xref: /sqlite-3.40.0/src/vdbeaux.c (revision fb32c44e)
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
14 */
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
17 
18 /*
19 ** Create a new virtual database engine.
20 */
21 Vdbe *sqlite3VdbeCreate(Parse *pParse){
22   sqlite3 *db = pParse->db;
23   Vdbe *p;
24   p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
25   if( p==0 ) return 0;
26   memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
27   p->db = db;
28   if( db->pVdbe ){
29     db->pVdbe->pPrev = p;
30   }
31   p->pNext = db->pVdbe;
32   p->pPrev = 0;
33   db->pVdbe = p;
34   p->magic = VDBE_MAGIC_INIT;
35   p->pParse = pParse;
36   pParse->pVdbe = p;
37   assert( pParse->aLabel==0 );
38   assert( pParse->nLabel==0 );
39   assert( pParse->nOpAlloc==0 );
40   assert( pParse->szOpAlloc==0 );
41   sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
42   return p;
43 }
44 
45 /*
46 ** Change the error string stored in Vdbe.zErrMsg
47 */
48 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
49   va_list ap;
50   sqlite3DbFree(p->db, p->zErrMsg);
51   va_start(ap, zFormat);
52   p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
53   va_end(ap);
54 }
55 
56 /*
57 ** Remember the SQL string for a prepared statement.
58 */
59 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
60   if( p==0 ) return;
61   p->prepFlags = prepFlags;
62   if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
63     p->expmask = 0;
64   }
65   assert( p->zSql==0 );
66   p->zSql = sqlite3DbStrNDup(p->db, z, n);
67 }
68 
69 /*
70 ** Swap all content between two VDBE structures.
71 */
72 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
73   Vdbe tmp, *pTmp;
74   char *zTmp;
75   assert( pA->db==pB->db );
76   tmp = *pA;
77   *pA = *pB;
78   *pB = tmp;
79   pTmp = pA->pNext;
80   pA->pNext = pB->pNext;
81   pB->pNext = pTmp;
82   pTmp = pA->pPrev;
83   pA->pPrev = pB->pPrev;
84   pB->pPrev = pTmp;
85   zTmp = pA->zSql;
86   pA->zSql = pB->zSql;
87   pB->zSql = zTmp;
88   pB->expmask = pA->expmask;
89   pB->prepFlags = pA->prepFlags;
90   memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
91   pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
92 }
93 
94 /*
95 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
96 ** than its current size. nOp is guaranteed to be less than or equal
97 ** to 1024/sizeof(Op).
98 **
99 ** If an out-of-memory error occurs while resizing the array, return
100 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
101 ** unchanged (this is so that any opcodes already allocated can be
102 ** correctly deallocated along with the rest of the Vdbe).
103 */
104 static int growOpArray(Vdbe *v, int nOp){
105   VdbeOp *pNew;
106   Parse *p = v->pParse;
107 
108   /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
109   ** more frequent reallocs and hence provide more opportunities for
110   ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used
111   ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array
112   ** by the minimum* amount required until the size reaches 512.  Normal
113   ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
114   ** size of the op array or add 1KB of space, whichever is smaller. */
115 #ifdef SQLITE_TEST_REALLOC_STRESS
116   int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
117 #else
118   int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
119   UNUSED_PARAMETER(nOp);
120 #endif
121 
122   /* Ensure that the size of a VDBE does not grow too large */
123   if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
124     sqlite3OomFault(p->db);
125     return SQLITE_NOMEM;
126   }
127 
128   assert( nOp<=(1024/sizeof(Op)) );
129   assert( nNew>=(p->nOpAlloc+nOp) );
130   pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
131   if( pNew ){
132     p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
133     p->nOpAlloc = p->szOpAlloc/sizeof(Op);
134     v->aOp = pNew;
135   }
136   return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
137 }
138 
139 #ifdef SQLITE_DEBUG
140 /* This routine is just a convenient place to set a breakpoint that will
141 ** fire after each opcode is inserted and displayed using
142 ** "PRAGMA vdbe_addoptrace=on".
143 */
144 static void test_addop_breakpoint(void){
145   static int n = 0;
146   n++;
147 }
148 #endif
149 
150 /*
151 ** Add a new instruction to the list of instructions current in the
152 ** VDBE.  Return the address of the new instruction.
153 **
154 ** Parameters:
155 **
156 **    p               Pointer to the VDBE
157 **
158 **    op              The opcode for this instruction
159 **
160 **    p1, p2, p3      Operands
161 **
162 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
163 ** the sqlite3VdbeChangeP4() function to change the value of the P4
164 ** operand.
165 */
166 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
167   assert( p->pParse->nOpAlloc<=p->nOp );
168   if( growOpArray(p, 1) ) return 1;
169   assert( p->pParse->nOpAlloc>p->nOp );
170   return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
171 }
172 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
173   int i;
174   VdbeOp *pOp;
175 
176   i = p->nOp;
177   assert( p->magic==VDBE_MAGIC_INIT );
178   assert( op>=0 && op<0xff );
179   if( p->pParse->nOpAlloc<=i ){
180     return growOp3(p, op, p1, p2, p3);
181   }
182   p->nOp++;
183   pOp = &p->aOp[i];
184   pOp->opcode = (u8)op;
185   pOp->p5 = 0;
186   pOp->p1 = p1;
187   pOp->p2 = p2;
188   pOp->p3 = p3;
189   pOp->p4.p = 0;
190   pOp->p4type = P4_NOTUSED;
191 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
192   pOp->zComment = 0;
193 #endif
194 #ifdef SQLITE_DEBUG
195   if( p->db->flags & SQLITE_VdbeAddopTrace ){
196     int jj, kk;
197     Parse *pParse = p->pParse;
198     for(jj=kk=0; jj<pParse->nColCache; jj++){
199       struct yColCache *x = pParse->aColCache + jj;
200       printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
201       kk++;
202     }
203     if( kk ) printf("\n");
204     sqlite3VdbePrintOp(0, i, &p->aOp[i]);
205     test_addop_breakpoint();
206   }
207 #endif
208 #ifdef VDBE_PROFILE
209   pOp->cycles = 0;
210   pOp->cnt = 0;
211 #endif
212 #ifdef SQLITE_VDBE_COVERAGE
213   pOp->iSrcLine = 0;
214 #endif
215   return i;
216 }
217 int sqlite3VdbeAddOp0(Vdbe *p, int op){
218   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
219 }
220 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
221   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
222 }
223 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
224   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
225 }
226 
227 /* Generate code for an unconditional jump to instruction iDest
228 */
229 int sqlite3VdbeGoto(Vdbe *p, int iDest){
230   return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
231 }
232 
233 /* Generate code to cause the string zStr to be loaded into
234 ** register iDest
235 */
236 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
237   return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
238 }
239 
240 /*
241 ** Generate code that initializes multiple registers to string or integer
242 ** constants.  The registers begin with iDest and increase consecutively.
243 ** One register is initialized for each characgter in zTypes[].  For each
244 ** "s" character in zTypes[], the register is a string if the argument is
245 ** not NULL, or OP_Null if the value is a null pointer.  For each "i" character
246 ** in zTypes[], the register is initialized to an integer.
247 **
248 ** If the input string does not end with "X" then an OP_ResultRow instruction
249 ** is generated for the values inserted.
250 */
251 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
252   va_list ap;
253   int i;
254   char c;
255   va_start(ap, zTypes);
256   for(i=0; (c = zTypes[i])!=0; i++){
257     if( c=='s' ){
258       const char *z = va_arg(ap, const char*);
259       sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
260     }else if( c=='i' ){
261       sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
262     }else{
263       goto skip_op_resultrow;
264     }
265   }
266   sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
267 skip_op_resultrow:
268   va_end(ap);
269 }
270 
271 /*
272 ** Add an opcode that includes the p4 value as a pointer.
273 */
274 int sqlite3VdbeAddOp4(
275   Vdbe *p,            /* Add the opcode to this VM */
276   int op,             /* The new opcode */
277   int p1,             /* The P1 operand */
278   int p2,             /* The P2 operand */
279   int p3,             /* The P3 operand */
280   const char *zP4,    /* The P4 operand */
281   int p4type          /* P4 operand type */
282 ){
283   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
284   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
285   return addr;
286 }
287 
288 /*
289 ** Add an opcode that includes the p4 value with a P4_INT64 or
290 ** P4_REAL type.
291 */
292 int sqlite3VdbeAddOp4Dup8(
293   Vdbe *p,            /* Add the opcode to this VM */
294   int op,             /* The new opcode */
295   int p1,             /* The P1 operand */
296   int p2,             /* The P2 operand */
297   int p3,             /* The P3 operand */
298   const u8 *zP4,      /* The P4 operand */
299   int p4type          /* P4 operand type */
300 ){
301   char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
302   if( p4copy ) memcpy(p4copy, zP4, 8);
303   return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
304 }
305 
306 /*
307 ** Add an OP_ParseSchema opcode.  This routine is broken out from
308 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
309 ** as having been used.
310 **
311 ** The zWhere string must have been obtained from sqlite3_malloc().
312 ** This routine will take ownership of the allocated memory.
313 */
314 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
315   int j;
316   sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
317   for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
318 }
319 
320 /*
321 ** Add an opcode that includes the p4 value as an integer.
322 */
323 int sqlite3VdbeAddOp4Int(
324   Vdbe *p,            /* Add the opcode to this VM */
325   int op,             /* The new opcode */
326   int p1,             /* The P1 operand */
327   int p2,             /* The P2 operand */
328   int p3,             /* The P3 operand */
329   int p4              /* The P4 operand as an integer */
330 ){
331   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
332   if( p->db->mallocFailed==0 ){
333     VdbeOp *pOp = &p->aOp[addr];
334     pOp->p4type = P4_INT32;
335     pOp->p4.i = p4;
336   }
337   return addr;
338 }
339 
340 /* Insert the end of a co-routine
341 */
342 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
343   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
344 
345   /* Clear the temporary register cache, thereby ensuring that each
346   ** co-routine has its own independent set of registers, because co-routines
347   ** might expect their registers to be preserved across an OP_Yield, and
348   ** that could cause problems if two or more co-routines are using the same
349   ** temporary register.
350   */
351   v->pParse->nTempReg = 0;
352   v->pParse->nRangeReg = 0;
353 }
354 
355 /*
356 ** Create a new symbolic label for an instruction that has yet to be
357 ** coded.  The symbolic label is really just a negative number.  The
358 ** label can be used as the P2 value of an operation.  Later, when
359 ** the label is resolved to a specific address, the VDBE will scan
360 ** through its operation list and change all values of P2 which match
361 ** the label into the resolved address.
362 **
363 ** The VDBE knows that a P2 value is a label because labels are
364 ** always negative and P2 values are suppose to be non-negative.
365 ** Hence, a negative P2 value is a label that has yet to be resolved.
366 **
367 ** Zero is returned if a malloc() fails.
368 */
369 int sqlite3VdbeMakeLabel(Vdbe *v){
370   Parse *p = v->pParse;
371   int i = p->nLabel++;
372   assert( v->magic==VDBE_MAGIC_INIT );
373   if( (i & (i-1))==0 ){
374     p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
375                                        (i*2+1)*sizeof(p->aLabel[0]));
376   }
377   if( p->aLabel ){
378     p->aLabel[i] = -1;
379   }
380   return ADDR(i);
381 }
382 
383 /*
384 ** Resolve label "x" to be the address of the next instruction to
385 ** be inserted.  The parameter "x" must have been obtained from
386 ** a prior call to sqlite3VdbeMakeLabel().
387 */
388 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
389   Parse *p = v->pParse;
390   int j = ADDR(x);
391   assert( v->magic==VDBE_MAGIC_INIT );
392   assert( j<p->nLabel );
393   assert( j>=0 );
394   if( p->aLabel ){
395 #ifdef SQLITE_DEBUG
396     if( p->db->flags & SQLITE_VdbeAddopTrace ){
397       printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
398     }
399 #endif
400     assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
401     p->aLabel[j] = v->nOp;
402   }
403 }
404 
405 #ifdef SQLITE_COVERAGE_TEST
406 /*
407 ** Return TRUE if and only if the label x has already been resolved.
408 ** Return FALSE (zero) if label x is still unresolved.
409 **
410 ** This routine is only used inside of testcase() macros, and so it
411 ** only exists when measuring test coverage.
412 */
413 int sqlite3VdbeLabelHasBeenResolved(Vdbe *v, int x){
414   return v->pParse->aLabel && v->pParse->aLabel[ADDR(x)]>=0;
415 }
416 #endif /* SQLITE_COVERAGE_TEST */
417 
418 /*
419 ** Mark the VDBE as one that can only be run one time.
420 */
421 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
422   p->runOnlyOnce = 1;
423 }
424 
425 /*
426 ** Mark the VDBE as one that can only be run multiple times.
427 */
428 void sqlite3VdbeReusable(Vdbe *p){
429   p->runOnlyOnce = 0;
430 }
431 
432 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
433 
434 /*
435 ** The following type and function are used to iterate through all opcodes
436 ** in a Vdbe main program and each of the sub-programs (triggers) it may
437 ** invoke directly or indirectly. It should be used as follows:
438 **
439 **   Op *pOp;
440 **   VdbeOpIter sIter;
441 **
442 **   memset(&sIter, 0, sizeof(sIter));
443 **   sIter.v = v;                            // v is of type Vdbe*
444 **   while( (pOp = opIterNext(&sIter)) ){
445 **     // Do something with pOp
446 **   }
447 **   sqlite3DbFree(v->db, sIter.apSub);
448 **
449 */
450 typedef struct VdbeOpIter VdbeOpIter;
451 struct VdbeOpIter {
452   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
453   SubProgram **apSub;        /* Array of subprograms */
454   int nSub;                  /* Number of entries in apSub */
455   int iAddr;                 /* Address of next instruction to return */
456   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
457 };
458 static Op *opIterNext(VdbeOpIter *p){
459   Vdbe *v = p->v;
460   Op *pRet = 0;
461   Op *aOp;
462   int nOp;
463 
464   if( p->iSub<=p->nSub ){
465 
466     if( p->iSub==0 ){
467       aOp = v->aOp;
468       nOp = v->nOp;
469     }else{
470       aOp = p->apSub[p->iSub-1]->aOp;
471       nOp = p->apSub[p->iSub-1]->nOp;
472     }
473     assert( p->iAddr<nOp );
474 
475     pRet = &aOp[p->iAddr];
476     p->iAddr++;
477     if( p->iAddr==nOp ){
478       p->iSub++;
479       p->iAddr = 0;
480     }
481 
482     if( pRet->p4type==P4_SUBPROGRAM ){
483       int nByte = (p->nSub+1)*sizeof(SubProgram*);
484       int j;
485       for(j=0; j<p->nSub; j++){
486         if( p->apSub[j]==pRet->p4.pProgram ) break;
487       }
488       if( j==p->nSub ){
489         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
490         if( !p->apSub ){
491           pRet = 0;
492         }else{
493           p->apSub[p->nSub++] = pRet->p4.pProgram;
494         }
495       }
496     }
497   }
498 
499   return pRet;
500 }
501 
502 /*
503 ** Check if the program stored in the VM associated with pParse may
504 ** throw an ABORT exception (causing the statement, but not entire transaction
505 ** to be rolled back). This condition is true if the main program or any
506 ** sub-programs contains any of the following:
507 **
508 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
509 **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
510 **   *  OP_Destroy
511 **   *  OP_VUpdate
512 **   *  OP_VRename
513 **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
514 **   *  OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
515 **      (for CREATE TABLE AS SELECT ...)
516 **
517 ** Then check that the value of Parse.mayAbort is true if an
518 ** ABORT may be thrown, or false otherwise. Return true if it does
519 ** match, or false otherwise. This function is intended to be used as
520 ** part of an assert statement in the compiler. Similar to:
521 **
522 **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
523 */
524 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
525   int hasAbort = 0;
526   int hasFkCounter = 0;
527   int hasCreateTable = 0;
528   int hasInitCoroutine = 0;
529   Op *pOp;
530   VdbeOpIter sIter;
531   memset(&sIter, 0, sizeof(sIter));
532   sIter.v = v;
533 
534   while( (pOp = opIterNext(&sIter))!=0 ){
535     int opcode = pOp->opcode;
536     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
537      || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
538       && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
539     ){
540       hasAbort = 1;
541       break;
542     }
543     if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
544     if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
545 #ifndef SQLITE_OMIT_FOREIGN_KEY
546     if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
547       hasFkCounter = 1;
548     }
549 #endif
550   }
551   sqlite3DbFree(v->db, sIter.apSub);
552 
553   /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
554   ** If malloc failed, then the while() loop above may not have iterated
555   ** through all opcodes and hasAbort may be set incorrectly. Return
556   ** true for this case to prevent the assert() in the callers frame
557   ** from failing.  */
558   return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
559               || (hasCreateTable && hasInitCoroutine) );
560 }
561 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
562 
563 /*
564 ** This routine is called after all opcodes have been inserted.  It loops
565 ** through all the opcodes and fixes up some details.
566 **
567 ** (1) For each jump instruction with a negative P2 value (a label)
568 **     resolve the P2 value to an actual address.
569 **
570 ** (2) Compute the maximum number of arguments used by any SQL function
571 **     and store that value in *pMaxFuncArgs.
572 **
573 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
574 **     indicate what the prepared statement actually does.
575 **
576 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
577 **
578 ** (5) Reclaim the memory allocated for storing labels.
579 **
580 ** This routine will only function correctly if the mkopcodeh.tcl generator
581 ** script numbers the opcodes correctly.  Changes to this routine must be
582 ** coordinated with changes to mkopcodeh.tcl.
583 */
584 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
585   int nMaxArgs = *pMaxFuncArgs;
586   Op *pOp;
587   Parse *pParse = p->pParse;
588   int *aLabel = pParse->aLabel;
589   p->readOnly = 1;
590   p->bIsReader = 0;
591   pOp = &p->aOp[p->nOp-1];
592   while(1){
593 
594     /* Only JUMP opcodes and the short list of special opcodes in the switch
595     ** below need to be considered.  The mkopcodeh.tcl generator script groups
596     ** all these opcodes together near the front of the opcode list.  Skip
597     ** any opcode that does not need processing by virtual of the fact that
598     ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
599     */
600     if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
601       /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
602       ** cases from this switch! */
603       switch( pOp->opcode ){
604         case OP_Transaction: {
605           if( pOp->p2!=0 ) p->readOnly = 0;
606           /* fall thru */
607         }
608         case OP_AutoCommit:
609         case OP_Savepoint: {
610           p->bIsReader = 1;
611           break;
612         }
613 #ifndef SQLITE_OMIT_WAL
614         case OP_Checkpoint:
615 #endif
616         case OP_Vacuum:
617         case OP_JournalMode: {
618           p->readOnly = 0;
619           p->bIsReader = 1;
620           break;
621         }
622         case OP_Next:
623         case OP_NextIfOpen:
624         case OP_SorterNext: {
625           pOp->p4.xAdvance = sqlite3BtreeNext;
626           pOp->p4type = P4_ADVANCE;
627           /* The code generator never codes any of these opcodes as a jump
628           ** to a label.  They are always coded as a jump backwards to a
629           ** known address */
630           assert( pOp->p2>=0 );
631           break;
632         }
633         case OP_Prev:
634         case OP_PrevIfOpen: {
635           pOp->p4.xAdvance = sqlite3BtreePrevious;
636           pOp->p4type = P4_ADVANCE;
637           /* The code generator never codes any of these opcodes as a jump
638           ** to a label.  They are always coded as a jump backwards to a
639           ** known address */
640           assert( pOp->p2>=0 );
641           break;
642         }
643 #ifndef SQLITE_OMIT_VIRTUALTABLE
644         case OP_VUpdate: {
645           if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
646           break;
647         }
648         case OP_VFilter: {
649           int n;
650           assert( (pOp - p->aOp) >= 3 );
651           assert( pOp[-1].opcode==OP_Integer );
652           n = pOp[-1].p1;
653           if( n>nMaxArgs ) nMaxArgs = n;
654           /* Fall through into the default case */
655         }
656 #endif
657         default: {
658           if( pOp->p2<0 ){
659             /* The mkopcodeh.tcl script has so arranged things that the only
660             ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
661             ** have non-negative values for P2. */
662             assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
663             assert( ADDR(pOp->p2)<pParse->nLabel );
664             pOp->p2 = aLabel[ADDR(pOp->p2)];
665           }
666           break;
667         }
668       }
669       /* The mkopcodeh.tcl script has so arranged things that the only
670       ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
671       ** have non-negative values for P2. */
672       assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
673     }
674     if( pOp==p->aOp ) break;
675     pOp--;
676   }
677   sqlite3DbFree(p->db, pParse->aLabel);
678   pParse->aLabel = 0;
679   pParse->nLabel = 0;
680   *pMaxFuncArgs = nMaxArgs;
681   assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
682 }
683 
684 /*
685 ** Return the address of the next instruction to be inserted.
686 */
687 int sqlite3VdbeCurrentAddr(Vdbe *p){
688   assert( p->magic==VDBE_MAGIC_INIT );
689   return p->nOp;
690 }
691 
692 /*
693 ** Verify that at least N opcode slots are available in p without
694 ** having to malloc for more space (except when compiled using
695 ** SQLITE_TEST_REALLOC_STRESS).  This interface is used during testing
696 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
697 ** fail due to a OOM fault and hence that the return value from
698 ** sqlite3VdbeAddOpList() will always be non-NULL.
699 */
700 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
701 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
702   assert( p->nOp + N <= p->pParse->nOpAlloc );
703 }
704 #endif
705 
706 /*
707 ** Verify that the VM passed as the only argument does not contain
708 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
709 ** by code in pragma.c to ensure that the implementation of certain
710 ** pragmas comports with the flags specified in the mkpragmatab.tcl
711 ** script.
712 */
713 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
714 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
715   int i;
716   for(i=0; i<p->nOp; i++){
717     assert( p->aOp[i].opcode!=OP_ResultRow );
718   }
719 }
720 #endif
721 
722 /*
723 ** This function returns a pointer to the array of opcodes associated with
724 ** the Vdbe passed as the first argument. It is the callers responsibility
725 ** to arrange for the returned array to be eventually freed using the
726 ** vdbeFreeOpArray() function.
727 **
728 ** Before returning, *pnOp is set to the number of entries in the returned
729 ** array. Also, *pnMaxArg is set to the larger of its current value and
730 ** the number of entries in the Vdbe.apArg[] array required to execute the
731 ** returned program.
732 */
733 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
734   VdbeOp *aOp = p->aOp;
735   assert( aOp && !p->db->mallocFailed );
736 
737   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
738   assert( DbMaskAllZero(p->btreeMask) );
739 
740   resolveP2Values(p, pnMaxArg);
741   *pnOp = p->nOp;
742   p->aOp = 0;
743   return aOp;
744 }
745 
746 /*
747 ** Add a whole list of operations to the operation stack.  Return a
748 ** pointer to the first operation inserted.
749 **
750 ** Non-zero P2 arguments to jump instructions are automatically adjusted
751 ** so that the jump target is relative to the first operation inserted.
752 */
753 VdbeOp *sqlite3VdbeAddOpList(
754   Vdbe *p,                     /* Add opcodes to the prepared statement */
755   int nOp,                     /* Number of opcodes to add */
756   VdbeOpList const *aOp,       /* The opcodes to be added */
757   int iLineno                  /* Source-file line number of first opcode */
758 ){
759   int i;
760   VdbeOp *pOut, *pFirst;
761   assert( nOp>0 );
762   assert( p->magic==VDBE_MAGIC_INIT );
763   if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
764     return 0;
765   }
766   pFirst = pOut = &p->aOp[p->nOp];
767   for(i=0; i<nOp; i++, aOp++, pOut++){
768     pOut->opcode = aOp->opcode;
769     pOut->p1 = aOp->p1;
770     pOut->p2 = aOp->p2;
771     assert( aOp->p2>=0 );
772     if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
773       pOut->p2 += p->nOp;
774     }
775     pOut->p3 = aOp->p3;
776     pOut->p4type = P4_NOTUSED;
777     pOut->p4.p = 0;
778     pOut->p5 = 0;
779 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
780     pOut->zComment = 0;
781 #endif
782 #ifdef SQLITE_VDBE_COVERAGE
783     pOut->iSrcLine = iLineno+i;
784 #else
785     (void)iLineno;
786 #endif
787 #ifdef SQLITE_DEBUG
788     if( p->db->flags & SQLITE_VdbeAddopTrace ){
789       sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
790     }
791 #endif
792   }
793   p->nOp += nOp;
794   return pFirst;
795 }
796 
797 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
798 /*
799 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
800 */
801 void sqlite3VdbeScanStatus(
802   Vdbe *p,                        /* VM to add scanstatus() to */
803   int addrExplain,                /* Address of OP_Explain (or 0) */
804   int addrLoop,                   /* Address of loop counter */
805   int addrVisit,                  /* Address of rows visited counter */
806   LogEst nEst,                    /* Estimated number of output rows */
807   const char *zName               /* Name of table or index being scanned */
808 ){
809   int nByte = (p->nScan+1) * sizeof(ScanStatus);
810   ScanStatus *aNew;
811   aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
812   if( aNew ){
813     ScanStatus *pNew = &aNew[p->nScan++];
814     pNew->addrExplain = addrExplain;
815     pNew->addrLoop = addrLoop;
816     pNew->addrVisit = addrVisit;
817     pNew->nEst = nEst;
818     pNew->zName = sqlite3DbStrDup(p->db, zName);
819     p->aScan = aNew;
820   }
821 }
822 #endif
823 
824 
825 /*
826 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
827 ** for a specific instruction.
828 */
829 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){
830   sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
831 }
832 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
833   sqlite3VdbeGetOp(p,addr)->p1 = val;
834 }
835 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
836   sqlite3VdbeGetOp(p,addr)->p2 = val;
837 }
838 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
839   sqlite3VdbeGetOp(p,addr)->p3 = val;
840 }
841 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
842   assert( p->nOp>0 || p->db->mallocFailed );
843   if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
844 }
845 
846 /*
847 ** Change the P2 operand of instruction addr so that it points to
848 ** the address of the next instruction to be coded.
849 */
850 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
851   sqlite3VdbeChangeP2(p, addr, p->nOp);
852 }
853 
854 
855 /*
856 ** If the input FuncDef structure is ephemeral, then free it.  If
857 ** the FuncDef is not ephermal, then do nothing.
858 */
859 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
860   if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
861     sqlite3DbFreeNN(db, pDef);
862   }
863 }
864 
865 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
866 
867 /*
868 ** Delete a P4 value if necessary.
869 */
870 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
871   if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
872   sqlite3DbFreeNN(db, p);
873 }
874 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
875   freeEphemeralFunction(db, p->pFunc);
876  sqlite3DbFreeNN(db, p);
877 }
878 static void freeP4(sqlite3 *db, int p4type, void *p4){
879   assert( db );
880   switch( p4type ){
881     case P4_FUNCCTX: {
882       freeP4FuncCtx(db, (sqlite3_context*)p4);
883       break;
884     }
885     case P4_REAL:
886     case P4_INT64:
887     case P4_DYNAMIC:
888     case P4_DYNBLOB:
889     case P4_INTARRAY: {
890       sqlite3DbFree(db, p4);
891       break;
892     }
893     case P4_KEYINFO: {
894       if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
895       break;
896     }
897 #ifdef SQLITE_ENABLE_CURSOR_HINTS
898     case P4_EXPR: {
899       sqlite3ExprDelete(db, (Expr*)p4);
900       break;
901     }
902 #endif
903     case P4_FUNCDEF: {
904       freeEphemeralFunction(db, (FuncDef*)p4);
905       break;
906     }
907     case P4_MEM: {
908       if( db->pnBytesFreed==0 ){
909         sqlite3ValueFree((sqlite3_value*)p4);
910       }else{
911         freeP4Mem(db, (Mem*)p4);
912       }
913       break;
914     }
915     case P4_VTAB : {
916       if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
917       break;
918     }
919   }
920 }
921 
922 /*
923 ** Free the space allocated for aOp and any p4 values allocated for the
924 ** opcodes contained within. If aOp is not NULL it is assumed to contain
925 ** nOp entries.
926 */
927 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
928   if( aOp ){
929     Op *pOp;
930     for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
931       if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
932 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
933       sqlite3DbFree(db, pOp->zComment);
934 #endif
935     }
936     sqlite3DbFreeNN(db, aOp);
937   }
938 }
939 
940 /*
941 ** Link the SubProgram object passed as the second argument into the linked
942 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
943 ** objects when the VM is no longer required.
944 */
945 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
946   p->pNext = pVdbe->pProgram;
947   pVdbe->pProgram = p;
948 }
949 
950 /*
951 ** Change the opcode at addr into OP_Noop
952 */
953 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
954   VdbeOp *pOp;
955   if( p->db->mallocFailed ) return 0;
956   assert( addr>=0 && addr<p->nOp );
957   pOp = &p->aOp[addr];
958   freeP4(p->db, pOp->p4type, pOp->p4.p);
959   pOp->p4type = P4_NOTUSED;
960   pOp->p4.z = 0;
961   pOp->opcode = OP_Noop;
962   return 1;
963 }
964 
965 /*
966 ** If the last opcode is "op" and it is not a jump destination,
967 ** then remove it.  Return true if and only if an opcode was removed.
968 */
969 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
970   if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
971     return sqlite3VdbeChangeToNoop(p, p->nOp-1);
972   }else{
973     return 0;
974   }
975 }
976 
977 /*
978 ** Change the value of the P4 operand for a specific instruction.
979 ** This routine is useful when a large program is loaded from a
980 ** static array using sqlite3VdbeAddOpList but we want to make a
981 ** few minor changes to the program.
982 **
983 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
984 ** the string is made into memory obtained from sqlite3_malloc().
985 ** A value of n==0 means copy bytes of zP4 up to and including the
986 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
987 **
988 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
989 ** to a string or structure that is guaranteed to exist for the lifetime of
990 ** the Vdbe. In these cases we can just copy the pointer.
991 **
992 ** If addr<0 then change P4 on the most recently inserted instruction.
993 */
994 static void SQLITE_NOINLINE vdbeChangeP4Full(
995   Vdbe *p,
996   Op *pOp,
997   const char *zP4,
998   int n
999 ){
1000   if( pOp->p4type ){
1001     freeP4(p->db, pOp->p4type, pOp->p4.p);
1002     pOp->p4type = 0;
1003     pOp->p4.p = 0;
1004   }
1005   if( n<0 ){
1006     sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1007   }else{
1008     if( n==0 ) n = sqlite3Strlen30(zP4);
1009     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1010     pOp->p4type = P4_DYNAMIC;
1011   }
1012 }
1013 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1014   Op *pOp;
1015   sqlite3 *db;
1016   assert( p!=0 );
1017   db = p->db;
1018   assert( p->magic==VDBE_MAGIC_INIT );
1019   assert( p->aOp!=0 || db->mallocFailed );
1020   if( db->mallocFailed ){
1021     if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1022     return;
1023   }
1024   assert( p->nOp>0 );
1025   assert( addr<p->nOp );
1026   if( addr<0 ){
1027     addr = p->nOp - 1;
1028   }
1029   pOp = &p->aOp[addr];
1030   if( n>=0 || pOp->p4type ){
1031     vdbeChangeP4Full(p, pOp, zP4, n);
1032     return;
1033   }
1034   if( n==P4_INT32 ){
1035     /* Note: this cast is safe, because the origin data point was an int
1036     ** that was cast to a (const char *). */
1037     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1038     pOp->p4type = P4_INT32;
1039   }else if( zP4!=0 ){
1040     assert( n<0 );
1041     pOp->p4.p = (void*)zP4;
1042     pOp->p4type = (signed char)n;
1043     if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1044   }
1045 }
1046 
1047 /*
1048 ** Change the P4 operand of the most recently coded instruction
1049 ** to the value defined by the arguments.  This is a high-speed
1050 ** version of sqlite3VdbeChangeP4().
1051 **
1052 ** The P4 operand must not have been previously defined.  And the new
1053 ** P4 must not be P4_INT32.  Use sqlite3VdbeChangeP4() in either of
1054 ** those cases.
1055 */
1056 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1057   VdbeOp *pOp;
1058   assert( n!=P4_INT32 && n!=P4_VTAB );
1059   assert( n<=0 );
1060   if( p->db->mallocFailed ){
1061     freeP4(p->db, n, pP4);
1062   }else{
1063     assert( pP4!=0 );
1064     assert( p->nOp>0 );
1065     pOp = &p->aOp[p->nOp-1];
1066     assert( pOp->p4type==P4_NOTUSED );
1067     pOp->p4type = n;
1068     pOp->p4.p = pP4;
1069   }
1070 }
1071 
1072 /*
1073 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1074 ** index given.
1075 */
1076 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1077   Vdbe *v = pParse->pVdbe;
1078   KeyInfo *pKeyInfo;
1079   assert( v!=0 );
1080   assert( pIdx!=0 );
1081   pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1082   if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1083 }
1084 
1085 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1086 /*
1087 ** Change the comment on the most recently coded instruction.  Or
1088 ** insert a No-op and add the comment to that new instruction.  This
1089 ** makes the code easier to read during debugging.  None of this happens
1090 ** in a production build.
1091 */
1092 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1093   assert( p->nOp>0 || p->aOp==0 );
1094   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
1095   if( p->nOp ){
1096     assert( p->aOp );
1097     sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1098     p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1099   }
1100 }
1101 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1102   va_list ap;
1103   if( p ){
1104     va_start(ap, zFormat);
1105     vdbeVComment(p, zFormat, ap);
1106     va_end(ap);
1107   }
1108 }
1109 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1110   va_list ap;
1111   if( p ){
1112     sqlite3VdbeAddOp0(p, OP_Noop);
1113     va_start(ap, zFormat);
1114     vdbeVComment(p, zFormat, ap);
1115     va_end(ap);
1116   }
1117 }
1118 #endif  /* NDEBUG */
1119 
1120 #ifdef SQLITE_VDBE_COVERAGE
1121 /*
1122 ** Set the value if the iSrcLine field for the previously coded instruction.
1123 */
1124 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1125   sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1126 }
1127 #endif /* SQLITE_VDBE_COVERAGE */
1128 
1129 /*
1130 ** Return the opcode for a given address.  If the address is -1, then
1131 ** return the most recently inserted opcode.
1132 **
1133 ** If a memory allocation error has occurred prior to the calling of this
1134 ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
1135 ** is readable but not writable, though it is cast to a writable value.
1136 ** The return of a dummy opcode allows the call to continue functioning
1137 ** after an OOM fault without having to check to see if the return from
1138 ** this routine is a valid pointer.  But because the dummy.opcode is 0,
1139 ** dummy will never be written to.  This is verified by code inspection and
1140 ** by running with Valgrind.
1141 */
1142 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1143   /* C89 specifies that the constant "dummy" will be initialized to all
1144   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
1145   static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
1146   assert( p->magic==VDBE_MAGIC_INIT );
1147   if( addr<0 ){
1148     addr = p->nOp - 1;
1149   }
1150   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1151   if( p->db->mallocFailed ){
1152     return (VdbeOp*)&dummy;
1153   }else{
1154     return &p->aOp[addr];
1155   }
1156 }
1157 
1158 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1159 /*
1160 ** Return an integer value for one of the parameters to the opcode pOp
1161 ** determined by character c.
1162 */
1163 static int translateP(char c, const Op *pOp){
1164   if( c=='1' ) return pOp->p1;
1165   if( c=='2' ) return pOp->p2;
1166   if( c=='3' ) return pOp->p3;
1167   if( c=='4' ) return pOp->p4.i;
1168   return pOp->p5;
1169 }
1170 
1171 /*
1172 ** Compute a string for the "comment" field of a VDBE opcode listing.
1173 **
1174 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1175 ** to an extra string that is appended to the sqlite3OpcodeName().  In the
1176 ** absence of other comments, this synopsis becomes the comment on the opcode.
1177 ** Some translation occurs:
1178 **
1179 **       "PX"      ->  "r[X]"
1180 **       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1
1181 **       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0
1182 **       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x
1183 */
1184 static int displayComment(
1185   const Op *pOp,     /* The opcode to be commented */
1186   const char *zP4,   /* Previously obtained value for P4 */
1187   char *zTemp,       /* Write result here */
1188   int nTemp          /* Space available in zTemp[] */
1189 ){
1190   const char *zOpName;
1191   const char *zSynopsis;
1192   int nOpName;
1193   int ii, jj;
1194   char zAlt[50];
1195   zOpName = sqlite3OpcodeName(pOp->opcode);
1196   nOpName = sqlite3Strlen30(zOpName);
1197   if( zOpName[nOpName+1] ){
1198     int seenCom = 0;
1199     char c;
1200     zSynopsis = zOpName += nOpName + 1;
1201     if( strncmp(zSynopsis,"IF ",3)==0 ){
1202       if( pOp->p5 & SQLITE_STOREP2 ){
1203         sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
1204       }else{
1205         sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1206       }
1207       zSynopsis = zAlt;
1208     }
1209     for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1210       if( c=='P' ){
1211         c = zSynopsis[++ii];
1212         if( c=='4' ){
1213           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1214         }else if( c=='X' ){
1215           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1216           seenCom = 1;
1217         }else{
1218           int v1 = translateP(c, pOp);
1219           int v2;
1220           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1221           if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1222             ii += 3;
1223             jj += sqlite3Strlen30(zTemp+jj);
1224             v2 = translateP(zSynopsis[ii], pOp);
1225             if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1226               ii += 2;
1227               v2++;
1228             }
1229             if( v2>1 ){
1230               sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1231             }
1232           }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1233             ii += 4;
1234           }
1235         }
1236         jj += sqlite3Strlen30(zTemp+jj);
1237       }else{
1238         zTemp[jj++] = c;
1239       }
1240     }
1241     if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1242       sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1243       jj += sqlite3Strlen30(zTemp+jj);
1244     }
1245     if( jj<nTemp ) zTemp[jj] = 0;
1246   }else if( pOp->zComment ){
1247     sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1248     jj = sqlite3Strlen30(zTemp);
1249   }else{
1250     zTemp[0] = 0;
1251     jj = 0;
1252   }
1253   return jj;
1254 }
1255 #endif /* SQLITE_DEBUG */
1256 
1257 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1258 /*
1259 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1260 ** that can be displayed in the P4 column of EXPLAIN output.
1261 */
1262 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1263   const char *zOp = 0;
1264   switch( pExpr->op ){
1265     case TK_STRING:
1266       sqlite3XPrintf(p, "%Q", pExpr->u.zToken);
1267       break;
1268     case TK_INTEGER:
1269       sqlite3XPrintf(p, "%d", pExpr->u.iValue);
1270       break;
1271     case TK_NULL:
1272       sqlite3XPrintf(p, "NULL");
1273       break;
1274     case TK_REGISTER: {
1275       sqlite3XPrintf(p, "r[%d]", pExpr->iTable);
1276       break;
1277     }
1278     case TK_COLUMN: {
1279       if( pExpr->iColumn<0 ){
1280         sqlite3XPrintf(p, "rowid");
1281       }else{
1282         sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn);
1283       }
1284       break;
1285     }
1286     case TK_LT:      zOp = "LT";      break;
1287     case TK_LE:      zOp = "LE";      break;
1288     case TK_GT:      zOp = "GT";      break;
1289     case TK_GE:      zOp = "GE";      break;
1290     case TK_NE:      zOp = "NE";      break;
1291     case TK_EQ:      zOp = "EQ";      break;
1292     case TK_IS:      zOp = "IS";      break;
1293     case TK_ISNOT:   zOp = "ISNOT";   break;
1294     case TK_AND:     zOp = "AND";     break;
1295     case TK_OR:      zOp = "OR";      break;
1296     case TK_PLUS:    zOp = "ADD";     break;
1297     case TK_STAR:    zOp = "MUL";     break;
1298     case TK_MINUS:   zOp = "SUB";     break;
1299     case TK_REM:     zOp = "REM";     break;
1300     case TK_BITAND:  zOp = "BITAND";  break;
1301     case TK_BITOR:   zOp = "BITOR";   break;
1302     case TK_SLASH:   zOp = "DIV";     break;
1303     case TK_LSHIFT:  zOp = "LSHIFT";  break;
1304     case TK_RSHIFT:  zOp = "RSHIFT";  break;
1305     case TK_CONCAT:  zOp = "CONCAT";  break;
1306     case TK_UMINUS:  zOp = "MINUS";   break;
1307     case TK_UPLUS:   zOp = "PLUS";    break;
1308     case TK_BITNOT:  zOp = "BITNOT";  break;
1309     case TK_NOT:     zOp = "NOT";     break;
1310     case TK_ISNULL:  zOp = "ISNULL";  break;
1311     case TK_NOTNULL: zOp = "NOTNULL"; break;
1312 
1313     default:
1314       sqlite3XPrintf(p, "%s", "expr");
1315       break;
1316   }
1317 
1318   if( zOp ){
1319     sqlite3XPrintf(p, "%s(", zOp);
1320     displayP4Expr(p, pExpr->pLeft);
1321     if( pExpr->pRight ){
1322       sqlite3StrAccumAppend(p, ",", 1);
1323       displayP4Expr(p, pExpr->pRight);
1324     }
1325     sqlite3StrAccumAppend(p, ")", 1);
1326   }
1327 }
1328 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1329 
1330 
1331 #if VDBE_DISPLAY_P4
1332 /*
1333 ** Compute a string that describes the P4 parameter for an opcode.
1334 ** Use zTemp for any required temporary buffer space.
1335 */
1336 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1337   char *zP4 = zTemp;
1338   StrAccum x;
1339   assert( nTemp>=20 );
1340   sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
1341   switch( pOp->p4type ){
1342     case P4_KEYINFO: {
1343       int j;
1344       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1345       assert( pKeyInfo->aSortOrder!=0 );
1346       sqlite3XPrintf(&x, "k(%d", pKeyInfo->nKeyField);
1347       for(j=0; j<pKeyInfo->nKeyField; j++){
1348         CollSeq *pColl = pKeyInfo->aColl[j];
1349         const char *zColl = pColl ? pColl->zName : "";
1350         if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1351         sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl);
1352       }
1353       sqlite3StrAccumAppend(&x, ")", 1);
1354       break;
1355     }
1356 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1357     case P4_EXPR: {
1358       displayP4Expr(&x, pOp->p4.pExpr);
1359       break;
1360     }
1361 #endif
1362     case P4_COLLSEQ: {
1363       CollSeq *pColl = pOp->p4.pColl;
1364       sqlite3XPrintf(&x, "(%.20s)", pColl->zName);
1365       break;
1366     }
1367     case P4_FUNCDEF: {
1368       FuncDef *pDef = pOp->p4.pFunc;
1369       sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1370       break;
1371     }
1372 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1373     case P4_FUNCCTX: {
1374       FuncDef *pDef = pOp->p4.pCtx->pFunc;
1375       sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1376       break;
1377     }
1378 #endif
1379     case P4_INT64: {
1380       sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64);
1381       break;
1382     }
1383     case P4_INT32: {
1384       sqlite3XPrintf(&x, "%d", pOp->p4.i);
1385       break;
1386     }
1387     case P4_REAL: {
1388       sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal);
1389       break;
1390     }
1391     case P4_MEM: {
1392       Mem *pMem = pOp->p4.pMem;
1393       if( pMem->flags & MEM_Str ){
1394         zP4 = pMem->z;
1395       }else if( pMem->flags & MEM_Int ){
1396         sqlite3XPrintf(&x, "%lld", pMem->u.i);
1397       }else if( pMem->flags & MEM_Real ){
1398         sqlite3XPrintf(&x, "%.16g", pMem->u.r);
1399       }else if( pMem->flags & MEM_Null ){
1400         zP4 = "NULL";
1401       }else{
1402         assert( pMem->flags & MEM_Blob );
1403         zP4 = "(blob)";
1404       }
1405       break;
1406     }
1407 #ifndef SQLITE_OMIT_VIRTUALTABLE
1408     case P4_VTAB: {
1409       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1410       sqlite3XPrintf(&x, "vtab:%p", pVtab);
1411       break;
1412     }
1413 #endif
1414     case P4_INTARRAY: {
1415       int i;
1416       int *ai = pOp->p4.ai;
1417       int n = ai[0];   /* The first element of an INTARRAY is always the
1418                        ** count of the number of elements to follow */
1419       for(i=1; i<=n; i++){
1420         sqlite3XPrintf(&x, ",%d", ai[i]);
1421       }
1422       zTemp[0] = '[';
1423       sqlite3StrAccumAppend(&x, "]", 1);
1424       break;
1425     }
1426     case P4_SUBPROGRAM: {
1427       sqlite3XPrintf(&x, "program");
1428       break;
1429     }
1430     case P4_DYNBLOB:
1431     case P4_ADVANCE: {
1432       zTemp[0] = 0;
1433       break;
1434     }
1435     case P4_TABLE: {
1436       sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName);
1437       break;
1438     }
1439     default: {
1440       zP4 = pOp->p4.z;
1441       if( zP4==0 ){
1442         zP4 = zTemp;
1443         zTemp[0] = 0;
1444       }
1445     }
1446   }
1447   sqlite3StrAccumFinish(&x);
1448   assert( zP4!=0 );
1449   return zP4;
1450 }
1451 #endif /* VDBE_DISPLAY_P4 */
1452 
1453 /*
1454 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1455 **
1456 ** The prepared statements need to know in advance the complete set of
1457 ** attached databases that will be use.  A mask of these databases
1458 ** is maintained in p->btreeMask.  The p->lockMask value is the subset of
1459 ** p->btreeMask of databases that will require a lock.
1460 */
1461 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1462   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1463   assert( i<(int)sizeof(p->btreeMask)*8 );
1464   DbMaskSet(p->btreeMask, i);
1465   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1466     DbMaskSet(p->lockMask, i);
1467   }
1468 }
1469 
1470 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1471 /*
1472 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1473 ** this routine obtains the mutex associated with each BtShared structure
1474 ** that may be accessed by the VM passed as an argument. In doing so it also
1475 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1476 ** that the correct busy-handler callback is invoked if required.
1477 **
1478 ** If SQLite is not threadsafe but does support shared-cache mode, then
1479 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1480 ** of all of BtShared structures accessible via the database handle
1481 ** associated with the VM.
1482 **
1483 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1484 ** function is a no-op.
1485 **
1486 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1487 ** statement p will ever use.  Let N be the number of bits in p->btreeMask
1488 ** corresponding to btrees that use shared cache.  Then the runtime of
1489 ** this routine is N*N.  But as N is rarely more than 1, this should not
1490 ** be a problem.
1491 */
1492 void sqlite3VdbeEnter(Vdbe *p){
1493   int i;
1494   sqlite3 *db;
1495   Db *aDb;
1496   int nDb;
1497   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1498   db = p->db;
1499   aDb = db->aDb;
1500   nDb = db->nDb;
1501   for(i=0; i<nDb; i++){
1502     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1503       sqlite3BtreeEnter(aDb[i].pBt);
1504     }
1505   }
1506 }
1507 #endif
1508 
1509 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1510 /*
1511 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1512 */
1513 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1514   int i;
1515   sqlite3 *db;
1516   Db *aDb;
1517   int nDb;
1518   db = p->db;
1519   aDb = db->aDb;
1520   nDb = db->nDb;
1521   for(i=0; i<nDb; i++){
1522     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1523       sqlite3BtreeLeave(aDb[i].pBt);
1524     }
1525   }
1526 }
1527 void sqlite3VdbeLeave(Vdbe *p){
1528   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1529   vdbeLeave(p);
1530 }
1531 #endif
1532 
1533 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1534 /*
1535 ** Print a single opcode.  This routine is used for debugging only.
1536 */
1537 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
1538   char *zP4;
1539   char zPtr[50];
1540   char zCom[100];
1541   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1542   if( pOut==0 ) pOut = stdout;
1543   zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1544 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1545   displayComment(pOp, zP4, zCom, sizeof(zCom));
1546 #else
1547   zCom[0] = 0;
1548 #endif
1549   /* NB:  The sqlite3OpcodeName() function is implemented by code created
1550   ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1551   ** information from the vdbe.c source text */
1552   fprintf(pOut, zFormat1, pc,
1553       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1554       zCom
1555   );
1556   fflush(pOut);
1557 }
1558 #endif
1559 
1560 /*
1561 ** Initialize an array of N Mem element.
1562 */
1563 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1564   while( (N--)>0 ){
1565     p->db = db;
1566     p->flags = flags;
1567     p->szMalloc = 0;
1568 #ifdef SQLITE_DEBUG
1569     p->pScopyFrom = 0;
1570 #endif
1571     p++;
1572   }
1573 }
1574 
1575 /*
1576 ** Release an array of N Mem elements
1577 */
1578 static void releaseMemArray(Mem *p, int N){
1579   if( p && N ){
1580     Mem *pEnd = &p[N];
1581     sqlite3 *db = p->db;
1582     if( db->pnBytesFreed ){
1583       do{
1584         if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1585       }while( (++p)<pEnd );
1586       return;
1587     }
1588     do{
1589       assert( (&p[1])==pEnd || p[0].db==p[1].db );
1590       assert( sqlite3VdbeCheckMemInvariants(p) );
1591 
1592       /* This block is really an inlined version of sqlite3VdbeMemRelease()
1593       ** that takes advantage of the fact that the memory cell value is
1594       ** being set to NULL after releasing any dynamic resources.
1595       **
1596       ** The justification for duplicating code is that according to
1597       ** callgrind, this causes a certain test case to hit the CPU 4.7
1598       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1599       ** sqlite3MemRelease() were called from here. With -O2, this jumps
1600       ** to 6.6 percent. The test case is inserting 1000 rows into a table
1601       ** with no indexes using a single prepared INSERT statement, bind()
1602       ** and reset(). Inserts are grouped into a transaction.
1603       */
1604       testcase( p->flags & MEM_Agg );
1605       testcase( p->flags & MEM_Dyn );
1606       testcase( p->flags & MEM_Frame );
1607       testcase( p->flags & MEM_RowSet );
1608       if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
1609         sqlite3VdbeMemRelease(p);
1610       }else if( p->szMalloc ){
1611         sqlite3DbFreeNN(db, p->zMalloc);
1612         p->szMalloc = 0;
1613       }
1614 
1615       p->flags = MEM_Undefined;
1616     }while( (++p)<pEnd );
1617   }
1618 }
1619 
1620 /*
1621 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1622 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1623 */
1624 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1625   int i;
1626   Mem *aMem = VdbeFrameMem(p);
1627   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1628   for(i=0; i<p->nChildCsr; i++){
1629     sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1630   }
1631   releaseMemArray(aMem, p->nChildMem);
1632   sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
1633   sqlite3DbFree(p->v->db, p);
1634 }
1635 
1636 #ifndef SQLITE_OMIT_EXPLAIN
1637 /*
1638 ** Give a listing of the program in the virtual machine.
1639 **
1640 ** The interface is the same as sqlite3VdbeExec().  But instead of
1641 ** running the code, it invokes the callback once for each instruction.
1642 ** This feature is used to implement "EXPLAIN".
1643 **
1644 ** When p->explain==1, each instruction is listed.  When
1645 ** p->explain==2, only OP_Explain instructions are listed and these
1646 ** are shown in a different format.  p->explain==2 is used to implement
1647 ** EXPLAIN QUERY PLAN.
1648 **
1649 ** When p->explain==1, first the main program is listed, then each of
1650 ** the trigger subprograms are listed one by one.
1651 */
1652 int sqlite3VdbeList(
1653   Vdbe *p                   /* The VDBE */
1654 ){
1655   int nRow;                            /* Stop when row count reaches this */
1656   int nSub = 0;                        /* Number of sub-vdbes seen so far */
1657   SubProgram **apSub = 0;              /* Array of sub-vdbes */
1658   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
1659   sqlite3 *db = p->db;                 /* The database connection */
1660   int i;                               /* Loop counter */
1661   int rc = SQLITE_OK;                  /* Return code */
1662   Mem *pMem = &p->aMem[1];             /* First Mem of result set */
1663   int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
1664   Op *pOp = 0;
1665 
1666   assert( p->explain );
1667   assert( p->magic==VDBE_MAGIC_RUN );
1668   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1669 
1670   /* Even though this opcode does not use dynamic strings for
1671   ** the result, result columns may become dynamic if the user calls
1672   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1673   */
1674   releaseMemArray(pMem, 8);
1675   p->pResultSet = 0;
1676 
1677   if( p->rc==SQLITE_NOMEM ){
1678     /* This happens if a malloc() inside a call to sqlite3_column_text() or
1679     ** sqlite3_column_text16() failed.  */
1680     sqlite3OomFault(db);
1681     return SQLITE_ERROR;
1682   }
1683 
1684   /* When the number of output rows reaches nRow, that means the
1685   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1686   ** nRow is the sum of the number of rows in the main program, plus
1687   ** the sum of the number of rows in all trigger subprograms encountered
1688   ** so far.  The nRow value will increase as new trigger subprograms are
1689   ** encountered, but p->pc will eventually catch up to nRow.
1690   */
1691   nRow = p->nOp;
1692   if( bListSubprogs ){
1693     /* The first 8 memory cells are used for the result set.  So we will
1694     ** commandeer the 9th cell to use as storage for an array of pointers
1695     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
1696     ** cells.  */
1697     assert( p->nMem>9 );
1698     pSub = &p->aMem[9];
1699     if( pSub->flags&MEM_Blob ){
1700       /* On the first call to sqlite3_step(), pSub will hold a NULL.  It is
1701       ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1702       nSub = pSub->n/sizeof(Vdbe*);
1703       apSub = (SubProgram **)pSub->z;
1704     }
1705     for(i=0; i<nSub; i++){
1706       nRow += apSub[i]->nOp;
1707     }
1708   }
1709 
1710   do{
1711     i = p->pc++;
1712     if( i>=nRow ){
1713       p->rc = SQLITE_OK;
1714       rc = SQLITE_DONE;
1715       break;
1716     }
1717     if( i<p->nOp ){
1718       /* The output line number is small enough that we are still in the
1719       ** main program. */
1720       pOp = &p->aOp[i];
1721     }else{
1722       /* We are currently listing subprograms.  Figure out which one and
1723       ** pick up the appropriate opcode. */
1724       int j;
1725       i -= p->nOp;
1726       for(j=0; i>=apSub[j]->nOp; j++){
1727         i -= apSub[j]->nOp;
1728       }
1729       pOp = &apSub[j]->aOp[i];
1730     }
1731 
1732     /* When an OP_Program opcode is encounter (the only opcode that has
1733     ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1734     ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1735     ** has not already been seen.
1736     */
1737     if( bListSubprogs && pOp->p4type==P4_SUBPROGRAM ){
1738       int nByte = (nSub+1)*sizeof(SubProgram*);
1739       int j;
1740       for(j=0; j<nSub; j++){
1741         if( apSub[j]==pOp->p4.pProgram ) break;
1742       }
1743       if( j==nSub ){
1744         p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
1745         if( p->rc!=SQLITE_OK ){
1746           rc = SQLITE_ERROR;
1747           break;
1748         }
1749         apSub = (SubProgram **)pSub->z;
1750         apSub[nSub++] = pOp->p4.pProgram;
1751         pSub->flags |= MEM_Blob;
1752         pSub->n = nSub*sizeof(SubProgram*);
1753         nRow += pOp->p4.pProgram->nOp;
1754       }
1755     }
1756   }while( p->explain==2 && pOp->opcode!=OP_Explain );
1757 
1758   if( rc==SQLITE_OK ){
1759     if( db->u1.isInterrupted ){
1760       p->rc = SQLITE_INTERRUPT;
1761       rc = SQLITE_ERROR;
1762       sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
1763     }else{
1764       char *zP4;
1765       if( p->explain==1 ){
1766         pMem->flags = MEM_Int;
1767         pMem->u.i = i;                                /* Program counter */
1768         pMem++;
1769 
1770         pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1771         pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1772         assert( pMem->z!=0 );
1773         pMem->n = sqlite3Strlen30(pMem->z);
1774         pMem->enc = SQLITE_UTF8;
1775         pMem++;
1776       }
1777 
1778       pMem->flags = MEM_Int;
1779       pMem->u.i = pOp->p1;                          /* P1 */
1780       pMem++;
1781 
1782       pMem->flags = MEM_Int;
1783       pMem->u.i = pOp->p2;                          /* P2 */
1784       pMem++;
1785 
1786       pMem->flags = MEM_Int;
1787       pMem->u.i = pOp->p3;                          /* P3 */
1788       pMem++;
1789 
1790       if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
1791         assert( p->db->mallocFailed );
1792         return SQLITE_ERROR;
1793       }
1794       pMem->flags = MEM_Str|MEM_Term;
1795       zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
1796       if( zP4!=pMem->z ){
1797         pMem->n = 0;
1798         sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
1799       }else{
1800         assert( pMem->z!=0 );
1801         pMem->n = sqlite3Strlen30(pMem->z);
1802         pMem->enc = SQLITE_UTF8;
1803       }
1804       pMem++;
1805 
1806       if( p->explain==1 ){
1807         if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
1808           assert( p->db->mallocFailed );
1809           return SQLITE_ERROR;
1810         }
1811         pMem->flags = MEM_Str|MEM_Term;
1812         pMem->n = 2;
1813         sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
1814         pMem->enc = SQLITE_UTF8;
1815         pMem++;
1816 
1817 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1818         if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
1819           assert( p->db->mallocFailed );
1820           return SQLITE_ERROR;
1821         }
1822         pMem->flags = MEM_Str|MEM_Term;
1823         pMem->n = displayComment(pOp, zP4, pMem->z, 500);
1824         pMem->enc = SQLITE_UTF8;
1825 #else
1826         pMem->flags = MEM_Null;                       /* Comment */
1827 #endif
1828       }
1829 
1830       p->nResColumn = 8 - 4*(p->explain-1);
1831       p->pResultSet = &p->aMem[1];
1832       p->rc = SQLITE_OK;
1833       rc = SQLITE_ROW;
1834     }
1835   }
1836   return rc;
1837 }
1838 #endif /* SQLITE_OMIT_EXPLAIN */
1839 
1840 #ifdef SQLITE_DEBUG
1841 /*
1842 ** Print the SQL that was used to generate a VDBE program.
1843 */
1844 void sqlite3VdbePrintSql(Vdbe *p){
1845   const char *z = 0;
1846   if( p->zSql ){
1847     z = p->zSql;
1848   }else if( p->nOp>=1 ){
1849     const VdbeOp *pOp = &p->aOp[0];
1850     if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1851       z = pOp->p4.z;
1852       while( sqlite3Isspace(*z) ) z++;
1853     }
1854   }
1855   if( z ) printf("SQL: [%s]\n", z);
1856 }
1857 #endif
1858 
1859 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1860 /*
1861 ** Print an IOTRACE message showing SQL content.
1862 */
1863 void sqlite3VdbeIOTraceSql(Vdbe *p){
1864   int nOp = p->nOp;
1865   VdbeOp *pOp;
1866   if( sqlite3IoTrace==0 ) return;
1867   if( nOp<1 ) return;
1868   pOp = &p->aOp[0];
1869   if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1870     int i, j;
1871     char z[1000];
1872     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1873     for(i=0; sqlite3Isspace(z[i]); i++){}
1874     for(j=0; z[i]; i++){
1875       if( sqlite3Isspace(z[i]) ){
1876         if( z[i-1]!=' ' ){
1877           z[j++] = ' ';
1878         }
1879       }else{
1880         z[j++] = z[i];
1881       }
1882     }
1883     z[j] = 0;
1884     sqlite3IoTrace("SQL %s\n", z);
1885   }
1886 }
1887 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1888 
1889 /* An instance of this object describes bulk memory available for use
1890 ** by subcomponents of a prepared statement.  Space is allocated out
1891 ** of a ReusableSpace object by the allocSpace() routine below.
1892 */
1893 struct ReusableSpace {
1894   u8 *pSpace;          /* Available memory */
1895   int nFree;           /* Bytes of available memory */
1896   int nNeeded;         /* Total bytes that could not be allocated */
1897 };
1898 
1899 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
1900 ** from the ReusableSpace object.  Return a pointer to the allocated
1901 ** memory on success.  If insufficient memory is available in the
1902 ** ReusableSpace object, increase the ReusableSpace.nNeeded
1903 ** value by the amount needed and return NULL.
1904 **
1905 ** If pBuf is not initially NULL, that means that the memory has already
1906 ** been allocated by a prior call to this routine, so just return a copy
1907 ** of pBuf and leave ReusableSpace unchanged.
1908 **
1909 ** This allocator is employed to repurpose unused slots at the end of the
1910 ** opcode array of prepared state for other memory needs of the prepared
1911 ** statement.
1912 */
1913 static void *allocSpace(
1914   struct ReusableSpace *p,  /* Bulk memory available for allocation */
1915   void *pBuf,               /* Pointer to a prior allocation */
1916   int nByte                 /* Bytes of memory needed */
1917 ){
1918   assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
1919   if( pBuf==0 ){
1920     nByte = ROUND8(nByte);
1921     if( nByte <= p->nFree ){
1922       p->nFree -= nByte;
1923       pBuf = &p->pSpace[p->nFree];
1924     }else{
1925       p->nNeeded += nByte;
1926     }
1927   }
1928   assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
1929   return pBuf;
1930 }
1931 
1932 /*
1933 ** Rewind the VDBE back to the beginning in preparation for
1934 ** running it.
1935 */
1936 void sqlite3VdbeRewind(Vdbe *p){
1937 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1938   int i;
1939 #endif
1940   assert( p!=0 );
1941   assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET );
1942 
1943   /* There should be at least one opcode.
1944   */
1945   assert( p->nOp>0 );
1946 
1947   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
1948   p->magic = VDBE_MAGIC_RUN;
1949 
1950 #ifdef SQLITE_DEBUG
1951   for(i=0; i<p->nMem; i++){
1952     assert( p->aMem[i].db==p->db );
1953   }
1954 #endif
1955   p->pc = -1;
1956   p->rc = SQLITE_OK;
1957   p->errorAction = OE_Abort;
1958   p->nChange = 0;
1959   p->cacheCtr = 1;
1960   p->minWriteFileFormat = 255;
1961   p->iStatement = 0;
1962   p->nFkConstraint = 0;
1963 #ifdef VDBE_PROFILE
1964   for(i=0; i<p->nOp; i++){
1965     p->aOp[i].cnt = 0;
1966     p->aOp[i].cycles = 0;
1967   }
1968 #endif
1969 }
1970 
1971 /*
1972 ** Prepare a virtual machine for execution for the first time after
1973 ** creating the virtual machine.  This involves things such
1974 ** as allocating registers and initializing the program counter.
1975 ** After the VDBE has be prepped, it can be executed by one or more
1976 ** calls to sqlite3VdbeExec().
1977 **
1978 ** This function may be called exactly once on each virtual machine.
1979 ** After this routine is called the VM has been "packaged" and is ready
1980 ** to run.  After this routine is called, further calls to
1981 ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
1982 ** the Vdbe from the Parse object that helped generate it so that the
1983 ** the Vdbe becomes an independent entity and the Parse object can be
1984 ** destroyed.
1985 **
1986 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1987 ** to its initial state after it has been run.
1988 */
1989 void sqlite3VdbeMakeReady(
1990   Vdbe *p,                       /* The VDBE */
1991   Parse *pParse                  /* Parsing context */
1992 ){
1993   sqlite3 *db;                   /* The database connection */
1994   int nVar;                      /* Number of parameters */
1995   int nMem;                      /* Number of VM memory registers */
1996   int nCursor;                   /* Number of cursors required */
1997   int nArg;                      /* Number of arguments in subprograms */
1998   int n;                         /* Loop counter */
1999   struct ReusableSpace x;        /* Reusable bulk memory */
2000 
2001   assert( p!=0 );
2002   assert( p->nOp>0 );
2003   assert( pParse!=0 );
2004   assert( p->magic==VDBE_MAGIC_INIT );
2005   assert( pParse==p->pParse );
2006   db = p->db;
2007   assert( db->mallocFailed==0 );
2008   nVar = pParse->nVar;
2009   nMem = pParse->nMem;
2010   nCursor = pParse->nTab;
2011   nArg = pParse->nMaxArg;
2012 
2013   /* Each cursor uses a memory cell.  The first cursor (cursor 0) can
2014   ** use aMem[0] which is not otherwise used by the VDBE program.  Allocate
2015   ** space at the end of aMem[] for cursors 1 and greater.
2016   ** See also: allocateCursor().
2017   */
2018   nMem += nCursor;
2019   if( nCursor==0 && nMem>0 ) nMem++;  /* Space for aMem[0] even if not used */
2020 
2021   /* Figure out how much reusable memory is available at the end of the
2022   ** opcode array.  This extra memory will be reallocated for other elements
2023   ** of the prepared statement.
2024   */
2025   n = ROUND8(sizeof(Op)*p->nOp);              /* Bytes of opcode memory used */
2026   x.pSpace = &((u8*)p->aOp)[n];               /* Unused opcode memory */
2027   assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2028   x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */
2029   assert( x.nFree>=0 );
2030   assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2031 
2032   resolveP2Values(p, &nArg);
2033   p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2034   if( pParse->explain && nMem<10 ){
2035     nMem = 10;
2036   }
2037   p->expired = 0;
2038 
2039   /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2040   ** passes.  On the first pass, we try to reuse unused memory at the
2041   ** end of the opcode array.  If we are unable to satisfy all memory
2042   ** requirements by reusing the opcode array tail, then the second
2043   ** pass will fill in the remainder using a fresh memory allocation.
2044   **
2045   ** This two-pass approach that reuses as much memory as possible from
2046   ** the leftover memory at the end of the opcode array.  This can significantly
2047   ** reduce the amount of memory held by a prepared statement.
2048   */
2049   do {
2050     x.nNeeded = 0;
2051     p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2052     p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2053     p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2054     p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2055 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2056     p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2057 #endif
2058     if( x.nNeeded==0 ) break;
2059     x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2060     x.nFree = x.nNeeded;
2061   }while( !db->mallocFailed );
2062 
2063   p->pVList = pParse->pVList;
2064   pParse->pVList =  0;
2065   p->explain = pParse->explain;
2066   if( db->mallocFailed ){
2067     p->nVar = 0;
2068     p->nCursor = 0;
2069     p->nMem = 0;
2070   }else{
2071     p->nCursor = nCursor;
2072     p->nVar = (ynVar)nVar;
2073     initMemArray(p->aVar, nVar, db, MEM_Null);
2074     p->nMem = nMem;
2075     initMemArray(p->aMem, nMem, db, MEM_Undefined);
2076     memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2077 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2078     memset(p->anExec, 0, p->nOp*sizeof(i64));
2079 #endif
2080   }
2081   sqlite3VdbeRewind(p);
2082 }
2083 
2084 /*
2085 ** Close a VDBE cursor and release all the resources that cursor
2086 ** happens to hold.
2087 */
2088 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2089   if( pCx==0 ){
2090     return;
2091   }
2092   assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2093   switch( pCx->eCurType ){
2094     case CURTYPE_SORTER: {
2095       sqlite3VdbeSorterClose(p->db, pCx);
2096       break;
2097     }
2098     case CURTYPE_BTREE: {
2099       if( pCx->isEphemeral ){
2100         if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx);
2101         /* The pCx->pCursor will be close automatically, if it exists, by
2102         ** the call above. */
2103       }else{
2104         assert( pCx->uc.pCursor!=0 );
2105         sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2106       }
2107       break;
2108     }
2109 #ifndef SQLITE_OMIT_VIRTUALTABLE
2110     case CURTYPE_VTAB: {
2111       sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2112       const sqlite3_module *pModule = pVCur->pVtab->pModule;
2113       assert( pVCur->pVtab->nRef>0 );
2114       pVCur->pVtab->nRef--;
2115       pModule->xClose(pVCur);
2116       break;
2117     }
2118 #endif
2119   }
2120 }
2121 
2122 /*
2123 ** Close all cursors in the current frame.
2124 */
2125 static void closeCursorsInFrame(Vdbe *p){
2126   if( p->apCsr ){
2127     int i;
2128     for(i=0; i<p->nCursor; i++){
2129       VdbeCursor *pC = p->apCsr[i];
2130       if( pC ){
2131         sqlite3VdbeFreeCursor(p, pC);
2132         p->apCsr[i] = 0;
2133       }
2134     }
2135   }
2136 }
2137 
2138 /*
2139 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2140 ** is used, for example, when a trigger sub-program is halted to restore
2141 ** control to the main program.
2142 */
2143 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2144   Vdbe *v = pFrame->v;
2145   closeCursorsInFrame(v);
2146 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2147   v->anExec = pFrame->anExec;
2148 #endif
2149   v->aOp = pFrame->aOp;
2150   v->nOp = pFrame->nOp;
2151   v->aMem = pFrame->aMem;
2152   v->nMem = pFrame->nMem;
2153   v->apCsr = pFrame->apCsr;
2154   v->nCursor = pFrame->nCursor;
2155   v->db->lastRowid = pFrame->lastRowid;
2156   v->nChange = pFrame->nChange;
2157   v->db->nChange = pFrame->nDbChange;
2158   sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2159   v->pAuxData = pFrame->pAuxData;
2160   pFrame->pAuxData = 0;
2161   return pFrame->pc;
2162 }
2163 
2164 /*
2165 ** Close all cursors.
2166 **
2167 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2168 ** cell array. This is necessary as the memory cell array may contain
2169 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2170 ** open cursors.
2171 */
2172 static void closeAllCursors(Vdbe *p){
2173   if( p->pFrame ){
2174     VdbeFrame *pFrame;
2175     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2176     sqlite3VdbeFrameRestore(pFrame);
2177     p->pFrame = 0;
2178     p->nFrame = 0;
2179   }
2180   assert( p->nFrame==0 );
2181   closeCursorsInFrame(p);
2182   if( p->aMem ){
2183     releaseMemArray(p->aMem, p->nMem);
2184   }
2185   while( p->pDelFrame ){
2186     VdbeFrame *pDel = p->pDelFrame;
2187     p->pDelFrame = pDel->pParent;
2188     sqlite3VdbeFrameDelete(pDel);
2189   }
2190 
2191   /* Delete any auxdata allocations made by the VM */
2192   if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2193   assert( p->pAuxData==0 );
2194 }
2195 
2196 /*
2197 ** Set the number of result columns that will be returned by this SQL
2198 ** statement. This is now set at compile time, rather than during
2199 ** execution of the vdbe program so that sqlite3_column_count() can
2200 ** be called on an SQL statement before sqlite3_step().
2201 */
2202 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2203   int n;
2204   sqlite3 *db = p->db;
2205 
2206   if( p->nResColumn ){
2207     releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2208     sqlite3DbFree(db, p->aColName);
2209   }
2210   n = nResColumn*COLNAME_N;
2211   p->nResColumn = (u16)nResColumn;
2212   p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2213   if( p->aColName==0 ) return;
2214   initMemArray(p->aColName, n, db, MEM_Null);
2215 }
2216 
2217 /*
2218 ** Set the name of the idx'th column to be returned by the SQL statement.
2219 ** zName must be a pointer to a nul terminated string.
2220 **
2221 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2222 **
2223 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2224 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2225 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2226 */
2227 int sqlite3VdbeSetColName(
2228   Vdbe *p,                         /* Vdbe being configured */
2229   int idx,                         /* Index of column zName applies to */
2230   int var,                         /* One of the COLNAME_* constants */
2231   const char *zName,               /* Pointer to buffer containing name */
2232   void (*xDel)(void*)              /* Memory management strategy for zName */
2233 ){
2234   int rc;
2235   Mem *pColName;
2236   assert( idx<p->nResColumn );
2237   assert( var<COLNAME_N );
2238   if( p->db->mallocFailed ){
2239     assert( !zName || xDel!=SQLITE_DYNAMIC );
2240     return SQLITE_NOMEM_BKPT;
2241   }
2242   assert( p->aColName!=0 );
2243   pColName = &(p->aColName[idx+var*p->nResColumn]);
2244   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2245   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2246   return rc;
2247 }
2248 
2249 /*
2250 ** A read or write transaction may or may not be active on database handle
2251 ** db. If a transaction is active, commit it. If there is a
2252 ** write-transaction spanning more than one database file, this routine
2253 ** takes care of the master journal trickery.
2254 */
2255 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2256   int i;
2257   int nTrans = 0;  /* Number of databases with an active write-transaction
2258                    ** that are candidates for a two-phase commit using a
2259                    ** master-journal */
2260   int rc = SQLITE_OK;
2261   int needXcommit = 0;
2262 
2263 #ifdef SQLITE_OMIT_VIRTUALTABLE
2264   /* With this option, sqlite3VtabSync() is defined to be simply
2265   ** SQLITE_OK so p is not used.
2266   */
2267   UNUSED_PARAMETER(p);
2268 #endif
2269 
2270   /* Before doing anything else, call the xSync() callback for any
2271   ** virtual module tables written in this transaction. This has to
2272   ** be done before determining whether a master journal file is
2273   ** required, as an xSync() callback may add an attached database
2274   ** to the transaction.
2275   */
2276   rc = sqlite3VtabSync(db, p);
2277 
2278   /* This loop determines (a) if the commit hook should be invoked and
2279   ** (b) how many database files have open write transactions, not
2280   ** including the temp database. (b) is important because if more than
2281   ** one database file has an open write transaction, a master journal
2282   ** file is required for an atomic commit.
2283   */
2284   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2285     Btree *pBt = db->aDb[i].pBt;
2286     if( sqlite3BtreeIsInTrans(pBt) ){
2287       /* Whether or not a database might need a master journal depends upon
2288       ** its journal mode (among other things).  This matrix determines which
2289       ** journal modes use a master journal and which do not */
2290       static const u8 aMJNeeded[] = {
2291         /* DELETE   */  1,
2292         /* PERSIST   */ 1,
2293         /* OFF       */ 0,
2294         /* TRUNCATE  */ 1,
2295         /* MEMORY    */ 0,
2296         /* WAL       */ 0
2297       };
2298       Pager *pPager;   /* Pager associated with pBt */
2299       needXcommit = 1;
2300       sqlite3BtreeEnter(pBt);
2301       pPager = sqlite3BtreePager(pBt);
2302       if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2303        && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2304        && sqlite3PagerIsMemdb(pPager)==0
2305       ){
2306         assert( i!=1 );
2307         nTrans++;
2308       }
2309       rc = sqlite3PagerExclusiveLock(pPager);
2310       sqlite3BtreeLeave(pBt);
2311     }
2312   }
2313   if( rc!=SQLITE_OK ){
2314     return rc;
2315   }
2316 
2317   /* If there are any write-transactions at all, invoke the commit hook */
2318   if( needXcommit && db->xCommitCallback ){
2319     rc = db->xCommitCallback(db->pCommitArg);
2320     if( rc ){
2321       return SQLITE_CONSTRAINT_COMMITHOOK;
2322     }
2323   }
2324 
2325   /* The simple case - no more than one database file (not counting the
2326   ** TEMP database) has a transaction active.   There is no need for the
2327   ** master-journal.
2328   **
2329   ** If the return value of sqlite3BtreeGetFilename() is a zero length
2330   ** string, it means the main database is :memory: or a temp file.  In
2331   ** that case we do not support atomic multi-file commits, so use the
2332   ** simple case then too.
2333   */
2334   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2335    || nTrans<=1
2336   ){
2337     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2338       Btree *pBt = db->aDb[i].pBt;
2339       if( pBt ){
2340         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2341       }
2342     }
2343 
2344     /* Do the commit only if all databases successfully complete phase 1.
2345     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2346     ** IO error while deleting or truncating a journal file. It is unlikely,
2347     ** but could happen. In this case abandon processing and return the error.
2348     */
2349     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2350       Btree *pBt = db->aDb[i].pBt;
2351       if( pBt ){
2352         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2353       }
2354     }
2355     if( rc==SQLITE_OK ){
2356       sqlite3VtabCommit(db);
2357     }
2358   }
2359 
2360   /* The complex case - There is a multi-file write-transaction active.
2361   ** This requires a master journal file to ensure the transaction is
2362   ** committed atomically.
2363   */
2364 #ifndef SQLITE_OMIT_DISKIO
2365   else{
2366     sqlite3_vfs *pVfs = db->pVfs;
2367     char *zMaster = 0;   /* File-name for the master journal */
2368     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2369     sqlite3_file *pMaster = 0;
2370     i64 offset = 0;
2371     int res;
2372     int retryCount = 0;
2373     int nMainFile;
2374 
2375     /* Select a master journal file name */
2376     nMainFile = sqlite3Strlen30(zMainFile);
2377     zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
2378     if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
2379     do {
2380       u32 iRandom;
2381       if( retryCount ){
2382         if( retryCount>100 ){
2383           sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2384           sqlite3OsDelete(pVfs, zMaster, 0);
2385           break;
2386         }else if( retryCount==1 ){
2387           sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2388         }
2389       }
2390       retryCount++;
2391       sqlite3_randomness(sizeof(iRandom), &iRandom);
2392       sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
2393                                (iRandom>>8)&0xffffff, iRandom&0xff);
2394       /* The antipenultimate character of the master journal name must
2395       ** be "9" to avoid name collisions when using 8+3 filenames. */
2396       assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2397       sqlite3FileSuffix3(zMainFile, zMaster);
2398       rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2399     }while( rc==SQLITE_OK && res );
2400     if( rc==SQLITE_OK ){
2401       /* Open the master journal. */
2402       rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2403           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2404           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2405       );
2406     }
2407     if( rc!=SQLITE_OK ){
2408       sqlite3DbFree(db, zMaster);
2409       return rc;
2410     }
2411 
2412     /* Write the name of each database file in the transaction into the new
2413     ** master journal file. If an error occurs at this point close
2414     ** and delete the master journal file. All the individual journal files
2415     ** still have 'null' as the master journal pointer, so they will roll
2416     ** back independently if a failure occurs.
2417     */
2418     for(i=0; i<db->nDb; i++){
2419       Btree *pBt = db->aDb[i].pBt;
2420       if( sqlite3BtreeIsInTrans(pBt) ){
2421         char const *zFile = sqlite3BtreeGetJournalname(pBt);
2422         if( zFile==0 ){
2423           continue;  /* Ignore TEMP and :memory: databases */
2424         }
2425         assert( zFile[0]!=0 );
2426         rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2427         offset += sqlite3Strlen30(zFile)+1;
2428         if( rc!=SQLITE_OK ){
2429           sqlite3OsCloseFree(pMaster);
2430           sqlite3OsDelete(pVfs, zMaster, 0);
2431           sqlite3DbFree(db, zMaster);
2432           return rc;
2433         }
2434       }
2435     }
2436 
2437     /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2438     ** flag is set this is not required.
2439     */
2440     if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2441      && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2442     ){
2443       sqlite3OsCloseFree(pMaster);
2444       sqlite3OsDelete(pVfs, zMaster, 0);
2445       sqlite3DbFree(db, zMaster);
2446       return rc;
2447     }
2448 
2449     /* Sync all the db files involved in the transaction. The same call
2450     ** sets the master journal pointer in each individual journal. If
2451     ** an error occurs here, do not delete the master journal file.
2452     **
2453     ** If the error occurs during the first call to
2454     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2455     ** master journal file will be orphaned. But we cannot delete it,
2456     ** in case the master journal file name was written into the journal
2457     ** file before the failure occurred.
2458     */
2459     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2460       Btree *pBt = db->aDb[i].pBt;
2461       if( pBt ){
2462         rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
2463       }
2464     }
2465     sqlite3OsCloseFree(pMaster);
2466     assert( rc!=SQLITE_BUSY );
2467     if( rc!=SQLITE_OK ){
2468       sqlite3DbFree(db, zMaster);
2469       return rc;
2470     }
2471 
2472     /* Delete the master journal file. This commits the transaction. After
2473     ** doing this the directory is synced again before any individual
2474     ** transaction files are deleted.
2475     */
2476     rc = sqlite3OsDelete(pVfs, zMaster, 1);
2477     sqlite3DbFree(db, zMaster);
2478     zMaster = 0;
2479     if( rc ){
2480       return rc;
2481     }
2482 
2483     /* All files and directories have already been synced, so the following
2484     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2485     ** deleting or truncating journals. If something goes wrong while
2486     ** this is happening we don't really care. The integrity of the
2487     ** transaction is already guaranteed, but some stray 'cold' journals
2488     ** may be lying around. Returning an error code won't help matters.
2489     */
2490     disable_simulated_io_errors();
2491     sqlite3BeginBenignMalloc();
2492     for(i=0; i<db->nDb; i++){
2493       Btree *pBt = db->aDb[i].pBt;
2494       if( pBt ){
2495         sqlite3BtreeCommitPhaseTwo(pBt, 1);
2496       }
2497     }
2498     sqlite3EndBenignMalloc();
2499     enable_simulated_io_errors();
2500 
2501     sqlite3VtabCommit(db);
2502   }
2503 #endif
2504 
2505   return rc;
2506 }
2507 
2508 /*
2509 ** This routine checks that the sqlite3.nVdbeActive count variable
2510 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2511 ** currently active. An assertion fails if the two counts do not match.
2512 ** This is an internal self-check only - it is not an essential processing
2513 ** step.
2514 **
2515 ** This is a no-op if NDEBUG is defined.
2516 */
2517 #ifndef NDEBUG
2518 static void checkActiveVdbeCnt(sqlite3 *db){
2519   Vdbe *p;
2520   int cnt = 0;
2521   int nWrite = 0;
2522   int nRead = 0;
2523   p = db->pVdbe;
2524   while( p ){
2525     if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2526       cnt++;
2527       if( p->readOnly==0 ) nWrite++;
2528       if( p->bIsReader ) nRead++;
2529     }
2530     p = p->pNext;
2531   }
2532   assert( cnt==db->nVdbeActive );
2533   assert( nWrite==db->nVdbeWrite );
2534   assert( nRead==db->nVdbeRead );
2535 }
2536 #else
2537 #define checkActiveVdbeCnt(x)
2538 #endif
2539 
2540 /*
2541 ** If the Vdbe passed as the first argument opened a statement-transaction,
2542 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2543 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2544 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2545 ** statement transaction is committed.
2546 **
2547 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2548 ** Otherwise SQLITE_OK.
2549 */
2550 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2551   sqlite3 *const db = p->db;
2552   int rc = SQLITE_OK;
2553   int i;
2554   const int iSavepoint = p->iStatement-1;
2555 
2556   assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2557   assert( db->nStatement>0 );
2558   assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2559 
2560   for(i=0; i<db->nDb; i++){
2561     int rc2 = SQLITE_OK;
2562     Btree *pBt = db->aDb[i].pBt;
2563     if( pBt ){
2564       if( eOp==SAVEPOINT_ROLLBACK ){
2565         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2566       }
2567       if( rc2==SQLITE_OK ){
2568         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2569       }
2570       if( rc==SQLITE_OK ){
2571         rc = rc2;
2572       }
2573     }
2574   }
2575   db->nStatement--;
2576   p->iStatement = 0;
2577 
2578   if( rc==SQLITE_OK ){
2579     if( eOp==SAVEPOINT_ROLLBACK ){
2580       rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2581     }
2582     if( rc==SQLITE_OK ){
2583       rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2584     }
2585   }
2586 
2587   /* If the statement transaction is being rolled back, also restore the
2588   ** database handles deferred constraint counter to the value it had when
2589   ** the statement transaction was opened.  */
2590   if( eOp==SAVEPOINT_ROLLBACK ){
2591     db->nDeferredCons = p->nStmtDefCons;
2592     db->nDeferredImmCons = p->nStmtDefImmCons;
2593   }
2594   return rc;
2595 }
2596 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2597   if( p->db->nStatement && p->iStatement ){
2598     return vdbeCloseStatement(p, eOp);
2599   }
2600   return SQLITE_OK;
2601 }
2602 
2603 
2604 /*
2605 ** This function is called when a transaction opened by the database
2606 ** handle associated with the VM passed as an argument is about to be
2607 ** committed. If there are outstanding deferred foreign key constraint
2608 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2609 **
2610 ** If there are outstanding FK violations and this function returns
2611 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2612 ** and write an error message to it. Then return SQLITE_ERROR.
2613 */
2614 #ifndef SQLITE_OMIT_FOREIGN_KEY
2615 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2616   sqlite3 *db = p->db;
2617   if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2618    || (!deferred && p->nFkConstraint>0)
2619   ){
2620     p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2621     p->errorAction = OE_Abort;
2622     sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
2623     return SQLITE_ERROR;
2624   }
2625   return SQLITE_OK;
2626 }
2627 #endif
2628 
2629 /*
2630 ** This routine is called the when a VDBE tries to halt.  If the VDBE
2631 ** has made changes and is in autocommit mode, then commit those
2632 ** changes.  If a rollback is needed, then do the rollback.
2633 **
2634 ** This routine is the only way to move the state of a VM from
2635 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
2636 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2637 **
2638 ** Return an error code.  If the commit could not complete because of
2639 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
2640 ** means the close did not happen and needs to be repeated.
2641 */
2642 int sqlite3VdbeHalt(Vdbe *p){
2643   int rc;                         /* Used to store transient return codes */
2644   sqlite3 *db = p->db;
2645 
2646   /* This function contains the logic that determines if a statement or
2647   ** transaction will be committed or rolled back as a result of the
2648   ** execution of this virtual machine.
2649   **
2650   ** If any of the following errors occur:
2651   **
2652   **     SQLITE_NOMEM
2653   **     SQLITE_IOERR
2654   **     SQLITE_FULL
2655   **     SQLITE_INTERRUPT
2656   **
2657   ** Then the internal cache might have been left in an inconsistent
2658   ** state.  We need to rollback the statement transaction, if there is
2659   ** one, or the complete transaction if there is no statement transaction.
2660   */
2661 
2662   if( p->magic!=VDBE_MAGIC_RUN ){
2663     return SQLITE_OK;
2664   }
2665   if( db->mallocFailed ){
2666     p->rc = SQLITE_NOMEM_BKPT;
2667   }
2668   closeAllCursors(p);
2669   checkActiveVdbeCnt(db);
2670 
2671   /* No commit or rollback needed if the program never started or if the
2672   ** SQL statement does not read or write a database file.  */
2673   if( p->pc>=0 && p->bIsReader ){
2674     int mrc;   /* Primary error code from p->rc */
2675     int eStatementOp = 0;
2676     int isSpecialError;            /* Set to true if a 'special' error */
2677 
2678     /* Lock all btrees used by the statement */
2679     sqlite3VdbeEnter(p);
2680 
2681     /* Check for one of the special errors */
2682     mrc = p->rc & 0xff;
2683     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2684                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2685     if( isSpecialError ){
2686       /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2687       ** no rollback is necessary. Otherwise, at least a savepoint
2688       ** transaction must be rolled back to restore the database to a
2689       ** consistent state.
2690       **
2691       ** Even if the statement is read-only, it is important to perform
2692       ** a statement or transaction rollback operation. If the error
2693       ** occurred while writing to the journal, sub-journal or database
2694       ** file as part of an effort to free up cache space (see function
2695       ** pagerStress() in pager.c), the rollback is required to restore
2696       ** the pager to a consistent state.
2697       */
2698       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2699         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2700           eStatementOp = SAVEPOINT_ROLLBACK;
2701         }else{
2702           /* We are forced to roll back the active transaction. Before doing
2703           ** so, abort any other statements this handle currently has active.
2704           */
2705           sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2706           sqlite3CloseSavepoints(db);
2707           db->autoCommit = 1;
2708           p->nChange = 0;
2709         }
2710       }
2711     }
2712 
2713     /* Check for immediate foreign key violations. */
2714     if( p->rc==SQLITE_OK ){
2715       sqlite3VdbeCheckFk(p, 0);
2716     }
2717 
2718     /* If the auto-commit flag is set and this is the only active writer
2719     ** VM, then we do either a commit or rollback of the current transaction.
2720     **
2721     ** Note: This block also runs if one of the special errors handled
2722     ** above has occurred.
2723     */
2724     if( !sqlite3VtabInSync(db)
2725      && db->autoCommit
2726      && db->nVdbeWrite==(p->readOnly==0)
2727     ){
2728       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2729         rc = sqlite3VdbeCheckFk(p, 1);
2730         if( rc!=SQLITE_OK ){
2731           if( NEVER(p->readOnly) ){
2732             sqlite3VdbeLeave(p);
2733             return SQLITE_ERROR;
2734           }
2735           rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2736         }else{
2737           /* The auto-commit flag is true, the vdbe program was successful
2738           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2739           ** key constraints to hold up the transaction. This means a commit
2740           ** is required. */
2741           rc = vdbeCommit(db, p);
2742         }
2743         if( rc==SQLITE_BUSY && p->readOnly ){
2744           sqlite3VdbeLeave(p);
2745           return SQLITE_BUSY;
2746         }else if( rc!=SQLITE_OK ){
2747           p->rc = rc;
2748           sqlite3RollbackAll(db, SQLITE_OK);
2749           p->nChange = 0;
2750         }else{
2751           db->nDeferredCons = 0;
2752           db->nDeferredImmCons = 0;
2753           db->flags &= ~SQLITE_DeferFKs;
2754           sqlite3CommitInternalChanges(db);
2755         }
2756       }else{
2757         sqlite3RollbackAll(db, SQLITE_OK);
2758         p->nChange = 0;
2759       }
2760       db->nStatement = 0;
2761     }else if( eStatementOp==0 ){
2762       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2763         eStatementOp = SAVEPOINT_RELEASE;
2764       }else if( p->errorAction==OE_Abort ){
2765         eStatementOp = SAVEPOINT_ROLLBACK;
2766       }else{
2767         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2768         sqlite3CloseSavepoints(db);
2769         db->autoCommit = 1;
2770         p->nChange = 0;
2771       }
2772     }
2773 
2774     /* If eStatementOp is non-zero, then a statement transaction needs to
2775     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2776     ** do so. If this operation returns an error, and the current statement
2777     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2778     ** current statement error code.
2779     */
2780     if( eStatementOp ){
2781       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2782       if( rc ){
2783         if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
2784           p->rc = rc;
2785           sqlite3DbFree(db, p->zErrMsg);
2786           p->zErrMsg = 0;
2787         }
2788         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2789         sqlite3CloseSavepoints(db);
2790         db->autoCommit = 1;
2791         p->nChange = 0;
2792       }
2793     }
2794 
2795     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2796     ** has been rolled back, update the database connection change-counter.
2797     */
2798     if( p->changeCntOn ){
2799       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2800         sqlite3VdbeSetChanges(db, p->nChange);
2801       }else{
2802         sqlite3VdbeSetChanges(db, 0);
2803       }
2804       p->nChange = 0;
2805     }
2806 
2807     /* Release the locks */
2808     sqlite3VdbeLeave(p);
2809   }
2810 
2811   /* We have successfully halted and closed the VM.  Record this fact. */
2812   if( p->pc>=0 ){
2813     db->nVdbeActive--;
2814     if( !p->readOnly ) db->nVdbeWrite--;
2815     if( p->bIsReader ) db->nVdbeRead--;
2816     assert( db->nVdbeActive>=db->nVdbeRead );
2817     assert( db->nVdbeRead>=db->nVdbeWrite );
2818     assert( db->nVdbeWrite>=0 );
2819   }
2820   p->magic = VDBE_MAGIC_HALT;
2821   checkActiveVdbeCnt(db);
2822   if( db->mallocFailed ){
2823     p->rc = SQLITE_NOMEM_BKPT;
2824   }
2825 
2826   /* If the auto-commit flag is set to true, then any locks that were held
2827   ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2828   ** to invoke any required unlock-notify callbacks.
2829   */
2830   if( db->autoCommit ){
2831     sqlite3ConnectionUnlocked(db);
2832   }
2833 
2834   assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
2835   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
2836 }
2837 
2838 
2839 /*
2840 ** Each VDBE holds the result of the most recent sqlite3_step() call
2841 ** in p->rc.  This routine sets that result back to SQLITE_OK.
2842 */
2843 void sqlite3VdbeResetStepResult(Vdbe *p){
2844   p->rc = SQLITE_OK;
2845 }
2846 
2847 /*
2848 ** Copy the error code and error message belonging to the VDBE passed
2849 ** as the first argument to its database handle (so that they will be
2850 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2851 **
2852 ** This function does not clear the VDBE error code or message, just
2853 ** copies them to the database handle.
2854 */
2855 int sqlite3VdbeTransferError(Vdbe *p){
2856   sqlite3 *db = p->db;
2857   int rc = p->rc;
2858   if( p->zErrMsg ){
2859     db->bBenignMalloc++;
2860     sqlite3BeginBenignMalloc();
2861     if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
2862     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2863     sqlite3EndBenignMalloc();
2864     db->bBenignMalloc--;
2865   }else if( db->pErr ){
2866     sqlite3ValueSetNull(db->pErr);
2867   }
2868   db->errCode = rc;
2869   return rc;
2870 }
2871 
2872 #ifdef SQLITE_ENABLE_SQLLOG
2873 /*
2874 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2875 ** invoke it.
2876 */
2877 static void vdbeInvokeSqllog(Vdbe *v){
2878   if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2879     char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2880     assert( v->db->init.busy==0 );
2881     if( zExpanded ){
2882       sqlite3GlobalConfig.xSqllog(
2883           sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2884       );
2885       sqlite3DbFree(v->db, zExpanded);
2886     }
2887   }
2888 }
2889 #else
2890 # define vdbeInvokeSqllog(x)
2891 #endif
2892 
2893 /*
2894 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
2895 ** Write any error messages into *pzErrMsg.  Return the result code.
2896 **
2897 ** After this routine is run, the VDBE should be ready to be executed
2898 ** again.
2899 **
2900 ** To look at it another way, this routine resets the state of the
2901 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2902 ** VDBE_MAGIC_INIT.
2903 */
2904 int sqlite3VdbeReset(Vdbe *p){
2905 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2906   int i;
2907 #endif
2908 
2909   sqlite3 *db;
2910   db = p->db;
2911 
2912   /* If the VM did not run to completion or if it encountered an
2913   ** error, then it might not have been halted properly.  So halt
2914   ** it now.
2915   */
2916   sqlite3VdbeHalt(p);
2917 
2918   /* If the VDBE has be run even partially, then transfer the error code
2919   ** and error message from the VDBE into the main database structure.  But
2920   ** if the VDBE has just been set to run but has not actually executed any
2921   ** instructions yet, leave the main database error information unchanged.
2922   */
2923   if( p->pc>=0 ){
2924     vdbeInvokeSqllog(p);
2925     sqlite3VdbeTransferError(p);
2926     if( p->runOnlyOnce ) p->expired = 1;
2927   }else if( p->rc && p->expired ){
2928     /* The expired flag was set on the VDBE before the first call
2929     ** to sqlite3_step(). For consistency (since sqlite3_step() was
2930     ** called), set the database error in this case as well.
2931     */
2932     sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
2933   }
2934 
2935   /* Reset register contents and reclaim error message memory.
2936   */
2937 #ifdef SQLITE_DEBUG
2938   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
2939   ** Vdbe.aMem[] arrays have already been cleaned up.  */
2940   if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
2941   if( p->aMem ){
2942     for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
2943   }
2944 #endif
2945   sqlite3DbFree(db, p->zErrMsg);
2946   p->zErrMsg = 0;
2947   p->pResultSet = 0;
2948 
2949   /* Save profiling information from this VDBE run.
2950   */
2951 #ifdef VDBE_PROFILE
2952   {
2953     FILE *out = fopen("vdbe_profile.out", "a");
2954     if( out ){
2955       fprintf(out, "---- ");
2956       for(i=0; i<p->nOp; i++){
2957         fprintf(out, "%02x", p->aOp[i].opcode);
2958       }
2959       fprintf(out, "\n");
2960       if( p->zSql ){
2961         char c, pc = 0;
2962         fprintf(out, "-- ");
2963         for(i=0; (c = p->zSql[i])!=0; i++){
2964           if( pc=='\n' ) fprintf(out, "-- ");
2965           putc(c, out);
2966           pc = c;
2967         }
2968         if( pc!='\n' ) fprintf(out, "\n");
2969       }
2970       for(i=0; i<p->nOp; i++){
2971         char zHdr[100];
2972         sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
2973            p->aOp[i].cnt,
2974            p->aOp[i].cycles,
2975            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2976         );
2977         fprintf(out, "%s", zHdr);
2978         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
2979       }
2980       fclose(out);
2981     }
2982   }
2983 #endif
2984   p->magic = VDBE_MAGIC_RESET;
2985   return p->rc & db->errMask;
2986 }
2987 
2988 /*
2989 ** Clean up and delete a VDBE after execution.  Return an integer which is
2990 ** the result code.  Write any error message text into *pzErrMsg.
2991 */
2992 int sqlite3VdbeFinalize(Vdbe *p){
2993   int rc = SQLITE_OK;
2994   if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
2995     rc = sqlite3VdbeReset(p);
2996     assert( (rc & p->db->errMask)==rc );
2997   }
2998   sqlite3VdbeDelete(p);
2999   return rc;
3000 }
3001 
3002 /*
3003 ** If parameter iOp is less than zero, then invoke the destructor for
3004 ** all auxiliary data pointers currently cached by the VM passed as
3005 ** the first argument.
3006 **
3007 ** Or, if iOp is greater than or equal to zero, then the destructor is
3008 ** only invoked for those auxiliary data pointers created by the user
3009 ** function invoked by the OP_Function opcode at instruction iOp of
3010 ** VM pVdbe, and only then if:
3011 **
3012 **    * the associated function parameter is the 32nd or later (counting
3013 **      from left to right), or
3014 **
3015 **    * the corresponding bit in argument mask is clear (where the first
3016 **      function parameter corresponds to bit 0 etc.).
3017 */
3018 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3019   while( *pp ){
3020     AuxData *pAux = *pp;
3021     if( (iOp<0)
3022      || (pAux->iAuxOp==iOp
3023           && pAux->iAuxArg>=0
3024           && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3025     ){
3026       testcase( pAux->iAuxArg==31 );
3027       if( pAux->xDeleteAux ){
3028         pAux->xDeleteAux(pAux->pAux);
3029       }
3030       *pp = pAux->pNextAux;
3031       sqlite3DbFree(db, pAux);
3032     }else{
3033       pp= &pAux->pNextAux;
3034     }
3035   }
3036 }
3037 
3038 /*
3039 ** Free all memory associated with the Vdbe passed as the second argument,
3040 ** except for object itself, which is preserved.
3041 **
3042 ** The difference between this function and sqlite3VdbeDelete() is that
3043 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3044 ** the database connection and frees the object itself.
3045 */
3046 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3047   SubProgram *pSub, *pNext;
3048   assert( p->db==0 || p->db==db );
3049   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3050   for(pSub=p->pProgram; pSub; pSub=pNext){
3051     pNext = pSub->pNext;
3052     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3053     sqlite3DbFree(db, pSub);
3054   }
3055   if( p->magic!=VDBE_MAGIC_INIT ){
3056     releaseMemArray(p->aVar, p->nVar);
3057     sqlite3DbFree(db, p->pVList);
3058     sqlite3DbFree(db, p->pFree);
3059   }
3060   vdbeFreeOpArray(db, p->aOp, p->nOp);
3061   sqlite3DbFree(db, p->aColName);
3062   sqlite3DbFree(db, p->zSql);
3063 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3064   {
3065     int i;
3066     for(i=0; i<p->nScan; i++){
3067       sqlite3DbFree(db, p->aScan[i].zName);
3068     }
3069     sqlite3DbFree(db, p->aScan);
3070   }
3071 #endif
3072 }
3073 
3074 /*
3075 ** Delete an entire VDBE.
3076 */
3077 void sqlite3VdbeDelete(Vdbe *p){
3078   sqlite3 *db;
3079 
3080   assert( p!=0 );
3081   db = p->db;
3082   assert( sqlite3_mutex_held(db->mutex) );
3083   sqlite3VdbeClearObject(db, p);
3084   if( p->pPrev ){
3085     p->pPrev->pNext = p->pNext;
3086   }else{
3087     assert( db->pVdbe==p );
3088     db->pVdbe = p->pNext;
3089   }
3090   if( p->pNext ){
3091     p->pNext->pPrev = p->pPrev;
3092   }
3093   p->magic = VDBE_MAGIC_DEAD;
3094   p->db = 0;
3095   sqlite3DbFreeNN(db, p);
3096 }
3097 
3098 /*
3099 ** The cursor "p" has a pending seek operation that has not yet been
3100 ** carried out.  Seek the cursor now.  If an error occurs, return
3101 ** the appropriate error code.
3102 */
3103 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
3104   int res, rc;
3105 #ifdef SQLITE_TEST
3106   extern int sqlite3_search_count;
3107 #endif
3108   assert( p->deferredMoveto );
3109   assert( p->isTable );
3110   assert( p->eCurType==CURTYPE_BTREE );
3111   rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
3112   if( rc ) return rc;
3113   if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3114 #ifdef SQLITE_TEST
3115   sqlite3_search_count++;
3116 #endif
3117   p->deferredMoveto = 0;
3118   p->cacheStatus = CACHE_STALE;
3119   return SQLITE_OK;
3120 }
3121 
3122 /*
3123 ** Something has moved cursor "p" out of place.  Maybe the row it was
3124 ** pointed to was deleted out from under it.  Or maybe the btree was
3125 ** rebalanced.  Whatever the cause, try to restore "p" to the place it
3126 ** is supposed to be pointing.  If the row was deleted out from under the
3127 ** cursor, set the cursor to point to a NULL row.
3128 */
3129 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3130   int isDifferentRow, rc;
3131   assert( p->eCurType==CURTYPE_BTREE );
3132   assert( p->uc.pCursor!=0 );
3133   assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3134   rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3135   p->cacheStatus = CACHE_STALE;
3136   if( isDifferentRow ) p->nullRow = 1;
3137   return rc;
3138 }
3139 
3140 /*
3141 ** Check to ensure that the cursor is valid.  Restore the cursor
3142 ** if need be.  Return any I/O error from the restore operation.
3143 */
3144 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3145   assert( p->eCurType==CURTYPE_BTREE );
3146   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3147     return handleMovedCursor(p);
3148   }
3149   return SQLITE_OK;
3150 }
3151 
3152 /*
3153 ** Make sure the cursor p is ready to read or write the row to which it
3154 ** was last positioned.  Return an error code if an OOM fault or I/O error
3155 ** prevents us from positioning the cursor to its correct position.
3156 **
3157 ** If a MoveTo operation is pending on the given cursor, then do that
3158 ** MoveTo now.  If no move is pending, check to see if the row has been
3159 ** deleted out from under the cursor and if it has, mark the row as
3160 ** a NULL row.
3161 **
3162 ** If the cursor is already pointing to the correct row and that row has
3163 ** not been deleted out from under the cursor, then this routine is a no-op.
3164 */
3165 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
3166   VdbeCursor *p = *pp;
3167   assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
3168   if( p->deferredMoveto ){
3169     int iMap;
3170     if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
3171       *pp = p->pAltCursor;
3172       *piCol = iMap - 1;
3173       return SQLITE_OK;
3174     }
3175     return handleDeferredMoveto(p);
3176   }
3177   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3178     return handleMovedCursor(p);
3179   }
3180   return SQLITE_OK;
3181 }
3182 
3183 /*
3184 ** The following functions:
3185 **
3186 ** sqlite3VdbeSerialType()
3187 ** sqlite3VdbeSerialTypeLen()
3188 ** sqlite3VdbeSerialLen()
3189 ** sqlite3VdbeSerialPut()
3190 ** sqlite3VdbeSerialGet()
3191 **
3192 ** encapsulate the code that serializes values for storage in SQLite
3193 ** data and index records. Each serialized value consists of a
3194 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3195 ** integer, stored as a varint.
3196 **
3197 ** In an SQLite index record, the serial type is stored directly before
3198 ** the blob of data that it corresponds to. In a table record, all serial
3199 ** types are stored at the start of the record, and the blobs of data at
3200 ** the end. Hence these functions allow the caller to handle the
3201 ** serial-type and data blob separately.
3202 **
3203 ** The following table describes the various storage classes for data:
3204 **
3205 **   serial type        bytes of data      type
3206 **   --------------     ---------------    ---------------
3207 **      0                     0            NULL
3208 **      1                     1            signed integer
3209 **      2                     2            signed integer
3210 **      3                     3            signed integer
3211 **      4                     4            signed integer
3212 **      5                     6            signed integer
3213 **      6                     8            signed integer
3214 **      7                     8            IEEE float
3215 **      8                     0            Integer constant 0
3216 **      9                     0            Integer constant 1
3217 **     10,11                               reserved for expansion
3218 **    N>=12 and even       (N-12)/2        BLOB
3219 **    N>=13 and odd        (N-13)/2        text
3220 **
3221 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
3222 ** of SQLite will not understand those serial types.
3223 */
3224 
3225 /*
3226 ** Return the serial-type for the value stored in pMem.
3227 */
3228 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3229   int flags = pMem->flags;
3230   u32 n;
3231 
3232   assert( pLen!=0 );
3233   if( flags&MEM_Null ){
3234     *pLen = 0;
3235     return 0;
3236   }
3237   if( flags&MEM_Int ){
3238     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3239 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3240     i64 i = pMem->u.i;
3241     u64 u;
3242     if( i<0 ){
3243       u = ~i;
3244     }else{
3245       u = i;
3246     }
3247     if( u<=127 ){
3248       if( (i&1)==i && file_format>=4 ){
3249         *pLen = 0;
3250         return 8+(u32)u;
3251       }else{
3252         *pLen = 1;
3253         return 1;
3254       }
3255     }
3256     if( u<=32767 ){ *pLen = 2; return 2; }
3257     if( u<=8388607 ){ *pLen = 3; return 3; }
3258     if( u<=2147483647 ){ *pLen = 4; return 4; }
3259     if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3260     *pLen = 8;
3261     return 6;
3262   }
3263   if( flags&MEM_Real ){
3264     *pLen = 8;
3265     return 7;
3266   }
3267   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3268   assert( pMem->n>=0 );
3269   n = (u32)pMem->n;
3270   if( flags & MEM_Zero ){
3271     n += pMem->u.nZero;
3272   }
3273   *pLen = n;
3274   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3275 }
3276 
3277 /*
3278 ** The sizes for serial types less than 128
3279 */
3280 static const u8 sqlite3SmallTypeSizes[] = {
3281         /*  0   1   2   3   4   5   6   7   8   9 */
3282 /*   0 */   0,  1,  2,  3,  4,  6,  8,  8,  0,  0,
3283 /*  10 */   0,  0,  0,  0,  1,  1,  2,  2,  3,  3,
3284 /*  20 */   4,  4,  5,  5,  6,  6,  7,  7,  8,  8,
3285 /*  30 */   9,  9, 10, 10, 11, 11, 12, 12, 13, 13,
3286 /*  40 */  14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3287 /*  50 */  19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3288 /*  60 */  24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3289 /*  70 */  29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3290 /*  80 */  34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3291 /*  90 */  39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3292 /* 100 */  44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3293 /* 110 */  49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3294 /* 120 */  54, 54, 55, 55, 56, 56, 57, 57
3295 };
3296 
3297 /*
3298 ** Return the length of the data corresponding to the supplied serial-type.
3299 */
3300 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3301   if( serial_type>=128 ){
3302     return (serial_type-12)/2;
3303   }else{
3304     assert( serial_type<12
3305             || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3306     return sqlite3SmallTypeSizes[serial_type];
3307   }
3308 }
3309 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3310   assert( serial_type<128 );
3311   return sqlite3SmallTypeSizes[serial_type];
3312 }
3313 
3314 /*
3315 ** If we are on an architecture with mixed-endian floating
3316 ** points (ex: ARM7) then swap the lower 4 bytes with the
3317 ** upper 4 bytes.  Return the result.
3318 **
3319 ** For most architectures, this is a no-op.
3320 **
3321 ** (later):  It is reported to me that the mixed-endian problem
3322 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
3323 ** that early versions of GCC stored the two words of a 64-bit
3324 ** float in the wrong order.  And that error has been propagated
3325 ** ever since.  The blame is not necessarily with GCC, though.
3326 ** GCC might have just copying the problem from a prior compiler.
3327 ** I am also told that newer versions of GCC that follow a different
3328 ** ABI get the byte order right.
3329 **
3330 ** Developers using SQLite on an ARM7 should compile and run their
3331 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
3332 ** enabled, some asserts below will ensure that the byte order of
3333 ** floating point values is correct.
3334 **
3335 ** (2007-08-30)  Frank van Vugt has studied this problem closely
3336 ** and has send his findings to the SQLite developers.  Frank
3337 ** writes that some Linux kernels offer floating point hardware
3338 ** emulation that uses only 32-bit mantissas instead of a full
3339 ** 48-bits as required by the IEEE standard.  (This is the
3340 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
3341 ** byte swapping becomes very complicated.  To avoid problems,
3342 ** the necessary byte swapping is carried out using a 64-bit integer
3343 ** rather than a 64-bit float.  Frank assures us that the code here
3344 ** works for him.  We, the developers, have no way to independently
3345 ** verify this, but Frank seems to know what he is talking about
3346 ** so we trust him.
3347 */
3348 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3349 static u64 floatSwap(u64 in){
3350   union {
3351     u64 r;
3352     u32 i[2];
3353   } u;
3354   u32 t;
3355 
3356   u.r = in;
3357   t = u.i[0];
3358   u.i[0] = u.i[1];
3359   u.i[1] = t;
3360   return u.r;
3361 }
3362 # define swapMixedEndianFloat(X)  X = floatSwap(X)
3363 #else
3364 # define swapMixedEndianFloat(X)
3365 #endif
3366 
3367 /*
3368 ** Write the serialized data blob for the value stored in pMem into
3369 ** buf. It is assumed that the caller has allocated sufficient space.
3370 ** Return the number of bytes written.
3371 **
3372 ** nBuf is the amount of space left in buf[].  The caller is responsible
3373 ** for allocating enough space to buf[] to hold the entire field, exclusive
3374 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3375 **
3376 ** Return the number of bytes actually written into buf[].  The number
3377 ** of bytes in the zero-filled tail is included in the return value only
3378 ** if those bytes were zeroed in buf[].
3379 */
3380 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3381   u32 len;
3382 
3383   /* Integer and Real */
3384   if( serial_type<=7 && serial_type>0 ){
3385     u64 v;
3386     u32 i;
3387     if( serial_type==7 ){
3388       assert( sizeof(v)==sizeof(pMem->u.r) );
3389       memcpy(&v, &pMem->u.r, sizeof(v));
3390       swapMixedEndianFloat(v);
3391     }else{
3392       v = pMem->u.i;
3393     }
3394     len = i = sqlite3SmallTypeSizes[serial_type];
3395     assert( i>0 );
3396     do{
3397       buf[--i] = (u8)(v&0xFF);
3398       v >>= 8;
3399     }while( i );
3400     return len;
3401   }
3402 
3403   /* String or blob */
3404   if( serial_type>=12 ){
3405     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3406              == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3407     len = pMem->n;
3408     if( len>0 ) memcpy(buf, pMem->z, len);
3409     return len;
3410   }
3411 
3412   /* NULL or constants 0 or 1 */
3413   return 0;
3414 }
3415 
3416 /* Input "x" is a sequence of unsigned characters that represent a
3417 ** big-endian integer.  Return the equivalent native integer
3418 */
3419 #define ONE_BYTE_INT(x)    ((i8)(x)[0])
3420 #define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
3421 #define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3422 #define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3423 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3424 
3425 /*
3426 ** Deserialize the data blob pointed to by buf as serial type serial_type
3427 ** and store the result in pMem.  Return the number of bytes read.
3428 **
3429 ** This function is implemented as two separate routines for performance.
3430 ** The few cases that require local variables are broken out into a separate
3431 ** routine so that in most cases the overhead of moving the stack pointer
3432 ** is avoided.
3433 */
3434 static u32 SQLITE_NOINLINE serialGet(
3435   const unsigned char *buf,     /* Buffer to deserialize from */
3436   u32 serial_type,              /* Serial type to deserialize */
3437   Mem *pMem                     /* Memory cell to write value into */
3438 ){
3439   u64 x = FOUR_BYTE_UINT(buf);
3440   u32 y = FOUR_BYTE_UINT(buf+4);
3441   x = (x<<32) + y;
3442   if( serial_type==6 ){
3443     /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3444     ** twos-complement integer. */
3445     pMem->u.i = *(i64*)&x;
3446     pMem->flags = MEM_Int;
3447     testcase( pMem->u.i<0 );
3448   }else{
3449     /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3450     ** floating point number. */
3451 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3452     /* Verify that integers and floating point values use the same
3453     ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3454     ** defined that 64-bit floating point values really are mixed
3455     ** endian.
3456     */
3457     static const u64 t1 = ((u64)0x3ff00000)<<32;
3458     static const double r1 = 1.0;
3459     u64 t2 = t1;
3460     swapMixedEndianFloat(t2);
3461     assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3462 #endif
3463     assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3464     swapMixedEndianFloat(x);
3465     memcpy(&pMem->u.r, &x, sizeof(x));
3466     pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
3467   }
3468   return 8;
3469 }
3470 u32 sqlite3VdbeSerialGet(
3471   const unsigned char *buf,     /* Buffer to deserialize from */
3472   u32 serial_type,              /* Serial type to deserialize */
3473   Mem *pMem                     /* Memory cell to write value into */
3474 ){
3475   switch( serial_type ){
3476     case 10: { /* Internal use only: NULL with virtual table
3477                ** UPDATE no-change flag set */
3478       pMem->flags = MEM_Null|MEM_Zero;
3479       pMem->n = 0;
3480       pMem->u.nZero = 0;
3481       break;
3482     }
3483     case 11:   /* Reserved for future use */
3484     case 0: {  /* Null */
3485       /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3486       pMem->flags = MEM_Null;
3487       break;
3488     }
3489     case 1: {
3490       /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3491       ** integer. */
3492       pMem->u.i = ONE_BYTE_INT(buf);
3493       pMem->flags = MEM_Int;
3494       testcase( pMem->u.i<0 );
3495       return 1;
3496     }
3497     case 2: { /* 2-byte signed integer */
3498       /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3499       ** twos-complement integer. */
3500       pMem->u.i = TWO_BYTE_INT(buf);
3501       pMem->flags = MEM_Int;
3502       testcase( pMem->u.i<0 );
3503       return 2;
3504     }
3505     case 3: { /* 3-byte signed integer */
3506       /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3507       ** twos-complement integer. */
3508       pMem->u.i = THREE_BYTE_INT(buf);
3509       pMem->flags = MEM_Int;
3510       testcase( pMem->u.i<0 );
3511       return 3;
3512     }
3513     case 4: { /* 4-byte signed integer */
3514       /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3515       ** twos-complement integer. */
3516       pMem->u.i = FOUR_BYTE_INT(buf);
3517 #ifdef __HP_cc
3518       /* Work around a sign-extension bug in the HP compiler for HP/UX */
3519       if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3520 #endif
3521       pMem->flags = MEM_Int;
3522       testcase( pMem->u.i<0 );
3523       return 4;
3524     }
3525     case 5: { /* 6-byte signed integer */
3526       /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3527       ** twos-complement integer. */
3528       pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3529       pMem->flags = MEM_Int;
3530       testcase( pMem->u.i<0 );
3531       return 6;
3532     }
3533     case 6:   /* 8-byte signed integer */
3534     case 7: { /* IEEE floating point */
3535       /* These use local variables, so do them in a separate routine
3536       ** to avoid having to move the frame pointer in the common case */
3537       return serialGet(buf,serial_type,pMem);
3538     }
3539     case 8:    /* Integer 0 */
3540     case 9: {  /* Integer 1 */
3541       /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3542       /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3543       pMem->u.i = serial_type-8;
3544       pMem->flags = MEM_Int;
3545       return 0;
3546     }
3547     default: {
3548       /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3549       ** length.
3550       ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3551       ** (N-13)/2 bytes in length. */
3552       static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3553       pMem->z = (char *)buf;
3554       pMem->n = (serial_type-12)/2;
3555       pMem->flags = aFlag[serial_type&1];
3556       return pMem->n;
3557     }
3558   }
3559   return 0;
3560 }
3561 /*
3562 ** This routine is used to allocate sufficient space for an UnpackedRecord
3563 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3564 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3565 **
3566 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3567 ** the unaligned buffer passed via the second and third arguments (presumably
3568 ** stack space). If the former, then *ppFree is set to a pointer that should
3569 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3570 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3571 ** before returning.
3572 **
3573 ** If an OOM error occurs, NULL is returned.
3574 */
3575 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3576   KeyInfo *pKeyInfo               /* Description of the record */
3577 ){
3578   UnpackedRecord *p;              /* Unpacked record to return */
3579   int nByte;                      /* Number of bytes required for *p */
3580   nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
3581   p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3582   if( !p ) return 0;
3583   p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3584   assert( pKeyInfo->aSortOrder!=0 );
3585   p->pKeyInfo = pKeyInfo;
3586   p->nField = pKeyInfo->nKeyField + 1;
3587   return p;
3588 }
3589 
3590 /*
3591 ** Given the nKey-byte encoding of a record in pKey[], populate the
3592 ** UnpackedRecord structure indicated by the fourth argument with the
3593 ** contents of the decoded record.
3594 */
3595 void sqlite3VdbeRecordUnpack(
3596   KeyInfo *pKeyInfo,     /* Information about the record format */
3597   int nKey,              /* Size of the binary record */
3598   const void *pKey,      /* The binary record */
3599   UnpackedRecord *p      /* Populate this structure before returning. */
3600 ){
3601   const unsigned char *aKey = (const unsigned char *)pKey;
3602   int d;
3603   u32 idx;                        /* Offset in aKey[] to read from */
3604   u16 u;                          /* Unsigned loop counter */
3605   u32 szHdr;
3606   Mem *pMem = p->aMem;
3607 
3608   p->default_rc = 0;
3609   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
3610   idx = getVarint32(aKey, szHdr);
3611   d = szHdr;
3612   u = 0;
3613   while( idx<szHdr && d<=nKey ){
3614     u32 serial_type;
3615 
3616     idx += getVarint32(&aKey[idx], serial_type);
3617     pMem->enc = pKeyInfo->enc;
3618     pMem->db = pKeyInfo->db;
3619     /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
3620     pMem->szMalloc = 0;
3621     pMem->z = 0;
3622     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
3623     pMem++;
3624     if( (++u)>=p->nField ) break;
3625   }
3626   assert( u<=pKeyInfo->nKeyField + 1 );
3627   p->nField = u;
3628 }
3629 
3630 #ifdef SQLITE_DEBUG
3631 /*
3632 ** This function compares two index or table record keys in the same way
3633 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3634 ** this function deserializes and compares values using the
3635 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3636 ** in assert() statements to ensure that the optimized code in
3637 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
3638 **
3639 ** Return true if the result of comparison is equivalent to desiredResult.
3640 ** Return false if there is a disagreement.
3641 */
3642 static int vdbeRecordCompareDebug(
3643   int nKey1, const void *pKey1, /* Left key */
3644   const UnpackedRecord *pPKey2, /* Right key */
3645   int desiredResult             /* Correct answer */
3646 ){
3647   u32 d1;            /* Offset into aKey[] of next data element */
3648   u32 idx1;          /* Offset into aKey[] of next header element */
3649   u32 szHdr1;        /* Number of bytes in header */
3650   int i = 0;
3651   int rc = 0;
3652   const unsigned char *aKey1 = (const unsigned char *)pKey1;
3653   KeyInfo *pKeyInfo;
3654   Mem mem1;
3655 
3656   pKeyInfo = pPKey2->pKeyInfo;
3657   if( pKeyInfo->db==0 ) return 1;
3658   mem1.enc = pKeyInfo->enc;
3659   mem1.db = pKeyInfo->db;
3660   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
3661   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3662 
3663   /* Compilers may complain that mem1.u.i is potentially uninitialized.
3664   ** We could initialize it, as shown here, to silence those complaints.
3665   ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
3666   ** the unnecessary initialization has a measurable negative performance
3667   ** impact, since this routine is a very high runner.  And so, we choose
3668   ** to ignore the compiler warnings and leave this variable uninitialized.
3669   */
3670   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
3671 
3672   idx1 = getVarint32(aKey1, szHdr1);
3673   if( szHdr1>98307 ) return SQLITE_CORRUPT;
3674   d1 = szHdr1;
3675   assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
3676   assert( pKeyInfo->aSortOrder!=0 );
3677   assert( pKeyInfo->nKeyField>0 );
3678   assert( idx1<=szHdr1 || CORRUPT_DB );
3679   do{
3680     u32 serial_type1;
3681 
3682     /* Read the serial types for the next element in each key. */
3683     idx1 += getVarint32( aKey1+idx1, serial_type1 );
3684 
3685     /* Verify that there is enough key space remaining to avoid
3686     ** a buffer overread.  The "d1+serial_type1+2" subexpression will
3687     ** always be greater than or equal to the amount of required key space.
3688     ** Use that approximation to avoid the more expensive call to
3689     ** sqlite3VdbeSerialTypeLen() in the common case.
3690     */
3691     if( d1+serial_type1+2>(u32)nKey1
3692      && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3693     ){
3694       break;
3695     }
3696 
3697     /* Extract the values to be compared.
3698     */
3699     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3700 
3701     /* Do the comparison
3702     */
3703     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
3704     if( rc!=0 ){
3705       assert( mem1.szMalloc==0 );  /* See comment below */
3706       if( pKeyInfo->aSortOrder[i] ){
3707         rc = -rc;  /* Invert the result for DESC sort order. */
3708       }
3709       goto debugCompareEnd;
3710     }
3711     i++;
3712   }while( idx1<szHdr1 && i<pPKey2->nField );
3713 
3714   /* No memory allocation is ever used on mem1.  Prove this using
3715   ** the following assert().  If the assert() fails, it indicates a
3716   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
3717   */
3718   assert( mem1.szMalloc==0 );
3719 
3720   /* rc==0 here means that one of the keys ran out of fields and
3721   ** all the fields up to that point were equal. Return the default_rc
3722   ** value.  */
3723   rc = pPKey2->default_rc;
3724 
3725 debugCompareEnd:
3726   if( desiredResult==0 && rc==0 ) return 1;
3727   if( desiredResult<0 && rc<0 ) return 1;
3728   if( desiredResult>0 && rc>0 ) return 1;
3729   if( CORRUPT_DB ) return 1;
3730   if( pKeyInfo->db->mallocFailed ) return 1;
3731   return 0;
3732 }
3733 #endif
3734 
3735 #ifdef SQLITE_DEBUG
3736 /*
3737 ** Count the number of fields (a.k.a. columns) in the record given by
3738 ** pKey,nKey.  The verify that this count is less than or equal to the
3739 ** limit given by pKeyInfo->nAllField.
3740 **
3741 ** If this constraint is not satisfied, it means that the high-speed
3742 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3743 ** not work correctly.  If this assert() ever fires, it probably means
3744 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
3745 ** incorrectly.
3746 */
3747 static void vdbeAssertFieldCountWithinLimits(
3748   int nKey, const void *pKey,   /* The record to verify */
3749   const KeyInfo *pKeyInfo       /* Compare size with this KeyInfo */
3750 ){
3751   int nField = 0;
3752   u32 szHdr;
3753   u32 idx;
3754   u32 notUsed;
3755   const unsigned char *aKey = (const unsigned char*)pKey;
3756 
3757   if( CORRUPT_DB ) return;
3758   idx = getVarint32(aKey, szHdr);
3759   assert( nKey>=0 );
3760   assert( szHdr<=(u32)nKey );
3761   while( idx<szHdr ){
3762     idx += getVarint32(aKey+idx, notUsed);
3763     nField++;
3764   }
3765   assert( nField <= pKeyInfo->nAllField );
3766 }
3767 #else
3768 # define vdbeAssertFieldCountWithinLimits(A,B,C)
3769 #endif
3770 
3771 /*
3772 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
3773 ** using the collation sequence pColl. As usual, return a negative , zero
3774 ** or positive value if *pMem1 is less than, equal to or greater than
3775 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3776 */
3777 static int vdbeCompareMemString(
3778   const Mem *pMem1,
3779   const Mem *pMem2,
3780   const CollSeq *pColl,
3781   u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */
3782 ){
3783   if( pMem1->enc==pColl->enc ){
3784     /* The strings are already in the correct encoding.  Call the
3785      ** comparison function directly */
3786     return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3787   }else{
3788     int rc;
3789     const void *v1, *v2;
3790     Mem c1;
3791     Mem c2;
3792     sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3793     sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
3794     sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3795     sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3796     v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3797     v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3798     if( (v1==0 || v2==0) ){
3799       if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
3800       rc = 0;
3801     }else{
3802       rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
3803     }
3804     sqlite3VdbeMemRelease(&c1);
3805     sqlite3VdbeMemRelease(&c2);
3806     return rc;
3807   }
3808 }
3809 
3810 /*
3811 ** The input pBlob is guaranteed to be a Blob that is not marked
3812 ** with MEM_Zero.  Return true if it could be a zero-blob.
3813 */
3814 static int isAllZero(const char *z, int n){
3815   int i;
3816   for(i=0; i<n; i++){
3817     if( z[i] ) return 0;
3818   }
3819   return 1;
3820 }
3821 
3822 /*
3823 ** Compare two blobs.  Return negative, zero, or positive if the first
3824 ** is less than, equal to, or greater than the second, respectively.
3825 ** If one blob is a prefix of the other, then the shorter is the lessor.
3826 */
3827 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3828   int c;
3829   int n1 = pB1->n;
3830   int n2 = pB2->n;
3831 
3832   /* It is possible to have a Blob value that has some non-zero content
3833   ** followed by zero content.  But that only comes up for Blobs formed
3834   ** by the OP_MakeRecord opcode, and such Blobs never get passed into
3835   ** sqlite3MemCompare(). */
3836   assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
3837   assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
3838 
3839   if( (pB1->flags|pB2->flags) & MEM_Zero ){
3840     if( pB1->flags & pB2->flags & MEM_Zero ){
3841       return pB1->u.nZero - pB2->u.nZero;
3842     }else if( pB1->flags & MEM_Zero ){
3843       if( !isAllZero(pB2->z, pB2->n) ) return -1;
3844       return pB1->u.nZero - n2;
3845     }else{
3846       if( !isAllZero(pB1->z, pB1->n) ) return +1;
3847       return n1 - pB2->u.nZero;
3848     }
3849   }
3850   c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
3851   if( c ) return c;
3852   return n1 - n2;
3853 }
3854 
3855 /*
3856 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
3857 ** number.  Return negative, zero, or positive if the first (i64) is less than,
3858 ** equal to, or greater than the second (double).
3859 */
3860 static int sqlite3IntFloatCompare(i64 i, double r){
3861   if( sizeof(LONGDOUBLE_TYPE)>8 ){
3862     LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
3863     if( x<r ) return -1;
3864     if( x>r ) return +1;
3865     return 0;
3866   }else{
3867     i64 y;
3868     double s;
3869     if( r<-9223372036854775808.0 ) return +1;
3870     if( r>9223372036854775807.0 ) return -1;
3871     y = (i64)r;
3872     if( i<y ) return -1;
3873     if( i>y ){
3874       if( y==SMALLEST_INT64 && r>0.0 ) return -1;
3875       return +1;
3876     }
3877     s = (double)i;
3878     if( s<r ) return -1;
3879     if( s>r ) return +1;
3880     return 0;
3881   }
3882 }
3883 
3884 /*
3885 ** Compare the values contained by the two memory cells, returning
3886 ** negative, zero or positive if pMem1 is less than, equal to, or greater
3887 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3888 ** and reals) sorted numerically, followed by text ordered by the collating
3889 ** sequence pColl and finally blob's ordered by memcmp().
3890 **
3891 ** Two NULL values are considered equal by this function.
3892 */
3893 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
3894   int f1, f2;
3895   int combined_flags;
3896 
3897   f1 = pMem1->flags;
3898   f2 = pMem2->flags;
3899   combined_flags = f1|f2;
3900   assert( (combined_flags & MEM_RowSet)==0 );
3901 
3902   /* If one value is NULL, it is less than the other. If both values
3903   ** are NULL, return 0.
3904   */
3905   if( combined_flags&MEM_Null ){
3906     return (f2&MEM_Null) - (f1&MEM_Null);
3907   }
3908 
3909   /* At least one of the two values is a number
3910   */
3911   if( combined_flags&(MEM_Int|MEM_Real) ){
3912     if( (f1 & f2 & MEM_Int)!=0 ){
3913       if( pMem1->u.i < pMem2->u.i ) return -1;
3914       if( pMem1->u.i > pMem2->u.i ) return +1;
3915       return 0;
3916     }
3917     if( (f1 & f2 & MEM_Real)!=0 ){
3918       if( pMem1->u.r < pMem2->u.r ) return -1;
3919       if( pMem1->u.r > pMem2->u.r ) return +1;
3920       return 0;
3921     }
3922     if( (f1&MEM_Int)!=0 ){
3923       if( (f2&MEM_Real)!=0 ){
3924         return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
3925       }else{
3926         return -1;
3927       }
3928     }
3929     if( (f1&MEM_Real)!=0 ){
3930       if( (f2&MEM_Int)!=0 ){
3931         return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
3932       }else{
3933         return -1;
3934       }
3935     }
3936     return +1;
3937   }
3938 
3939   /* If one value is a string and the other is a blob, the string is less.
3940   ** If both are strings, compare using the collating functions.
3941   */
3942   if( combined_flags&MEM_Str ){
3943     if( (f1 & MEM_Str)==0 ){
3944       return 1;
3945     }
3946     if( (f2 & MEM_Str)==0 ){
3947       return -1;
3948     }
3949 
3950     assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
3951     assert( pMem1->enc==SQLITE_UTF8 ||
3952             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3953 
3954     /* The collation sequence must be defined at this point, even if
3955     ** the user deletes the collation sequence after the vdbe program is
3956     ** compiled (this was not always the case).
3957     */
3958     assert( !pColl || pColl->xCmp );
3959 
3960     if( pColl ){
3961       return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
3962     }
3963     /* If a NULL pointer was passed as the collate function, fall through
3964     ** to the blob case and use memcmp().  */
3965   }
3966 
3967   /* Both values must be blobs.  Compare using memcmp().  */
3968   return sqlite3BlobCompare(pMem1, pMem2);
3969 }
3970 
3971 
3972 /*
3973 ** The first argument passed to this function is a serial-type that
3974 ** corresponds to an integer - all values between 1 and 9 inclusive
3975 ** except 7. The second points to a buffer containing an integer value
3976 ** serialized according to serial_type. This function deserializes
3977 ** and returns the value.
3978 */
3979 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
3980   u32 y;
3981   assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
3982   switch( serial_type ){
3983     case 0:
3984     case 1:
3985       testcase( aKey[0]&0x80 );
3986       return ONE_BYTE_INT(aKey);
3987     case 2:
3988       testcase( aKey[0]&0x80 );
3989       return TWO_BYTE_INT(aKey);
3990     case 3:
3991       testcase( aKey[0]&0x80 );
3992       return THREE_BYTE_INT(aKey);
3993     case 4: {
3994       testcase( aKey[0]&0x80 );
3995       y = FOUR_BYTE_UINT(aKey);
3996       return (i64)*(int*)&y;
3997     }
3998     case 5: {
3999       testcase( aKey[0]&0x80 );
4000       return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4001     }
4002     case 6: {
4003       u64 x = FOUR_BYTE_UINT(aKey);
4004       testcase( aKey[0]&0x80 );
4005       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4006       return (i64)*(i64*)&x;
4007     }
4008   }
4009 
4010   return (serial_type - 8);
4011 }
4012 
4013 /*
4014 ** This function compares the two table rows or index records
4015 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
4016 ** or positive integer if key1 is less than, equal to or
4017 ** greater than key2.  The {nKey1, pKey1} key must be a blob
4018 ** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2
4019 ** key must be a parsed key such as obtained from
4020 ** sqlite3VdbeParseRecord.
4021 **
4022 ** If argument bSkip is non-zero, it is assumed that the caller has already
4023 ** determined that the first fields of the keys are equal.
4024 **
4025 ** Key1 and Key2 do not have to contain the same number of fields. If all
4026 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4027 ** returned.
4028 **
4029 ** If database corruption is discovered, set pPKey2->errCode to
4030 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4031 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4032 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4033 */
4034 int sqlite3VdbeRecordCompareWithSkip(
4035   int nKey1, const void *pKey1,   /* Left key */
4036   UnpackedRecord *pPKey2,         /* Right key */
4037   int bSkip                       /* If true, skip the first field */
4038 ){
4039   u32 d1;                         /* Offset into aKey[] of next data element */
4040   int i;                          /* Index of next field to compare */
4041   u32 szHdr1;                     /* Size of record header in bytes */
4042   u32 idx1;                       /* Offset of first type in header */
4043   int rc = 0;                     /* Return value */
4044   Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
4045   KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
4046   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4047   Mem mem1;
4048 
4049   /* If bSkip is true, then the caller has already determined that the first
4050   ** two elements in the keys are equal. Fix the various stack variables so
4051   ** that this routine begins comparing at the second field. */
4052   if( bSkip ){
4053     u32 s1;
4054     idx1 = 1 + getVarint32(&aKey1[1], s1);
4055     szHdr1 = aKey1[0];
4056     d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4057     i = 1;
4058     pRhs++;
4059   }else{
4060     idx1 = getVarint32(aKey1, szHdr1);
4061     d1 = szHdr1;
4062     if( d1>(unsigned)nKey1 ){
4063       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4064       return 0;  /* Corruption */
4065     }
4066     i = 0;
4067   }
4068 
4069   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4070   assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4071        || CORRUPT_DB );
4072   assert( pPKey2->pKeyInfo->aSortOrder!=0 );
4073   assert( pPKey2->pKeyInfo->nKeyField>0 );
4074   assert( idx1<=szHdr1 || CORRUPT_DB );
4075   do{
4076     u32 serial_type;
4077 
4078     /* RHS is an integer */
4079     if( pRhs->flags & MEM_Int ){
4080       serial_type = aKey1[idx1];
4081       testcase( serial_type==12 );
4082       if( serial_type>=10 ){
4083         rc = +1;
4084       }else if( serial_type==0 ){
4085         rc = -1;
4086       }else if( serial_type==7 ){
4087         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4088         rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4089       }else{
4090         i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4091         i64 rhs = pRhs->u.i;
4092         if( lhs<rhs ){
4093           rc = -1;
4094         }else if( lhs>rhs ){
4095           rc = +1;
4096         }
4097       }
4098     }
4099 
4100     /* RHS is real */
4101     else if( pRhs->flags & MEM_Real ){
4102       serial_type = aKey1[idx1];
4103       if( serial_type>=10 ){
4104         /* Serial types 12 or greater are strings and blobs (greater than
4105         ** numbers). Types 10 and 11 are currently "reserved for future
4106         ** use", so it doesn't really matter what the results of comparing
4107         ** them to numberic values are.  */
4108         rc = +1;
4109       }else if( serial_type==0 ){
4110         rc = -1;
4111       }else{
4112         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4113         if( serial_type==7 ){
4114           if( mem1.u.r<pRhs->u.r ){
4115             rc = -1;
4116           }else if( mem1.u.r>pRhs->u.r ){
4117             rc = +1;
4118           }
4119         }else{
4120           rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4121         }
4122       }
4123     }
4124 
4125     /* RHS is a string */
4126     else if( pRhs->flags & MEM_Str ){
4127       getVarint32(&aKey1[idx1], serial_type);
4128       testcase( serial_type==12 );
4129       if( serial_type<12 ){
4130         rc = -1;
4131       }else if( !(serial_type & 0x01) ){
4132         rc = +1;
4133       }else{
4134         mem1.n = (serial_type - 12) / 2;
4135         testcase( (d1+mem1.n)==(unsigned)nKey1 );
4136         testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4137         if( (d1+mem1.n) > (unsigned)nKey1 ){
4138           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4139           return 0;                /* Corruption */
4140         }else if( pKeyInfo->aColl[i] ){
4141           mem1.enc = pKeyInfo->enc;
4142           mem1.db = pKeyInfo->db;
4143           mem1.flags = MEM_Str;
4144           mem1.z = (char*)&aKey1[d1];
4145           rc = vdbeCompareMemString(
4146               &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4147           );
4148         }else{
4149           int nCmp = MIN(mem1.n, pRhs->n);
4150           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4151           if( rc==0 ) rc = mem1.n - pRhs->n;
4152         }
4153       }
4154     }
4155 
4156     /* RHS is a blob */
4157     else if( pRhs->flags & MEM_Blob ){
4158       assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4159       getVarint32(&aKey1[idx1], serial_type);
4160       testcase( serial_type==12 );
4161       if( serial_type<12 || (serial_type & 0x01) ){
4162         rc = -1;
4163       }else{
4164         int nStr = (serial_type - 12) / 2;
4165         testcase( (d1+nStr)==(unsigned)nKey1 );
4166         testcase( (d1+nStr+1)==(unsigned)nKey1 );
4167         if( (d1+nStr) > (unsigned)nKey1 ){
4168           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4169           return 0;                /* Corruption */
4170         }else if( pRhs->flags & MEM_Zero ){
4171           if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4172             rc = 1;
4173           }else{
4174             rc = nStr - pRhs->u.nZero;
4175           }
4176         }else{
4177           int nCmp = MIN(nStr, pRhs->n);
4178           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4179           if( rc==0 ) rc = nStr - pRhs->n;
4180         }
4181       }
4182     }
4183 
4184     /* RHS is null */
4185     else{
4186       serial_type = aKey1[idx1];
4187       rc = (serial_type!=0);
4188     }
4189 
4190     if( rc!=0 ){
4191       if( pKeyInfo->aSortOrder[i] ){
4192         rc = -rc;
4193       }
4194       assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4195       assert( mem1.szMalloc==0 );  /* See comment below */
4196       return rc;
4197     }
4198 
4199     i++;
4200     pRhs++;
4201     d1 += sqlite3VdbeSerialTypeLen(serial_type);
4202     idx1 += sqlite3VarintLen(serial_type);
4203   }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
4204 
4205   /* No memory allocation is ever used on mem1.  Prove this using
4206   ** the following assert().  If the assert() fails, it indicates a
4207   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
4208   assert( mem1.szMalloc==0 );
4209 
4210   /* rc==0 here means that one or both of the keys ran out of fields and
4211   ** all the fields up to that point were equal. Return the default_rc
4212   ** value.  */
4213   assert( CORRUPT_DB
4214        || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4215        || pKeyInfo->db->mallocFailed
4216   );
4217   pPKey2->eqSeen = 1;
4218   return pPKey2->default_rc;
4219 }
4220 int sqlite3VdbeRecordCompare(
4221   int nKey1, const void *pKey1,   /* Left key */
4222   UnpackedRecord *pPKey2          /* Right key */
4223 ){
4224   return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4225 }
4226 
4227 
4228 /*
4229 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4230 ** that (a) the first field of pPKey2 is an integer, and (b) the
4231 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4232 ** byte (i.e. is less than 128).
4233 **
4234 ** To avoid concerns about buffer overreads, this routine is only used
4235 ** on schemas where the maximum valid header size is 63 bytes or less.
4236 */
4237 static int vdbeRecordCompareInt(
4238   int nKey1, const void *pKey1, /* Left key */
4239   UnpackedRecord *pPKey2        /* Right key */
4240 ){
4241   const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4242   int serial_type = ((const u8*)pKey1)[1];
4243   int res;
4244   u32 y;
4245   u64 x;
4246   i64 v;
4247   i64 lhs;
4248 
4249   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4250   assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4251   switch( serial_type ){
4252     case 1: { /* 1-byte signed integer */
4253       lhs = ONE_BYTE_INT(aKey);
4254       testcase( lhs<0 );
4255       break;
4256     }
4257     case 2: { /* 2-byte signed integer */
4258       lhs = TWO_BYTE_INT(aKey);
4259       testcase( lhs<0 );
4260       break;
4261     }
4262     case 3: { /* 3-byte signed integer */
4263       lhs = THREE_BYTE_INT(aKey);
4264       testcase( lhs<0 );
4265       break;
4266     }
4267     case 4: { /* 4-byte signed integer */
4268       y = FOUR_BYTE_UINT(aKey);
4269       lhs = (i64)*(int*)&y;
4270       testcase( lhs<0 );
4271       break;
4272     }
4273     case 5: { /* 6-byte signed integer */
4274       lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4275       testcase( lhs<0 );
4276       break;
4277     }
4278     case 6: { /* 8-byte signed integer */
4279       x = FOUR_BYTE_UINT(aKey);
4280       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4281       lhs = *(i64*)&x;
4282       testcase( lhs<0 );
4283       break;
4284     }
4285     case 8:
4286       lhs = 0;
4287       break;
4288     case 9:
4289       lhs = 1;
4290       break;
4291 
4292     /* This case could be removed without changing the results of running
4293     ** this code. Including it causes gcc to generate a faster switch
4294     ** statement (since the range of switch targets now starts at zero and
4295     ** is contiguous) but does not cause any duplicate code to be generated
4296     ** (as gcc is clever enough to combine the two like cases). Other
4297     ** compilers might be similar.  */
4298     case 0: case 7:
4299       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4300 
4301     default:
4302       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4303   }
4304 
4305   v = pPKey2->aMem[0].u.i;
4306   if( v>lhs ){
4307     res = pPKey2->r1;
4308   }else if( v<lhs ){
4309     res = pPKey2->r2;
4310   }else if( pPKey2->nField>1 ){
4311     /* The first fields of the two keys are equal. Compare the trailing
4312     ** fields.  */
4313     res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4314   }else{
4315     /* The first fields of the two keys are equal and there are no trailing
4316     ** fields. Return pPKey2->default_rc in this case. */
4317     res = pPKey2->default_rc;
4318     pPKey2->eqSeen = 1;
4319   }
4320 
4321   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4322   return res;
4323 }
4324 
4325 /*
4326 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4327 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4328 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4329 ** at the start of (pKey1/nKey1) fits in a single byte.
4330 */
4331 static int vdbeRecordCompareString(
4332   int nKey1, const void *pKey1, /* Left key */
4333   UnpackedRecord *pPKey2        /* Right key */
4334 ){
4335   const u8 *aKey1 = (const u8*)pKey1;
4336   int serial_type;
4337   int res;
4338 
4339   assert( pPKey2->aMem[0].flags & MEM_Str );
4340   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4341   getVarint32(&aKey1[1], serial_type);
4342   if( serial_type<12 ){
4343     res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
4344   }else if( !(serial_type & 0x01) ){
4345     res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
4346   }else{
4347     int nCmp;
4348     int nStr;
4349     int szHdr = aKey1[0];
4350 
4351     nStr = (serial_type-12) / 2;
4352     if( (szHdr + nStr) > nKey1 ){
4353       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4354       return 0;    /* Corruption */
4355     }
4356     nCmp = MIN( pPKey2->aMem[0].n, nStr );
4357     res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4358 
4359     if( res==0 ){
4360       res = nStr - pPKey2->aMem[0].n;
4361       if( res==0 ){
4362         if( pPKey2->nField>1 ){
4363           res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4364         }else{
4365           res = pPKey2->default_rc;
4366           pPKey2->eqSeen = 1;
4367         }
4368       }else if( res>0 ){
4369         res = pPKey2->r2;
4370       }else{
4371         res = pPKey2->r1;
4372       }
4373     }else if( res>0 ){
4374       res = pPKey2->r2;
4375     }else{
4376       res = pPKey2->r1;
4377     }
4378   }
4379 
4380   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4381        || CORRUPT_DB
4382        || pPKey2->pKeyInfo->db->mallocFailed
4383   );
4384   return res;
4385 }
4386 
4387 /*
4388 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4389 ** suitable for comparing serialized records to the unpacked record passed
4390 ** as the only argument.
4391 */
4392 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4393   /* varintRecordCompareInt() and varintRecordCompareString() both assume
4394   ** that the size-of-header varint that occurs at the start of each record
4395   ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4396   ** also assumes that it is safe to overread a buffer by at least the
4397   ** maximum possible legal header size plus 8 bytes. Because there is
4398   ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4399   ** buffer passed to varintRecordCompareInt() this makes it convenient to
4400   ** limit the size of the header to 64 bytes in cases where the first field
4401   ** is an integer.
4402   **
4403   ** The easiest way to enforce this limit is to consider only records with
4404   ** 13 fields or less. If the first field is an integer, the maximum legal
4405   ** header size is (12*5 + 1 + 1) bytes.  */
4406   if( p->pKeyInfo->nAllField<=13 ){
4407     int flags = p->aMem[0].flags;
4408     if( p->pKeyInfo->aSortOrder[0] ){
4409       p->r1 = 1;
4410       p->r2 = -1;
4411     }else{
4412       p->r1 = -1;
4413       p->r2 = 1;
4414     }
4415     if( (flags & MEM_Int) ){
4416       return vdbeRecordCompareInt;
4417     }
4418     testcase( flags & MEM_Real );
4419     testcase( flags & MEM_Null );
4420     testcase( flags & MEM_Blob );
4421     if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
4422       assert( flags & MEM_Str );
4423       return vdbeRecordCompareString;
4424     }
4425   }
4426 
4427   return sqlite3VdbeRecordCompare;
4428 }
4429 
4430 /*
4431 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4432 ** Read the rowid (the last field in the record) and store it in *rowid.
4433 ** Return SQLITE_OK if everything works, or an error code otherwise.
4434 **
4435 ** pCur might be pointing to text obtained from a corrupt database file.
4436 ** So the content cannot be trusted.  Do appropriate checks on the content.
4437 */
4438 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4439   i64 nCellKey = 0;
4440   int rc;
4441   u32 szHdr;        /* Size of the header */
4442   u32 typeRowid;    /* Serial type of the rowid */
4443   u32 lenRowid;     /* Size of the rowid */
4444   Mem m, v;
4445 
4446   /* Get the size of the index entry.  Only indices entries of less
4447   ** than 2GiB are support - anything large must be database corruption.
4448   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4449   ** this code can safely assume that nCellKey is 32-bits
4450   */
4451   assert( sqlite3BtreeCursorIsValid(pCur) );
4452   nCellKey = sqlite3BtreePayloadSize(pCur);
4453   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4454 
4455   /* Read in the complete content of the index entry */
4456   sqlite3VdbeMemInit(&m, db, 0);
4457   rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4458   if( rc ){
4459     return rc;
4460   }
4461 
4462   /* The index entry must begin with a header size */
4463   (void)getVarint32((u8*)m.z, szHdr);
4464   testcase( szHdr==3 );
4465   testcase( szHdr==m.n );
4466   if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
4467     goto idx_rowid_corruption;
4468   }
4469 
4470   /* The last field of the index should be an integer - the ROWID.
4471   ** Verify that the last entry really is an integer. */
4472   (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
4473   testcase( typeRowid==1 );
4474   testcase( typeRowid==2 );
4475   testcase( typeRowid==3 );
4476   testcase( typeRowid==4 );
4477   testcase( typeRowid==5 );
4478   testcase( typeRowid==6 );
4479   testcase( typeRowid==8 );
4480   testcase( typeRowid==9 );
4481   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4482     goto idx_rowid_corruption;
4483   }
4484   lenRowid = sqlite3SmallTypeSizes[typeRowid];
4485   testcase( (u32)m.n==szHdr+lenRowid );
4486   if( unlikely((u32)m.n<szHdr+lenRowid) ){
4487     goto idx_rowid_corruption;
4488   }
4489 
4490   /* Fetch the integer off the end of the index record */
4491   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4492   *rowid = v.u.i;
4493   sqlite3VdbeMemRelease(&m);
4494   return SQLITE_OK;
4495 
4496   /* Jump here if database corruption is detected after m has been
4497   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
4498 idx_rowid_corruption:
4499   testcase( m.szMalloc!=0 );
4500   sqlite3VdbeMemRelease(&m);
4501   return SQLITE_CORRUPT_BKPT;
4502 }
4503 
4504 /*
4505 ** Compare the key of the index entry that cursor pC is pointing to against
4506 ** the key string in pUnpacked.  Write into *pRes a number
4507 ** that is negative, zero, or positive if pC is less than, equal to,
4508 ** or greater than pUnpacked.  Return SQLITE_OK on success.
4509 **
4510 ** pUnpacked is either created without a rowid or is truncated so that it
4511 ** omits the rowid at the end.  The rowid at the end of the index entry
4512 ** is ignored as well.  Hence, this routine only compares the prefixes
4513 ** of the keys prior to the final rowid, not the entire key.
4514 */
4515 int sqlite3VdbeIdxKeyCompare(
4516   sqlite3 *db,                     /* Database connection */
4517   VdbeCursor *pC,                  /* The cursor to compare against */
4518   UnpackedRecord *pUnpacked,       /* Unpacked version of key */
4519   int *res                         /* Write the comparison result here */
4520 ){
4521   i64 nCellKey = 0;
4522   int rc;
4523   BtCursor *pCur;
4524   Mem m;
4525 
4526   assert( pC->eCurType==CURTYPE_BTREE );
4527   pCur = pC->uc.pCursor;
4528   assert( sqlite3BtreeCursorIsValid(pCur) );
4529   nCellKey = sqlite3BtreePayloadSize(pCur);
4530   /* nCellKey will always be between 0 and 0xffffffff because of the way
4531   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4532   if( nCellKey<=0 || nCellKey>0x7fffffff ){
4533     *res = 0;
4534     return SQLITE_CORRUPT_BKPT;
4535   }
4536   sqlite3VdbeMemInit(&m, db, 0);
4537   rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4538   if( rc ){
4539     return rc;
4540   }
4541   *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
4542   sqlite3VdbeMemRelease(&m);
4543   return SQLITE_OK;
4544 }
4545 
4546 /*
4547 ** This routine sets the value to be returned by subsequent calls to
4548 ** sqlite3_changes() on the database handle 'db'.
4549 */
4550 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
4551   assert( sqlite3_mutex_held(db->mutex) );
4552   db->nChange = nChange;
4553   db->nTotalChange += nChange;
4554 }
4555 
4556 /*
4557 ** Set a flag in the vdbe to update the change counter when it is finalised
4558 ** or reset.
4559 */
4560 void sqlite3VdbeCountChanges(Vdbe *v){
4561   v->changeCntOn = 1;
4562 }
4563 
4564 /*
4565 ** Mark every prepared statement associated with a database connection
4566 ** as expired.
4567 **
4568 ** An expired statement means that recompilation of the statement is
4569 ** recommend.  Statements expire when things happen that make their
4570 ** programs obsolete.  Removing user-defined functions or collating
4571 ** sequences, or changing an authorization function are the types of
4572 ** things that make prepared statements obsolete.
4573 */
4574 void sqlite3ExpirePreparedStatements(sqlite3 *db){
4575   Vdbe *p;
4576   for(p = db->pVdbe; p; p=p->pNext){
4577     p->expired = 1;
4578   }
4579 }
4580 
4581 /*
4582 ** Return the database associated with the Vdbe.
4583 */
4584 sqlite3 *sqlite3VdbeDb(Vdbe *v){
4585   return v->db;
4586 }
4587 
4588 /*
4589 ** Return the SQLITE_PREPARE flags for a Vdbe.
4590 */
4591 u8 sqlite3VdbePrepareFlags(Vdbe *v){
4592   return v->prepFlags;
4593 }
4594 
4595 /*
4596 ** Return a pointer to an sqlite3_value structure containing the value bound
4597 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4598 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4599 ** constants) to the value before returning it.
4600 **
4601 ** The returned value must be freed by the caller using sqlite3ValueFree().
4602 */
4603 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
4604   assert( iVar>0 );
4605   if( v ){
4606     Mem *pMem = &v->aVar[iVar-1];
4607     assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
4608     if( 0==(pMem->flags & MEM_Null) ){
4609       sqlite3_value *pRet = sqlite3ValueNew(v->db);
4610       if( pRet ){
4611         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4612         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
4613       }
4614       return pRet;
4615     }
4616   }
4617   return 0;
4618 }
4619 
4620 /*
4621 ** Configure SQL variable iVar so that binding a new value to it signals
4622 ** to sqlite3_reoptimize() that re-preparing the statement may result
4623 ** in a better query plan.
4624 */
4625 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
4626   assert( iVar>0 );
4627   assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
4628   if( iVar>=32 ){
4629     v->expmask |= 0x80000000;
4630   }else{
4631     v->expmask |= ((u32)1 << (iVar-1));
4632   }
4633 }
4634 
4635 /*
4636 ** Cause a function to throw an error if it was call from OP_PureFunc
4637 ** rather than OP_Function.
4638 **
4639 ** OP_PureFunc means that the function must be deterministic, and should
4640 ** throw an error if it is given inputs that would make it non-deterministic.
4641 ** This routine is invoked by date/time functions that use non-deterministic
4642 ** features such as 'now'.
4643 */
4644 int sqlite3NotPureFunc(sqlite3_context *pCtx){
4645 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
4646   if( pCtx->pVdbe==0 ) return 1;
4647 #endif
4648   if( pCtx->pVdbe->aOp[pCtx->iOp].opcode==OP_PureFunc ){
4649     sqlite3_result_error(pCtx,
4650        "non-deterministic function in index expression or CHECK constraint",
4651        -1);
4652     return 0;
4653   }
4654   return 1;
4655 }
4656 
4657 #ifndef SQLITE_OMIT_VIRTUALTABLE
4658 /*
4659 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4660 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4661 ** in memory obtained from sqlite3DbMalloc).
4662 */
4663 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4664   if( pVtab->zErrMsg ){
4665     sqlite3 *db = p->db;
4666     sqlite3DbFree(db, p->zErrMsg);
4667     p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4668     sqlite3_free(pVtab->zErrMsg);
4669     pVtab->zErrMsg = 0;
4670   }
4671 }
4672 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4673 
4674 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4675 
4676 /*
4677 ** If the second argument is not NULL, release any allocations associated
4678 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
4679 ** structure itself, using sqlite3DbFree().
4680 **
4681 ** This function is used to free UnpackedRecord structures allocated by
4682 ** the vdbeUnpackRecord() function found in vdbeapi.c.
4683 */
4684 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
4685   if( p ){
4686     int i;
4687     for(i=0; i<nField; i++){
4688       Mem *pMem = &p->aMem[i];
4689       if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
4690     }
4691     sqlite3DbFreeNN(db, p);
4692   }
4693 }
4694 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
4695 
4696 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4697 /*
4698 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
4699 ** then cursor passed as the second argument should point to the row about
4700 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
4701 ** the required value will be read from the row the cursor points to.
4702 */
4703 void sqlite3VdbePreUpdateHook(
4704   Vdbe *v,                        /* Vdbe pre-update hook is invoked by */
4705   VdbeCursor *pCsr,               /* Cursor to grab old.* values from */
4706   int op,                         /* SQLITE_INSERT, UPDATE or DELETE */
4707   const char *zDb,                /* Database name */
4708   Table *pTab,                    /* Modified table */
4709   i64 iKey1,                      /* Initial key value */
4710   int iReg                        /* Register for new.* record */
4711 ){
4712   sqlite3 *db = v->db;
4713   i64 iKey2;
4714   PreUpdate preupdate;
4715   const char *zTbl = pTab->zName;
4716   static const u8 fakeSortOrder = 0;
4717 
4718   assert( db->pPreUpdate==0 );
4719   memset(&preupdate, 0, sizeof(PreUpdate));
4720   if( HasRowid(pTab)==0 ){
4721     iKey1 = iKey2 = 0;
4722     preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
4723   }else{
4724     if( op==SQLITE_UPDATE ){
4725       iKey2 = v->aMem[iReg].u.i;
4726     }else{
4727       iKey2 = iKey1;
4728     }
4729   }
4730 
4731   assert( pCsr->nField==pTab->nCol
4732        || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
4733   );
4734 
4735   preupdate.v = v;
4736   preupdate.pCsr = pCsr;
4737   preupdate.op = op;
4738   preupdate.iNewReg = iReg;
4739   preupdate.keyinfo.db = db;
4740   preupdate.keyinfo.enc = ENC(db);
4741   preupdate.keyinfo.nKeyField = pTab->nCol;
4742   preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder;
4743   preupdate.iKey1 = iKey1;
4744   preupdate.iKey2 = iKey2;
4745   preupdate.pTab = pTab;
4746 
4747   db->pPreUpdate = &preupdate;
4748   db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
4749   db->pPreUpdate = 0;
4750   sqlite3DbFree(db, preupdate.aRecord);
4751   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
4752   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
4753   if( preupdate.aNew ){
4754     int i;
4755     for(i=0; i<pCsr->nField; i++){
4756       sqlite3VdbeMemRelease(&preupdate.aNew[i]);
4757     }
4758     sqlite3DbFreeNN(db, preupdate.aNew);
4759   }
4760 }
4761 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
4762