1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* 19 ** Create a new virtual database engine. 20 */ 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 22 sqlite3 *db = pParse->db; 23 Vdbe *p; 24 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 25 if( p==0 ) return 0; 26 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 27 p->db = db; 28 if( db->pVdbe ){ 29 db->pVdbe->pPrev = p; 30 } 31 p->pNext = db->pVdbe; 32 p->pPrev = 0; 33 db->pVdbe = p; 34 p->magic = VDBE_MAGIC_INIT; 35 p->pParse = pParse; 36 pParse->pVdbe = p; 37 assert( pParse->aLabel==0 ); 38 assert( pParse->nLabel==0 ); 39 assert( pParse->nOpAlloc==0 ); 40 assert( pParse->szOpAlloc==0 ); 41 sqlite3VdbeAddOp2(p, OP_Init, 0, 1); 42 return p; 43 } 44 45 /* 46 ** Change the error string stored in Vdbe.zErrMsg 47 */ 48 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 49 va_list ap; 50 sqlite3DbFree(p->db, p->zErrMsg); 51 va_start(ap, zFormat); 52 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 53 va_end(ap); 54 } 55 56 /* 57 ** Remember the SQL string for a prepared statement. 58 */ 59 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 60 if( p==0 ) return; 61 p->prepFlags = prepFlags; 62 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 63 p->expmask = 0; 64 } 65 assert( p->zSql==0 ); 66 p->zSql = sqlite3DbStrNDup(p->db, z, n); 67 } 68 69 /* 70 ** Swap all content between two VDBE structures. 71 */ 72 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 73 Vdbe tmp, *pTmp; 74 char *zTmp; 75 assert( pA->db==pB->db ); 76 tmp = *pA; 77 *pA = *pB; 78 *pB = tmp; 79 pTmp = pA->pNext; 80 pA->pNext = pB->pNext; 81 pB->pNext = pTmp; 82 pTmp = pA->pPrev; 83 pA->pPrev = pB->pPrev; 84 pB->pPrev = pTmp; 85 zTmp = pA->zSql; 86 pA->zSql = pB->zSql; 87 pB->zSql = zTmp; 88 pB->expmask = pA->expmask; 89 pB->prepFlags = pA->prepFlags; 90 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 91 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 92 } 93 94 /* 95 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 96 ** than its current size. nOp is guaranteed to be less than or equal 97 ** to 1024/sizeof(Op). 98 ** 99 ** If an out-of-memory error occurs while resizing the array, return 100 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain 101 ** unchanged (this is so that any opcodes already allocated can be 102 ** correctly deallocated along with the rest of the Vdbe). 103 */ 104 static int growOpArray(Vdbe *v, int nOp){ 105 VdbeOp *pNew; 106 Parse *p = v->pParse; 107 108 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 109 ** more frequent reallocs and hence provide more opportunities for 110 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 111 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 112 ** by the minimum* amount required until the size reaches 512. Normal 113 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 114 ** size of the op array or add 1KB of space, whichever is smaller. */ 115 #ifdef SQLITE_TEST_REALLOC_STRESS 116 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); 117 #else 118 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 119 UNUSED_PARAMETER(nOp); 120 #endif 121 122 /* Ensure that the size of a VDBE does not grow too large */ 123 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 124 sqlite3OomFault(p->db); 125 return SQLITE_NOMEM; 126 } 127 128 assert( nOp<=(1024/sizeof(Op)) ); 129 assert( nNew>=(p->nOpAlloc+nOp) ); 130 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 131 if( pNew ){ 132 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 133 p->nOpAlloc = p->szOpAlloc/sizeof(Op); 134 v->aOp = pNew; 135 } 136 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 137 } 138 139 #ifdef SQLITE_DEBUG 140 /* This routine is just a convenient place to set a breakpoint that will 141 ** fire after each opcode is inserted and displayed using 142 ** "PRAGMA vdbe_addoptrace=on". 143 */ 144 static void test_addop_breakpoint(void){ 145 static int n = 0; 146 n++; 147 } 148 #endif 149 150 /* 151 ** Add a new instruction to the list of instructions current in the 152 ** VDBE. Return the address of the new instruction. 153 ** 154 ** Parameters: 155 ** 156 ** p Pointer to the VDBE 157 ** 158 ** op The opcode for this instruction 159 ** 160 ** p1, p2, p3 Operands 161 ** 162 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 163 ** the sqlite3VdbeChangeP4() function to change the value of the P4 164 ** operand. 165 */ 166 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 167 assert( p->pParse->nOpAlloc<=p->nOp ); 168 if( growOpArray(p, 1) ) return 1; 169 assert( p->pParse->nOpAlloc>p->nOp ); 170 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 171 } 172 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 173 int i; 174 VdbeOp *pOp; 175 176 i = p->nOp; 177 assert( p->magic==VDBE_MAGIC_INIT ); 178 assert( op>=0 && op<0xff ); 179 if( p->pParse->nOpAlloc<=i ){ 180 return growOp3(p, op, p1, p2, p3); 181 } 182 p->nOp++; 183 pOp = &p->aOp[i]; 184 pOp->opcode = (u8)op; 185 pOp->p5 = 0; 186 pOp->p1 = p1; 187 pOp->p2 = p2; 188 pOp->p3 = p3; 189 pOp->p4.p = 0; 190 pOp->p4type = P4_NOTUSED; 191 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 192 pOp->zComment = 0; 193 #endif 194 #ifdef SQLITE_DEBUG 195 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 196 int jj, kk; 197 Parse *pParse = p->pParse; 198 for(jj=kk=0; jj<pParse->nColCache; jj++){ 199 struct yColCache *x = pParse->aColCache + jj; 200 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); 201 kk++; 202 } 203 if( kk ) printf("\n"); 204 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 205 test_addop_breakpoint(); 206 } 207 #endif 208 #ifdef VDBE_PROFILE 209 pOp->cycles = 0; 210 pOp->cnt = 0; 211 #endif 212 #ifdef SQLITE_VDBE_COVERAGE 213 pOp->iSrcLine = 0; 214 #endif 215 return i; 216 } 217 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 218 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 219 } 220 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 221 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 222 } 223 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 224 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 225 } 226 227 /* Generate code for an unconditional jump to instruction iDest 228 */ 229 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 230 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 231 } 232 233 /* Generate code to cause the string zStr to be loaded into 234 ** register iDest 235 */ 236 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 237 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 238 } 239 240 /* 241 ** Generate code that initializes multiple registers to string or integer 242 ** constants. The registers begin with iDest and increase consecutively. 243 ** One register is initialized for each characgter in zTypes[]. For each 244 ** "s" character in zTypes[], the register is a string if the argument is 245 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 246 ** in zTypes[], the register is initialized to an integer. 247 ** 248 ** If the input string does not end with "X" then an OP_ResultRow instruction 249 ** is generated for the values inserted. 250 */ 251 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 252 va_list ap; 253 int i; 254 char c; 255 va_start(ap, zTypes); 256 for(i=0; (c = zTypes[i])!=0; i++){ 257 if( c=='s' ){ 258 const char *z = va_arg(ap, const char*); 259 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 260 }else if( c=='i' ){ 261 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 262 }else{ 263 goto skip_op_resultrow; 264 } 265 } 266 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 267 skip_op_resultrow: 268 va_end(ap); 269 } 270 271 /* 272 ** Add an opcode that includes the p4 value as a pointer. 273 */ 274 int sqlite3VdbeAddOp4( 275 Vdbe *p, /* Add the opcode to this VM */ 276 int op, /* The new opcode */ 277 int p1, /* The P1 operand */ 278 int p2, /* The P2 operand */ 279 int p3, /* The P3 operand */ 280 const char *zP4, /* The P4 operand */ 281 int p4type /* P4 operand type */ 282 ){ 283 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 284 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 285 return addr; 286 } 287 288 /* 289 ** Add an opcode that includes the p4 value with a P4_INT64 or 290 ** P4_REAL type. 291 */ 292 int sqlite3VdbeAddOp4Dup8( 293 Vdbe *p, /* Add the opcode to this VM */ 294 int op, /* The new opcode */ 295 int p1, /* The P1 operand */ 296 int p2, /* The P2 operand */ 297 int p3, /* The P3 operand */ 298 const u8 *zP4, /* The P4 operand */ 299 int p4type /* P4 operand type */ 300 ){ 301 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 302 if( p4copy ) memcpy(p4copy, zP4, 8); 303 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 304 } 305 306 /* 307 ** Add an OP_ParseSchema opcode. This routine is broken out from 308 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 309 ** as having been used. 310 ** 311 ** The zWhere string must have been obtained from sqlite3_malloc(). 312 ** This routine will take ownership of the allocated memory. 313 */ 314 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 315 int j; 316 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 317 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 318 } 319 320 /* 321 ** Add an opcode that includes the p4 value as an integer. 322 */ 323 int sqlite3VdbeAddOp4Int( 324 Vdbe *p, /* Add the opcode to this VM */ 325 int op, /* The new opcode */ 326 int p1, /* The P1 operand */ 327 int p2, /* The P2 operand */ 328 int p3, /* The P3 operand */ 329 int p4 /* The P4 operand as an integer */ 330 ){ 331 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 332 if( p->db->mallocFailed==0 ){ 333 VdbeOp *pOp = &p->aOp[addr]; 334 pOp->p4type = P4_INT32; 335 pOp->p4.i = p4; 336 } 337 return addr; 338 } 339 340 /* Insert the end of a co-routine 341 */ 342 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 343 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 344 345 /* Clear the temporary register cache, thereby ensuring that each 346 ** co-routine has its own independent set of registers, because co-routines 347 ** might expect their registers to be preserved across an OP_Yield, and 348 ** that could cause problems if two or more co-routines are using the same 349 ** temporary register. 350 */ 351 v->pParse->nTempReg = 0; 352 v->pParse->nRangeReg = 0; 353 } 354 355 /* 356 ** Create a new symbolic label for an instruction that has yet to be 357 ** coded. The symbolic label is really just a negative number. The 358 ** label can be used as the P2 value of an operation. Later, when 359 ** the label is resolved to a specific address, the VDBE will scan 360 ** through its operation list and change all values of P2 which match 361 ** the label into the resolved address. 362 ** 363 ** The VDBE knows that a P2 value is a label because labels are 364 ** always negative and P2 values are suppose to be non-negative. 365 ** Hence, a negative P2 value is a label that has yet to be resolved. 366 ** 367 ** Zero is returned if a malloc() fails. 368 */ 369 int sqlite3VdbeMakeLabel(Vdbe *v){ 370 Parse *p = v->pParse; 371 int i = p->nLabel++; 372 assert( v->magic==VDBE_MAGIC_INIT ); 373 if( (i & (i-1))==0 ){ 374 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 375 (i*2+1)*sizeof(p->aLabel[0])); 376 } 377 if( p->aLabel ){ 378 p->aLabel[i] = -1; 379 } 380 return ADDR(i); 381 } 382 383 /* 384 ** Resolve label "x" to be the address of the next instruction to 385 ** be inserted. The parameter "x" must have been obtained from 386 ** a prior call to sqlite3VdbeMakeLabel(). 387 */ 388 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 389 Parse *p = v->pParse; 390 int j = ADDR(x); 391 assert( v->magic==VDBE_MAGIC_INIT ); 392 assert( j<p->nLabel ); 393 assert( j>=0 ); 394 if( p->aLabel ){ 395 #ifdef SQLITE_DEBUG 396 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 397 printf("RESOLVE LABEL %d to %d\n", x, v->nOp); 398 } 399 #endif 400 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ 401 p->aLabel[j] = v->nOp; 402 } 403 } 404 405 #ifdef SQLITE_COVERAGE_TEST 406 /* 407 ** Return TRUE if and only if the label x has already been resolved. 408 ** Return FALSE (zero) if label x is still unresolved. 409 ** 410 ** This routine is only used inside of testcase() macros, and so it 411 ** only exists when measuring test coverage. 412 */ 413 int sqlite3VdbeLabelHasBeenResolved(Vdbe *v, int x){ 414 return v->pParse->aLabel && v->pParse->aLabel[ADDR(x)]>=0; 415 } 416 #endif /* SQLITE_COVERAGE_TEST */ 417 418 /* 419 ** Mark the VDBE as one that can only be run one time. 420 */ 421 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 422 p->runOnlyOnce = 1; 423 } 424 425 /* 426 ** Mark the VDBE as one that can only be run multiple times. 427 */ 428 void sqlite3VdbeReusable(Vdbe *p){ 429 p->runOnlyOnce = 0; 430 } 431 432 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 433 434 /* 435 ** The following type and function are used to iterate through all opcodes 436 ** in a Vdbe main program and each of the sub-programs (triggers) it may 437 ** invoke directly or indirectly. It should be used as follows: 438 ** 439 ** Op *pOp; 440 ** VdbeOpIter sIter; 441 ** 442 ** memset(&sIter, 0, sizeof(sIter)); 443 ** sIter.v = v; // v is of type Vdbe* 444 ** while( (pOp = opIterNext(&sIter)) ){ 445 ** // Do something with pOp 446 ** } 447 ** sqlite3DbFree(v->db, sIter.apSub); 448 ** 449 */ 450 typedef struct VdbeOpIter VdbeOpIter; 451 struct VdbeOpIter { 452 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 453 SubProgram **apSub; /* Array of subprograms */ 454 int nSub; /* Number of entries in apSub */ 455 int iAddr; /* Address of next instruction to return */ 456 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 457 }; 458 static Op *opIterNext(VdbeOpIter *p){ 459 Vdbe *v = p->v; 460 Op *pRet = 0; 461 Op *aOp; 462 int nOp; 463 464 if( p->iSub<=p->nSub ){ 465 466 if( p->iSub==0 ){ 467 aOp = v->aOp; 468 nOp = v->nOp; 469 }else{ 470 aOp = p->apSub[p->iSub-1]->aOp; 471 nOp = p->apSub[p->iSub-1]->nOp; 472 } 473 assert( p->iAddr<nOp ); 474 475 pRet = &aOp[p->iAddr]; 476 p->iAddr++; 477 if( p->iAddr==nOp ){ 478 p->iSub++; 479 p->iAddr = 0; 480 } 481 482 if( pRet->p4type==P4_SUBPROGRAM ){ 483 int nByte = (p->nSub+1)*sizeof(SubProgram*); 484 int j; 485 for(j=0; j<p->nSub; j++){ 486 if( p->apSub[j]==pRet->p4.pProgram ) break; 487 } 488 if( j==p->nSub ){ 489 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 490 if( !p->apSub ){ 491 pRet = 0; 492 }else{ 493 p->apSub[p->nSub++] = pRet->p4.pProgram; 494 } 495 } 496 } 497 } 498 499 return pRet; 500 } 501 502 /* 503 ** Check if the program stored in the VM associated with pParse may 504 ** throw an ABORT exception (causing the statement, but not entire transaction 505 ** to be rolled back). This condition is true if the main program or any 506 ** sub-programs contains any of the following: 507 ** 508 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 509 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 510 ** * OP_Destroy 511 ** * OP_VUpdate 512 ** * OP_VRename 513 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 514 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 515 ** (for CREATE TABLE AS SELECT ...) 516 ** 517 ** Then check that the value of Parse.mayAbort is true if an 518 ** ABORT may be thrown, or false otherwise. Return true if it does 519 ** match, or false otherwise. This function is intended to be used as 520 ** part of an assert statement in the compiler. Similar to: 521 ** 522 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 523 */ 524 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 525 int hasAbort = 0; 526 int hasFkCounter = 0; 527 int hasCreateTable = 0; 528 int hasInitCoroutine = 0; 529 Op *pOp; 530 VdbeOpIter sIter; 531 memset(&sIter, 0, sizeof(sIter)); 532 sIter.v = v; 533 534 while( (pOp = opIterNext(&sIter))!=0 ){ 535 int opcode = pOp->opcode; 536 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 537 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 538 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 539 ){ 540 hasAbort = 1; 541 break; 542 } 543 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; 544 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 545 #ifndef SQLITE_OMIT_FOREIGN_KEY 546 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 547 hasFkCounter = 1; 548 } 549 #endif 550 } 551 sqlite3DbFree(v->db, sIter.apSub); 552 553 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 554 ** If malloc failed, then the while() loop above may not have iterated 555 ** through all opcodes and hasAbort may be set incorrectly. Return 556 ** true for this case to prevent the assert() in the callers frame 557 ** from failing. */ 558 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 559 || (hasCreateTable && hasInitCoroutine) ); 560 } 561 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 562 563 /* 564 ** This routine is called after all opcodes have been inserted. It loops 565 ** through all the opcodes and fixes up some details. 566 ** 567 ** (1) For each jump instruction with a negative P2 value (a label) 568 ** resolve the P2 value to an actual address. 569 ** 570 ** (2) Compute the maximum number of arguments used by any SQL function 571 ** and store that value in *pMaxFuncArgs. 572 ** 573 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 574 ** indicate what the prepared statement actually does. 575 ** 576 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 577 ** 578 ** (5) Reclaim the memory allocated for storing labels. 579 ** 580 ** This routine will only function correctly if the mkopcodeh.tcl generator 581 ** script numbers the opcodes correctly. Changes to this routine must be 582 ** coordinated with changes to mkopcodeh.tcl. 583 */ 584 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 585 int nMaxArgs = *pMaxFuncArgs; 586 Op *pOp; 587 Parse *pParse = p->pParse; 588 int *aLabel = pParse->aLabel; 589 p->readOnly = 1; 590 p->bIsReader = 0; 591 pOp = &p->aOp[p->nOp-1]; 592 while(1){ 593 594 /* Only JUMP opcodes and the short list of special opcodes in the switch 595 ** below need to be considered. The mkopcodeh.tcl generator script groups 596 ** all these opcodes together near the front of the opcode list. Skip 597 ** any opcode that does not need processing by virtual of the fact that 598 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 599 */ 600 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 601 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 602 ** cases from this switch! */ 603 switch( pOp->opcode ){ 604 case OP_Transaction: { 605 if( pOp->p2!=0 ) p->readOnly = 0; 606 /* fall thru */ 607 } 608 case OP_AutoCommit: 609 case OP_Savepoint: { 610 p->bIsReader = 1; 611 break; 612 } 613 #ifndef SQLITE_OMIT_WAL 614 case OP_Checkpoint: 615 #endif 616 case OP_Vacuum: 617 case OP_JournalMode: { 618 p->readOnly = 0; 619 p->bIsReader = 1; 620 break; 621 } 622 case OP_Next: 623 case OP_NextIfOpen: 624 case OP_SorterNext: { 625 pOp->p4.xAdvance = sqlite3BtreeNext; 626 pOp->p4type = P4_ADVANCE; 627 /* The code generator never codes any of these opcodes as a jump 628 ** to a label. They are always coded as a jump backwards to a 629 ** known address */ 630 assert( pOp->p2>=0 ); 631 break; 632 } 633 case OP_Prev: 634 case OP_PrevIfOpen: { 635 pOp->p4.xAdvance = sqlite3BtreePrevious; 636 pOp->p4type = P4_ADVANCE; 637 /* The code generator never codes any of these opcodes as a jump 638 ** to a label. They are always coded as a jump backwards to a 639 ** known address */ 640 assert( pOp->p2>=0 ); 641 break; 642 } 643 #ifndef SQLITE_OMIT_VIRTUALTABLE 644 case OP_VUpdate: { 645 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 646 break; 647 } 648 case OP_VFilter: { 649 int n; 650 assert( (pOp - p->aOp) >= 3 ); 651 assert( pOp[-1].opcode==OP_Integer ); 652 n = pOp[-1].p1; 653 if( n>nMaxArgs ) nMaxArgs = n; 654 /* Fall through into the default case */ 655 } 656 #endif 657 default: { 658 if( pOp->p2<0 ){ 659 /* The mkopcodeh.tcl script has so arranged things that the only 660 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 661 ** have non-negative values for P2. */ 662 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 663 assert( ADDR(pOp->p2)<pParse->nLabel ); 664 pOp->p2 = aLabel[ADDR(pOp->p2)]; 665 } 666 break; 667 } 668 } 669 /* The mkopcodeh.tcl script has so arranged things that the only 670 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 671 ** have non-negative values for P2. */ 672 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 673 } 674 if( pOp==p->aOp ) break; 675 pOp--; 676 } 677 sqlite3DbFree(p->db, pParse->aLabel); 678 pParse->aLabel = 0; 679 pParse->nLabel = 0; 680 *pMaxFuncArgs = nMaxArgs; 681 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 682 } 683 684 /* 685 ** Return the address of the next instruction to be inserted. 686 */ 687 int sqlite3VdbeCurrentAddr(Vdbe *p){ 688 assert( p->magic==VDBE_MAGIC_INIT ); 689 return p->nOp; 690 } 691 692 /* 693 ** Verify that at least N opcode slots are available in p without 694 ** having to malloc for more space (except when compiled using 695 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 696 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 697 ** fail due to a OOM fault and hence that the return value from 698 ** sqlite3VdbeAddOpList() will always be non-NULL. 699 */ 700 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 701 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 702 assert( p->nOp + N <= p->pParse->nOpAlloc ); 703 } 704 #endif 705 706 /* 707 ** Verify that the VM passed as the only argument does not contain 708 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 709 ** by code in pragma.c to ensure that the implementation of certain 710 ** pragmas comports with the flags specified in the mkpragmatab.tcl 711 ** script. 712 */ 713 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 714 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 715 int i; 716 for(i=0; i<p->nOp; i++){ 717 assert( p->aOp[i].opcode!=OP_ResultRow ); 718 } 719 } 720 #endif 721 722 /* 723 ** This function returns a pointer to the array of opcodes associated with 724 ** the Vdbe passed as the first argument. It is the callers responsibility 725 ** to arrange for the returned array to be eventually freed using the 726 ** vdbeFreeOpArray() function. 727 ** 728 ** Before returning, *pnOp is set to the number of entries in the returned 729 ** array. Also, *pnMaxArg is set to the larger of its current value and 730 ** the number of entries in the Vdbe.apArg[] array required to execute the 731 ** returned program. 732 */ 733 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 734 VdbeOp *aOp = p->aOp; 735 assert( aOp && !p->db->mallocFailed ); 736 737 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 738 assert( DbMaskAllZero(p->btreeMask) ); 739 740 resolveP2Values(p, pnMaxArg); 741 *pnOp = p->nOp; 742 p->aOp = 0; 743 return aOp; 744 } 745 746 /* 747 ** Add a whole list of operations to the operation stack. Return a 748 ** pointer to the first operation inserted. 749 ** 750 ** Non-zero P2 arguments to jump instructions are automatically adjusted 751 ** so that the jump target is relative to the first operation inserted. 752 */ 753 VdbeOp *sqlite3VdbeAddOpList( 754 Vdbe *p, /* Add opcodes to the prepared statement */ 755 int nOp, /* Number of opcodes to add */ 756 VdbeOpList const *aOp, /* The opcodes to be added */ 757 int iLineno /* Source-file line number of first opcode */ 758 ){ 759 int i; 760 VdbeOp *pOut, *pFirst; 761 assert( nOp>0 ); 762 assert( p->magic==VDBE_MAGIC_INIT ); 763 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ 764 return 0; 765 } 766 pFirst = pOut = &p->aOp[p->nOp]; 767 for(i=0; i<nOp; i++, aOp++, pOut++){ 768 pOut->opcode = aOp->opcode; 769 pOut->p1 = aOp->p1; 770 pOut->p2 = aOp->p2; 771 assert( aOp->p2>=0 ); 772 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 773 pOut->p2 += p->nOp; 774 } 775 pOut->p3 = aOp->p3; 776 pOut->p4type = P4_NOTUSED; 777 pOut->p4.p = 0; 778 pOut->p5 = 0; 779 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 780 pOut->zComment = 0; 781 #endif 782 #ifdef SQLITE_VDBE_COVERAGE 783 pOut->iSrcLine = iLineno+i; 784 #else 785 (void)iLineno; 786 #endif 787 #ifdef SQLITE_DEBUG 788 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 789 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 790 } 791 #endif 792 } 793 p->nOp += nOp; 794 return pFirst; 795 } 796 797 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 798 /* 799 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 800 */ 801 void sqlite3VdbeScanStatus( 802 Vdbe *p, /* VM to add scanstatus() to */ 803 int addrExplain, /* Address of OP_Explain (or 0) */ 804 int addrLoop, /* Address of loop counter */ 805 int addrVisit, /* Address of rows visited counter */ 806 LogEst nEst, /* Estimated number of output rows */ 807 const char *zName /* Name of table or index being scanned */ 808 ){ 809 int nByte = (p->nScan+1) * sizeof(ScanStatus); 810 ScanStatus *aNew; 811 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 812 if( aNew ){ 813 ScanStatus *pNew = &aNew[p->nScan++]; 814 pNew->addrExplain = addrExplain; 815 pNew->addrLoop = addrLoop; 816 pNew->addrVisit = addrVisit; 817 pNew->nEst = nEst; 818 pNew->zName = sqlite3DbStrDup(p->db, zName); 819 p->aScan = aNew; 820 } 821 } 822 #endif 823 824 825 /* 826 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 827 ** for a specific instruction. 828 */ 829 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){ 830 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 831 } 832 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ 833 sqlite3VdbeGetOp(p,addr)->p1 = val; 834 } 835 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ 836 sqlite3VdbeGetOp(p,addr)->p2 = val; 837 } 838 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ 839 sqlite3VdbeGetOp(p,addr)->p3 = val; 840 } 841 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 842 assert( p->nOp>0 || p->db->mallocFailed ); 843 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 844 } 845 846 /* 847 ** Change the P2 operand of instruction addr so that it points to 848 ** the address of the next instruction to be coded. 849 */ 850 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 851 sqlite3VdbeChangeP2(p, addr, p->nOp); 852 } 853 854 855 /* 856 ** If the input FuncDef structure is ephemeral, then free it. If 857 ** the FuncDef is not ephermal, then do nothing. 858 */ 859 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 860 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 861 sqlite3DbFreeNN(db, pDef); 862 } 863 } 864 865 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 866 867 /* 868 ** Delete a P4 value if necessary. 869 */ 870 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 871 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 872 sqlite3DbFreeNN(db, p); 873 } 874 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 875 freeEphemeralFunction(db, p->pFunc); 876 sqlite3DbFreeNN(db, p); 877 } 878 static void freeP4(sqlite3 *db, int p4type, void *p4){ 879 assert( db ); 880 switch( p4type ){ 881 case P4_FUNCCTX: { 882 freeP4FuncCtx(db, (sqlite3_context*)p4); 883 break; 884 } 885 case P4_REAL: 886 case P4_INT64: 887 case P4_DYNAMIC: 888 case P4_DYNBLOB: 889 case P4_INTARRAY: { 890 sqlite3DbFree(db, p4); 891 break; 892 } 893 case P4_KEYINFO: { 894 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 895 break; 896 } 897 #ifdef SQLITE_ENABLE_CURSOR_HINTS 898 case P4_EXPR: { 899 sqlite3ExprDelete(db, (Expr*)p4); 900 break; 901 } 902 #endif 903 case P4_FUNCDEF: { 904 freeEphemeralFunction(db, (FuncDef*)p4); 905 break; 906 } 907 case P4_MEM: { 908 if( db->pnBytesFreed==0 ){ 909 sqlite3ValueFree((sqlite3_value*)p4); 910 }else{ 911 freeP4Mem(db, (Mem*)p4); 912 } 913 break; 914 } 915 case P4_VTAB : { 916 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 917 break; 918 } 919 } 920 } 921 922 /* 923 ** Free the space allocated for aOp and any p4 values allocated for the 924 ** opcodes contained within. If aOp is not NULL it is assumed to contain 925 ** nOp entries. 926 */ 927 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 928 if( aOp ){ 929 Op *pOp; 930 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){ 931 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 932 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 933 sqlite3DbFree(db, pOp->zComment); 934 #endif 935 } 936 sqlite3DbFreeNN(db, aOp); 937 } 938 } 939 940 /* 941 ** Link the SubProgram object passed as the second argument into the linked 942 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 943 ** objects when the VM is no longer required. 944 */ 945 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 946 p->pNext = pVdbe->pProgram; 947 pVdbe->pProgram = p; 948 } 949 950 /* 951 ** Change the opcode at addr into OP_Noop 952 */ 953 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 954 VdbeOp *pOp; 955 if( p->db->mallocFailed ) return 0; 956 assert( addr>=0 && addr<p->nOp ); 957 pOp = &p->aOp[addr]; 958 freeP4(p->db, pOp->p4type, pOp->p4.p); 959 pOp->p4type = P4_NOTUSED; 960 pOp->p4.z = 0; 961 pOp->opcode = OP_Noop; 962 return 1; 963 } 964 965 /* 966 ** If the last opcode is "op" and it is not a jump destination, 967 ** then remove it. Return true if and only if an opcode was removed. 968 */ 969 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 970 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 971 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 972 }else{ 973 return 0; 974 } 975 } 976 977 /* 978 ** Change the value of the P4 operand for a specific instruction. 979 ** This routine is useful when a large program is loaded from a 980 ** static array using sqlite3VdbeAddOpList but we want to make a 981 ** few minor changes to the program. 982 ** 983 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 984 ** the string is made into memory obtained from sqlite3_malloc(). 985 ** A value of n==0 means copy bytes of zP4 up to and including the 986 ** first null byte. If n>0 then copy n+1 bytes of zP4. 987 ** 988 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 989 ** to a string or structure that is guaranteed to exist for the lifetime of 990 ** the Vdbe. In these cases we can just copy the pointer. 991 ** 992 ** If addr<0 then change P4 on the most recently inserted instruction. 993 */ 994 static void SQLITE_NOINLINE vdbeChangeP4Full( 995 Vdbe *p, 996 Op *pOp, 997 const char *zP4, 998 int n 999 ){ 1000 if( pOp->p4type ){ 1001 freeP4(p->db, pOp->p4type, pOp->p4.p); 1002 pOp->p4type = 0; 1003 pOp->p4.p = 0; 1004 } 1005 if( n<0 ){ 1006 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 1007 }else{ 1008 if( n==0 ) n = sqlite3Strlen30(zP4); 1009 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 1010 pOp->p4type = P4_DYNAMIC; 1011 } 1012 } 1013 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 1014 Op *pOp; 1015 sqlite3 *db; 1016 assert( p!=0 ); 1017 db = p->db; 1018 assert( p->magic==VDBE_MAGIC_INIT ); 1019 assert( p->aOp!=0 || db->mallocFailed ); 1020 if( db->mallocFailed ){ 1021 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 1022 return; 1023 } 1024 assert( p->nOp>0 ); 1025 assert( addr<p->nOp ); 1026 if( addr<0 ){ 1027 addr = p->nOp - 1; 1028 } 1029 pOp = &p->aOp[addr]; 1030 if( n>=0 || pOp->p4type ){ 1031 vdbeChangeP4Full(p, pOp, zP4, n); 1032 return; 1033 } 1034 if( n==P4_INT32 ){ 1035 /* Note: this cast is safe, because the origin data point was an int 1036 ** that was cast to a (const char *). */ 1037 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 1038 pOp->p4type = P4_INT32; 1039 }else if( zP4!=0 ){ 1040 assert( n<0 ); 1041 pOp->p4.p = (void*)zP4; 1042 pOp->p4type = (signed char)n; 1043 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 1044 } 1045 } 1046 1047 /* 1048 ** Change the P4 operand of the most recently coded instruction 1049 ** to the value defined by the arguments. This is a high-speed 1050 ** version of sqlite3VdbeChangeP4(). 1051 ** 1052 ** The P4 operand must not have been previously defined. And the new 1053 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 1054 ** those cases. 1055 */ 1056 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1057 VdbeOp *pOp; 1058 assert( n!=P4_INT32 && n!=P4_VTAB ); 1059 assert( n<=0 ); 1060 if( p->db->mallocFailed ){ 1061 freeP4(p->db, n, pP4); 1062 }else{ 1063 assert( pP4!=0 ); 1064 assert( p->nOp>0 ); 1065 pOp = &p->aOp[p->nOp-1]; 1066 assert( pOp->p4type==P4_NOTUSED ); 1067 pOp->p4type = n; 1068 pOp->p4.p = pP4; 1069 } 1070 } 1071 1072 /* 1073 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1074 ** index given. 1075 */ 1076 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1077 Vdbe *v = pParse->pVdbe; 1078 KeyInfo *pKeyInfo; 1079 assert( v!=0 ); 1080 assert( pIdx!=0 ); 1081 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1082 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1083 } 1084 1085 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1086 /* 1087 ** Change the comment on the most recently coded instruction. Or 1088 ** insert a No-op and add the comment to that new instruction. This 1089 ** makes the code easier to read during debugging. None of this happens 1090 ** in a production build. 1091 */ 1092 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1093 assert( p->nOp>0 || p->aOp==0 ); 1094 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 1095 if( p->nOp ){ 1096 assert( p->aOp ); 1097 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1098 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1099 } 1100 } 1101 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1102 va_list ap; 1103 if( p ){ 1104 va_start(ap, zFormat); 1105 vdbeVComment(p, zFormat, ap); 1106 va_end(ap); 1107 } 1108 } 1109 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1110 va_list ap; 1111 if( p ){ 1112 sqlite3VdbeAddOp0(p, OP_Noop); 1113 va_start(ap, zFormat); 1114 vdbeVComment(p, zFormat, ap); 1115 va_end(ap); 1116 } 1117 } 1118 #endif /* NDEBUG */ 1119 1120 #ifdef SQLITE_VDBE_COVERAGE 1121 /* 1122 ** Set the value if the iSrcLine field for the previously coded instruction. 1123 */ 1124 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1125 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1126 } 1127 #endif /* SQLITE_VDBE_COVERAGE */ 1128 1129 /* 1130 ** Return the opcode for a given address. If the address is -1, then 1131 ** return the most recently inserted opcode. 1132 ** 1133 ** If a memory allocation error has occurred prior to the calling of this 1134 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1135 ** is readable but not writable, though it is cast to a writable value. 1136 ** The return of a dummy opcode allows the call to continue functioning 1137 ** after an OOM fault without having to check to see if the return from 1138 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1139 ** dummy will never be written to. This is verified by code inspection and 1140 ** by running with Valgrind. 1141 */ 1142 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1143 /* C89 specifies that the constant "dummy" will be initialized to all 1144 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1145 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1146 assert( p->magic==VDBE_MAGIC_INIT ); 1147 if( addr<0 ){ 1148 addr = p->nOp - 1; 1149 } 1150 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1151 if( p->db->mallocFailed ){ 1152 return (VdbeOp*)&dummy; 1153 }else{ 1154 return &p->aOp[addr]; 1155 } 1156 } 1157 1158 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1159 /* 1160 ** Return an integer value for one of the parameters to the opcode pOp 1161 ** determined by character c. 1162 */ 1163 static int translateP(char c, const Op *pOp){ 1164 if( c=='1' ) return pOp->p1; 1165 if( c=='2' ) return pOp->p2; 1166 if( c=='3' ) return pOp->p3; 1167 if( c=='4' ) return pOp->p4.i; 1168 return pOp->p5; 1169 } 1170 1171 /* 1172 ** Compute a string for the "comment" field of a VDBE opcode listing. 1173 ** 1174 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1175 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1176 ** absence of other comments, this synopsis becomes the comment on the opcode. 1177 ** Some translation occurs: 1178 ** 1179 ** "PX" -> "r[X]" 1180 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1181 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1182 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1183 */ 1184 static int displayComment( 1185 const Op *pOp, /* The opcode to be commented */ 1186 const char *zP4, /* Previously obtained value for P4 */ 1187 char *zTemp, /* Write result here */ 1188 int nTemp /* Space available in zTemp[] */ 1189 ){ 1190 const char *zOpName; 1191 const char *zSynopsis; 1192 int nOpName; 1193 int ii, jj; 1194 char zAlt[50]; 1195 zOpName = sqlite3OpcodeName(pOp->opcode); 1196 nOpName = sqlite3Strlen30(zOpName); 1197 if( zOpName[nOpName+1] ){ 1198 int seenCom = 0; 1199 char c; 1200 zSynopsis = zOpName += nOpName + 1; 1201 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1202 if( pOp->p5 & SQLITE_STOREP2 ){ 1203 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3); 1204 }else{ 1205 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1206 } 1207 zSynopsis = zAlt; 1208 } 1209 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 1210 if( c=='P' ){ 1211 c = zSynopsis[++ii]; 1212 if( c=='4' ){ 1213 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 1214 }else if( c=='X' ){ 1215 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 1216 seenCom = 1; 1217 }else{ 1218 int v1 = translateP(c, pOp); 1219 int v2; 1220 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 1221 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1222 ii += 3; 1223 jj += sqlite3Strlen30(zTemp+jj); 1224 v2 = translateP(zSynopsis[ii], pOp); 1225 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1226 ii += 2; 1227 v2++; 1228 } 1229 if( v2>1 ){ 1230 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 1231 } 1232 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1233 ii += 4; 1234 } 1235 } 1236 jj += sqlite3Strlen30(zTemp+jj); 1237 }else{ 1238 zTemp[jj++] = c; 1239 } 1240 } 1241 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 1242 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 1243 jj += sqlite3Strlen30(zTemp+jj); 1244 } 1245 if( jj<nTemp ) zTemp[jj] = 0; 1246 }else if( pOp->zComment ){ 1247 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 1248 jj = sqlite3Strlen30(zTemp); 1249 }else{ 1250 zTemp[0] = 0; 1251 jj = 0; 1252 } 1253 return jj; 1254 } 1255 #endif /* SQLITE_DEBUG */ 1256 1257 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1258 /* 1259 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1260 ** that can be displayed in the P4 column of EXPLAIN output. 1261 */ 1262 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1263 const char *zOp = 0; 1264 switch( pExpr->op ){ 1265 case TK_STRING: 1266 sqlite3XPrintf(p, "%Q", pExpr->u.zToken); 1267 break; 1268 case TK_INTEGER: 1269 sqlite3XPrintf(p, "%d", pExpr->u.iValue); 1270 break; 1271 case TK_NULL: 1272 sqlite3XPrintf(p, "NULL"); 1273 break; 1274 case TK_REGISTER: { 1275 sqlite3XPrintf(p, "r[%d]", pExpr->iTable); 1276 break; 1277 } 1278 case TK_COLUMN: { 1279 if( pExpr->iColumn<0 ){ 1280 sqlite3XPrintf(p, "rowid"); 1281 }else{ 1282 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn); 1283 } 1284 break; 1285 } 1286 case TK_LT: zOp = "LT"; break; 1287 case TK_LE: zOp = "LE"; break; 1288 case TK_GT: zOp = "GT"; break; 1289 case TK_GE: zOp = "GE"; break; 1290 case TK_NE: zOp = "NE"; break; 1291 case TK_EQ: zOp = "EQ"; break; 1292 case TK_IS: zOp = "IS"; break; 1293 case TK_ISNOT: zOp = "ISNOT"; break; 1294 case TK_AND: zOp = "AND"; break; 1295 case TK_OR: zOp = "OR"; break; 1296 case TK_PLUS: zOp = "ADD"; break; 1297 case TK_STAR: zOp = "MUL"; break; 1298 case TK_MINUS: zOp = "SUB"; break; 1299 case TK_REM: zOp = "REM"; break; 1300 case TK_BITAND: zOp = "BITAND"; break; 1301 case TK_BITOR: zOp = "BITOR"; break; 1302 case TK_SLASH: zOp = "DIV"; break; 1303 case TK_LSHIFT: zOp = "LSHIFT"; break; 1304 case TK_RSHIFT: zOp = "RSHIFT"; break; 1305 case TK_CONCAT: zOp = "CONCAT"; break; 1306 case TK_UMINUS: zOp = "MINUS"; break; 1307 case TK_UPLUS: zOp = "PLUS"; break; 1308 case TK_BITNOT: zOp = "BITNOT"; break; 1309 case TK_NOT: zOp = "NOT"; break; 1310 case TK_ISNULL: zOp = "ISNULL"; break; 1311 case TK_NOTNULL: zOp = "NOTNULL"; break; 1312 1313 default: 1314 sqlite3XPrintf(p, "%s", "expr"); 1315 break; 1316 } 1317 1318 if( zOp ){ 1319 sqlite3XPrintf(p, "%s(", zOp); 1320 displayP4Expr(p, pExpr->pLeft); 1321 if( pExpr->pRight ){ 1322 sqlite3StrAccumAppend(p, ",", 1); 1323 displayP4Expr(p, pExpr->pRight); 1324 } 1325 sqlite3StrAccumAppend(p, ")", 1); 1326 } 1327 } 1328 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1329 1330 1331 #if VDBE_DISPLAY_P4 1332 /* 1333 ** Compute a string that describes the P4 parameter for an opcode. 1334 ** Use zTemp for any required temporary buffer space. 1335 */ 1336 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 1337 char *zP4 = zTemp; 1338 StrAccum x; 1339 assert( nTemp>=20 ); 1340 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0); 1341 switch( pOp->p4type ){ 1342 case P4_KEYINFO: { 1343 int j; 1344 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1345 assert( pKeyInfo->aSortOrder!=0 ); 1346 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nKeyField); 1347 for(j=0; j<pKeyInfo->nKeyField; j++){ 1348 CollSeq *pColl = pKeyInfo->aColl[j]; 1349 const char *zColl = pColl ? pColl->zName : ""; 1350 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1351 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl); 1352 } 1353 sqlite3StrAccumAppend(&x, ")", 1); 1354 break; 1355 } 1356 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1357 case P4_EXPR: { 1358 displayP4Expr(&x, pOp->p4.pExpr); 1359 break; 1360 } 1361 #endif 1362 case P4_COLLSEQ: { 1363 CollSeq *pColl = pOp->p4.pColl; 1364 sqlite3XPrintf(&x, "(%.20s)", pColl->zName); 1365 break; 1366 } 1367 case P4_FUNCDEF: { 1368 FuncDef *pDef = pOp->p4.pFunc; 1369 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1370 break; 1371 } 1372 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1373 case P4_FUNCCTX: { 1374 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1375 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1376 break; 1377 } 1378 #endif 1379 case P4_INT64: { 1380 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64); 1381 break; 1382 } 1383 case P4_INT32: { 1384 sqlite3XPrintf(&x, "%d", pOp->p4.i); 1385 break; 1386 } 1387 case P4_REAL: { 1388 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal); 1389 break; 1390 } 1391 case P4_MEM: { 1392 Mem *pMem = pOp->p4.pMem; 1393 if( pMem->flags & MEM_Str ){ 1394 zP4 = pMem->z; 1395 }else if( pMem->flags & MEM_Int ){ 1396 sqlite3XPrintf(&x, "%lld", pMem->u.i); 1397 }else if( pMem->flags & MEM_Real ){ 1398 sqlite3XPrintf(&x, "%.16g", pMem->u.r); 1399 }else if( pMem->flags & MEM_Null ){ 1400 zP4 = "NULL"; 1401 }else{ 1402 assert( pMem->flags & MEM_Blob ); 1403 zP4 = "(blob)"; 1404 } 1405 break; 1406 } 1407 #ifndef SQLITE_OMIT_VIRTUALTABLE 1408 case P4_VTAB: { 1409 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1410 sqlite3XPrintf(&x, "vtab:%p", pVtab); 1411 break; 1412 } 1413 #endif 1414 case P4_INTARRAY: { 1415 int i; 1416 int *ai = pOp->p4.ai; 1417 int n = ai[0]; /* The first element of an INTARRAY is always the 1418 ** count of the number of elements to follow */ 1419 for(i=1; i<=n; i++){ 1420 sqlite3XPrintf(&x, ",%d", ai[i]); 1421 } 1422 zTemp[0] = '['; 1423 sqlite3StrAccumAppend(&x, "]", 1); 1424 break; 1425 } 1426 case P4_SUBPROGRAM: { 1427 sqlite3XPrintf(&x, "program"); 1428 break; 1429 } 1430 case P4_DYNBLOB: 1431 case P4_ADVANCE: { 1432 zTemp[0] = 0; 1433 break; 1434 } 1435 case P4_TABLE: { 1436 sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName); 1437 break; 1438 } 1439 default: { 1440 zP4 = pOp->p4.z; 1441 if( zP4==0 ){ 1442 zP4 = zTemp; 1443 zTemp[0] = 0; 1444 } 1445 } 1446 } 1447 sqlite3StrAccumFinish(&x); 1448 assert( zP4!=0 ); 1449 return zP4; 1450 } 1451 #endif /* VDBE_DISPLAY_P4 */ 1452 1453 /* 1454 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1455 ** 1456 ** The prepared statements need to know in advance the complete set of 1457 ** attached databases that will be use. A mask of these databases 1458 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1459 ** p->btreeMask of databases that will require a lock. 1460 */ 1461 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1462 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1463 assert( i<(int)sizeof(p->btreeMask)*8 ); 1464 DbMaskSet(p->btreeMask, i); 1465 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1466 DbMaskSet(p->lockMask, i); 1467 } 1468 } 1469 1470 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1471 /* 1472 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1473 ** this routine obtains the mutex associated with each BtShared structure 1474 ** that may be accessed by the VM passed as an argument. In doing so it also 1475 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1476 ** that the correct busy-handler callback is invoked if required. 1477 ** 1478 ** If SQLite is not threadsafe but does support shared-cache mode, then 1479 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1480 ** of all of BtShared structures accessible via the database handle 1481 ** associated with the VM. 1482 ** 1483 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1484 ** function is a no-op. 1485 ** 1486 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1487 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1488 ** corresponding to btrees that use shared cache. Then the runtime of 1489 ** this routine is N*N. But as N is rarely more than 1, this should not 1490 ** be a problem. 1491 */ 1492 void sqlite3VdbeEnter(Vdbe *p){ 1493 int i; 1494 sqlite3 *db; 1495 Db *aDb; 1496 int nDb; 1497 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1498 db = p->db; 1499 aDb = db->aDb; 1500 nDb = db->nDb; 1501 for(i=0; i<nDb; i++){ 1502 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1503 sqlite3BtreeEnter(aDb[i].pBt); 1504 } 1505 } 1506 } 1507 #endif 1508 1509 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1510 /* 1511 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1512 */ 1513 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1514 int i; 1515 sqlite3 *db; 1516 Db *aDb; 1517 int nDb; 1518 db = p->db; 1519 aDb = db->aDb; 1520 nDb = db->nDb; 1521 for(i=0; i<nDb; i++){ 1522 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1523 sqlite3BtreeLeave(aDb[i].pBt); 1524 } 1525 } 1526 } 1527 void sqlite3VdbeLeave(Vdbe *p){ 1528 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1529 vdbeLeave(p); 1530 } 1531 #endif 1532 1533 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1534 /* 1535 ** Print a single opcode. This routine is used for debugging only. 1536 */ 1537 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ 1538 char *zP4; 1539 char zPtr[50]; 1540 char zCom[100]; 1541 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1542 if( pOut==0 ) pOut = stdout; 1543 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1544 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1545 displayComment(pOp, zP4, zCom, sizeof(zCom)); 1546 #else 1547 zCom[0] = 0; 1548 #endif 1549 /* NB: The sqlite3OpcodeName() function is implemented by code created 1550 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1551 ** information from the vdbe.c source text */ 1552 fprintf(pOut, zFormat1, pc, 1553 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1554 zCom 1555 ); 1556 fflush(pOut); 1557 } 1558 #endif 1559 1560 /* 1561 ** Initialize an array of N Mem element. 1562 */ 1563 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1564 while( (N--)>0 ){ 1565 p->db = db; 1566 p->flags = flags; 1567 p->szMalloc = 0; 1568 #ifdef SQLITE_DEBUG 1569 p->pScopyFrom = 0; 1570 #endif 1571 p++; 1572 } 1573 } 1574 1575 /* 1576 ** Release an array of N Mem elements 1577 */ 1578 static void releaseMemArray(Mem *p, int N){ 1579 if( p && N ){ 1580 Mem *pEnd = &p[N]; 1581 sqlite3 *db = p->db; 1582 if( db->pnBytesFreed ){ 1583 do{ 1584 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1585 }while( (++p)<pEnd ); 1586 return; 1587 } 1588 do{ 1589 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1590 assert( sqlite3VdbeCheckMemInvariants(p) ); 1591 1592 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1593 ** that takes advantage of the fact that the memory cell value is 1594 ** being set to NULL after releasing any dynamic resources. 1595 ** 1596 ** The justification for duplicating code is that according to 1597 ** callgrind, this causes a certain test case to hit the CPU 4.7 1598 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1599 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1600 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1601 ** with no indexes using a single prepared INSERT statement, bind() 1602 ** and reset(). Inserts are grouped into a transaction. 1603 */ 1604 testcase( p->flags & MEM_Agg ); 1605 testcase( p->flags & MEM_Dyn ); 1606 testcase( p->flags & MEM_Frame ); 1607 testcase( p->flags & MEM_RowSet ); 1608 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ 1609 sqlite3VdbeMemRelease(p); 1610 }else if( p->szMalloc ){ 1611 sqlite3DbFreeNN(db, p->zMalloc); 1612 p->szMalloc = 0; 1613 } 1614 1615 p->flags = MEM_Undefined; 1616 }while( (++p)<pEnd ); 1617 } 1618 } 1619 1620 /* 1621 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1622 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1623 */ 1624 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1625 int i; 1626 Mem *aMem = VdbeFrameMem(p); 1627 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1628 for(i=0; i<p->nChildCsr; i++){ 1629 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1630 } 1631 releaseMemArray(aMem, p->nChildMem); 1632 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 1633 sqlite3DbFree(p->v->db, p); 1634 } 1635 1636 #ifndef SQLITE_OMIT_EXPLAIN 1637 /* 1638 ** Give a listing of the program in the virtual machine. 1639 ** 1640 ** The interface is the same as sqlite3VdbeExec(). But instead of 1641 ** running the code, it invokes the callback once for each instruction. 1642 ** This feature is used to implement "EXPLAIN". 1643 ** 1644 ** When p->explain==1, each instruction is listed. When 1645 ** p->explain==2, only OP_Explain instructions are listed and these 1646 ** are shown in a different format. p->explain==2 is used to implement 1647 ** EXPLAIN QUERY PLAN. 1648 ** 1649 ** When p->explain==1, first the main program is listed, then each of 1650 ** the trigger subprograms are listed one by one. 1651 */ 1652 int sqlite3VdbeList( 1653 Vdbe *p /* The VDBE */ 1654 ){ 1655 int nRow; /* Stop when row count reaches this */ 1656 int nSub = 0; /* Number of sub-vdbes seen so far */ 1657 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1658 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1659 sqlite3 *db = p->db; /* The database connection */ 1660 int i; /* Loop counter */ 1661 int rc = SQLITE_OK; /* Return code */ 1662 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 1663 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); 1664 Op *pOp = 0; 1665 1666 assert( p->explain ); 1667 assert( p->magic==VDBE_MAGIC_RUN ); 1668 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1669 1670 /* Even though this opcode does not use dynamic strings for 1671 ** the result, result columns may become dynamic if the user calls 1672 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1673 */ 1674 releaseMemArray(pMem, 8); 1675 p->pResultSet = 0; 1676 1677 if( p->rc==SQLITE_NOMEM ){ 1678 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1679 ** sqlite3_column_text16() failed. */ 1680 sqlite3OomFault(db); 1681 return SQLITE_ERROR; 1682 } 1683 1684 /* When the number of output rows reaches nRow, that means the 1685 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1686 ** nRow is the sum of the number of rows in the main program, plus 1687 ** the sum of the number of rows in all trigger subprograms encountered 1688 ** so far. The nRow value will increase as new trigger subprograms are 1689 ** encountered, but p->pc will eventually catch up to nRow. 1690 */ 1691 nRow = p->nOp; 1692 if( bListSubprogs ){ 1693 /* The first 8 memory cells are used for the result set. So we will 1694 ** commandeer the 9th cell to use as storage for an array of pointers 1695 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1696 ** cells. */ 1697 assert( p->nMem>9 ); 1698 pSub = &p->aMem[9]; 1699 if( pSub->flags&MEM_Blob ){ 1700 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1701 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1702 nSub = pSub->n/sizeof(Vdbe*); 1703 apSub = (SubProgram **)pSub->z; 1704 } 1705 for(i=0; i<nSub; i++){ 1706 nRow += apSub[i]->nOp; 1707 } 1708 } 1709 1710 do{ 1711 i = p->pc++; 1712 if( i>=nRow ){ 1713 p->rc = SQLITE_OK; 1714 rc = SQLITE_DONE; 1715 break; 1716 } 1717 if( i<p->nOp ){ 1718 /* The output line number is small enough that we are still in the 1719 ** main program. */ 1720 pOp = &p->aOp[i]; 1721 }else{ 1722 /* We are currently listing subprograms. Figure out which one and 1723 ** pick up the appropriate opcode. */ 1724 int j; 1725 i -= p->nOp; 1726 for(j=0; i>=apSub[j]->nOp; j++){ 1727 i -= apSub[j]->nOp; 1728 } 1729 pOp = &apSub[j]->aOp[i]; 1730 } 1731 1732 /* When an OP_Program opcode is encounter (the only opcode that has 1733 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1734 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1735 ** has not already been seen. 1736 */ 1737 if( bListSubprogs && pOp->p4type==P4_SUBPROGRAM ){ 1738 int nByte = (nSub+1)*sizeof(SubProgram*); 1739 int j; 1740 for(j=0; j<nSub; j++){ 1741 if( apSub[j]==pOp->p4.pProgram ) break; 1742 } 1743 if( j==nSub ){ 1744 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); 1745 if( p->rc!=SQLITE_OK ){ 1746 rc = SQLITE_ERROR; 1747 break; 1748 } 1749 apSub = (SubProgram **)pSub->z; 1750 apSub[nSub++] = pOp->p4.pProgram; 1751 pSub->flags |= MEM_Blob; 1752 pSub->n = nSub*sizeof(SubProgram*); 1753 nRow += pOp->p4.pProgram->nOp; 1754 } 1755 } 1756 }while( p->explain==2 && pOp->opcode!=OP_Explain ); 1757 1758 if( rc==SQLITE_OK ){ 1759 if( db->u1.isInterrupted ){ 1760 p->rc = SQLITE_INTERRUPT; 1761 rc = SQLITE_ERROR; 1762 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 1763 }else{ 1764 char *zP4; 1765 if( p->explain==1 ){ 1766 pMem->flags = MEM_Int; 1767 pMem->u.i = i; /* Program counter */ 1768 pMem++; 1769 1770 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1771 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1772 assert( pMem->z!=0 ); 1773 pMem->n = sqlite3Strlen30(pMem->z); 1774 pMem->enc = SQLITE_UTF8; 1775 pMem++; 1776 } 1777 1778 pMem->flags = MEM_Int; 1779 pMem->u.i = pOp->p1; /* P1 */ 1780 pMem++; 1781 1782 pMem->flags = MEM_Int; 1783 pMem->u.i = pOp->p2; /* P2 */ 1784 pMem++; 1785 1786 pMem->flags = MEM_Int; 1787 pMem->u.i = pOp->p3; /* P3 */ 1788 pMem++; 1789 1790 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */ 1791 assert( p->db->mallocFailed ); 1792 return SQLITE_ERROR; 1793 } 1794 pMem->flags = MEM_Str|MEM_Term; 1795 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc); 1796 if( zP4!=pMem->z ){ 1797 pMem->n = 0; 1798 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 1799 }else{ 1800 assert( pMem->z!=0 ); 1801 pMem->n = sqlite3Strlen30(pMem->z); 1802 pMem->enc = SQLITE_UTF8; 1803 } 1804 pMem++; 1805 1806 if( p->explain==1 ){ 1807 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ 1808 assert( p->db->mallocFailed ); 1809 return SQLITE_ERROR; 1810 } 1811 pMem->flags = MEM_Str|MEM_Term; 1812 pMem->n = 2; 1813 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1814 pMem->enc = SQLITE_UTF8; 1815 pMem++; 1816 1817 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1818 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ 1819 assert( p->db->mallocFailed ); 1820 return SQLITE_ERROR; 1821 } 1822 pMem->flags = MEM_Str|MEM_Term; 1823 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 1824 pMem->enc = SQLITE_UTF8; 1825 #else 1826 pMem->flags = MEM_Null; /* Comment */ 1827 #endif 1828 } 1829 1830 p->nResColumn = 8 - 4*(p->explain-1); 1831 p->pResultSet = &p->aMem[1]; 1832 p->rc = SQLITE_OK; 1833 rc = SQLITE_ROW; 1834 } 1835 } 1836 return rc; 1837 } 1838 #endif /* SQLITE_OMIT_EXPLAIN */ 1839 1840 #ifdef SQLITE_DEBUG 1841 /* 1842 ** Print the SQL that was used to generate a VDBE program. 1843 */ 1844 void sqlite3VdbePrintSql(Vdbe *p){ 1845 const char *z = 0; 1846 if( p->zSql ){ 1847 z = p->zSql; 1848 }else if( p->nOp>=1 ){ 1849 const VdbeOp *pOp = &p->aOp[0]; 1850 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1851 z = pOp->p4.z; 1852 while( sqlite3Isspace(*z) ) z++; 1853 } 1854 } 1855 if( z ) printf("SQL: [%s]\n", z); 1856 } 1857 #endif 1858 1859 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 1860 /* 1861 ** Print an IOTRACE message showing SQL content. 1862 */ 1863 void sqlite3VdbeIOTraceSql(Vdbe *p){ 1864 int nOp = p->nOp; 1865 VdbeOp *pOp; 1866 if( sqlite3IoTrace==0 ) return; 1867 if( nOp<1 ) return; 1868 pOp = &p->aOp[0]; 1869 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1870 int i, j; 1871 char z[1000]; 1872 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 1873 for(i=0; sqlite3Isspace(z[i]); i++){} 1874 for(j=0; z[i]; i++){ 1875 if( sqlite3Isspace(z[i]) ){ 1876 if( z[i-1]!=' ' ){ 1877 z[j++] = ' '; 1878 } 1879 }else{ 1880 z[j++] = z[i]; 1881 } 1882 } 1883 z[j] = 0; 1884 sqlite3IoTrace("SQL %s\n", z); 1885 } 1886 } 1887 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 1888 1889 /* An instance of this object describes bulk memory available for use 1890 ** by subcomponents of a prepared statement. Space is allocated out 1891 ** of a ReusableSpace object by the allocSpace() routine below. 1892 */ 1893 struct ReusableSpace { 1894 u8 *pSpace; /* Available memory */ 1895 int nFree; /* Bytes of available memory */ 1896 int nNeeded; /* Total bytes that could not be allocated */ 1897 }; 1898 1899 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 1900 ** from the ReusableSpace object. Return a pointer to the allocated 1901 ** memory on success. If insufficient memory is available in the 1902 ** ReusableSpace object, increase the ReusableSpace.nNeeded 1903 ** value by the amount needed and return NULL. 1904 ** 1905 ** If pBuf is not initially NULL, that means that the memory has already 1906 ** been allocated by a prior call to this routine, so just return a copy 1907 ** of pBuf and leave ReusableSpace unchanged. 1908 ** 1909 ** This allocator is employed to repurpose unused slots at the end of the 1910 ** opcode array of prepared state for other memory needs of the prepared 1911 ** statement. 1912 */ 1913 static void *allocSpace( 1914 struct ReusableSpace *p, /* Bulk memory available for allocation */ 1915 void *pBuf, /* Pointer to a prior allocation */ 1916 int nByte /* Bytes of memory needed */ 1917 ){ 1918 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 1919 if( pBuf==0 ){ 1920 nByte = ROUND8(nByte); 1921 if( nByte <= p->nFree ){ 1922 p->nFree -= nByte; 1923 pBuf = &p->pSpace[p->nFree]; 1924 }else{ 1925 p->nNeeded += nByte; 1926 } 1927 } 1928 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 1929 return pBuf; 1930 } 1931 1932 /* 1933 ** Rewind the VDBE back to the beginning in preparation for 1934 ** running it. 1935 */ 1936 void sqlite3VdbeRewind(Vdbe *p){ 1937 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1938 int i; 1939 #endif 1940 assert( p!=0 ); 1941 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET ); 1942 1943 /* There should be at least one opcode. 1944 */ 1945 assert( p->nOp>0 ); 1946 1947 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 1948 p->magic = VDBE_MAGIC_RUN; 1949 1950 #ifdef SQLITE_DEBUG 1951 for(i=0; i<p->nMem; i++){ 1952 assert( p->aMem[i].db==p->db ); 1953 } 1954 #endif 1955 p->pc = -1; 1956 p->rc = SQLITE_OK; 1957 p->errorAction = OE_Abort; 1958 p->nChange = 0; 1959 p->cacheCtr = 1; 1960 p->minWriteFileFormat = 255; 1961 p->iStatement = 0; 1962 p->nFkConstraint = 0; 1963 #ifdef VDBE_PROFILE 1964 for(i=0; i<p->nOp; i++){ 1965 p->aOp[i].cnt = 0; 1966 p->aOp[i].cycles = 0; 1967 } 1968 #endif 1969 } 1970 1971 /* 1972 ** Prepare a virtual machine for execution for the first time after 1973 ** creating the virtual machine. This involves things such 1974 ** as allocating registers and initializing the program counter. 1975 ** After the VDBE has be prepped, it can be executed by one or more 1976 ** calls to sqlite3VdbeExec(). 1977 ** 1978 ** This function may be called exactly once on each virtual machine. 1979 ** After this routine is called the VM has been "packaged" and is ready 1980 ** to run. After this routine is called, further calls to 1981 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 1982 ** the Vdbe from the Parse object that helped generate it so that the 1983 ** the Vdbe becomes an independent entity and the Parse object can be 1984 ** destroyed. 1985 ** 1986 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 1987 ** to its initial state after it has been run. 1988 */ 1989 void sqlite3VdbeMakeReady( 1990 Vdbe *p, /* The VDBE */ 1991 Parse *pParse /* Parsing context */ 1992 ){ 1993 sqlite3 *db; /* The database connection */ 1994 int nVar; /* Number of parameters */ 1995 int nMem; /* Number of VM memory registers */ 1996 int nCursor; /* Number of cursors required */ 1997 int nArg; /* Number of arguments in subprograms */ 1998 int n; /* Loop counter */ 1999 struct ReusableSpace x; /* Reusable bulk memory */ 2000 2001 assert( p!=0 ); 2002 assert( p->nOp>0 ); 2003 assert( pParse!=0 ); 2004 assert( p->magic==VDBE_MAGIC_INIT ); 2005 assert( pParse==p->pParse ); 2006 db = p->db; 2007 assert( db->mallocFailed==0 ); 2008 nVar = pParse->nVar; 2009 nMem = pParse->nMem; 2010 nCursor = pParse->nTab; 2011 nArg = pParse->nMaxArg; 2012 2013 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 2014 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 2015 ** space at the end of aMem[] for cursors 1 and greater. 2016 ** See also: allocateCursor(). 2017 */ 2018 nMem += nCursor; 2019 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 2020 2021 /* Figure out how much reusable memory is available at the end of the 2022 ** opcode array. This extra memory will be reallocated for other elements 2023 ** of the prepared statement. 2024 */ 2025 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 2026 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 2027 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 2028 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 2029 assert( x.nFree>=0 ); 2030 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 2031 2032 resolveP2Values(p, &nArg); 2033 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 2034 if( pParse->explain && nMem<10 ){ 2035 nMem = 10; 2036 } 2037 p->expired = 0; 2038 2039 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 2040 ** passes. On the first pass, we try to reuse unused memory at the 2041 ** end of the opcode array. If we are unable to satisfy all memory 2042 ** requirements by reusing the opcode array tail, then the second 2043 ** pass will fill in the remainder using a fresh memory allocation. 2044 ** 2045 ** This two-pass approach that reuses as much memory as possible from 2046 ** the leftover memory at the end of the opcode array. This can significantly 2047 ** reduce the amount of memory held by a prepared statement. 2048 */ 2049 do { 2050 x.nNeeded = 0; 2051 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 2052 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 2053 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 2054 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 2055 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2056 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 2057 #endif 2058 if( x.nNeeded==0 ) break; 2059 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 2060 x.nFree = x.nNeeded; 2061 }while( !db->mallocFailed ); 2062 2063 p->pVList = pParse->pVList; 2064 pParse->pVList = 0; 2065 p->explain = pParse->explain; 2066 if( db->mallocFailed ){ 2067 p->nVar = 0; 2068 p->nCursor = 0; 2069 p->nMem = 0; 2070 }else{ 2071 p->nCursor = nCursor; 2072 p->nVar = (ynVar)nVar; 2073 initMemArray(p->aVar, nVar, db, MEM_Null); 2074 p->nMem = nMem; 2075 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2076 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2077 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2078 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2079 #endif 2080 } 2081 sqlite3VdbeRewind(p); 2082 } 2083 2084 /* 2085 ** Close a VDBE cursor and release all the resources that cursor 2086 ** happens to hold. 2087 */ 2088 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2089 if( pCx==0 ){ 2090 return; 2091 } 2092 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE ); 2093 switch( pCx->eCurType ){ 2094 case CURTYPE_SORTER: { 2095 sqlite3VdbeSorterClose(p->db, pCx); 2096 break; 2097 } 2098 case CURTYPE_BTREE: { 2099 if( pCx->isEphemeral ){ 2100 if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx); 2101 /* The pCx->pCursor will be close automatically, if it exists, by 2102 ** the call above. */ 2103 }else{ 2104 assert( pCx->uc.pCursor!=0 ); 2105 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2106 } 2107 break; 2108 } 2109 #ifndef SQLITE_OMIT_VIRTUALTABLE 2110 case CURTYPE_VTAB: { 2111 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2112 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2113 assert( pVCur->pVtab->nRef>0 ); 2114 pVCur->pVtab->nRef--; 2115 pModule->xClose(pVCur); 2116 break; 2117 } 2118 #endif 2119 } 2120 } 2121 2122 /* 2123 ** Close all cursors in the current frame. 2124 */ 2125 static void closeCursorsInFrame(Vdbe *p){ 2126 if( p->apCsr ){ 2127 int i; 2128 for(i=0; i<p->nCursor; i++){ 2129 VdbeCursor *pC = p->apCsr[i]; 2130 if( pC ){ 2131 sqlite3VdbeFreeCursor(p, pC); 2132 p->apCsr[i] = 0; 2133 } 2134 } 2135 } 2136 } 2137 2138 /* 2139 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2140 ** is used, for example, when a trigger sub-program is halted to restore 2141 ** control to the main program. 2142 */ 2143 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2144 Vdbe *v = pFrame->v; 2145 closeCursorsInFrame(v); 2146 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2147 v->anExec = pFrame->anExec; 2148 #endif 2149 v->aOp = pFrame->aOp; 2150 v->nOp = pFrame->nOp; 2151 v->aMem = pFrame->aMem; 2152 v->nMem = pFrame->nMem; 2153 v->apCsr = pFrame->apCsr; 2154 v->nCursor = pFrame->nCursor; 2155 v->db->lastRowid = pFrame->lastRowid; 2156 v->nChange = pFrame->nChange; 2157 v->db->nChange = pFrame->nDbChange; 2158 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2159 v->pAuxData = pFrame->pAuxData; 2160 pFrame->pAuxData = 0; 2161 return pFrame->pc; 2162 } 2163 2164 /* 2165 ** Close all cursors. 2166 ** 2167 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2168 ** cell array. This is necessary as the memory cell array may contain 2169 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2170 ** open cursors. 2171 */ 2172 static void closeAllCursors(Vdbe *p){ 2173 if( p->pFrame ){ 2174 VdbeFrame *pFrame; 2175 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2176 sqlite3VdbeFrameRestore(pFrame); 2177 p->pFrame = 0; 2178 p->nFrame = 0; 2179 } 2180 assert( p->nFrame==0 ); 2181 closeCursorsInFrame(p); 2182 if( p->aMem ){ 2183 releaseMemArray(p->aMem, p->nMem); 2184 } 2185 while( p->pDelFrame ){ 2186 VdbeFrame *pDel = p->pDelFrame; 2187 p->pDelFrame = pDel->pParent; 2188 sqlite3VdbeFrameDelete(pDel); 2189 } 2190 2191 /* Delete any auxdata allocations made by the VM */ 2192 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2193 assert( p->pAuxData==0 ); 2194 } 2195 2196 /* 2197 ** Set the number of result columns that will be returned by this SQL 2198 ** statement. This is now set at compile time, rather than during 2199 ** execution of the vdbe program so that sqlite3_column_count() can 2200 ** be called on an SQL statement before sqlite3_step(). 2201 */ 2202 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2203 int n; 2204 sqlite3 *db = p->db; 2205 2206 if( p->nResColumn ){ 2207 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2208 sqlite3DbFree(db, p->aColName); 2209 } 2210 n = nResColumn*COLNAME_N; 2211 p->nResColumn = (u16)nResColumn; 2212 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2213 if( p->aColName==0 ) return; 2214 initMemArray(p->aColName, n, db, MEM_Null); 2215 } 2216 2217 /* 2218 ** Set the name of the idx'th column to be returned by the SQL statement. 2219 ** zName must be a pointer to a nul terminated string. 2220 ** 2221 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2222 ** 2223 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2224 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2225 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2226 */ 2227 int sqlite3VdbeSetColName( 2228 Vdbe *p, /* Vdbe being configured */ 2229 int idx, /* Index of column zName applies to */ 2230 int var, /* One of the COLNAME_* constants */ 2231 const char *zName, /* Pointer to buffer containing name */ 2232 void (*xDel)(void*) /* Memory management strategy for zName */ 2233 ){ 2234 int rc; 2235 Mem *pColName; 2236 assert( idx<p->nResColumn ); 2237 assert( var<COLNAME_N ); 2238 if( p->db->mallocFailed ){ 2239 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2240 return SQLITE_NOMEM_BKPT; 2241 } 2242 assert( p->aColName!=0 ); 2243 pColName = &(p->aColName[idx+var*p->nResColumn]); 2244 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2245 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2246 return rc; 2247 } 2248 2249 /* 2250 ** A read or write transaction may or may not be active on database handle 2251 ** db. If a transaction is active, commit it. If there is a 2252 ** write-transaction spanning more than one database file, this routine 2253 ** takes care of the master journal trickery. 2254 */ 2255 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2256 int i; 2257 int nTrans = 0; /* Number of databases with an active write-transaction 2258 ** that are candidates for a two-phase commit using a 2259 ** master-journal */ 2260 int rc = SQLITE_OK; 2261 int needXcommit = 0; 2262 2263 #ifdef SQLITE_OMIT_VIRTUALTABLE 2264 /* With this option, sqlite3VtabSync() is defined to be simply 2265 ** SQLITE_OK so p is not used. 2266 */ 2267 UNUSED_PARAMETER(p); 2268 #endif 2269 2270 /* Before doing anything else, call the xSync() callback for any 2271 ** virtual module tables written in this transaction. This has to 2272 ** be done before determining whether a master journal file is 2273 ** required, as an xSync() callback may add an attached database 2274 ** to the transaction. 2275 */ 2276 rc = sqlite3VtabSync(db, p); 2277 2278 /* This loop determines (a) if the commit hook should be invoked and 2279 ** (b) how many database files have open write transactions, not 2280 ** including the temp database. (b) is important because if more than 2281 ** one database file has an open write transaction, a master journal 2282 ** file is required for an atomic commit. 2283 */ 2284 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2285 Btree *pBt = db->aDb[i].pBt; 2286 if( sqlite3BtreeIsInTrans(pBt) ){ 2287 /* Whether or not a database might need a master journal depends upon 2288 ** its journal mode (among other things). This matrix determines which 2289 ** journal modes use a master journal and which do not */ 2290 static const u8 aMJNeeded[] = { 2291 /* DELETE */ 1, 2292 /* PERSIST */ 1, 2293 /* OFF */ 0, 2294 /* TRUNCATE */ 1, 2295 /* MEMORY */ 0, 2296 /* WAL */ 0 2297 }; 2298 Pager *pPager; /* Pager associated with pBt */ 2299 needXcommit = 1; 2300 sqlite3BtreeEnter(pBt); 2301 pPager = sqlite3BtreePager(pBt); 2302 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2303 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2304 && sqlite3PagerIsMemdb(pPager)==0 2305 ){ 2306 assert( i!=1 ); 2307 nTrans++; 2308 } 2309 rc = sqlite3PagerExclusiveLock(pPager); 2310 sqlite3BtreeLeave(pBt); 2311 } 2312 } 2313 if( rc!=SQLITE_OK ){ 2314 return rc; 2315 } 2316 2317 /* If there are any write-transactions at all, invoke the commit hook */ 2318 if( needXcommit && db->xCommitCallback ){ 2319 rc = db->xCommitCallback(db->pCommitArg); 2320 if( rc ){ 2321 return SQLITE_CONSTRAINT_COMMITHOOK; 2322 } 2323 } 2324 2325 /* The simple case - no more than one database file (not counting the 2326 ** TEMP database) has a transaction active. There is no need for the 2327 ** master-journal. 2328 ** 2329 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2330 ** string, it means the main database is :memory: or a temp file. In 2331 ** that case we do not support atomic multi-file commits, so use the 2332 ** simple case then too. 2333 */ 2334 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2335 || nTrans<=1 2336 ){ 2337 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2338 Btree *pBt = db->aDb[i].pBt; 2339 if( pBt ){ 2340 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2341 } 2342 } 2343 2344 /* Do the commit only if all databases successfully complete phase 1. 2345 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2346 ** IO error while deleting or truncating a journal file. It is unlikely, 2347 ** but could happen. In this case abandon processing and return the error. 2348 */ 2349 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2350 Btree *pBt = db->aDb[i].pBt; 2351 if( pBt ){ 2352 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2353 } 2354 } 2355 if( rc==SQLITE_OK ){ 2356 sqlite3VtabCommit(db); 2357 } 2358 } 2359 2360 /* The complex case - There is a multi-file write-transaction active. 2361 ** This requires a master journal file to ensure the transaction is 2362 ** committed atomically. 2363 */ 2364 #ifndef SQLITE_OMIT_DISKIO 2365 else{ 2366 sqlite3_vfs *pVfs = db->pVfs; 2367 char *zMaster = 0; /* File-name for the master journal */ 2368 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2369 sqlite3_file *pMaster = 0; 2370 i64 offset = 0; 2371 int res; 2372 int retryCount = 0; 2373 int nMainFile; 2374 2375 /* Select a master journal file name */ 2376 nMainFile = sqlite3Strlen30(zMainFile); 2377 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); 2378 if( zMaster==0 ) return SQLITE_NOMEM_BKPT; 2379 do { 2380 u32 iRandom; 2381 if( retryCount ){ 2382 if( retryCount>100 ){ 2383 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 2384 sqlite3OsDelete(pVfs, zMaster, 0); 2385 break; 2386 }else if( retryCount==1 ){ 2387 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2388 } 2389 } 2390 retryCount++; 2391 sqlite3_randomness(sizeof(iRandom), &iRandom); 2392 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2393 (iRandom>>8)&0xffffff, iRandom&0xff); 2394 /* The antipenultimate character of the master journal name must 2395 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2396 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2397 sqlite3FileSuffix3(zMainFile, zMaster); 2398 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2399 }while( rc==SQLITE_OK && res ); 2400 if( rc==SQLITE_OK ){ 2401 /* Open the master journal. */ 2402 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2403 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2404 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2405 ); 2406 } 2407 if( rc!=SQLITE_OK ){ 2408 sqlite3DbFree(db, zMaster); 2409 return rc; 2410 } 2411 2412 /* Write the name of each database file in the transaction into the new 2413 ** master journal file. If an error occurs at this point close 2414 ** and delete the master journal file. All the individual journal files 2415 ** still have 'null' as the master journal pointer, so they will roll 2416 ** back independently if a failure occurs. 2417 */ 2418 for(i=0; i<db->nDb; i++){ 2419 Btree *pBt = db->aDb[i].pBt; 2420 if( sqlite3BtreeIsInTrans(pBt) ){ 2421 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2422 if( zFile==0 ){ 2423 continue; /* Ignore TEMP and :memory: databases */ 2424 } 2425 assert( zFile[0]!=0 ); 2426 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2427 offset += sqlite3Strlen30(zFile)+1; 2428 if( rc!=SQLITE_OK ){ 2429 sqlite3OsCloseFree(pMaster); 2430 sqlite3OsDelete(pVfs, zMaster, 0); 2431 sqlite3DbFree(db, zMaster); 2432 return rc; 2433 } 2434 } 2435 } 2436 2437 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2438 ** flag is set this is not required. 2439 */ 2440 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2441 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2442 ){ 2443 sqlite3OsCloseFree(pMaster); 2444 sqlite3OsDelete(pVfs, zMaster, 0); 2445 sqlite3DbFree(db, zMaster); 2446 return rc; 2447 } 2448 2449 /* Sync all the db files involved in the transaction. The same call 2450 ** sets the master journal pointer in each individual journal. If 2451 ** an error occurs here, do not delete the master journal file. 2452 ** 2453 ** If the error occurs during the first call to 2454 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2455 ** master journal file will be orphaned. But we cannot delete it, 2456 ** in case the master journal file name was written into the journal 2457 ** file before the failure occurred. 2458 */ 2459 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2460 Btree *pBt = db->aDb[i].pBt; 2461 if( pBt ){ 2462 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2463 } 2464 } 2465 sqlite3OsCloseFree(pMaster); 2466 assert( rc!=SQLITE_BUSY ); 2467 if( rc!=SQLITE_OK ){ 2468 sqlite3DbFree(db, zMaster); 2469 return rc; 2470 } 2471 2472 /* Delete the master journal file. This commits the transaction. After 2473 ** doing this the directory is synced again before any individual 2474 ** transaction files are deleted. 2475 */ 2476 rc = sqlite3OsDelete(pVfs, zMaster, 1); 2477 sqlite3DbFree(db, zMaster); 2478 zMaster = 0; 2479 if( rc ){ 2480 return rc; 2481 } 2482 2483 /* All files and directories have already been synced, so the following 2484 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2485 ** deleting or truncating journals. If something goes wrong while 2486 ** this is happening we don't really care. The integrity of the 2487 ** transaction is already guaranteed, but some stray 'cold' journals 2488 ** may be lying around. Returning an error code won't help matters. 2489 */ 2490 disable_simulated_io_errors(); 2491 sqlite3BeginBenignMalloc(); 2492 for(i=0; i<db->nDb; i++){ 2493 Btree *pBt = db->aDb[i].pBt; 2494 if( pBt ){ 2495 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2496 } 2497 } 2498 sqlite3EndBenignMalloc(); 2499 enable_simulated_io_errors(); 2500 2501 sqlite3VtabCommit(db); 2502 } 2503 #endif 2504 2505 return rc; 2506 } 2507 2508 /* 2509 ** This routine checks that the sqlite3.nVdbeActive count variable 2510 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2511 ** currently active. An assertion fails if the two counts do not match. 2512 ** This is an internal self-check only - it is not an essential processing 2513 ** step. 2514 ** 2515 ** This is a no-op if NDEBUG is defined. 2516 */ 2517 #ifndef NDEBUG 2518 static void checkActiveVdbeCnt(sqlite3 *db){ 2519 Vdbe *p; 2520 int cnt = 0; 2521 int nWrite = 0; 2522 int nRead = 0; 2523 p = db->pVdbe; 2524 while( p ){ 2525 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2526 cnt++; 2527 if( p->readOnly==0 ) nWrite++; 2528 if( p->bIsReader ) nRead++; 2529 } 2530 p = p->pNext; 2531 } 2532 assert( cnt==db->nVdbeActive ); 2533 assert( nWrite==db->nVdbeWrite ); 2534 assert( nRead==db->nVdbeRead ); 2535 } 2536 #else 2537 #define checkActiveVdbeCnt(x) 2538 #endif 2539 2540 /* 2541 ** If the Vdbe passed as the first argument opened a statement-transaction, 2542 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2543 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2544 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2545 ** statement transaction is committed. 2546 ** 2547 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2548 ** Otherwise SQLITE_OK. 2549 */ 2550 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 2551 sqlite3 *const db = p->db; 2552 int rc = SQLITE_OK; 2553 int i; 2554 const int iSavepoint = p->iStatement-1; 2555 2556 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2557 assert( db->nStatement>0 ); 2558 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2559 2560 for(i=0; i<db->nDb; i++){ 2561 int rc2 = SQLITE_OK; 2562 Btree *pBt = db->aDb[i].pBt; 2563 if( pBt ){ 2564 if( eOp==SAVEPOINT_ROLLBACK ){ 2565 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2566 } 2567 if( rc2==SQLITE_OK ){ 2568 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2569 } 2570 if( rc==SQLITE_OK ){ 2571 rc = rc2; 2572 } 2573 } 2574 } 2575 db->nStatement--; 2576 p->iStatement = 0; 2577 2578 if( rc==SQLITE_OK ){ 2579 if( eOp==SAVEPOINT_ROLLBACK ){ 2580 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2581 } 2582 if( rc==SQLITE_OK ){ 2583 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2584 } 2585 } 2586 2587 /* If the statement transaction is being rolled back, also restore the 2588 ** database handles deferred constraint counter to the value it had when 2589 ** the statement transaction was opened. */ 2590 if( eOp==SAVEPOINT_ROLLBACK ){ 2591 db->nDeferredCons = p->nStmtDefCons; 2592 db->nDeferredImmCons = p->nStmtDefImmCons; 2593 } 2594 return rc; 2595 } 2596 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2597 if( p->db->nStatement && p->iStatement ){ 2598 return vdbeCloseStatement(p, eOp); 2599 } 2600 return SQLITE_OK; 2601 } 2602 2603 2604 /* 2605 ** This function is called when a transaction opened by the database 2606 ** handle associated with the VM passed as an argument is about to be 2607 ** committed. If there are outstanding deferred foreign key constraint 2608 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2609 ** 2610 ** If there are outstanding FK violations and this function returns 2611 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2612 ** and write an error message to it. Then return SQLITE_ERROR. 2613 */ 2614 #ifndef SQLITE_OMIT_FOREIGN_KEY 2615 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2616 sqlite3 *db = p->db; 2617 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2618 || (!deferred && p->nFkConstraint>0) 2619 ){ 2620 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2621 p->errorAction = OE_Abort; 2622 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2623 return SQLITE_ERROR; 2624 } 2625 return SQLITE_OK; 2626 } 2627 #endif 2628 2629 /* 2630 ** This routine is called the when a VDBE tries to halt. If the VDBE 2631 ** has made changes and is in autocommit mode, then commit those 2632 ** changes. If a rollback is needed, then do the rollback. 2633 ** 2634 ** This routine is the only way to move the state of a VM from 2635 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2636 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2637 ** 2638 ** Return an error code. If the commit could not complete because of 2639 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2640 ** means the close did not happen and needs to be repeated. 2641 */ 2642 int sqlite3VdbeHalt(Vdbe *p){ 2643 int rc; /* Used to store transient return codes */ 2644 sqlite3 *db = p->db; 2645 2646 /* This function contains the logic that determines if a statement or 2647 ** transaction will be committed or rolled back as a result of the 2648 ** execution of this virtual machine. 2649 ** 2650 ** If any of the following errors occur: 2651 ** 2652 ** SQLITE_NOMEM 2653 ** SQLITE_IOERR 2654 ** SQLITE_FULL 2655 ** SQLITE_INTERRUPT 2656 ** 2657 ** Then the internal cache might have been left in an inconsistent 2658 ** state. We need to rollback the statement transaction, if there is 2659 ** one, or the complete transaction if there is no statement transaction. 2660 */ 2661 2662 if( p->magic!=VDBE_MAGIC_RUN ){ 2663 return SQLITE_OK; 2664 } 2665 if( db->mallocFailed ){ 2666 p->rc = SQLITE_NOMEM_BKPT; 2667 } 2668 closeAllCursors(p); 2669 checkActiveVdbeCnt(db); 2670 2671 /* No commit or rollback needed if the program never started or if the 2672 ** SQL statement does not read or write a database file. */ 2673 if( p->pc>=0 && p->bIsReader ){ 2674 int mrc; /* Primary error code from p->rc */ 2675 int eStatementOp = 0; 2676 int isSpecialError; /* Set to true if a 'special' error */ 2677 2678 /* Lock all btrees used by the statement */ 2679 sqlite3VdbeEnter(p); 2680 2681 /* Check for one of the special errors */ 2682 mrc = p->rc & 0xff; 2683 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2684 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2685 if( isSpecialError ){ 2686 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2687 ** no rollback is necessary. Otherwise, at least a savepoint 2688 ** transaction must be rolled back to restore the database to a 2689 ** consistent state. 2690 ** 2691 ** Even if the statement is read-only, it is important to perform 2692 ** a statement or transaction rollback operation. If the error 2693 ** occurred while writing to the journal, sub-journal or database 2694 ** file as part of an effort to free up cache space (see function 2695 ** pagerStress() in pager.c), the rollback is required to restore 2696 ** the pager to a consistent state. 2697 */ 2698 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2699 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2700 eStatementOp = SAVEPOINT_ROLLBACK; 2701 }else{ 2702 /* We are forced to roll back the active transaction. Before doing 2703 ** so, abort any other statements this handle currently has active. 2704 */ 2705 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2706 sqlite3CloseSavepoints(db); 2707 db->autoCommit = 1; 2708 p->nChange = 0; 2709 } 2710 } 2711 } 2712 2713 /* Check for immediate foreign key violations. */ 2714 if( p->rc==SQLITE_OK ){ 2715 sqlite3VdbeCheckFk(p, 0); 2716 } 2717 2718 /* If the auto-commit flag is set and this is the only active writer 2719 ** VM, then we do either a commit or rollback of the current transaction. 2720 ** 2721 ** Note: This block also runs if one of the special errors handled 2722 ** above has occurred. 2723 */ 2724 if( !sqlite3VtabInSync(db) 2725 && db->autoCommit 2726 && db->nVdbeWrite==(p->readOnly==0) 2727 ){ 2728 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2729 rc = sqlite3VdbeCheckFk(p, 1); 2730 if( rc!=SQLITE_OK ){ 2731 if( NEVER(p->readOnly) ){ 2732 sqlite3VdbeLeave(p); 2733 return SQLITE_ERROR; 2734 } 2735 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2736 }else{ 2737 /* The auto-commit flag is true, the vdbe program was successful 2738 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2739 ** key constraints to hold up the transaction. This means a commit 2740 ** is required. */ 2741 rc = vdbeCommit(db, p); 2742 } 2743 if( rc==SQLITE_BUSY && p->readOnly ){ 2744 sqlite3VdbeLeave(p); 2745 return SQLITE_BUSY; 2746 }else if( rc!=SQLITE_OK ){ 2747 p->rc = rc; 2748 sqlite3RollbackAll(db, SQLITE_OK); 2749 p->nChange = 0; 2750 }else{ 2751 db->nDeferredCons = 0; 2752 db->nDeferredImmCons = 0; 2753 db->flags &= ~SQLITE_DeferFKs; 2754 sqlite3CommitInternalChanges(db); 2755 } 2756 }else{ 2757 sqlite3RollbackAll(db, SQLITE_OK); 2758 p->nChange = 0; 2759 } 2760 db->nStatement = 0; 2761 }else if( eStatementOp==0 ){ 2762 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2763 eStatementOp = SAVEPOINT_RELEASE; 2764 }else if( p->errorAction==OE_Abort ){ 2765 eStatementOp = SAVEPOINT_ROLLBACK; 2766 }else{ 2767 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2768 sqlite3CloseSavepoints(db); 2769 db->autoCommit = 1; 2770 p->nChange = 0; 2771 } 2772 } 2773 2774 /* If eStatementOp is non-zero, then a statement transaction needs to 2775 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2776 ** do so. If this operation returns an error, and the current statement 2777 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2778 ** current statement error code. 2779 */ 2780 if( eStatementOp ){ 2781 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2782 if( rc ){ 2783 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 2784 p->rc = rc; 2785 sqlite3DbFree(db, p->zErrMsg); 2786 p->zErrMsg = 0; 2787 } 2788 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2789 sqlite3CloseSavepoints(db); 2790 db->autoCommit = 1; 2791 p->nChange = 0; 2792 } 2793 } 2794 2795 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2796 ** has been rolled back, update the database connection change-counter. 2797 */ 2798 if( p->changeCntOn ){ 2799 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2800 sqlite3VdbeSetChanges(db, p->nChange); 2801 }else{ 2802 sqlite3VdbeSetChanges(db, 0); 2803 } 2804 p->nChange = 0; 2805 } 2806 2807 /* Release the locks */ 2808 sqlite3VdbeLeave(p); 2809 } 2810 2811 /* We have successfully halted and closed the VM. Record this fact. */ 2812 if( p->pc>=0 ){ 2813 db->nVdbeActive--; 2814 if( !p->readOnly ) db->nVdbeWrite--; 2815 if( p->bIsReader ) db->nVdbeRead--; 2816 assert( db->nVdbeActive>=db->nVdbeRead ); 2817 assert( db->nVdbeRead>=db->nVdbeWrite ); 2818 assert( db->nVdbeWrite>=0 ); 2819 } 2820 p->magic = VDBE_MAGIC_HALT; 2821 checkActiveVdbeCnt(db); 2822 if( db->mallocFailed ){ 2823 p->rc = SQLITE_NOMEM_BKPT; 2824 } 2825 2826 /* If the auto-commit flag is set to true, then any locks that were held 2827 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2828 ** to invoke any required unlock-notify callbacks. 2829 */ 2830 if( db->autoCommit ){ 2831 sqlite3ConnectionUnlocked(db); 2832 } 2833 2834 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 2835 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 2836 } 2837 2838 2839 /* 2840 ** Each VDBE holds the result of the most recent sqlite3_step() call 2841 ** in p->rc. This routine sets that result back to SQLITE_OK. 2842 */ 2843 void sqlite3VdbeResetStepResult(Vdbe *p){ 2844 p->rc = SQLITE_OK; 2845 } 2846 2847 /* 2848 ** Copy the error code and error message belonging to the VDBE passed 2849 ** as the first argument to its database handle (so that they will be 2850 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 2851 ** 2852 ** This function does not clear the VDBE error code or message, just 2853 ** copies them to the database handle. 2854 */ 2855 int sqlite3VdbeTransferError(Vdbe *p){ 2856 sqlite3 *db = p->db; 2857 int rc = p->rc; 2858 if( p->zErrMsg ){ 2859 db->bBenignMalloc++; 2860 sqlite3BeginBenignMalloc(); 2861 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 2862 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 2863 sqlite3EndBenignMalloc(); 2864 db->bBenignMalloc--; 2865 }else if( db->pErr ){ 2866 sqlite3ValueSetNull(db->pErr); 2867 } 2868 db->errCode = rc; 2869 return rc; 2870 } 2871 2872 #ifdef SQLITE_ENABLE_SQLLOG 2873 /* 2874 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 2875 ** invoke it. 2876 */ 2877 static void vdbeInvokeSqllog(Vdbe *v){ 2878 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 2879 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 2880 assert( v->db->init.busy==0 ); 2881 if( zExpanded ){ 2882 sqlite3GlobalConfig.xSqllog( 2883 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 2884 ); 2885 sqlite3DbFree(v->db, zExpanded); 2886 } 2887 } 2888 } 2889 #else 2890 # define vdbeInvokeSqllog(x) 2891 #endif 2892 2893 /* 2894 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 2895 ** Write any error messages into *pzErrMsg. Return the result code. 2896 ** 2897 ** After this routine is run, the VDBE should be ready to be executed 2898 ** again. 2899 ** 2900 ** To look at it another way, this routine resets the state of the 2901 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 2902 ** VDBE_MAGIC_INIT. 2903 */ 2904 int sqlite3VdbeReset(Vdbe *p){ 2905 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 2906 int i; 2907 #endif 2908 2909 sqlite3 *db; 2910 db = p->db; 2911 2912 /* If the VM did not run to completion or if it encountered an 2913 ** error, then it might not have been halted properly. So halt 2914 ** it now. 2915 */ 2916 sqlite3VdbeHalt(p); 2917 2918 /* If the VDBE has be run even partially, then transfer the error code 2919 ** and error message from the VDBE into the main database structure. But 2920 ** if the VDBE has just been set to run but has not actually executed any 2921 ** instructions yet, leave the main database error information unchanged. 2922 */ 2923 if( p->pc>=0 ){ 2924 vdbeInvokeSqllog(p); 2925 sqlite3VdbeTransferError(p); 2926 if( p->runOnlyOnce ) p->expired = 1; 2927 }else if( p->rc && p->expired ){ 2928 /* The expired flag was set on the VDBE before the first call 2929 ** to sqlite3_step(). For consistency (since sqlite3_step() was 2930 ** called), set the database error in this case as well. 2931 */ 2932 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 2933 } 2934 2935 /* Reset register contents and reclaim error message memory. 2936 */ 2937 #ifdef SQLITE_DEBUG 2938 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 2939 ** Vdbe.aMem[] arrays have already been cleaned up. */ 2940 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 2941 if( p->aMem ){ 2942 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 2943 } 2944 #endif 2945 sqlite3DbFree(db, p->zErrMsg); 2946 p->zErrMsg = 0; 2947 p->pResultSet = 0; 2948 2949 /* Save profiling information from this VDBE run. 2950 */ 2951 #ifdef VDBE_PROFILE 2952 { 2953 FILE *out = fopen("vdbe_profile.out", "a"); 2954 if( out ){ 2955 fprintf(out, "---- "); 2956 for(i=0; i<p->nOp; i++){ 2957 fprintf(out, "%02x", p->aOp[i].opcode); 2958 } 2959 fprintf(out, "\n"); 2960 if( p->zSql ){ 2961 char c, pc = 0; 2962 fprintf(out, "-- "); 2963 for(i=0; (c = p->zSql[i])!=0; i++){ 2964 if( pc=='\n' ) fprintf(out, "-- "); 2965 putc(c, out); 2966 pc = c; 2967 } 2968 if( pc!='\n' ) fprintf(out, "\n"); 2969 } 2970 for(i=0; i<p->nOp; i++){ 2971 char zHdr[100]; 2972 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 2973 p->aOp[i].cnt, 2974 p->aOp[i].cycles, 2975 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 2976 ); 2977 fprintf(out, "%s", zHdr); 2978 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 2979 } 2980 fclose(out); 2981 } 2982 } 2983 #endif 2984 p->magic = VDBE_MAGIC_RESET; 2985 return p->rc & db->errMask; 2986 } 2987 2988 /* 2989 ** Clean up and delete a VDBE after execution. Return an integer which is 2990 ** the result code. Write any error message text into *pzErrMsg. 2991 */ 2992 int sqlite3VdbeFinalize(Vdbe *p){ 2993 int rc = SQLITE_OK; 2994 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 2995 rc = sqlite3VdbeReset(p); 2996 assert( (rc & p->db->errMask)==rc ); 2997 } 2998 sqlite3VdbeDelete(p); 2999 return rc; 3000 } 3001 3002 /* 3003 ** If parameter iOp is less than zero, then invoke the destructor for 3004 ** all auxiliary data pointers currently cached by the VM passed as 3005 ** the first argument. 3006 ** 3007 ** Or, if iOp is greater than or equal to zero, then the destructor is 3008 ** only invoked for those auxiliary data pointers created by the user 3009 ** function invoked by the OP_Function opcode at instruction iOp of 3010 ** VM pVdbe, and only then if: 3011 ** 3012 ** * the associated function parameter is the 32nd or later (counting 3013 ** from left to right), or 3014 ** 3015 ** * the corresponding bit in argument mask is clear (where the first 3016 ** function parameter corresponds to bit 0 etc.). 3017 */ 3018 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 3019 while( *pp ){ 3020 AuxData *pAux = *pp; 3021 if( (iOp<0) 3022 || (pAux->iAuxOp==iOp 3023 && pAux->iAuxArg>=0 3024 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 3025 ){ 3026 testcase( pAux->iAuxArg==31 ); 3027 if( pAux->xDeleteAux ){ 3028 pAux->xDeleteAux(pAux->pAux); 3029 } 3030 *pp = pAux->pNextAux; 3031 sqlite3DbFree(db, pAux); 3032 }else{ 3033 pp= &pAux->pNextAux; 3034 } 3035 } 3036 } 3037 3038 /* 3039 ** Free all memory associated with the Vdbe passed as the second argument, 3040 ** except for object itself, which is preserved. 3041 ** 3042 ** The difference between this function and sqlite3VdbeDelete() is that 3043 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 3044 ** the database connection and frees the object itself. 3045 */ 3046 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 3047 SubProgram *pSub, *pNext; 3048 assert( p->db==0 || p->db==db ); 3049 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 3050 for(pSub=p->pProgram; pSub; pSub=pNext){ 3051 pNext = pSub->pNext; 3052 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 3053 sqlite3DbFree(db, pSub); 3054 } 3055 if( p->magic!=VDBE_MAGIC_INIT ){ 3056 releaseMemArray(p->aVar, p->nVar); 3057 sqlite3DbFree(db, p->pVList); 3058 sqlite3DbFree(db, p->pFree); 3059 } 3060 vdbeFreeOpArray(db, p->aOp, p->nOp); 3061 sqlite3DbFree(db, p->aColName); 3062 sqlite3DbFree(db, p->zSql); 3063 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3064 { 3065 int i; 3066 for(i=0; i<p->nScan; i++){ 3067 sqlite3DbFree(db, p->aScan[i].zName); 3068 } 3069 sqlite3DbFree(db, p->aScan); 3070 } 3071 #endif 3072 } 3073 3074 /* 3075 ** Delete an entire VDBE. 3076 */ 3077 void sqlite3VdbeDelete(Vdbe *p){ 3078 sqlite3 *db; 3079 3080 assert( p!=0 ); 3081 db = p->db; 3082 assert( sqlite3_mutex_held(db->mutex) ); 3083 sqlite3VdbeClearObject(db, p); 3084 if( p->pPrev ){ 3085 p->pPrev->pNext = p->pNext; 3086 }else{ 3087 assert( db->pVdbe==p ); 3088 db->pVdbe = p->pNext; 3089 } 3090 if( p->pNext ){ 3091 p->pNext->pPrev = p->pPrev; 3092 } 3093 p->magic = VDBE_MAGIC_DEAD; 3094 p->db = 0; 3095 sqlite3DbFreeNN(db, p); 3096 } 3097 3098 /* 3099 ** The cursor "p" has a pending seek operation that has not yet been 3100 ** carried out. Seek the cursor now. If an error occurs, return 3101 ** the appropriate error code. 3102 */ 3103 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ 3104 int res, rc; 3105 #ifdef SQLITE_TEST 3106 extern int sqlite3_search_count; 3107 #endif 3108 assert( p->deferredMoveto ); 3109 assert( p->isTable ); 3110 assert( p->eCurType==CURTYPE_BTREE ); 3111 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); 3112 if( rc ) return rc; 3113 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3114 #ifdef SQLITE_TEST 3115 sqlite3_search_count++; 3116 #endif 3117 p->deferredMoveto = 0; 3118 p->cacheStatus = CACHE_STALE; 3119 return SQLITE_OK; 3120 } 3121 3122 /* 3123 ** Something has moved cursor "p" out of place. Maybe the row it was 3124 ** pointed to was deleted out from under it. Or maybe the btree was 3125 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3126 ** is supposed to be pointing. If the row was deleted out from under the 3127 ** cursor, set the cursor to point to a NULL row. 3128 */ 3129 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 3130 int isDifferentRow, rc; 3131 assert( p->eCurType==CURTYPE_BTREE ); 3132 assert( p->uc.pCursor!=0 ); 3133 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3134 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3135 p->cacheStatus = CACHE_STALE; 3136 if( isDifferentRow ) p->nullRow = 1; 3137 return rc; 3138 } 3139 3140 /* 3141 ** Check to ensure that the cursor is valid. Restore the cursor 3142 ** if need be. Return any I/O error from the restore operation. 3143 */ 3144 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3145 assert( p->eCurType==CURTYPE_BTREE ); 3146 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3147 return handleMovedCursor(p); 3148 } 3149 return SQLITE_OK; 3150 } 3151 3152 /* 3153 ** Make sure the cursor p is ready to read or write the row to which it 3154 ** was last positioned. Return an error code if an OOM fault or I/O error 3155 ** prevents us from positioning the cursor to its correct position. 3156 ** 3157 ** If a MoveTo operation is pending on the given cursor, then do that 3158 ** MoveTo now. If no move is pending, check to see if the row has been 3159 ** deleted out from under the cursor and if it has, mark the row as 3160 ** a NULL row. 3161 ** 3162 ** If the cursor is already pointing to the correct row and that row has 3163 ** not been deleted out from under the cursor, then this routine is a no-op. 3164 */ 3165 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){ 3166 VdbeCursor *p = *pp; 3167 assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO ); 3168 if( p->deferredMoveto ){ 3169 int iMap; 3170 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){ 3171 *pp = p->pAltCursor; 3172 *piCol = iMap - 1; 3173 return SQLITE_OK; 3174 } 3175 return handleDeferredMoveto(p); 3176 } 3177 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3178 return handleMovedCursor(p); 3179 } 3180 return SQLITE_OK; 3181 } 3182 3183 /* 3184 ** The following functions: 3185 ** 3186 ** sqlite3VdbeSerialType() 3187 ** sqlite3VdbeSerialTypeLen() 3188 ** sqlite3VdbeSerialLen() 3189 ** sqlite3VdbeSerialPut() 3190 ** sqlite3VdbeSerialGet() 3191 ** 3192 ** encapsulate the code that serializes values for storage in SQLite 3193 ** data and index records. Each serialized value consists of a 3194 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3195 ** integer, stored as a varint. 3196 ** 3197 ** In an SQLite index record, the serial type is stored directly before 3198 ** the blob of data that it corresponds to. In a table record, all serial 3199 ** types are stored at the start of the record, and the blobs of data at 3200 ** the end. Hence these functions allow the caller to handle the 3201 ** serial-type and data blob separately. 3202 ** 3203 ** The following table describes the various storage classes for data: 3204 ** 3205 ** serial type bytes of data type 3206 ** -------------- --------------- --------------- 3207 ** 0 0 NULL 3208 ** 1 1 signed integer 3209 ** 2 2 signed integer 3210 ** 3 3 signed integer 3211 ** 4 4 signed integer 3212 ** 5 6 signed integer 3213 ** 6 8 signed integer 3214 ** 7 8 IEEE float 3215 ** 8 0 Integer constant 0 3216 ** 9 0 Integer constant 1 3217 ** 10,11 reserved for expansion 3218 ** N>=12 and even (N-12)/2 BLOB 3219 ** N>=13 and odd (N-13)/2 text 3220 ** 3221 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3222 ** of SQLite will not understand those serial types. 3223 */ 3224 3225 /* 3226 ** Return the serial-type for the value stored in pMem. 3227 */ 3228 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3229 int flags = pMem->flags; 3230 u32 n; 3231 3232 assert( pLen!=0 ); 3233 if( flags&MEM_Null ){ 3234 *pLen = 0; 3235 return 0; 3236 } 3237 if( flags&MEM_Int ){ 3238 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3239 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3240 i64 i = pMem->u.i; 3241 u64 u; 3242 if( i<0 ){ 3243 u = ~i; 3244 }else{ 3245 u = i; 3246 } 3247 if( u<=127 ){ 3248 if( (i&1)==i && file_format>=4 ){ 3249 *pLen = 0; 3250 return 8+(u32)u; 3251 }else{ 3252 *pLen = 1; 3253 return 1; 3254 } 3255 } 3256 if( u<=32767 ){ *pLen = 2; return 2; } 3257 if( u<=8388607 ){ *pLen = 3; return 3; } 3258 if( u<=2147483647 ){ *pLen = 4; return 4; } 3259 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3260 *pLen = 8; 3261 return 6; 3262 } 3263 if( flags&MEM_Real ){ 3264 *pLen = 8; 3265 return 7; 3266 } 3267 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3268 assert( pMem->n>=0 ); 3269 n = (u32)pMem->n; 3270 if( flags & MEM_Zero ){ 3271 n += pMem->u.nZero; 3272 } 3273 *pLen = n; 3274 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3275 } 3276 3277 /* 3278 ** The sizes for serial types less than 128 3279 */ 3280 static const u8 sqlite3SmallTypeSizes[] = { 3281 /* 0 1 2 3 4 5 6 7 8 9 */ 3282 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3283 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3284 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3285 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3286 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3287 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3288 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3289 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3290 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3291 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3292 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3293 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3294 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3295 }; 3296 3297 /* 3298 ** Return the length of the data corresponding to the supplied serial-type. 3299 */ 3300 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3301 if( serial_type>=128 ){ 3302 return (serial_type-12)/2; 3303 }else{ 3304 assert( serial_type<12 3305 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3306 return sqlite3SmallTypeSizes[serial_type]; 3307 } 3308 } 3309 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3310 assert( serial_type<128 ); 3311 return sqlite3SmallTypeSizes[serial_type]; 3312 } 3313 3314 /* 3315 ** If we are on an architecture with mixed-endian floating 3316 ** points (ex: ARM7) then swap the lower 4 bytes with the 3317 ** upper 4 bytes. Return the result. 3318 ** 3319 ** For most architectures, this is a no-op. 3320 ** 3321 ** (later): It is reported to me that the mixed-endian problem 3322 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3323 ** that early versions of GCC stored the two words of a 64-bit 3324 ** float in the wrong order. And that error has been propagated 3325 ** ever since. The blame is not necessarily with GCC, though. 3326 ** GCC might have just copying the problem from a prior compiler. 3327 ** I am also told that newer versions of GCC that follow a different 3328 ** ABI get the byte order right. 3329 ** 3330 ** Developers using SQLite on an ARM7 should compile and run their 3331 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3332 ** enabled, some asserts below will ensure that the byte order of 3333 ** floating point values is correct. 3334 ** 3335 ** (2007-08-30) Frank van Vugt has studied this problem closely 3336 ** and has send his findings to the SQLite developers. Frank 3337 ** writes that some Linux kernels offer floating point hardware 3338 ** emulation that uses only 32-bit mantissas instead of a full 3339 ** 48-bits as required by the IEEE standard. (This is the 3340 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3341 ** byte swapping becomes very complicated. To avoid problems, 3342 ** the necessary byte swapping is carried out using a 64-bit integer 3343 ** rather than a 64-bit float. Frank assures us that the code here 3344 ** works for him. We, the developers, have no way to independently 3345 ** verify this, but Frank seems to know what he is talking about 3346 ** so we trust him. 3347 */ 3348 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3349 static u64 floatSwap(u64 in){ 3350 union { 3351 u64 r; 3352 u32 i[2]; 3353 } u; 3354 u32 t; 3355 3356 u.r = in; 3357 t = u.i[0]; 3358 u.i[0] = u.i[1]; 3359 u.i[1] = t; 3360 return u.r; 3361 } 3362 # define swapMixedEndianFloat(X) X = floatSwap(X) 3363 #else 3364 # define swapMixedEndianFloat(X) 3365 #endif 3366 3367 /* 3368 ** Write the serialized data blob for the value stored in pMem into 3369 ** buf. It is assumed that the caller has allocated sufficient space. 3370 ** Return the number of bytes written. 3371 ** 3372 ** nBuf is the amount of space left in buf[]. The caller is responsible 3373 ** for allocating enough space to buf[] to hold the entire field, exclusive 3374 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3375 ** 3376 ** Return the number of bytes actually written into buf[]. The number 3377 ** of bytes in the zero-filled tail is included in the return value only 3378 ** if those bytes were zeroed in buf[]. 3379 */ 3380 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3381 u32 len; 3382 3383 /* Integer and Real */ 3384 if( serial_type<=7 && serial_type>0 ){ 3385 u64 v; 3386 u32 i; 3387 if( serial_type==7 ){ 3388 assert( sizeof(v)==sizeof(pMem->u.r) ); 3389 memcpy(&v, &pMem->u.r, sizeof(v)); 3390 swapMixedEndianFloat(v); 3391 }else{ 3392 v = pMem->u.i; 3393 } 3394 len = i = sqlite3SmallTypeSizes[serial_type]; 3395 assert( i>0 ); 3396 do{ 3397 buf[--i] = (u8)(v&0xFF); 3398 v >>= 8; 3399 }while( i ); 3400 return len; 3401 } 3402 3403 /* String or blob */ 3404 if( serial_type>=12 ){ 3405 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3406 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3407 len = pMem->n; 3408 if( len>0 ) memcpy(buf, pMem->z, len); 3409 return len; 3410 } 3411 3412 /* NULL or constants 0 or 1 */ 3413 return 0; 3414 } 3415 3416 /* Input "x" is a sequence of unsigned characters that represent a 3417 ** big-endian integer. Return the equivalent native integer 3418 */ 3419 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3420 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3421 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3422 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3423 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3424 3425 /* 3426 ** Deserialize the data blob pointed to by buf as serial type serial_type 3427 ** and store the result in pMem. Return the number of bytes read. 3428 ** 3429 ** This function is implemented as two separate routines for performance. 3430 ** The few cases that require local variables are broken out into a separate 3431 ** routine so that in most cases the overhead of moving the stack pointer 3432 ** is avoided. 3433 */ 3434 static u32 SQLITE_NOINLINE serialGet( 3435 const unsigned char *buf, /* Buffer to deserialize from */ 3436 u32 serial_type, /* Serial type to deserialize */ 3437 Mem *pMem /* Memory cell to write value into */ 3438 ){ 3439 u64 x = FOUR_BYTE_UINT(buf); 3440 u32 y = FOUR_BYTE_UINT(buf+4); 3441 x = (x<<32) + y; 3442 if( serial_type==6 ){ 3443 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3444 ** twos-complement integer. */ 3445 pMem->u.i = *(i64*)&x; 3446 pMem->flags = MEM_Int; 3447 testcase( pMem->u.i<0 ); 3448 }else{ 3449 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3450 ** floating point number. */ 3451 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3452 /* Verify that integers and floating point values use the same 3453 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3454 ** defined that 64-bit floating point values really are mixed 3455 ** endian. 3456 */ 3457 static const u64 t1 = ((u64)0x3ff00000)<<32; 3458 static const double r1 = 1.0; 3459 u64 t2 = t1; 3460 swapMixedEndianFloat(t2); 3461 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3462 #endif 3463 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3464 swapMixedEndianFloat(x); 3465 memcpy(&pMem->u.r, &x, sizeof(x)); 3466 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; 3467 } 3468 return 8; 3469 } 3470 u32 sqlite3VdbeSerialGet( 3471 const unsigned char *buf, /* Buffer to deserialize from */ 3472 u32 serial_type, /* Serial type to deserialize */ 3473 Mem *pMem /* Memory cell to write value into */ 3474 ){ 3475 switch( serial_type ){ 3476 case 10: { /* Internal use only: NULL with virtual table 3477 ** UPDATE no-change flag set */ 3478 pMem->flags = MEM_Null|MEM_Zero; 3479 pMem->n = 0; 3480 pMem->u.nZero = 0; 3481 break; 3482 } 3483 case 11: /* Reserved for future use */ 3484 case 0: { /* Null */ 3485 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3486 pMem->flags = MEM_Null; 3487 break; 3488 } 3489 case 1: { 3490 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3491 ** integer. */ 3492 pMem->u.i = ONE_BYTE_INT(buf); 3493 pMem->flags = MEM_Int; 3494 testcase( pMem->u.i<0 ); 3495 return 1; 3496 } 3497 case 2: { /* 2-byte signed integer */ 3498 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3499 ** twos-complement integer. */ 3500 pMem->u.i = TWO_BYTE_INT(buf); 3501 pMem->flags = MEM_Int; 3502 testcase( pMem->u.i<0 ); 3503 return 2; 3504 } 3505 case 3: { /* 3-byte signed integer */ 3506 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3507 ** twos-complement integer. */ 3508 pMem->u.i = THREE_BYTE_INT(buf); 3509 pMem->flags = MEM_Int; 3510 testcase( pMem->u.i<0 ); 3511 return 3; 3512 } 3513 case 4: { /* 4-byte signed integer */ 3514 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3515 ** twos-complement integer. */ 3516 pMem->u.i = FOUR_BYTE_INT(buf); 3517 #ifdef __HP_cc 3518 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3519 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3520 #endif 3521 pMem->flags = MEM_Int; 3522 testcase( pMem->u.i<0 ); 3523 return 4; 3524 } 3525 case 5: { /* 6-byte signed integer */ 3526 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3527 ** twos-complement integer. */ 3528 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3529 pMem->flags = MEM_Int; 3530 testcase( pMem->u.i<0 ); 3531 return 6; 3532 } 3533 case 6: /* 8-byte signed integer */ 3534 case 7: { /* IEEE floating point */ 3535 /* These use local variables, so do them in a separate routine 3536 ** to avoid having to move the frame pointer in the common case */ 3537 return serialGet(buf,serial_type,pMem); 3538 } 3539 case 8: /* Integer 0 */ 3540 case 9: { /* Integer 1 */ 3541 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3542 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3543 pMem->u.i = serial_type-8; 3544 pMem->flags = MEM_Int; 3545 return 0; 3546 } 3547 default: { 3548 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3549 ** length. 3550 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3551 ** (N-13)/2 bytes in length. */ 3552 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3553 pMem->z = (char *)buf; 3554 pMem->n = (serial_type-12)/2; 3555 pMem->flags = aFlag[serial_type&1]; 3556 return pMem->n; 3557 } 3558 } 3559 return 0; 3560 } 3561 /* 3562 ** This routine is used to allocate sufficient space for an UnpackedRecord 3563 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3564 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3565 ** 3566 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3567 ** the unaligned buffer passed via the second and third arguments (presumably 3568 ** stack space). If the former, then *ppFree is set to a pointer that should 3569 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3570 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3571 ** before returning. 3572 ** 3573 ** If an OOM error occurs, NULL is returned. 3574 */ 3575 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3576 KeyInfo *pKeyInfo /* Description of the record */ 3577 ){ 3578 UnpackedRecord *p; /* Unpacked record to return */ 3579 int nByte; /* Number of bytes required for *p */ 3580 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 3581 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3582 if( !p ) return 0; 3583 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3584 assert( pKeyInfo->aSortOrder!=0 ); 3585 p->pKeyInfo = pKeyInfo; 3586 p->nField = pKeyInfo->nKeyField + 1; 3587 return p; 3588 } 3589 3590 /* 3591 ** Given the nKey-byte encoding of a record in pKey[], populate the 3592 ** UnpackedRecord structure indicated by the fourth argument with the 3593 ** contents of the decoded record. 3594 */ 3595 void sqlite3VdbeRecordUnpack( 3596 KeyInfo *pKeyInfo, /* Information about the record format */ 3597 int nKey, /* Size of the binary record */ 3598 const void *pKey, /* The binary record */ 3599 UnpackedRecord *p /* Populate this structure before returning. */ 3600 ){ 3601 const unsigned char *aKey = (const unsigned char *)pKey; 3602 int d; 3603 u32 idx; /* Offset in aKey[] to read from */ 3604 u16 u; /* Unsigned loop counter */ 3605 u32 szHdr; 3606 Mem *pMem = p->aMem; 3607 3608 p->default_rc = 0; 3609 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3610 idx = getVarint32(aKey, szHdr); 3611 d = szHdr; 3612 u = 0; 3613 while( idx<szHdr && d<=nKey ){ 3614 u32 serial_type; 3615 3616 idx += getVarint32(&aKey[idx], serial_type); 3617 pMem->enc = pKeyInfo->enc; 3618 pMem->db = pKeyInfo->db; 3619 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 3620 pMem->szMalloc = 0; 3621 pMem->z = 0; 3622 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3623 pMem++; 3624 if( (++u)>=p->nField ) break; 3625 } 3626 assert( u<=pKeyInfo->nKeyField + 1 ); 3627 p->nField = u; 3628 } 3629 3630 #ifdef SQLITE_DEBUG 3631 /* 3632 ** This function compares two index or table record keys in the same way 3633 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 3634 ** this function deserializes and compares values using the 3635 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 3636 ** in assert() statements to ensure that the optimized code in 3637 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 3638 ** 3639 ** Return true if the result of comparison is equivalent to desiredResult. 3640 ** Return false if there is a disagreement. 3641 */ 3642 static int vdbeRecordCompareDebug( 3643 int nKey1, const void *pKey1, /* Left key */ 3644 const UnpackedRecord *pPKey2, /* Right key */ 3645 int desiredResult /* Correct answer */ 3646 ){ 3647 u32 d1; /* Offset into aKey[] of next data element */ 3648 u32 idx1; /* Offset into aKey[] of next header element */ 3649 u32 szHdr1; /* Number of bytes in header */ 3650 int i = 0; 3651 int rc = 0; 3652 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3653 KeyInfo *pKeyInfo; 3654 Mem mem1; 3655 3656 pKeyInfo = pPKey2->pKeyInfo; 3657 if( pKeyInfo->db==0 ) return 1; 3658 mem1.enc = pKeyInfo->enc; 3659 mem1.db = pKeyInfo->db; 3660 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 3661 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3662 3663 /* Compilers may complain that mem1.u.i is potentially uninitialized. 3664 ** We could initialize it, as shown here, to silence those complaints. 3665 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 3666 ** the unnecessary initialization has a measurable negative performance 3667 ** impact, since this routine is a very high runner. And so, we choose 3668 ** to ignore the compiler warnings and leave this variable uninitialized. 3669 */ 3670 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 3671 3672 idx1 = getVarint32(aKey1, szHdr1); 3673 if( szHdr1>98307 ) return SQLITE_CORRUPT; 3674 d1 = szHdr1; 3675 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 3676 assert( pKeyInfo->aSortOrder!=0 ); 3677 assert( pKeyInfo->nKeyField>0 ); 3678 assert( idx1<=szHdr1 || CORRUPT_DB ); 3679 do{ 3680 u32 serial_type1; 3681 3682 /* Read the serial types for the next element in each key. */ 3683 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 3684 3685 /* Verify that there is enough key space remaining to avoid 3686 ** a buffer overread. The "d1+serial_type1+2" subexpression will 3687 ** always be greater than or equal to the amount of required key space. 3688 ** Use that approximation to avoid the more expensive call to 3689 ** sqlite3VdbeSerialTypeLen() in the common case. 3690 */ 3691 if( d1+serial_type1+2>(u32)nKey1 3692 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 3693 ){ 3694 break; 3695 } 3696 3697 /* Extract the values to be compared. 3698 */ 3699 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 3700 3701 /* Do the comparison 3702 */ 3703 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); 3704 if( rc!=0 ){ 3705 assert( mem1.szMalloc==0 ); /* See comment below */ 3706 if( pKeyInfo->aSortOrder[i] ){ 3707 rc = -rc; /* Invert the result for DESC sort order. */ 3708 } 3709 goto debugCompareEnd; 3710 } 3711 i++; 3712 }while( idx1<szHdr1 && i<pPKey2->nField ); 3713 3714 /* No memory allocation is ever used on mem1. Prove this using 3715 ** the following assert(). If the assert() fails, it indicates a 3716 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 3717 */ 3718 assert( mem1.szMalloc==0 ); 3719 3720 /* rc==0 here means that one of the keys ran out of fields and 3721 ** all the fields up to that point were equal. Return the default_rc 3722 ** value. */ 3723 rc = pPKey2->default_rc; 3724 3725 debugCompareEnd: 3726 if( desiredResult==0 && rc==0 ) return 1; 3727 if( desiredResult<0 && rc<0 ) return 1; 3728 if( desiredResult>0 && rc>0 ) return 1; 3729 if( CORRUPT_DB ) return 1; 3730 if( pKeyInfo->db->mallocFailed ) return 1; 3731 return 0; 3732 } 3733 #endif 3734 3735 #ifdef SQLITE_DEBUG 3736 /* 3737 ** Count the number of fields (a.k.a. columns) in the record given by 3738 ** pKey,nKey. The verify that this count is less than or equal to the 3739 ** limit given by pKeyInfo->nAllField. 3740 ** 3741 ** If this constraint is not satisfied, it means that the high-speed 3742 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 3743 ** not work correctly. If this assert() ever fires, it probably means 3744 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 3745 ** incorrectly. 3746 */ 3747 static void vdbeAssertFieldCountWithinLimits( 3748 int nKey, const void *pKey, /* The record to verify */ 3749 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 3750 ){ 3751 int nField = 0; 3752 u32 szHdr; 3753 u32 idx; 3754 u32 notUsed; 3755 const unsigned char *aKey = (const unsigned char*)pKey; 3756 3757 if( CORRUPT_DB ) return; 3758 idx = getVarint32(aKey, szHdr); 3759 assert( nKey>=0 ); 3760 assert( szHdr<=(u32)nKey ); 3761 while( idx<szHdr ){ 3762 idx += getVarint32(aKey+idx, notUsed); 3763 nField++; 3764 } 3765 assert( nField <= pKeyInfo->nAllField ); 3766 } 3767 #else 3768 # define vdbeAssertFieldCountWithinLimits(A,B,C) 3769 #endif 3770 3771 /* 3772 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 3773 ** using the collation sequence pColl. As usual, return a negative , zero 3774 ** or positive value if *pMem1 is less than, equal to or greater than 3775 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 3776 */ 3777 static int vdbeCompareMemString( 3778 const Mem *pMem1, 3779 const Mem *pMem2, 3780 const CollSeq *pColl, 3781 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 3782 ){ 3783 if( pMem1->enc==pColl->enc ){ 3784 /* The strings are already in the correct encoding. Call the 3785 ** comparison function directly */ 3786 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 3787 }else{ 3788 int rc; 3789 const void *v1, *v2; 3790 Mem c1; 3791 Mem c2; 3792 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 3793 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 3794 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 3795 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 3796 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 3797 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 3798 if( (v1==0 || v2==0) ){ 3799 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 3800 rc = 0; 3801 }else{ 3802 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 3803 } 3804 sqlite3VdbeMemRelease(&c1); 3805 sqlite3VdbeMemRelease(&c2); 3806 return rc; 3807 } 3808 } 3809 3810 /* 3811 ** The input pBlob is guaranteed to be a Blob that is not marked 3812 ** with MEM_Zero. Return true if it could be a zero-blob. 3813 */ 3814 static int isAllZero(const char *z, int n){ 3815 int i; 3816 for(i=0; i<n; i++){ 3817 if( z[i] ) return 0; 3818 } 3819 return 1; 3820 } 3821 3822 /* 3823 ** Compare two blobs. Return negative, zero, or positive if the first 3824 ** is less than, equal to, or greater than the second, respectively. 3825 ** If one blob is a prefix of the other, then the shorter is the lessor. 3826 */ 3827 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 3828 int c; 3829 int n1 = pB1->n; 3830 int n2 = pB2->n; 3831 3832 /* It is possible to have a Blob value that has some non-zero content 3833 ** followed by zero content. But that only comes up for Blobs formed 3834 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 3835 ** sqlite3MemCompare(). */ 3836 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 3837 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 3838 3839 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 3840 if( pB1->flags & pB2->flags & MEM_Zero ){ 3841 return pB1->u.nZero - pB2->u.nZero; 3842 }else if( pB1->flags & MEM_Zero ){ 3843 if( !isAllZero(pB2->z, pB2->n) ) return -1; 3844 return pB1->u.nZero - n2; 3845 }else{ 3846 if( !isAllZero(pB1->z, pB1->n) ) return +1; 3847 return n1 - pB2->u.nZero; 3848 } 3849 } 3850 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 3851 if( c ) return c; 3852 return n1 - n2; 3853 } 3854 3855 /* 3856 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 3857 ** number. Return negative, zero, or positive if the first (i64) is less than, 3858 ** equal to, or greater than the second (double). 3859 */ 3860 static int sqlite3IntFloatCompare(i64 i, double r){ 3861 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 3862 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 3863 if( x<r ) return -1; 3864 if( x>r ) return +1; 3865 return 0; 3866 }else{ 3867 i64 y; 3868 double s; 3869 if( r<-9223372036854775808.0 ) return +1; 3870 if( r>9223372036854775807.0 ) return -1; 3871 y = (i64)r; 3872 if( i<y ) return -1; 3873 if( i>y ){ 3874 if( y==SMALLEST_INT64 && r>0.0 ) return -1; 3875 return +1; 3876 } 3877 s = (double)i; 3878 if( s<r ) return -1; 3879 if( s>r ) return +1; 3880 return 0; 3881 } 3882 } 3883 3884 /* 3885 ** Compare the values contained by the two memory cells, returning 3886 ** negative, zero or positive if pMem1 is less than, equal to, or greater 3887 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 3888 ** and reals) sorted numerically, followed by text ordered by the collating 3889 ** sequence pColl and finally blob's ordered by memcmp(). 3890 ** 3891 ** Two NULL values are considered equal by this function. 3892 */ 3893 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 3894 int f1, f2; 3895 int combined_flags; 3896 3897 f1 = pMem1->flags; 3898 f2 = pMem2->flags; 3899 combined_flags = f1|f2; 3900 assert( (combined_flags & MEM_RowSet)==0 ); 3901 3902 /* If one value is NULL, it is less than the other. If both values 3903 ** are NULL, return 0. 3904 */ 3905 if( combined_flags&MEM_Null ){ 3906 return (f2&MEM_Null) - (f1&MEM_Null); 3907 } 3908 3909 /* At least one of the two values is a number 3910 */ 3911 if( combined_flags&(MEM_Int|MEM_Real) ){ 3912 if( (f1 & f2 & MEM_Int)!=0 ){ 3913 if( pMem1->u.i < pMem2->u.i ) return -1; 3914 if( pMem1->u.i > pMem2->u.i ) return +1; 3915 return 0; 3916 } 3917 if( (f1 & f2 & MEM_Real)!=0 ){ 3918 if( pMem1->u.r < pMem2->u.r ) return -1; 3919 if( pMem1->u.r > pMem2->u.r ) return +1; 3920 return 0; 3921 } 3922 if( (f1&MEM_Int)!=0 ){ 3923 if( (f2&MEM_Real)!=0 ){ 3924 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 3925 }else{ 3926 return -1; 3927 } 3928 } 3929 if( (f1&MEM_Real)!=0 ){ 3930 if( (f2&MEM_Int)!=0 ){ 3931 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 3932 }else{ 3933 return -1; 3934 } 3935 } 3936 return +1; 3937 } 3938 3939 /* If one value is a string and the other is a blob, the string is less. 3940 ** If both are strings, compare using the collating functions. 3941 */ 3942 if( combined_flags&MEM_Str ){ 3943 if( (f1 & MEM_Str)==0 ){ 3944 return 1; 3945 } 3946 if( (f2 & MEM_Str)==0 ){ 3947 return -1; 3948 } 3949 3950 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 3951 assert( pMem1->enc==SQLITE_UTF8 || 3952 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 3953 3954 /* The collation sequence must be defined at this point, even if 3955 ** the user deletes the collation sequence after the vdbe program is 3956 ** compiled (this was not always the case). 3957 */ 3958 assert( !pColl || pColl->xCmp ); 3959 3960 if( pColl ){ 3961 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 3962 } 3963 /* If a NULL pointer was passed as the collate function, fall through 3964 ** to the blob case and use memcmp(). */ 3965 } 3966 3967 /* Both values must be blobs. Compare using memcmp(). */ 3968 return sqlite3BlobCompare(pMem1, pMem2); 3969 } 3970 3971 3972 /* 3973 ** The first argument passed to this function is a serial-type that 3974 ** corresponds to an integer - all values between 1 and 9 inclusive 3975 ** except 7. The second points to a buffer containing an integer value 3976 ** serialized according to serial_type. This function deserializes 3977 ** and returns the value. 3978 */ 3979 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 3980 u32 y; 3981 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 3982 switch( serial_type ){ 3983 case 0: 3984 case 1: 3985 testcase( aKey[0]&0x80 ); 3986 return ONE_BYTE_INT(aKey); 3987 case 2: 3988 testcase( aKey[0]&0x80 ); 3989 return TWO_BYTE_INT(aKey); 3990 case 3: 3991 testcase( aKey[0]&0x80 ); 3992 return THREE_BYTE_INT(aKey); 3993 case 4: { 3994 testcase( aKey[0]&0x80 ); 3995 y = FOUR_BYTE_UINT(aKey); 3996 return (i64)*(int*)&y; 3997 } 3998 case 5: { 3999 testcase( aKey[0]&0x80 ); 4000 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4001 } 4002 case 6: { 4003 u64 x = FOUR_BYTE_UINT(aKey); 4004 testcase( aKey[0]&0x80 ); 4005 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4006 return (i64)*(i64*)&x; 4007 } 4008 } 4009 4010 return (serial_type - 8); 4011 } 4012 4013 /* 4014 ** This function compares the two table rows or index records 4015 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 4016 ** or positive integer if key1 is less than, equal to or 4017 ** greater than key2. The {nKey1, pKey1} key must be a blob 4018 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 4019 ** key must be a parsed key such as obtained from 4020 ** sqlite3VdbeParseRecord. 4021 ** 4022 ** If argument bSkip is non-zero, it is assumed that the caller has already 4023 ** determined that the first fields of the keys are equal. 4024 ** 4025 ** Key1 and Key2 do not have to contain the same number of fields. If all 4026 ** fields that appear in both keys are equal, then pPKey2->default_rc is 4027 ** returned. 4028 ** 4029 ** If database corruption is discovered, set pPKey2->errCode to 4030 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 4031 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 4032 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 4033 */ 4034 int sqlite3VdbeRecordCompareWithSkip( 4035 int nKey1, const void *pKey1, /* Left key */ 4036 UnpackedRecord *pPKey2, /* Right key */ 4037 int bSkip /* If true, skip the first field */ 4038 ){ 4039 u32 d1; /* Offset into aKey[] of next data element */ 4040 int i; /* Index of next field to compare */ 4041 u32 szHdr1; /* Size of record header in bytes */ 4042 u32 idx1; /* Offset of first type in header */ 4043 int rc = 0; /* Return value */ 4044 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 4045 KeyInfo *pKeyInfo = pPKey2->pKeyInfo; 4046 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4047 Mem mem1; 4048 4049 /* If bSkip is true, then the caller has already determined that the first 4050 ** two elements in the keys are equal. Fix the various stack variables so 4051 ** that this routine begins comparing at the second field. */ 4052 if( bSkip ){ 4053 u32 s1; 4054 idx1 = 1 + getVarint32(&aKey1[1], s1); 4055 szHdr1 = aKey1[0]; 4056 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 4057 i = 1; 4058 pRhs++; 4059 }else{ 4060 idx1 = getVarint32(aKey1, szHdr1); 4061 d1 = szHdr1; 4062 if( d1>(unsigned)nKey1 ){ 4063 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4064 return 0; /* Corruption */ 4065 } 4066 i = 0; 4067 } 4068 4069 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4070 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 4071 || CORRUPT_DB ); 4072 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); 4073 assert( pPKey2->pKeyInfo->nKeyField>0 ); 4074 assert( idx1<=szHdr1 || CORRUPT_DB ); 4075 do{ 4076 u32 serial_type; 4077 4078 /* RHS is an integer */ 4079 if( pRhs->flags & MEM_Int ){ 4080 serial_type = aKey1[idx1]; 4081 testcase( serial_type==12 ); 4082 if( serial_type>=10 ){ 4083 rc = +1; 4084 }else if( serial_type==0 ){ 4085 rc = -1; 4086 }else if( serial_type==7 ){ 4087 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4088 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4089 }else{ 4090 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4091 i64 rhs = pRhs->u.i; 4092 if( lhs<rhs ){ 4093 rc = -1; 4094 }else if( lhs>rhs ){ 4095 rc = +1; 4096 } 4097 } 4098 } 4099 4100 /* RHS is real */ 4101 else if( pRhs->flags & MEM_Real ){ 4102 serial_type = aKey1[idx1]; 4103 if( serial_type>=10 ){ 4104 /* Serial types 12 or greater are strings and blobs (greater than 4105 ** numbers). Types 10 and 11 are currently "reserved for future 4106 ** use", so it doesn't really matter what the results of comparing 4107 ** them to numberic values are. */ 4108 rc = +1; 4109 }else if( serial_type==0 ){ 4110 rc = -1; 4111 }else{ 4112 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4113 if( serial_type==7 ){ 4114 if( mem1.u.r<pRhs->u.r ){ 4115 rc = -1; 4116 }else if( mem1.u.r>pRhs->u.r ){ 4117 rc = +1; 4118 } 4119 }else{ 4120 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4121 } 4122 } 4123 } 4124 4125 /* RHS is a string */ 4126 else if( pRhs->flags & MEM_Str ){ 4127 getVarint32(&aKey1[idx1], serial_type); 4128 testcase( serial_type==12 ); 4129 if( serial_type<12 ){ 4130 rc = -1; 4131 }else if( !(serial_type & 0x01) ){ 4132 rc = +1; 4133 }else{ 4134 mem1.n = (serial_type - 12) / 2; 4135 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4136 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4137 if( (d1+mem1.n) > (unsigned)nKey1 ){ 4138 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4139 return 0; /* Corruption */ 4140 }else if( pKeyInfo->aColl[i] ){ 4141 mem1.enc = pKeyInfo->enc; 4142 mem1.db = pKeyInfo->db; 4143 mem1.flags = MEM_Str; 4144 mem1.z = (char*)&aKey1[d1]; 4145 rc = vdbeCompareMemString( 4146 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4147 ); 4148 }else{ 4149 int nCmp = MIN(mem1.n, pRhs->n); 4150 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4151 if( rc==0 ) rc = mem1.n - pRhs->n; 4152 } 4153 } 4154 } 4155 4156 /* RHS is a blob */ 4157 else if( pRhs->flags & MEM_Blob ){ 4158 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4159 getVarint32(&aKey1[idx1], serial_type); 4160 testcase( serial_type==12 ); 4161 if( serial_type<12 || (serial_type & 0x01) ){ 4162 rc = -1; 4163 }else{ 4164 int nStr = (serial_type - 12) / 2; 4165 testcase( (d1+nStr)==(unsigned)nKey1 ); 4166 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4167 if( (d1+nStr) > (unsigned)nKey1 ){ 4168 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4169 return 0; /* Corruption */ 4170 }else if( pRhs->flags & MEM_Zero ){ 4171 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4172 rc = 1; 4173 }else{ 4174 rc = nStr - pRhs->u.nZero; 4175 } 4176 }else{ 4177 int nCmp = MIN(nStr, pRhs->n); 4178 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4179 if( rc==0 ) rc = nStr - pRhs->n; 4180 } 4181 } 4182 } 4183 4184 /* RHS is null */ 4185 else{ 4186 serial_type = aKey1[idx1]; 4187 rc = (serial_type!=0); 4188 } 4189 4190 if( rc!=0 ){ 4191 if( pKeyInfo->aSortOrder[i] ){ 4192 rc = -rc; 4193 } 4194 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4195 assert( mem1.szMalloc==0 ); /* See comment below */ 4196 return rc; 4197 } 4198 4199 i++; 4200 pRhs++; 4201 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4202 idx1 += sqlite3VarintLen(serial_type); 4203 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); 4204 4205 /* No memory allocation is ever used on mem1. Prove this using 4206 ** the following assert(). If the assert() fails, it indicates a 4207 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4208 assert( mem1.szMalloc==0 ); 4209 4210 /* rc==0 here means that one or both of the keys ran out of fields and 4211 ** all the fields up to that point were equal. Return the default_rc 4212 ** value. */ 4213 assert( CORRUPT_DB 4214 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4215 || pKeyInfo->db->mallocFailed 4216 ); 4217 pPKey2->eqSeen = 1; 4218 return pPKey2->default_rc; 4219 } 4220 int sqlite3VdbeRecordCompare( 4221 int nKey1, const void *pKey1, /* Left key */ 4222 UnpackedRecord *pPKey2 /* Right key */ 4223 ){ 4224 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4225 } 4226 4227 4228 /* 4229 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4230 ** that (a) the first field of pPKey2 is an integer, and (b) the 4231 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4232 ** byte (i.e. is less than 128). 4233 ** 4234 ** To avoid concerns about buffer overreads, this routine is only used 4235 ** on schemas where the maximum valid header size is 63 bytes or less. 4236 */ 4237 static int vdbeRecordCompareInt( 4238 int nKey1, const void *pKey1, /* Left key */ 4239 UnpackedRecord *pPKey2 /* Right key */ 4240 ){ 4241 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4242 int serial_type = ((const u8*)pKey1)[1]; 4243 int res; 4244 u32 y; 4245 u64 x; 4246 i64 v; 4247 i64 lhs; 4248 4249 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4250 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4251 switch( serial_type ){ 4252 case 1: { /* 1-byte signed integer */ 4253 lhs = ONE_BYTE_INT(aKey); 4254 testcase( lhs<0 ); 4255 break; 4256 } 4257 case 2: { /* 2-byte signed integer */ 4258 lhs = TWO_BYTE_INT(aKey); 4259 testcase( lhs<0 ); 4260 break; 4261 } 4262 case 3: { /* 3-byte signed integer */ 4263 lhs = THREE_BYTE_INT(aKey); 4264 testcase( lhs<0 ); 4265 break; 4266 } 4267 case 4: { /* 4-byte signed integer */ 4268 y = FOUR_BYTE_UINT(aKey); 4269 lhs = (i64)*(int*)&y; 4270 testcase( lhs<0 ); 4271 break; 4272 } 4273 case 5: { /* 6-byte signed integer */ 4274 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4275 testcase( lhs<0 ); 4276 break; 4277 } 4278 case 6: { /* 8-byte signed integer */ 4279 x = FOUR_BYTE_UINT(aKey); 4280 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4281 lhs = *(i64*)&x; 4282 testcase( lhs<0 ); 4283 break; 4284 } 4285 case 8: 4286 lhs = 0; 4287 break; 4288 case 9: 4289 lhs = 1; 4290 break; 4291 4292 /* This case could be removed without changing the results of running 4293 ** this code. Including it causes gcc to generate a faster switch 4294 ** statement (since the range of switch targets now starts at zero and 4295 ** is contiguous) but does not cause any duplicate code to be generated 4296 ** (as gcc is clever enough to combine the two like cases). Other 4297 ** compilers might be similar. */ 4298 case 0: case 7: 4299 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4300 4301 default: 4302 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4303 } 4304 4305 v = pPKey2->aMem[0].u.i; 4306 if( v>lhs ){ 4307 res = pPKey2->r1; 4308 }else if( v<lhs ){ 4309 res = pPKey2->r2; 4310 }else if( pPKey2->nField>1 ){ 4311 /* The first fields of the two keys are equal. Compare the trailing 4312 ** fields. */ 4313 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4314 }else{ 4315 /* The first fields of the two keys are equal and there are no trailing 4316 ** fields. Return pPKey2->default_rc in this case. */ 4317 res = pPKey2->default_rc; 4318 pPKey2->eqSeen = 1; 4319 } 4320 4321 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4322 return res; 4323 } 4324 4325 /* 4326 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4327 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4328 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4329 ** at the start of (pKey1/nKey1) fits in a single byte. 4330 */ 4331 static int vdbeRecordCompareString( 4332 int nKey1, const void *pKey1, /* Left key */ 4333 UnpackedRecord *pPKey2 /* Right key */ 4334 ){ 4335 const u8 *aKey1 = (const u8*)pKey1; 4336 int serial_type; 4337 int res; 4338 4339 assert( pPKey2->aMem[0].flags & MEM_Str ); 4340 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4341 getVarint32(&aKey1[1], serial_type); 4342 if( serial_type<12 ){ 4343 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4344 }else if( !(serial_type & 0x01) ){ 4345 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4346 }else{ 4347 int nCmp; 4348 int nStr; 4349 int szHdr = aKey1[0]; 4350 4351 nStr = (serial_type-12) / 2; 4352 if( (szHdr + nStr) > nKey1 ){ 4353 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4354 return 0; /* Corruption */ 4355 } 4356 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4357 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4358 4359 if( res==0 ){ 4360 res = nStr - pPKey2->aMem[0].n; 4361 if( res==0 ){ 4362 if( pPKey2->nField>1 ){ 4363 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4364 }else{ 4365 res = pPKey2->default_rc; 4366 pPKey2->eqSeen = 1; 4367 } 4368 }else if( res>0 ){ 4369 res = pPKey2->r2; 4370 }else{ 4371 res = pPKey2->r1; 4372 } 4373 }else if( res>0 ){ 4374 res = pPKey2->r2; 4375 }else{ 4376 res = pPKey2->r1; 4377 } 4378 } 4379 4380 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4381 || CORRUPT_DB 4382 || pPKey2->pKeyInfo->db->mallocFailed 4383 ); 4384 return res; 4385 } 4386 4387 /* 4388 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4389 ** suitable for comparing serialized records to the unpacked record passed 4390 ** as the only argument. 4391 */ 4392 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4393 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4394 ** that the size-of-header varint that occurs at the start of each record 4395 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4396 ** also assumes that it is safe to overread a buffer by at least the 4397 ** maximum possible legal header size plus 8 bytes. Because there is 4398 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4399 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4400 ** limit the size of the header to 64 bytes in cases where the first field 4401 ** is an integer. 4402 ** 4403 ** The easiest way to enforce this limit is to consider only records with 4404 ** 13 fields or less. If the first field is an integer, the maximum legal 4405 ** header size is (12*5 + 1 + 1) bytes. */ 4406 if( p->pKeyInfo->nAllField<=13 ){ 4407 int flags = p->aMem[0].flags; 4408 if( p->pKeyInfo->aSortOrder[0] ){ 4409 p->r1 = 1; 4410 p->r2 = -1; 4411 }else{ 4412 p->r1 = -1; 4413 p->r2 = 1; 4414 } 4415 if( (flags & MEM_Int) ){ 4416 return vdbeRecordCompareInt; 4417 } 4418 testcase( flags & MEM_Real ); 4419 testcase( flags & MEM_Null ); 4420 testcase( flags & MEM_Blob ); 4421 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ 4422 assert( flags & MEM_Str ); 4423 return vdbeRecordCompareString; 4424 } 4425 } 4426 4427 return sqlite3VdbeRecordCompare; 4428 } 4429 4430 /* 4431 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4432 ** Read the rowid (the last field in the record) and store it in *rowid. 4433 ** Return SQLITE_OK if everything works, or an error code otherwise. 4434 ** 4435 ** pCur might be pointing to text obtained from a corrupt database file. 4436 ** So the content cannot be trusted. Do appropriate checks on the content. 4437 */ 4438 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4439 i64 nCellKey = 0; 4440 int rc; 4441 u32 szHdr; /* Size of the header */ 4442 u32 typeRowid; /* Serial type of the rowid */ 4443 u32 lenRowid; /* Size of the rowid */ 4444 Mem m, v; 4445 4446 /* Get the size of the index entry. Only indices entries of less 4447 ** than 2GiB are support - anything large must be database corruption. 4448 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4449 ** this code can safely assume that nCellKey is 32-bits 4450 */ 4451 assert( sqlite3BtreeCursorIsValid(pCur) ); 4452 nCellKey = sqlite3BtreePayloadSize(pCur); 4453 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4454 4455 /* Read in the complete content of the index entry */ 4456 sqlite3VdbeMemInit(&m, db, 0); 4457 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4458 if( rc ){ 4459 return rc; 4460 } 4461 4462 /* The index entry must begin with a header size */ 4463 (void)getVarint32((u8*)m.z, szHdr); 4464 testcase( szHdr==3 ); 4465 testcase( szHdr==m.n ); 4466 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ 4467 goto idx_rowid_corruption; 4468 } 4469 4470 /* The last field of the index should be an integer - the ROWID. 4471 ** Verify that the last entry really is an integer. */ 4472 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 4473 testcase( typeRowid==1 ); 4474 testcase( typeRowid==2 ); 4475 testcase( typeRowid==3 ); 4476 testcase( typeRowid==4 ); 4477 testcase( typeRowid==5 ); 4478 testcase( typeRowid==6 ); 4479 testcase( typeRowid==8 ); 4480 testcase( typeRowid==9 ); 4481 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4482 goto idx_rowid_corruption; 4483 } 4484 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4485 testcase( (u32)m.n==szHdr+lenRowid ); 4486 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4487 goto idx_rowid_corruption; 4488 } 4489 4490 /* Fetch the integer off the end of the index record */ 4491 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4492 *rowid = v.u.i; 4493 sqlite3VdbeMemRelease(&m); 4494 return SQLITE_OK; 4495 4496 /* Jump here if database corruption is detected after m has been 4497 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4498 idx_rowid_corruption: 4499 testcase( m.szMalloc!=0 ); 4500 sqlite3VdbeMemRelease(&m); 4501 return SQLITE_CORRUPT_BKPT; 4502 } 4503 4504 /* 4505 ** Compare the key of the index entry that cursor pC is pointing to against 4506 ** the key string in pUnpacked. Write into *pRes a number 4507 ** that is negative, zero, or positive if pC is less than, equal to, 4508 ** or greater than pUnpacked. Return SQLITE_OK on success. 4509 ** 4510 ** pUnpacked is either created without a rowid or is truncated so that it 4511 ** omits the rowid at the end. The rowid at the end of the index entry 4512 ** is ignored as well. Hence, this routine only compares the prefixes 4513 ** of the keys prior to the final rowid, not the entire key. 4514 */ 4515 int sqlite3VdbeIdxKeyCompare( 4516 sqlite3 *db, /* Database connection */ 4517 VdbeCursor *pC, /* The cursor to compare against */ 4518 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4519 int *res /* Write the comparison result here */ 4520 ){ 4521 i64 nCellKey = 0; 4522 int rc; 4523 BtCursor *pCur; 4524 Mem m; 4525 4526 assert( pC->eCurType==CURTYPE_BTREE ); 4527 pCur = pC->uc.pCursor; 4528 assert( sqlite3BtreeCursorIsValid(pCur) ); 4529 nCellKey = sqlite3BtreePayloadSize(pCur); 4530 /* nCellKey will always be between 0 and 0xffffffff because of the way 4531 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4532 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4533 *res = 0; 4534 return SQLITE_CORRUPT_BKPT; 4535 } 4536 sqlite3VdbeMemInit(&m, db, 0); 4537 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4538 if( rc ){ 4539 return rc; 4540 } 4541 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); 4542 sqlite3VdbeMemRelease(&m); 4543 return SQLITE_OK; 4544 } 4545 4546 /* 4547 ** This routine sets the value to be returned by subsequent calls to 4548 ** sqlite3_changes() on the database handle 'db'. 4549 */ 4550 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 4551 assert( sqlite3_mutex_held(db->mutex) ); 4552 db->nChange = nChange; 4553 db->nTotalChange += nChange; 4554 } 4555 4556 /* 4557 ** Set a flag in the vdbe to update the change counter when it is finalised 4558 ** or reset. 4559 */ 4560 void sqlite3VdbeCountChanges(Vdbe *v){ 4561 v->changeCntOn = 1; 4562 } 4563 4564 /* 4565 ** Mark every prepared statement associated with a database connection 4566 ** as expired. 4567 ** 4568 ** An expired statement means that recompilation of the statement is 4569 ** recommend. Statements expire when things happen that make their 4570 ** programs obsolete. Removing user-defined functions or collating 4571 ** sequences, or changing an authorization function are the types of 4572 ** things that make prepared statements obsolete. 4573 */ 4574 void sqlite3ExpirePreparedStatements(sqlite3 *db){ 4575 Vdbe *p; 4576 for(p = db->pVdbe; p; p=p->pNext){ 4577 p->expired = 1; 4578 } 4579 } 4580 4581 /* 4582 ** Return the database associated with the Vdbe. 4583 */ 4584 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 4585 return v->db; 4586 } 4587 4588 /* 4589 ** Return the SQLITE_PREPARE flags for a Vdbe. 4590 */ 4591 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 4592 return v->prepFlags; 4593 } 4594 4595 /* 4596 ** Return a pointer to an sqlite3_value structure containing the value bound 4597 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 4598 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 4599 ** constants) to the value before returning it. 4600 ** 4601 ** The returned value must be freed by the caller using sqlite3ValueFree(). 4602 */ 4603 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 4604 assert( iVar>0 ); 4605 if( v ){ 4606 Mem *pMem = &v->aVar[iVar-1]; 4607 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 4608 if( 0==(pMem->flags & MEM_Null) ){ 4609 sqlite3_value *pRet = sqlite3ValueNew(v->db); 4610 if( pRet ){ 4611 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 4612 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 4613 } 4614 return pRet; 4615 } 4616 } 4617 return 0; 4618 } 4619 4620 /* 4621 ** Configure SQL variable iVar so that binding a new value to it signals 4622 ** to sqlite3_reoptimize() that re-preparing the statement may result 4623 ** in a better query plan. 4624 */ 4625 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 4626 assert( iVar>0 ); 4627 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 4628 if( iVar>=32 ){ 4629 v->expmask |= 0x80000000; 4630 }else{ 4631 v->expmask |= ((u32)1 << (iVar-1)); 4632 } 4633 } 4634 4635 /* 4636 ** Cause a function to throw an error if it was call from OP_PureFunc 4637 ** rather than OP_Function. 4638 ** 4639 ** OP_PureFunc means that the function must be deterministic, and should 4640 ** throw an error if it is given inputs that would make it non-deterministic. 4641 ** This routine is invoked by date/time functions that use non-deterministic 4642 ** features such as 'now'. 4643 */ 4644 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 4645 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 4646 if( pCtx->pVdbe==0 ) return 1; 4647 #endif 4648 if( pCtx->pVdbe->aOp[pCtx->iOp].opcode==OP_PureFunc ){ 4649 sqlite3_result_error(pCtx, 4650 "non-deterministic function in index expression or CHECK constraint", 4651 -1); 4652 return 0; 4653 } 4654 return 1; 4655 } 4656 4657 #ifndef SQLITE_OMIT_VIRTUALTABLE 4658 /* 4659 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 4660 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 4661 ** in memory obtained from sqlite3DbMalloc). 4662 */ 4663 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 4664 if( pVtab->zErrMsg ){ 4665 sqlite3 *db = p->db; 4666 sqlite3DbFree(db, p->zErrMsg); 4667 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 4668 sqlite3_free(pVtab->zErrMsg); 4669 pVtab->zErrMsg = 0; 4670 } 4671 } 4672 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4673 4674 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4675 4676 /* 4677 ** If the second argument is not NULL, release any allocations associated 4678 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 4679 ** structure itself, using sqlite3DbFree(). 4680 ** 4681 ** This function is used to free UnpackedRecord structures allocated by 4682 ** the vdbeUnpackRecord() function found in vdbeapi.c. 4683 */ 4684 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 4685 if( p ){ 4686 int i; 4687 for(i=0; i<nField; i++){ 4688 Mem *pMem = &p->aMem[i]; 4689 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem); 4690 } 4691 sqlite3DbFreeNN(db, p); 4692 } 4693 } 4694 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4695 4696 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4697 /* 4698 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 4699 ** then cursor passed as the second argument should point to the row about 4700 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 4701 ** the required value will be read from the row the cursor points to. 4702 */ 4703 void sqlite3VdbePreUpdateHook( 4704 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 4705 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 4706 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 4707 const char *zDb, /* Database name */ 4708 Table *pTab, /* Modified table */ 4709 i64 iKey1, /* Initial key value */ 4710 int iReg /* Register for new.* record */ 4711 ){ 4712 sqlite3 *db = v->db; 4713 i64 iKey2; 4714 PreUpdate preupdate; 4715 const char *zTbl = pTab->zName; 4716 static const u8 fakeSortOrder = 0; 4717 4718 assert( db->pPreUpdate==0 ); 4719 memset(&preupdate, 0, sizeof(PreUpdate)); 4720 if( HasRowid(pTab)==0 ){ 4721 iKey1 = iKey2 = 0; 4722 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 4723 }else{ 4724 if( op==SQLITE_UPDATE ){ 4725 iKey2 = v->aMem[iReg].u.i; 4726 }else{ 4727 iKey2 = iKey1; 4728 } 4729 } 4730 4731 assert( pCsr->nField==pTab->nCol 4732 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 4733 ); 4734 4735 preupdate.v = v; 4736 preupdate.pCsr = pCsr; 4737 preupdate.op = op; 4738 preupdate.iNewReg = iReg; 4739 preupdate.keyinfo.db = db; 4740 preupdate.keyinfo.enc = ENC(db); 4741 preupdate.keyinfo.nKeyField = pTab->nCol; 4742 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder; 4743 preupdate.iKey1 = iKey1; 4744 preupdate.iKey2 = iKey2; 4745 preupdate.pTab = pTab; 4746 4747 db->pPreUpdate = &preupdate; 4748 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 4749 db->pPreUpdate = 0; 4750 sqlite3DbFree(db, preupdate.aRecord); 4751 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 4752 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 4753 if( preupdate.aNew ){ 4754 int i; 4755 for(i=0; i<pCsr->nField; i++){ 4756 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 4757 } 4758 sqlite3DbFreeNN(db, preupdate.aNew); 4759 } 4760 } 4761 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4762