOM fault and hence that the return value from 904 ** sqlite3VdbeAddOpList() will always be non-NULL. 905 */ 906 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 907 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 908 assert( p->nOp + N <= p->nOpAlloc ); 909 } 910 #endif 911 912 /* 913 ** Verify that the VM passed as the only argument does not contain 914 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 915 ** by code in pragma.c to ensure that the implementation of certain 916 ** pragmas comports with the flags specified in the mkpragmatab.tcl 917 ** script. 918 */ 919 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 920 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 921 int i; 922 for(i=0; i<p->nOp; i++){ 923 assert( p->aOp[i].opcode!=OP_ResultRow ); 924 } 925 } 926 #endif 927 928 /* 929 ** Generate code (a single OP_Abortable opcode) that will 930 ** verify that the VDBE program can safely call Abort in the current 931 ** context. 932 */ 933 #if defined(SQLITE_DEBUG) 934 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ 935 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); 936 } 937 #endif 938 939 /* 940 ** This function returns a pointer to the array of opcodes associated with 941 ** the Vdbe passed as the first argument. It is the callers responsibility 942 ** to arrange for the returned array to be eventually freed using the 943 ** vdbeFreeOpArray() function. 944 ** 945 ** Before returning, *pnOp is set to the number of entries in the returned 946 ** array. Also, *pnMaxArg is set to the larger of its current value and 947 ** the number of entries in the Vdbe.apArg[] array required to execute the 948 ** returned program. 949 */ 950 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 951 VdbeOp *aOp = p->aOp; 952 assert( aOp && !p->db->mallocFailed ); 953 954 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 955 assert( DbMaskAllZero(p->btreeMask) ); 956 957 resolveP2Values(p, pnMaxArg); 958 *pnOp = p->nOp; 959 p->aOp = 0; 960 return aOp; 961 } 962 963 /* 964 ** Add a whole list of operations to the operation stack. Return a 965 ** pointer to the first operation inserted. 966 ** 967 ** Non-zero P2 arguments to jump instructions are automatically adjusted 968 ** so that the jump target is relative to the first operation inserted. 969 */ 970 VdbeOp *sqlite3VdbeAddOpList( 971 Vdbe *p, /* Add opcodes to the prepared statement */ 972 int nOp, /* Number of opcodes to add */ 973 VdbeOpList const *aOp, /* The opcodes to be added */ 974 int iLineno /* Source-file line number of first opcode */ 975 ){ 976 int i; 977 VdbeOp *pOut, *pFirst; 978 assert( nOp>0 ); 979 assert( p->iVdbeMagic==VDBE_MAGIC_INIT ); 980 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){ 981 return 0; 982 } 983 pFirst = pOut = &p->aOp[p->nOp]; 984 for(i=0; i<nOp; i++, aOp++, pOut++){ 985 pOut->opcode = aOp->opcode; 986 pOut->p1 = aOp->p1; 987 pOut->p2 = aOp->p2; 988 assert( aOp->p2>=0 ); 989 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 990 pOut->p2 += p->nOp; 991 } 992 pOut->p3 = aOp->p3; 993 pOut->p4type = P4_NOTUSED; 994 pOut->p4.p = 0; 995 pOut->p5 = 0; 996 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 997 pOut->zComment = 0; 998 #endif 999 #ifdef SQLITE_VDBE_COVERAGE 1000 pOut->iSrcLine = iLineno+i; 1001 #else 1002 (void)iLineno; 1003 #endif 1004 #ifdef SQLITE_DEBUG 1005 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 1006 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 1007 } 1008 #endif 1009 } 1010 p->nOp += nOp; 1011 return pFirst; 1012 } 1013 1014 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 1015 /* 1016 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 1017 */ 1018 void sqlite3VdbeScanStatus( 1019 Vdbe *p, /* VM to add scanstatus() to */ 1020 int addrExplain, /* Address of OP_Explain (or 0) */ 1021 int addrLoop, /* Address of loop counter */ 1022 int addrVisit, /* Address of rows visited counter */ 1023 LogEst nEst, /* Estimated number of output rows */ 1024 const char *zName /* Name of table or index being scanned */ 1025 ){ 1026 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus); 1027 ScanStatus *aNew; 1028 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 1029 if( aNew ){ 1030 ScanStatus *pNew = &aNew[p->nScan++]; 1031 pNew->addrExplain = addrExplain; 1032 pNew->addrLoop = addrLoop; 1033 pNew->addrVisit = addrVisit; 1034 pNew->nEst = nEst; 1035 pNew->zName = sqlite3DbStrDup(p->db, zName); 1036 p->aScan = aNew; 1037 } 1038 } 1039 #endif 1040 1041 1042 /* 1043 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 1044 ** for a specific instruction. 1045 */ 1046 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){ 1047 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 1048 } 1049 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ 1050 sqlite3VdbeGetOp(p,addr)->p1 = val; 1051 } 1052 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ 1053 sqlite3VdbeGetOp(p,addr)->p2 = val; 1054 } 1055 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ 1056 sqlite3VdbeGetOp(p,addr)->p3 = val; 1057 } 1058 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 1059 assert( p->nOp>0 || p->db->mallocFailed ); 1060 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 1061 } 1062 1063 /* 1064 ** Change the P2 operand of instruction addr so that it points to 1065 ** the address of the next instruction to be coded. 1066 */ 1067 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 1068 sqlite3VdbeChangeP2(p, addr, p->nOp); 1069 } 1070 1071 /* 1072 ** Change the P2 operand of the jump instruction at addr so that 1073 ** the jump lands on the next opcode. Or if the jump instruction was 1074 ** the previous opcode (and is thus a no-op) then simply back up 1075 ** the next instruction counter by one slot so that the jump is 1076 ** overwritten by the next inserted opcode. 1077 ** 1078 ** This routine is an optimization of sqlite3VdbeJumpHere() that 1079 ** strives to omit useless byte-code like this: 1080 ** 1081 ** 7 Once 0 8 0 1082 ** 8 ... 1083 */ 1084 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){ 1085 if( addr==p->nOp-1 ){ 1086 assert( p->aOp[addr].opcode==OP_Once 1087 || p->aOp[addr].opcode==OP_If 1088 || p->aOp[addr].opcode==OP_FkIfZero ); 1089 assert( p->aOp[addr].p4type==0 ); 1090 #ifdef SQLITE_VDBE_COVERAGE 1091 sqlite3VdbeGetOp(p,-1)->iSrcLine = 0; /* Erase VdbeCoverage() macros */ 1092 #endif 1093 p->nOp--; 1094 }else{ 1095 sqlite3VdbeChangeP2(p, addr, p->nOp); 1096 } 1097 } 1098 1099 1100 /* 1101 ** If the input FuncDef structure is ephemeral, then free it. If 1102 ** the FuncDef is not ephermal, then do nothing. 1103 */ 1104 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 1105 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 1106 sqlite3DbFreeNN(db, pDef); 1107 } 1108 } 1109 1110 /* 1111 ** Delete a P4 value if necessary. 1112 */ 1113 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 1114 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1115 sqlite3DbFreeNN(db, p); 1116 } 1117 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 1118 freeEphemeralFunction(db, p->pFunc); 1119 sqlite3DbFreeNN(db, p); 1120 } 1121 static void freeP4(sqlite3 *db, int p4type, void *p4){ 1122 assert( db ); 1123 switch( p4type ){ 1124 case P4_FUNCCTX: { 1125 freeP4FuncCtx(db, (sqlite3_context*)p4); 1126 break; 1127 } 1128 case P4_REAL: 1129 case P4_INT64: 1130 case P4_DYNAMIC: 1131 case P4_DYNBLOB: 1132 case P4_INTARRAY: { 1133 sqlite3DbFree(db, p4); 1134 break; 1135 } 1136 case P4_KEYINFO: { 1137 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 1138 break; 1139 } 1140 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1141 case P4_EXPR: { 1142 sqlite3ExprDelete(db, (Expr*)p4); 1143 break; 1144 } 1145 #endif 1146 case P4_FUNCDEF: { 1147 freeEphemeralFunction(db, (FuncDef*)p4); 1148 break; 1149 } 1150 case P4_MEM: { 1151 if( db->pnBytesFreed==0 ){ 1152 sqlite3ValueFree((sqlite3_value*)p4); 1153 }else{ 1154 freeP4Mem(db, (Mem*)p4); 1155 } 1156 break; 1157 } 1158 case P4_VTAB : { 1159 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 1160 break; 1161 } 1162 } 1163 } 1164 1165 /* 1166 ** Free the space allocated for aOp and any p4 values allocated for the 1167 ** opcodes contained within. If aOp is not NULL it is assumed to contain 1168 ** nOp entries. 1169 */ 1170 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 1171 if( aOp ){ 1172 Op *pOp; 1173 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){ 1174 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 1175 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1176 sqlite3DbFree(db, pOp->zComment); 1177 #endif 1178 } 1179 sqlite3DbFreeNN(db, aOp); 1180 } 1181 } 1182 1183 /* 1184 ** Link the SubProgram object passed as the second argument into the linked 1185 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 1186 ** objects when the VM is no longer required. 1187 */ 1188 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 1189 p->pNext = pVdbe->pProgram; 1190 pVdbe->pProgram = p; 1191 } 1192 1193 /* 1194 ** Return true if the given Vdbe has any SubPrograms. 1195 */ 1196 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){ 1197 return pVdbe->pProgram!=0; 1198 } 1199 1200 /* 1201 ** Change the opcode at addr into OP_Noop 1202 */ 1203 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 1204 VdbeOp *pOp; 1205 if( p->db->mallocFailed ) return 0; 1206 assert( addr>=0 && addr<p->nOp ); 1207 pOp = &p->aOp[addr]; 1208 freeP4(p->db, pOp->p4type, pOp->p4.p); 1209 pOp->p4type = P4_NOTUSED; 1210 pOp->p4.z = 0; 1211 pOp->opcode = OP_Noop; 1212 return 1; 1213 } 1214 1215 /* 1216 ** If the last opcode is "op" and it is not a jump destination, 1217 ** then remove it. Return true if and only if an opcode was removed. 1218 */ 1219 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 1220 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 1221 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 1222 }else{ 1223 return 0; 1224 } 1225 } 1226 1227 #ifdef SQLITE_DEBUG 1228 /* 1229 ** Generate an OP_ReleaseReg opcode to indicate that a range of 1230 ** registers, except any identified by mask, are no longer in use. 1231 */ 1232 void sqlite3VdbeReleaseRegisters( 1233 Parse *pParse, /* Parsing context */ 1234 int iFirst, /* Index of first register to be released */ 1235 int N, /* Number of registers to release */ 1236 u32 mask, /* Mask of registers to NOT release */ 1237 int bUndefine /* If true, mark registers as undefined */ 1238 ){ 1239 if( N==0 ) return; 1240 assert( pParse->pVdbe ); 1241 assert( iFirst>=1 ); 1242 assert( iFirst+N-1<=pParse->nMem ); 1243 if( N<=31 && mask!=0 ){ 1244 while( N>0 && (mask&1)!=0 ){ 1245 mask >>= 1; 1246 iFirst++; 1247 N--; 1248 } 1249 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){ 1250 mask &= ~MASKBIT32(N-1); 1251 N--; 1252 } 1253 } 1254 if( N>0 ){ 1255 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); 1256 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); 1257 } 1258 } 1259 #endif /* SQLITE_DEBUG */ 1260 1261 1262 /* 1263 ** Change the value of the P4 operand for a specific instruction. 1264 ** This routine is useful when a large program is loaded from a 1265 ** static array using sqlite3VdbeAddOpList but we want to make a 1266 ** few minor changes to the program. 1267 ** 1268 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 1269 ** the string is made into memory obtained from sqlite3_malloc(). 1270 ** A value of n==0 means copy bytes of zP4 up to and including the 1271 ** first null byte. If n>0 then copy n+1 bytes of zP4. 1272 ** 1273 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 1274 ** to a string or structure that is guaranteed to exist for the lifetime of 1275 ** the Vdbe. In these cases we can just copy the pointer. 1276 ** 1277 ** If addr<0 then change P4 on the most recently inserted instruction. 1278 */ 1279 static void SQLITE_NOINLINE vdbeChangeP4Full( 1280 Vdbe *p, 1281 Op *pOp, 1282 const char *zP4, 1283 int n 1284 ){ 1285 if( pOp->p4type ){ 1286 freeP4(p->db, pOp->p4type, pOp->p4.p); 1287 pOp->p4type = 0; 1288 pOp->p4.p = 0; 1289 } 1290 if( n<0 ){ 1291 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 1292 }else{ 1293 if( n==0 ) n = sqlite3Strlen30(zP4); 1294 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 1295 pOp->p4type = P4_DYNAMIC; 1296 } 1297 } 1298 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 1299 Op *pOp; 1300 sqlite3 *db; 1301 assert( p!=0 ); 1302 db = p->db; 1303 assert( p->iVdbeMagic==VDBE_MAGIC_INIT ); 1304 assert( p->aOp!=0 || db->mallocFailed ); 1305 if( db->mallocFailed ){ 1306 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 1307 return; 1308 } 1309 assert( p->nOp>0 ); 1310 assert( addr<p->nOp ); 1311 if( addr<0 ){ 1312 addr = p->nOp - 1; 1313 } 1314 pOp = &p->aOp[addr]; 1315 if( n>=0 || pOp->p4type ){ 1316 vdbeChangeP4Full(p, pOp, zP4, n); 1317 return; 1318 } 1319 if( n==P4_INT32 ){ 1320 /* Note: this cast is safe, because the origin data point was an int 1321 ** that was cast to a (const char *). */ 1322 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 1323 pOp->p4type = P4_INT32; 1324 }else if( zP4!=0 ){ 1325 assert( n<0 ); 1326 pOp->p4.p = (void*)zP4; 1327 pOp->p4type = (signed char)n; 1328 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 1329 } 1330 } 1331 1332 /* 1333 ** Change the P4 operand of the most recently coded instruction 1334 ** to the value defined by the arguments. This is a high-speed 1335 ** version of sqlite3VdbeChangeP4(). 1336 ** 1337 ** The P4 operand must not have been previously defined. And the new 1338 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 1339 ** those cases. 1340 */ 1341 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1342 VdbeOp *pOp; 1343 assert( n!=P4_INT32 && n!=P4_VTAB ); 1344 assert( n<=0 ); 1345 if( p->db->mallocFailed ){ 1346 freeP4(p->db, n, pP4); 1347 }else{ 1348 assert( pP4!=0 ); 1349 assert( p->nOp>0 ); 1350 pOp = &p->aOp[p->nOp-1]; 1351 assert( pOp->p4type==P4_NOTUSED ); 1352 pOp->p4type = n; 1353 pOp->p4.p = pP4; 1354 } 1355 } 1356 1357 /* 1358 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1359 ** index given. 1360 */ 1361 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1362 Vdbe *v = pParse->pVdbe; 1363 KeyInfo *pKeyInfo; 1364 assert( v!=0 ); 1365 assert( pIdx!=0 ); 1366 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1367 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1368 } 1369 1370 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1371 /* 1372 ** Change the comment on the most recently coded instruction. Or 1373 ** insert a No-op and add the comment to that new instruction. This 1374 ** makes the code easier to read during debugging. None of this happens 1375 ** in a production build. 1376 */ 1377 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1378 assert( p->nOp>0 || p->aOp==0 ); 1379 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed 1380 || p->pParse->nErr>0 ); 1381 if( p->nOp ){ 1382 assert( p->aOp ); 1383 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1384 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1385 } 1386 } 1387 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1388 va_list ap; 1389 if( p ){ 1390 va_start(ap, zFormat); 1391 vdbeVComment(p, zFormat, ap); 1392 va_end(ap); 1393 } 1394 } 1395 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1396 va_list ap; 1397 if( p ){ 1398 sqlite3VdbeAddOp0(p, OP_Noop); 1399 va_start(ap, zFormat); 1400 vdbeVComment(p, zFormat, ap); 1401 va_end(ap); 1402 } 1403 } 1404 #endif /* NDEBUG */ 1405 1406 #ifdef SQLITE_VDBE_COVERAGE 1407 /* 1408 ** Set the value if the iSrcLine field for the previously coded instruction. 1409 */ 1410 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1411 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1412 } 1413 #endif /* SQLITE_VDBE_COVERAGE */ 1414 1415 /* 1416 ** Return the opcode for a given address. If the address is -1, then 1417 ** return the most recently inserted opcode. 1418 ** 1419 ** If a memory allocation error has occurred prior to the calling of this 1420 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1421 ** is readable but not writable, though it is cast to a writable value. 1422 ** The return of a dummy opcode allows the call to continue functioning 1423 ** after an OOM fault without having to check to see if the return from 1424 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1425 ** dummy will never be written to. This is verified by code inspection and 1426 ** by running with Valgrind. 1427 */ 1428 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1429 /* C89 specifies that the constant "dummy" will be initialized to all 1430 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1431 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1432 assert( p->iVdbeMagic==VDBE_MAGIC_INIT ); 1433 if( addr<0 ){ 1434 addr = p->nOp - 1; 1435 } 1436 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1437 if( p->db->mallocFailed ){ 1438 return (VdbeOp*)&dummy; 1439 }else{ 1440 return &p->aOp[addr]; 1441 } 1442 } 1443 1444 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1445 /* 1446 ** Return an integer value for one of the parameters to the opcode pOp 1447 ** determined by character c. 1448 */ 1449 static int translateP(char c, const Op *pOp){ 1450 if( c=='1' ) return pOp->p1; 1451 if( c=='2' ) return pOp->p2; 1452 if( c=='3' ) return pOp->p3; 1453 if( c=='4' ) return pOp->p4.i; 1454 return pOp->p5; 1455 } 1456 1457 /* 1458 ** Compute a string for the "comment" field of a VDBE opcode listing. 1459 ** 1460 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1461 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1462 ** absence of other comments, this synopsis becomes the comment on the opcode. 1463 ** Some translation occurs: 1464 ** 1465 ** "PX" -> "r[X]" 1466 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1467 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1468 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1469 */ 1470 char *sqlite3VdbeDisplayComment( 1471 sqlite3 *db, /* Optional - Oom error reporting only */ 1472 const Op *pOp, /* The opcode to be commented */ 1473 const char *zP4 /* Previously obtained value for P4 */ 1474 ){ 1475 const char *zOpName; 1476 const char *zSynopsis; 1477 int nOpName; 1478 int ii; 1479 char zAlt[50]; 1480 StrAccum x; 1481 1482 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1483 zOpName = sqlite3OpcodeName(pOp->opcode); 1484 nOpName = sqlite3Strlen30(zOpName); 1485 if( zOpName[nOpName+1] ){ 1486 int seenCom = 0; 1487 char c; 1488 zSynopsis = zOpName += nOpName + 1; 1489 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1490 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1491 zSynopsis = zAlt; 1492 } 1493 for(ii=0; (c = zSynopsis[ii])!=0; ii++){ 1494 if( c=='P' ){ 1495 c = zSynopsis[++ii]; 1496 if( c=='4' ){ 1497 sqlite3_str_appendall(&x, zP4); 1498 }else if( c=='X' ){ 1499 sqlite3_str_appendall(&x, pOp->zComment); 1500 seenCom = 1; 1501 }else{ 1502 int v1 = translateP(c, pOp); 1503 int v2; 1504 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1505 ii += 3; 1506 v2 = translateP(zSynopsis[ii], pOp); 1507 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1508 ii += 2; 1509 v2++; 1510 } 1511 if( v2<2 ){ 1512 sqlite3_str_appendf(&x, "%d", v1); 1513 }else{ 1514 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1); 1515 } 1516 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){ 1517 sqlite3_context *pCtx = pOp->p4.pCtx; 1518 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){ 1519 sqlite3_str_appendf(&x, "%d", v1); 1520 }else if( pCtx->argc>1 ){ 1521 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1); 1522 }else if( x.accError==0 ){ 1523 assert( x.nChar>2 ); 1524 x.nChar -= 2; 1525 ii++; 1526 } 1527 ii += 3; 1528 }else{ 1529 sqlite3_str_appendf(&x, "%d", v1); 1530 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1531 ii += 4; 1532 } 1533 } 1534 } 1535 }else{ 1536 sqlite3_str_appendchar(&x, 1, c); 1537 } 1538 } 1539 if( !seenCom && pOp->zComment ){ 1540 sqlite3_str_appendf(&x, "; %s", pOp->zComment); 1541 } 1542 }else if( pOp->zComment ){ 1543 sqlite3_str_appendall(&x, pOp->zComment); 1544 } 1545 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){ 1546 sqlite3OomFault(db); 1547 } 1548 return sqlite3StrAccumFinish(&x); 1549 } 1550 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */ 1551 1552 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1553 /* 1554 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1555 ** that can be displayed in the P4 column of EXPLAIN output. 1556 */ 1557 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1558 const char *zOp = 0; 1559 switch( pExpr->op ){ 1560 case TK_STRING: 1561 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); 1562 break; 1563 case TK_INTEGER: 1564 sqlite3_str_appendf(p, "%d", pExpr->u.iValue); 1565 break; 1566 case TK_NULL: 1567 sqlite3_str_appendf(p, "NULL"); 1568 break; 1569 case TK_REGISTER: { 1570 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); 1571 break; 1572 } 1573 case TK_COLUMN: { 1574 if( pExpr->iColumn<0 ){ 1575 sqlite3_str_appendf(p, "rowid"); 1576 }else{ 1577 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); 1578 } 1579 break; 1580 } 1581 case TK_LT: zOp = "LT"; break; 1582 case TK_LE: zOp = "LE"; break; 1583 case TK_GT: zOp = "GT"; break; 1584 case TK_GE: zOp = "GE"; break; 1585 case TK_NE: zOp = "NE"; break; 1586 case TK_EQ: zOp = "EQ"; break; 1587 case TK_IS: zOp = "IS"; break; 1588 case TK_ISNOT: zOp = "ISNOT"; break; 1589 case TK_AND: zOp = "AND"; break; 1590 case TK_OR: zOp = "OR"; break; 1591 case TK_PLUS: zOp = "ADD"; break; 1592 case TK_STAR: zOp = "MUL"; break; 1593 case TK_MINUS: zOp = "SUB"; break; 1594 case TK_REM: zOp = "REM"; break; 1595 case TK_BITAND: zOp = "BITAND"; break; 1596 case TK_BITOR: zOp = "BITOR"; break; 1597 case TK_SLASH: zOp = "DIV"; break; 1598 case TK_LSHIFT: zOp = "LSHIFT"; break; 1599 case TK_RSHIFT: zOp = "RSHIFT"; break; 1600 case TK_CONCAT: zOp = "CONCAT"; break; 1601 case TK_UMINUS: zOp = "MINUS"; break; 1602 case TK_UPLUS: zOp = "PLUS"; break; 1603 case TK_BITNOT: zOp = "BITNOT"; break; 1604 case TK_NOT: zOp = "NOT"; break; 1605 case TK_ISNULL: zOp = "ISNULL"; break; 1606 case TK_NOTNULL: zOp = "NOTNULL"; break; 1607 1608 default: 1609 sqlite3_str_appendf(p, "%s", "expr"); 1610 break; 1611 } 1612 1613 if( zOp ){ 1614 sqlite3_str_appendf(p, "%s(", zOp); 1615 displayP4Expr(p, pExpr->pLeft); 1616 if( pExpr->pRight ){ 1617 sqlite3_str_append(p, ",", 1); 1618 displayP4Expr(p, pExpr->pRight); 1619 } 1620 sqlite3_str_append(p, ")", 1); 1621 } 1622 } 1623 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1624 1625 1626 #if VDBE_DISPLAY_P4 1627 /* 1628 ** Compute a string that describes the P4 parameter for an opcode. 1629 ** Use zTemp for any required temporary buffer space. 1630 */ 1631 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){ 1632 char *zP4 = 0; 1633 StrAccum x; 1634 1635 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1636 switch( pOp->p4type ){ 1637 case P4_KEYINFO: { 1638 int j; 1639 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1640 assert( pKeyInfo->aSortFlags!=0 ); 1641 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); 1642 for(j=0; j<pKeyInfo->nKeyField; j++){ 1643 CollSeq *pColl = pKeyInfo->aColl[j]; 1644 const char *zColl = pColl ? pColl->zName : ""; 1645 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1646 sqlite3_str_appendf(&x, ",%s%s%s", 1647 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "", 1648 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "", 1649 zColl); 1650 } 1651 sqlite3_str_append(&x, ")", 1); 1652 break; 1653 } 1654 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1655 case P4_EXPR: { 1656 displayP4Expr(&x, pOp->p4.pExpr); 1657 break; 1658 } 1659 #endif 1660 case P4_COLLSEQ: { 1661 static const char *const encnames[] = {"?", "8", "16LE", "16BE"}; 1662 CollSeq *pColl = pOp->p4.pColl; 1663 assert( pColl->enc<4 ); 1664 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName, 1665 encnames[pColl->enc]); 1666 break; 1667 } 1668 case P4_FUNCDEF: { 1669 FuncDef *pDef = pOp->p4.pFunc; 1670 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1671 break; 1672 } 1673 case P4_FUNCCTX: { 1674 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1675 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1676 break; 1677 } 1678 case P4_INT64: { 1679 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); 1680 break; 1681 } 1682 case P4_INT32: { 1683 sqlite3_str_appendf(&x, "%d", pOp->p4.i); 1684 break; 1685 } 1686 case P4_REAL: { 1687 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); 1688 break; 1689 } 1690 case P4_MEM: { 1691 Mem *pMem = pOp->p4.pMem; 1692 if( pMem->flags & MEM_Str ){ 1693 zP4 = pMem->z; 1694 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1695 sqlite3_str_appendf(&x, "%lld", pMem->u.i); 1696 }else if( pMem->flags & MEM_Real ){ 1697 sqlite3_str_appendf(&x, "%.16g", pMem->u.r); 1698 }else if( pMem->flags & MEM_Null ){ 1699 zP4 = "NULL"; 1700 }else{ 1701 assert( pMem->flags & MEM_Blob ); 1702 zP4 = "(blob)"; 1703 } 1704 break; 1705 } 1706 #ifndef SQLITE_OMIT_VIRTUALTABLE 1707 case P4_VTAB: { 1708 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1709 sqlite3_str_appendf(&x, "vtab:%p", pVtab); 1710 break; 1711 } 1712 #endif 1713 case P4_INTARRAY: { 1714 u32 i; 1715 u32 *ai = pOp->p4.ai; 1716 u32 n = ai[0]; /* The first element of an INTARRAY is always the 1717 ** count of the number of elements to follow */ 1718 for(i=1; i<=n; i++){ 1719 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]); 1720 } 1721 sqlite3_str_append(&x, "]", 1); 1722 break; 1723 } 1724 case P4_SUBPROGRAM: { 1725 zP4 = "program"; 1726 break; 1727 } 1728 case P4_DYNBLOB: 1729 case P4_ADVANCE: { 1730 break; 1731 } 1732 case P4_TABLE: { 1733 zP4 = pOp->p4.pTab->zName; 1734 break; 1735 } 1736 default: { 1737 zP4 = pOp->p4.z; 1738 } 1739 } 1740 if( zP4 ) sqlite3_str_appendall(&x, zP4); 1741 if( (x.accError & SQLITE_NOMEM)!=0 ){ 1742 sqlite3OomFault(db); 1743 } 1744 return sqlite3StrAccumFinish(&x); 1745 } 1746 #endif /* VDBE_DISPLAY_P4 */ 1747 1748 /* 1749 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1750 ** 1751 ** The prepared statements need to know in advance the complete set of 1752 ** attached databases that will be use. A mask of these databases 1753 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1754 ** p->btreeMask of databases that will require a lock. 1755 */ 1756 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1757 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1758 assert( i<(int)sizeof(p->btreeMask)*8 ); 1759 DbMaskSet(p->btreeMask, i); 1760 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1761 DbMaskSet(p->lockMask, i); 1762 } 1763 } 1764 1765 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1766 /* 1767 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1768 ** this routine obtains the mutex associated with each BtShared structure 1769 ** that may be accessed by the VM passed as an argument. In doing so it also 1770 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1771 ** that the correct busy-handler callback is invoked if required. 1772 ** 1773 ** If SQLite is not threadsafe but does support shared-cache mode, then 1774 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1775 ** of all of BtShared structures accessible via the database handle 1776 ** associated with the VM. 1777 ** 1778 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1779 ** function is a no-op. 1780 ** 1781 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1782 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1783 ** corresponding to btrees that use shared cache. Then the runtime of 1784 ** this routine is N*N. But as N is rarely more than 1, this should not 1785 ** be a problem. 1786 */ 1787 void sqlite3VdbeEnter(Vdbe *p){ 1788 int i; 1789 sqlite3 *db; 1790 Db *aDb; 1791 int nDb; 1792 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1793 db = p->db; 1794 aDb = db->aDb; 1795 nDb = db->nDb; 1796 for(i=0; i<nDb; i++){ 1797 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1798 sqlite3BtreeEnter(aDb[i].pBt); 1799 } 1800 } 1801 } 1802 #endif 1803 1804 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1805 /* 1806 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1807 */ 1808 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1809 int i; 1810 sqlite3 *db; 1811 Db *aDb; 1812 int nDb; 1813 db = p->db; 1814 aDb = db->aDb; 1815 nDb = db->nDb; 1816 for(i=0; i<nDb; i++){ 1817 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1818 sqlite3BtreeLeave(aDb[i].pBt); 1819 } 1820 } 1821 } 1822 void sqlite3VdbeLeave(Vdbe *p){ 1823 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1824 vdbeLeave(p); 1825 } 1826 #endif 1827 1828 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1829 /* 1830 ** Print a single opcode. This routine is used for debugging only. 1831 */ 1832 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ 1833 char *zP4; 1834 char *zCom; 1835 sqlite3 dummyDb; 1836 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1837 if( pOut==0 ) pOut = stdout; 1838 sqlite3BeginBenignMalloc(); 1839 dummyDb.mallocFailed = 1; 1840 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp); 1841 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1842 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4); 1843 #else 1844 zCom = 0; 1845 #endif 1846 /* NB: The sqlite3OpcodeName() function is implemented by code created 1847 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1848 ** information from the vdbe.c source text */ 1849 fprintf(pOut, zFormat1, pc, 1850 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, 1851 zP4 ? zP4 : "", pOp->p5, 1852 zCom ? zCom : "" 1853 ); 1854 fflush(pOut); 1855 sqlite3_free(zP4); 1856 sqlite3_free(zCom); 1857 sqlite3EndBenignMalloc(); 1858 } 1859 #endif 1860 1861 /* 1862 ** Initialize an array of N Mem element. 1863 */ 1864 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1865 while( (N--)>0 ){ 1866 p->db = db; 1867 p->flags = flags; 1868 p->szMalloc = 0; 1869 #ifdef SQLITE_DEBUG 1870 p->pScopyFrom = 0; 1871 #endif 1872 p++; 1873 } 1874 } 1875 1876 /* 1877 ** Release an array of N Mem elements 1878 */ 1879 static void releaseMemArray(Mem *p, int N){ 1880 if( p && N ){ 1881 Mem *pEnd = &p[N]; 1882 sqlite3 *db = p->db; 1883 if( db->pnBytesFreed ){ 1884 do{ 1885 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1886 }while( (++p)<pEnd ); 1887 return; 1888 } 1889 do{ 1890 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1891 assert( sqlite3VdbeCheckMemInvariants(p) ); 1892 1893 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1894 ** that takes advantage of the fact that the memory cell value is 1895 ** being set to NULL after releasing any dynamic resources. 1896 ** 1897 ** The justification for duplicating code is that according to 1898 ** callgrind, this causes a certain test case to hit the CPU 4.7 1899 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1900 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1901 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1902 ** with no indexes using a single prepared INSERT statement, bind() 1903 ** and reset(). Inserts are grouped into a transaction. 1904 */ 1905 testcase( p->flags & MEM_Agg ); 1906 testcase( p->flags & MEM_Dyn ); 1907 testcase( p->xDel==sqlite3VdbeFrameMemDel ); 1908 if( p->flags&(MEM_Agg|MEM_Dyn) ){ 1909 sqlite3VdbeMemRelease(p); 1910 }else if( p->szMalloc ){ 1911 sqlite3DbFreeNN(db, p->zMalloc); 1912 p->szMalloc = 0; 1913 } 1914 1915 p->flags = MEM_Undefined; 1916 }while( (++p)<pEnd ); 1917 } 1918 } 1919 1920 #ifdef SQLITE_DEBUG 1921 /* 1922 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is 1923 ** and false if something is wrong. 1924 ** 1925 ** This routine is intended for use inside of assert() statements only. 1926 */ 1927 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){ 1928 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; 1929 return 1; 1930 } 1931 #endif 1932 1933 1934 /* 1935 ** This is a destructor on a Mem object (which is really an sqlite3_value) 1936 ** that deletes the Frame object that is attached to it as a blob. 1937 ** 1938 ** This routine does not delete the Frame right away. It merely adds the 1939 ** frame to a list of frames to be deleted when the Vdbe halts. 1940 */ 1941 void sqlite3VdbeFrameMemDel(void *pArg){ 1942 VdbeFrame *pFrame = (VdbeFrame*)pArg; 1943 assert( sqlite3VdbeFrameIsValid(pFrame) ); 1944 pFrame->pParent = pFrame->v->pDelFrame; 1945 pFrame->v->pDelFrame = pFrame; 1946 } 1947 1948 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN) 1949 /* 1950 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN 1951 ** QUERY PLAN output. 1952 ** 1953 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no 1954 ** more opcodes to be displayed. 1955 */ 1956 int sqlite3VdbeNextOpcode( 1957 Vdbe *p, /* The statement being explained */ 1958 Mem *pSub, /* Storage for keeping track of subprogram nesting */ 1959 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */ 1960 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */ 1961 int *piAddr, /* OUT: Write index into (*paOp)[] here */ 1962 Op **paOp /* OUT: Write the opcode array here */ 1963 ){ 1964 int nRow; /* Stop when row count reaches this */ 1965 int nSub = 0; /* Number of sub-vdbes seen so far */ 1966 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1967 int i; /* Next instruction address */ 1968 int rc = SQLITE_OK; /* Result code */ 1969 Op *aOp = 0; /* Opcode array */ 1970 int iPc; /* Rowid. Copy of value in *piPc */ 1971 1972 /* When the number of output rows reaches nRow, that means the 1973 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1974 ** nRow is the sum of the number of rows in the main program, plus 1975 ** the sum of the number of rows in all trigger subprograms encountered 1976 ** so far. The nRow value will increase as new trigger subprograms are 1977 ** encountered, but p->pc will eventually catch up to nRow. 1978 */ 1979 nRow = p->nOp; 1980 if( pSub!=0 ){ 1981 if( pSub->flags&MEM_Blob ){ 1982 /* pSub is initiallly NULL. It is initialized to a BLOB by 1983 ** the P4_SUBPROGRAM processing logic below */ 1984 nSub = pSub->n/sizeof(Vdbe*); 1985 apSub = (SubProgram **)pSub->z; 1986 } 1987 for(i=0; i<nSub; i++){ 1988 nRow += apSub[i]->nOp; 1989 } 1990 } 1991 iPc = *piPc; 1992 while(1){ /* Loop exits via break */ 1993 i = iPc++; 1994 if( i>=nRow ){ 1995 p->rc = SQLITE_OK; 1996 rc = SQLITE_DONE; 1997 break; 1998 } 1999 if( i<p->nOp ){ 2000 /* The rowid is small enough that we are still in the 2001 ** main program. */ 2002 aOp = p->aOp; 2003 }else{ 2004 /* We are currently listing subprograms. Figure out which one and 2005 ** pick up the appropriate opcode. */ 2006 int j; 2007 i -= p->nOp; 2008 assert( apSub!=0 ); 2009 assert( nSub>0 ); 2010 for(j=0; i>=apSub[j]->nOp; j++){ 2011 i -= apSub[j]->nOp; 2012 assert( i<apSub[j]->nOp || j+1<nSub ); 2013 } 2014 aOp = apSub[j]->aOp; 2015 } 2016 2017 /* When an OP_Program opcode is encounter (the only opcode that has 2018 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 2019 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 2020 ** has not already been seen. 2021 */ 2022 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){ 2023 int nByte = (nSub+1)*sizeof(SubProgram*); 2024 int j; 2025 for(j=0; j<nSub; j++){ 2026 if( apSub[j]==aOp[i].p4.pProgram ) break; 2027 } 2028 if( j==nSub ){ 2029 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); 2030 if( p->rc!=SQLITE_OK ){ 2031 rc = SQLITE_ERROR; 2032 break; 2033 } 2034 apSub = (SubProgram **)pSub->z; 2035 apSub[nSub++] = aOp[i].p4.pProgram; 2036 MemSetTypeFlag(pSub, MEM_Blob); 2037 pSub->n = nSub*sizeof(SubProgram*); 2038 nRow += aOp[i].p4.pProgram->nOp; 2039 } 2040 } 2041 if( eMode==0 ) break; 2042 #ifdef SQLITE_ENABLE_BYTECODE_VTAB 2043 if( eMode==2 ){ 2044 Op *pOp = aOp + i; 2045 if( pOp->opcode==OP_OpenRead ) break; 2046 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break; 2047 if( pOp->opcode==OP_ReopenIdx ) break; 2048 }else 2049 #endif 2050 { 2051 assert( eMode==1 ); 2052 if( aOp[i].opcode==OP_Explain ) break; 2053 if( aOp[i].opcode==OP_Init && iPc>1 ) break; 2054 } 2055 } 2056 *piPc = iPc; 2057 *piAddr = i; 2058 *paOp = aOp; 2059 return rc; 2060 } 2061 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */ 2062 2063 2064 /* 2065 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 2066 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 2067 */ 2068 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 2069 int i; 2070 Mem *aMem = VdbeFrameMem(p); 2071 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 2072 assert( sqlite3VdbeFrameIsValid(p) ); 2073 for(i=0; i<p->nChildCsr; i++){ 2074 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 2075 } 2076 releaseMemArray(aMem, p->nChildMem); 2077 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 2078 sqlite3DbFree(p->v->db, p); 2079 } 2080 2081 #ifndef SQLITE_OMIT_EXPLAIN 2082 /* 2083 ** Give a listing of the program in the virtual machine. 2084 ** 2085 ** The interface is the same as sqlite3VdbeExec(). But instead of 2086 ** running the code, it invokes the callback once for each instruction. 2087 ** This feature is used to implement "EXPLAIN". 2088 ** 2089 ** When p->explain==1, each instruction is listed. When 2090 ** p->explain==2, only OP_Explain instructions are listed and these 2091 ** are shown in a different format. p->explain==2 is used to implement 2092 ** EXPLAIN QUERY PLAN. 2093 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers 2094 ** are also shown, so that the boundaries between the main program and 2095 ** each trigger are clear. 2096 ** 2097 ** When p->explain==1, first the main program is listed, then each of 2098 ** the trigger subprograms are listed one by one. 2099 */ 2100 int sqlite3VdbeList( 2101 Vdbe *p /* The VDBE */ 2102 ){ 2103 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 2104 sqlite3 *db = p->db; /* The database connection */ 2105 int i; /* Loop counter */ 2106 int rc = SQLITE_OK; /* Return code */ 2107 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 2108 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); 2109 Op *aOp; /* Array of opcodes */ 2110 Op *pOp; /* Current opcode */ 2111 2112 assert( p->explain ); 2113 assert( p->iVdbeMagic==VDBE_MAGIC_RUN ); 2114 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 2115 2116 /* Even though this opcode does not use dynamic strings for 2117 ** the result, result columns may become dynamic if the user calls 2118 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 2119 */ 2120 releaseMemArray(pMem, 8); 2121 p->pResultSet = 0; 2122 2123 if( p->rc==SQLITE_NOMEM ){ 2124 /* This happens if a malloc() inside a call to sqlite3_column_text() or 2125 ** sqlite3_column_text16() failed. */ 2126 sqlite3OomFault(db); 2127 return SQLITE_ERROR; 2128 } 2129 2130 if( bListSubprogs ){ 2131 /* The first 8 memory cells are used for the result set. So we will 2132 ** commandeer the 9th cell to use as storage for an array of pointers 2133 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 2134 ** cells. */ 2135 assert( p->nMem>9 ); 2136 pSub = &p->aMem[9]; 2137 }else{ 2138 pSub = 0; 2139 } 2140 2141 /* Figure out which opcode is next to display */ 2142 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp); 2143 2144 if( rc==SQLITE_OK ){ 2145 pOp = aOp + i; 2146 if( AtomicLoad(&db->u1.isInterrupted) ){ 2147 p->rc = SQLITE_INTERRUPT; 2148 rc = SQLITE_ERROR; 2149 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 2150 }else{ 2151 char *zP4 = sqlite3VdbeDisplayP4(db, pOp); 2152 if( p->explain==2 ){ 2153 sqlite3VdbeMemSetInt64(pMem, pOp->p1); 2154 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2); 2155 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3); 2156 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free); 2157 p->nResColumn = 4; 2158 }else{ 2159 sqlite3VdbeMemSetInt64(pMem+0, i); 2160 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode), 2161 -1, SQLITE_UTF8, SQLITE_STATIC); 2162 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1); 2163 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2); 2164 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3); 2165 /* pMem+5 for p4 is done last */ 2166 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5); 2167 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2168 { 2169 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4); 2170 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free); 2171 } 2172 #else 2173 sqlite3VdbeMemSetNull(pMem+7); 2174 #endif 2175 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free); 2176 p->nResColumn = 8; 2177 } 2178 p->pResultSet = pMem; 2179 if( db->mallocFailed ){ 2180 p->rc = SQLITE_NOMEM; 2181 rc = SQLITE_ERROR; 2182 }else{ 2183 p->rc = SQLITE_OK; 2184 rc = SQLITE_ROW; 2185 } 2186 } 2187 } 2188 return rc; 2189 } 2190 #endif /* SQLITE_OMIT_EXPLAIN */ 2191 2192 #ifdef SQLITE_DEBUG 2193 /* 2194 ** Print the SQL that was used to generate a VDBE program. 2195 */ 2196 void sqlite3VdbePrintSql(Vdbe *p){ 2197 const char *z = 0; 2198 if( p->zSql ){ 2199 z = p->zSql; 2200 }else if( p->nOp>=1 ){ 2201 const VdbeOp *pOp = &p->aOp[0]; 2202 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2203 z = pOp->p4.z; 2204 while( sqlite3Isspace(*z) ) z++; 2205 } 2206 } 2207 if( z ) printf("SQL: [%s]\n", z); 2208 } 2209 #endif 2210 2211 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 2212 /* 2213 ** Print an IOTRACE message showing SQL content. 2214 */ 2215 void sqlite3VdbeIOTraceSql(Vdbe *p){ 2216 int nOp = p->nOp; 2217 VdbeOp *pOp; 2218 if( sqlite3IoTrace==0 ) return; 2219 if( nOp<1 ) return; 2220 pOp = &p->aOp[0]; 2221 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2222 int i, j; 2223 char z[1000]; 2224 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 2225 for(i=0; sqlite3Isspace(z[i]); i++){} 2226 for(j=0; z[i]; i++){ 2227 if( sqlite3Isspace(z[i]) ){ 2228 if( z[i-1]!=' ' ){ 2229 z[j++] = ' '; 2230 } 2231 }else{ 2232 z[j++] = z[i]; 2233 } 2234 } 2235 z[j] = 0; 2236 sqlite3IoTrace("SQL %s\n", z); 2237 } 2238 } 2239 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 2240 2241 /* An instance of this object describes bulk memory available for use 2242 ** by subcomponents of a prepared statement. Space is allocated out 2243 ** of a ReusableSpace object by the allocSpace() routine below. 2244 */ 2245 struct ReusableSpace { 2246 u8 *pSpace; /* Available memory */ 2247 sqlite3_int64 nFree; /* Bytes of available memory */ 2248 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */ 2249 }; 2250 2251 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 2252 ** from the ReusableSpace object. Return a pointer to the allocated 2253 ** memory on success. If insufficient memory is available in the 2254 ** ReusableSpace object, increase the ReusableSpace.nNeeded 2255 ** value by the amount needed and return NULL. 2256 ** 2257 ** If pBuf is not initially NULL, that means that the memory has already 2258 ** been allocated by a prior call to this routine, so just return a copy 2259 ** of pBuf and leave ReusableSpace unchanged. 2260 ** 2261 ** This allocator is employed to repurpose unused slots at the end of the 2262 ** opcode array of prepared state for other memory needs of the prepared 2263 ** statement. 2264 */ 2265 static void *allocSpace( 2266 struct ReusableSpace *p, /* Bulk memory available for allocation */ 2267 void *pBuf, /* Pointer to a prior allocation */ 2268 sqlite3_int64 nByte /* Bytes of memory needed */ 2269 ){ 2270 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 2271 if( pBuf==0 ){ 2272 nByte = ROUND8(nByte); 2273 if( nByte <= p->nFree ){ 2274 p->nFree -= nByte; 2275 pBuf = &p->pSpace[p->nFree]; 2276 }else{ 2277 p->nNeeded += nByte; 2278 } 2279 } 2280 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 2281 return pBuf; 2282 } 2283 2284 /* 2285 ** Rewind the VDBE back to the beginning in preparation for 2286 ** running it. 2287 */ 2288 void sqlite3VdbeRewind(Vdbe *p){ 2289 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 2290 int i; 2291 #endif 2292 assert( p!=0 ); 2293 assert( p->iVdbeMagic==VDBE_MAGIC_INIT || p->iVdbeMagic==VDBE_MAGIC_RESET ); 2294 2295 /* There should be at least one opcode. 2296 */ 2297 assert( p->nOp>0 ); 2298 2299 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 2300 p->iVdbeMagic = VDBE_MAGIC_RUN; 2301 2302 #ifdef SQLITE_DEBUG 2303 for(i=0; i<p->nMem; i++){ 2304 assert( p->aMem[i].db==p->db ); 2305 } 2306 #endif 2307 p->pc = -1; 2308 p->rc = SQLITE_OK; 2309 p->errorAction = OE_Abort; 2310 p->nChange = 0; 2311 p->cacheCtr = 1; 2312 p->minWriteFileFormat = 255; 2313 p->iStatement = 0; 2314 p->nFkConstraint = 0; 2315 #ifdef VDBE_PROFILE 2316 for(i=0; i<p->nOp; i++){ 2317 p->aOp[i].cnt = 0; 2318 p->aOp[i].cycles = 0; 2319 } 2320 #endif 2321 } 2322 2323 /* 2324 ** Prepare a virtual machine for execution for the first time after 2325 ** creating the virtual machine. This involves things such 2326 ** as allocating registers and initializing the program counter. 2327 ** After the VDBE has be prepped, it can be executed by one or more 2328 ** calls to sqlite3VdbeExec(). 2329 ** 2330 ** This function may be called exactly once on each virtual machine. 2331 ** After this routine is called the VM has been "packaged" and is ready 2332 ** to run. After this routine is called, further calls to 2333 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 2334 ** the Vdbe from the Parse object that helped generate it so that the 2335 ** the Vdbe becomes an independent entity and the Parse object can be 2336 ** destroyed. 2337 ** 2338 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 2339 ** to its initial state after it has been run. 2340 */ 2341 void sqlite3VdbeMakeReady( 2342 Vdbe *p, /* The VDBE */ 2343 Parse *pParse /* Parsing context */ 2344 ){ 2345 sqlite3 *db; /* The database connection */ 2346 int nVar; /* Number of parameters */ 2347 int nMem; /* Number of VM memory registers */ 2348 int nCursor; /* Number of cursors required */ 2349 int nArg; /* Number of arguments in subprograms */ 2350 int n; /* Loop counter */ 2351 struct ReusableSpace x; /* Reusable bulk memory */ 2352 2353 assert( p!=0 ); 2354 assert( p->nOp>0 ); 2355 assert( pParse!=0 ); 2356 assert( p->iVdbeMagic==VDBE_MAGIC_INIT ); 2357 assert( pParse==p->pParse ); 2358 p->pVList = pParse->pVList; 2359 pParse->pVList = 0; 2360 db = p->db; 2361 assert( db->mallocFailed==0 ); 2362 nVar = pParse->nVar; 2363 nMem = pParse->nMem; 2364 nCursor = pParse->nTab; 2365 nArg = pParse->nMaxArg; 2366 2367 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 2368 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 2369 ** space at the end of aMem[] for cursors 1 and greater. 2370 ** See also: allocateCursor(). 2371 */ 2372 nMem += nCursor; 2373 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 2374 2375 /* Figure out how much reusable memory is available at the end of the 2376 ** opcode array. This extra memory will be reallocated for other elements 2377 ** of the prepared statement. 2378 */ 2379 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 2380 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 2381 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 2382 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 2383 assert( x.nFree>=0 ); 2384 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 2385 2386 resolveP2Values(p, &nArg); 2387 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 2388 if( pParse->explain ){ 2389 static const char * const azColName[] = { 2390 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", 2391 "id", "parent", "notused", "detail" 2392 }; 2393 int iFirst, mx, i; 2394 if( nMem<10 ) nMem = 10; 2395 p->explain = pParse->explain; 2396 if( pParse->explain==2 ){ 2397 sqlite3VdbeSetNumCols(p, 4); 2398 iFirst = 8; 2399 mx = 12; 2400 }else{ 2401 sqlite3VdbeSetNumCols(p, 8); 2402 iFirst = 0; 2403 mx = 8; 2404 } 2405 for(i=iFirst; i<mx; i++){ 2406 sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME, 2407 azColName[i], SQLITE_STATIC); 2408 } 2409 } 2410 p->expired = 0; 2411 2412 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 2413 ** passes. On the first pass, we try to reuse unused memory at the 2414 ** end of the opcode array. If we are unable to satisfy all memory 2415 ** requirements by reusing the opcode array tail, then the second 2416 ** pass will fill in the remainder using a fresh memory allocation. 2417 ** 2418 ** This two-pass approach that reuses as much memory as possible from 2419 ** the leftover memory at the end of the opcode array. This can significantly 2420 ** reduce the amount of memory held by a prepared statement. 2421 */ 2422 x.nNeeded = 0; 2423 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem)); 2424 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem)); 2425 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*)); 2426 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*)); 2427 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2428 p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64)); 2429 #endif 2430 if( x.nNeeded ){ 2431 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 2432 x.nFree = x.nNeeded; 2433 if( !db->mallocFailed ){ 2434 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 2435 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 2436 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 2437 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 2438 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2439 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 2440 #endif 2441 } 2442 } 2443 2444 if( db->mallocFailed ){ 2445 p->nVar = 0; 2446 p->nCursor = 0; 2447 p->nMem = 0; 2448 }else{ 2449 p->nCursor = nCursor; 2450 p->nVar = (ynVar)nVar; 2451 initMemArray(p->aVar, nVar, db, MEM_Null); 2452 p->nMem = nMem; 2453 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2454 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2455 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2456 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2457 #endif 2458 } 2459 sqlite3VdbeRewind(p); 2460 } 2461 2462 /* 2463 ** Close a VDBE cursor and release all the resources that cursor 2464 ** happens to hold. 2465 */ 2466 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2467 if( pCx==0 ){ 2468 return; 2469 } 2470 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE ); 2471 assert( pCx->pBtx==0 || pCx->isEphemeral ); 2472 switch( pCx->eCurType ){ 2473 case CURTYPE_SORTER: { 2474 sqlite3VdbeSorterClose(p->db, pCx); 2475 break; 2476 } 2477 case CURTYPE_BTREE: { 2478 assert( pCx->uc.pCursor!=0 ); 2479 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2480 break; 2481 } 2482 #ifndef SQLITE_OMIT_VIRTUALTABLE 2483 case CURTYPE_VTAB: { 2484 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2485 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2486 assert( pVCur->pVtab->nRef>0 ); 2487 pVCur->pVtab->nRef--; 2488 pModule->xClose(pVCur); 2489 break; 2490 } 2491 #endif 2492 } 2493 } 2494 2495 /* 2496 ** Close all cursors in the current frame. 2497 */ 2498 static void closeCursorsInFrame(Vdbe *p){ 2499 if( p->apCsr ){ 2500 int i; 2501 for(i=0; i<p->nCursor; i++){ 2502 VdbeCursor *pC = p->apCsr[i]; 2503 if( pC ){ 2504 sqlite3VdbeFreeCursor(p, pC); 2505 p->apCsr[i] = 0; 2506 } 2507 } 2508 } 2509 } 2510 2511 /* 2512 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2513 ** is used, for example, when a trigger sub-program is halted to restore 2514 ** control to the main program. 2515 */ 2516 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2517 Vdbe *v = pFrame->v; 2518 closeCursorsInFrame(v); 2519 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2520 v->anExec = pFrame->anExec; 2521 #endif 2522 v->aOp = pFrame->aOp; 2523 v->nOp = pFrame->nOp; 2524 v->aMem = pFrame->aMem; 2525 v->nMem = pFrame->nMem; 2526 v->apCsr = pFrame->apCsr; 2527 v->nCursor = pFrame->nCursor; 2528 v->db->lastRowid = pFrame->lastRowid; 2529 v->nChange = pFrame->nChange; 2530 v->db->nChange = pFrame->nDbChange; 2531 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2532 v->pAuxData = pFrame->pAuxData; 2533 pFrame->pAuxData = 0; 2534 return pFrame->pc; 2535 } 2536 2537 /* 2538 ** Close all cursors. 2539 ** 2540 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2541 ** cell array. This is necessary as the memory cell array may contain 2542 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2543 ** open cursors. 2544 */ 2545 static void closeAllCursors(Vdbe *p){ 2546 if( p->pFrame ){ 2547 VdbeFrame *pFrame; 2548 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2549 sqlite3VdbeFrameRestore(pFrame); 2550 p->pFrame = 0; 2551 p->nFrame = 0; 2552 } 2553 assert( p->nFrame==0 ); 2554 closeCursorsInFrame(p); 2555 if( p->aMem ){ 2556 releaseMemArray(p->aMem, p->nMem); 2557 } 2558 while( p->pDelFrame ){ 2559 VdbeFrame *pDel = p->pDelFrame; 2560 p->pDelFrame = pDel->pParent; 2561 sqlite3VdbeFrameDelete(pDel); 2562 } 2563 2564 /* Delete any auxdata allocations made by the VM */ 2565 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2566 assert( p->pAuxData==0 ); 2567 } 2568 2569 /* 2570 ** Set the number of result columns that will be returned by this SQL 2571 ** statement. This is now set at compile time, rather than during 2572 ** execution of the vdbe program so that sqlite3_column_count() can 2573 ** be called on an SQL statement before sqlite3_step(). 2574 */ 2575 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2576 int n; 2577 sqlite3 *db = p->db; 2578 2579 if( p->nResColumn ){ 2580 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2581 sqlite3DbFree(db, p->aColName); 2582 } 2583 n = nResColumn*COLNAME_N; 2584 p->nResColumn = (u16)nResColumn; 2585 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2586 if( p->aColName==0 ) return; 2587 initMemArray(p->aColName, n, db, MEM_Null); 2588 } 2589 2590 /* 2591 ** Set the name of the idx'th column to be returned by the SQL statement. 2592 ** zName must be a pointer to a nul terminated string. 2593 ** 2594 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2595 ** 2596 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2597 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2598 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2599 */ 2600 int sqlite3VdbeSetColName( 2601 Vdbe *p, /* Vdbe being configured */ 2602 int idx, /* Index of column zName applies to */ 2603 int var, /* One of the COLNAME_* constants */ 2604 const char *zName, /* Pointer to buffer containing name */ 2605 void (*xDel)(void*) /* Memory management strategy for zName */ 2606 ){ 2607 int rc; 2608 Mem *pColName; 2609 assert( idx<p->nResColumn ); 2610 assert( var<COLNAME_N ); 2611 if( p->db->mallocFailed ){ 2612 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2613 return SQLITE_NOMEM_BKPT; 2614 } 2615 assert( p->aColName!=0 ); 2616 pColName = &(p->aColName[idx+var*p->nResColumn]); 2617 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2618 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2619 return rc; 2620 } 2621 2622 /* 2623 ** A read or write transaction may or may not be active on database handle 2624 ** db. If a transaction is active, commit it. If there is a 2625 ** write-transaction spanning more than one database file, this routine 2626 ** takes care of the super-journal trickery. 2627 */ 2628 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2629 int i; 2630 int nTrans = 0; /* Number of databases with an active write-transaction 2631 ** that are candidates for a two-phase commit using a 2632 ** super-journal */ 2633 int rc = SQLITE_OK; 2634 int needXcommit = 0; 2635 2636 #ifdef SQLITE_OMIT_VIRTUALTABLE 2637 /* With this option, sqlite3VtabSync() is defined to be simply 2638 ** SQLITE_OK so p is not used. 2639 */ 2640 UNUSED_PARAMETER(p); 2641 #endif 2642 2643 /* Before doing anything else, call the xSync() callback for any 2644 ** virtual module tables written in this transaction. This has to 2645 ** be done before determining whether a super-journal file is 2646 ** required, as an xSync() callback may add an attached database 2647 ** to the transaction. 2648 */ 2649 rc = sqlite3VtabSync(db, p); 2650 2651 /* This loop determines (a) if the commit hook should be invoked and 2652 ** (b) how many database files have open write transactions, not 2653 ** including the temp database. (b) is important because if more than 2654 ** one database file has an open write transaction, a super-journal 2655 ** file is required for an atomic commit. 2656 */ 2657 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2658 Btree *pBt = db->aDb[i].pBt; 2659 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 2660 /* Whether or not a database might need a super-journal depends upon 2661 ** its journal mode (among other things). This matrix determines which 2662 ** journal modes use a super-journal and which do not */ 2663 static const u8 aMJNeeded[] = { 2664 /* DELETE */ 1, 2665 /* PERSIST */ 1, 2666 /* OFF */ 0, 2667 /* TRUNCATE */ 1, 2668 /* MEMORY */ 0, 2669 /* WAL */ 0 2670 }; 2671 Pager *pPager; /* Pager associated with pBt */ 2672 needXcommit = 1; 2673 sqlite3BtreeEnter(pBt); 2674 pPager = sqlite3BtreePager(pBt); 2675 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2676 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2677 && sqlite3PagerIsMemdb(pPager)==0 2678 ){ 2679 assert( i!=1 ); 2680 nTrans++; 2681 } 2682 rc = sqlite3PagerExclusiveLock(pPager); 2683 sqlite3BtreeLeave(pBt); 2684 } 2685 } 2686 if( rc!=SQLITE_OK ){ 2687 return rc; 2688 } 2689 2690 /* If there are any write-transactions at all, invoke the commit hook */ 2691 if( needXcommit && db->xCommitCallback ){ 2692 rc = db->xCommitCallback(db->pCommitArg); 2693 if( rc ){ 2694 return SQLITE_CONSTRAINT_COMMITHOOK; 2695 } 2696 } 2697 2698 /* The simple case - no more than one database file (not counting the 2699 ** TEMP database) has a transaction active. There is no need for the 2700 ** super-journal. 2701 ** 2702 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2703 ** string, it means the main database is :memory: or a temp file. In 2704 ** that case we do not support atomic multi-file commits, so use the 2705 ** simple case then too. 2706 */ 2707 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2708 || nTrans<=1 2709 ){ 2710 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2711 Btree *pBt = db->aDb[i].pBt; 2712 if( pBt ){ 2713 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2714 } 2715 } 2716 2717 /* Do the commit only if all databases successfully complete phase 1. 2718 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2719 ** IO error while deleting or truncating a journal file. It is unlikely, 2720 ** but could happen. In this case abandon processing and return the error. 2721 */ 2722 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2723 Btree *pBt = db->aDb[i].pBt; 2724 if( pBt ){ 2725 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2726 } 2727 } 2728 if( rc==SQLITE_OK ){ 2729 sqlite3VtabCommit(db); 2730 } 2731 } 2732 2733 /* The complex case - There is a multi-file write-transaction active. 2734 ** This requires a super-journal file to ensure the transaction is 2735 ** committed atomically. 2736 */ 2737 #ifndef SQLITE_OMIT_DISKIO 2738 else{ 2739 sqlite3_vfs *pVfs = db->pVfs; 2740 char *zSuper = 0; /* File-name for the super-journal */ 2741 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2742 sqlite3_file *pSuperJrnl = 0; 2743 i64 offset = 0; 2744 int res; 2745 int retryCount = 0; 2746 int nMainFile; 2747 2748 /* Select a super-journal file name */ 2749 nMainFile = sqlite3Strlen30(zMainFile); 2750 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0); 2751 if( zSuper==0 ) return SQLITE_NOMEM_BKPT; 2752 zSuper += 4; 2753 do { 2754 u32 iRandom; 2755 if( retryCount ){ 2756 if( retryCount>100 ){ 2757 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper); 2758 sqlite3OsDelete(pVfs, zSuper, 0); 2759 break; 2760 }else if( retryCount==1 ){ 2761 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper); 2762 } 2763 } 2764 retryCount++; 2765 sqlite3_randomness(sizeof(iRandom), &iRandom); 2766 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X", 2767 (iRandom>>8)&0xffffff, iRandom&0xff); 2768 /* The antipenultimate character of the super-journal name must 2769 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2770 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' ); 2771 sqlite3FileSuffix3(zMainFile, zSuper); 2772 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); 2773 }while( rc==SQLITE_OK && res ); 2774 if( rc==SQLITE_OK ){ 2775 /* Open the super-journal. */ 2776 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl, 2777 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2778 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0 2779 ); 2780 } 2781 if( rc!=SQLITE_OK ){ 2782 sqlite3DbFree(db, zSuper-4); 2783 return rc; 2784 } 2785 2786 /* Write the name of each database file in the transaction into the new 2787 ** super-journal file. If an error occurs at this point close 2788 ** and delete the super-journal file. All the individual journal files 2789 ** still have 'null' as the super-journal pointer, so they will roll 2790 ** back independently if a failure occurs. 2791 */ 2792 for(i=0; i<db->nDb; i++){ 2793 Btree *pBt = db->aDb[i].pBt; 2794 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 2795 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2796 if( zFile==0 ){ 2797 continue; /* Ignore TEMP and :memory: databases */ 2798 } 2799 assert( zFile[0]!=0 ); 2800 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset); 2801 offset += sqlite3Strlen30(zFile)+1; 2802 if( rc!=SQLITE_OK ){ 2803 sqlite3OsCloseFree(pSuperJrnl); 2804 sqlite3OsDelete(pVfs, zSuper, 0); 2805 sqlite3DbFree(db, zSuper-4); 2806 return rc; 2807 } 2808 } 2809 } 2810 2811 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device 2812 ** flag is set this is not required. 2813 */ 2814 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL) 2815 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL)) 2816 ){ 2817 sqlite3OsCloseFree(pSuperJrnl); 2818 sqlite3OsDelete(pVfs, zSuper, 0); 2819 sqlite3DbFree(db, zSuper-4); 2820 return rc; 2821 } 2822 2823 /* Sync all the db files involved in the transaction. The same call 2824 ** sets the super-journal pointer in each individual journal. If 2825 ** an error occurs here, do not delete the super-journal file. 2826 ** 2827 ** If the error occurs during the first call to 2828 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2829 ** super-journal file will be orphaned. But we cannot delete it, 2830 ** in case the super-journal file name was written into the journal 2831 ** file before the failure occurred. 2832 */ 2833 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2834 Btree *pBt = db->aDb[i].pBt; 2835 if( pBt ){ 2836 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper); 2837 } 2838 } 2839 sqlite3OsCloseFree(pSuperJrnl); 2840 assert( rc!=SQLITE_BUSY ); 2841 if( rc!=SQLITE_OK ){ 2842 sqlite3DbFree(db, zSuper-4); 2843 return rc; 2844 } 2845 2846 /* Delete the super-journal file. This commits the transaction. After 2847 ** doing this the directory is synced again before any individual 2848 ** transaction files are deleted. 2849 */ 2850 rc = sqlite3OsDelete(pVfs, zSuper, 1); 2851 sqlite3DbFree(db, zSuper-4); 2852 zSuper = 0; 2853 if( rc ){ 2854 return rc; 2855 } 2856 2857 /* All files and directories have already been synced, so the following 2858 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2859 ** deleting or truncating journals. If something goes wrong while 2860 ** this is happening we don't really care. The integrity of the 2861 ** transaction is already guaranteed, but some stray 'cold' journals 2862 ** may be lying around. Returning an error code won't help matters. 2863 */ 2864 disable_simulated_io_errors(); 2865 sqlite3BeginBenignMalloc(); 2866 for(i=0; i<db->nDb; i++){ 2867 Btree *pBt = db->aDb[i].pBt; 2868 if( pBt ){ 2869 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2870 } 2871 } 2872 sqlite3EndBenignMalloc(); 2873 enable_simulated_io_errors(); 2874 2875 sqlite3VtabCommit(db); 2876 } 2877 #endif 2878 2879 return rc; 2880 } 2881 2882 /* 2883 ** This routine checks that the sqlite3.nVdbeActive count variable 2884 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2885 ** currently active. An assertion fails if the two counts do not match. 2886 ** This is an internal self-check only - it is not an essential processing 2887 ** step. 2888 ** 2889 ** This is a no-op if NDEBUG is defined. 2890 */ 2891 #ifndef NDEBUG 2892 static void checkActiveVdbeCnt(sqlite3 *db){ 2893 Vdbe *p; 2894 int cnt = 0; 2895 int nWrite = 0; 2896 int nRead = 0; 2897 p = db->pVdbe; 2898 while( p ){ 2899 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2900 cnt++; 2901 if( p->readOnly==0 ) nWrite++; 2902 if( p->bIsReader ) nRead++; 2903 } 2904 p = p->pNext; 2905 } 2906 assert( cnt==db->nVdbeActive ); 2907 assert( nWrite==db->nVdbeWrite ); 2908 assert( nRead==db->nVdbeRead ); 2909 } 2910 #else 2911 #define checkActiveVdbeCnt(x) 2912 #endif 2913 2914 /* 2915 ** If the Vdbe passed as the first argument opened a statement-transaction, 2916 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2917 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2918 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2919 ** statement transaction is committed. 2920 ** 2921 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2922 ** Otherwise SQLITE_OK. 2923 */ 2924 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 2925 sqlite3 *const db = p->db; 2926 int rc = SQLITE_OK; 2927 int i; 2928 const int iSavepoint = p->iStatement-1; 2929 2930 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2931 assert( db->nStatement>0 ); 2932 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2933 2934 for(i=0; i<db->nDb; i++){ 2935 int rc2 = SQLITE_OK; 2936 Btree *pBt = db->aDb[i].pBt; 2937 if( pBt ){ 2938 if( eOp==SAVEPOINT_ROLLBACK ){ 2939 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2940 } 2941 if( rc2==SQLITE_OK ){ 2942 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2943 } 2944 if( rc==SQLITE_OK ){ 2945 rc = rc2; 2946 } 2947 } 2948 } 2949 db->nStatement--; 2950 p->iStatement = 0; 2951 2952 if( rc==SQLITE_OK ){ 2953 if( eOp==SAVEPOINT_ROLLBACK ){ 2954 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2955 } 2956 if( rc==SQLITE_OK ){ 2957 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2958 } 2959 } 2960 2961 /* If the statement transaction is being rolled back, also restore the 2962 ** database handles deferred constraint counter to the value it had when 2963 ** the statement transaction was opened. */ 2964 if( eOp==SAVEPOINT_ROLLBACK ){ 2965 db->nDeferredCons = p->nStmtDefCons; 2966 db->nDeferredImmCons = p->nStmtDefImmCons; 2967 } 2968 return rc; 2969 } 2970 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2971 if( p->db->nStatement && p->iStatement ){ 2972 return vdbeCloseStatement(p, eOp); 2973 } 2974 return SQLITE_OK; 2975 } 2976 2977 2978 /* 2979 ** This function is called when a transaction opened by the database 2980 ** handle associated with the VM passed as an argument is about to be 2981 ** committed. If there are outstanding deferred foreign key constraint 2982 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2983 ** 2984 ** If there are outstanding FK violations and this function returns 2985 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2986 ** and write an error message to it. Then return SQLITE_ERROR. 2987 */ 2988 #ifndef SQLITE_OMIT_FOREIGN_KEY 2989 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2990 sqlite3 *db = p->db; 2991 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2992 || (!deferred && p->nFkConstraint>0) 2993 ){ 2994 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2995 p->errorAction = OE_Abort; 2996 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2997 return SQLITE_ERROR; 2998 } 2999 return SQLITE_OK; 3000 } 3001 #endif 3002 3003 /* 3004 ** This routine is called the when a VDBE tries to halt. If the VDBE 3005 ** has made changes and is in autocommit mode, then commit those 3006 ** changes. If a rollback is needed, then do the rollback. 3007 ** 3008 ** This routine is the only way to move the sqlite3eOpenState of a VM from 3009 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to 3010 ** call this on a VM that is in the SQLITE_STATE_HALT state. 3011 ** 3012 ** Return an error code. If the commit could not complete because of 3013 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 3014 ** means the close did not happen and needs to be repeated. 3015 */ 3016 int sqlite3VdbeHalt(Vdbe *p){ 3017 int rc; /* Used to store transient return codes */ 3018 sqlite3 *db = p->db; 3019 3020 /* This function contains the logic that determines if a statement or 3021 ** transaction will be committed or rolled back as a result of the 3022 ** execution of this virtual machine. 3023 ** 3024 ** If any of the following errors occur: 3025 ** 3026 ** SQLITE_NOMEM 3027 ** SQLITE_IOERR 3028 ** SQLITE_FULL 3029 ** SQLITE_INTERRUPT 3030 ** 3031 ** Then the internal cache might have been left in an inconsistent 3032 ** state. We need to rollback the statement transaction, if there is 3033 ** one, or the complete transaction if there is no statement transaction. 3034 */ 3035 3036 if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){ 3037 return SQLITE_OK; 3038 } 3039 if( db->mallocFailed ){ 3040 p->rc = SQLITE_NOMEM_BKPT; 3041 } 3042 closeAllCursors(p); 3043 checkActiveVdbeCnt(db); 3044 3045 /* No commit or rollback needed if the program never started or if the 3046 ** SQL statement does not read or write a database file. */ 3047 if( p->pc>=0 && p->bIsReader ){ 3048 int mrc; /* Primary error code from p->rc */ 3049 int eStatementOp = 0; 3050 int isSpecialError; /* Set to true if a 'special' error */ 3051 3052 /* Lock all btrees used by the statement */ 3053 sqlite3VdbeEnter(p); 3054 3055 /* Check for one of the special errors */ 3056 mrc = p->rc & 0xff; 3057 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 3058 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 3059 if( isSpecialError ){ 3060 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 3061 ** no rollback is necessary. Otherwise, at least a savepoint 3062 ** transaction must be rolled back to restore the database to a 3063 ** consistent state. 3064 ** 3065 ** Even if the statement is read-only, it is important to perform 3066 ** a statement or transaction rollback operation. If the error 3067 ** occurred while writing to the journal, sub-journal or database 3068 ** file as part of an effort to free up cache space (see function 3069 ** pagerStress() in pager.c), the rollback is required to restore 3070 ** the pager to a consistent state. 3071 */ 3072 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 3073 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 3074 eStatementOp = SAVEPOINT_ROLLBACK; 3075 }else{ 3076 /* We are forced to roll back the active transaction. Before doing 3077 ** so, abort any other statements this handle currently has active. 3078 */ 3079 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3080 sqlite3CloseSavepoints(db); 3081 db->autoCommit = 1; 3082 p->nChange = 0; 3083 } 3084 } 3085 } 3086 3087 /* Check for immediate foreign key violations. */ 3088 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3089 sqlite3VdbeCheckFk(p, 0); 3090 } 3091 3092 /* If the auto-commit flag is set and this is the only active writer 3093 ** VM, then we do either a commit or rollback of the current transaction. 3094 ** 3095 ** Note: This block also runs if one of the special errors handled 3096 ** above has occurred. 3097 */ 3098 if( !sqlite3VtabInSync(db) 3099 && db->autoCommit 3100 && db->nVdbeWrite==(p->readOnly==0) 3101 ){ 3102 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3103 rc = sqlite3VdbeCheckFk(p, 1); 3104 if( rc!=SQLITE_OK ){ 3105 if( NEVER(p->readOnly) ){ 3106 sqlite3VdbeLeave(p); 3107 return SQLITE_ERROR; 3108 } 3109 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 3110 }else{ 3111 /* The auto-commit flag is true, the vdbe program was successful 3112 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 3113 ** key constraints to hold up the transaction. This means a commit 3114 ** is required. */ 3115 rc = vdbeCommit(db, p); 3116 } 3117 if( rc==SQLITE_BUSY && p->readOnly ){ 3118 sqlite3VdbeLeave(p); 3119 return SQLITE_BUSY; 3120 }else if( rc!=SQLITE_OK ){ 3121 p->rc = rc; 3122 sqlite3RollbackAll(db, SQLITE_OK); 3123 p->nChange = 0; 3124 }else{ 3125 db->nDeferredCons = 0; 3126 db->nDeferredImmCons = 0; 3127 db->flags &= ~(u64)SQLITE_DeferFKs; 3128 sqlite3CommitInternalChanges(db); 3129 } 3130 }else{ 3131 sqlite3RollbackAll(db, SQLITE_OK); 3132 p->nChange = 0; 3133 } 3134 db->nStatement = 0; 3135 }else if( eStatementOp==0 ){ 3136 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 3137 eStatementOp = SAVEPOINT_RELEASE; 3138 }else if( p->errorAction==OE_Abort ){ 3139 eStatementOp = SAVEPOINT_ROLLBACK; 3140 }else{ 3141 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3142 sqlite3CloseSavepoints(db); 3143 db->autoCommit = 1; 3144 p->nChange = 0; 3145 } 3146 } 3147 3148 /* If eStatementOp is non-zero, then a statement transaction needs to 3149 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 3150 ** do so. If this operation returns an error, and the current statement 3151 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 3152 ** current statement error code. 3153 */ 3154 if( eStatementOp ){ 3155 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 3156 if( rc ){ 3157 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 3158 p->rc = rc; 3159 sqlite3DbFree(db, p->zErrMsg); 3160 p->zErrMsg = 0; 3161 } 3162 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3163 sqlite3CloseSavepoints(db); 3164 db->autoCommit = 1; 3165 p->nChange = 0; 3166 } 3167 } 3168 3169 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 3170 ** has been rolled back, update the database connection change-counter. 3171 */ 3172 if( p->changeCntOn ){ 3173 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 3174 sqlite3VdbeSetChanges(db, p->nChange); 3175 }else{ 3176 sqlite3VdbeSetChanges(db, 0); 3177 } 3178 p->nChange = 0; 3179 } 3180 3181 /* Release the locks */ 3182 sqlite3VdbeLeave(p); 3183 } 3184 3185 /* We have successfully halted and closed the VM. Record this fact. */ 3186 if( p->pc>=0 ){ 3187 db->nVdbeActive--; 3188 if( !p->readOnly ) db->nVdbeWrite--; 3189 if( p->bIsReader ) db->nVdbeRead--; 3190 assert( db->nVdbeActive>=db->nVdbeRead ); 3191 assert( db->nVdbeRead>=db->nVdbeWrite ); 3192 assert( db->nVdbeWrite>=0 ); 3193 } 3194 p->iVdbeMagic = VDBE_MAGIC_HALT; 3195 checkActiveVdbeCnt(db); 3196 if( db->mallocFailed ){ 3197 p->rc = SQLITE_NOMEM_BKPT; 3198 } 3199 3200 /* If the auto-commit flag is set to true, then any locks that were held 3201 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 3202 ** to invoke any required unlock-notify callbacks. 3203 */ 3204 if( db->autoCommit ){ 3205 sqlite3ConnectionUnlocked(db); 3206 } 3207 3208 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 3209 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 3210 } 3211 3212 3213 /* 3214 ** Each VDBE holds the result of the most recent sqlite3_step() call 3215 ** in p->rc. This routine sets that result back to SQLITE_OK. 3216 */ 3217 void sqlite3VdbeResetStepResult(Vdbe *p){ 3218 p->rc = SQLITE_OK; 3219 } 3220 3221 /* 3222 ** Copy the error code and error message belonging to the VDBE passed 3223 ** as the first argument to its database handle (so that they will be 3224 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 3225 ** 3226 ** This function does not clear the VDBE error code or message, just 3227 ** copies them to the database handle. 3228 */ 3229 int sqlite3VdbeTransferError(Vdbe *p){ 3230 sqlite3 *db = p->db; 3231 int rc = p->rc; 3232 if( p->zErrMsg ){ 3233 db->bBenignMalloc++; 3234 sqlite3BeginBenignMalloc(); 3235 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 3236 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 3237 sqlite3EndBenignMalloc(); 3238 db->bBenignMalloc--; 3239 }else if( db->pErr ){ 3240 sqlite3ValueSetNull(db->pErr); 3241 } 3242 db->errCode = rc; 3243 return rc; 3244 } 3245 3246 #ifdef SQLITE_ENABLE_SQLLOG 3247 /* 3248 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 3249 ** invoke it. 3250 */ 3251 static void vdbeInvokeSqllog(Vdbe *v){ 3252 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 3253 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 3254 assert( v->db->init.busy==0 ); 3255 if( zExpanded ){ 3256 sqlite3GlobalConfig.xSqllog( 3257 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 3258 ); 3259 sqlite3DbFree(v->db, zExpanded); 3260 } 3261 } 3262 } 3263 #else 3264 # define vdbeInvokeSqllog(x) 3265 #endif 3266 3267 /* 3268 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 3269 ** Write any error messages into *pzErrMsg. Return the result code. 3270 ** 3271 ** After this routine is run, the VDBE should be ready to be executed 3272 ** again. 3273 ** 3274 ** To look at it another way, this routine resets the state of the 3275 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 3276 ** VDBE_MAGIC_INIT. 3277 */ 3278 int sqlite3VdbeReset(Vdbe *p){ 3279 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 3280 int i; 3281 #endif 3282 3283 sqlite3 *db; 3284 db = p->db; 3285 3286 /* If the VM did not run to completion or if it encountered an 3287 ** error, then it might not have been halted properly. So halt 3288 ** it now. 3289 */ 3290 sqlite3VdbeHalt(p); 3291 3292 /* If the VDBE has been run even partially, then transfer the error code 3293 ** and error message from the VDBE into the main database structure. But 3294 ** if the VDBE has just been set to run but has not actually executed any 3295 ** instructions yet, leave the main database error information unchanged. 3296 */ 3297 if( p->pc>=0 ){ 3298 vdbeInvokeSqllog(p); 3299 if( db->pErr || p->zErrMsg ){ 3300 sqlite3VdbeTransferError(p); 3301 }else{ 3302 db->errCode = p->rc; 3303 } 3304 if( p->runOnlyOnce ) p->expired = 1; 3305 }else if( p->rc && p->expired ){ 3306 /* The expired flag was set on the VDBE before the first call 3307 ** to sqlite3_step(). For consistency (since sqlite3_step() was 3308 ** called), set the database error in this case as well. 3309 */ 3310 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 3311 } 3312 3313 /* Reset register contents and reclaim error message memory. 3314 */ 3315 #ifdef SQLITE_DEBUG 3316 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 3317 ** Vdbe.aMem[] arrays have already been cleaned up. */ 3318 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 3319 if( p->aMem ){ 3320 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 3321 } 3322 #endif 3323 if( p->zErrMsg ){ 3324 sqlite3DbFree(db, p->zErrMsg); 3325 p->zErrMsg = 0; 3326 } 3327 p->pResultSet = 0; 3328 #ifdef SQLITE_DEBUG 3329 p->nWrite = 0; 3330 #endif 3331 3332 /* Save profiling information from this VDBE run. 3333 */ 3334 #ifdef VDBE_PROFILE 3335 { 3336 FILE *out = fopen("vdbe_profile.out", "a"); 3337 if( out ){ 3338 fprintf(out, "---- "); 3339 for(i=0; i<p->nOp; i++){ 3340 fprintf(out, "%02x", p->aOp[i].opcode); 3341 } 3342 fprintf(out, "\n"); 3343 if( p->zSql ){ 3344 char c, pc = 0; 3345 fprintf(out, "-- "); 3346 for(i=0; (c = p->zSql[i])!=0; i++){ 3347 if( pc=='\n' ) fprintf(out, "-- "); 3348 putc(c, out); 3349 pc = c; 3350 } 3351 if( pc!='\n' ) fprintf(out, "\n"); 3352 } 3353 for(i=0; i<p->nOp; i++){ 3354 char zHdr[100]; 3355 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 3356 p->aOp[i].cnt, 3357 p->aOp[i].cycles, 3358 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 3359 ); 3360 fprintf(out, "%s", zHdr); 3361 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 3362 } 3363 fclose(out); 3364 } 3365 } 3366 #endif 3367 p->iVdbeMagic = VDBE_MAGIC_RESET; 3368 return p->rc & db->errMask; 3369 } 3370 3371 /* 3372 ** Clean up and delete a VDBE after execution. Return an integer which is 3373 ** the result code. Write any error message text into *pzErrMsg. 3374 */ 3375 int sqlite3VdbeFinalize(Vdbe *p){ 3376 int rc = SQLITE_OK; 3377 if( p->iVdbeMagic==VDBE_MAGIC_RUN || p->iVdbeMagic==VDBE_MAGIC_HALT ){ 3378 rc = sqlite3VdbeReset(p); 3379 assert( (rc & p->db->errMask)==rc ); 3380 } 3381 sqlite3VdbeDelete(p); 3382 return rc; 3383 } 3384 3385 /* 3386 ** If parameter iOp is less than zero, then invoke the destructor for 3387 ** all auxiliary data pointers currently cached by the VM passed as 3388 ** the first argument. 3389 ** 3390 ** Or, if iOp is greater than or equal to zero, then the destructor is 3391 ** only invoked for those auxiliary data pointers created by the user 3392 ** function invoked by the OP_Function opcode at instruction iOp of 3393 ** VM pVdbe, and only then if: 3394 ** 3395 ** * the associated function parameter is the 32nd or later (counting 3396 ** from left to right), or 3397 ** 3398 ** * the corresponding bit in argument mask is clear (where the first 3399 ** function parameter corresponds to bit 0 etc.). 3400 */ 3401 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 3402 while( *pp ){ 3403 AuxData *pAux = *pp; 3404 if( (iOp<0) 3405 || (pAux->iAuxOp==iOp 3406 && pAux->iAuxArg>=0 3407 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 3408 ){ 3409 testcase( pAux->iAuxArg==31 ); 3410 if( pAux->xDeleteAux ){ 3411 pAux->xDeleteAux(pAux->pAux); 3412 } 3413 *pp = pAux->pNextAux; 3414 sqlite3DbFree(db, pAux); 3415 }else{ 3416 pp= &pAux->pNextAux; 3417 } 3418 } 3419 } 3420 3421 /* 3422 ** Free all memory associated with the Vdbe passed as the second argument, 3423 ** except for object itself, which is preserved. 3424 ** 3425 ** The difference between this function and sqlite3VdbeDelete() is that 3426 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 3427 ** the database connection and frees the object itself. 3428 */ 3429 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 3430 SubProgram *pSub, *pNext; 3431 assert( p->db==0 || p->db==db ); 3432 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 3433 for(pSub=p->pProgram; pSub; pSub=pNext){ 3434 pNext = pSub->pNext; 3435 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 3436 sqlite3DbFree(db, pSub); 3437 } 3438 if( p->iVdbeMagic!=VDBE_MAGIC_INIT ){ 3439 releaseMemArray(p->aVar, p->nVar); 3440 sqlite3DbFree(db, p->pVList); 3441 sqlite3DbFree(db, p->pFree); 3442 } 3443 vdbeFreeOpArray(db, p->aOp, p->nOp); 3444 sqlite3DbFree(db, p->aColName); 3445 sqlite3DbFree(db, p->zSql); 3446 #ifdef SQLITE_ENABLE_NORMALIZE 3447 sqlite3DbFree(db, p->zNormSql); 3448 { 3449 DblquoteStr *pThis, *pNext; 3450 for(pThis=p->pDblStr; pThis; pThis=pNext){ 3451 pNext = pThis->pNextStr; 3452 sqlite3DbFree(db, pThis); 3453 } 3454 } 3455 #endif 3456 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3457 { 3458 int i; 3459 for(i=0; i<p->nScan; i++){ 3460 sqlite3DbFree(db, p->aScan[i].zName); 3461 } 3462 sqlite3DbFree(db, p->aScan); 3463 } 3464 #endif 3465 } 3466 3467 /* 3468 ** Delete an entire VDBE. 3469 */ 3470 void sqlite3VdbeDelete(Vdbe *p){ 3471 sqlite3 *db; 3472 3473 assert( p!=0 ); 3474 db = p->db; 3475 assert( sqlite3_mutex_held(db->mutex) ); 3476 sqlite3VdbeClearObject(db, p); 3477 if( p->pPrev ){ 3478 p->pPrev->pNext = p->pNext; 3479 }else{ 3480 assert( db->pVdbe==p ); 3481 db->pVdbe = p->pNext; 3482 } 3483 if( p->pNext ){ 3484 p->pNext->pPrev = p->pPrev; 3485 } 3486 p->iVdbeMagic = VDBE_MAGIC_DEAD; 3487 p->db = 0; 3488 sqlite3DbFreeNN(db, p); 3489 } 3490 3491 /* 3492 ** The cursor "p" has a pending seek operation that has not yet been 3493 ** carried out. Seek the cursor now. If an error occurs, return 3494 ** the appropriate error code. 3495 */ 3496 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){ 3497 int res, rc; 3498 #ifdef SQLITE_TEST 3499 extern int sqlite3_search_count; 3500 #endif 3501 assert( p->deferredMoveto ); 3502 assert( p->isTable ); 3503 assert( p->eCurType==CURTYPE_BTREE ); 3504 rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res); 3505 if( rc ) return rc; 3506 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3507 #ifdef SQLITE_TEST 3508 sqlite3_search_count++; 3509 #endif 3510 p->deferredMoveto = 0; 3511 p->cacheStatus = CACHE_STALE; 3512 return SQLITE_OK; 3513 } 3514 3515 /* 3516 ** Something has moved cursor "p" out of place. Maybe the row it was 3517 ** pointed to was deleted out from under it. Or maybe the btree was 3518 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3519 ** is supposed to be pointing. If the row was deleted out from under the 3520 ** cursor, set the cursor to point to a NULL row. 3521 */ 3522 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 3523 int isDifferentRow, rc; 3524 assert( p->eCurType==CURTYPE_BTREE ); 3525 assert( p->uc.pCursor!=0 ); 3526 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3527 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3528 p->cacheStatus = CACHE_STALE; 3529 if( isDifferentRow ) p->nullRow = 1; 3530 return rc; 3531 } 3532 3533 /* 3534 ** Check to ensure that the cursor is valid. Restore the cursor 3535 ** if need be. Return any I/O error from the restore operation. 3536 */ 3537 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3538 assert( p->eCurType==CURTYPE_BTREE ); 3539 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3540 return handleMovedCursor(p); 3541 } 3542 return SQLITE_OK; 3543 } 3544 3545 /* 3546 ** Make sure the cursor p is ready to read or write the row to which it 3547 ** was last positioned. Return an error code if an OOM fault or I/O error 3548 ** prevents us from positioning the cursor to its correct position. 3549 ** 3550 ** If a MoveTo operation is pending on the given cursor, then do that 3551 ** MoveTo now. If no move is pending, check to see if the row has been 3552 ** deleted out from under the cursor and if it has, mark the row as 3553 ** a NULL row. 3554 ** 3555 ** If the cursor is already pointing to the correct row and that row has 3556 ** not been deleted out from under the cursor, then this routine is a no-op. 3557 */ 3558 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, u32 *piCol){ 3559 VdbeCursor *p = *pp; 3560 assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO ); 3561 if( p->deferredMoveto ){ 3562 u32 iMap; 3563 assert( !p->isEphemeral ); 3564 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 && !p->nullRow ){ 3565 *pp = p->pAltCursor; 3566 *piCol = iMap - 1; 3567 return SQLITE_OK; 3568 } 3569 return sqlite3VdbeFinishMoveto(p); 3570 } 3571 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3572 return handleMovedCursor(p); 3573 } 3574 return SQLITE_OK; 3575 } 3576 3577 /* 3578 ** The following functions: 3579 ** 3580 ** sqlite3VdbeSerialType() 3581 ** sqlite3VdbeSerialTypeLen() 3582 ** sqlite3VdbeSerialLen() 3583 ** sqlite3VdbeSerialPut() 3584 ** sqlite3VdbeSerialGet() 3585 ** 3586 ** encapsulate the code that serializes values for storage in SQLite 3587 ** data and index records. Each serialized value consists of a 3588 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3589 ** integer, stored as a varint. 3590 ** 3591 ** In an SQLite index record, the serial type is stored directly before 3592 ** the blob of data that it corresponds to. In a table record, all serial 3593 ** types are stored at the start of the record, and the blobs of data at 3594 ** the end. Hence these functions allow the caller to handle the 3595 ** serial-type and data blob separately. 3596 ** 3597 ** The following table describes the various storage classes for data: 3598 ** 3599 ** serial type bytes of data type 3600 ** -------------- --------------- --------------- 3601 ** 0 0 NULL 3602 ** 1 1 signed integer 3603 ** 2 2 signed integer 3604 ** 3 3 signed integer 3605 ** 4 4 signed integer 3606 ** 5 6 signed integer 3607 ** 6 8 signed integer 3608 ** 7 8 IEEE float 3609 ** 8 0 Integer constant 0 3610 ** 9 0 Integer constant 1 3611 ** 10,11 reserved for expansion 3612 ** N>=12 and even (N-12)/2 BLOB 3613 ** N>=13 and odd (N-13)/2 text 3614 ** 3615 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3616 ** of SQLite will not understand those serial types. 3617 */ 3618 3619 #if 0 /* Inlined into the OP_MakeRecord opcode */ 3620 /* 3621 ** Return the serial-type for the value stored in pMem. 3622 ** 3623 ** This routine might convert a large MEM_IntReal value into MEM_Real. 3624 ** 3625 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord 3626 ** opcode in the byte-code engine. But by moving this routine in-line, we 3627 ** can omit some redundant tests and make that opcode a lot faster. So 3628 ** this routine is now only used by the STAT3 logic and STAT3 support has 3629 ** ended. The code is kept here for historical reference only. 3630 */ 3631 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3632 int flags = pMem->flags; 3633 u32 n; 3634 3635 assert( pLen!=0 ); 3636 if( flags&MEM_Null ){ 3637 *pLen = 0; 3638 return 0; 3639 } 3640 if( flags&(MEM_Int|MEM_IntReal) ){ 3641 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3642 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3643 i64 i = pMem->u.i; 3644 u64 u; 3645 testcase( flags & MEM_Int ); 3646 testcase( flags & MEM_IntReal ); 3647 if( i<0 ){ 3648 u = ~i; 3649 }else{ 3650 u = i; 3651 } 3652 if( u<=127 ){ 3653 if( (i&1)==i && file_format>=4 ){ 3654 *pLen = 0; 3655 return 8+(u32)u; 3656 }else{ 3657 *pLen = 1; 3658 return 1; 3659 } 3660 } 3661 if( u<=32767 ){ *pLen = 2; return 2; } 3662 if( u<=8388607 ){ *pLen = 3; return 3; } 3663 if( u<=2147483647 ){ *pLen = 4; return 4; } 3664 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3665 *pLen = 8; 3666 if( flags&MEM_IntReal ){ 3667 /* If the value is IntReal and is going to take up 8 bytes to store 3668 ** as an integer, then we might as well make it an 8-byte floating 3669 ** point value */ 3670 pMem->u.r = (double)pMem->u.i; 3671 pMem->flags &= ~MEM_IntReal; 3672 pMem->flags |= MEM_Real; 3673 return 7; 3674 } 3675 return 6; 3676 } 3677 if( flags&MEM_Real ){ 3678 *pLen = 8; 3679 return 7; 3680 } 3681 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3682 assert( pMem->n>=0 ); 3683 n = (u32)pMem->n; 3684 if( flags & MEM_Zero ){ 3685 n += pMem->u.nZero; 3686 } 3687 *pLen = n; 3688 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3689 } 3690 #endif /* inlined into OP_MakeRecord */ 3691 3692 /* 3693 ** The sizes for serial types less than 128 3694 */ 3695 static const u8 sqlite3SmallTypeSizes[] = { 3696 /* 0 1 2 3 4 5 6 7 8 9 */ 3697 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3698 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3699 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3700 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3701 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3702 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3703 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3704 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3705 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3706 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3707 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3708 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3709 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3710 }; 3711 3712 /* 3713 ** Return the length of the data corresponding to the supplied serial-type. 3714 */ 3715 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3716 if( serial_type>=128 ){ 3717 return (serial_type-12)/2; 3718 }else{ 3719 assert( serial_type<12 3720 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3721 return sqlite3SmallTypeSizes[serial_type]; 3722 } 3723 } 3724 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3725 assert( serial_type<128 ); 3726 return sqlite3SmallTypeSizes[serial_type]; 3727 } 3728 3729 /* 3730 ** If we are on an architecture with mixed-endian floating 3731 ** points (ex: ARM7) then swap the lower 4 bytes with the 3732 ** upper 4 bytes. Return the result. 3733 ** 3734 ** For most architectures, this is a no-op. 3735 ** 3736 ** (later): It is reported to me that the mixed-endian problem 3737 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3738 ** that early versions of GCC stored the two words of a 64-bit 3739 ** float in the wrong order. And that error has been propagated 3740 ** ever since. The blame is not necessarily with GCC, though. 3741 ** GCC might have just copying the problem from a prior compiler. 3742 ** I am also told that newer versions of GCC that follow a different 3743 ** ABI get the byte order right. 3744 ** 3745 ** Developers using SQLite on an ARM7 should compile and run their 3746 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3747 ** enabled, some asserts below will ensure that the byte order of 3748 ** floating point values is correct. 3749 ** 3750 ** (2007-08-30) Frank van Vugt has studied this problem closely 3751 ** and has send his findings to the SQLite developers. Frank 3752 ** writes that some Linux kernels offer floating point hardware 3753 ** emulation that uses only 32-bit mantissas instead of a full 3754 ** 48-bits as required by the IEEE standard. (This is the 3755 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3756 ** byte swapping becomes very complicated. To avoid problems, 3757 ** the necessary byte swapping is carried out using a 64-bit integer 3758 ** rather than a 64-bit float. Frank assures us that the code here 3759 ** works for him. We, the developers, have no way to independently 3760 ** verify this, but Frank seems to know what he is talking about 3761 ** so we trust him. 3762 */ 3763 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3764 static u64 floatSwap(u64 in){ 3765 union { 3766 u64 r; 3767 u32 i[2]; 3768 } u; 3769 u32 t; 3770 3771 u.r = in; 3772 t = u.i[0]; 3773 u.i[0] = u.i[1]; 3774 u.i[1] = t; 3775 return u.r; 3776 } 3777 # define swapMixedEndianFloat(X) X = floatSwap(X) 3778 #else 3779 # define swapMixedEndianFloat(X) 3780 #endif 3781 3782 /* 3783 ** Write the serialized data blob for the value stored in pMem into 3784 ** buf. It is assumed that the caller has allocated sufficient space. 3785 ** Return the number of bytes written. 3786 ** 3787 ** nBuf is the amount of space left in buf[]. The caller is responsible 3788 ** for allocating enough space to buf[] to hold the entire field, exclusive 3789 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3790 ** 3791 ** Return the number of bytes actually written into buf[]. The number 3792 ** of bytes in the zero-filled tail is included in the return value only 3793 ** if those bytes were zeroed in buf[]. 3794 */ 3795 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3796 u32 len; 3797 3798 /* Integer and Real */ 3799 if( serial_type<=7 && serial_type>0 ){ 3800 u64 v; 3801 u32 i; 3802 if( serial_type==7 ){ 3803 assert( sizeof(v)==sizeof(pMem->u.r) ); 3804 memcpy(&v, &pMem->u.r, sizeof(v)); 3805 swapMixedEndianFloat(v); 3806 }else{ 3807 v = pMem->u.i; 3808 } 3809 len = i = sqlite3SmallTypeSizes[serial_type]; 3810 assert( i>0 ); 3811 do{ 3812 buf[--i] = (u8)(v&0xFF); 3813 v >>= 8; 3814 }while( i ); 3815 return len; 3816 } 3817 3818 /* String or blob */ 3819 if( serial_type>=12 ){ 3820 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3821 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3822 len = pMem->n; 3823 if( len>0 ) memcpy(buf, pMem->z, len); 3824 return len; 3825 } 3826 3827 /* NULL or constants 0 or 1 */ 3828 return 0; 3829 } 3830 3831 /* Input "x" is a sequence of unsigned characters that represent a 3832 ** big-endian integer. Return the equivalent native integer 3833 */ 3834 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3835 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3836 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3837 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3838 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3839 3840 /* 3841 ** Deserialize the data blob pointed to by buf as serial type serial_type 3842 ** and store the result in pMem. Return the number of bytes read. 3843 ** 3844 ** This function is implemented as two separate routines for performance. 3845 ** The few cases that require local variables are broken out into a separate 3846 ** routine so that in most cases the overhead of moving the stack pointer 3847 ** is avoided. 3848 */ 3849 static u32 serialGet( 3850 const unsigned char *buf, /* Buffer to deserialize from */ 3851 u32 serial_type, /* Serial type to deserialize */ 3852 Mem *pMem /* Memory cell to write value into */ 3853 ){ 3854 u64 x = FOUR_BYTE_UINT(buf); 3855 u32 y = FOUR_BYTE_UINT(buf+4); 3856 x = (x<<32) + y; 3857 if( serial_type==6 ){ 3858 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3859 ** twos-complement integer. */ 3860 pMem->u.i = *(i64*)&x; 3861 pMem->flags = MEM_Int; 3862 testcase( pMem->u.i<0 ); 3863 }else{ 3864 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3865 ** floating point number. */ 3866 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3867 /* Verify that integers and floating point values use the same 3868 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3869 ** defined that 64-bit floating point values really are mixed 3870 ** endian. 3871 */ 3872 static const u64 t1 = ((u64)0x3ff00000)<<32; 3873 static const double r1 = 1.0; 3874 u64 t2 = t1; 3875 swapMixedEndianFloat(t2); 3876 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3877 #endif 3878 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3879 swapMixedEndianFloat(x); 3880 memcpy(&pMem->u.r, &x, sizeof(x)); 3881 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real; 3882 } 3883 return 8; 3884 } 3885 u32 sqlite3VdbeSerialGet( 3886 const unsigned char *buf, /* Buffer to deserialize from */ 3887 u32 serial_type, /* Serial type to deserialize */ 3888 Mem *pMem /* Memory cell to write value into */ 3889 ){ 3890 switch( serial_type ){ 3891 case 10: { /* Internal use only: NULL with virtual table 3892 ** UPDATE no-change flag set */ 3893 pMem->flags = MEM_Null|MEM_Zero; 3894 pMem->n = 0; 3895 pMem->u.nZero = 0; 3896 break; 3897 } 3898 case 11: /* Reserved for future use */ 3899 case 0: { /* Null */ 3900 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3901 pMem->flags = MEM_Null; 3902 break; 3903 } 3904 case 1: { 3905 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3906 ** integer. */ 3907 pMem->u.i = ONE_BYTE_INT(buf); 3908 pMem->flags = MEM_Int; 3909 testcase( pMem->u.i<0 ); 3910 return 1; 3911 } 3912 case 2: { /* 2-byte signed integer */ 3913 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3914 ** twos-complement integer. */ 3915 pMem->u.i = TWO_BYTE_INT(buf); 3916 pMem->flags = MEM_Int; 3917 testcase( pMem->u.i<0 ); 3918 return 2; 3919 } 3920 case 3: { /* 3-byte signed integer */ 3921 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3922 ** twos-complement integer. */ 3923 pMem->u.i = THREE_BYTE_INT(buf); 3924 pMem->flags = MEM_Int; 3925 testcase( pMem->u.i<0 ); 3926 return 3; 3927 } 3928 case 4: { /* 4-byte signed integer */ 3929 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3930 ** twos-complement integer. */ 3931 pMem->u.i = FOUR_BYTE_INT(buf); 3932 #ifdef __HP_cc 3933 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3934 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3935 #endif 3936 pMem->flags = MEM_Int; 3937 testcase( pMem->u.i<0 ); 3938 return 4; 3939 } 3940 case 5: { /* 6-byte signed integer */ 3941 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3942 ** twos-complement integer. */ 3943 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3944 pMem->flags = MEM_Int; 3945 testcase( pMem->u.i<0 ); 3946 return 6; 3947 } 3948 case 6: /* 8-byte signed integer */ 3949 case 7: { /* IEEE floating point */ 3950 /* These use local variables, so do them in a separate routine 3951 ** to avoid having to move the frame pointer in the common case */ 3952 return serialGet(buf,serial_type,pMem); 3953 } 3954 case 8: /* Integer 0 */ 3955 case 9: { /* Integer 1 */ 3956 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3957 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3958 pMem->u.i = serial_type-8; 3959 pMem->flags = MEM_Int; 3960 return 0; 3961 } 3962 default: { 3963 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3964 ** length. 3965 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3966 ** (N-13)/2 bytes in length. */ 3967 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3968 pMem->z = (char *)buf; 3969 pMem->n = (serial_type-12)/2; 3970 pMem->flags = aFlag[serial_type&1]; 3971 return pMem->n; 3972 } 3973 } 3974 return 0; 3975 } 3976 /* 3977 ** This routine is used to allocate sufficient space for an UnpackedRecord 3978 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3979 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3980 ** 3981 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3982 ** the unaligned buffer passed via the second and third arguments (presumably 3983 ** stack space). If the former, then *ppFree is set to a pointer that should 3984 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3985 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3986 ** before returning. 3987 ** 3988 ** If an OOM error occurs, NULL is returned. 3989 */ 3990 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3991 KeyInfo *pKeyInfo /* Description of the record */ 3992 ){ 3993 UnpackedRecord *p; /* Unpacked record to return */ 3994 int nByte; /* Number of bytes required for *p */ 3995 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 3996 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3997 if( !p ) return 0; 3998 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3999 assert( pKeyInfo->aSortFlags!=0 ); 4000 p->pKeyInfo = pKeyInfo; 4001 p->nField = pKeyInfo->nKeyField + 1; 4002 return p; 4003 } 4004 4005 /* 4006 ** Given the nKey-byte encoding of a record in pKey[], populate the 4007 ** UnpackedRecord structure indicated by the fourth argument with the 4008 ** contents of the decoded record. 4009 */ 4010 void sqlite3VdbeRecordUnpack( 4011 KeyInfo *pKeyInfo, /* Information about the record format */ 4012 int nKey, /* Size of the binary record */ 4013 const void *pKey, /* The binary record */ 4014 UnpackedRecord *p /* Populate this structure before returning. */ 4015 ){ 4016 const unsigned char *aKey = (const unsigned char *)pKey; 4017 u32 d; 4018 u32 idx; /* Offset in aKey[] to read from */ 4019 u16 u; /* Unsigned loop counter */ 4020 u32 szHdr; 4021 Mem *pMem = p->aMem; 4022 4023 p->default_rc = 0; 4024 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 4025 idx = getVarint32(aKey, szHdr); 4026 d = szHdr; 4027 u = 0; 4028 while( idx<szHdr && d<=(u32)nKey ){ 4029 u32 serial_type; 4030 4031 idx += getVarint32(&aKey[idx], serial_type); 4032 pMem->enc = pKeyInfo->enc; 4033 pMem->db = pKeyInfo->db; 4034 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 4035 pMem->szMalloc = 0; 4036 pMem->z = 0; 4037 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 4038 pMem++; 4039 if( (++u)>=p->nField ) break; 4040 } 4041 if( d>(u32)nKey && u ){ 4042 assert( CORRUPT_DB ); 4043 /* In a corrupt record entry, the last pMem might have been set up using 4044 ** uninitialized memory. Overwrite its value with NULL, to prevent 4045 ** warnings from MSAN. */ 4046 sqlite3VdbeMemSetNull(pMem-1); 4047 } 4048 assert( u<=pKeyInfo->nKeyField + 1 ); 4049 p->nField = u; 4050 } 4051 4052 #ifdef SQLITE_DEBUG 4053 /* 4054 ** This function compares two index or table record keys in the same way 4055 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 4056 ** this function deserializes and compares values using the 4057 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 4058 ** in assert() statements to ensure that the optimized code in 4059 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 4060 ** 4061 ** Return true if the result of comparison is equivalent to desiredResult. 4062 ** Return false if there is a disagreement. 4063 */ 4064 static int vdbeRecordCompareDebug( 4065 int nKey1, const void *pKey1, /* Left key */ 4066 const UnpackedRecord *pPKey2, /* Right key */ 4067 int desiredResult /* Correct answer */ 4068 ){ 4069 u32 d1; /* Offset into aKey[] of next data element */ 4070 u32 idx1; /* Offset into aKey[] of next header element */ 4071 u32 szHdr1; /* Number of bytes in header */ 4072 int i = 0; 4073 int rc = 0; 4074 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4075 KeyInfo *pKeyInfo; 4076 Mem mem1; 4077 4078 pKeyInfo = pPKey2->pKeyInfo; 4079 if( pKeyInfo->db==0 ) return 1; 4080 mem1.enc = pKeyInfo->enc; 4081 mem1.db = pKeyInfo->db; 4082 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 4083 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4084 4085 /* Compilers may complain that mem1.u.i is potentially uninitialized. 4086 ** We could initialize it, as shown here, to silence those complaints. 4087 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 4088 ** the unnecessary initialization has a measurable negative performance 4089 ** impact, since this routine is a very high runner. And so, we choose 4090 ** to ignore the compiler warnings and leave this variable uninitialized. 4091 */ 4092 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 4093 4094 idx1 = getVarint32(aKey1, szHdr1); 4095 if( szHdr1>98307 ) return SQLITE_CORRUPT; 4096 d1 = szHdr1; 4097 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 4098 assert( pKeyInfo->aSortFlags!=0 ); 4099 assert( pKeyInfo->nKeyField>0 ); 4100 assert( idx1<=szHdr1 || CORRUPT_DB ); 4101 do{ 4102 u32 serial_type1; 4103 4104 /* Read the serial types for the next element in each key. */ 4105 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 4106 4107 /* Verify that there is enough key space remaining to avoid 4108 ** a buffer overread. The "d1+serial_type1+2" subexpression will 4109 ** always be greater than or equal to the amount of required key space. 4110 ** Use that approximation to avoid the more expensive call to 4111 ** sqlite3VdbeSerialTypeLen() in the common case. 4112 */ 4113 if( d1+(u64)serial_type1+2>(u64)nKey1 4114 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 4115 ){ 4116 break; 4117 } 4118 4119 /* Extract the values to be compared. 4120 */ 4121 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 4122 4123 /* Do the comparison 4124 */ 4125 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], 4126 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0); 4127 if( rc!=0 ){ 4128 assert( mem1.szMalloc==0 ); /* See comment below */ 4129 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 4130 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null)) 4131 ){ 4132 rc = -rc; 4133 } 4134 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){ 4135 rc = -rc; /* Invert the result for DESC sort order. */ 4136 } 4137 goto debugCompareEnd; 4138 } 4139 i++; 4140 }while( idx1<szHdr1 && i<pPKey2->nField ); 4141 4142 /* No memory allocation is ever used on mem1. Prove this using 4143 ** the following assert(). If the assert() fails, it indicates a 4144 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 4145 */ 4146 assert( mem1.szMalloc==0 ); 4147 4148 /* rc==0 here means that one of the keys ran out of fields and 4149 ** all the fields up to that point were equal. Return the default_rc 4150 ** value. */ 4151 rc = pPKey2->default_rc; 4152 4153 debugCompareEnd: 4154 if( desiredResult==0 && rc==0 ) return 1; 4155 if( desiredResult<0 && rc<0 ) return 1; 4156 if( desiredResult>0 && rc>0 ) return 1; 4157 if( CORRUPT_DB ) return 1; 4158 if( pKeyInfo->db->mallocFailed ) return 1; 4159 return 0; 4160 } 4161 #endif 4162 4163 #ifdef SQLITE_DEBUG 4164 /* 4165 ** Count the number of fields (a.k.a. columns) in the record given by 4166 ** pKey,nKey. The verify that this count is less than or equal to the 4167 ** limit given by pKeyInfo->nAllField. 4168 ** 4169 ** If this constraint is not satisfied, it means that the high-speed 4170 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 4171 ** not work correctly. If this assert() ever fires, it probably means 4172 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 4173 ** incorrectly. 4174 */ 4175 static void vdbeAssertFieldCountWithinLimits( 4176 int nKey, const void *pKey, /* The record to verify */ 4177 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 4178 ){ 4179 int nField = 0; 4180 u32 szHdr; 4181 u32 idx; 4182 u32 notUsed; 4183 const unsigned char *aKey = (const unsigned char*)pKey; 4184 4185 if( CORRUPT_DB ) return; 4186 idx = getVarint32(aKey, szHdr); 4187 assert( nKey>=0 ); 4188 assert( szHdr<=(u32)nKey ); 4189 while( idx<szHdr ){ 4190 idx += getVarint32(aKey+idx, notUsed); 4191 nField++; 4192 } 4193 assert( nField <= pKeyInfo->nAllField ); 4194 } 4195 #else 4196 # define vdbeAssertFieldCountWithinLimits(A,B,C) 4197 #endif 4198 4199 /* 4200 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 4201 ** using the collation sequence pColl. As usual, return a negative , zero 4202 ** or positive value if *pMem1 is less than, equal to or greater than 4203 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 4204 */ 4205 static int vdbeCompareMemString( 4206 const Mem *pMem1, 4207 const Mem *pMem2, 4208 const CollSeq *pColl, 4209 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 4210 ){ 4211 if( pMem1->enc==pColl->enc ){ 4212 /* The strings are already in the correct encoding. Call the 4213 ** comparison function directly */ 4214 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 4215 }else{ 4216 int rc; 4217 const void *v1, *v2; 4218 Mem c1; 4219 Mem c2; 4220 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 4221 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 4222 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 4223 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 4224 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 4225 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 4226 if( (v1==0 || v2==0) ){ 4227 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 4228 rc = 0; 4229 }else{ 4230 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 4231 } 4232 sqlite3VdbeMemRelease(&c1); 4233 sqlite3VdbeMemRelease(&c2); 4234 return rc; 4235 } 4236 } 4237 4238 /* 4239 ** The input pBlob is guaranteed to be a Blob that is not marked 4240 ** with MEM_Zero. Return true if it could be a zero-blob. 4241 */ 4242 static int isAllZero(const char *z, int n){ 4243 int i; 4244 for(i=0; i<n; i++){ 4245 if( z[i] ) return 0; 4246 } 4247 return 1; 4248 } 4249 4250 /* 4251 ** Compare two blobs. Return negative, zero, or positive if the first 4252 ** is less than, equal to, or greater than the second, respectively. 4253 ** If one blob is a prefix of the other, then the shorter is the lessor. 4254 */ 4255 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 4256 int c; 4257 int n1 = pB1->n; 4258 int n2 = pB2->n; 4259 4260 /* It is possible to have a Blob value that has some non-zero content 4261 ** followed by zero content. But that only comes up for Blobs formed 4262 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 4263 ** sqlite3MemCompare(). */ 4264 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 4265 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 4266 4267 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 4268 if( pB1->flags & pB2->flags & MEM_Zero ){ 4269 return pB1->u.nZero - pB2->u.nZero; 4270 }else if( pB1->flags & MEM_Zero ){ 4271 if( !isAllZero(pB2->z, pB2->n) ) return -1; 4272 return pB1->u.nZero - n2; 4273 }else{ 4274 if( !isAllZero(pB1->z, pB1->n) ) return +1; 4275 return n1 - pB2->u.nZero; 4276 } 4277 } 4278 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 4279 if( c ) return c; 4280 return n1 - n2; 4281 } 4282 4283 /* 4284 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 4285 ** number. Return negative, zero, or positive if the first (i64) is less than, 4286 ** equal to, or greater than the second (double). 4287 */ 4288 int sqlite3IntFloatCompare(i64 i, double r){ 4289 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 4290 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 4291 testcase( x<r ); 4292 testcase( x>r ); 4293 testcase( x==r ); 4294 if( x<r ) return -1; 4295 if( x>r ) return +1; /*NO_TEST*/ /* work around bugs in gcov */ 4296 return 0; /*NO_TEST*/ /* work around bugs in gcov */ 4297 }else{ 4298 i64 y; 4299 double s; 4300 if( r<-9223372036854775808.0 ) return +1; 4301 if( r>=9223372036854775808.0 ) return -1; 4302 y = (i64)r; 4303 if( i<y ) return -1; 4304 if( i>y ) return +1; 4305 s = (double)i; 4306 if( s<r ) return -1; 4307 if( s>r ) return +1; 4308 return 0; 4309 } 4310 } 4311 4312 /* 4313 ** Compare the values contained by the two memory cells, returning 4314 ** negative, zero or positive if pMem1 is less than, equal to, or greater 4315 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 4316 ** and reals) sorted numerically, followed by text ordered by the collating 4317 ** sequence pColl and finally blob's ordered by memcmp(). 4318 ** 4319 ** Two NULL values are considered equal by this function. 4320 */ 4321 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 4322 int f1, f2; 4323 int combined_flags; 4324 4325 f1 = pMem1->flags; 4326 f2 = pMem2->flags; 4327 combined_flags = f1|f2; 4328 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); 4329 4330 /* If one value is NULL, it is less than the other. If both values 4331 ** are NULL, return 0. 4332 */ 4333 if( combined_flags&MEM_Null ){ 4334 return (f2&MEM_Null) - (f1&MEM_Null); 4335 } 4336 4337 /* At least one of the two values is a number 4338 */ 4339 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ 4340 testcase( combined_flags & MEM_Int ); 4341 testcase( combined_flags & MEM_Real ); 4342 testcase( combined_flags & MEM_IntReal ); 4343 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ 4344 testcase( f1 & f2 & MEM_Int ); 4345 testcase( f1 & f2 & MEM_IntReal ); 4346 if( pMem1->u.i < pMem2->u.i ) return -1; 4347 if( pMem1->u.i > pMem2->u.i ) return +1; 4348 return 0; 4349 } 4350 if( (f1 & f2 & MEM_Real)!=0 ){ 4351 if( pMem1->u.r < pMem2->u.r ) return -1; 4352 if( pMem1->u.r > pMem2->u.r ) return +1; 4353 return 0; 4354 } 4355 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ 4356 testcase( f1 & MEM_Int ); 4357 testcase( f1 & MEM_IntReal ); 4358 if( (f2&MEM_Real)!=0 ){ 4359 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 4360 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4361 if( pMem1->u.i < pMem2->u.i ) return -1; 4362 if( pMem1->u.i > pMem2->u.i ) return +1; 4363 return 0; 4364 }else{ 4365 return -1; 4366 } 4367 } 4368 if( (f1&MEM_Real)!=0 ){ 4369 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4370 testcase( f2 & MEM_Int ); 4371 testcase( f2 & MEM_IntReal ); 4372 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 4373 }else{ 4374 return -1; 4375 } 4376 } 4377 return +1; 4378 } 4379 4380 /* If one value is a string and the other is a blob, the string is less. 4381 ** If both are strings, compare using the collating functions. 4382 */ 4383 if( combined_flags&MEM_Str ){ 4384 if( (f1 & MEM_Str)==0 ){ 4385 return 1; 4386 } 4387 if( (f2 & MEM_Str)==0 ){ 4388 return -1; 4389 } 4390 4391 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 4392 assert( pMem1->enc==SQLITE_UTF8 || 4393 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 4394 4395 /* The collation sequence must be defined at this point, even if 4396 ** the user deletes the collation sequence after the vdbe program is 4397 ** compiled (this was not always the case). 4398 */ 4399 assert( !pColl || pColl->xCmp ); 4400 4401 if( pColl ){ 4402 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 4403 } 4404 /* If a NULL pointer was passed as the collate function, fall through 4405 ** to the blob case and use memcmp(). */ 4406 } 4407 4408 /* Both values must be blobs. Compare using memcmp(). */ 4409 return sqlite3BlobCompare(pMem1, pMem2); 4410 } 4411 4412 4413 /* 4414 ** The first argument passed to this function is a serial-type that 4415 ** corresponds to an integer - all values between 1 and 9 inclusive 4416 ** except 7. The second points to a buffer containing an integer value 4417 ** serialized according to serial_type. This function deserializes 4418 ** and returns the value. 4419 */ 4420 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 4421 u32 y; 4422 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 4423 switch( serial_type ){ 4424 case 0: 4425 case 1: 4426 testcase( aKey[0]&0x80 ); 4427 return ONE_BYTE_INT(aKey); 4428 case 2: 4429 testcase( aKey[0]&0x80 ); 4430 return TWO_BYTE_INT(aKey); 4431 case 3: 4432 testcase( aKey[0]&0x80 ); 4433 return THREE_BYTE_INT(aKey); 4434 case 4: { 4435 testcase( aKey[0]&0x80 ); 4436 y = FOUR_BYTE_UINT(aKey); 4437 return (i64)*(int*)&y; 4438 } 4439 case 5: { 4440 testcase( aKey[0]&0x80 ); 4441 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4442 } 4443 case 6: { 4444 u64 x = FOUR_BYTE_UINT(aKey); 4445 testcase( aKey[0]&0x80 ); 4446 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4447 return (i64)*(i64*)&x; 4448 } 4449 } 4450 4451 return (serial_type - 8); 4452 } 4453 4454 /* 4455 ** This function compares the two table rows or index records 4456 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 4457 ** or positive integer if key1 is less than, equal to or 4458 ** greater than key2. The {nKey1, pKey1} key must be a blob 4459 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 4460 ** key must be a parsed key such as obtained from 4461 ** sqlite3VdbeParseRecord. 4462 ** 4463 ** If argument bSkip is non-zero, it is assumed that the caller has already 4464 ** determined that the first fields of the keys are equal. 4465 ** 4466 ** Key1 and Key2 do not have to contain the same number of fields. If all 4467 ** fields that appear in both keys are equal, then pPKey2->default_rc is 4468 ** returned. 4469 ** 4470 ** If database corruption is discovered, set pPKey2->errCode to 4471 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 4472 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 4473 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 4474 */ 4475 int sqlite3VdbeRecordCompareWithSkip( 4476 int nKey1, const void *pKey1, /* Left key */ 4477 UnpackedRecord *pPKey2, /* Right key */ 4478 int bSkip /* If true, skip the first field */ 4479 ){ 4480 u32 d1; /* Offset into aKey[] of next data element */ 4481 int i; /* Index of next field to compare */ 4482 u32 szHdr1; /* Size of record header in bytes */ 4483 u32 idx1; /* Offset of first type in header */ 4484 int rc = 0; /* Return value */ 4485 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 4486 KeyInfo *pKeyInfo; 4487 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4488 Mem mem1; 4489 4490 /* If bSkip is true, then the caller has already determined that the first 4491 ** two elements in the keys are equal. Fix the various stack variables so 4492 ** that this routine begins comparing at the second field. */ 4493 if( bSkip ){ 4494 u32 s1; 4495 idx1 = 1 + getVarint32(&aKey1[1], s1); 4496 szHdr1 = aKey1[0]; 4497 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 4498 i = 1; 4499 pRhs++; 4500 }else{ 4501 idx1 = getVarint32(aKey1, szHdr1); 4502 d1 = szHdr1; 4503 i = 0; 4504 } 4505 if( d1>(unsigned)nKey1 ){ 4506 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4507 return 0; /* Corruption */ 4508 } 4509 4510 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4511 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 4512 || CORRUPT_DB ); 4513 assert( pPKey2->pKeyInfo->aSortFlags!=0 ); 4514 assert( pPKey2->pKeyInfo->nKeyField>0 ); 4515 assert( idx1<=szHdr1 || CORRUPT_DB ); 4516 do{ 4517 u32 serial_type; 4518 4519 /* RHS is an integer */ 4520 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ 4521 testcase( pRhs->flags & MEM_Int ); 4522 testcase( pRhs->flags & MEM_IntReal ); 4523 serial_type = aKey1[idx1]; 4524 testcase( serial_type==12 ); 4525 if( serial_type>=10 ){ 4526 rc = +1; 4527 }else if( serial_type==0 ){ 4528 rc = -1; 4529 }else if( serial_type==7 ){ 4530 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4531 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4532 }else{ 4533 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4534 i64 rhs = pRhs->u.i; 4535 if( lhs<rhs ){ 4536 rc = -1; 4537 }else if( lhs>rhs ){ 4538 rc = +1; 4539 } 4540 } 4541 } 4542 4543 /* RHS is real */ 4544 else if( pRhs->flags & MEM_Real ){ 4545 serial_type = aKey1[idx1]; 4546 if( serial_type>=10 ){ 4547 /* Serial types 12 or greater are strings and blobs (greater than 4548 ** numbers). Types 10 and 11 are currently "reserved for future 4549 ** use", so it doesn't really matter what the results of comparing 4550 ** them to numberic values are. */ 4551 rc = +1; 4552 }else if( serial_type==0 ){ 4553 rc = -1; 4554 }else{ 4555 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4556 if( serial_type==7 ){ 4557 if( mem1.u.r<pRhs->u.r ){ 4558 rc = -1; 4559 }else if( mem1.u.r>pRhs->u.r ){ 4560 rc = +1; 4561 } 4562 }else{ 4563 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4564 } 4565 } 4566 } 4567 4568 /* RHS is a string */ 4569 else if( pRhs->flags & MEM_Str ){ 4570 getVarint32NR(&aKey1[idx1], serial_type); 4571 testcase( serial_type==12 ); 4572 if( serial_type<12 ){ 4573 rc = -1; 4574 }else if( !(serial_type & 0x01) ){ 4575 rc = +1; 4576 }else{ 4577 mem1.n = (serial_type - 12) / 2; 4578 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4579 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4580 if( (d1+mem1.n) > (unsigned)nKey1 4581 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i 4582 ){ 4583 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4584 return 0; /* Corruption */ 4585 }else if( pKeyInfo->aColl[i] ){ 4586 mem1.enc = pKeyInfo->enc; 4587 mem1.db = pKeyInfo->db; 4588 mem1.flags = MEM_Str; 4589 mem1.z = (char*)&aKey1[d1]; 4590 rc = vdbeCompareMemString( 4591 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4592 ); 4593 }else{ 4594 int nCmp = MIN(mem1.n, pRhs->n); 4595 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4596 if( rc==0 ) rc = mem1.n - pRhs->n; 4597 } 4598 } 4599 } 4600 4601 /* RHS is a blob */ 4602 else if( pRhs->flags & MEM_Blob ){ 4603 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4604 getVarint32NR(&aKey1[idx1], serial_type); 4605 testcase( serial_type==12 ); 4606 if( serial_type<12 || (serial_type & 0x01) ){ 4607 rc = -1; 4608 }else{ 4609 int nStr = (serial_type - 12) / 2; 4610 testcase( (d1+nStr)==(unsigned)nKey1 ); 4611 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4612 if( (d1+nStr) > (unsigned)nKey1 ){ 4613 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4614 return 0; /* Corruption */ 4615 }else if( pRhs->flags & MEM_Zero ){ 4616 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4617 rc = 1; 4618 }else{ 4619 rc = nStr - pRhs->u.nZero; 4620 } 4621 }else{ 4622 int nCmp = MIN(nStr, pRhs->n); 4623 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4624 if( rc==0 ) rc = nStr - pRhs->n; 4625 } 4626 } 4627 } 4628 4629 /* RHS is null */ 4630 else{ 4631 serial_type = aKey1[idx1]; 4632 rc = (serial_type!=0); 4633 } 4634 4635 if( rc!=0 ){ 4636 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i]; 4637 if( sortFlags ){ 4638 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0 4639 || ((sortFlags & KEYINFO_ORDER_DESC) 4640 !=(serial_type==0 || (pRhs->flags&MEM_Null))) 4641 ){ 4642 rc = -rc; 4643 } 4644 } 4645 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4646 assert( mem1.szMalloc==0 ); /* See comment below */ 4647 return rc; 4648 } 4649 4650 i++; 4651 if( i==pPKey2->nField ) break; 4652 pRhs++; 4653 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4654 idx1 += sqlite3VarintLen(serial_type); 4655 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 ); 4656 4657 /* No memory allocation is ever used on mem1. Prove this using 4658 ** the following assert(). If the assert() fails, it indicates a 4659 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4660 assert( mem1.szMalloc==0 ); 4661 4662 /* rc==0 here means that one or both of the keys ran out of fields and 4663 ** all the fields up to that point were equal. Return the default_rc 4664 ** value. */ 4665 assert( CORRUPT_DB 4666 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4667 || pPKey2->pKeyInfo->db->mallocFailed 4668 ); 4669 pPKey2->eqSeen = 1; 4670 return pPKey2->default_rc; 4671 } 4672 int sqlite3VdbeRecordCompare( 4673 int nKey1, const void *pKey1, /* Left key */ 4674 UnpackedRecord *pPKey2 /* Right key */ 4675 ){ 4676 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4677 } 4678 4679 4680 /* 4681 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4682 ** that (a) the first field of pPKey2 is an integer, and (b) the 4683 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4684 ** byte (i.e. is less than 128). 4685 ** 4686 ** To avoid concerns about buffer overreads, this routine is only used 4687 ** on schemas where the maximum valid header size is 63 bytes or less. 4688 */ 4689 static int vdbeRecordCompareInt( 4690 int nKey1, const void *pKey1, /* Left key */ 4691 UnpackedRecord *pPKey2 /* Right key */ 4692 ){ 4693 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4694 int serial_type = ((const u8*)pKey1)[1]; 4695 int res; 4696 u32 y; 4697 u64 x; 4698 i64 v; 4699 i64 lhs; 4700 4701 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4702 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4703 switch( serial_type ){ 4704 case 1: { /* 1-byte signed integer */ 4705 lhs = ONE_BYTE_INT(aKey); 4706 testcase( lhs<0 ); 4707 break; 4708 } 4709 case 2: { /* 2-byte signed integer */ 4710 lhs = TWO_BYTE_INT(aKey); 4711 testcase( lhs<0 ); 4712 break; 4713 } 4714 case 3: { /* 3-byte signed integer */ 4715 lhs = THREE_BYTE_INT(aKey); 4716 testcase( lhs<0 ); 4717 break; 4718 } 4719 case 4: { /* 4-byte signed integer */ 4720 y = FOUR_BYTE_UINT(aKey); 4721 lhs = (i64)*(int*)&y; 4722 testcase( lhs<0 ); 4723 break; 4724 } 4725 case 5: { /* 6-byte signed integer */ 4726 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4727 testcase( lhs<0 ); 4728 break; 4729 } 4730 case 6: { /* 8-byte signed integer */ 4731 x = FOUR_BYTE_UINT(aKey); 4732 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4733 lhs = *(i64*)&x; 4734 testcase( lhs<0 ); 4735 break; 4736 } 4737 case 8: 4738 lhs = 0; 4739 break; 4740 case 9: 4741 lhs = 1; 4742 break; 4743 4744 /* This case could be removed without changing the results of running 4745 ** this code. Including it causes gcc to generate a faster switch 4746 ** statement (since the range of switch targets now starts at zero and 4747 ** is contiguous) but does not cause any duplicate code to be generated 4748 ** (as gcc is clever enough to combine the two like cases). Other 4749 ** compilers might be similar. */ 4750 case 0: case 7: 4751 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4752 4753 default: 4754 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4755 } 4756 4757 v = pPKey2->aMem[0].u.i; 4758 if( v>lhs ){ 4759 res = pPKey2->r1; 4760 }else if( v<lhs ){ 4761 res = pPKey2->r2; 4762 }else if( pPKey2->nField>1 ){ 4763 /* The first fields of the two keys are equal. Compare the trailing 4764 ** fields. */ 4765 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4766 }else{ 4767 /* The first fields of the two keys are equal and there are no trailing 4768 ** fields. Return pPKey2->default_rc in this case. */ 4769 res = pPKey2->default_rc; 4770 pPKey2->eqSeen = 1; 4771 } 4772 4773 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4774 return res; 4775 } 4776 4777 /* 4778 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4779 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4780 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4781 ** at the start of (pKey1/nKey1) fits in a single byte. 4782 */ 4783 static int vdbeRecordCompareString( 4784 int nKey1, const void *pKey1, /* Left key */ 4785 UnpackedRecord *pPKey2 /* Right key */ 4786 ){ 4787 const u8 *aKey1 = (const u8*)pKey1; 4788 int serial_type; 4789 int res; 4790 4791 assert( pPKey2->aMem[0].flags & MEM_Str ); 4792 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4793 serial_type = (u8)(aKey1[1]); 4794 if( serial_type >= 0x80 ){ 4795 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type); 4796 } 4797 if( serial_type<12 ){ 4798 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4799 }else if( !(serial_type & 0x01) ){ 4800 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4801 }else{ 4802 int nCmp; 4803 int nStr; 4804 int szHdr = aKey1[0]; 4805 4806 nStr = (serial_type-12) / 2; 4807 if( (szHdr + nStr) > nKey1 ){ 4808 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4809 return 0; /* Corruption */ 4810 } 4811 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4812 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4813 4814 if( res>0 ){ 4815 res = pPKey2->r2; 4816 }else if( res<0 ){ 4817 res = pPKey2->r1; 4818 }else{ 4819 res = nStr - pPKey2->aMem[0].n; 4820 if( res==0 ){ 4821 if( pPKey2->nField>1 ){ 4822 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4823 }else{ 4824 res = pPKey2->default_rc; 4825 pPKey2->eqSeen = 1; 4826 } 4827 }else if( res>0 ){ 4828 res = pPKey2->r2; 4829 }else{ 4830 res = pPKey2->r1; 4831 } 4832 } 4833 } 4834 4835 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4836 || CORRUPT_DB 4837 || pPKey2->pKeyInfo->db->mallocFailed 4838 ); 4839 return res; 4840 } 4841 4842 /* 4843 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4844 ** suitable for comparing serialized records to the unpacked record passed 4845 ** as the only argument. 4846 */ 4847 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4848 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4849 ** that the size-of-header varint that occurs at the start of each record 4850 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4851 ** also assumes that it is safe to overread a buffer by at least the 4852 ** maximum possible legal header size plus 8 bytes. Because there is 4853 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4854 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4855 ** limit the size of the header to 64 bytes in cases where the first field 4856 ** is an integer. 4857 ** 4858 ** The easiest way to enforce this limit is to consider only records with 4859 ** 13 fields or less. If the first field is an integer, the maximum legal 4860 ** header size is (12*5 + 1 + 1) bytes. */ 4861 if( p->pKeyInfo->nAllField<=13 ){ 4862 int flags = p->aMem[0].flags; 4863 if( p->pKeyInfo->aSortFlags[0] ){ 4864 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){ 4865 return sqlite3VdbeRecordCompare; 4866 } 4867 p->r1 = 1; 4868 p->r2 = -1; 4869 }else{ 4870 p->r1 = -1; 4871 p->r2 = 1; 4872 } 4873 if( (flags & MEM_Int) ){ 4874 return vdbeRecordCompareInt; 4875 } 4876 testcase( flags & MEM_Real ); 4877 testcase( flags & MEM_Null ); 4878 testcase( flags & MEM_Blob ); 4879 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 4880 && p->pKeyInfo->aColl[0]==0 4881 ){ 4882 assert( flags & MEM_Str ); 4883 return vdbeRecordCompareString; 4884 } 4885 } 4886 4887 return sqlite3VdbeRecordCompare; 4888 } 4889 4890 /* 4891 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4892 ** Read the rowid (the last field in the record) and store it in *rowid. 4893 ** Return SQLITE_OK if everything works, or an error code otherwise. 4894 ** 4895 ** pCur might be pointing to text obtained from a corrupt database file. 4896 ** So the content cannot be trusted. Do appropriate checks on the content. 4897 */ 4898 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4899 i64 nCellKey = 0; 4900 int rc; 4901 u32 szHdr; /* Size of the header */ 4902 u32 typeRowid; /* Serial type of the rowid */ 4903 u32 lenRowid; /* Size of the rowid */ 4904 Mem m, v; 4905 4906 /* Get the size of the index entry. Only indices entries of less 4907 ** than 2GiB are support - anything large must be database corruption. 4908 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4909 ** this code can safely assume that nCellKey is 32-bits 4910 */ 4911 assert( sqlite3BtreeCursorIsValid(pCur) ); 4912 nCellKey = sqlite3BtreePayloadSize(pCur); 4913 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4914 4915 /* Read in the complete content of the index entry */ 4916 sqlite3VdbeMemInit(&m, db, 0); 4917 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 4918 if( rc ){ 4919 return rc; 4920 } 4921 4922 /* The index entry must begin with a header size */ 4923 getVarint32NR((u8*)m.z, szHdr); 4924 testcase( szHdr==3 ); 4925 testcase( szHdr==m.n ); 4926 testcase( szHdr>0x7fffffff ); 4927 assert( m.n>=0 ); 4928 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ 4929 goto idx_rowid_corruption; 4930 } 4931 4932 /* The last field of the index should be an integer - the ROWID. 4933 ** Verify that the last entry really is an integer. */ 4934 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid); 4935 testcase( typeRowid==1 ); 4936 testcase( typeRowid==2 ); 4937 testcase( typeRowid==3 ); 4938 testcase( typeRowid==4 ); 4939 testcase( typeRowid==5 ); 4940 testcase( typeRowid==6 ); 4941 testcase( typeRowid==8 ); 4942 testcase( typeRowid==9 ); 4943 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4944 goto idx_rowid_corruption; 4945 } 4946 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4947 testcase( (u32)m.n==szHdr+lenRowid ); 4948 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4949 goto idx_rowid_corruption; 4950 } 4951 4952 /* Fetch the integer off the end of the index record */ 4953 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4954 *rowid = v.u.i; 4955 sqlite3VdbeMemRelease(&m); 4956 return SQLITE_OK; 4957 4958 /* Jump here if database corruption is detected after m has been 4959 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4960 idx_rowid_corruption: 4961 testcase( m.szMalloc!=0 ); 4962 sqlite3VdbeMemRelease(&m); 4963 return SQLITE_CORRUPT_BKPT; 4964 } 4965 4966 /* 4967 ** Compare the key of the index entry that cursor pC is pointing to against 4968 ** the key string in pUnpacked. Write into *pRes a number 4969 ** that is negative, zero, or positive if pC is less than, equal to, 4970 ** or greater than pUnpacked. Return SQLITE_OK on success. 4971 ** 4972 ** pUnpacked is either created without a rowid or is truncated so that it 4973 ** omits the rowid at the end. The rowid at the end of the index entry 4974 ** is ignored as well. Hence, this routine only compares the prefixes 4975 ** of the keys prior to the final rowid, not the entire key. 4976 */ 4977 int sqlite3VdbeIdxKeyCompare( 4978 sqlite3 *db, /* Database connection */ 4979 VdbeCursor *pC, /* The cursor to compare against */ 4980 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4981 int *res /* Write the comparison result here */ 4982 ){ 4983 i64 nCellKey = 0; 4984 int rc; 4985 BtCursor *pCur; 4986 Mem m; 4987 4988 assert( pC->eCurType==CURTYPE_BTREE ); 4989 pCur = pC->uc.pCursor; 4990 assert( sqlite3BtreeCursorIsValid(pCur) ); 4991 nCellKey = sqlite3BtreePayloadSize(pCur); 4992 /* nCellKey will always be between 0 and 0xffffffff because of the way 4993 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4994 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4995 *res = 0; 4996 return SQLITE_CORRUPT_BKPT; 4997 } 4998 sqlite3VdbeMemInit(&m, db, 0); 4999 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 5000 if( rc ){ 5001 return rc; 5002 } 5003 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); 5004 sqlite3VdbeMemRelease(&m); 5005 return SQLITE_OK; 5006 } 5007 5008 /* 5009 ** This routine sets the value to be returned by subsequent calls to 5010 ** sqlite3_changes() on the database handle 'db'. 5011 */ 5012 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){ 5013 assert( sqlite3_mutex_held(db->mutex) ); 5014 db->nChange = nChange; 5015 db->nTotalChange += nChange; 5016 } 5017 5018 /* 5019 ** Set a flag in the vdbe to update the change counter when it is finalised 5020 ** or reset. 5021 */ 5022 void sqlite3VdbeCountChanges(Vdbe *v){ 5023 v->changeCntOn = 1; 5024 } 5025 5026 /* 5027 ** Mark every prepared statement associated with a database connection 5028 ** as expired. 5029 ** 5030 ** An expired statement means that recompilation of the statement is 5031 ** recommend. Statements expire when things happen that make their 5032 ** programs obsolete. Removing user-defined functions or collating 5033 ** sequences, or changing an authorization function are the types of 5034 ** things that make prepared statements obsolete. 5035 ** 5036 ** If iCode is 1, then expiration is advisory. The statement should 5037 ** be reprepared before being restarted, but if it is already running 5038 ** it is allowed to run to completion. 5039 ** 5040 ** Internally, this function just sets the Vdbe.expired flag on all 5041 ** prepared statements. The flag is set to 1 for an immediate expiration 5042 ** and set to 2 for an advisory expiration. 5043 */ 5044 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ 5045 Vdbe *p; 5046 for(p = db->pVdbe; p; p=p->pNext){ 5047 p->expired = iCode+1; 5048 } 5049 } 5050 5051 /* 5052 ** Return the database associated with the Vdbe. 5053 */ 5054 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 5055 return v->db; 5056 } 5057 5058 /* 5059 ** Return the SQLITE_PREPARE flags for a Vdbe. 5060 */ 5061 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 5062 return v->prepFlags; 5063 } 5064 5065 /* 5066 ** Return a pointer to an sqlite3_value structure containing the value bound 5067 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 5068 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 5069 ** constants) to the value before returning it. 5070 ** 5071 ** The returned value must be freed by the caller using sqlite3ValueFree(). 5072 */ 5073 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 5074 assert( iVar>0 ); 5075 if( v ){ 5076 Mem *pMem = &v->aVar[iVar-1]; 5077 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5078 if( 0==(pMem->flags & MEM_Null) ){ 5079 sqlite3_value *pRet = sqlite3ValueNew(v->db); 5080 if( pRet ){ 5081 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 5082 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 5083 } 5084 return pRet; 5085 } 5086 } 5087 return 0; 5088 } 5089 5090 /* 5091 ** Configure SQL variable iVar so that binding a new value to it signals 5092 ** to sqlite3_reoptimize() that re-preparing the statement may result 5093 ** in a better query plan. 5094 */ 5095 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 5096 assert( iVar>0 ); 5097 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5098 if( iVar>=32 ){ 5099 v->expmask |= 0x80000000; 5100 }else{ 5101 v->expmask |= ((u32)1 << (iVar-1)); 5102 } 5103 } 5104 5105 /* 5106 ** Cause a function to throw an error if it was call from OP_PureFunc 5107 ** rather than OP_Function. 5108 ** 5109 ** OP_PureFunc means that the function must be deterministic, and should 5110 ** throw an error if it is given inputs that would make it non-deterministic. 5111 ** This routine is invoked by date/time functions that use non-deterministic 5112 ** features such as 'now'. 5113 */ 5114 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 5115 const VdbeOp *pOp; 5116 #ifdef SQLITE_ENABLE_STAT4 5117 if( pCtx->pVdbe==0 ) return 1; 5118 #endif 5119 pOp = pCtx->pVdbe->aOp + pCtx->iOp; 5120 if( pOp->opcode==OP_PureFunc ){ 5121 const char *zContext; 5122 char *zMsg; 5123 if( pOp->p5 & NC_IsCheck ){ 5124 zContext = "a CHECK constraint"; 5125 }else if( pOp->p5 & NC_GenCol ){ 5126 zContext = "a generated column"; 5127 }else{ 5128 zContext = "an index"; 5129 } 5130 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s", 5131 pCtx->pFunc->zName, zContext); 5132 sqlite3_result_error(pCtx, zMsg, -1); 5133 sqlite3_free(zMsg); 5134 return 0; 5135 } 5136 return 1; 5137 } 5138 5139 #ifndef SQLITE_OMIT_VIRTUALTABLE 5140 /* 5141 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 5142 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 5143 ** in memory obtained from sqlite3DbMalloc). 5144 */ 5145 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 5146 if( pVtab->zErrMsg ){ 5147 sqlite3 *db = p->db; 5148 sqlite3DbFree(db, p->zErrMsg); 5149 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 5150 sqlite3_free(pVtab->zErrMsg); 5151 pVtab->zErrMsg = 0; 5152 } 5153 } 5154 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5155 5156 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5157 5158 /* 5159 ** If the second argument is not NULL, release any allocations associated 5160 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 5161 ** structure itself, using sqlite3DbFree(). 5162 ** 5163 ** This function is used to free UnpackedRecord structures allocated by 5164 ** the vdbeUnpackRecord() function found in vdbeapi.c. 5165 */ 5166 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 5167 if( p ){ 5168 int i; 5169 for(i=0; i<nField; i++){ 5170 Mem *pMem = &p->aMem[i]; 5171 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem); 5172 } 5173 sqlite3DbFreeNN(db, p); 5174 } 5175 } 5176 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5177 5178 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5179 /* 5180 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 5181 ** then cursor passed as the second argument should point to the row about 5182 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 5183 ** the required value will be read from the row the cursor points to. 5184 */ 5185 void sqlite3VdbePreUpdateHook( 5186 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 5187 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 5188 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 5189 const char *zDb, /* Database name */ 5190 Table *pTab, /* Modified table */ 5191 i64 iKey1, /* Initial key value */ 5192 int iReg, /* Register for new.* record */ 5193 int iBlobWrite 5194 ){ 5195 sqlite3 *db = v->db; 5196 i64 iKey2; 5197 PreUpdate preupdate; 5198 const char *zTbl = pTab->zName; 5199 static const u8 fakeSortOrder = 0; 5200 5201 assert( db->pPreUpdate==0 ); 5202 memset(&preupdate, 0, sizeof(PreUpdate)); 5203 if( HasRowid(pTab)==0 ){ 5204 iKey1 = iKey2 = 0; 5205 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 5206 }else{ 5207 if( op==SQLITE_UPDATE ){ 5208 iKey2 = v->aMem[iReg].u.i; 5209 }else{ 5210 iKey2 = iKey1; 5211 } 5212 } 5213 5214 assert( pCsr->nField==pTab->nCol 5215 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 5216 ); 5217 5218 preupdate.v = v; 5219 preupdate.pCsr = pCsr; 5220 preupdate.op = op; 5221 preupdate.iNewReg = iReg; 5222 preupdate.keyinfo.db = db; 5223 preupdate.keyinfo.enc = ENC(db); 5224 preupdate.keyinfo.nKeyField = pTab->nCol; 5225 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder; 5226 preupdate.iKey1 = iKey1; 5227 preupdate.iKey2 = iKey2; 5228 preupdate.pTab = pTab; 5229 preupdate.iBlobWrite = iBlobWrite; 5230 5231 db->pPreUpdate = &preupdate; 5232 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 5233 db->pPreUpdate = 0; 5234 sqlite3DbFree(db, preupdate.aRecord); 5235 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 5236 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 5237 if( preupdate.aNew ){ 5238 int i; 5239 for(i=0; i<pCsr->nField; i++){ 5240 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 5241 } 5242 sqlite3DbFreeNN(db, preupdate.aNew); 5243 } 5244 } 5245 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5246