xref: /sqlite-3.40.0/src/vdbeaux.c (revision fb8ca7de)
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
14 */
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
17 
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
21 
22 /*
23 ** Create a new virtual database engine.
24 */
25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26   sqlite3 *db = pParse->db;
27   Vdbe *p;
28   p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29   if( p==0 ) return 0;
30   memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31   p->db = db;
32   if( db->pVdbe ){
33     db->pVdbe->pPrev = p;
34   }
35   p->pNext = db->pVdbe;
36   p->pPrev = 0;
37   db->pVdbe = p;
38   p->iVdbeMagic = VDBE_MAGIC_INIT;
39   p->pParse = pParse;
40   pParse->pVdbe = p;
41   assert( pParse->aLabel==0 );
42   assert( pParse->nLabel==0 );
43   assert( p->nOpAlloc==0 );
44   assert( pParse->szOpAlloc==0 );
45   sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46   return p;
47 }
48 
49 /*
50 ** Return the Parse object that owns a Vdbe object.
51 */
52 Parse *sqlite3VdbeParser(Vdbe *p){
53   return p->pParse;
54 }
55 
56 /*
57 ** Change the error string stored in Vdbe.zErrMsg
58 */
59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60   va_list ap;
61   sqlite3DbFree(p->db, p->zErrMsg);
62   va_start(ap, zFormat);
63   p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64   va_end(ap);
65 }
66 
67 /*
68 ** Remember the SQL string for a prepared statement.
69 */
70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71   if( p==0 ) return;
72   p->prepFlags = prepFlags;
73   if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74     p->expmask = 0;
75   }
76   assert( p->zSql==0 );
77   p->zSql = sqlite3DbStrNDup(p->db, z, n);
78 }
79 
80 #ifdef SQLITE_ENABLE_NORMALIZE
81 /*
82 ** Add a new element to the Vdbe->pDblStr list.
83 */
84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85   if( p ){
86     int n = sqlite3Strlen30(z);
87     DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88                             sizeof(*pStr)+n+1-sizeof(pStr->z));
89     if( pStr ){
90       pStr->pNextStr = p->pDblStr;
91       p->pDblStr = pStr;
92       memcpy(pStr->z, z, n+1);
93     }
94   }
95 }
96 #endif
97 
98 #ifdef SQLITE_ENABLE_NORMALIZE
99 /*
100 ** zId of length nId is a double-quoted identifier.  Check to see if
101 ** that identifier is really used as a string literal.
102 */
103 int sqlite3VdbeUsesDoubleQuotedString(
104   Vdbe *pVdbe,            /* The prepared statement */
105   const char *zId         /* The double-quoted identifier, already dequoted */
106 ){
107   DblquoteStr *pStr;
108   assert( zId!=0 );
109   if( pVdbe->pDblStr==0 ) return 0;
110   for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111     if( strcmp(zId, pStr->z)==0 ) return 1;
112   }
113   return 0;
114 }
115 #endif
116 
117 /*
118 ** Swap all content between two VDBE structures.
119 */
120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
121   Vdbe tmp, *pTmp;
122   char *zTmp;
123   assert( pA->db==pB->db );
124   tmp = *pA;
125   *pA = *pB;
126   *pB = tmp;
127   pTmp = pA->pNext;
128   pA->pNext = pB->pNext;
129   pB->pNext = pTmp;
130   pTmp = pA->pPrev;
131   pA->pPrev = pB->pPrev;
132   pB->pPrev = pTmp;
133   zTmp = pA->zSql;
134   pA->zSql = pB->zSql;
135   pB->zSql = zTmp;
136 #ifdef SQLITE_ENABLE_NORMALIZE
137   zTmp = pA->zNormSql;
138   pA->zNormSql = pB->zNormSql;
139   pB->zNormSql = zTmp;
140 #endif
141   pB->expmask = pA->expmask;
142   pB->prepFlags = pA->prepFlags;
143   memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
144   pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
145 }
146 
147 /*
148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
149 ** than its current size. nOp is guaranteed to be less than or equal
150 ** to 1024/sizeof(Op).
151 **
152 ** If an out-of-memory error occurs while resizing the array, return
153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
154 ** unchanged (this is so that any opcodes already allocated can be
155 ** correctly deallocated along with the rest of the Vdbe).
156 */
157 static int growOpArray(Vdbe *v, int nOp){
158   VdbeOp *pNew;
159   Parse *p = v->pParse;
160 
161   /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
162   ** more frequent reallocs and hence provide more opportunities for
163   ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used
164   ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array
165   ** by the minimum* amount required until the size reaches 512.  Normal
166   ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
167   ** size of the op array or add 1KB of space, whichever is smaller. */
168 #ifdef SQLITE_TEST_REALLOC_STRESS
169   sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
170                         : (sqlite3_int64)v->nOpAlloc+nOp);
171 #else
172   sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
173                         : (sqlite3_int64)(1024/sizeof(Op)));
174   UNUSED_PARAMETER(nOp);
175 #endif
176 
177   /* Ensure that the size of a VDBE does not grow too large */
178   if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
179     sqlite3OomFault(p->db);
180     return SQLITE_NOMEM;
181   }
182 
183   assert( nOp<=(1024/sizeof(Op)) );
184   assert( nNew>=(v->nOpAlloc+nOp) );
185   pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
186   if( pNew ){
187     p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
188     v->nOpAlloc = p->szOpAlloc/sizeof(Op);
189     v->aOp = pNew;
190   }
191   return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
192 }
193 
194 #ifdef SQLITE_DEBUG
195 /* This routine is just a convenient place to set a breakpoint that will
196 ** fire after each opcode is inserted and displayed using
197 ** "PRAGMA vdbe_addoptrace=on".  Parameters "pc" (program counter) and
198 ** pOp are available to make the breakpoint conditional.
199 **
200 ** Other useful labels for breakpoints include:
201 **   test_trace_breakpoint(pc,pOp)
202 **   sqlite3CorruptError(lineno)
203 **   sqlite3MisuseError(lineno)
204 **   sqlite3CantopenError(lineno)
205 */
206 static void test_addop_breakpoint(int pc, Op *pOp){
207   static int n = 0;
208   n++;
209 }
210 #endif
211 
212 /*
213 ** Add a new instruction to the list of instructions current in the
214 ** VDBE.  Return the address of the new instruction.
215 **
216 ** Parameters:
217 **
218 **    p               Pointer to the VDBE
219 **
220 **    op              The opcode for this instruction
221 **
222 **    p1, p2, p3      Operands
223 **
224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
225 ** the sqlite3VdbeChangeP4() function to change the value of the P4
226 ** operand.
227 */
228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
229   assert( p->nOpAlloc<=p->nOp );
230   if( growOpArray(p, 1) ) return 1;
231   assert( p->nOpAlloc>p->nOp );
232   return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
233 }
234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
235   int i;
236   VdbeOp *pOp;
237 
238   i = p->nOp;
239   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
240   assert( op>=0 && op<0xff );
241   if( p->nOpAlloc<=i ){
242     return growOp3(p, op, p1, p2, p3);
243   }
244   p->nOp++;
245   pOp = &p->aOp[i];
246   pOp->opcode = (u8)op;
247   pOp->p5 = 0;
248   pOp->p1 = p1;
249   pOp->p2 = p2;
250   pOp->p3 = p3;
251   pOp->p4.p = 0;
252   pOp->p4type = P4_NOTUSED;
253 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
254   pOp->zComment = 0;
255 #endif
256 #ifdef SQLITE_DEBUG
257   if( p->db->flags & SQLITE_VdbeAddopTrace ){
258     sqlite3VdbePrintOp(0, i, &p->aOp[i]);
259     test_addop_breakpoint(i, &p->aOp[i]);
260   }
261 #endif
262 #ifdef VDBE_PROFILE
263   pOp->cycles = 0;
264   pOp->cnt = 0;
265 #endif
266 #ifdef SQLITE_VDBE_COVERAGE
267   pOp->iSrcLine = 0;
268 #endif
269   return i;
270 }
271 int sqlite3VdbeAddOp0(Vdbe *p, int op){
272   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
273 }
274 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
275   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
276 }
277 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
278   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
279 }
280 
281 /* Generate code for an unconditional jump to instruction iDest
282 */
283 int sqlite3VdbeGoto(Vdbe *p, int iDest){
284   return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
285 }
286 
287 /* Generate code to cause the string zStr to be loaded into
288 ** register iDest
289 */
290 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
291   return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
292 }
293 
294 /*
295 ** Generate code that initializes multiple registers to string or integer
296 ** constants.  The registers begin with iDest and increase consecutively.
297 ** One register is initialized for each characgter in zTypes[].  For each
298 ** "s" character in zTypes[], the register is a string if the argument is
299 ** not NULL, or OP_Null if the value is a null pointer.  For each "i" character
300 ** in zTypes[], the register is initialized to an integer.
301 **
302 ** If the input string does not end with "X" then an OP_ResultRow instruction
303 ** is generated for the values inserted.
304 */
305 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
306   va_list ap;
307   int i;
308   char c;
309   va_start(ap, zTypes);
310   for(i=0; (c = zTypes[i])!=0; i++){
311     if( c=='s' ){
312       const char *z = va_arg(ap, const char*);
313       sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
314     }else if( c=='i' ){
315       sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
316     }else{
317       goto skip_op_resultrow;
318     }
319   }
320   sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
321 skip_op_resultrow:
322   va_end(ap);
323 }
324 
325 /*
326 ** Add an opcode that includes the p4 value as a pointer.
327 */
328 int sqlite3VdbeAddOp4(
329   Vdbe *p,            /* Add the opcode to this VM */
330   int op,             /* The new opcode */
331   int p1,             /* The P1 operand */
332   int p2,             /* The P2 operand */
333   int p3,             /* The P3 operand */
334   const char *zP4,    /* The P4 operand */
335   int p4type          /* P4 operand type */
336 ){
337   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
338   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
339   return addr;
340 }
341 
342 /*
343 ** Add an OP_Function or OP_PureFunc opcode.
344 **
345 ** The eCallCtx argument is information (typically taken from Expr.op2)
346 ** that describes the calling context of the function.  0 means a general
347 ** function call.  NC_IsCheck means called by a check constraint,
348 ** NC_IdxExpr means called as part of an index expression.  NC_PartIdx
349 ** means in the WHERE clause of a partial index.  NC_GenCol means called
350 ** while computing a generated column value.  0 is the usual case.
351 */
352 int sqlite3VdbeAddFunctionCall(
353   Parse *pParse,        /* Parsing context */
354   int p1,               /* Constant argument mask */
355   int p2,               /* First argument register */
356   int p3,               /* Register into which results are written */
357   int nArg,             /* Number of argument */
358   const FuncDef *pFunc, /* The function to be invoked */
359   int eCallCtx          /* Calling context */
360 ){
361   Vdbe *v = pParse->pVdbe;
362   int nByte;
363   int addr;
364   sqlite3_context *pCtx;
365   assert( v );
366   nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
367   pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
368   if( pCtx==0 ){
369     assert( pParse->db->mallocFailed );
370     freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
371     return 0;
372   }
373   pCtx->pOut = 0;
374   pCtx->pFunc = (FuncDef*)pFunc;
375   pCtx->pVdbe = 0;
376   pCtx->isError = 0;
377   pCtx->argc = nArg;
378   pCtx->iOp = sqlite3VdbeCurrentAddr(v);
379   addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
380                            p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
381   sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
382   return addr;
383 }
384 
385 /*
386 ** Add an opcode that includes the p4 value with a P4_INT64 or
387 ** P4_REAL type.
388 */
389 int sqlite3VdbeAddOp4Dup8(
390   Vdbe *p,            /* Add the opcode to this VM */
391   int op,             /* The new opcode */
392   int p1,             /* The P1 operand */
393   int p2,             /* The P2 operand */
394   int p3,             /* The P3 operand */
395   const u8 *zP4,      /* The P4 operand */
396   int p4type          /* P4 operand type */
397 ){
398   char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
399   if( p4copy ) memcpy(p4copy, zP4, 8);
400   return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
401 }
402 
403 #ifndef SQLITE_OMIT_EXPLAIN
404 /*
405 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
406 ** 0 means "none".
407 */
408 int sqlite3VdbeExplainParent(Parse *pParse){
409   VdbeOp *pOp;
410   if( pParse->addrExplain==0 ) return 0;
411   pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
412   return pOp->p2;
413 }
414 
415 /*
416 ** Set a debugger breakpoint on the following routine in order to
417 ** monitor the EXPLAIN QUERY PLAN code generation.
418 */
419 #if defined(SQLITE_DEBUG)
420 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
421   (void)z1;
422   (void)z2;
423 }
424 #endif
425 
426 /*
427 ** Add a new OP_Explain opcode.
428 **
429 ** If the bPush flag is true, then make this opcode the parent for
430 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
431 */
432 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
433 #ifndef SQLITE_DEBUG
434   /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
435   ** But omit them (for performance) during production builds */
436   if( pParse->explain==2 )
437 #endif
438   {
439     char *zMsg;
440     Vdbe *v;
441     va_list ap;
442     int iThis;
443     va_start(ap, zFmt);
444     zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
445     va_end(ap);
446     v = pParse->pVdbe;
447     iThis = v->nOp;
448     sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
449                       zMsg, P4_DYNAMIC);
450     sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z);
451     if( bPush){
452       pParse->addrExplain = iThis;
453     }
454   }
455 }
456 
457 /*
458 ** Pop the EXPLAIN QUERY PLAN stack one level.
459 */
460 void sqlite3VdbeExplainPop(Parse *pParse){
461   sqlite3ExplainBreakpoint("POP", 0);
462   pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
463 }
464 #endif /* SQLITE_OMIT_EXPLAIN */
465 
466 /*
467 ** Add an OP_ParseSchema opcode.  This routine is broken out from
468 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
469 ** as having been used.
470 **
471 ** The zWhere string must have been obtained from sqlite3_malloc().
472 ** This routine will take ownership of the allocated memory.
473 */
474 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){
475   int j;
476   sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
477   sqlite3VdbeChangeP5(p, p5);
478   for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
479   sqlite3MayAbort(p->pParse);
480 }
481 
482 /*
483 ** Add an opcode that includes the p4 value as an integer.
484 */
485 int sqlite3VdbeAddOp4Int(
486   Vdbe *p,            /* Add the opcode to this VM */
487   int op,             /* The new opcode */
488   int p1,             /* The P1 operand */
489   int p2,             /* The P2 operand */
490   int p3,             /* The P3 operand */
491   int p4              /* The P4 operand as an integer */
492 ){
493   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
494   if( p->db->mallocFailed==0 ){
495     VdbeOp *pOp = &p->aOp[addr];
496     pOp->p4type = P4_INT32;
497     pOp->p4.i = p4;
498   }
499   return addr;
500 }
501 
502 /* Insert the end of a co-routine
503 */
504 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
505   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
506 
507   /* Clear the temporary register cache, thereby ensuring that each
508   ** co-routine has its own independent set of registers, because co-routines
509   ** might expect their registers to be preserved across an OP_Yield, and
510   ** that could cause problems if two or more co-routines are using the same
511   ** temporary register.
512   */
513   v->pParse->nTempReg = 0;
514   v->pParse->nRangeReg = 0;
515 }
516 
517 /*
518 ** Create a new symbolic label for an instruction that has yet to be
519 ** coded.  The symbolic label is really just a negative number.  The
520 ** label can be used as the P2 value of an operation.  Later, when
521 ** the label is resolved to a specific address, the VDBE will scan
522 ** through its operation list and change all values of P2 which match
523 ** the label into the resolved address.
524 **
525 ** The VDBE knows that a P2 value is a label because labels are
526 ** always negative and P2 values are suppose to be non-negative.
527 ** Hence, a negative P2 value is a label that has yet to be resolved.
528 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
529 ** property.
530 **
531 ** Variable usage notes:
532 **
533 **     Parse.aLabel[x]     Stores the address that the x-th label resolves
534 **                         into.  For testing (SQLITE_DEBUG), unresolved
535 **                         labels stores -1, but that is not required.
536 **     Parse.nLabelAlloc   Number of slots allocated to Parse.aLabel[]
537 **     Parse.nLabel        The *negative* of the number of labels that have
538 **                         been issued.  The negative is stored because
539 **                         that gives a performance improvement over storing
540 **                         the equivalent positive value.
541 */
542 int sqlite3VdbeMakeLabel(Parse *pParse){
543   return --pParse->nLabel;
544 }
545 
546 /*
547 ** Resolve label "x" to be the address of the next instruction to
548 ** be inserted.  The parameter "x" must have been obtained from
549 ** a prior call to sqlite3VdbeMakeLabel().
550 */
551 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
552   int nNewSize = 10 - p->nLabel;
553   p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
554                      nNewSize*sizeof(p->aLabel[0]));
555   if( p->aLabel==0 ){
556     p->nLabelAlloc = 0;
557   }else{
558 #ifdef SQLITE_DEBUG
559     int i;
560     for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
561 #endif
562     p->nLabelAlloc = nNewSize;
563     p->aLabel[j] = v->nOp;
564   }
565 }
566 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
567   Parse *p = v->pParse;
568   int j = ADDR(x);
569   assert( v->iVdbeMagic==VDBE_MAGIC_INIT );
570   assert( j<-p->nLabel );
571   assert( j>=0 );
572 #ifdef SQLITE_DEBUG
573   if( p->db->flags & SQLITE_VdbeAddopTrace ){
574     printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
575   }
576 #endif
577   if( p->nLabelAlloc + p->nLabel < 0 ){
578     resizeResolveLabel(p,v,j);
579   }else{
580     assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
581     p->aLabel[j] = v->nOp;
582   }
583 }
584 
585 /*
586 ** Mark the VDBE as one that can only be run one time.
587 */
588 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
589   p->runOnlyOnce = 1;
590 }
591 
592 /*
593 ** Mark the VDBE as one that can only be run multiple times.
594 */
595 void sqlite3VdbeReusable(Vdbe *p){
596   p->runOnlyOnce = 0;
597 }
598 
599 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
600 
601 /*
602 ** The following type and function are used to iterate through all opcodes
603 ** in a Vdbe main program and each of the sub-programs (triggers) it may
604 ** invoke directly or indirectly. It should be used as follows:
605 **
606 **   Op *pOp;
607 **   VdbeOpIter sIter;
608 **
609 **   memset(&sIter, 0, sizeof(sIter));
610 **   sIter.v = v;                            // v is of type Vdbe*
611 **   while( (pOp = opIterNext(&sIter)) ){
612 **     // Do something with pOp
613 **   }
614 **   sqlite3DbFree(v->db, sIter.apSub);
615 **
616 */
617 typedef struct VdbeOpIter VdbeOpIter;
618 struct VdbeOpIter {
619   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
620   SubProgram **apSub;        /* Array of subprograms */
621   int nSub;                  /* Number of entries in apSub */
622   int iAddr;                 /* Address of next instruction to return */
623   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
624 };
625 static Op *opIterNext(VdbeOpIter *p){
626   Vdbe *v = p->v;
627   Op *pRet = 0;
628   Op *aOp;
629   int nOp;
630 
631   if( p->iSub<=p->nSub ){
632 
633     if( p->iSub==0 ){
634       aOp = v->aOp;
635       nOp = v->nOp;
636     }else{
637       aOp = p->apSub[p->iSub-1]->aOp;
638       nOp = p->apSub[p->iSub-1]->nOp;
639     }
640     assert( p->iAddr<nOp );
641 
642     pRet = &aOp[p->iAddr];
643     p->iAddr++;
644     if( p->iAddr==nOp ){
645       p->iSub++;
646       p->iAddr = 0;
647     }
648 
649     if( pRet->p4type==P4_SUBPROGRAM ){
650       int nByte = (p->nSub+1)*sizeof(SubProgram*);
651       int j;
652       for(j=0; j<p->nSub; j++){
653         if( p->apSub[j]==pRet->p4.pProgram ) break;
654       }
655       if( j==p->nSub ){
656         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
657         if( !p->apSub ){
658           pRet = 0;
659         }else{
660           p->apSub[p->nSub++] = pRet->p4.pProgram;
661         }
662       }
663     }
664   }
665 
666   return pRet;
667 }
668 
669 /*
670 ** Check if the program stored in the VM associated with pParse may
671 ** throw an ABORT exception (causing the statement, but not entire transaction
672 ** to be rolled back). This condition is true if the main program or any
673 ** sub-programs contains any of the following:
674 **
675 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
676 **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
677 **   *  OP_Destroy
678 **   *  OP_VUpdate
679 **   *  OP_VCreate
680 **   *  OP_VRename
681 **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
682 **   *  OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
683 **      (for CREATE TABLE AS SELECT ...)
684 **
685 ** Then check that the value of Parse.mayAbort is true if an
686 ** ABORT may be thrown, or false otherwise. Return true if it does
687 ** match, or false otherwise. This function is intended to be used as
688 ** part of an assert statement in the compiler. Similar to:
689 **
690 **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
691 */
692 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
693   int hasAbort = 0;
694   int hasFkCounter = 0;
695   int hasCreateTable = 0;
696   int hasCreateIndex = 0;
697   int hasInitCoroutine = 0;
698   Op *pOp;
699   VdbeOpIter sIter;
700   memset(&sIter, 0, sizeof(sIter));
701   sIter.v = v;
702 
703   while( (pOp = opIterNext(&sIter))!=0 ){
704     int opcode = pOp->opcode;
705     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
706      || opcode==OP_VDestroy
707      || opcode==OP_VCreate
708      || opcode==OP_ParseSchema
709      || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
710       && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
711     ){
712       hasAbort = 1;
713       break;
714     }
715     if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
716     if( mayAbort ){
717       /* hasCreateIndex may also be set for some DELETE statements that use
718       ** OP_Clear. So this routine may end up returning true in the case
719       ** where a "DELETE FROM tbl" has a statement-journal but does not
720       ** require one. This is not so bad - it is an inefficiency, not a bug. */
721       if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
722       if( opcode==OP_Clear ) hasCreateIndex = 1;
723     }
724     if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
725 #ifndef SQLITE_OMIT_FOREIGN_KEY
726     if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
727       hasFkCounter = 1;
728     }
729 #endif
730   }
731   sqlite3DbFree(v->db, sIter.apSub);
732 
733   /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
734   ** If malloc failed, then the while() loop above may not have iterated
735   ** through all opcodes and hasAbort may be set incorrectly. Return
736   ** true for this case to prevent the assert() in the callers frame
737   ** from failing.  */
738   return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
739         || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
740   );
741 }
742 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
743 
744 #ifdef SQLITE_DEBUG
745 /*
746 ** Increment the nWrite counter in the VDBE if the cursor is not an
747 ** ephemeral cursor, or if the cursor argument is NULL.
748 */
749 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
750   if( pC==0
751    || (pC->eCurType!=CURTYPE_SORTER
752        && pC->eCurType!=CURTYPE_PSEUDO
753        && !pC->isEphemeral)
754   ){
755     p->nWrite++;
756   }
757 }
758 #endif
759 
760 #ifdef SQLITE_DEBUG
761 /*
762 ** Assert if an Abort at this point in time might result in a corrupt
763 ** database.
764 */
765 void sqlite3VdbeAssertAbortable(Vdbe *p){
766   assert( p->nWrite==0 || p->usesStmtJournal );
767 }
768 #endif
769 
770 /*
771 ** This routine is called after all opcodes have been inserted.  It loops
772 ** through all the opcodes and fixes up some details.
773 **
774 ** (1) For each jump instruction with a negative P2 value (a label)
775 **     resolve the P2 value to an actual address.
776 **
777 ** (2) Compute the maximum number of arguments used by any SQL function
778 **     and store that value in *pMaxFuncArgs.
779 **
780 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
781 **     indicate what the prepared statement actually does.
782 **
783 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
784 **
785 ** (5) Reclaim the memory allocated for storing labels.
786 **
787 ** This routine will only function correctly if the mkopcodeh.tcl generator
788 ** script numbers the opcodes correctly.  Changes to this routine must be
789 ** coordinated with changes to mkopcodeh.tcl.
790 */
791 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
792   int nMaxArgs = *pMaxFuncArgs;
793   Op *pOp;
794   Parse *pParse = p->pParse;
795   int *aLabel = pParse->aLabel;
796   p->readOnly = 1;
797   p->bIsReader = 0;
798   pOp = &p->aOp[p->nOp-1];
799   while(1){
800 
801     /* Only JUMP opcodes and the short list of special opcodes in the switch
802     ** below need to be considered.  The mkopcodeh.tcl generator script groups
803     ** all these opcodes together near the front of the opcode list.  Skip
804     ** any opcode that does not need processing by virtual of the fact that
805     ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
806     */
807     if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
808       /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
809       ** cases from this switch! */
810       switch( pOp->opcode ){
811         case OP_Transaction: {
812           if( pOp->p2!=0 ) p->readOnly = 0;
813           /* no break */ deliberate_fall_through
814         }
815         case OP_AutoCommit:
816         case OP_Savepoint: {
817           p->bIsReader = 1;
818           break;
819         }
820 #ifndef SQLITE_OMIT_WAL
821         case OP_Checkpoint:
822 #endif
823         case OP_Vacuum:
824         case OP_JournalMode: {
825           p->readOnly = 0;
826           p->bIsReader = 1;
827           break;
828         }
829         case OP_Next:
830         case OP_SorterNext: {
831           pOp->p4.xAdvance = sqlite3BtreeNext;
832           pOp->p4type = P4_ADVANCE;
833           /* The code generator never codes any of these opcodes as a jump
834           ** to a label.  They are always coded as a jump backwards to a
835           ** known address */
836           assert( pOp->p2>=0 );
837           break;
838         }
839         case OP_Prev: {
840           pOp->p4.xAdvance = sqlite3BtreePrevious;
841           pOp->p4type = P4_ADVANCE;
842           /* The code generator never codes any of these opcodes as a jump
843           ** to a label.  They are always coded as a jump backwards to a
844           ** known address */
845           assert( pOp->p2>=0 );
846           break;
847         }
848 #ifndef SQLITE_OMIT_VIRTUALTABLE
849         case OP_VUpdate: {
850           if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
851           break;
852         }
853         case OP_VFilter: {
854           int n;
855           assert( (pOp - p->aOp) >= 3 );
856           assert( pOp[-1].opcode==OP_Integer );
857           n = pOp[-1].p1;
858           if( n>nMaxArgs ) nMaxArgs = n;
859           /* Fall through into the default case */
860           /* no break */ deliberate_fall_through
861         }
862 #endif
863         default: {
864           if( pOp->p2<0 ){
865             /* The mkopcodeh.tcl script has so arranged things that the only
866             ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
867             ** have non-negative values for P2. */
868             assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
869             assert( ADDR(pOp->p2)<-pParse->nLabel );
870             pOp->p2 = aLabel[ADDR(pOp->p2)];
871           }
872           break;
873         }
874       }
875       /* The mkopcodeh.tcl script has so arranged things that the only
876       ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
877       ** have non-negative values for P2. */
878       assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
879     }
880     if( pOp==p->aOp ) break;
881     pOp--;
882   }
883   sqlite3DbFree(p->db, pParse->aLabel);
884   pParse->aLabel = 0;
885   pParse->nLabel = 0;
886   *pMaxFuncArgs = nMaxArgs;
887   assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
888 }
889 
890 /*
891 ** Return the address of the next instruction to be inserted.
892 */
893 int sqlite3VdbeCurrentAddr(Vdbe *p){
894   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
895   return p->nOp;
896 }
897 
898 /*
899 ** Verify that at least N opcode slots are available in p without
900 ** having to malloc for more space (except when compiled using
901 ** SQLITE_TEST_REALLOC_STRESS).  This interface is used during testing
902 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
903 ** fail due to a OOM fault and hence that the return value from
904 ** sqlite3VdbeAddOpList() will always be non-NULL.
905 */
906 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
907 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
908   assert( p->nOp + N <= p->nOpAlloc );
909 }
910 #endif
911 
912 /*
913 ** Verify that the VM passed as the only argument does not contain
914 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
915 ** by code in pragma.c to ensure that the implementation of certain
916 ** pragmas comports with the flags specified in the mkpragmatab.tcl
917 ** script.
918 */
919 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
920 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
921   int i;
922   for(i=0; i<p->nOp; i++){
923     assert( p->aOp[i].opcode!=OP_ResultRow );
924   }
925 }
926 #endif
927 
928 /*
929 ** Generate code (a single OP_Abortable opcode) that will
930 ** verify that the VDBE program can safely call Abort in the current
931 ** context.
932 */
933 #if defined(SQLITE_DEBUG)
934 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
935   if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
936 }
937 #endif
938 
939 /*
940 ** This function returns a pointer to the array of opcodes associated with
941 ** the Vdbe passed as the first argument. It is the callers responsibility
942 ** to arrange for the returned array to be eventually freed using the
943 ** vdbeFreeOpArray() function.
944 **
945 ** Before returning, *pnOp is set to the number of entries in the returned
946 ** array. Also, *pnMaxArg is set to the larger of its current value and
947 ** the number of entries in the Vdbe.apArg[] array required to execute the
948 ** returned program.
949 */
950 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
951   VdbeOp *aOp = p->aOp;
952   assert( aOp && !p->db->mallocFailed );
953 
954   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
955   assert( DbMaskAllZero(p->btreeMask) );
956 
957   resolveP2Values(p, pnMaxArg);
958   *pnOp = p->nOp;
959   p->aOp = 0;
960   return aOp;
961 }
962 
963 /*
964 ** Add a whole list of operations to the operation stack.  Return a
965 ** pointer to the first operation inserted.
966 **
967 ** Non-zero P2 arguments to jump instructions are automatically adjusted
968 ** so that the jump target is relative to the first operation inserted.
969 */
970 VdbeOp *sqlite3VdbeAddOpList(
971   Vdbe *p,                     /* Add opcodes to the prepared statement */
972   int nOp,                     /* Number of opcodes to add */
973   VdbeOpList const *aOp,       /* The opcodes to be added */
974   int iLineno                  /* Source-file line number of first opcode */
975 ){
976   int i;
977   VdbeOp *pOut, *pFirst;
978   assert( nOp>0 );
979   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
980   if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
981     return 0;
982   }
983   pFirst = pOut = &p->aOp[p->nOp];
984   for(i=0; i<nOp; i++, aOp++, pOut++){
985     pOut->opcode = aOp->opcode;
986     pOut->p1 = aOp->p1;
987     pOut->p2 = aOp->p2;
988     assert( aOp->p2>=0 );
989     if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
990       pOut->p2 += p->nOp;
991     }
992     pOut->p3 = aOp->p3;
993     pOut->p4type = P4_NOTUSED;
994     pOut->p4.p = 0;
995     pOut->p5 = 0;
996 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
997     pOut->zComment = 0;
998 #endif
999 #ifdef SQLITE_VDBE_COVERAGE
1000     pOut->iSrcLine = iLineno+i;
1001 #else
1002     (void)iLineno;
1003 #endif
1004 #ifdef SQLITE_DEBUG
1005     if( p->db->flags & SQLITE_VdbeAddopTrace ){
1006       sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1007     }
1008 #endif
1009   }
1010   p->nOp += nOp;
1011   return pFirst;
1012 }
1013 
1014 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1015 /*
1016 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1017 */
1018 void sqlite3VdbeScanStatus(
1019   Vdbe *p,                        /* VM to add scanstatus() to */
1020   int addrExplain,                /* Address of OP_Explain (or 0) */
1021   int addrLoop,                   /* Address of loop counter */
1022   int addrVisit,                  /* Address of rows visited counter */
1023   LogEst nEst,                    /* Estimated number of output rows */
1024   const char *zName               /* Name of table or index being scanned */
1025 ){
1026   sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1027   ScanStatus *aNew;
1028   aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1029   if( aNew ){
1030     ScanStatus *pNew = &aNew[p->nScan++];
1031     pNew->addrExplain = addrExplain;
1032     pNew->addrLoop = addrLoop;
1033     pNew->addrVisit = addrVisit;
1034     pNew->nEst = nEst;
1035     pNew->zName = sqlite3DbStrDup(p->db, zName);
1036     p->aScan = aNew;
1037   }
1038 }
1039 #endif
1040 
1041 
1042 /*
1043 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1044 ** for a specific instruction.
1045 */
1046 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1047   sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1048 }
1049 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1050   sqlite3VdbeGetOp(p,addr)->p1 = val;
1051 }
1052 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1053   sqlite3VdbeGetOp(p,addr)->p2 = val;
1054 }
1055 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1056   sqlite3VdbeGetOp(p,addr)->p3 = val;
1057 }
1058 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1059   assert( p->nOp>0 || p->db->mallocFailed );
1060   if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1061 }
1062 
1063 /*
1064 ** Change the P2 operand of instruction addr so that it points to
1065 ** the address of the next instruction to be coded.
1066 */
1067 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1068   sqlite3VdbeChangeP2(p, addr, p->nOp);
1069 }
1070 
1071 /*
1072 ** Change the P2 operand of the jump instruction at addr so that
1073 ** the jump lands on the next opcode.  Or if the jump instruction was
1074 ** the previous opcode (and is thus a no-op) then simply back up
1075 ** the next instruction counter by one slot so that the jump is
1076 ** overwritten by the next inserted opcode.
1077 **
1078 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1079 ** strives to omit useless byte-code like this:
1080 **
1081 **        7   Once 0 8 0
1082 **        8   ...
1083 */
1084 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
1085   if( addr==p->nOp-1 ){
1086     assert( p->aOp[addr].opcode==OP_Once
1087          || p->aOp[addr].opcode==OP_If
1088          || p->aOp[addr].opcode==OP_FkIfZero );
1089     assert( p->aOp[addr].p4type==0 );
1090 #ifdef SQLITE_VDBE_COVERAGE
1091     sqlite3VdbeGetOp(p,-1)->iSrcLine = 0;  /* Erase VdbeCoverage() macros */
1092 #endif
1093     p->nOp--;
1094   }else{
1095     sqlite3VdbeChangeP2(p, addr, p->nOp);
1096   }
1097 }
1098 
1099 
1100 /*
1101 ** If the input FuncDef structure is ephemeral, then free it.  If
1102 ** the FuncDef is not ephermal, then do nothing.
1103 */
1104 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1105   if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1106     sqlite3DbFreeNN(db, pDef);
1107   }
1108 }
1109 
1110 /*
1111 ** Delete a P4 value if necessary.
1112 */
1113 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1114   if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1115   sqlite3DbFreeNN(db, p);
1116 }
1117 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1118   freeEphemeralFunction(db, p->pFunc);
1119   sqlite3DbFreeNN(db, p);
1120 }
1121 static void freeP4(sqlite3 *db, int p4type, void *p4){
1122   assert( db );
1123   switch( p4type ){
1124     case P4_FUNCCTX: {
1125       freeP4FuncCtx(db, (sqlite3_context*)p4);
1126       break;
1127     }
1128     case P4_REAL:
1129     case P4_INT64:
1130     case P4_DYNAMIC:
1131     case P4_DYNBLOB:
1132     case P4_INTARRAY: {
1133       sqlite3DbFree(db, p4);
1134       break;
1135     }
1136     case P4_KEYINFO: {
1137       if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1138       break;
1139     }
1140 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1141     case P4_EXPR: {
1142       sqlite3ExprDelete(db, (Expr*)p4);
1143       break;
1144     }
1145 #endif
1146     case P4_FUNCDEF: {
1147       freeEphemeralFunction(db, (FuncDef*)p4);
1148       break;
1149     }
1150     case P4_MEM: {
1151       if( db->pnBytesFreed==0 ){
1152         sqlite3ValueFree((sqlite3_value*)p4);
1153       }else{
1154         freeP4Mem(db, (Mem*)p4);
1155       }
1156       break;
1157     }
1158     case P4_VTAB : {
1159       if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1160       break;
1161     }
1162   }
1163 }
1164 
1165 /*
1166 ** Free the space allocated for aOp and any p4 values allocated for the
1167 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1168 ** nOp entries.
1169 */
1170 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1171   if( aOp ){
1172     Op *pOp;
1173     for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
1174       if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1175 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1176       sqlite3DbFree(db, pOp->zComment);
1177 #endif
1178     }
1179     sqlite3DbFreeNN(db, aOp);
1180   }
1181 }
1182 
1183 /*
1184 ** Link the SubProgram object passed as the second argument into the linked
1185 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1186 ** objects when the VM is no longer required.
1187 */
1188 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1189   p->pNext = pVdbe->pProgram;
1190   pVdbe->pProgram = p;
1191 }
1192 
1193 /*
1194 ** Return true if the given Vdbe has any SubPrograms.
1195 */
1196 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1197   return pVdbe->pProgram!=0;
1198 }
1199 
1200 /*
1201 ** Change the opcode at addr into OP_Noop
1202 */
1203 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1204   VdbeOp *pOp;
1205   if( p->db->mallocFailed ) return 0;
1206   assert( addr>=0 && addr<p->nOp );
1207   pOp = &p->aOp[addr];
1208   freeP4(p->db, pOp->p4type, pOp->p4.p);
1209   pOp->p4type = P4_NOTUSED;
1210   pOp->p4.z = 0;
1211   pOp->opcode = OP_Noop;
1212   return 1;
1213 }
1214 
1215 /*
1216 ** If the last opcode is "op" and it is not a jump destination,
1217 ** then remove it.  Return true if and only if an opcode was removed.
1218 */
1219 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1220   if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1221     return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1222   }else{
1223     return 0;
1224   }
1225 }
1226 
1227 #ifdef SQLITE_DEBUG
1228 /*
1229 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1230 ** registers, except any identified by mask, are no longer in use.
1231 */
1232 void sqlite3VdbeReleaseRegisters(
1233   Parse *pParse,       /* Parsing context */
1234   int iFirst,          /* Index of first register to be released */
1235   int N,               /* Number of registers to release */
1236   u32 mask,            /* Mask of registers to NOT release */
1237   int bUndefine        /* If true, mark registers as undefined */
1238 ){
1239   if( N==0 ) return;
1240   assert( pParse->pVdbe );
1241   assert( iFirst>=1 );
1242   assert( iFirst+N-1<=pParse->nMem );
1243   if( N<=31 && mask!=0 ){
1244     while( N>0 && (mask&1)!=0 ){
1245       mask >>= 1;
1246       iFirst++;
1247       N--;
1248     }
1249     while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1250       mask &= ~MASKBIT32(N-1);
1251       N--;
1252     }
1253   }
1254   if( N>0 ){
1255     sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1256     if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1257   }
1258 }
1259 #endif /* SQLITE_DEBUG */
1260 
1261 
1262 /*
1263 ** Change the value of the P4 operand for a specific instruction.
1264 ** This routine is useful when a large program is loaded from a
1265 ** static array using sqlite3VdbeAddOpList but we want to make a
1266 ** few minor changes to the program.
1267 **
1268 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1269 ** the string is made into memory obtained from sqlite3_malloc().
1270 ** A value of n==0 means copy bytes of zP4 up to and including the
1271 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
1272 **
1273 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1274 ** to a string or structure that is guaranteed to exist for the lifetime of
1275 ** the Vdbe. In these cases we can just copy the pointer.
1276 **
1277 ** If addr<0 then change P4 on the most recently inserted instruction.
1278 */
1279 static void SQLITE_NOINLINE vdbeChangeP4Full(
1280   Vdbe *p,
1281   Op *pOp,
1282   const char *zP4,
1283   int n
1284 ){
1285   if( pOp->p4type ){
1286     freeP4(p->db, pOp->p4type, pOp->p4.p);
1287     pOp->p4type = 0;
1288     pOp->p4.p = 0;
1289   }
1290   if( n<0 ){
1291     sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1292   }else{
1293     if( n==0 ) n = sqlite3Strlen30(zP4);
1294     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1295     pOp->p4type = P4_DYNAMIC;
1296   }
1297 }
1298 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1299   Op *pOp;
1300   sqlite3 *db;
1301   assert( p!=0 );
1302   db = p->db;
1303   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
1304   assert( p->aOp!=0 || db->mallocFailed );
1305   if( db->mallocFailed ){
1306     if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1307     return;
1308   }
1309   assert( p->nOp>0 );
1310   assert( addr<p->nOp );
1311   if( addr<0 ){
1312     addr = p->nOp - 1;
1313   }
1314   pOp = &p->aOp[addr];
1315   if( n>=0 || pOp->p4type ){
1316     vdbeChangeP4Full(p, pOp, zP4, n);
1317     return;
1318   }
1319   if( n==P4_INT32 ){
1320     /* Note: this cast is safe, because the origin data point was an int
1321     ** that was cast to a (const char *). */
1322     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1323     pOp->p4type = P4_INT32;
1324   }else if( zP4!=0 ){
1325     assert( n<0 );
1326     pOp->p4.p = (void*)zP4;
1327     pOp->p4type = (signed char)n;
1328     if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1329   }
1330 }
1331 
1332 /*
1333 ** Change the P4 operand of the most recently coded instruction
1334 ** to the value defined by the arguments.  This is a high-speed
1335 ** version of sqlite3VdbeChangeP4().
1336 **
1337 ** The P4 operand must not have been previously defined.  And the new
1338 ** P4 must not be P4_INT32.  Use sqlite3VdbeChangeP4() in either of
1339 ** those cases.
1340 */
1341 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1342   VdbeOp *pOp;
1343   assert( n!=P4_INT32 && n!=P4_VTAB );
1344   assert( n<=0 );
1345   if( p->db->mallocFailed ){
1346     freeP4(p->db, n, pP4);
1347   }else{
1348     assert( pP4!=0 );
1349     assert( p->nOp>0 );
1350     pOp = &p->aOp[p->nOp-1];
1351     assert( pOp->p4type==P4_NOTUSED );
1352     pOp->p4type = n;
1353     pOp->p4.p = pP4;
1354   }
1355 }
1356 
1357 /*
1358 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1359 ** index given.
1360 */
1361 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1362   Vdbe *v = pParse->pVdbe;
1363   KeyInfo *pKeyInfo;
1364   assert( v!=0 );
1365   assert( pIdx!=0 );
1366   pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1367   if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1368 }
1369 
1370 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1371 /*
1372 ** Change the comment on the most recently coded instruction.  Or
1373 ** insert a No-op and add the comment to that new instruction.  This
1374 ** makes the code easier to read during debugging.  None of this happens
1375 ** in a production build.
1376 */
1377 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1378   assert( p->nOp>0 || p->aOp==0 );
1379   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed
1380           || p->pParse->nErr>0 );
1381   if( p->nOp ){
1382     assert( p->aOp );
1383     sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1384     p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1385   }
1386 }
1387 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1388   va_list ap;
1389   if( p ){
1390     va_start(ap, zFormat);
1391     vdbeVComment(p, zFormat, ap);
1392     va_end(ap);
1393   }
1394 }
1395 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1396   va_list ap;
1397   if( p ){
1398     sqlite3VdbeAddOp0(p, OP_Noop);
1399     va_start(ap, zFormat);
1400     vdbeVComment(p, zFormat, ap);
1401     va_end(ap);
1402   }
1403 }
1404 #endif  /* NDEBUG */
1405 
1406 #ifdef SQLITE_VDBE_COVERAGE
1407 /*
1408 ** Set the value if the iSrcLine field for the previously coded instruction.
1409 */
1410 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1411   sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1412 }
1413 #endif /* SQLITE_VDBE_COVERAGE */
1414 
1415 /*
1416 ** Return the opcode for a given address.  If the address is -1, then
1417 ** return the most recently inserted opcode.
1418 **
1419 ** If a memory allocation error has occurred prior to the calling of this
1420 ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
1421 ** is readable but not writable, though it is cast to a writable value.
1422 ** The return of a dummy opcode allows the call to continue functioning
1423 ** after an OOM fault without having to check to see if the return from
1424 ** this routine is a valid pointer.  But because the dummy.opcode is 0,
1425 ** dummy will never be written to.  This is verified by code inspection and
1426 ** by running with Valgrind.
1427 */
1428 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1429   /* C89 specifies that the constant "dummy" will be initialized to all
1430   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
1431   static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
1432   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
1433   if( addr<0 ){
1434     addr = p->nOp - 1;
1435   }
1436   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1437   if( p->db->mallocFailed ){
1438     return (VdbeOp*)&dummy;
1439   }else{
1440     return &p->aOp[addr];
1441   }
1442 }
1443 
1444 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1445 /*
1446 ** Return an integer value for one of the parameters to the opcode pOp
1447 ** determined by character c.
1448 */
1449 static int translateP(char c, const Op *pOp){
1450   if( c=='1' ) return pOp->p1;
1451   if( c=='2' ) return pOp->p2;
1452   if( c=='3' ) return pOp->p3;
1453   if( c=='4' ) return pOp->p4.i;
1454   return pOp->p5;
1455 }
1456 
1457 /*
1458 ** Compute a string for the "comment" field of a VDBE opcode listing.
1459 **
1460 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1461 ** to an extra string that is appended to the sqlite3OpcodeName().  In the
1462 ** absence of other comments, this synopsis becomes the comment on the opcode.
1463 ** Some translation occurs:
1464 **
1465 **       "PX"      ->  "r[X]"
1466 **       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1
1467 **       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0
1468 **       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x
1469 */
1470 char *sqlite3VdbeDisplayComment(
1471   sqlite3 *db,       /* Optional - Oom error reporting only */
1472   const Op *pOp,     /* The opcode to be commented */
1473   const char *zP4    /* Previously obtained value for P4 */
1474 ){
1475   const char *zOpName;
1476   const char *zSynopsis;
1477   int nOpName;
1478   int ii;
1479   char zAlt[50];
1480   StrAccum x;
1481 
1482   sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1483   zOpName = sqlite3OpcodeName(pOp->opcode);
1484   nOpName = sqlite3Strlen30(zOpName);
1485   if( zOpName[nOpName+1] ){
1486     int seenCom = 0;
1487     char c;
1488     zSynopsis = zOpName += nOpName + 1;
1489     if( strncmp(zSynopsis,"IF ",3)==0 ){
1490       sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1491       zSynopsis = zAlt;
1492     }
1493     for(ii=0; (c = zSynopsis[ii])!=0; ii++){
1494       if( c=='P' ){
1495         c = zSynopsis[++ii];
1496         if( c=='4' ){
1497           sqlite3_str_appendall(&x, zP4);
1498         }else if( c=='X' ){
1499           sqlite3_str_appendall(&x, pOp->zComment);
1500           seenCom = 1;
1501         }else{
1502           int v1 = translateP(c, pOp);
1503           int v2;
1504           if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1505             ii += 3;
1506             v2 = translateP(zSynopsis[ii], pOp);
1507             if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1508               ii += 2;
1509               v2++;
1510             }
1511             if( v2<2 ){
1512               sqlite3_str_appendf(&x, "%d", v1);
1513             }else{
1514               sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
1515             }
1516           }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
1517             sqlite3_context *pCtx = pOp->p4.pCtx;
1518             if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
1519               sqlite3_str_appendf(&x, "%d", v1);
1520             }else if( pCtx->argc>1 ){
1521               sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
1522             }else if( x.accError==0 ){
1523               assert( x.nChar>2 );
1524               x.nChar -= 2;
1525               ii++;
1526             }
1527             ii += 3;
1528           }else{
1529             sqlite3_str_appendf(&x, "%d", v1);
1530             if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1531               ii += 4;
1532             }
1533           }
1534         }
1535       }else{
1536         sqlite3_str_appendchar(&x, 1, c);
1537       }
1538     }
1539     if( !seenCom && pOp->zComment ){
1540       sqlite3_str_appendf(&x, "; %s", pOp->zComment);
1541     }
1542   }else if( pOp->zComment ){
1543     sqlite3_str_appendall(&x, pOp->zComment);
1544   }
1545   if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
1546     sqlite3OomFault(db);
1547   }
1548   return sqlite3StrAccumFinish(&x);
1549 }
1550 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1551 
1552 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1553 /*
1554 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1555 ** that can be displayed in the P4 column of EXPLAIN output.
1556 */
1557 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1558   const char *zOp = 0;
1559   switch( pExpr->op ){
1560     case TK_STRING:
1561       sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1562       break;
1563     case TK_INTEGER:
1564       sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1565       break;
1566     case TK_NULL:
1567       sqlite3_str_appendf(p, "NULL");
1568       break;
1569     case TK_REGISTER: {
1570       sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1571       break;
1572     }
1573     case TK_COLUMN: {
1574       if( pExpr->iColumn<0 ){
1575         sqlite3_str_appendf(p, "rowid");
1576       }else{
1577         sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1578       }
1579       break;
1580     }
1581     case TK_LT:      zOp = "LT";      break;
1582     case TK_LE:      zOp = "LE";      break;
1583     case TK_GT:      zOp = "GT";      break;
1584     case TK_GE:      zOp = "GE";      break;
1585     case TK_NE:      zOp = "NE";      break;
1586     case TK_EQ:      zOp = "EQ";      break;
1587     case TK_IS:      zOp = "IS";      break;
1588     case TK_ISNOT:   zOp = "ISNOT";   break;
1589     case TK_AND:     zOp = "AND";     break;
1590     case TK_OR:      zOp = "OR";      break;
1591     case TK_PLUS:    zOp = "ADD";     break;
1592     case TK_STAR:    zOp = "MUL";     break;
1593     case TK_MINUS:   zOp = "SUB";     break;
1594     case TK_REM:     zOp = "REM";     break;
1595     case TK_BITAND:  zOp = "BITAND";  break;
1596     case TK_BITOR:   zOp = "BITOR";   break;
1597     case TK_SLASH:   zOp = "DIV";     break;
1598     case TK_LSHIFT:  zOp = "LSHIFT";  break;
1599     case TK_RSHIFT:  zOp = "RSHIFT";  break;
1600     case TK_CONCAT:  zOp = "CONCAT";  break;
1601     case TK_UMINUS:  zOp = "MINUS";   break;
1602     case TK_UPLUS:   zOp = "PLUS";    break;
1603     case TK_BITNOT:  zOp = "BITNOT";  break;
1604     case TK_NOT:     zOp = "NOT";     break;
1605     case TK_ISNULL:  zOp = "ISNULL";  break;
1606     case TK_NOTNULL: zOp = "NOTNULL"; break;
1607 
1608     default:
1609       sqlite3_str_appendf(p, "%s", "expr");
1610       break;
1611   }
1612 
1613   if( zOp ){
1614     sqlite3_str_appendf(p, "%s(", zOp);
1615     displayP4Expr(p, pExpr->pLeft);
1616     if( pExpr->pRight ){
1617       sqlite3_str_append(p, ",", 1);
1618       displayP4Expr(p, pExpr->pRight);
1619     }
1620     sqlite3_str_append(p, ")", 1);
1621   }
1622 }
1623 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1624 
1625 
1626 #if VDBE_DISPLAY_P4
1627 /*
1628 ** Compute a string that describes the P4 parameter for an opcode.
1629 ** Use zTemp for any required temporary buffer space.
1630 */
1631 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
1632   char *zP4 = 0;
1633   StrAccum x;
1634 
1635   sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1636   switch( pOp->p4type ){
1637     case P4_KEYINFO: {
1638       int j;
1639       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1640       assert( pKeyInfo->aSortFlags!=0 );
1641       sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1642       for(j=0; j<pKeyInfo->nKeyField; j++){
1643         CollSeq *pColl = pKeyInfo->aColl[j];
1644         const char *zColl = pColl ? pColl->zName : "";
1645         if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1646         sqlite3_str_appendf(&x, ",%s%s%s",
1647                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1648                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1649                zColl);
1650       }
1651       sqlite3_str_append(&x, ")", 1);
1652       break;
1653     }
1654 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1655     case P4_EXPR: {
1656       displayP4Expr(&x, pOp->p4.pExpr);
1657       break;
1658     }
1659 #endif
1660     case P4_COLLSEQ: {
1661       static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
1662       CollSeq *pColl = pOp->p4.pColl;
1663       assert( pColl->enc<4 );
1664       sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
1665                           encnames[pColl->enc]);
1666       break;
1667     }
1668     case P4_FUNCDEF: {
1669       FuncDef *pDef = pOp->p4.pFunc;
1670       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1671       break;
1672     }
1673     case P4_FUNCCTX: {
1674       FuncDef *pDef = pOp->p4.pCtx->pFunc;
1675       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1676       break;
1677     }
1678     case P4_INT64: {
1679       sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1680       break;
1681     }
1682     case P4_INT32: {
1683       sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1684       break;
1685     }
1686     case P4_REAL: {
1687       sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1688       break;
1689     }
1690     case P4_MEM: {
1691       Mem *pMem = pOp->p4.pMem;
1692       if( pMem->flags & MEM_Str ){
1693         zP4 = pMem->z;
1694       }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1695         sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1696       }else if( pMem->flags & MEM_Real ){
1697         sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1698       }else if( pMem->flags & MEM_Null ){
1699         zP4 = "NULL";
1700       }else{
1701         assert( pMem->flags & MEM_Blob );
1702         zP4 = "(blob)";
1703       }
1704       break;
1705     }
1706 #ifndef SQLITE_OMIT_VIRTUALTABLE
1707     case P4_VTAB: {
1708       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1709       sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1710       break;
1711     }
1712 #endif
1713     case P4_INTARRAY: {
1714       u32 i;
1715       u32 *ai = pOp->p4.ai;
1716       u32 n = ai[0];   /* The first element of an INTARRAY is always the
1717                        ** count of the number of elements to follow */
1718       for(i=1; i<=n; i++){
1719         sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
1720       }
1721       sqlite3_str_append(&x, "]", 1);
1722       break;
1723     }
1724     case P4_SUBPROGRAM: {
1725       zP4 = "program";
1726       break;
1727     }
1728     case P4_DYNBLOB:
1729     case P4_ADVANCE: {
1730       break;
1731     }
1732     case P4_TABLE: {
1733       zP4 = pOp->p4.pTab->zName;
1734       break;
1735     }
1736     default: {
1737       zP4 = pOp->p4.z;
1738     }
1739   }
1740   if( zP4 ) sqlite3_str_appendall(&x, zP4);
1741   if( (x.accError & SQLITE_NOMEM)!=0 ){
1742     sqlite3OomFault(db);
1743   }
1744   return sqlite3StrAccumFinish(&x);
1745 }
1746 #endif /* VDBE_DISPLAY_P4 */
1747 
1748 /*
1749 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1750 **
1751 ** The prepared statements need to know in advance the complete set of
1752 ** attached databases that will be use.  A mask of these databases
1753 ** is maintained in p->btreeMask.  The p->lockMask value is the subset of
1754 ** p->btreeMask of databases that will require a lock.
1755 */
1756 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1757   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1758   assert( i<(int)sizeof(p->btreeMask)*8 );
1759   DbMaskSet(p->btreeMask, i);
1760   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1761     DbMaskSet(p->lockMask, i);
1762   }
1763 }
1764 
1765 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1766 /*
1767 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1768 ** this routine obtains the mutex associated with each BtShared structure
1769 ** that may be accessed by the VM passed as an argument. In doing so it also
1770 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1771 ** that the correct busy-handler callback is invoked if required.
1772 **
1773 ** If SQLite is not threadsafe but does support shared-cache mode, then
1774 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1775 ** of all of BtShared structures accessible via the database handle
1776 ** associated with the VM.
1777 **
1778 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1779 ** function is a no-op.
1780 **
1781 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1782 ** statement p will ever use.  Let N be the number of bits in p->btreeMask
1783 ** corresponding to btrees that use shared cache.  Then the runtime of
1784 ** this routine is N*N.  But as N is rarely more than 1, this should not
1785 ** be a problem.
1786 */
1787 void sqlite3VdbeEnter(Vdbe *p){
1788   int i;
1789   sqlite3 *db;
1790   Db *aDb;
1791   int nDb;
1792   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1793   db = p->db;
1794   aDb = db->aDb;
1795   nDb = db->nDb;
1796   for(i=0; i<nDb; i++){
1797     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1798       sqlite3BtreeEnter(aDb[i].pBt);
1799     }
1800   }
1801 }
1802 #endif
1803 
1804 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1805 /*
1806 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1807 */
1808 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1809   int i;
1810   sqlite3 *db;
1811   Db *aDb;
1812   int nDb;
1813   db = p->db;
1814   aDb = db->aDb;
1815   nDb = db->nDb;
1816   for(i=0; i<nDb; i++){
1817     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1818       sqlite3BtreeLeave(aDb[i].pBt);
1819     }
1820   }
1821 }
1822 void sqlite3VdbeLeave(Vdbe *p){
1823   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1824   vdbeLeave(p);
1825 }
1826 #endif
1827 
1828 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1829 /*
1830 ** Print a single opcode.  This routine is used for debugging only.
1831 */
1832 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
1833   char *zP4;
1834   char *zCom;
1835   sqlite3 dummyDb;
1836   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1837   if( pOut==0 ) pOut = stdout;
1838   sqlite3BeginBenignMalloc();
1839   dummyDb.mallocFailed = 1;
1840   zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
1841 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1842   zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
1843 #else
1844   zCom = 0;
1845 #endif
1846   /* NB:  The sqlite3OpcodeName() function is implemented by code created
1847   ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1848   ** information from the vdbe.c source text */
1849   fprintf(pOut, zFormat1, pc,
1850       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
1851       zP4 ? zP4 : "", pOp->p5,
1852       zCom ? zCom : ""
1853   );
1854   fflush(pOut);
1855   sqlite3_free(zP4);
1856   sqlite3_free(zCom);
1857   sqlite3EndBenignMalloc();
1858 }
1859 #endif
1860 
1861 /*
1862 ** Initialize an array of N Mem element.
1863 */
1864 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1865   while( (N--)>0 ){
1866     p->db = db;
1867     p->flags = flags;
1868     p->szMalloc = 0;
1869 #ifdef SQLITE_DEBUG
1870     p->pScopyFrom = 0;
1871 #endif
1872     p++;
1873   }
1874 }
1875 
1876 /*
1877 ** Release an array of N Mem elements
1878 */
1879 static void releaseMemArray(Mem *p, int N){
1880   if( p && N ){
1881     Mem *pEnd = &p[N];
1882     sqlite3 *db = p->db;
1883     if( db->pnBytesFreed ){
1884       do{
1885         if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1886       }while( (++p)<pEnd );
1887       return;
1888     }
1889     do{
1890       assert( (&p[1])==pEnd || p[0].db==p[1].db );
1891       assert( sqlite3VdbeCheckMemInvariants(p) );
1892 
1893       /* This block is really an inlined version of sqlite3VdbeMemRelease()
1894       ** that takes advantage of the fact that the memory cell value is
1895       ** being set to NULL after releasing any dynamic resources.
1896       **
1897       ** The justification for duplicating code is that according to
1898       ** callgrind, this causes a certain test case to hit the CPU 4.7
1899       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1900       ** sqlite3MemRelease() were called from here. With -O2, this jumps
1901       ** to 6.6 percent. The test case is inserting 1000 rows into a table
1902       ** with no indexes using a single prepared INSERT statement, bind()
1903       ** and reset(). Inserts are grouped into a transaction.
1904       */
1905       testcase( p->flags & MEM_Agg );
1906       testcase( p->flags & MEM_Dyn );
1907       testcase( p->xDel==sqlite3VdbeFrameMemDel );
1908       if( p->flags&(MEM_Agg|MEM_Dyn) ){
1909         sqlite3VdbeMemRelease(p);
1910       }else if( p->szMalloc ){
1911         sqlite3DbFreeNN(db, p->zMalloc);
1912         p->szMalloc = 0;
1913       }
1914 
1915       p->flags = MEM_Undefined;
1916     }while( (++p)<pEnd );
1917   }
1918 }
1919 
1920 #ifdef SQLITE_DEBUG
1921 /*
1922 ** Verify that pFrame is a valid VdbeFrame pointer.  Return true if it is
1923 ** and false if something is wrong.
1924 **
1925 ** This routine is intended for use inside of assert() statements only.
1926 */
1927 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
1928   if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
1929   return 1;
1930 }
1931 #endif
1932 
1933 
1934 /*
1935 ** This is a destructor on a Mem object (which is really an sqlite3_value)
1936 ** that deletes the Frame object that is attached to it as a blob.
1937 **
1938 ** This routine does not delete the Frame right away.  It merely adds the
1939 ** frame to a list of frames to be deleted when the Vdbe halts.
1940 */
1941 void sqlite3VdbeFrameMemDel(void *pArg){
1942   VdbeFrame *pFrame = (VdbeFrame*)pArg;
1943   assert( sqlite3VdbeFrameIsValid(pFrame) );
1944   pFrame->pParent = pFrame->v->pDelFrame;
1945   pFrame->v->pDelFrame = pFrame;
1946 }
1947 
1948 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
1949 /*
1950 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
1951 ** QUERY PLAN output.
1952 **
1953 ** Return SQLITE_ROW on success.  Return SQLITE_DONE if there are no
1954 ** more opcodes to be displayed.
1955 */
1956 int sqlite3VdbeNextOpcode(
1957   Vdbe *p,         /* The statement being explained */
1958   Mem *pSub,       /* Storage for keeping track of subprogram nesting */
1959   int eMode,       /* 0: normal.  1: EQP.  2:  TablesUsed */
1960   int *piPc,       /* IN/OUT: Current rowid.  Overwritten with next rowid */
1961   int *piAddr,     /* OUT: Write index into (*paOp)[] here */
1962   Op **paOp        /* OUT: Write the opcode array here */
1963 ){
1964   int nRow;                            /* Stop when row count reaches this */
1965   int nSub = 0;                        /* Number of sub-vdbes seen so far */
1966   SubProgram **apSub = 0;              /* Array of sub-vdbes */
1967   int i;                               /* Next instruction address */
1968   int rc = SQLITE_OK;                  /* Result code */
1969   Op *aOp = 0;                         /* Opcode array */
1970   int iPc;                             /* Rowid.  Copy of value in *piPc */
1971 
1972   /* When the number of output rows reaches nRow, that means the
1973   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1974   ** nRow is the sum of the number of rows in the main program, plus
1975   ** the sum of the number of rows in all trigger subprograms encountered
1976   ** so far.  The nRow value will increase as new trigger subprograms are
1977   ** encountered, but p->pc will eventually catch up to nRow.
1978   */
1979   nRow = p->nOp;
1980   if( pSub!=0 ){
1981     if( pSub->flags&MEM_Blob ){
1982       /* pSub is initiallly NULL.  It is initialized to a BLOB by
1983       ** the P4_SUBPROGRAM processing logic below */
1984       nSub = pSub->n/sizeof(Vdbe*);
1985       apSub = (SubProgram **)pSub->z;
1986     }
1987     for(i=0; i<nSub; i++){
1988       nRow += apSub[i]->nOp;
1989     }
1990   }
1991   iPc = *piPc;
1992   while(1){  /* Loop exits via break */
1993     i = iPc++;
1994     if( i>=nRow ){
1995       p->rc = SQLITE_OK;
1996       rc = SQLITE_DONE;
1997       break;
1998     }
1999     if( i<p->nOp ){
2000       /* The rowid is small enough that we are still in the
2001       ** main program. */
2002       aOp = p->aOp;
2003     }else{
2004       /* We are currently listing subprograms.  Figure out which one and
2005       ** pick up the appropriate opcode. */
2006       int j;
2007       i -= p->nOp;
2008       assert( apSub!=0 );
2009       assert( nSub>0 );
2010       for(j=0; i>=apSub[j]->nOp; j++){
2011         i -= apSub[j]->nOp;
2012         assert( i<apSub[j]->nOp || j+1<nSub );
2013       }
2014       aOp = apSub[j]->aOp;
2015     }
2016 
2017     /* When an OP_Program opcode is encounter (the only opcode that has
2018     ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2019     ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2020     ** has not already been seen.
2021     */
2022     if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
2023       int nByte = (nSub+1)*sizeof(SubProgram*);
2024       int j;
2025       for(j=0; j<nSub; j++){
2026         if( apSub[j]==aOp[i].p4.pProgram ) break;
2027       }
2028       if( j==nSub ){
2029         p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2030         if( p->rc!=SQLITE_OK ){
2031           rc = SQLITE_ERROR;
2032           break;
2033         }
2034         apSub = (SubProgram **)pSub->z;
2035         apSub[nSub++] = aOp[i].p4.pProgram;
2036         MemSetTypeFlag(pSub, MEM_Blob);
2037         pSub->n = nSub*sizeof(SubProgram*);
2038         nRow += aOp[i].p4.pProgram->nOp;
2039       }
2040     }
2041     if( eMode==0 ) break;
2042 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2043     if( eMode==2 ){
2044       Op *pOp = aOp + i;
2045       if( pOp->opcode==OP_OpenRead ) break;
2046       if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
2047       if( pOp->opcode==OP_ReopenIdx ) break;
2048     }else
2049 #endif
2050     {
2051       assert( eMode==1 );
2052       if( aOp[i].opcode==OP_Explain ) break;
2053       if( aOp[i].opcode==OP_Init && iPc>1 ) break;
2054     }
2055   }
2056   *piPc = iPc;
2057   *piAddr = i;
2058   *paOp = aOp;
2059   return rc;
2060 }
2061 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2062 
2063 
2064 /*
2065 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2066 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2067 */
2068 void sqlite3VdbeFrameDelete(VdbeFrame *p){
2069   int i;
2070   Mem *aMem = VdbeFrameMem(p);
2071   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
2072   assert( sqlite3VdbeFrameIsValid(p) );
2073   for(i=0; i<p->nChildCsr; i++){
2074     sqlite3VdbeFreeCursor(p->v, apCsr[i]);
2075   }
2076   releaseMemArray(aMem, p->nChildMem);
2077   sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
2078   sqlite3DbFree(p->v->db, p);
2079 }
2080 
2081 #ifndef SQLITE_OMIT_EXPLAIN
2082 /*
2083 ** Give a listing of the program in the virtual machine.
2084 **
2085 ** The interface is the same as sqlite3VdbeExec().  But instead of
2086 ** running the code, it invokes the callback once for each instruction.
2087 ** This feature is used to implement "EXPLAIN".
2088 **
2089 ** When p->explain==1, each instruction is listed.  When
2090 ** p->explain==2, only OP_Explain instructions are listed and these
2091 ** are shown in a different format.  p->explain==2 is used to implement
2092 ** EXPLAIN QUERY PLAN.
2093 ** 2018-04-24:  In p->explain==2 mode, the OP_Init opcodes of triggers
2094 ** are also shown, so that the boundaries between the main program and
2095 ** each trigger are clear.
2096 **
2097 ** When p->explain==1, first the main program is listed, then each of
2098 ** the trigger subprograms are listed one by one.
2099 */
2100 int sqlite3VdbeList(
2101   Vdbe *p                   /* The VDBE */
2102 ){
2103   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
2104   sqlite3 *db = p->db;                 /* The database connection */
2105   int i;                               /* Loop counter */
2106   int rc = SQLITE_OK;                  /* Return code */
2107   Mem *pMem = &p->aMem[1];             /* First Mem of result set */
2108   int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
2109   Op *aOp;                             /* Array of opcodes */
2110   Op *pOp;                             /* Current opcode */
2111 
2112   assert( p->explain );
2113   assert( p->iVdbeMagic==VDBE_MAGIC_RUN );
2114   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
2115 
2116   /* Even though this opcode does not use dynamic strings for
2117   ** the result, result columns may become dynamic if the user calls
2118   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2119   */
2120   releaseMemArray(pMem, 8);
2121   p->pResultSet = 0;
2122 
2123   if( p->rc==SQLITE_NOMEM ){
2124     /* This happens if a malloc() inside a call to sqlite3_column_text() or
2125     ** sqlite3_column_text16() failed.  */
2126     sqlite3OomFault(db);
2127     return SQLITE_ERROR;
2128   }
2129 
2130   if( bListSubprogs ){
2131     /* The first 8 memory cells are used for the result set.  So we will
2132     ** commandeer the 9th cell to use as storage for an array of pointers
2133     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
2134     ** cells.  */
2135     assert( p->nMem>9 );
2136     pSub = &p->aMem[9];
2137   }else{
2138     pSub = 0;
2139   }
2140 
2141   /* Figure out which opcode is next to display */
2142   rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
2143 
2144   if( rc==SQLITE_OK ){
2145     pOp = aOp + i;
2146     if( AtomicLoad(&db->u1.isInterrupted) ){
2147       p->rc = SQLITE_INTERRUPT;
2148       rc = SQLITE_ERROR;
2149       sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2150     }else{
2151       char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
2152       if( p->explain==2 ){
2153         sqlite3VdbeMemSetInt64(pMem, pOp->p1);
2154         sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
2155         sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
2156         sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
2157         p->nResColumn = 4;
2158       }else{
2159         sqlite3VdbeMemSetInt64(pMem+0, i);
2160         sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
2161                              -1, SQLITE_UTF8, SQLITE_STATIC);
2162         sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
2163         sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
2164         sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
2165         /* pMem+5 for p4 is done last */
2166         sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
2167 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2168         {
2169           char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
2170           sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
2171         }
2172 #else
2173         sqlite3VdbeMemSetNull(pMem+7);
2174 #endif
2175         sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
2176         p->nResColumn = 8;
2177       }
2178       p->pResultSet = pMem;
2179       if( db->mallocFailed ){
2180         p->rc = SQLITE_NOMEM;
2181         rc = SQLITE_ERROR;
2182       }else{
2183         p->rc = SQLITE_OK;
2184         rc = SQLITE_ROW;
2185       }
2186     }
2187   }
2188   return rc;
2189 }
2190 #endif /* SQLITE_OMIT_EXPLAIN */
2191 
2192 #ifdef SQLITE_DEBUG
2193 /*
2194 ** Print the SQL that was used to generate a VDBE program.
2195 */
2196 void sqlite3VdbePrintSql(Vdbe *p){
2197   const char *z = 0;
2198   if( p->zSql ){
2199     z = p->zSql;
2200   }else if( p->nOp>=1 ){
2201     const VdbeOp *pOp = &p->aOp[0];
2202     if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2203       z = pOp->p4.z;
2204       while( sqlite3Isspace(*z) ) z++;
2205     }
2206   }
2207   if( z ) printf("SQL: [%s]\n", z);
2208 }
2209 #endif
2210 
2211 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2212 /*
2213 ** Print an IOTRACE message showing SQL content.
2214 */
2215 void sqlite3VdbeIOTraceSql(Vdbe *p){
2216   int nOp = p->nOp;
2217   VdbeOp *pOp;
2218   if( sqlite3IoTrace==0 ) return;
2219   if( nOp<1 ) return;
2220   pOp = &p->aOp[0];
2221   if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2222     int i, j;
2223     char z[1000];
2224     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2225     for(i=0; sqlite3Isspace(z[i]); i++){}
2226     for(j=0; z[i]; i++){
2227       if( sqlite3Isspace(z[i]) ){
2228         if( z[i-1]!=' ' ){
2229           z[j++] = ' ';
2230         }
2231       }else{
2232         z[j++] = z[i];
2233       }
2234     }
2235     z[j] = 0;
2236     sqlite3IoTrace("SQL %s\n", z);
2237   }
2238 }
2239 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2240 
2241 /* An instance of this object describes bulk memory available for use
2242 ** by subcomponents of a prepared statement.  Space is allocated out
2243 ** of a ReusableSpace object by the allocSpace() routine below.
2244 */
2245 struct ReusableSpace {
2246   u8 *pSpace;            /* Available memory */
2247   sqlite3_int64 nFree;   /* Bytes of available memory */
2248   sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2249 };
2250 
2251 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2252 ** from the ReusableSpace object.  Return a pointer to the allocated
2253 ** memory on success.  If insufficient memory is available in the
2254 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2255 ** value by the amount needed and return NULL.
2256 **
2257 ** If pBuf is not initially NULL, that means that the memory has already
2258 ** been allocated by a prior call to this routine, so just return a copy
2259 ** of pBuf and leave ReusableSpace unchanged.
2260 **
2261 ** This allocator is employed to repurpose unused slots at the end of the
2262 ** opcode array of prepared state for other memory needs of the prepared
2263 ** statement.
2264 */
2265 static void *allocSpace(
2266   struct ReusableSpace *p,  /* Bulk memory available for allocation */
2267   void *pBuf,               /* Pointer to a prior allocation */
2268   sqlite3_int64 nByte       /* Bytes of memory needed */
2269 ){
2270   assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2271   if( pBuf==0 ){
2272     nByte = ROUND8(nByte);
2273     if( nByte <= p->nFree ){
2274       p->nFree -= nByte;
2275       pBuf = &p->pSpace[p->nFree];
2276     }else{
2277       p->nNeeded += nByte;
2278     }
2279   }
2280   assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2281   return pBuf;
2282 }
2283 
2284 /*
2285 ** Rewind the VDBE back to the beginning in preparation for
2286 ** running it.
2287 */
2288 void sqlite3VdbeRewind(Vdbe *p){
2289 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2290   int i;
2291 #endif
2292   assert( p!=0 );
2293   assert( p->iVdbeMagic==VDBE_MAGIC_INIT || p->iVdbeMagic==VDBE_MAGIC_RESET );
2294 
2295   /* There should be at least one opcode.
2296   */
2297   assert( p->nOp>0 );
2298 
2299   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
2300   p->iVdbeMagic = VDBE_MAGIC_RUN;
2301 
2302 #ifdef SQLITE_DEBUG
2303   for(i=0; i<p->nMem; i++){
2304     assert( p->aMem[i].db==p->db );
2305   }
2306 #endif
2307   p->pc = -1;
2308   p->rc = SQLITE_OK;
2309   p->errorAction = OE_Abort;
2310   p->nChange = 0;
2311   p->cacheCtr = 1;
2312   p->minWriteFileFormat = 255;
2313   p->iStatement = 0;
2314   p->nFkConstraint = 0;
2315 #ifdef VDBE_PROFILE
2316   for(i=0; i<p->nOp; i++){
2317     p->aOp[i].cnt = 0;
2318     p->aOp[i].cycles = 0;
2319   }
2320 #endif
2321 }
2322 
2323 /*
2324 ** Prepare a virtual machine for execution for the first time after
2325 ** creating the virtual machine.  This involves things such
2326 ** as allocating registers and initializing the program counter.
2327 ** After the VDBE has be prepped, it can be executed by one or more
2328 ** calls to sqlite3VdbeExec().
2329 **
2330 ** This function may be called exactly once on each virtual machine.
2331 ** After this routine is called the VM has been "packaged" and is ready
2332 ** to run.  After this routine is called, further calls to
2333 ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
2334 ** the Vdbe from the Parse object that helped generate it so that the
2335 ** the Vdbe becomes an independent entity and the Parse object can be
2336 ** destroyed.
2337 **
2338 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2339 ** to its initial state after it has been run.
2340 */
2341 void sqlite3VdbeMakeReady(
2342   Vdbe *p,                       /* The VDBE */
2343   Parse *pParse                  /* Parsing context */
2344 ){
2345   sqlite3 *db;                   /* The database connection */
2346   int nVar;                      /* Number of parameters */
2347   int nMem;                      /* Number of VM memory registers */
2348   int nCursor;                   /* Number of cursors required */
2349   int nArg;                      /* Number of arguments in subprograms */
2350   int n;                         /* Loop counter */
2351   struct ReusableSpace x;        /* Reusable bulk memory */
2352 
2353   assert( p!=0 );
2354   assert( p->nOp>0 );
2355   assert( pParse!=0 );
2356   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
2357   assert( pParse==p->pParse );
2358   p->pVList = pParse->pVList;
2359   pParse->pVList =  0;
2360   db = p->db;
2361   assert( db->mallocFailed==0 );
2362   nVar = pParse->nVar;
2363   nMem = pParse->nMem;
2364   nCursor = pParse->nTab;
2365   nArg = pParse->nMaxArg;
2366 
2367   /* Each cursor uses a memory cell.  The first cursor (cursor 0) can
2368   ** use aMem[0] which is not otherwise used by the VDBE program.  Allocate
2369   ** space at the end of aMem[] for cursors 1 and greater.
2370   ** See also: allocateCursor().
2371   */
2372   nMem += nCursor;
2373   if( nCursor==0 && nMem>0 ) nMem++;  /* Space for aMem[0] even if not used */
2374 
2375   /* Figure out how much reusable memory is available at the end of the
2376   ** opcode array.  This extra memory will be reallocated for other elements
2377   ** of the prepared statement.
2378   */
2379   n = ROUND8(sizeof(Op)*p->nOp);              /* Bytes of opcode memory used */
2380   x.pSpace = &((u8*)p->aOp)[n];               /* Unused opcode memory */
2381   assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2382   x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */
2383   assert( x.nFree>=0 );
2384   assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2385 
2386   resolveP2Values(p, &nArg);
2387   p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2388   if( pParse->explain ){
2389     static const char * const azColName[] = {
2390        "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2391        "id", "parent", "notused", "detail"
2392     };
2393     int iFirst, mx, i;
2394     if( nMem<10 ) nMem = 10;
2395     p->explain = pParse->explain;
2396     if( pParse->explain==2 ){
2397       sqlite3VdbeSetNumCols(p, 4);
2398       iFirst = 8;
2399       mx = 12;
2400     }else{
2401       sqlite3VdbeSetNumCols(p, 8);
2402       iFirst = 0;
2403       mx = 8;
2404     }
2405     for(i=iFirst; i<mx; i++){
2406       sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
2407                             azColName[i], SQLITE_STATIC);
2408     }
2409   }
2410   p->expired = 0;
2411 
2412   /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2413   ** passes.  On the first pass, we try to reuse unused memory at the
2414   ** end of the opcode array.  If we are unable to satisfy all memory
2415   ** requirements by reusing the opcode array tail, then the second
2416   ** pass will fill in the remainder using a fresh memory allocation.
2417   **
2418   ** This two-pass approach that reuses as much memory as possible from
2419   ** the leftover memory at the end of the opcode array.  This can significantly
2420   ** reduce the amount of memory held by a prepared statement.
2421   */
2422   x.nNeeded = 0;
2423   p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2424   p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2425   p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2426   p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2427 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2428   p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64));
2429 #endif
2430   if( x.nNeeded ){
2431     x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2432     x.nFree = x.nNeeded;
2433     if( !db->mallocFailed ){
2434       p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2435       p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2436       p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2437       p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2438 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2439       p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2440 #endif
2441     }
2442   }
2443 
2444   if( db->mallocFailed ){
2445     p->nVar = 0;
2446     p->nCursor = 0;
2447     p->nMem = 0;
2448   }else{
2449     p->nCursor = nCursor;
2450     p->nVar = (ynVar)nVar;
2451     initMemArray(p->aVar, nVar, db, MEM_Null);
2452     p->nMem = nMem;
2453     initMemArray(p->aMem, nMem, db, MEM_Undefined);
2454     memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2455 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2456     memset(p->anExec, 0, p->nOp*sizeof(i64));
2457 #endif
2458   }
2459   sqlite3VdbeRewind(p);
2460 }
2461 
2462 /*
2463 ** Close a VDBE cursor and release all the resources that cursor
2464 ** happens to hold.
2465 */
2466 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2467   if( pCx==0 ){
2468     return;
2469   }
2470   assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2471   assert( pCx->pBtx==0 || pCx->isEphemeral );
2472   switch( pCx->eCurType ){
2473     case CURTYPE_SORTER: {
2474       sqlite3VdbeSorterClose(p->db, pCx);
2475       break;
2476     }
2477     case CURTYPE_BTREE: {
2478       assert( pCx->uc.pCursor!=0 );
2479       sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2480       break;
2481     }
2482 #ifndef SQLITE_OMIT_VIRTUALTABLE
2483     case CURTYPE_VTAB: {
2484       sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2485       const sqlite3_module *pModule = pVCur->pVtab->pModule;
2486       assert( pVCur->pVtab->nRef>0 );
2487       pVCur->pVtab->nRef--;
2488       pModule->xClose(pVCur);
2489       break;
2490     }
2491 #endif
2492   }
2493 }
2494 
2495 /*
2496 ** Close all cursors in the current frame.
2497 */
2498 static void closeCursorsInFrame(Vdbe *p){
2499   if( p->apCsr ){
2500     int i;
2501     for(i=0; i<p->nCursor; i++){
2502       VdbeCursor *pC = p->apCsr[i];
2503       if( pC ){
2504         sqlite3VdbeFreeCursor(p, pC);
2505         p->apCsr[i] = 0;
2506       }
2507     }
2508   }
2509 }
2510 
2511 /*
2512 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2513 ** is used, for example, when a trigger sub-program is halted to restore
2514 ** control to the main program.
2515 */
2516 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2517   Vdbe *v = pFrame->v;
2518   closeCursorsInFrame(v);
2519 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2520   v->anExec = pFrame->anExec;
2521 #endif
2522   v->aOp = pFrame->aOp;
2523   v->nOp = pFrame->nOp;
2524   v->aMem = pFrame->aMem;
2525   v->nMem = pFrame->nMem;
2526   v->apCsr = pFrame->apCsr;
2527   v->nCursor = pFrame->nCursor;
2528   v->db->lastRowid = pFrame->lastRowid;
2529   v->nChange = pFrame->nChange;
2530   v->db->nChange = pFrame->nDbChange;
2531   sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2532   v->pAuxData = pFrame->pAuxData;
2533   pFrame->pAuxData = 0;
2534   return pFrame->pc;
2535 }
2536 
2537 /*
2538 ** Close all cursors.
2539 **
2540 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2541 ** cell array. This is necessary as the memory cell array may contain
2542 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2543 ** open cursors.
2544 */
2545 static void closeAllCursors(Vdbe *p){
2546   if( p->pFrame ){
2547     VdbeFrame *pFrame;
2548     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2549     sqlite3VdbeFrameRestore(pFrame);
2550     p->pFrame = 0;
2551     p->nFrame = 0;
2552   }
2553   assert( p->nFrame==0 );
2554   closeCursorsInFrame(p);
2555   if( p->aMem ){
2556     releaseMemArray(p->aMem, p->nMem);
2557   }
2558   while( p->pDelFrame ){
2559     VdbeFrame *pDel = p->pDelFrame;
2560     p->pDelFrame = pDel->pParent;
2561     sqlite3VdbeFrameDelete(pDel);
2562   }
2563 
2564   /* Delete any auxdata allocations made by the VM */
2565   if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2566   assert( p->pAuxData==0 );
2567 }
2568 
2569 /*
2570 ** Set the number of result columns that will be returned by this SQL
2571 ** statement. This is now set at compile time, rather than during
2572 ** execution of the vdbe program so that sqlite3_column_count() can
2573 ** be called on an SQL statement before sqlite3_step().
2574 */
2575 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2576   int n;
2577   sqlite3 *db = p->db;
2578 
2579   if( p->nResColumn ){
2580     releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2581     sqlite3DbFree(db, p->aColName);
2582   }
2583   n = nResColumn*COLNAME_N;
2584   p->nResColumn = (u16)nResColumn;
2585   p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2586   if( p->aColName==0 ) return;
2587   initMemArray(p->aColName, n, db, MEM_Null);
2588 }
2589 
2590 /*
2591 ** Set the name of the idx'th column to be returned by the SQL statement.
2592 ** zName must be a pointer to a nul terminated string.
2593 **
2594 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2595 **
2596 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2597 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2598 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2599 */
2600 int sqlite3VdbeSetColName(
2601   Vdbe *p,                         /* Vdbe being configured */
2602   int idx,                         /* Index of column zName applies to */
2603   int var,                         /* One of the COLNAME_* constants */
2604   const char *zName,               /* Pointer to buffer containing name */
2605   void (*xDel)(void*)              /* Memory management strategy for zName */
2606 ){
2607   int rc;
2608   Mem *pColName;
2609   assert( idx<p->nResColumn );
2610   assert( var<COLNAME_N );
2611   if( p->db->mallocFailed ){
2612     assert( !zName || xDel!=SQLITE_DYNAMIC );
2613     return SQLITE_NOMEM_BKPT;
2614   }
2615   assert( p->aColName!=0 );
2616   pColName = &(p->aColName[idx+var*p->nResColumn]);
2617   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2618   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2619   return rc;
2620 }
2621 
2622 /*
2623 ** A read or write transaction may or may not be active on database handle
2624 ** db. If a transaction is active, commit it. If there is a
2625 ** write-transaction spanning more than one database file, this routine
2626 ** takes care of the super-journal trickery.
2627 */
2628 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2629   int i;
2630   int nTrans = 0;  /* Number of databases with an active write-transaction
2631                    ** that are candidates for a two-phase commit using a
2632                    ** super-journal */
2633   int rc = SQLITE_OK;
2634   int needXcommit = 0;
2635 
2636 #ifdef SQLITE_OMIT_VIRTUALTABLE
2637   /* With this option, sqlite3VtabSync() is defined to be simply
2638   ** SQLITE_OK so p is not used.
2639   */
2640   UNUSED_PARAMETER(p);
2641 #endif
2642 
2643   /* Before doing anything else, call the xSync() callback for any
2644   ** virtual module tables written in this transaction. This has to
2645   ** be done before determining whether a super-journal file is
2646   ** required, as an xSync() callback may add an attached database
2647   ** to the transaction.
2648   */
2649   rc = sqlite3VtabSync(db, p);
2650 
2651   /* This loop determines (a) if the commit hook should be invoked and
2652   ** (b) how many database files have open write transactions, not
2653   ** including the temp database. (b) is important because if more than
2654   ** one database file has an open write transaction, a super-journal
2655   ** file is required for an atomic commit.
2656   */
2657   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2658     Btree *pBt = db->aDb[i].pBt;
2659     if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2660       /* Whether or not a database might need a super-journal depends upon
2661       ** its journal mode (among other things).  This matrix determines which
2662       ** journal modes use a super-journal and which do not */
2663       static const u8 aMJNeeded[] = {
2664         /* DELETE   */  1,
2665         /* PERSIST   */ 1,
2666         /* OFF       */ 0,
2667         /* TRUNCATE  */ 1,
2668         /* MEMORY    */ 0,
2669         /* WAL       */ 0
2670       };
2671       Pager *pPager;   /* Pager associated with pBt */
2672       needXcommit = 1;
2673       sqlite3BtreeEnter(pBt);
2674       pPager = sqlite3BtreePager(pBt);
2675       if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2676        && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2677        && sqlite3PagerIsMemdb(pPager)==0
2678       ){
2679         assert( i!=1 );
2680         nTrans++;
2681       }
2682       rc = sqlite3PagerExclusiveLock(pPager);
2683       sqlite3BtreeLeave(pBt);
2684     }
2685   }
2686   if( rc!=SQLITE_OK ){
2687     return rc;
2688   }
2689 
2690   /* If there are any write-transactions at all, invoke the commit hook */
2691   if( needXcommit && db->xCommitCallback ){
2692     rc = db->xCommitCallback(db->pCommitArg);
2693     if( rc ){
2694       return SQLITE_CONSTRAINT_COMMITHOOK;
2695     }
2696   }
2697 
2698   /* The simple case - no more than one database file (not counting the
2699   ** TEMP database) has a transaction active.   There is no need for the
2700   ** super-journal.
2701   **
2702   ** If the return value of sqlite3BtreeGetFilename() is a zero length
2703   ** string, it means the main database is :memory: or a temp file.  In
2704   ** that case we do not support atomic multi-file commits, so use the
2705   ** simple case then too.
2706   */
2707   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2708    || nTrans<=1
2709   ){
2710     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2711       Btree *pBt = db->aDb[i].pBt;
2712       if( pBt ){
2713         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2714       }
2715     }
2716 
2717     /* Do the commit only if all databases successfully complete phase 1.
2718     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2719     ** IO error while deleting or truncating a journal file. It is unlikely,
2720     ** but could happen. In this case abandon processing and return the error.
2721     */
2722     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2723       Btree *pBt = db->aDb[i].pBt;
2724       if( pBt ){
2725         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2726       }
2727     }
2728     if( rc==SQLITE_OK ){
2729       sqlite3VtabCommit(db);
2730     }
2731   }
2732 
2733   /* The complex case - There is a multi-file write-transaction active.
2734   ** This requires a super-journal file to ensure the transaction is
2735   ** committed atomically.
2736   */
2737 #ifndef SQLITE_OMIT_DISKIO
2738   else{
2739     sqlite3_vfs *pVfs = db->pVfs;
2740     char *zSuper = 0;   /* File-name for the super-journal */
2741     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2742     sqlite3_file *pSuperJrnl = 0;
2743     i64 offset = 0;
2744     int res;
2745     int retryCount = 0;
2746     int nMainFile;
2747 
2748     /* Select a super-journal file name */
2749     nMainFile = sqlite3Strlen30(zMainFile);
2750     zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
2751     if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
2752     zSuper += 4;
2753     do {
2754       u32 iRandom;
2755       if( retryCount ){
2756         if( retryCount>100 ){
2757           sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
2758           sqlite3OsDelete(pVfs, zSuper, 0);
2759           break;
2760         }else if( retryCount==1 ){
2761           sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
2762         }
2763       }
2764       retryCount++;
2765       sqlite3_randomness(sizeof(iRandom), &iRandom);
2766       sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
2767                                (iRandom>>8)&0xffffff, iRandom&0xff);
2768       /* The antipenultimate character of the super-journal name must
2769       ** be "9" to avoid name collisions when using 8+3 filenames. */
2770       assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
2771       sqlite3FileSuffix3(zMainFile, zSuper);
2772       rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
2773     }while( rc==SQLITE_OK && res );
2774     if( rc==SQLITE_OK ){
2775       /* Open the super-journal. */
2776       rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl,
2777           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2778           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
2779       );
2780     }
2781     if( rc!=SQLITE_OK ){
2782       sqlite3DbFree(db, zSuper-4);
2783       return rc;
2784     }
2785 
2786     /* Write the name of each database file in the transaction into the new
2787     ** super-journal file. If an error occurs at this point close
2788     ** and delete the super-journal file. All the individual journal files
2789     ** still have 'null' as the super-journal pointer, so they will roll
2790     ** back independently if a failure occurs.
2791     */
2792     for(i=0; i<db->nDb; i++){
2793       Btree *pBt = db->aDb[i].pBt;
2794       if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2795         char const *zFile = sqlite3BtreeGetJournalname(pBt);
2796         if( zFile==0 ){
2797           continue;  /* Ignore TEMP and :memory: databases */
2798         }
2799         assert( zFile[0]!=0 );
2800         rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
2801         offset += sqlite3Strlen30(zFile)+1;
2802         if( rc!=SQLITE_OK ){
2803           sqlite3OsCloseFree(pSuperJrnl);
2804           sqlite3OsDelete(pVfs, zSuper, 0);
2805           sqlite3DbFree(db, zSuper-4);
2806           return rc;
2807         }
2808       }
2809     }
2810 
2811     /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
2812     ** flag is set this is not required.
2813     */
2814     if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
2815      && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
2816     ){
2817       sqlite3OsCloseFree(pSuperJrnl);
2818       sqlite3OsDelete(pVfs, zSuper, 0);
2819       sqlite3DbFree(db, zSuper-4);
2820       return rc;
2821     }
2822 
2823     /* Sync all the db files involved in the transaction. The same call
2824     ** sets the super-journal pointer in each individual journal. If
2825     ** an error occurs here, do not delete the super-journal file.
2826     **
2827     ** If the error occurs during the first call to
2828     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2829     ** super-journal file will be orphaned. But we cannot delete it,
2830     ** in case the super-journal file name was written into the journal
2831     ** file before the failure occurred.
2832     */
2833     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2834       Btree *pBt = db->aDb[i].pBt;
2835       if( pBt ){
2836         rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
2837       }
2838     }
2839     sqlite3OsCloseFree(pSuperJrnl);
2840     assert( rc!=SQLITE_BUSY );
2841     if( rc!=SQLITE_OK ){
2842       sqlite3DbFree(db, zSuper-4);
2843       return rc;
2844     }
2845 
2846     /* Delete the super-journal file. This commits the transaction. After
2847     ** doing this the directory is synced again before any individual
2848     ** transaction files are deleted.
2849     */
2850     rc = sqlite3OsDelete(pVfs, zSuper, 1);
2851     sqlite3DbFree(db, zSuper-4);
2852     zSuper = 0;
2853     if( rc ){
2854       return rc;
2855     }
2856 
2857     /* All files and directories have already been synced, so the following
2858     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2859     ** deleting or truncating journals. If something goes wrong while
2860     ** this is happening we don't really care. The integrity of the
2861     ** transaction is already guaranteed, but some stray 'cold' journals
2862     ** may be lying around. Returning an error code won't help matters.
2863     */
2864     disable_simulated_io_errors();
2865     sqlite3BeginBenignMalloc();
2866     for(i=0; i<db->nDb; i++){
2867       Btree *pBt = db->aDb[i].pBt;
2868       if( pBt ){
2869         sqlite3BtreeCommitPhaseTwo(pBt, 1);
2870       }
2871     }
2872     sqlite3EndBenignMalloc();
2873     enable_simulated_io_errors();
2874 
2875     sqlite3VtabCommit(db);
2876   }
2877 #endif
2878 
2879   return rc;
2880 }
2881 
2882 /*
2883 ** This routine checks that the sqlite3.nVdbeActive count variable
2884 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2885 ** currently active. An assertion fails if the two counts do not match.
2886 ** This is an internal self-check only - it is not an essential processing
2887 ** step.
2888 **
2889 ** This is a no-op if NDEBUG is defined.
2890 */
2891 #ifndef NDEBUG
2892 static void checkActiveVdbeCnt(sqlite3 *db){
2893   Vdbe *p;
2894   int cnt = 0;
2895   int nWrite = 0;
2896   int nRead = 0;
2897   p = db->pVdbe;
2898   while( p ){
2899     if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2900       cnt++;
2901       if( p->readOnly==0 ) nWrite++;
2902       if( p->bIsReader ) nRead++;
2903     }
2904     p = p->pNext;
2905   }
2906   assert( cnt==db->nVdbeActive );
2907   assert( nWrite==db->nVdbeWrite );
2908   assert( nRead==db->nVdbeRead );
2909 }
2910 #else
2911 #define checkActiveVdbeCnt(x)
2912 #endif
2913 
2914 /*
2915 ** If the Vdbe passed as the first argument opened a statement-transaction,
2916 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2917 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2918 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2919 ** statement transaction is committed.
2920 **
2921 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2922 ** Otherwise SQLITE_OK.
2923 */
2924 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2925   sqlite3 *const db = p->db;
2926   int rc = SQLITE_OK;
2927   int i;
2928   const int iSavepoint = p->iStatement-1;
2929 
2930   assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2931   assert( db->nStatement>0 );
2932   assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2933 
2934   for(i=0; i<db->nDb; i++){
2935     int rc2 = SQLITE_OK;
2936     Btree *pBt = db->aDb[i].pBt;
2937     if( pBt ){
2938       if( eOp==SAVEPOINT_ROLLBACK ){
2939         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2940       }
2941       if( rc2==SQLITE_OK ){
2942         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2943       }
2944       if( rc==SQLITE_OK ){
2945         rc = rc2;
2946       }
2947     }
2948   }
2949   db->nStatement--;
2950   p->iStatement = 0;
2951 
2952   if( rc==SQLITE_OK ){
2953     if( eOp==SAVEPOINT_ROLLBACK ){
2954       rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2955     }
2956     if( rc==SQLITE_OK ){
2957       rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2958     }
2959   }
2960 
2961   /* If the statement transaction is being rolled back, also restore the
2962   ** database handles deferred constraint counter to the value it had when
2963   ** the statement transaction was opened.  */
2964   if( eOp==SAVEPOINT_ROLLBACK ){
2965     db->nDeferredCons = p->nStmtDefCons;
2966     db->nDeferredImmCons = p->nStmtDefImmCons;
2967   }
2968   return rc;
2969 }
2970 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2971   if( p->db->nStatement && p->iStatement ){
2972     return vdbeCloseStatement(p, eOp);
2973   }
2974   return SQLITE_OK;
2975 }
2976 
2977 
2978 /*
2979 ** This function is called when a transaction opened by the database
2980 ** handle associated with the VM passed as an argument is about to be
2981 ** committed. If there are outstanding deferred foreign key constraint
2982 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2983 **
2984 ** If there are outstanding FK violations and this function returns
2985 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2986 ** and write an error message to it. Then return SQLITE_ERROR.
2987 */
2988 #ifndef SQLITE_OMIT_FOREIGN_KEY
2989 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2990   sqlite3 *db = p->db;
2991   if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2992    || (!deferred && p->nFkConstraint>0)
2993   ){
2994     p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2995     p->errorAction = OE_Abort;
2996     sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
2997     return SQLITE_ERROR;
2998   }
2999   return SQLITE_OK;
3000 }
3001 #endif
3002 
3003 /*
3004 ** This routine is called the when a VDBE tries to halt.  If the VDBE
3005 ** has made changes and is in autocommit mode, then commit those
3006 ** changes.  If a rollback is needed, then do the rollback.
3007 **
3008 ** This routine is the only way to move the sqlite3eOpenState of a VM from
3009 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT.  It is harmless to
3010 ** call this on a VM that is in the SQLITE_STATE_HALT state.
3011 **
3012 ** Return an error code.  If the commit could not complete because of
3013 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
3014 ** means the close did not happen and needs to be repeated.
3015 */
3016 int sqlite3VdbeHalt(Vdbe *p){
3017   int rc;                         /* Used to store transient return codes */
3018   sqlite3 *db = p->db;
3019 
3020   /* This function contains the logic that determines if a statement or
3021   ** transaction will be committed or rolled back as a result of the
3022   ** execution of this virtual machine.
3023   **
3024   ** If any of the following errors occur:
3025   **
3026   **     SQLITE_NOMEM
3027   **     SQLITE_IOERR
3028   **     SQLITE_FULL
3029   **     SQLITE_INTERRUPT
3030   **
3031   ** Then the internal cache might have been left in an inconsistent
3032   ** state.  We need to rollback the statement transaction, if there is
3033   ** one, or the complete transaction if there is no statement transaction.
3034   */
3035 
3036   if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){
3037     return SQLITE_OK;
3038   }
3039   if( db->mallocFailed ){
3040     p->rc = SQLITE_NOMEM_BKPT;
3041   }
3042   closeAllCursors(p);
3043   checkActiveVdbeCnt(db);
3044 
3045   /* No commit or rollback needed if the program never started or if the
3046   ** SQL statement does not read or write a database file.  */
3047   if( p->pc>=0 && p->bIsReader ){
3048     int mrc;   /* Primary error code from p->rc */
3049     int eStatementOp = 0;
3050     int isSpecialError;            /* Set to true if a 'special' error */
3051 
3052     /* Lock all btrees used by the statement */
3053     sqlite3VdbeEnter(p);
3054 
3055     /* Check for one of the special errors */
3056     mrc = p->rc & 0xff;
3057     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
3058                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
3059     if( isSpecialError ){
3060       /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3061       ** no rollback is necessary. Otherwise, at least a savepoint
3062       ** transaction must be rolled back to restore the database to a
3063       ** consistent state.
3064       **
3065       ** Even if the statement is read-only, it is important to perform
3066       ** a statement or transaction rollback operation. If the error
3067       ** occurred while writing to the journal, sub-journal or database
3068       ** file as part of an effort to free up cache space (see function
3069       ** pagerStress() in pager.c), the rollback is required to restore
3070       ** the pager to a consistent state.
3071       */
3072       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3073         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3074           eStatementOp = SAVEPOINT_ROLLBACK;
3075         }else{
3076           /* We are forced to roll back the active transaction. Before doing
3077           ** so, abort any other statements this handle currently has active.
3078           */
3079           sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3080           sqlite3CloseSavepoints(db);
3081           db->autoCommit = 1;
3082           p->nChange = 0;
3083         }
3084       }
3085     }
3086 
3087     /* Check for immediate foreign key violations. */
3088     if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3089       sqlite3VdbeCheckFk(p, 0);
3090     }
3091 
3092     /* If the auto-commit flag is set and this is the only active writer
3093     ** VM, then we do either a commit or rollback of the current transaction.
3094     **
3095     ** Note: This block also runs if one of the special errors handled
3096     ** above has occurred.
3097     */
3098     if( !sqlite3VtabInSync(db)
3099      && db->autoCommit
3100      && db->nVdbeWrite==(p->readOnly==0)
3101     ){
3102       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3103         rc = sqlite3VdbeCheckFk(p, 1);
3104         if( rc!=SQLITE_OK ){
3105           if( NEVER(p->readOnly) ){
3106             sqlite3VdbeLeave(p);
3107             return SQLITE_ERROR;
3108           }
3109           rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3110         }else{
3111           /* The auto-commit flag is true, the vdbe program was successful
3112           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3113           ** key constraints to hold up the transaction. This means a commit
3114           ** is required. */
3115           rc = vdbeCommit(db, p);
3116         }
3117         if( rc==SQLITE_BUSY && p->readOnly ){
3118           sqlite3VdbeLeave(p);
3119           return SQLITE_BUSY;
3120         }else if( rc!=SQLITE_OK ){
3121           p->rc = rc;
3122           sqlite3RollbackAll(db, SQLITE_OK);
3123           p->nChange = 0;
3124         }else{
3125           db->nDeferredCons = 0;
3126           db->nDeferredImmCons = 0;
3127           db->flags &= ~(u64)SQLITE_DeferFKs;
3128           sqlite3CommitInternalChanges(db);
3129         }
3130       }else{
3131         sqlite3RollbackAll(db, SQLITE_OK);
3132         p->nChange = 0;
3133       }
3134       db->nStatement = 0;
3135     }else if( eStatementOp==0 ){
3136       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3137         eStatementOp = SAVEPOINT_RELEASE;
3138       }else if( p->errorAction==OE_Abort ){
3139         eStatementOp = SAVEPOINT_ROLLBACK;
3140       }else{
3141         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3142         sqlite3CloseSavepoints(db);
3143         db->autoCommit = 1;
3144         p->nChange = 0;
3145       }
3146     }
3147 
3148     /* If eStatementOp is non-zero, then a statement transaction needs to
3149     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3150     ** do so. If this operation returns an error, and the current statement
3151     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3152     ** current statement error code.
3153     */
3154     if( eStatementOp ){
3155       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3156       if( rc ){
3157         if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3158           p->rc = rc;
3159           sqlite3DbFree(db, p->zErrMsg);
3160           p->zErrMsg = 0;
3161         }
3162         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3163         sqlite3CloseSavepoints(db);
3164         db->autoCommit = 1;
3165         p->nChange = 0;
3166       }
3167     }
3168 
3169     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3170     ** has been rolled back, update the database connection change-counter.
3171     */
3172     if( p->changeCntOn ){
3173       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3174         sqlite3VdbeSetChanges(db, p->nChange);
3175       }else{
3176         sqlite3VdbeSetChanges(db, 0);
3177       }
3178       p->nChange = 0;
3179     }
3180 
3181     /* Release the locks */
3182     sqlite3VdbeLeave(p);
3183   }
3184 
3185   /* We have successfully halted and closed the VM.  Record this fact. */
3186   if( p->pc>=0 ){
3187     db->nVdbeActive--;
3188     if( !p->readOnly ) db->nVdbeWrite--;
3189     if( p->bIsReader ) db->nVdbeRead--;
3190     assert( db->nVdbeActive>=db->nVdbeRead );
3191     assert( db->nVdbeRead>=db->nVdbeWrite );
3192     assert( db->nVdbeWrite>=0 );
3193   }
3194   p->iVdbeMagic = VDBE_MAGIC_HALT;
3195   checkActiveVdbeCnt(db);
3196   if( db->mallocFailed ){
3197     p->rc = SQLITE_NOMEM_BKPT;
3198   }
3199 
3200   /* If the auto-commit flag is set to true, then any locks that were held
3201   ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3202   ** to invoke any required unlock-notify callbacks.
3203   */
3204   if( db->autoCommit ){
3205     sqlite3ConnectionUnlocked(db);
3206   }
3207 
3208   assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3209   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3210 }
3211 
3212 
3213 /*
3214 ** Each VDBE holds the result of the most recent sqlite3_step() call
3215 ** in p->rc.  This routine sets that result back to SQLITE_OK.
3216 */
3217 void sqlite3VdbeResetStepResult(Vdbe *p){
3218   p->rc = SQLITE_OK;
3219 }
3220 
3221 /*
3222 ** Copy the error code and error message belonging to the VDBE passed
3223 ** as the first argument to its database handle (so that they will be
3224 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3225 **
3226 ** This function does not clear the VDBE error code or message, just
3227 ** copies them to the database handle.
3228 */
3229 int sqlite3VdbeTransferError(Vdbe *p){
3230   sqlite3 *db = p->db;
3231   int rc = p->rc;
3232   if( p->zErrMsg ){
3233     db->bBenignMalloc++;
3234     sqlite3BeginBenignMalloc();
3235     if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3236     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3237     sqlite3EndBenignMalloc();
3238     db->bBenignMalloc--;
3239   }else if( db->pErr ){
3240     sqlite3ValueSetNull(db->pErr);
3241   }
3242   db->errCode = rc;
3243   return rc;
3244 }
3245 
3246 #ifdef SQLITE_ENABLE_SQLLOG
3247 /*
3248 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3249 ** invoke it.
3250 */
3251 static void vdbeInvokeSqllog(Vdbe *v){
3252   if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3253     char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3254     assert( v->db->init.busy==0 );
3255     if( zExpanded ){
3256       sqlite3GlobalConfig.xSqllog(
3257           sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3258       );
3259       sqlite3DbFree(v->db, zExpanded);
3260     }
3261   }
3262 }
3263 #else
3264 # define vdbeInvokeSqllog(x)
3265 #endif
3266 
3267 /*
3268 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3269 ** Write any error messages into *pzErrMsg.  Return the result code.
3270 **
3271 ** After this routine is run, the VDBE should be ready to be executed
3272 ** again.
3273 **
3274 ** To look at it another way, this routine resets the state of the
3275 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
3276 ** VDBE_MAGIC_INIT.
3277 */
3278 int sqlite3VdbeReset(Vdbe *p){
3279 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3280   int i;
3281 #endif
3282 
3283   sqlite3 *db;
3284   db = p->db;
3285 
3286   /* If the VM did not run to completion or if it encountered an
3287   ** error, then it might not have been halted properly.  So halt
3288   ** it now.
3289   */
3290   sqlite3VdbeHalt(p);
3291 
3292   /* If the VDBE has been run even partially, then transfer the error code
3293   ** and error message from the VDBE into the main database structure.  But
3294   ** if the VDBE has just been set to run but has not actually executed any
3295   ** instructions yet, leave the main database error information unchanged.
3296   */
3297   if( p->pc>=0 ){
3298     vdbeInvokeSqllog(p);
3299     if( db->pErr || p->zErrMsg ){
3300       sqlite3VdbeTransferError(p);
3301     }else{
3302       db->errCode = p->rc;
3303     }
3304     if( p->runOnlyOnce ) p->expired = 1;
3305   }else if( p->rc && p->expired ){
3306     /* The expired flag was set on the VDBE before the first call
3307     ** to sqlite3_step(). For consistency (since sqlite3_step() was
3308     ** called), set the database error in this case as well.
3309     */
3310     sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
3311   }
3312 
3313   /* Reset register contents and reclaim error message memory.
3314   */
3315 #ifdef SQLITE_DEBUG
3316   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3317   ** Vdbe.aMem[] arrays have already been cleaned up.  */
3318   if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3319   if( p->aMem ){
3320     for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3321   }
3322 #endif
3323   if( p->zErrMsg ){
3324     sqlite3DbFree(db, p->zErrMsg);
3325     p->zErrMsg = 0;
3326   }
3327   p->pResultSet = 0;
3328 #ifdef SQLITE_DEBUG
3329   p->nWrite = 0;
3330 #endif
3331 
3332   /* Save profiling information from this VDBE run.
3333   */
3334 #ifdef VDBE_PROFILE
3335   {
3336     FILE *out = fopen("vdbe_profile.out", "a");
3337     if( out ){
3338       fprintf(out, "---- ");
3339       for(i=0; i<p->nOp; i++){
3340         fprintf(out, "%02x", p->aOp[i].opcode);
3341       }
3342       fprintf(out, "\n");
3343       if( p->zSql ){
3344         char c, pc = 0;
3345         fprintf(out, "-- ");
3346         for(i=0; (c = p->zSql[i])!=0; i++){
3347           if( pc=='\n' ) fprintf(out, "-- ");
3348           putc(c, out);
3349           pc = c;
3350         }
3351         if( pc!='\n' ) fprintf(out, "\n");
3352       }
3353       for(i=0; i<p->nOp; i++){
3354         char zHdr[100];
3355         sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3356            p->aOp[i].cnt,
3357            p->aOp[i].cycles,
3358            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
3359         );
3360         fprintf(out, "%s", zHdr);
3361         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3362       }
3363       fclose(out);
3364     }
3365   }
3366 #endif
3367   p->iVdbeMagic = VDBE_MAGIC_RESET;
3368   return p->rc & db->errMask;
3369 }
3370 
3371 /*
3372 ** Clean up and delete a VDBE after execution.  Return an integer which is
3373 ** the result code.  Write any error message text into *pzErrMsg.
3374 */
3375 int sqlite3VdbeFinalize(Vdbe *p){
3376   int rc = SQLITE_OK;
3377   if( p->iVdbeMagic==VDBE_MAGIC_RUN || p->iVdbeMagic==VDBE_MAGIC_HALT ){
3378     rc = sqlite3VdbeReset(p);
3379     assert( (rc & p->db->errMask)==rc );
3380   }
3381   sqlite3VdbeDelete(p);
3382   return rc;
3383 }
3384 
3385 /*
3386 ** If parameter iOp is less than zero, then invoke the destructor for
3387 ** all auxiliary data pointers currently cached by the VM passed as
3388 ** the first argument.
3389 **
3390 ** Or, if iOp is greater than or equal to zero, then the destructor is
3391 ** only invoked for those auxiliary data pointers created by the user
3392 ** function invoked by the OP_Function opcode at instruction iOp of
3393 ** VM pVdbe, and only then if:
3394 **
3395 **    * the associated function parameter is the 32nd or later (counting
3396 **      from left to right), or
3397 **
3398 **    * the corresponding bit in argument mask is clear (where the first
3399 **      function parameter corresponds to bit 0 etc.).
3400 */
3401 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3402   while( *pp ){
3403     AuxData *pAux = *pp;
3404     if( (iOp<0)
3405      || (pAux->iAuxOp==iOp
3406           && pAux->iAuxArg>=0
3407           && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3408     ){
3409       testcase( pAux->iAuxArg==31 );
3410       if( pAux->xDeleteAux ){
3411         pAux->xDeleteAux(pAux->pAux);
3412       }
3413       *pp = pAux->pNextAux;
3414       sqlite3DbFree(db, pAux);
3415     }else{
3416       pp= &pAux->pNextAux;
3417     }
3418   }
3419 }
3420 
3421 /*
3422 ** Free all memory associated with the Vdbe passed as the second argument,
3423 ** except for object itself, which is preserved.
3424 **
3425 ** The difference between this function and sqlite3VdbeDelete() is that
3426 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3427 ** the database connection and frees the object itself.
3428 */
3429 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3430   SubProgram *pSub, *pNext;
3431   assert( p->db==0 || p->db==db );
3432   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3433   for(pSub=p->pProgram; pSub; pSub=pNext){
3434     pNext = pSub->pNext;
3435     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3436     sqlite3DbFree(db, pSub);
3437   }
3438   if( p->iVdbeMagic!=VDBE_MAGIC_INIT ){
3439     releaseMemArray(p->aVar, p->nVar);
3440     sqlite3DbFree(db, p->pVList);
3441     sqlite3DbFree(db, p->pFree);
3442   }
3443   vdbeFreeOpArray(db, p->aOp, p->nOp);
3444   sqlite3DbFree(db, p->aColName);
3445   sqlite3DbFree(db, p->zSql);
3446 #ifdef SQLITE_ENABLE_NORMALIZE
3447   sqlite3DbFree(db, p->zNormSql);
3448   {
3449     DblquoteStr *pThis, *pNext;
3450     for(pThis=p->pDblStr; pThis; pThis=pNext){
3451       pNext = pThis->pNextStr;
3452       sqlite3DbFree(db, pThis);
3453     }
3454   }
3455 #endif
3456 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3457   {
3458     int i;
3459     for(i=0; i<p->nScan; i++){
3460       sqlite3DbFree(db, p->aScan[i].zName);
3461     }
3462     sqlite3DbFree(db, p->aScan);
3463   }
3464 #endif
3465 }
3466 
3467 /*
3468 ** Delete an entire VDBE.
3469 */
3470 void sqlite3VdbeDelete(Vdbe *p){
3471   sqlite3 *db;
3472 
3473   assert( p!=0 );
3474   db = p->db;
3475   assert( sqlite3_mutex_held(db->mutex) );
3476   sqlite3VdbeClearObject(db, p);
3477   if( p->pPrev ){
3478     p->pPrev->pNext = p->pNext;
3479   }else{
3480     assert( db->pVdbe==p );
3481     db->pVdbe = p->pNext;
3482   }
3483   if( p->pNext ){
3484     p->pNext->pPrev = p->pPrev;
3485   }
3486   p->iVdbeMagic = VDBE_MAGIC_DEAD;
3487   p->db = 0;
3488   sqlite3DbFreeNN(db, p);
3489 }
3490 
3491 /*
3492 ** The cursor "p" has a pending seek operation that has not yet been
3493 ** carried out.  Seek the cursor now.  If an error occurs, return
3494 ** the appropriate error code.
3495 */
3496 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3497   int res, rc;
3498 #ifdef SQLITE_TEST
3499   extern int sqlite3_search_count;
3500 #endif
3501   assert( p->deferredMoveto );
3502   assert( p->isTable );
3503   assert( p->eCurType==CURTYPE_BTREE );
3504   rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res);
3505   if( rc ) return rc;
3506   if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3507 #ifdef SQLITE_TEST
3508   sqlite3_search_count++;
3509 #endif
3510   p->deferredMoveto = 0;
3511   p->cacheStatus = CACHE_STALE;
3512   return SQLITE_OK;
3513 }
3514 
3515 /*
3516 ** Something has moved cursor "p" out of place.  Maybe the row it was
3517 ** pointed to was deleted out from under it.  Or maybe the btree was
3518 ** rebalanced.  Whatever the cause, try to restore "p" to the place it
3519 ** is supposed to be pointing.  If the row was deleted out from under the
3520 ** cursor, set the cursor to point to a NULL row.
3521 */
3522 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3523   int isDifferentRow, rc;
3524   assert( p->eCurType==CURTYPE_BTREE );
3525   assert( p->uc.pCursor!=0 );
3526   assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3527   rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3528   p->cacheStatus = CACHE_STALE;
3529   if( isDifferentRow ) p->nullRow = 1;
3530   return rc;
3531 }
3532 
3533 /*
3534 ** Check to ensure that the cursor is valid.  Restore the cursor
3535 ** if need be.  Return any I/O error from the restore operation.
3536 */
3537 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3538   assert( p->eCurType==CURTYPE_BTREE );
3539   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3540     return handleMovedCursor(p);
3541   }
3542   return SQLITE_OK;
3543 }
3544 
3545 /*
3546 ** Make sure the cursor p is ready to read or write the row to which it
3547 ** was last positioned.  Return an error code if an OOM fault or I/O error
3548 ** prevents us from positioning the cursor to its correct position.
3549 **
3550 ** If a MoveTo operation is pending on the given cursor, then do that
3551 ** MoveTo now.  If no move is pending, check to see if the row has been
3552 ** deleted out from under the cursor and if it has, mark the row as
3553 ** a NULL row.
3554 **
3555 ** If the cursor is already pointing to the correct row and that row has
3556 ** not been deleted out from under the cursor, then this routine is a no-op.
3557 */
3558 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, u32 *piCol){
3559   VdbeCursor *p = *pp;
3560   assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
3561   if( p->deferredMoveto ){
3562     u32 iMap;
3563     assert( !p->isEphemeral );
3564     if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 && !p->nullRow ){
3565       *pp = p->pAltCursor;
3566       *piCol = iMap - 1;
3567       return SQLITE_OK;
3568     }
3569     return sqlite3VdbeFinishMoveto(p);
3570   }
3571   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3572     return handleMovedCursor(p);
3573   }
3574   return SQLITE_OK;
3575 }
3576 
3577 /*
3578 ** The following functions:
3579 **
3580 ** sqlite3VdbeSerialType()
3581 ** sqlite3VdbeSerialTypeLen()
3582 ** sqlite3VdbeSerialLen()
3583 ** sqlite3VdbeSerialPut()
3584 ** sqlite3VdbeSerialGet()
3585 **
3586 ** encapsulate the code that serializes values for storage in SQLite
3587 ** data and index records. Each serialized value consists of a
3588 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3589 ** integer, stored as a varint.
3590 **
3591 ** In an SQLite index record, the serial type is stored directly before
3592 ** the blob of data that it corresponds to. In a table record, all serial
3593 ** types are stored at the start of the record, and the blobs of data at
3594 ** the end. Hence these functions allow the caller to handle the
3595 ** serial-type and data blob separately.
3596 **
3597 ** The following table describes the various storage classes for data:
3598 **
3599 **   serial type        bytes of data      type
3600 **   --------------     ---------------    ---------------
3601 **      0                     0            NULL
3602 **      1                     1            signed integer
3603 **      2                     2            signed integer
3604 **      3                     3            signed integer
3605 **      4                     4            signed integer
3606 **      5                     6            signed integer
3607 **      6                     8            signed integer
3608 **      7                     8            IEEE float
3609 **      8                     0            Integer constant 0
3610 **      9                     0            Integer constant 1
3611 **     10,11                               reserved for expansion
3612 **    N>=12 and even       (N-12)/2        BLOB
3613 **    N>=13 and odd        (N-13)/2        text
3614 **
3615 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
3616 ** of SQLite will not understand those serial types.
3617 */
3618 
3619 #if 0 /* Inlined into the OP_MakeRecord opcode */
3620 /*
3621 ** Return the serial-type for the value stored in pMem.
3622 **
3623 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3624 **
3625 ** 2019-07-11:  The primary user of this subroutine was the OP_MakeRecord
3626 ** opcode in the byte-code engine.  But by moving this routine in-line, we
3627 ** can omit some redundant tests and make that opcode a lot faster.  So
3628 ** this routine is now only used by the STAT3 logic and STAT3 support has
3629 ** ended.  The code is kept here for historical reference only.
3630 */
3631 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3632   int flags = pMem->flags;
3633   u32 n;
3634 
3635   assert( pLen!=0 );
3636   if( flags&MEM_Null ){
3637     *pLen = 0;
3638     return 0;
3639   }
3640   if( flags&(MEM_Int|MEM_IntReal) ){
3641     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3642 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3643     i64 i = pMem->u.i;
3644     u64 u;
3645     testcase( flags & MEM_Int );
3646     testcase( flags & MEM_IntReal );
3647     if( i<0 ){
3648       u = ~i;
3649     }else{
3650       u = i;
3651     }
3652     if( u<=127 ){
3653       if( (i&1)==i && file_format>=4 ){
3654         *pLen = 0;
3655         return 8+(u32)u;
3656       }else{
3657         *pLen = 1;
3658         return 1;
3659       }
3660     }
3661     if( u<=32767 ){ *pLen = 2; return 2; }
3662     if( u<=8388607 ){ *pLen = 3; return 3; }
3663     if( u<=2147483647 ){ *pLen = 4; return 4; }
3664     if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3665     *pLen = 8;
3666     if( flags&MEM_IntReal ){
3667       /* If the value is IntReal and is going to take up 8 bytes to store
3668       ** as an integer, then we might as well make it an 8-byte floating
3669       ** point value */
3670       pMem->u.r = (double)pMem->u.i;
3671       pMem->flags &= ~MEM_IntReal;
3672       pMem->flags |= MEM_Real;
3673       return 7;
3674     }
3675     return 6;
3676   }
3677   if( flags&MEM_Real ){
3678     *pLen = 8;
3679     return 7;
3680   }
3681   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3682   assert( pMem->n>=0 );
3683   n = (u32)pMem->n;
3684   if( flags & MEM_Zero ){
3685     n += pMem->u.nZero;
3686   }
3687   *pLen = n;
3688   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3689 }
3690 #endif /* inlined into OP_MakeRecord */
3691 
3692 /*
3693 ** The sizes for serial types less than 128
3694 */
3695 static const u8 sqlite3SmallTypeSizes[] = {
3696         /*  0   1   2   3   4   5   6   7   8   9 */
3697 /*   0 */   0,  1,  2,  3,  4,  6,  8,  8,  0,  0,
3698 /*  10 */   0,  0,  0,  0,  1,  1,  2,  2,  3,  3,
3699 /*  20 */   4,  4,  5,  5,  6,  6,  7,  7,  8,  8,
3700 /*  30 */   9,  9, 10, 10, 11, 11, 12, 12, 13, 13,
3701 /*  40 */  14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3702 /*  50 */  19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3703 /*  60 */  24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3704 /*  70 */  29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3705 /*  80 */  34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3706 /*  90 */  39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3707 /* 100 */  44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3708 /* 110 */  49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3709 /* 120 */  54, 54, 55, 55, 56, 56, 57, 57
3710 };
3711 
3712 /*
3713 ** Return the length of the data corresponding to the supplied serial-type.
3714 */
3715 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3716   if( serial_type>=128 ){
3717     return (serial_type-12)/2;
3718   }else{
3719     assert( serial_type<12
3720             || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3721     return sqlite3SmallTypeSizes[serial_type];
3722   }
3723 }
3724 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3725   assert( serial_type<128 );
3726   return sqlite3SmallTypeSizes[serial_type];
3727 }
3728 
3729 /*
3730 ** If we are on an architecture with mixed-endian floating
3731 ** points (ex: ARM7) then swap the lower 4 bytes with the
3732 ** upper 4 bytes.  Return the result.
3733 **
3734 ** For most architectures, this is a no-op.
3735 **
3736 ** (later):  It is reported to me that the mixed-endian problem
3737 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
3738 ** that early versions of GCC stored the two words of a 64-bit
3739 ** float in the wrong order.  And that error has been propagated
3740 ** ever since.  The blame is not necessarily with GCC, though.
3741 ** GCC might have just copying the problem from a prior compiler.
3742 ** I am also told that newer versions of GCC that follow a different
3743 ** ABI get the byte order right.
3744 **
3745 ** Developers using SQLite on an ARM7 should compile and run their
3746 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
3747 ** enabled, some asserts below will ensure that the byte order of
3748 ** floating point values is correct.
3749 **
3750 ** (2007-08-30)  Frank van Vugt has studied this problem closely
3751 ** and has send his findings to the SQLite developers.  Frank
3752 ** writes that some Linux kernels offer floating point hardware
3753 ** emulation that uses only 32-bit mantissas instead of a full
3754 ** 48-bits as required by the IEEE standard.  (This is the
3755 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
3756 ** byte swapping becomes very complicated.  To avoid problems,
3757 ** the necessary byte swapping is carried out using a 64-bit integer
3758 ** rather than a 64-bit float.  Frank assures us that the code here
3759 ** works for him.  We, the developers, have no way to independently
3760 ** verify this, but Frank seems to know what he is talking about
3761 ** so we trust him.
3762 */
3763 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3764 static u64 floatSwap(u64 in){
3765   union {
3766     u64 r;
3767     u32 i[2];
3768   } u;
3769   u32 t;
3770 
3771   u.r = in;
3772   t = u.i[0];
3773   u.i[0] = u.i[1];
3774   u.i[1] = t;
3775   return u.r;
3776 }
3777 # define swapMixedEndianFloat(X)  X = floatSwap(X)
3778 #else
3779 # define swapMixedEndianFloat(X)
3780 #endif
3781 
3782 /*
3783 ** Write the serialized data blob for the value stored in pMem into
3784 ** buf. It is assumed that the caller has allocated sufficient space.
3785 ** Return the number of bytes written.
3786 **
3787 ** nBuf is the amount of space left in buf[].  The caller is responsible
3788 ** for allocating enough space to buf[] to hold the entire field, exclusive
3789 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3790 **
3791 ** Return the number of bytes actually written into buf[].  The number
3792 ** of bytes in the zero-filled tail is included in the return value only
3793 ** if those bytes were zeroed in buf[].
3794 */
3795 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3796   u32 len;
3797 
3798   /* Integer and Real */
3799   if( serial_type<=7 && serial_type>0 ){
3800     u64 v;
3801     u32 i;
3802     if( serial_type==7 ){
3803       assert( sizeof(v)==sizeof(pMem->u.r) );
3804       memcpy(&v, &pMem->u.r, sizeof(v));
3805       swapMixedEndianFloat(v);
3806     }else{
3807       v = pMem->u.i;
3808     }
3809     len = i = sqlite3SmallTypeSizes[serial_type];
3810     assert( i>0 );
3811     do{
3812       buf[--i] = (u8)(v&0xFF);
3813       v >>= 8;
3814     }while( i );
3815     return len;
3816   }
3817 
3818   /* String or blob */
3819   if( serial_type>=12 ){
3820     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3821              == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3822     len = pMem->n;
3823     if( len>0 ) memcpy(buf, pMem->z, len);
3824     return len;
3825   }
3826 
3827   /* NULL or constants 0 or 1 */
3828   return 0;
3829 }
3830 
3831 /* Input "x" is a sequence of unsigned characters that represent a
3832 ** big-endian integer.  Return the equivalent native integer
3833 */
3834 #define ONE_BYTE_INT(x)    ((i8)(x)[0])
3835 #define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
3836 #define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3837 #define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3838 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3839 
3840 /*
3841 ** Deserialize the data blob pointed to by buf as serial type serial_type
3842 ** and store the result in pMem.  Return the number of bytes read.
3843 **
3844 ** This function is implemented as two separate routines for performance.
3845 ** The few cases that require local variables are broken out into a separate
3846 ** routine so that in most cases the overhead of moving the stack pointer
3847 ** is avoided.
3848 */
3849 static u32 serialGet(
3850   const unsigned char *buf,     /* Buffer to deserialize from */
3851   u32 serial_type,              /* Serial type to deserialize */
3852   Mem *pMem                     /* Memory cell to write value into */
3853 ){
3854   u64 x = FOUR_BYTE_UINT(buf);
3855   u32 y = FOUR_BYTE_UINT(buf+4);
3856   x = (x<<32) + y;
3857   if( serial_type==6 ){
3858     /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3859     ** twos-complement integer. */
3860     pMem->u.i = *(i64*)&x;
3861     pMem->flags = MEM_Int;
3862     testcase( pMem->u.i<0 );
3863   }else{
3864     /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3865     ** floating point number. */
3866 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3867     /* Verify that integers and floating point values use the same
3868     ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3869     ** defined that 64-bit floating point values really are mixed
3870     ** endian.
3871     */
3872     static const u64 t1 = ((u64)0x3ff00000)<<32;
3873     static const double r1 = 1.0;
3874     u64 t2 = t1;
3875     swapMixedEndianFloat(t2);
3876     assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3877 #endif
3878     assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3879     swapMixedEndianFloat(x);
3880     memcpy(&pMem->u.r, &x, sizeof(x));
3881     pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
3882   }
3883   return 8;
3884 }
3885 u32 sqlite3VdbeSerialGet(
3886   const unsigned char *buf,     /* Buffer to deserialize from */
3887   u32 serial_type,              /* Serial type to deserialize */
3888   Mem *pMem                     /* Memory cell to write value into */
3889 ){
3890   switch( serial_type ){
3891     case 10: { /* Internal use only: NULL with virtual table
3892                ** UPDATE no-change flag set */
3893       pMem->flags = MEM_Null|MEM_Zero;
3894       pMem->n = 0;
3895       pMem->u.nZero = 0;
3896       break;
3897     }
3898     case 11:   /* Reserved for future use */
3899     case 0: {  /* Null */
3900       /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3901       pMem->flags = MEM_Null;
3902       break;
3903     }
3904     case 1: {
3905       /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3906       ** integer. */
3907       pMem->u.i = ONE_BYTE_INT(buf);
3908       pMem->flags = MEM_Int;
3909       testcase( pMem->u.i<0 );
3910       return 1;
3911     }
3912     case 2: { /* 2-byte signed integer */
3913       /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3914       ** twos-complement integer. */
3915       pMem->u.i = TWO_BYTE_INT(buf);
3916       pMem->flags = MEM_Int;
3917       testcase( pMem->u.i<0 );
3918       return 2;
3919     }
3920     case 3: { /* 3-byte signed integer */
3921       /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3922       ** twos-complement integer. */
3923       pMem->u.i = THREE_BYTE_INT(buf);
3924       pMem->flags = MEM_Int;
3925       testcase( pMem->u.i<0 );
3926       return 3;
3927     }
3928     case 4: { /* 4-byte signed integer */
3929       /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3930       ** twos-complement integer. */
3931       pMem->u.i = FOUR_BYTE_INT(buf);
3932 #ifdef __HP_cc
3933       /* Work around a sign-extension bug in the HP compiler for HP/UX */
3934       if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3935 #endif
3936       pMem->flags = MEM_Int;
3937       testcase( pMem->u.i<0 );
3938       return 4;
3939     }
3940     case 5: { /* 6-byte signed integer */
3941       /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3942       ** twos-complement integer. */
3943       pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3944       pMem->flags = MEM_Int;
3945       testcase( pMem->u.i<0 );
3946       return 6;
3947     }
3948     case 6:   /* 8-byte signed integer */
3949     case 7: { /* IEEE floating point */
3950       /* These use local variables, so do them in a separate routine
3951       ** to avoid having to move the frame pointer in the common case */
3952       return serialGet(buf,serial_type,pMem);
3953     }
3954     case 8:    /* Integer 0 */
3955     case 9: {  /* Integer 1 */
3956       /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3957       /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3958       pMem->u.i = serial_type-8;
3959       pMem->flags = MEM_Int;
3960       return 0;
3961     }
3962     default: {
3963       /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3964       ** length.
3965       ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3966       ** (N-13)/2 bytes in length. */
3967       static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3968       pMem->z = (char *)buf;
3969       pMem->n = (serial_type-12)/2;
3970       pMem->flags = aFlag[serial_type&1];
3971       return pMem->n;
3972     }
3973   }
3974   return 0;
3975 }
3976 /*
3977 ** This routine is used to allocate sufficient space for an UnpackedRecord
3978 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3979 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3980 **
3981 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3982 ** the unaligned buffer passed via the second and third arguments (presumably
3983 ** stack space). If the former, then *ppFree is set to a pointer that should
3984 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3985 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3986 ** before returning.
3987 **
3988 ** If an OOM error occurs, NULL is returned.
3989 */
3990 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3991   KeyInfo *pKeyInfo               /* Description of the record */
3992 ){
3993   UnpackedRecord *p;              /* Unpacked record to return */
3994   int nByte;                      /* Number of bytes required for *p */
3995   nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
3996   p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3997   if( !p ) return 0;
3998   p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3999   assert( pKeyInfo->aSortFlags!=0 );
4000   p->pKeyInfo = pKeyInfo;
4001   p->nField = pKeyInfo->nKeyField + 1;
4002   return p;
4003 }
4004 
4005 /*
4006 ** Given the nKey-byte encoding of a record in pKey[], populate the
4007 ** UnpackedRecord structure indicated by the fourth argument with the
4008 ** contents of the decoded record.
4009 */
4010 void sqlite3VdbeRecordUnpack(
4011   KeyInfo *pKeyInfo,     /* Information about the record format */
4012   int nKey,              /* Size of the binary record */
4013   const void *pKey,      /* The binary record */
4014   UnpackedRecord *p      /* Populate this structure before returning. */
4015 ){
4016   const unsigned char *aKey = (const unsigned char *)pKey;
4017   u32 d;
4018   u32 idx;                        /* Offset in aKey[] to read from */
4019   u16 u;                          /* Unsigned loop counter */
4020   u32 szHdr;
4021   Mem *pMem = p->aMem;
4022 
4023   p->default_rc = 0;
4024   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
4025   idx = getVarint32(aKey, szHdr);
4026   d = szHdr;
4027   u = 0;
4028   while( idx<szHdr && d<=(u32)nKey ){
4029     u32 serial_type;
4030 
4031     idx += getVarint32(&aKey[idx], serial_type);
4032     pMem->enc = pKeyInfo->enc;
4033     pMem->db = pKeyInfo->db;
4034     /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4035     pMem->szMalloc = 0;
4036     pMem->z = 0;
4037     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
4038     pMem++;
4039     if( (++u)>=p->nField ) break;
4040   }
4041   if( d>(u32)nKey && u ){
4042     assert( CORRUPT_DB );
4043     /* In a corrupt record entry, the last pMem might have been set up using
4044     ** uninitialized memory. Overwrite its value with NULL, to prevent
4045     ** warnings from MSAN. */
4046     sqlite3VdbeMemSetNull(pMem-1);
4047   }
4048   assert( u<=pKeyInfo->nKeyField + 1 );
4049   p->nField = u;
4050 }
4051 
4052 #ifdef SQLITE_DEBUG
4053 /*
4054 ** This function compares two index or table record keys in the same way
4055 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4056 ** this function deserializes and compares values using the
4057 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4058 ** in assert() statements to ensure that the optimized code in
4059 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4060 **
4061 ** Return true if the result of comparison is equivalent to desiredResult.
4062 ** Return false if there is a disagreement.
4063 */
4064 static int vdbeRecordCompareDebug(
4065   int nKey1, const void *pKey1, /* Left key */
4066   const UnpackedRecord *pPKey2, /* Right key */
4067   int desiredResult             /* Correct answer */
4068 ){
4069   u32 d1;            /* Offset into aKey[] of next data element */
4070   u32 idx1;          /* Offset into aKey[] of next header element */
4071   u32 szHdr1;        /* Number of bytes in header */
4072   int i = 0;
4073   int rc = 0;
4074   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4075   KeyInfo *pKeyInfo;
4076   Mem mem1;
4077 
4078   pKeyInfo = pPKey2->pKeyInfo;
4079   if( pKeyInfo->db==0 ) return 1;
4080   mem1.enc = pKeyInfo->enc;
4081   mem1.db = pKeyInfo->db;
4082   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
4083   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4084 
4085   /* Compilers may complain that mem1.u.i is potentially uninitialized.
4086   ** We could initialize it, as shown here, to silence those complaints.
4087   ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4088   ** the unnecessary initialization has a measurable negative performance
4089   ** impact, since this routine is a very high runner.  And so, we choose
4090   ** to ignore the compiler warnings and leave this variable uninitialized.
4091   */
4092   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
4093 
4094   idx1 = getVarint32(aKey1, szHdr1);
4095   if( szHdr1>98307 ) return SQLITE_CORRUPT;
4096   d1 = szHdr1;
4097   assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4098   assert( pKeyInfo->aSortFlags!=0 );
4099   assert( pKeyInfo->nKeyField>0 );
4100   assert( idx1<=szHdr1 || CORRUPT_DB );
4101   do{
4102     u32 serial_type1;
4103 
4104     /* Read the serial types for the next element in each key. */
4105     idx1 += getVarint32( aKey1+idx1, serial_type1 );
4106 
4107     /* Verify that there is enough key space remaining to avoid
4108     ** a buffer overread.  The "d1+serial_type1+2" subexpression will
4109     ** always be greater than or equal to the amount of required key space.
4110     ** Use that approximation to avoid the more expensive call to
4111     ** sqlite3VdbeSerialTypeLen() in the common case.
4112     */
4113     if( d1+(u64)serial_type1+2>(u64)nKey1
4114      && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4115     ){
4116       break;
4117     }
4118 
4119     /* Extract the values to be compared.
4120     */
4121     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4122 
4123     /* Do the comparison
4124     */
4125     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4126                            pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4127     if( rc!=0 ){
4128       assert( mem1.szMalloc==0 );  /* See comment below */
4129       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4130        && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4131       ){
4132         rc = -rc;
4133       }
4134       if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4135         rc = -rc;  /* Invert the result for DESC sort order. */
4136       }
4137       goto debugCompareEnd;
4138     }
4139     i++;
4140   }while( idx1<szHdr1 && i<pPKey2->nField );
4141 
4142   /* No memory allocation is ever used on mem1.  Prove this using
4143   ** the following assert().  If the assert() fails, it indicates a
4144   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4145   */
4146   assert( mem1.szMalloc==0 );
4147 
4148   /* rc==0 here means that one of the keys ran out of fields and
4149   ** all the fields up to that point were equal. Return the default_rc
4150   ** value.  */
4151   rc = pPKey2->default_rc;
4152 
4153 debugCompareEnd:
4154   if( desiredResult==0 && rc==0 ) return 1;
4155   if( desiredResult<0 && rc<0 ) return 1;
4156   if( desiredResult>0 && rc>0 ) return 1;
4157   if( CORRUPT_DB ) return 1;
4158   if( pKeyInfo->db->mallocFailed ) return 1;
4159   return 0;
4160 }
4161 #endif
4162 
4163 #ifdef SQLITE_DEBUG
4164 /*
4165 ** Count the number of fields (a.k.a. columns) in the record given by
4166 ** pKey,nKey.  The verify that this count is less than or equal to the
4167 ** limit given by pKeyInfo->nAllField.
4168 **
4169 ** If this constraint is not satisfied, it means that the high-speed
4170 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4171 ** not work correctly.  If this assert() ever fires, it probably means
4172 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4173 ** incorrectly.
4174 */
4175 static void vdbeAssertFieldCountWithinLimits(
4176   int nKey, const void *pKey,   /* The record to verify */
4177   const KeyInfo *pKeyInfo       /* Compare size with this KeyInfo */
4178 ){
4179   int nField = 0;
4180   u32 szHdr;
4181   u32 idx;
4182   u32 notUsed;
4183   const unsigned char *aKey = (const unsigned char*)pKey;
4184 
4185   if( CORRUPT_DB ) return;
4186   idx = getVarint32(aKey, szHdr);
4187   assert( nKey>=0 );
4188   assert( szHdr<=(u32)nKey );
4189   while( idx<szHdr ){
4190     idx += getVarint32(aKey+idx, notUsed);
4191     nField++;
4192   }
4193   assert( nField <= pKeyInfo->nAllField );
4194 }
4195 #else
4196 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4197 #endif
4198 
4199 /*
4200 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4201 ** using the collation sequence pColl. As usual, return a negative , zero
4202 ** or positive value if *pMem1 is less than, equal to or greater than
4203 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4204 */
4205 static int vdbeCompareMemString(
4206   const Mem *pMem1,
4207   const Mem *pMem2,
4208   const CollSeq *pColl,
4209   u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */
4210 ){
4211   if( pMem1->enc==pColl->enc ){
4212     /* The strings are already in the correct encoding.  Call the
4213      ** comparison function directly */
4214     return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4215   }else{
4216     int rc;
4217     const void *v1, *v2;
4218     Mem c1;
4219     Mem c2;
4220     sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4221     sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4222     sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4223     sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4224     v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4225     v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4226     if( (v1==0 || v2==0) ){
4227       if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4228       rc = 0;
4229     }else{
4230       rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4231     }
4232     sqlite3VdbeMemRelease(&c1);
4233     sqlite3VdbeMemRelease(&c2);
4234     return rc;
4235   }
4236 }
4237 
4238 /*
4239 ** The input pBlob is guaranteed to be a Blob that is not marked
4240 ** with MEM_Zero.  Return true if it could be a zero-blob.
4241 */
4242 static int isAllZero(const char *z, int n){
4243   int i;
4244   for(i=0; i<n; i++){
4245     if( z[i] ) return 0;
4246   }
4247   return 1;
4248 }
4249 
4250 /*
4251 ** Compare two blobs.  Return negative, zero, or positive if the first
4252 ** is less than, equal to, or greater than the second, respectively.
4253 ** If one blob is a prefix of the other, then the shorter is the lessor.
4254 */
4255 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4256   int c;
4257   int n1 = pB1->n;
4258   int n2 = pB2->n;
4259 
4260   /* It is possible to have a Blob value that has some non-zero content
4261   ** followed by zero content.  But that only comes up for Blobs formed
4262   ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4263   ** sqlite3MemCompare(). */
4264   assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4265   assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4266 
4267   if( (pB1->flags|pB2->flags) & MEM_Zero ){
4268     if( pB1->flags & pB2->flags & MEM_Zero ){
4269       return pB1->u.nZero - pB2->u.nZero;
4270     }else if( pB1->flags & MEM_Zero ){
4271       if( !isAllZero(pB2->z, pB2->n) ) return -1;
4272       return pB1->u.nZero - n2;
4273     }else{
4274       if( !isAllZero(pB1->z, pB1->n) ) return +1;
4275       return n1 - pB2->u.nZero;
4276     }
4277   }
4278   c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4279   if( c ) return c;
4280   return n1 - n2;
4281 }
4282 
4283 /*
4284 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4285 ** number.  Return negative, zero, or positive if the first (i64) is less than,
4286 ** equal to, or greater than the second (double).
4287 */
4288 int sqlite3IntFloatCompare(i64 i, double r){
4289   if( sizeof(LONGDOUBLE_TYPE)>8 ){
4290     LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4291     testcase( x<r );
4292     testcase( x>r );
4293     testcase( x==r );
4294     if( x<r ) return -1;
4295     if( x>r ) return +1;  /*NO_TEST*/ /* work around bugs in gcov */
4296     return 0;             /*NO_TEST*/ /* work around bugs in gcov */
4297   }else{
4298     i64 y;
4299     double s;
4300     if( r<-9223372036854775808.0 ) return +1;
4301     if( r>=9223372036854775808.0 ) return -1;
4302     y = (i64)r;
4303     if( i<y ) return -1;
4304     if( i>y ) return +1;
4305     s = (double)i;
4306     if( s<r ) return -1;
4307     if( s>r ) return +1;
4308     return 0;
4309   }
4310 }
4311 
4312 /*
4313 ** Compare the values contained by the two memory cells, returning
4314 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4315 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4316 ** and reals) sorted numerically, followed by text ordered by the collating
4317 ** sequence pColl and finally blob's ordered by memcmp().
4318 **
4319 ** Two NULL values are considered equal by this function.
4320 */
4321 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4322   int f1, f2;
4323   int combined_flags;
4324 
4325   f1 = pMem1->flags;
4326   f2 = pMem2->flags;
4327   combined_flags = f1|f2;
4328   assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4329 
4330   /* If one value is NULL, it is less than the other. If both values
4331   ** are NULL, return 0.
4332   */
4333   if( combined_flags&MEM_Null ){
4334     return (f2&MEM_Null) - (f1&MEM_Null);
4335   }
4336 
4337   /* At least one of the two values is a number
4338   */
4339   if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4340     testcase( combined_flags & MEM_Int );
4341     testcase( combined_flags & MEM_Real );
4342     testcase( combined_flags & MEM_IntReal );
4343     if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4344       testcase( f1 & f2 & MEM_Int );
4345       testcase( f1 & f2 & MEM_IntReal );
4346       if( pMem1->u.i < pMem2->u.i ) return -1;
4347       if( pMem1->u.i > pMem2->u.i ) return +1;
4348       return 0;
4349     }
4350     if( (f1 & f2 & MEM_Real)!=0 ){
4351       if( pMem1->u.r < pMem2->u.r ) return -1;
4352       if( pMem1->u.r > pMem2->u.r ) return +1;
4353       return 0;
4354     }
4355     if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4356       testcase( f1 & MEM_Int );
4357       testcase( f1 & MEM_IntReal );
4358       if( (f2&MEM_Real)!=0 ){
4359         return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4360       }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4361         if( pMem1->u.i < pMem2->u.i ) return -1;
4362         if( pMem1->u.i > pMem2->u.i ) return +1;
4363         return 0;
4364       }else{
4365         return -1;
4366       }
4367     }
4368     if( (f1&MEM_Real)!=0 ){
4369       if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4370         testcase( f2 & MEM_Int );
4371         testcase( f2 & MEM_IntReal );
4372         return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4373       }else{
4374         return -1;
4375       }
4376     }
4377     return +1;
4378   }
4379 
4380   /* If one value is a string and the other is a blob, the string is less.
4381   ** If both are strings, compare using the collating functions.
4382   */
4383   if( combined_flags&MEM_Str ){
4384     if( (f1 & MEM_Str)==0 ){
4385       return 1;
4386     }
4387     if( (f2 & MEM_Str)==0 ){
4388       return -1;
4389     }
4390 
4391     assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4392     assert( pMem1->enc==SQLITE_UTF8 ||
4393             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4394 
4395     /* The collation sequence must be defined at this point, even if
4396     ** the user deletes the collation sequence after the vdbe program is
4397     ** compiled (this was not always the case).
4398     */
4399     assert( !pColl || pColl->xCmp );
4400 
4401     if( pColl ){
4402       return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4403     }
4404     /* If a NULL pointer was passed as the collate function, fall through
4405     ** to the blob case and use memcmp().  */
4406   }
4407 
4408   /* Both values must be blobs.  Compare using memcmp().  */
4409   return sqlite3BlobCompare(pMem1, pMem2);
4410 }
4411 
4412 
4413 /*
4414 ** The first argument passed to this function is a serial-type that
4415 ** corresponds to an integer - all values between 1 and 9 inclusive
4416 ** except 7. The second points to a buffer containing an integer value
4417 ** serialized according to serial_type. This function deserializes
4418 ** and returns the value.
4419 */
4420 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4421   u32 y;
4422   assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4423   switch( serial_type ){
4424     case 0:
4425     case 1:
4426       testcase( aKey[0]&0x80 );
4427       return ONE_BYTE_INT(aKey);
4428     case 2:
4429       testcase( aKey[0]&0x80 );
4430       return TWO_BYTE_INT(aKey);
4431     case 3:
4432       testcase( aKey[0]&0x80 );
4433       return THREE_BYTE_INT(aKey);
4434     case 4: {
4435       testcase( aKey[0]&0x80 );
4436       y = FOUR_BYTE_UINT(aKey);
4437       return (i64)*(int*)&y;
4438     }
4439     case 5: {
4440       testcase( aKey[0]&0x80 );
4441       return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4442     }
4443     case 6: {
4444       u64 x = FOUR_BYTE_UINT(aKey);
4445       testcase( aKey[0]&0x80 );
4446       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4447       return (i64)*(i64*)&x;
4448     }
4449   }
4450 
4451   return (serial_type - 8);
4452 }
4453 
4454 /*
4455 ** This function compares the two table rows or index records
4456 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
4457 ** or positive integer if key1 is less than, equal to or
4458 ** greater than key2.  The {nKey1, pKey1} key must be a blob
4459 ** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2
4460 ** key must be a parsed key such as obtained from
4461 ** sqlite3VdbeParseRecord.
4462 **
4463 ** If argument bSkip is non-zero, it is assumed that the caller has already
4464 ** determined that the first fields of the keys are equal.
4465 **
4466 ** Key1 and Key2 do not have to contain the same number of fields. If all
4467 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4468 ** returned.
4469 **
4470 ** If database corruption is discovered, set pPKey2->errCode to
4471 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4472 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4473 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4474 */
4475 int sqlite3VdbeRecordCompareWithSkip(
4476   int nKey1, const void *pKey1,   /* Left key */
4477   UnpackedRecord *pPKey2,         /* Right key */
4478   int bSkip                       /* If true, skip the first field */
4479 ){
4480   u32 d1;                         /* Offset into aKey[] of next data element */
4481   int i;                          /* Index of next field to compare */
4482   u32 szHdr1;                     /* Size of record header in bytes */
4483   u32 idx1;                       /* Offset of first type in header */
4484   int rc = 0;                     /* Return value */
4485   Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
4486   KeyInfo *pKeyInfo;
4487   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4488   Mem mem1;
4489 
4490   /* If bSkip is true, then the caller has already determined that the first
4491   ** two elements in the keys are equal. Fix the various stack variables so
4492   ** that this routine begins comparing at the second field. */
4493   if( bSkip ){
4494     u32 s1;
4495     idx1 = 1 + getVarint32(&aKey1[1], s1);
4496     szHdr1 = aKey1[0];
4497     d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4498     i = 1;
4499     pRhs++;
4500   }else{
4501     idx1 = getVarint32(aKey1, szHdr1);
4502     d1 = szHdr1;
4503     i = 0;
4504   }
4505   if( d1>(unsigned)nKey1 ){
4506     pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4507     return 0;  /* Corruption */
4508   }
4509 
4510   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4511   assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4512        || CORRUPT_DB );
4513   assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4514   assert( pPKey2->pKeyInfo->nKeyField>0 );
4515   assert( idx1<=szHdr1 || CORRUPT_DB );
4516   do{
4517     u32 serial_type;
4518 
4519     /* RHS is an integer */
4520     if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4521       testcase( pRhs->flags & MEM_Int );
4522       testcase( pRhs->flags & MEM_IntReal );
4523       serial_type = aKey1[idx1];
4524       testcase( serial_type==12 );
4525       if( serial_type>=10 ){
4526         rc = +1;
4527       }else if( serial_type==0 ){
4528         rc = -1;
4529       }else if( serial_type==7 ){
4530         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4531         rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4532       }else{
4533         i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4534         i64 rhs = pRhs->u.i;
4535         if( lhs<rhs ){
4536           rc = -1;
4537         }else if( lhs>rhs ){
4538           rc = +1;
4539         }
4540       }
4541     }
4542 
4543     /* RHS is real */
4544     else if( pRhs->flags & MEM_Real ){
4545       serial_type = aKey1[idx1];
4546       if( serial_type>=10 ){
4547         /* Serial types 12 or greater are strings and blobs (greater than
4548         ** numbers). Types 10 and 11 are currently "reserved for future
4549         ** use", so it doesn't really matter what the results of comparing
4550         ** them to numberic values are.  */
4551         rc = +1;
4552       }else if( serial_type==0 ){
4553         rc = -1;
4554       }else{
4555         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4556         if( serial_type==7 ){
4557           if( mem1.u.r<pRhs->u.r ){
4558             rc = -1;
4559           }else if( mem1.u.r>pRhs->u.r ){
4560             rc = +1;
4561           }
4562         }else{
4563           rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4564         }
4565       }
4566     }
4567 
4568     /* RHS is a string */
4569     else if( pRhs->flags & MEM_Str ){
4570       getVarint32NR(&aKey1[idx1], serial_type);
4571       testcase( serial_type==12 );
4572       if( serial_type<12 ){
4573         rc = -1;
4574       }else if( !(serial_type & 0x01) ){
4575         rc = +1;
4576       }else{
4577         mem1.n = (serial_type - 12) / 2;
4578         testcase( (d1+mem1.n)==(unsigned)nKey1 );
4579         testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4580         if( (d1+mem1.n) > (unsigned)nKey1
4581          || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4582         ){
4583           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4584           return 0;                /* Corruption */
4585         }else if( pKeyInfo->aColl[i] ){
4586           mem1.enc = pKeyInfo->enc;
4587           mem1.db = pKeyInfo->db;
4588           mem1.flags = MEM_Str;
4589           mem1.z = (char*)&aKey1[d1];
4590           rc = vdbeCompareMemString(
4591               &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4592           );
4593         }else{
4594           int nCmp = MIN(mem1.n, pRhs->n);
4595           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4596           if( rc==0 ) rc = mem1.n - pRhs->n;
4597         }
4598       }
4599     }
4600 
4601     /* RHS is a blob */
4602     else if( pRhs->flags & MEM_Blob ){
4603       assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4604       getVarint32NR(&aKey1[idx1], serial_type);
4605       testcase( serial_type==12 );
4606       if( serial_type<12 || (serial_type & 0x01) ){
4607         rc = -1;
4608       }else{
4609         int nStr = (serial_type - 12) / 2;
4610         testcase( (d1+nStr)==(unsigned)nKey1 );
4611         testcase( (d1+nStr+1)==(unsigned)nKey1 );
4612         if( (d1+nStr) > (unsigned)nKey1 ){
4613           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4614           return 0;                /* Corruption */
4615         }else if( pRhs->flags & MEM_Zero ){
4616           if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4617             rc = 1;
4618           }else{
4619             rc = nStr - pRhs->u.nZero;
4620           }
4621         }else{
4622           int nCmp = MIN(nStr, pRhs->n);
4623           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4624           if( rc==0 ) rc = nStr - pRhs->n;
4625         }
4626       }
4627     }
4628 
4629     /* RHS is null */
4630     else{
4631       serial_type = aKey1[idx1];
4632       rc = (serial_type!=0);
4633     }
4634 
4635     if( rc!=0 ){
4636       int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4637       if( sortFlags ){
4638         if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4639          || ((sortFlags & KEYINFO_ORDER_DESC)
4640            !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4641         ){
4642           rc = -rc;
4643         }
4644       }
4645       assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4646       assert( mem1.szMalloc==0 );  /* See comment below */
4647       return rc;
4648     }
4649 
4650     i++;
4651     if( i==pPKey2->nField ) break;
4652     pRhs++;
4653     d1 += sqlite3VdbeSerialTypeLen(serial_type);
4654     idx1 += sqlite3VarintLen(serial_type);
4655   }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 );
4656 
4657   /* No memory allocation is ever used on mem1.  Prove this using
4658   ** the following assert().  If the assert() fails, it indicates a
4659   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
4660   assert( mem1.szMalloc==0 );
4661 
4662   /* rc==0 here means that one or both of the keys ran out of fields and
4663   ** all the fields up to that point were equal. Return the default_rc
4664   ** value.  */
4665   assert( CORRUPT_DB
4666        || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4667        || pPKey2->pKeyInfo->db->mallocFailed
4668   );
4669   pPKey2->eqSeen = 1;
4670   return pPKey2->default_rc;
4671 }
4672 int sqlite3VdbeRecordCompare(
4673   int nKey1, const void *pKey1,   /* Left key */
4674   UnpackedRecord *pPKey2          /* Right key */
4675 ){
4676   return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4677 }
4678 
4679 
4680 /*
4681 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4682 ** that (a) the first field of pPKey2 is an integer, and (b) the
4683 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4684 ** byte (i.e. is less than 128).
4685 **
4686 ** To avoid concerns about buffer overreads, this routine is only used
4687 ** on schemas where the maximum valid header size is 63 bytes or less.
4688 */
4689 static int vdbeRecordCompareInt(
4690   int nKey1, const void *pKey1, /* Left key */
4691   UnpackedRecord *pPKey2        /* Right key */
4692 ){
4693   const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4694   int serial_type = ((const u8*)pKey1)[1];
4695   int res;
4696   u32 y;
4697   u64 x;
4698   i64 v;
4699   i64 lhs;
4700 
4701   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4702   assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4703   switch( serial_type ){
4704     case 1: { /* 1-byte signed integer */
4705       lhs = ONE_BYTE_INT(aKey);
4706       testcase( lhs<0 );
4707       break;
4708     }
4709     case 2: { /* 2-byte signed integer */
4710       lhs = TWO_BYTE_INT(aKey);
4711       testcase( lhs<0 );
4712       break;
4713     }
4714     case 3: { /* 3-byte signed integer */
4715       lhs = THREE_BYTE_INT(aKey);
4716       testcase( lhs<0 );
4717       break;
4718     }
4719     case 4: { /* 4-byte signed integer */
4720       y = FOUR_BYTE_UINT(aKey);
4721       lhs = (i64)*(int*)&y;
4722       testcase( lhs<0 );
4723       break;
4724     }
4725     case 5: { /* 6-byte signed integer */
4726       lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4727       testcase( lhs<0 );
4728       break;
4729     }
4730     case 6: { /* 8-byte signed integer */
4731       x = FOUR_BYTE_UINT(aKey);
4732       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4733       lhs = *(i64*)&x;
4734       testcase( lhs<0 );
4735       break;
4736     }
4737     case 8:
4738       lhs = 0;
4739       break;
4740     case 9:
4741       lhs = 1;
4742       break;
4743 
4744     /* This case could be removed without changing the results of running
4745     ** this code. Including it causes gcc to generate a faster switch
4746     ** statement (since the range of switch targets now starts at zero and
4747     ** is contiguous) but does not cause any duplicate code to be generated
4748     ** (as gcc is clever enough to combine the two like cases). Other
4749     ** compilers might be similar.  */
4750     case 0: case 7:
4751       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4752 
4753     default:
4754       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4755   }
4756 
4757   v = pPKey2->aMem[0].u.i;
4758   if( v>lhs ){
4759     res = pPKey2->r1;
4760   }else if( v<lhs ){
4761     res = pPKey2->r2;
4762   }else if( pPKey2->nField>1 ){
4763     /* The first fields of the two keys are equal. Compare the trailing
4764     ** fields.  */
4765     res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4766   }else{
4767     /* The first fields of the two keys are equal and there are no trailing
4768     ** fields. Return pPKey2->default_rc in this case. */
4769     res = pPKey2->default_rc;
4770     pPKey2->eqSeen = 1;
4771   }
4772 
4773   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4774   return res;
4775 }
4776 
4777 /*
4778 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4779 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4780 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4781 ** at the start of (pKey1/nKey1) fits in a single byte.
4782 */
4783 static int vdbeRecordCompareString(
4784   int nKey1, const void *pKey1, /* Left key */
4785   UnpackedRecord *pPKey2        /* Right key */
4786 ){
4787   const u8 *aKey1 = (const u8*)pKey1;
4788   int serial_type;
4789   int res;
4790 
4791   assert( pPKey2->aMem[0].flags & MEM_Str );
4792   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4793   serial_type = (u8)(aKey1[1]);
4794   if( serial_type >= 0x80 ){
4795     sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
4796   }
4797   if( serial_type<12 ){
4798     res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
4799   }else if( !(serial_type & 0x01) ){
4800     res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
4801   }else{
4802     int nCmp;
4803     int nStr;
4804     int szHdr = aKey1[0];
4805 
4806     nStr = (serial_type-12) / 2;
4807     if( (szHdr + nStr) > nKey1 ){
4808       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4809       return 0;    /* Corruption */
4810     }
4811     nCmp = MIN( pPKey2->aMem[0].n, nStr );
4812     res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4813 
4814     if( res>0 ){
4815       res = pPKey2->r2;
4816     }else if( res<0 ){
4817       res = pPKey2->r1;
4818     }else{
4819       res = nStr - pPKey2->aMem[0].n;
4820       if( res==0 ){
4821         if( pPKey2->nField>1 ){
4822           res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4823         }else{
4824           res = pPKey2->default_rc;
4825           pPKey2->eqSeen = 1;
4826         }
4827       }else if( res>0 ){
4828         res = pPKey2->r2;
4829       }else{
4830         res = pPKey2->r1;
4831       }
4832     }
4833   }
4834 
4835   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4836        || CORRUPT_DB
4837        || pPKey2->pKeyInfo->db->mallocFailed
4838   );
4839   return res;
4840 }
4841 
4842 /*
4843 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4844 ** suitable for comparing serialized records to the unpacked record passed
4845 ** as the only argument.
4846 */
4847 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4848   /* varintRecordCompareInt() and varintRecordCompareString() both assume
4849   ** that the size-of-header varint that occurs at the start of each record
4850   ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4851   ** also assumes that it is safe to overread a buffer by at least the
4852   ** maximum possible legal header size plus 8 bytes. Because there is
4853   ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4854   ** buffer passed to varintRecordCompareInt() this makes it convenient to
4855   ** limit the size of the header to 64 bytes in cases where the first field
4856   ** is an integer.
4857   **
4858   ** The easiest way to enforce this limit is to consider only records with
4859   ** 13 fields or less. If the first field is an integer, the maximum legal
4860   ** header size is (12*5 + 1 + 1) bytes.  */
4861   if( p->pKeyInfo->nAllField<=13 ){
4862     int flags = p->aMem[0].flags;
4863     if( p->pKeyInfo->aSortFlags[0] ){
4864       if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
4865         return sqlite3VdbeRecordCompare;
4866       }
4867       p->r1 = 1;
4868       p->r2 = -1;
4869     }else{
4870       p->r1 = -1;
4871       p->r2 = 1;
4872     }
4873     if( (flags & MEM_Int) ){
4874       return vdbeRecordCompareInt;
4875     }
4876     testcase( flags & MEM_Real );
4877     testcase( flags & MEM_Null );
4878     testcase( flags & MEM_Blob );
4879     if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
4880      && p->pKeyInfo->aColl[0]==0
4881     ){
4882       assert( flags & MEM_Str );
4883       return vdbeRecordCompareString;
4884     }
4885   }
4886 
4887   return sqlite3VdbeRecordCompare;
4888 }
4889 
4890 /*
4891 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4892 ** Read the rowid (the last field in the record) and store it in *rowid.
4893 ** Return SQLITE_OK if everything works, or an error code otherwise.
4894 **
4895 ** pCur might be pointing to text obtained from a corrupt database file.
4896 ** So the content cannot be trusted.  Do appropriate checks on the content.
4897 */
4898 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4899   i64 nCellKey = 0;
4900   int rc;
4901   u32 szHdr;        /* Size of the header */
4902   u32 typeRowid;    /* Serial type of the rowid */
4903   u32 lenRowid;     /* Size of the rowid */
4904   Mem m, v;
4905 
4906   /* Get the size of the index entry.  Only indices entries of less
4907   ** than 2GiB are support - anything large must be database corruption.
4908   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4909   ** this code can safely assume that nCellKey is 32-bits
4910   */
4911   assert( sqlite3BtreeCursorIsValid(pCur) );
4912   nCellKey = sqlite3BtreePayloadSize(pCur);
4913   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4914 
4915   /* Read in the complete content of the index entry */
4916   sqlite3VdbeMemInit(&m, db, 0);
4917   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
4918   if( rc ){
4919     return rc;
4920   }
4921 
4922   /* The index entry must begin with a header size */
4923   getVarint32NR((u8*)m.z, szHdr);
4924   testcase( szHdr==3 );
4925   testcase( szHdr==m.n );
4926   testcase( szHdr>0x7fffffff );
4927   assert( m.n>=0 );
4928   if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
4929     goto idx_rowid_corruption;
4930   }
4931 
4932   /* The last field of the index should be an integer - the ROWID.
4933   ** Verify that the last entry really is an integer. */
4934   getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
4935   testcase( typeRowid==1 );
4936   testcase( typeRowid==2 );
4937   testcase( typeRowid==3 );
4938   testcase( typeRowid==4 );
4939   testcase( typeRowid==5 );
4940   testcase( typeRowid==6 );
4941   testcase( typeRowid==8 );
4942   testcase( typeRowid==9 );
4943   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4944     goto idx_rowid_corruption;
4945   }
4946   lenRowid = sqlite3SmallTypeSizes[typeRowid];
4947   testcase( (u32)m.n==szHdr+lenRowid );
4948   if( unlikely((u32)m.n<szHdr+lenRowid) ){
4949     goto idx_rowid_corruption;
4950   }
4951 
4952   /* Fetch the integer off the end of the index record */
4953   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4954   *rowid = v.u.i;
4955   sqlite3VdbeMemRelease(&m);
4956   return SQLITE_OK;
4957 
4958   /* Jump here if database corruption is detected after m has been
4959   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
4960 idx_rowid_corruption:
4961   testcase( m.szMalloc!=0 );
4962   sqlite3VdbeMemRelease(&m);
4963   return SQLITE_CORRUPT_BKPT;
4964 }
4965 
4966 /*
4967 ** Compare the key of the index entry that cursor pC is pointing to against
4968 ** the key string in pUnpacked.  Write into *pRes a number
4969 ** that is negative, zero, or positive if pC is less than, equal to,
4970 ** or greater than pUnpacked.  Return SQLITE_OK on success.
4971 **
4972 ** pUnpacked is either created without a rowid or is truncated so that it
4973 ** omits the rowid at the end.  The rowid at the end of the index entry
4974 ** is ignored as well.  Hence, this routine only compares the prefixes
4975 ** of the keys prior to the final rowid, not the entire key.
4976 */
4977 int sqlite3VdbeIdxKeyCompare(
4978   sqlite3 *db,                     /* Database connection */
4979   VdbeCursor *pC,                  /* The cursor to compare against */
4980   UnpackedRecord *pUnpacked,       /* Unpacked version of key */
4981   int *res                         /* Write the comparison result here */
4982 ){
4983   i64 nCellKey = 0;
4984   int rc;
4985   BtCursor *pCur;
4986   Mem m;
4987 
4988   assert( pC->eCurType==CURTYPE_BTREE );
4989   pCur = pC->uc.pCursor;
4990   assert( sqlite3BtreeCursorIsValid(pCur) );
4991   nCellKey = sqlite3BtreePayloadSize(pCur);
4992   /* nCellKey will always be between 0 and 0xffffffff because of the way
4993   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4994   if( nCellKey<=0 || nCellKey>0x7fffffff ){
4995     *res = 0;
4996     return SQLITE_CORRUPT_BKPT;
4997   }
4998   sqlite3VdbeMemInit(&m, db, 0);
4999   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5000   if( rc ){
5001     return rc;
5002   }
5003   *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
5004   sqlite3VdbeMemRelease(&m);
5005   return SQLITE_OK;
5006 }
5007 
5008 /*
5009 ** This routine sets the value to be returned by subsequent calls to
5010 ** sqlite3_changes() on the database handle 'db'.
5011 */
5012 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){
5013   assert( sqlite3_mutex_held(db->mutex) );
5014   db->nChange = nChange;
5015   db->nTotalChange += nChange;
5016 }
5017 
5018 /*
5019 ** Set a flag in the vdbe to update the change counter when it is finalised
5020 ** or reset.
5021 */
5022 void sqlite3VdbeCountChanges(Vdbe *v){
5023   v->changeCntOn = 1;
5024 }
5025 
5026 /*
5027 ** Mark every prepared statement associated with a database connection
5028 ** as expired.
5029 **
5030 ** An expired statement means that recompilation of the statement is
5031 ** recommend.  Statements expire when things happen that make their
5032 ** programs obsolete.  Removing user-defined functions or collating
5033 ** sequences, or changing an authorization function are the types of
5034 ** things that make prepared statements obsolete.
5035 **
5036 ** If iCode is 1, then expiration is advisory.  The statement should
5037 ** be reprepared before being restarted, but if it is already running
5038 ** it is allowed to run to completion.
5039 **
5040 ** Internally, this function just sets the Vdbe.expired flag on all
5041 ** prepared statements.  The flag is set to 1 for an immediate expiration
5042 ** and set to 2 for an advisory expiration.
5043 */
5044 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
5045   Vdbe *p;
5046   for(p = db->pVdbe; p; p=p->pNext){
5047     p->expired = iCode+1;
5048   }
5049 }
5050 
5051 /*
5052 ** Return the database associated with the Vdbe.
5053 */
5054 sqlite3 *sqlite3VdbeDb(Vdbe *v){
5055   return v->db;
5056 }
5057 
5058 /*
5059 ** Return the SQLITE_PREPARE flags for a Vdbe.
5060 */
5061 u8 sqlite3VdbePrepareFlags(Vdbe *v){
5062   return v->prepFlags;
5063 }
5064 
5065 /*
5066 ** Return a pointer to an sqlite3_value structure containing the value bound
5067 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5068 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5069 ** constants) to the value before returning it.
5070 **
5071 ** The returned value must be freed by the caller using sqlite3ValueFree().
5072 */
5073 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5074   assert( iVar>0 );
5075   if( v ){
5076     Mem *pMem = &v->aVar[iVar-1];
5077     assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5078     if( 0==(pMem->flags & MEM_Null) ){
5079       sqlite3_value *pRet = sqlite3ValueNew(v->db);
5080       if( pRet ){
5081         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5082         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5083       }
5084       return pRet;
5085     }
5086   }
5087   return 0;
5088 }
5089 
5090 /*
5091 ** Configure SQL variable iVar so that binding a new value to it signals
5092 ** to sqlite3_reoptimize() that re-preparing the statement may result
5093 ** in a better query plan.
5094 */
5095 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5096   assert( iVar>0 );
5097   assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5098   if( iVar>=32 ){
5099     v->expmask |= 0x80000000;
5100   }else{
5101     v->expmask |= ((u32)1 << (iVar-1));
5102   }
5103 }
5104 
5105 /*
5106 ** Cause a function to throw an error if it was call from OP_PureFunc
5107 ** rather than OP_Function.
5108 **
5109 ** OP_PureFunc means that the function must be deterministic, and should
5110 ** throw an error if it is given inputs that would make it non-deterministic.
5111 ** This routine is invoked by date/time functions that use non-deterministic
5112 ** features such as 'now'.
5113 */
5114 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5115   const VdbeOp *pOp;
5116 #ifdef SQLITE_ENABLE_STAT4
5117   if( pCtx->pVdbe==0 ) return 1;
5118 #endif
5119   pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5120   if( pOp->opcode==OP_PureFunc ){
5121     const char *zContext;
5122     char *zMsg;
5123     if( pOp->p5 & NC_IsCheck ){
5124       zContext = "a CHECK constraint";
5125     }else if( pOp->p5 & NC_GenCol ){
5126       zContext = "a generated column";
5127     }else{
5128       zContext = "an index";
5129     }
5130     zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5131                            pCtx->pFunc->zName, zContext);
5132     sqlite3_result_error(pCtx, zMsg, -1);
5133     sqlite3_free(zMsg);
5134     return 0;
5135   }
5136   return 1;
5137 }
5138 
5139 #ifndef SQLITE_OMIT_VIRTUALTABLE
5140 /*
5141 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5142 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5143 ** in memory obtained from sqlite3DbMalloc).
5144 */
5145 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5146   if( pVtab->zErrMsg ){
5147     sqlite3 *db = p->db;
5148     sqlite3DbFree(db, p->zErrMsg);
5149     p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5150     sqlite3_free(pVtab->zErrMsg);
5151     pVtab->zErrMsg = 0;
5152   }
5153 }
5154 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5155 
5156 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5157 
5158 /*
5159 ** If the second argument is not NULL, release any allocations associated
5160 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5161 ** structure itself, using sqlite3DbFree().
5162 **
5163 ** This function is used to free UnpackedRecord structures allocated by
5164 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5165 */
5166 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5167   if( p ){
5168     int i;
5169     for(i=0; i<nField; i++){
5170       Mem *pMem = &p->aMem[i];
5171       if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
5172     }
5173     sqlite3DbFreeNN(db, p);
5174   }
5175 }
5176 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5177 
5178 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5179 /*
5180 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5181 ** then cursor passed as the second argument should point to the row about
5182 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5183 ** the required value will be read from the row the cursor points to.
5184 */
5185 void sqlite3VdbePreUpdateHook(
5186   Vdbe *v,                        /* Vdbe pre-update hook is invoked by */
5187   VdbeCursor *pCsr,               /* Cursor to grab old.* values from */
5188   int op,                         /* SQLITE_INSERT, UPDATE or DELETE */
5189   const char *zDb,                /* Database name */
5190   Table *pTab,                    /* Modified table */
5191   i64 iKey1,                      /* Initial key value */
5192   int iReg,                       /* Register for new.* record */
5193   int iBlobWrite
5194 ){
5195   sqlite3 *db = v->db;
5196   i64 iKey2;
5197   PreUpdate preupdate;
5198   const char *zTbl = pTab->zName;
5199   static const u8 fakeSortOrder = 0;
5200 
5201   assert( db->pPreUpdate==0 );
5202   memset(&preupdate, 0, sizeof(PreUpdate));
5203   if( HasRowid(pTab)==0 ){
5204     iKey1 = iKey2 = 0;
5205     preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5206   }else{
5207     if( op==SQLITE_UPDATE ){
5208       iKey2 = v->aMem[iReg].u.i;
5209     }else{
5210       iKey2 = iKey1;
5211     }
5212   }
5213 
5214   assert( pCsr->nField==pTab->nCol
5215        || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
5216   );
5217 
5218   preupdate.v = v;
5219   preupdate.pCsr = pCsr;
5220   preupdate.op = op;
5221   preupdate.iNewReg = iReg;
5222   preupdate.keyinfo.db = db;
5223   preupdate.keyinfo.enc = ENC(db);
5224   preupdate.keyinfo.nKeyField = pTab->nCol;
5225   preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5226   preupdate.iKey1 = iKey1;
5227   preupdate.iKey2 = iKey2;
5228   preupdate.pTab = pTab;
5229   preupdate.iBlobWrite = iBlobWrite;
5230 
5231   db->pPreUpdate = &preupdate;
5232   db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5233   db->pPreUpdate = 0;
5234   sqlite3DbFree(db, preupdate.aRecord);
5235   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5236   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5237   if( preupdate.aNew ){
5238     int i;
5239     for(i=0; i<pCsr->nField; i++){
5240       sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5241     }
5242     sqlite3DbFreeNN(db, preupdate.aNew);
5243   }
5244 }
5245 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5246