1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* 19 ** Create a new virtual database engine. 20 */ 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 22 sqlite3 *db = pParse->db; 23 Vdbe *p; 24 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 25 if( p==0 ) return 0; 26 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 27 p->db = db; 28 if( db->pVdbe ){ 29 db->pVdbe->pPrev = p; 30 } 31 p->pNext = db->pVdbe; 32 p->pPrev = 0; 33 db->pVdbe = p; 34 p->magic = VDBE_MAGIC_INIT; 35 p->pParse = pParse; 36 pParse->pVdbe = p; 37 assert( pParse->aLabel==0 ); 38 assert( pParse->nLabel==0 ); 39 assert( p->nOpAlloc==0 ); 40 assert( pParse->szOpAlloc==0 ); 41 sqlite3VdbeAddOp2(p, OP_Init, 0, 1); 42 return p; 43 } 44 45 /* 46 ** Change the error string stored in Vdbe.zErrMsg 47 */ 48 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 49 va_list ap; 50 sqlite3DbFree(p->db, p->zErrMsg); 51 va_start(ap, zFormat); 52 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 53 va_end(ap); 54 } 55 56 /* 57 ** Remember the SQL string for a prepared statement. 58 */ 59 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 60 if( p==0 ) return; 61 p->prepFlags = prepFlags; 62 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 63 p->expmask = 0; 64 } 65 assert( p->zSql==0 ); 66 p->zSql = sqlite3DbStrNDup(p->db, z, n); 67 } 68 69 #ifdef SQLITE_ENABLE_NORMALIZE 70 /* 71 ** Add a new element to the Vdbe->pDblStr list. 72 */ 73 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ 74 if( p ){ 75 int n = sqlite3Strlen30(z); 76 DblquoteStr *pStr = sqlite3DbMallocRawNN(db, 77 sizeof(*pStr)+n+1-sizeof(pStr->z)); 78 if( pStr ){ 79 pStr->pNextStr = p->pDblStr; 80 p->pDblStr = pStr; 81 memcpy(pStr->z, z, n+1); 82 } 83 } 84 } 85 #endif 86 87 #ifdef SQLITE_ENABLE_NORMALIZE 88 /* 89 ** zId of length nId is a double-quoted identifier. Check to see if 90 ** that identifier is really used as a string literal. 91 */ 92 int sqlite3VdbeUsesDoubleQuotedString( 93 Vdbe *pVdbe, /* The prepared statement */ 94 const char *zId /* The double-quoted identifier, already dequoted */ 95 ){ 96 DblquoteStr *pStr; 97 assert( zId!=0 ); 98 if( pVdbe->pDblStr==0 ) return 0; 99 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ 100 if( strcmp(zId, pStr->z)==0 ) return 1; 101 } 102 return 0; 103 } 104 #endif 105 106 /* 107 ** Swap all content between two VDBE structures. 108 */ 109 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 110 Vdbe tmp, *pTmp; 111 char *zTmp; 112 assert( pA->db==pB->db ); 113 tmp = *pA; 114 *pA = *pB; 115 *pB = tmp; 116 pTmp = pA->pNext; 117 pA->pNext = pB->pNext; 118 pB->pNext = pTmp; 119 pTmp = pA->pPrev; 120 pA->pPrev = pB->pPrev; 121 pB->pPrev = pTmp; 122 zTmp = pA->zSql; 123 pA->zSql = pB->zSql; 124 pB->zSql = zTmp; 125 #if 0 126 zTmp = pA->zNormSql; 127 pA->zNormSql = pB->zNormSql; 128 pB->zNormSql = zTmp; 129 #endif 130 pB->expmask = pA->expmask; 131 pB->prepFlags = pA->prepFlags; 132 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 133 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 134 } 135 136 /* 137 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 138 ** than its current size. nOp is guaranteed to be less than or equal 139 ** to 1024/sizeof(Op). 140 ** 141 ** If an out-of-memory error occurs while resizing the array, return 142 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain 143 ** unchanged (this is so that any opcodes already allocated can be 144 ** correctly deallocated along with the rest of the Vdbe). 145 */ 146 static int growOpArray(Vdbe *v, int nOp){ 147 VdbeOp *pNew; 148 Parse *p = v->pParse; 149 150 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 151 ** more frequent reallocs and hence provide more opportunities for 152 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 153 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 154 ** by the minimum* amount required until the size reaches 512. Normal 155 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 156 ** size of the op array or add 1KB of space, whichever is smaller. */ 157 #ifdef SQLITE_TEST_REALLOC_STRESS 158 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc 159 : (sqlite3_int64)v->nOpAlloc+nOp); 160 #else 161 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc 162 : (sqlite3_int64)(1024/sizeof(Op))); 163 UNUSED_PARAMETER(nOp); 164 #endif 165 166 /* Ensure that the size of a VDBE does not grow too large */ 167 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 168 sqlite3OomFault(p->db); 169 return SQLITE_NOMEM; 170 } 171 172 assert( nOp<=(1024/sizeof(Op)) ); 173 assert( nNew>=(v->nOpAlloc+nOp) ); 174 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 175 if( pNew ){ 176 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 177 v->nOpAlloc = p->szOpAlloc/sizeof(Op); 178 v->aOp = pNew; 179 } 180 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 181 } 182 183 #ifdef SQLITE_DEBUG 184 /* This routine is just a convenient place to set a breakpoint that will 185 ** fire after each opcode is inserted and displayed using 186 ** "PRAGMA vdbe_addoptrace=on". 187 */ 188 static void test_addop_breakpoint(void){ 189 static int n = 0; 190 n++; 191 } 192 #endif 193 194 /* 195 ** Add a new instruction to the list of instructions current in the 196 ** VDBE. Return the address of the new instruction. 197 ** 198 ** Parameters: 199 ** 200 ** p Pointer to the VDBE 201 ** 202 ** op The opcode for this instruction 203 ** 204 ** p1, p2, p3 Operands 205 ** 206 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 207 ** the sqlite3VdbeChangeP4() function to change the value of the P4 208 ** operand. 209 */ 210 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 211 assert( p->nOpAlloc<=p->nOp ); 212 if( growOpArray(p, 1) ) return 1; 213 assert( p->nOpAlloc>p->nOp ); 214 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 215 } 216 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 217 int i; 218 VdbeOp *pOp; 219 220 i = p->nOp; 221 assert( p->magic==VDBE_MAGIC_INIT ); 222 assert( op>=0 && op<0xff ); 223 if( p->nOpAlloc<=i ){ 224 return growOp3(p, op, p1, p2, p3); 225 } 226 p->nOp++; 227 pOp = &p->aOp[i]; 228 pOp->opcode = (u8)op; 229 pOp->p5 = 0; 230 pOp->p1 = p1; 231 pOp->p2 = p2; 232 pOp->p3 = p3; 233 pOp->p4.p = 0; 234 pOp->p4type = P4_NOTUSED; 235 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 236 pOp->zComment = 0; 237 #endif 238 #ifdef SQLITE_DEBUG 239 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 240 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 241 test_addop_breakpoint(); 242 } 243 #endif 244 #ifdef VDBE_PROFILE 245 pOp->cycles = 0; 246 pOp->cnt = 0; 247 #endif 248 #ifdef SQLITE_VDBE_COVERAGE 249 pOp->iSrcLine = 0; 250 #endif 251 return i; 252 } 253 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 254 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 255 } 256 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 257 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 258 } 259 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 260 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 261 } 262 263 /* Generate code for an unconditional jump to instruction iDest 264 */ 265 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 266 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 267 } 268 269 /* Generate code to cause the string zStr to be loaded into 270 ** register iDest 271 */ 272 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 273 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 274 } 275 276 /* 277 ** Generate code that initializes multiple registers to string or integer 278 ** constants. The registers begin with iDest and increase consecutively. 279 ** One register is initialized for each characgter in zTypes[]. For each 280 ** "s" character in zTypes[], the register is a string if the argument is 281 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 282 ** in zTypes[], the register is initialized to an integer. 283 ** 284 ** If the input string does not end with "X" then an OP_ResultRow instruction 285 ** is generated for the values inserted. 286 */ 287 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 288 va_list ap; 289 int i; 290 char c; 291 va_start(ap, zTypes); 292 for(i=0; (c = zTypes[i])!=0; i++){ 293 if( c=='s' ){ 294 const char *z = va_arg(ap, const char*); 295 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 296 }else if( c=='i' ){ 297 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 298 }else{ 299 goto skip_op_resultrow; 300 } 301 } 302 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 303 skip_op_resultrow: 304 va_end(ap); 305 } 306 307 /* 308 ** Add an opcode that includes the p4 value as a pointer. 309 */ 310 int sqlite3VdbeAddOp4( 311 Vdbe *p, /* Add the opcode to this VM */ 312 int op, /* The new opcode */ 313 int p1, /* The P1 operand */ 314 int p2, /* The P2 operand */ 315 int p3, /* The P3 operand */ 316 const char *zP4, /* The P4 operand */ 317 int p4type /* P4 operand type */ 318 ){ 319 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 320 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 321 return addr; 322 } 323 324 /* 325 ** Add an opcode that includes the p4 value with a P4_INT64 or 326 ** P4_REAL type. 327 */ 328 int sqlite3VdbeAddOp4Dup8( 329 Vdbe *p, /* Add the opcode to this VM */ 330 int op, /* The new opcode */ 331 int p1, /* The P1 operand */ 332 int p2, /* The P2 operand */ 333 int p3, /* The P3 operand */ 334 const u8 *zP4, /* The P4 operand */ 335 int p4type /* P4 operand type */ 336 ){ 337 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 338 if( p4copy ) memcpy(p4copy, zP4, 8); 339 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 340 } 341 342 #ifndef SQLITE_OMIT_EXPLAIN 343 /* 344 ** Return the address of the current EXPLAIN QUERY PLAN baseline. 345 ** 0 means "none". 346 */ 347 int sqlite3VdbeExplainParent(Parse *pParse){ 348 VdbeOp *pOp; 349 if( pParse->addrExplain==0 ) return 0; 350 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); 351 return pOp->p2; 352 } 353 354 /* 355 ** Set a debugger breakpoint on the following routine in order to 356 ** monitor the EXPLAIN QUERY PLAN code generation. 357 */ 358 #if defined(SQLITE_DEBUG) 359 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ 360 (void)z1; 361 (void)z2; 362 } 363 #endif 364 365 /* 366 ** Add a new OP_ opcode. 367 ** 368 ** If the bPush flag is true, then make this opcode the parent for 369 ** subsequent Explains until sqlite3VdbeExplainPop() is called. 370 */ 371 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ 372 #ifndef SQLITE_DEBUG 373 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined. 374 ** But omit them (for performance) during production builds */ 375 if( pParse->explain==2 ) 376 #endif 377 { 378 char *zMsg; 379 Vdbe *v; 380 va_list ap; 381 int iThis; 382 va_start(ap, zFmt); 383 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); 384 va_end(ap); 385 v = pParse->pVdbe; 386 iThis = v->nOp; 387 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, 388 zMsg, P4_DYNAMIC); 389 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z); 390 if( bPush){ 391 pParse->addrExplain = iThis; 392 } 393 } 394 } 395 396 /* 397 ** Pop the EXPLAIN QUERY PLAN stack one level. 398 */ 399 void sqlite3VdbeExplainPop(Parse *pParse){ 400 sqlite3ExplainBreakpoint("POP", 0); 401 pParse->addrExplain = sqlite3VdbeExplainParent(pParse); 402 } 403 #endif /* SQLITE_OMIT_EXPLAIN */ 404 405 /* 406 ** Add an OP_ParseSchema opcode. This routine is broken out from 407 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 408 ** as having been used. 409 ** 410 ** The zWhere string must have been obtained from sqlite3_malloc(). 411 ** This routine will take ownership of the allocated memory. 412 */ 413 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 414 int j; 415 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 416 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 417 } 418 419 /* 420 ** Add an opcode that includes the p4 value as an integer. 421 */ 422 int sqlite3VdbeAddOp4Int( 423 Vdbe *p, /* Add the opcode to this VM */ 424 int op, /* The new opcode */ 425 int p1, /* The P1 operand */ 426 int p2, /* The P2 operand */ 427 int p3, /* The P3 operand */ 428 int p4 /* The P4 operand as an integer */ 429 ){ 430 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 431 if( p->db->mallocFailed==0 ){ 432 VdbeOp *pOp = &p->aOp[addr]; 433 pOp->p4type = P4_INT32; 434 pOp->p4.i = p4; 435 } 436 return addr; 437 } 438 439 /* Insert the end of a co-routine 440 */ 441 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 442 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 443 444 /* Clear the temporary register cache, thereby ensuring that each 445 ** co-routine has its own independent set of registers, because co-routines 446 ** might expect their registers to be preserved across an OP_Yield, and 447 ** that could cause problems if two or more co-routines are using the same 448 ** temporary register. 449 */ 450 v->pParse->nTempReg = 0; 451 v->pParse->nRangeReg = 0; 452 } 453 454 /* 455 ** Create a new symbolic label for an instruction that has yet to be 456 ** coded. The symbolic label is really just a negative number. The 457 ** label can be used as the P2 value of an operation. Later, when 458 ** the label is resolved to a specific address, the VDBE will scan 459 ** through its operation list and change all values of P2 which match 460 ** the label into the resolved address. 461 ** 462 ** The VDBE knows that a P2 value is a label because labels are 463 ** always negative and P2 values are suppose to be non-negative. 464 ** Hence, a negative P2 value is a label that has yet to be resolved. 465 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP 466 ** property. 467 ** 468 ** Variable usage notes: 469 ** 470 ** Parse.aLabel[x] Stores the address that the x-th label resolves 471 ** into. For testing (SQLITE_DEBUG), unresolved 472 ** labels stores -1, but that is not required. 473 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[] 474 ** Parse.nLabel The *negative* of the number of labels that have 475 ** been issued. The negative is stored because 476 ** that gives a performance improvement over storing 477 ** the equivalent positive value. 478 */ 479 int sqlite3VdbeMakeLabel(Parse *pParse){ 480 return --pParse->nLabel; 481 } 482 483 /* 484 ** Resolve label "x" to be the address of the next instruction to 485 ** be inserted. The parameter "x" must have been obtained from 486 ** a prior call to sqlite3VdbeMakeLabel(). 487 */ 488 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){ 489 int nNewSize = 10 - p->nLabel; 490 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 491 nNewSize*sizeof(p->aLabel[0])); 492 if( p->aLabel==0 ){ 493 p->nLabelAlloc = 0; 494 }else{ 495 #ifdef SQLITE_DEBUG 496 int i; 497 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1; 498 #endif 499 p->nLabelAlloc = nNewSize; 500 p->aLabel[j] = v->nOp; 501 } 502 } 503 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 504 Parse *p = v->pParse; 505 int j = ADDR(x); 506 assert( v->magic==VDBE_MAGIC_INIT ); 507 assert( j<-p->nLabel ); 508 assert( j>=0 ); 509 #ifdef SQLITE_DEBUG 510 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 511 printf("RESOLVE LABEL %d to %d\n", x, v->nOp); 512 } 513 #endif 514 if( p->nLabelAlloc + p->nLabel < 0 ){ 515 resizeResolveLabel(p,v,j); 516 }else{ 517 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ 518 p->aLabel[j] = v->nOp; 519 } 520 } 521 522 /* 523 ** Mark the VDBE as one that can only be run one time. 524 */ 525 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 526 p->runOnlyOnce = 1; 527 } 528 529 /* 530 ** Mark the VDBE as one that can only be run multiple times. 531 */ 532 void sqlite3VdbeReusable(Vdbe *p){ 533 p->runOnlyOnce = 0; 534 } 535 536 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 537 538 /* 539 ** The following type and function are used to iterate through all opcodes 540 ** in a Vdbe main program and each of the sub-programs (triggers) it may 541 ** invoke directly or indirectly. It should be used as follows: 542 ** 543 ** Op *pOp; 544 ** VdbeOpIter sIter; 545 ** 546 ** memset(&sIter, 0, sizeof(sIter)); 547 ** sIter.v = v; // v is of type Vdbe* 548 ** while( (pOp = opIterNext(&sIter)) ){ 549 ** // Do something with pOp 550 ** } 551 ** sqlite3DbFree(v->db, sIter.apSub); 552 ** 553 */ 554 typedef struct VdbeOpIter VdbeOpIter; 555 struct VdbeOpIter { 556 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 557 SubProgram **apSub; /* Array of subprograms */ 558 int nSub; /* Number of entries in apSub */ 559 int iAddr; /* Address of next instruction to return */ 560 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 561 }; 562 static Op *opIterNext(VdbeOpIter *p){ 563 Vdbe *v = p->v; 564 Op *pRet = 0; 565 Op *aOp; 566 int nOp; 567 568 if( p->iSub<=p->nSub ){ 569 570 if( p->iSub==0 ){ 571 aOp = v->aOp; 572 nOp = v->nOp; 573 }else{ 574 aOp = p->apSub[p->iSub-1]->aOp; 575 nOp = p->apSub[p->iSub-1]->nOp; 576 } 577 assert( p->iAddr<nOp ); 578 579 pRet = &aOp[p->iAddr]; 580 p->iAddr++; 581 if( p->iAddr==nOp ){ 582 p->iSub++; 583 p->iAddr = 0; 584 } 585 586 if( pRet->p4type==P4_SUBPROGRAM ){ 587 int nByte = (p->nSub+1)*sizeof(SubProgram*); 588 int j; 589 for(j=0; j<p->nSub; j++){ 590 if( p->apSub[j]==pRet->p4.pProgram ) break; 591 } 592 if( j==p->nSub ){ 593 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 594 if( !p->apSub ){ 595 pRet = 0; 596 }else{ 597 p->apSub[p->nSub++] = pRet->p4.pProgram; 598 } 599 } 600 } 601 } 602 603 return pRet; 604 } 605 606 /* 607 ** Check if the program stored in the VM associated with pParse may 608 ** throw an ABORT exception (causing the statement, but not entire transaction 609 ** to be rolled back). This condition is true if the main program or any 610 ** sub-programs contains any of the following: 611 ** 612 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 613 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 614 ** * OP_Destroy 615 ** * OP_VUpdate 616 ** * OP_VRename 617 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 618 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 619 ** (for CREATE TABLE AS SELECT ...) 620 ** 621 ** Then check that the value of Parse.mayAbort is true if an 622 ** ABORT may be thrown, or false otherwise. Return true if it does 623 ** match, or false otherwise. This function is intended to be used as 624 ** part of an assert statement in the compiler. Similar to: 625 ** 626 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 627 */ 628 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 629 int hasAbort = 0; 630 int hasFkCounter = 0; 631 int hasCreateTable = 0; 632 int hasCreateIndex = 0; 633 int hasInitCoroutine = 0; 634 Op *pOp; 635 VdbeOpIter sIter; 636 memset(&sIter, 0, sizeof(sIter)); 637 sIter.v = v; 638 639 while( (pOp = opIterNext(&sIter))!=0 ){ 640 int opcode = pOp->opcode; 641 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 642 || opcode==OP_VDestroy 643 || (opcode==OP_Function0 && pOp->p4.pFunc->funcFlags&SQLITE_FUNC_INTERNAL) 644 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 645 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort)) 646 ){ 647 hasAbort = 1; 648 break; 649 } 650 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; 651 if( mayAbort ){ 652 /* hasCreateIndex may also be set for some DELETE statements that use 653 ** OP_Clear. So this routine may end up returning true in the case 654 ** where a "DELETE FROM tbl" has a statement-journal but does not 655 ** require one. This is not so bad - it is an inefficiency, not a bug. */ 656 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1; 657 if( opcode==OP_Clear ) hasCreateIndex = 1; 658 } 659 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 660 #ifndef SQLITE_OMIT_FOREIGN_KEY 661 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 662 hasFkCounter = 1; 663 } 664 #endif 665 } 666 sqlite3DbFree(v->db, sIter.apSub); 667 668 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 669 ** If malloc failed, then the while() loop above may not have iterated 670 ** through all opcodes and hasAbort may be set incorrectly. Return 671 ** true for this case to prevent the assert() in the callers frame 672 ** from failing. */ 673 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 674 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex 675 ); 676 } 677 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 678 679 #ifdef SQLITE_DEBUG 680 /* 681 ** Increment the nWrite counter in the VDBE if the cursor is not an 682 ** ephemeral cursor, or if the cursor argument is NULL. 683 */ 684 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ 685 if( pC==0 686 || (pC->eCurType!=CURTYPE_SORTER 687 && pC->eCurType!=CURTYPE_PSEUDO 688 && !pC->isEphemeral) 689 ){ 690 p->nWrite++; 691 } 692 } 693 #endif 694 695 #ifdef SQLITE_DEBUG 696 /* 697 ** Assert if an Abort at this point in time might result in a corrupt 698 ** database. 699 */ 700 void sqlite3VdbeAssertAbortable(Vdbe *p){ 701 assert( p->nWrite==0 || p->usesStmtJournal ); 702 } 703 #endif 704 705 /* 706 ** This routine is called after all opcodes have been inserted. It loops 707 ** through all the opcodes and fixes up some details. 708 ** 709 ** (1) For each jump instruction with a negative P2 value (a label) 710 ** resolve the P2 value to an actual address. 711 ** 712 ** (2) Compute the maximum number of arguments used by any SQL function 713 ** and store that value in *pMaxFuncArgs. 714 ** 715 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 716 ** indicate what the prepared statement actually does. 717 ** 718 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 719 ** 720 ** (5) Reclaim the memory allocated for storing labels. 721 ** 722 ** This routine will only function correctly if the mkopcodeh.tcl generator 723 ** script numbers the opcodes correctly. Changes to this routine must be 724 ** coordinated with changes to mkopcodeh.tcl. 725 */ 726 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 727 int nMaxArgs = *pMaxFuncArgs; 728 Op *pOp; 729 Parse *pParse = p->pParse; 730 int *aLabel = pParse->aLabel; 731 p->readOnly = 1; 732 p->bIsReader = 0; 733 pOp = &p->aOp[p->nOp-1]; 734 while(1){ 735 736 /* Only JUMP opcodes and the short list of special opcodes in the switch 737 ** below need to be considered. The mkopcodeh.tcl generator script groups 738 ** all these opcodes together near the front of the opcode list. Skip 739 ** any opcode that does not need processing by virtual of the fact that 740 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 741 */ 742 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 743 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 744 ** cases from this switch! */ 745 switch( pOp->opcode ){ 746 case OP_Transaction: { 747 if( pOp->p2!=0 ) p->readOnly = 0; 748 /* fall thru */ 749 } 750 case OP_AutoCommit: 751 case OP_Savepoint: { 752 p->bIsReader = 1; 753 break; 754 } 755 #ifndef SQLITE_OMIT_WAL 756 case OP_Checkpoint: 757 #endif 758 case OP_Vacuum: 759 case OP_JournalMode: { 760 p->readOnly = 0; 761 p->bIsReader = 1; 762 break; 763 } 764 case OP_Next: 765 case OP_SorterNext: { 766 pOp->p4.xAdvance = sqlite3BtreeNext; 767 pOp->p4type = P4_ADVANCE; 768 /* The code generator never codes any of these opcodes as a jump 769 ** to a label. They are always coded as a jump backwards to a 770 ** known address */ 771 assert( pOp->p2>=0 ); 772 break; 773 } 774 case OP_Prev: { 775 pOp->p4.xAdvance = sqlite3BtreePrevious; 776 pOp->p4type = P4_ADVANCE; 777 /* The code generator never codes any of these opcodes as a jump 778 ** to a label. They are always coded as a jump backwards to a 779 ** known address */ 780 assert( pOp->p2>=0 ); 781 break; 782 } 783 #ifndef SQLITE_OMIT_VIRTUALTABLE 784 case OP_VUpdate: { 785 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 786 break; 787 } 788 case OP_VFilter: { 789 int n; 790 assert( (pOp - p->aOp) >= 3 ); 791 assert( pOp[-1].opcode==OP_Integer ); 792 n = pOp[-1].p1; 793 if( n>nMaxArgs ) nMaxArgs = n; 794 /* Fall through into the default case */ 795 } 796 #endif 797 default: { 798 if( pOp->p2<0 ){ 799 /* The mkopcodeh.tcl script has so arranged things that the only 800 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 801 ** have non-negative values for P2. */ 802 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 803 assert( ADDR(pOp->p2)<-pParse->nLabel ); 804 pOp->p2 = aLabel[ADDR(pOp->p2)]; 805 } 806 break; 807 } 808 } 809 /* The mkopcodeh.tcl script has so arranged things that the only 810 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 811 ** have non-negative values for P2. */ 812 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 813 } 814 if( pOp==p->aOp ) break; 815 pOp--; 816 } 817 sqlite3DbFree(p->db, pParse->aLabel); 818 pParse->aLabel = 0; 819 pParse->nLabel = 0; 820 *pMaxFuncArgs = nMaxArgs; 821 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 822 } 823 824 /* 825 ** Return the address of the next instruction to be inserted. 826 */ 827 int sqlite3VdbeCurrentAddr(Vdbe *p){ 828 assert( p->magic==VDBE_MAGIC_INIT ); 829 return p->nOp; 830 } 831 832 /* 833 ** Verify that at least N opcode slots are available in p without 834 ** having to malloc for more space (except when compiled using 835 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 836 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 837 ** fail due to a OOM fault and hence that the return value from 838 ** sqlite3VdbeAddOpList() will always be non-NULL. 839 */ 840 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 841 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 842 assert( p->nOp + N <= p->nOpAlloc ); 843 } 844 #endif 845 846 /* 847 ** Verify that the VM passed as the only argument does not contain 848 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 849 ** by code in pragma.c to ensure that the implementation of certain 850 ** pragmas comports with the flags specified in the mkpragmatab.tcl 851 ** script. 852 */ 853 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 854 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 855 int i; 856 for(i=0; i<p->nOp; i++){ 857 assert( p->aOp[i].opcode!=OP_ResultRow ); 858 } 859 } 860 #endif 861 862 /* 863 ** Generate code (a single OP_Abortable opcode) that will 864 ** verify that the VDBE program can safely call Abort in the current 865 ** context. 866 */ 867 #if defined(SQLITE_DEBUG) 868 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ 869 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); 870 } 871 #endif 872 873 /* 874 ** This function returns a pointer to the array of opcodes associated with 875 ** the Vdbe passed as the first argument. It is the callers responsibility 876 ** to arrange for the returned array to be eventually freed using the 877 ** vdbeFreeOpArray() function. 878 ** 879 ** Before returning, *pnOp is set to the number of entries in the returned 880 ** array. Also, *pnMaxArg is set to the larger of its current value and 881 ** the number of entries in the Vdbe.apArg[] array required to execute the 882 ** returned program. 883 */ 884 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 885 VdbeOp *aOp = p->aOp; 886 assert( aOp && !p->db->mallocFailed ); 887 888 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 889 assert( DbMaskAllZero(p->btreeMask) ); 890 891 resolveP2Values(p, pnMaxArg); 892 *pnOp = p->nOp; 893 p->aOp = 0; 894 return aOp; 895 } 896 897 /* 898 ** Add a whole list of operations to the operation stack. Return a 899 ** pointer to the first operation inserted. 900 ** 901 ** Non-zero P2 arguments to jump instructions are automatically adjusted 902 ** so that the jump target is relative to the first operation inserted. 903 */ 904 VdbeOp *sqlite3VdbeAddOpList( 905 Vdbe *p, /* Add opcodes to the prepared statement */ 906 int nOp, /* Number of opcodes to add */ 907 VdbeOpList const *aOp, /* The opcodes to be added */ 908 int iLineno /* Source-file line number of first opcode */ 909 ){ 910 int i; 911 VdbeOp *pOut, *pFirst; 912 assert( nOp>0 ); 913 assert( p->magic==VDBE_MAGIC_INIT ); 914 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){ 915 return 0; 916 } 917 pFirst = pOut = &p->aOp[p->nOp]; 918 for(i=0; i<nOp; i++, aOp++, pOut++){ 919 pOut->opcode = aOp->opcode; 920 pOut->p1 = aOp->p1; 921 pOut->p2 = aOp->p2; 922 assert( aOp->p2>=0 ); 923 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 924 pOut->p2 += p->nOp; 925 } 926 pOut->p3 = aOp->p3; 927 pOut->p4type = P4_NOTUSED; 928 pOut->p4.p = 0; 929 pOut->p5 = 0; 930 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 931 pOut->zComment = 0; 932 #endif 933 #ifdef SQLITE_VDBE_COVERAGE 934 pOut->iSrcLine = iLineno+i; 935 #else 936 (void)iLineno; 937 #endif 938 #ifdef SQLITE_DEBUG 939 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 940 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 941 } 942 #endif 943 } 944 p->nOp += nOp; 945 return pFirst; 946 } 947 948 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 949 /* 950 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 951 */ 952 void sqlite3VdbeScanStatus( 953 Vdbe *p, /* VM to add scanstatus() to */ 954 int addrExplain, /* Address of OP_Explain (or 0) */ 955 int addrLoop, /* Address of loop counter */ 956 int addrVisit, /* Address of rows visited counter */ 957 LogEst nEst, /* Estimated number of output rows */ 958 const char *zName /* Name of table or index being scanned */ 959 ){ 960 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus); 961 ScanStatus *aNew; 962 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 963 if( aNew ){ 964 ScanStatus *pNew = &aNew[p->nScan++]; 965 pNew->addrExplain = addrExplain; 966 pNew->addrLoop = addrLoop; 967 pNew->addrVisit = addrVisit; 968 pNew->nEst = nEst; 969 pNew->zName = sqlite3DbStrDup(p->db, zName); 970 p->aScan = aNew; 971 } 972 } 973 #endif 974 975 976 /* 977 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 978 ** for a specific instruction. 979 */ 980 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){ 981 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 982 } 983 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ 984 sqlite3VdbeGetOp(p,addr)->p1 = val; 985 } 986 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ 987 sqlite3VdbeGetOp(p,addr)->p2 = val; 988 } 989 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ 990 sqlite3VdbeGetOp(p,addr)->p3 = val; 991 } 992 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 993 assert( p->nOp>0 || p->db->mallocFailed ); 994 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 995 } 996 997 /* 998 ** Change the P2 operand of instruction addr so that it points to 999 ** the address of the next instruction to be coded. 1000 */ 1001 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 1002 sqlite3VdbeChangeP2(p, addr, p->nOp); 1003 } 1004 1005 1006 /* 1007 ** If the input FuncDef structure is ephemeral, then free it. If 1008 ** the FuncDef is not ephermal, then do nothing. 1009 */ 1010 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 1011 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 1012 sqlite3DbFreeNN(db, pDef); 1013 } 1014 } 1015 1016 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 1017 1018 /* 1019 ** Delete a P4 value if necessary. 1020 */ 1021 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 1022 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1023 sqlite3DbFreeNN(db, p); 1024 } 1025 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 1026 freeEphemeralFunction(db, p->pFunc); 1027 sqlite3DbFreeNN(db, p); 1028 } 1029 static void freeP4(sqlite3 *db, int p4type, void *p4){ 1030 assert( db ); 1031 switch( p4type ){ 1032 case P4_FUNCCTX: { 1033 freeP4FuncCtx(db, (sqlite3_context*)p4); 1034 break; 1035 } 1036 case P4_REAL: 1037 case P4_INT64: 1038 case P4_DYNAMIC: 1039 case P4_DYNBLOB: 1040 case P4_INTARRAY: { 1041 sqlite3DbFree(db, p4); 1042 break; 1043 } 1044 case P4_KEYINFO: { 1045 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 1046 break; 1047 } 1048 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1049 case P4_EXPR: { 1050 sqlite3ExprDelete(db, (Expr*)p4); 1051 break; 1052 } 1053 #endif 1054 case P4_FUNCDEF: { 1055 freeEphemeralFunction(db, (FuncDef*)p4); 1056 break; 1057 } 1058 case P4_MEM: { 1059 if( db->pnBytesFreed==0 ){ 1060 sqlite3ValueFree((sqlite3_value*)p4); 1061 }else{ 1062 freeP4Mem(db, (Mem*)p4); 1063 } 1064 break; 1065 } 1066 case P4_VTAB : { 1067 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 1068 break; 1069 } 1070 } 1071 } 1072 1073 /* 1074 ** Free the space allocated for aOp and any p4 values allocated for the 1075 ** opcodes contained within. If aOp is not NULL it is assumed to contain 1076 ** nOp entries. 1077 */ 1078 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 1079 if( aOp ){ 1080 Op *pOp; 1081 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){ 1082 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 1083 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1084 sqlite3DbFree(db, pOp->zComment); 1085 #endif 1086 } 1087 sqlite3DbFreeNN(db, aOp); 1088 } 1089 } 1090 1091 /* 1092 ** Link the SubProgram object passed as the second argument into the linked 1093 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 1094 ** objects when the VM is no longer required. 1095 */ 1096 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 1097 p->pNext = pVdbe->pProgram; 1098 pVdbe->pProgram = p; 1099 } 1100 1101 /* 1102 ** Change the opcode at addr into OP_Noop 1103 */ 1104 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 1105 VdbeOp *pOp; 1106 if( p->db->mallocFailed ) return 0; 1107 assert( addr>=0 && addr<p->nOp ); 1108 pOp = &p->aOp[addr]; 1109 freeP4(p->db, pOp->p4type, pOp->p4.p); 1110 pOp->p4type = P4_NOTUSED; 1111 pOp->p4.z = 0; 1112 pOp->opcode = OP_Noop; 1113 return 1; 1114 } 1115 1116 /* 1117 ** If the last opcode is "op" and it is not a jump destination, 1118 ** then remove it. Return true if and only if an opcode was removed. 1119 */ 1120 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 1121 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 1122 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 1123 }else{ 1124 return 0; 1125 } 1126 } 1127 1128 /* 1129 ** Change the value of the P4 operand for a specific instruction. 1130 ** This routine is useful when a large program is loaded from a 1131 ** static array using sqlite3VdbeAddOpList but we want to make a 1132 ** few minor changes to the program. 1133 ** 1134 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 1135 ** the string is made into memory obtained from sqlite3_malloc(). 1136 ** A value of n==0 means copy bytes of zP4 up to and including the 1137 ** first null byte. If n>0 then copy n+1 bytes of zP4. 1138 ** 1139 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 1140 ** to a string or structure that is guaranteed to exist for the lifetime of 1141 ** the Vdbe. In these cases we can just copy the pointer. 1142 ** 1143 ** If addr<0 then change P4 on the most recently inserted instruction. 1144 */ 1145 static void SQLITE_NOINLINE vdbeChangeP4Full( 1146 Vdbe *p, 1147 Op *pOp, 1148 const char *zP4, 1149 int n 1150 ){ 1151 if( pOp->p4type ){ 1152 freeP4(p->db, pOp->p4type, pOp->p4.p); 1153 pOp->p4type = 0; 1154 pOp->p4.p = 0; 1155 } 1156 if( n<0 ){ 1157 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 1158 }else{ 1159 if( n==0 ) n = sqlite3Strlen30(zP4); 1160 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 1161 pOp->p4type = P4_DYNAMIC; 1162 } 1163 } 1164 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 1165 Op *pOp; 1166 sqlite3 *db; 1167 assert( p!=0 ); 1168 db = p->db; 1169 assert( p->magic==VDBE_MAGIC_INIT ); 1170 assert( p->aOp!=0 || db->mallocFailed ); 1171 if( db->mallocFailed ){ 1172 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 1173 return; 1174 } 1175 assert( p->nOp>0 ); 1176 assert( addr<p->nOp ); 1177 if( addr<0 ){ 1178 addr = p->nOp - 1; 1179 } 1180 pOp = &p->aOp[addr]; 1181 if( n>=0 || pOp->p4type ){ 1182 vdbeChangeP4Full(p, pOp, zP4, n); 1183 return; 1184 } 1185 if( n==P4_INT32 ){ 1186 /* Note: this cast is safe, because the origin data point was an int 1187 ** that was cast to a (const char *). */ 1188 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 1189 pOp->p4type = P4_INT32; 1190 }else if( zP4!=0 ){ 1191 assert( n<0 ); 1192 pOp->p4.p = (void*)zP4; 1193 pOp->p4type = (signed char)n; 1194 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 1195 } 1196 } 1197 1198 /* 1199 ** Change the P4 operand of the most recently coded instruction 1200 ** to the value defined by the arguments. This is a high-speed 1201 ** version of sqlite3VdbeChangeP4(). 1202 ** 1203 ** The P4 operand must not have been previously defined. And the new 1204 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 1205 ** those cases. 1206 */ 1207 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1208 VdbeOp *pOp; 1209 assert( n!=P4_INT32 && n!=P4_VTAB ); 1210 assert( n<=0 ); 1211 if( p->db->mallocFailed ){ 1212 freeP4(p->db, n, pP4); 1213 }else{ 1214 assert( pP4!=0 ); 1215 assert( p->nOp>0 ); 1216 pOp = &p->aOp[p->nOp-1]; 1217 assert( pOp->p4type==P4_NOTUSED ); 1218 pOp->p4type = n; 1219 pOp->p4.p = pP4; 1220 } 1221 } 1222 1223 /* 1224 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1225 ** index given. 1226 */ 1227 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1228 Vdbe *v = pParse->pVdbe; 1229 KeyInfo *pKeyInfo; 1230 assert( v!=0 ); 1231 assert( pIdx!=0 ); 1232 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1233 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1234 } 1235 1236 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1237 /* 1238 ** Change the comment on the most recently coded instruction. Or 1239 ** insert a No-op and add the comment to that new instruction. This 1240 ** makes the code easier to read during debugging. None of this happens 1241 ** in a production build. 1242 */ 1243 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1244 assert( p->nOp>0 || p->aOp==0 ); 1245 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 1246 if( p->nOp ){ 1247 assert( p->aOp ); 1248 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1249 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1250 } 1251 } 1252 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1253 va_list ap; 1254 if( p ){ 1255 va_start(ap, zFormat); 1256 vdbeVComment(p, zFormat, ap); 1257 va_end(ap); 1258 } 1259 } 1260 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1261 va_list ap; 1262 if( p ){ 1263 sqlite3VdbeAddOp0(p, OP_Noop); 1264 va_start(ap, zFormat); 1265 vdbeVComment(p, zFormat, ap); 1266 va_end(ap); 1267 } 1268 } 1269 #endif /* NDEBUG */ 1270 1271 #ifdef SQLITE_VDBE_COVERAGE 1272 /* 1273 ** Set the value if the iSrcLine field for the previously coded instruction. 1274 */ 1275 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1276 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1277 } 1278 #endif /* SQLITE_VDBE_COVERAGE */ 1279 1280 /* 1281 ** Return the opcode for a given address. If the address is -1, then 1282 ** return the most recently inserted opcode. 1283 ** 1284 ** If a memory allocation error has occurred prior to the calling of this 1285 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1286 ** is readable but not writable, though it is cast to a writable value. 1287 ** The return of a dummy opcode allows the call to continue functioning 1288 ** after an OOM fault without having to check to see if the return from 1289 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1290 ** dummy will never be written to. This is verified by code inspection and 1291 ** by running with Valgrind. 1292 */ 1293 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1294 /* C89 specifies that the constant "dummy" will be initialized to all 1295 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1296 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1297 assert( p->magic==VDBE_MAGIC_INIT ); 1298 if( addr<0 ){ 1299 addr = p->nOp - 1; 1300 } 1301 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1302 if( p->db->mallocFailed ){ 1303 return (VdbeOp*)&dummy; 1304 }else{ 1305 return &p->aOp[addr]; 1306 } 1307 } 1308 1309 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1310 /* 1311 ** Return an integer value for one of the parameters to the opcode pOp 1312 ** determined by character c. 1313 */ 1314 static int translateP(char c, const Op *pOp){ 1315 if( c=='1' ) return pOp->p1; 1316 if( c=='2' ) return pOp->p2; 1317 if( c=='3' ) return pOp->p3; 1318 if( c=='4' ) return pOp->p4.i; 1319 return pOp->p5; 1320 } 1321 1322 /* 1323 ** Compute a string for the "comment" field of a VDBE opcode listing. 1324 ** 1325 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1326 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1327 ** absence of other comments, this synopsis becomes the comment on the opcode. 1328 ** Some translation occurs: 1329 ** 1330 ** "PX" -> "r[X]" 1331 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1332 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1333 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1334 */ 1335 static int displayComment( 1336 const Op *pOp, /* The opcode to be commented */ 1337 const char *zP4, /* Previously obtained value for P4 */ 1338 char *zTemp, /* Write result here */ 1339 int nTemp /* Space available in zTemp[] */ 1340 ){ 1341 const char *zOpName; 1342 const char *zSynopsis; 1343 int nOpName; 1344 int ii, jj; 1345 char zAlt[50]; 1346 zOpName = sqlite3OpcodeName(pOp->opcode); 1347 nOpName = sqlite3Strlen30(zOpName); 1348 if( zOpName[nOpName+1] ){ 1349 int seenCom = 0; 1350 char c; 1351 zSynopsis = zOpName += nOpName + 1; 1352 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1353 if( pOp->p5 & SQLITE_STOREP2 ){ 1354 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3); 1355 }else{ 1356 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1357 } 1358 zSynopsis = zAlt; 1359 } 1360 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 1361 if( c=='P' ){ 1362 c = zSynopsis[++ii]; 1363 if( c=='4' ){ 1364 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 1365 }else if( c=='X' ){ 1366 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 1367 seenCom = 1; 1368 }else{ 1369 int v1 = translateP(c, pOp); 1370 int v2; 1371 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 1372 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1373 ii += 3; 1374 jj += sqlite3Strlen30(zTemp+jj); 1375 v2 = translateP(zSynopsis[ii], pOp); 1376 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1377 ii += 2; 1378 v2++; 1379 } 1380 if( v2>1 ){ 1381 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 1382 } 1383 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1384 ii += 4; 1385 } 1386 } 1387 jj += sqlite3Strlen30(zTemp+jj); 1388 }else{ 1389 zTemp[jj++] = c; 1390 } 1391 } 1392 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 1393 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 1394 jj += sqlite3Strlen30(zTemp+jj); 1395 } 1396 if( jj<nTemp ) zTemp[jj] = 0; 1397 }else if( pOp->zComment ){ 1398 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 1399 jj = sqlite3Strlen30(zTemp); 1400 }else{ 1401 zTemp[0] = 0; 1402 jj = 0; 1403 } 1404 return jj; 1405 } 1406 #endif /* SQLITE_DEBUG */ 1407 1408 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1409 /* 1410 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1411 ** that can be displayed in the P4 column of EXPLAIN output. 1412 */ 1413 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1414 const char *zOp = 0; 1415 switch( pExpr->op ){ 1416 case TK_STRING: 1417 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); 1418 break; 1419 case TK_INTEGER: 1420 sqlite3_str_appendf(p, "%d", pExpr->u.iValue); 1421 break; 1422 case TK_NULL: 1423 sqlite3_str_appendf(p, "NULL"); 1424 break; 1425 case TK_REGISTER: { 1426 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); 1427 break; 1428 } 1429 case TK_COLUMN: { 1430 if( pExpr->iColumn<0 ){ 1431 sqlite3_str_appendf(p, "rowid"); 1432 }else{ 1433 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); 1434 } 1435 break; 1436 } 1437 case TK_LT: zOp = "LT"; break; 1438 case TK_LE: zOp = "LE"; break; 1439 case TK_GT: zOp = "GT"; break; 1440 case TK_GE: zOp = "GE"; break; 1441 case TK_NE: zOp = "NE"; break; 1442 case TK_EQ: zOp = "EQ"; break; 1443 case TK_IS: zOp = "IS"; break; 1444 case TK_ISNOT: zOp = "ISNOT"; break; 1445 case TK_AND: zOp = "AND"; break; 1446 case TK_OR: zOp = "OR"; break; 1447 case TK_PLUS: zOp = "ADD"; break; 1448 case TK_STAR: zOp = "MUL"; break; 1449 case TK_MINUS: zOp = "SUB"; break; 1450 case TK_REM: zOp = "REM"; break; 1451 case TK_BITAND: zOp = "BITAND"; break; 1452 case TK_BITOR: zOp = "BITOR"; break; 1453 case TK_SLASH: zOp = "DIV"; break; 1454 case TK_LSHIFT: zOp = "LSHIFT"; break; 1455 case TK_RSHIFT: zOp = "RSHIFT"; break; 1456 case TK_CONCAT: zOp = "CONCAT"; break; 1457 case TK_UMINUS: zOp = "MINUS"; break; 1458 case TK_UPLUS: zOp = "PLUS"; break; 1459 case TK_BITNOT: zOp = "BITNOT"; break; 1460 case TK_NOT: zOp = "NOT"; break; 1461 case TK_ISNULL: zOp = "ISNULL"; break; 1462 case TK_NOTNULL: zOp = "NOTNULL"; break; 1463 1464 default: 1465 sqlite3_str_appendf(p, "%s", "expr"); 1466 break; 1467 } 1468 1469 if( zOp ){ 1470 sqlite3_str_appendf(p, "%s(", zOp); 1471 displayP4Expr(p, pExpr->pLeft); 1472 if( pExpr->pRight ){ 1473 sqlite3_str_append(p, ",", 1); 1474 displayP4Expr(p, pExpr->pRight); 1475 } 1476 sqlite3_str_append(p, ")", 1); 1477 } 1478 } 1479 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1480 1481 1482 #if VDBE_DISPLAY_P4 1483 /* 1484 ** Compute a string that describes the P4 parameter for an opcode. 1485 ** Use zTemp for any required temporary buffer space. 1486 */ 1487 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 1488 char *zP4 = zTemp; 1489 StrAccum x; 1490 assert( nTemp>=20 ); 1491 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0); 1492 switch( pOp->p4type ){ 1493 case P4_KEYINFO: { 1494 int j; 1495 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1496 assert( pKeyInfo->aSortOrder!=0 ); 1497 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); 1498 for(j=0; j<pKeyInfo->nKeyField; j++){ 1499 CollSeq *pColl = pKeyInfo->aColl[j]; 1500 const char *zColl = pColl ? pColl->zName : ""; 1501 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1502 sqlite3_str_appendf(&x, ",%s%s", 1503 pKeyInfo->aSortOrder[j] ? "-" : "", zColl); 1504 } 1505 sqlite3_str_append(&x, ")", 1); 1506 break; 1507 } 1508 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1509 case P4_EXPR: { 1510 displayP4Expr(&x, pOp->p4.pExpr); 1511 break; 1512 } 1513 #endif 1514 case P4_COLLSEQ: { 1515 CollSeq *pColl = pOp->p4.pColl; 1516 sqlite3_str_appendf(&x, "(%.20s)", pColl->zName); 1517 break; 1518 } 1519 case P4_FUNCDEF: { 1520 FuncDef *pDef = pOp->p4.pFunc; 1521 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1522 break; 1523 } 1524 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1525 case P4_FUNCCTX: { 1526 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1527 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1528 break; 1529 } 1530 #endif 1531 case P4_INT64: { 1532 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); 1533 break; 1534 } 1535 case P4_INT32: { 1536 sqlite3_str_appendf(&x, "%d", pOp->p4.i); 1537 break; 1538 } 1539 case P4_REAL: { 1540 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); 1541 break; 1542 } 1543 case P4_MEM: { 1544 Mem *pMem = pOp->p4.pMem; 1545 if( pMem->flags & MEM_Str ){ 1546 zP4 = pMem->z; 1547 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1548 sqlite3_str_appendf(&x, "%lld", pMem->u.i); 1549 }else if( pMem->flags & MEM_Real ){ 1550 sqlite3_str_appendf(&x, "%.16g", pMem->u.r); 1551 }else if( pMem->flags & MEM_Null ){ 1552 zP4 = "NULL"; 1553 }else{ 1554 assert( pMem->flags & MEM_Blob ); 1555 zP4 = "(blob)"; 1556 } 1557 break; 1558 } 1559 #ifndef SQLITE_OMIT_VIRTUALTABLE 1560 case P4_VTAB: { 1561 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1562 sqlite3_str_appendf(&x, "vtab:%p", pVtab); 1563 break; 1564 } 1565 #endif 1566 case P4_INTARRAY: { 1567 int i; 1568 int *ai = pOp->p4.ai; 1569 int n = ai[0]; /* The first element of an INTARRAY is always the 1570 ** count of the number of elements to follow */ 1571 for(i=1; i<=n; i++){ 1572 sqlite3_str_appendf(&x, ",%d", ai[i]); 1573 } 1574 zTemp[0] = '['; 1575 sqlite3_str_append(&x, "]", 1); 1576 break; 1577 } 1578 case P4_SUBPROGRAM: { 1579 sqlite3_str_appendf(&x, "program"); 1580 break; 1581 } 1582 case P4_DYNBLOB: 1583 case P4_ADVANCE: { 1584 zTemp[0] = 0; 1585 break; 1586 } 1587 case P4_TABLE: { 1588 sqlite3_str_appendf(&x, "%s", pOp->p4.pTab->zName); 1589 break; 1590 } 1591 default: { 1592 zP4 = pOp->p4.z; 1593 if( zP4==0 ){ 1594 zP4 = zTemp; 1595 zTemp[0] = 0; 1596 } 1597 } 1598 } 1599 sqlite3StrAccumFinish(&x); 1600 assert( zP4!=0 ); 1601 return zP4; 1602 } 1603 #endif /* VDBE_DISPLAY_P4 */ 1604 1605 /* 1606 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1607 ** 1608 ** The prepared statements need to know in advance the complete set of 1609 ** attached databases that will be use. A mask of these databases 1610 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1611 ** p->btreeMask of databases that will require a lock. 1612 */ 1613 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1614 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1615 assert( i<(int)sizeof(p->btreeMask)*8 ); 1616 DbMaskSet(p->btreeMask, i); 1617 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1618 DbMaskSet(p->lockMask, i); 1619 } 1620 } 1621 1622 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1623 /* 1624 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1625 ** this routine obtains the mutex associated with each BtShared structure 1626 ** that may be accessed by the VM passed as an argument. In doing so it also 1627 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1628 ** that the correct busy-handler callback is invoked if required. 1629 ** 1630 ** If SQLite is not threadsafe but does support shared-cache mode, then 1631 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1632 ** of all of BtShared structures accessible via the database handle 1633 ** associated with the VM. 1634 ** 1635 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1636 ** function is a no-op. 1637 ** 1638 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1639 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1640 ** corresponding to btrees that use shared cache. Then the runtime of 1641 ** this routine is N*N. But as N is rarely more than 1, this should not 1642 ** be a problem. 1643 */ 1644 void sqlite3VdbeEnter(Vdbe *p){ 1645 int i; 1646 sqlite3 *db; 1647 Db *aDb; 1648 int nDb; 1649 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1650 db = p->db; 1651 aDb = db->aDb; 1652 nDb = db->nDb; 1653 for(i=0; i<nDb; i++){ 1654 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1655 sqlite3BtreeEnter(aDb[i].pBt); 1656 } 1657 } 1658 } 1659 #endif 1660 1661 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1662 /* 1663 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1664 */ 1665 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1666 int i; 1667 sqlite3 *db; 1668 Db *aDb; 1669 int nDb; 1670 db = p->db; 1671 aDb = db->aDb; 1672 nDb = db->nDb; 1673 for(i=0; i<nDb; i++){ 1674 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1675 sqlite3BtreeLeave(aDb[i].pBt); 1676 } 1677 } 1678 } 1679 void sqlite3VdbeLeave(Vdbe *p){ 1680 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1681 vdbeLeave(p); 1682 } 1683 #endif 1684 1685 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1686 /* 1687 ** Print a single opcode. This routine is used for debugging only. 1688 */ 1689 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ 1690 char *zP4; 1691 char zPtr[50]; 1692 char zCom[100]; 1693 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1694 if( pOut==0 ) pOut = stdout; 1695 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1696 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1697 displayComment(pOp, zP4, zCom, sizeof(zCom)); 1698 #else 1699 zCom[0] = 0; 1700 #endif 1701 /* NB: The sqlite3OpcodeName() function is implemented by code created 1702 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1703 ** information from the vdbe.c source text */ 1704 fprintf(pOut, zFormat1, pc, 1705 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1706 zCom 1707 ); 1708 fflush(pOut); 1709 } 1710 #endif 1711 1712 /* 1713 ** Initialize an array of N Mem element. 1714 */ 1715 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1716 while( (N--)>0 ){ 1717 p->db = db; 1718 p->flags = flags; 1719 p->szMalloc = 0; 1720 #ifdef SQLITE_DEBUG 1721 p->pScopyFrom = 0; 1722 #endif 1723 p++; 1724 } 1725 } 1726 1727 /* 1728 ** Release an array of N Mem elements 1729 */ 1730 static void releaseMemArray(Mem *p, int N){ 1731 if( p && N ){ 1732 Mem *pEnd = &p[N]; 1733 sqlite3 *db = p->db; 1734 if( db->pnBytesFreed ){ 1735 do{ 1736 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1737 }while( (++p)<pEnd ); 1738 return; 1739 } 1740 do{ 1741 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1742 assert( sqlite3VdbeCheckMemInvariants(p) ); 1743 1744 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1745 ** that takes advantage of the fact that the memory cell value is 1746 ** being set to NULL after releasing any dynamic resources. 1747 ** 1748 ** The justification for duplicating code is that according to 1749 ** callgrind, this causes a certain test case to hit the CPU 4.7 1750 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1751 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1752 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1753 ** with no indexes using a single prepared INSERT statement, bind() 1754 ** and reset(). Inserts are grouped into a transaction. 1755 */ 1756 testcase( p->flags & MEM_Agg ); 1757 testcase( p->flags & MEM_Dyn ); 1758 testcase( p->xDel==sqlite3VdbeFrameMemDel ); 1759 if( p->flags&(MEM_Agg|MEM_Dyn) ){ 1760 sqlite3VdbeMemRelease(p); 1761 }else if( p->szMalloc ){ 1762 sqlite3DbFreeNN(db, p->zMalloc); 1763 p->szMalloc = 0; 1764 } 1765 1766 p->flags = MEM_Undefined; 1767 }while( (++p)<pEnd ); 1768 } 1769 } 1770 1771 #ifdef SQLITE_DEBUG 1772 /* 1773 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is 1774 ** and false if something is wrong. 1775 ** 1776 ** This routine is intended for use inside of assert() statements only. 1777 */ 1778 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){ 1779 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; 1780 return 1; 1781 } 1782 #endif 1783 1784 1785 /* 1786 ** This is a destructor on a Mem object (which is really an sqlite3_value) 1787 ** that deletes the Frame object that is attached to it as a blob. 1788 ** 1789 ** This routine does not delete the Frame right away. It merely adds the 1790 ** frame to a list of frames to be deleted when the Vdbe halts. 1791 */ 1792 void sqlite3VdbeFrameMemDel(void *pArg){ 1793 VdbeFrame *pFrame = (VdbeFrame*)pArg; 1794 assert( sqlite3VdbeFrameIsValid(pFrame) ); 1795 pFrame->pParent = pFrame->v->pDelFrame; 1796 pFrame->v->pDelFrame = pFrame; 1797 } 1798 1799 1800 /* 1801 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1802 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1803 */ 1804 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1805 int i; 1806 Mem *aMem = VdbeFrameMem(p); 1807 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1808 assert( sqlite3VdbeFrameIsValid(p) ); 1809 for(i=0; i<p->nChildCsr; i++){ 1810 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1811 } 1812 releaseMemArray(aMem, p->nChildMem); 1813 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 1814 sqlite3DbFree(p->v->db, p); 1815 } 1816 1817 #ifndef SQLITE_OMIT_EXPLAIN 1818 /* 1819 ** Give a listing of the program in the virtual machine. 1820 ** 1821 ** The interface is the same as sqlite3VdbeExec(). But instead of 1822 ** running the code, it invokes the callback once for each instruction. 1823 ** This feature is used to implement "EXPLAIN". 1824 ** 1825 ** When p->explain==1, each instruction is listed. When 1826 ** p->explain==2, only OP_Explain instructions are listed and these 1827 ** are shown in a different format. p->explain==2 is used to implement 1828 ** EXPLAIN QUERY PLAN. 1829 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers 1830 ** are also shown, so that the boundaries between the main program and 1831 ** each trigger are clear. 1832 ** 1833 ** When p->explain==1, first the main program is listed, then each of 1834 ** the trigger subprograms are listed one by one. 1835 */ 1836 int sqlite3VdbeList( 1837 Vdbe *p /* The VDBE */ 1838 ){ 1839 int nRow; /* Stop when row count reaches this */ 1840 int nSub = 0; /* Number of sub-vdbes seen so far */ 1841 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1842 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1843 sqlite3 *db = p->db; /* The database connection */ 1844 int i; /* Loop counter */ 1845 int rc = SQLITE_OK; /* Return code */ 1846 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 1847 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); 1848 Op *pOp = 0; 1849 1850 assert( p->explain ); 1851 assert( p->magic==VDBE_MAGIC_RUN ); 1852 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1853 1854 /* Even though this opcode does not use dynamic strings for 1855 ** the result, result columns may become dynamic if the user calls 1856 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1857 */ 1858 releaseMemArray(pMem, 8); 1859 p->pResultSet = 0; 1860 1861 if( p->rc==SQLITE_NOMEM ){ 1862 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1863 ** sqlite3_column_text16() failed. */ 1864 sqlite3OomFault(db); 1865 return SQLITE_ERROR; 1866 } 1867 1868 /* When the number of output rows reaches nRow, that means the 1869 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1870 ** nRow is the sum of the number of rows in the main program, plus 1871 ** the sum of the number of rows in all trigger subprograms encountered 1872 ** so far. The nRow value will increase as new trigger subprograms are 1873 ** encountered, but p->pc will eventually catch up to nRow. 1874 */ 1875 nRow = p->nOp; 1876 if( bListSubprogs ){ 1877 /* The first 8 memory cells are used for the result set. So we will 1878 ** commandeer the 9th cell to use as storage for an array of pointers 1879 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1880 ** cells. */ 1881 assert( p->nMem>9 ); 1882 pSub = &p->aMem[9]; 1883 if( pSub->flags&MEM_Blob ){ 1884 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1885 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1886 nSub = pSub->n/sizeof(Vdbe*); 1887 apSub = (SubProgram **)pSub->z; 1888 } 1889 for(i=0; i<nSub; i++){ 1890 nRow += apSub[i]->nOp; 1891 } 1892 } 1893 1894 while(1){ /* Loop exits via break */ 1895 i = p->pc++; 1896 if( i>=nRow ){ 1897 p->rc = SQLITE_OK; 1898 rc = SQLITE_DONE; 1899 break; 1900 } 1901 if( i<p->nOp ){ 1902 /* The output line number is small enough that we are still in the 1903 ** main program. */ 1904 pOp = &p->aOp[i]; 1905 }else{ 1906 /* We are currently listing subprograms. Figure out which one and 1907 ** pick up the appropriate opcode. */ 1908 int j; 1909 i -= p->nOp; 1910 assert( apSub!=0 ); 1911 assert( nSub>0 ); 1912 for(j=0; i>=apSub[j]->nOp; j++){ 1913 i -= apSub[j]->nOp; 1914 assert( i<apSub[j]->nOp || j+1<nSub ); 1915 } 1916 pOp = &apSub[j]->aOp[i]; 1917 } 1918 1919 /* When an OP_Program opcode is encounter (the only opcode that has 1920 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1921 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1922 ** has not already been seen. 1923 */ 1924 if( bListSubprogs && pOp->p4type==P4_SUBPROGRAM ){ 1925 int nByte = (nSub+1)*sizeof(SubProgram*); 1926 int j; 1927 for(j=0; j<nSub; j++){ 1928 if( apSub[j]==pOp->p4.pProgram ) break; 1929 } 1930 if( j==nSub ){ 1931 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); 1932 if( p->rc!=SQLITE_OK ){ 1933 rc = SQLITE_ERROR; 1934 break; 1935 } 1936 apSub = (SubProgram **)pSub->z; 1937 apSub[nSub++] = pOp->p4.pProgram; 1938 pSub->flags |= MEM_Blob; 1939 pSub->n = nSub*sizeof(SubProgram*); 1940 nRow += pOp->p4.pProgram->nOp; 1941 } 1942 } 1943 if( p->explain<2 ) break; 1944 if( pOp->opcode==OP_Explain ) break; 1945 if( pOp->opcode==OP_Init && p->pc>1 ) break; 1946 } 1947 1948 if( rc==SQLITE_OK ){ 1949 if( db->u1.isInterrupted ){ 1950 p->rc = SQLITE_INTERRUPT; 1951 rc = SQLITE_ERROR; 1952 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 1953 }else{ 1954 char *zP4; 1955 if( p->explain==1 ){ 1956 pMem->flags = MEM_Int; 1957 pMem->u.i = i; /* Program counter */ 1958 pMem++; 1959 1960 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1961 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1962 assert( pMem->z!=0 ); 1963 pMem->n = sqlite3Strlen30(pMem->z); 1964 pMem->enc = SQLITE_UTF8; 1965 pMem++; 1966 } 1967 1968 pMem->flags = MEM_Int; 1969 pMem->u.i = pOp->p1; /* P1 */ 1970 pMem++; 1971 1972 pMem->flags = MEM_Int; 1973 pMem->u.i = pOp->p2; /* P2 */ 1974 pMem++; 1975 1976 pMem->flags = MEM_Int; 1977 pMem->u.i = pOp->p3; /* P3 */ 1978 pMem++; 1979 1980 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */ 1981 assert( p->db->mallocFailed ); 1982 return SQLITE_ERROR; 1983 } 1984 pMem->flags = MEM_Str|MEM_Term; 1985 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc); 1986 if( zP4!=pMem->z ){ 1987 pMem->n = 0; 1988 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 1989 }else{ 1990 assert( pMem->z!=0 ); 1991 pMem->n = sqlite3Strlen30(pMem->z); 1992 pMem->enc = SQLITE_UTF8; 1993 } 1994 pMem++; 1995 1996 if( p->explain==1 ){ 1997 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ 1998 assert( p->db->mallocFailed ); 1999 return SQLITE_ERROR; 2000 } 2001 pMem->flags = MEM_Str|MEM_Term; 2002 pMem->n = 2; 2003 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 2004 pMem->enc = SQLITE_UTF8; 2005 pMem++; 2006 2007 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2008 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ 2009 assert( p->db->mallocFailed ); 2010 return SQLITE_ERROR; 2011 } 2012 pMem->flags = MEM_Str|MEM_Term; 2013 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 2014 pMem->enc = SQLITE_UTF8; 2015 #else 2016 pMem->flags = MEM_Null; /* Comment */ 2017 #endif 2018 } 2019 2020 p->nResColumn = 8 - 4*(p->explain-1); 2021 p->pResultSet = &p->aMem[1]; 2022 p->rc = SQLITE_OK; 2023 rc = SQLITE_ROW; 2024 } 2025 } 2026 return rc; 2027 } 2028 #endif /* SQLITE_OMIT_EXPLAIN */ 2029 2030 #ifdef SQLITE_DEBUG 2031 /* 2032 ** Print the SQL that was used to generate a VDBE program. 2033 */ 2034 void sqlite3VdbePrintSql(Vdbe *p){ 2035 const char *z = 0; 2036 if( p->zSql ){ 2037 z = p->zSql; 2038 }else if( p->nOp>=1 ){ 2039 const VdbeOp *pOp = &p->aOp[0]; 2040 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2041 z = pOp->p4.z; 2042 while( sqlite3Isspace(*z) ) z++; 2043 } 2044 } 2045 if( z ) printf("SQL: [%s]\n", z); 2046 } 2047 #endif 2048 2049 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 2050 /* 2051 ** Print an IOTRACE message showing SQL content. 2052 */ 2053 void sqlite3VdbeIOTraceSql(Vdbe *p){ 2054 int nOp = p->nOp; 2055 VdbeOp *pOp; 2056 if( sqlite3IoTrace==0 ) return; 2057 if( nOp<1 ) return; 2058 pOp = &p->aOp[0]; 2059 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2060 int i, j; 2061 char z[1000]; 2062 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 2063 for(i=0; sqlite3Isspace(z[i]); i++){} 2064 for(j=0; z[i]; i++){ 2065 if( sqlite3Isspace(z[i]) ){ 2066 if( z[i-1]!=' ' ){ 2067 z[j++] = ' '; 2068 } 2069 }else{ 2070 z[j++] = z[i]; 2071 } 2072 } 2073 z[j] = 0; 2074 sqlite3IoTrace("SQL %s\n", z); 2075 } 2076 } 2077 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 2078 2079 /* An instance of this object describes bulk memory available for use 2080 ** by subcomponents of a prepared statement. Space is allocated out 2081 ** of a ReusableSpace object by the allocSpace() routine below. 2082 */ 2083 struct ReusableSpace { 2084 u8 *pSpace; /* Available memory */ 2085 sqlite3_int64 nFree; /* Bytes of available memory */ 2086 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */ 2087 }; 2088 2089 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 2090 ** from the ReusableSpace object. Return a pointer to the allocated 2091 ** memory on success. If insufficient memory is available in the 2092 ** ReusableSpace object, increase the ReusableSpace.nNeeded 2093 ** value by the amount needed and return NULL. 2094 ** 2095 ** If pBuf is not initially NULL, that means that the memory has already 2096 ** been allocated by a prior call to this routine, so just return a copy 2097 ** of pBuf and leave ReusableSpace unchanged. 2098 ** 2099 ** This allocator is employed to repurpose unused slots at the end of the 2100 ** opcode array of prepared state for other memory needs of the prepared 2101 ** statement. 2102 */ 2103 static void *allocSpace( 2104 struct ReusableSpace *p, /* Bulk memory available for allocation */ 2105 void *pBuf, /* Pointer to a prior allocation */ 2106 sqlite3_int64 nByte /* Bytes of memory needed */ 2107 ){ 2108 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 2109 if( pBuf==0 ){ 2110 nByte = ROUND8(nByte); 2111 if( nByte <= p->nFree ){ 2112 p->nFree -= nByte; 2113 pBuf = &p->pSpace[p->nFree]; 2114 }else{ 2115 p->nNeeded += nByte; 2116 } 2117 } 2118 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 2119 return pBuf; 2120 } 2121 2122 /* 2123 ** Rewind the VDBE back to the beginning in preparation for 2124 ** running it. 2125 */ 2126 void sqlite3VdbeRewind(Vdbe *p){ 2127 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 2128 int i; 2129 #endif 2130 assert( p!=0 ); 2131 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET ); 2132 2133 /* There should be at least one opcode. 2134 */ 2135 assert( p->nOp>0 ); 2136 2137 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 2138 p->magic = VDBE_MAGIC_RUN; 2139 2140 #ifdef SQLITE_DEBUG 2141 for(i=0; i<p->nMem; i++){ 2142 assert( p->aMem[i].db==p->db ); 2143 } 2144 #endif 2145 p->pc = -1; 2146 p->rc = SQLITE_OK; 2147 p->errorAction = OE_Abort; 2148 p->nChange = 0; 2149 p->cacheCtr = 1; 2150 p->minWriteFileFormat = 255; 2151 p->iStatement = 0; 2152 p->nFkConstraint = 0; 2153 #ifdef VDBE_PROFILE 2154 for(i=0; i<p->nOp; i++){ 2155 p->aOp[i].cnt = 0; 2156 p->aOp[i].cycles = 0; 2157 } 2158 #endif 2159 } 2160 2161 /* 2162 ** Prepare a virtual machine for execution for the first time after 2163 ** creating the virtual machine. This involves things such 2164 ** as allocating registers and initializing the program counter. 2165 ** After the VDBE has be prepped, it can be executed by one or more 2166 ** calls to sqlite3VdbeExec(). 2167 ** 2168 ** This function may be called exactly once on each virtual machine. 2169 ** After this routine is called the VM has been "packaged" and is ready 2170 ** to run. After this routine is called, further calls to 2171 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 2172 ** the Vdbe from the Parse object that helped generate it so that the 2173 ** the Vdbe becomes an independent entity and the Parse object can be 2174 ** destroyed. 2175 ** 2176 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 2177 ** to its initial state after it has been run. 2178 */ 2179 void sqlite3VdbeMakeReady( 2180 Vdbe *p, /* The VDBE */ 2181 Parse *pParse /* Parsing context */ 2182 ){ 2183 sqlite3 *db; /* The database connection */ 2184 int nVar; /* Number of parameters */ 2185 int nMem; /* Number of VM memory registers */ 2186 int nCursor; /* Number of cursors required */ 2187 int nArg; /* Number of arguments in subprograms */ 2188 int n; /* Loop counter */ 2189 struct ReusableSpace x; /* Reusable bulk memory */ 2190 2191 assert( p!=0 ); 2192 assert( p->nOp>0 ); 2193 assert( pParse!=0 ); 2194 assert( p->magic==VDBE_MAGIC_INIT ); 2195 assert( pParse==p->pParse ); 2196 db = p->db; 2197 assert( db->mallocFailed==0 ); 2198 nVar = pParse->nVar; 2199 nMem = pParse->nMem; 2200 nCursor = pParse->nTab; 2201 nArg = pParse->nMaxArg; 2202 2203 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 2204 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 2205 ** space at the end of aMem[] for cursors 1 and greater. 2206 ** See also: allocateCursor(). 2207 */ 2208 nMem += nCursor; 2209 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 2210 2211 /* Figure out how much reusable memory is available at the end of the 2212 ** opcode array. This extra memory will be reallocated for other elements 2213 ** of the prepared statement. 2214 */ 2215 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 2216 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 2217 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 2218 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 2219 assert( x.nFree>=0 ); 2220 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 2221 2222 resolveP2Values(p, &nArg); 2223 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 2224 if( pParse->explain && nMem<10 ){ 2225 nMem = 10; 2226 } 2227 p->expired = 0; 2228 2229 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 2230 ** passes. On the first pass, we try to reuse unused memory at the 2231 ** end of the opcode array. If we are unable to satisfy all memory 2232 ** requirements by reusing the opcode array tail, then the second 2233 ** pass will fill in the remainder using a fresh memory allocation. 2234 ** 2235 ** This two-pass approach that reuses as much memory as possible from 2236 ** the leftover memory at the end of the opcode array. This can significantly 2237 ** reduce the amount of memory held by a prepared statement. 2238 */ 2239 x.nNeeded = 0; 2240 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem)); 2241 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem)); 2242 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*)); 2243 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*)); 2244 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2245 p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64)); 2246 #endif 2247 if( x.nNeeded ){ 2248 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 2249 x.nFree = x.nNeeded; 2250 if( !db->mallocFailed ){ 2251 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 2252 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 2253 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 2254 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 2255 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2256 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 2257 #endif 2258 } 2259 } 2260 2261 p->pVList = pParse->pVList; 2262 pParse->pVList = 0; 2263 p->explain = pParse->explain; 2264 if( db->mallocFailed ){ 2265 p->nVar = 0; 2266 p->nCursor = 0; 2267 p->nMem = 0; 2268 }else{ 2269 p->nCursor = nCursor; 2270 p->nVar = (ynVar)nVar; 2271 initMemArray(p->aVar, nVar, db, MEM_Null); 2272 p->nMem = nMem; 2273 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2274 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2275 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2276 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2277 #endif 2278 } 2279 sqlite3VdbeRewind(p); 2280 } 2281 2282 /* 2283 ** Close a VDBE cursor and release all the resources that cursor 2284 ** happens to hold. 2285 */ 2286 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2287 if( pCx==0 ){ 2288 return; 2289 } 2290 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE ); 2291 switch( pCx->eCurType ){ 2292 case CURTYPE_SORTER: { 2293 sqlite3VdbeSorterClose(p->db, pCx); 2294 break; 2295 } 2296 case CURTYPE_BTREE: { 2297 if( pCx->isEphemeral ){ 2298 if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx); 2299 /* The pCx->pCursor will be close automatically, if it exists, by 2300 ** the call above. */ 2301 }else{ 2302 assert( pCx->uc.pCursor!=0 ); 2303 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2304 } 2305 break; 2306 } 2307 #ifndef SQLITE_OMIT_VIRTUALTABLE 2308 case CURTYPE_VTAB: { 2309 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2310 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2311 assert( pVCur->pVtab->nRef>0 ); 2312 pVCur->pVtab->nRef--; 2313 pModule->xClose(pVCur); 2314 break; 2315 } 2316 #endif 2317 } 2318 } 2319 2320 /* 2321 ** Close all cursors in the current frame. 2322 */ 2323 static void closeCursorsInFrame(Vdbe *p){ 2324 if( p->apCsr ){ 2325 int i; 2326 for(i=0; i<p->nCursor; i++){ 2327 VdbeCursor *pC = p->apCsr[i]; 2328 if( pC ){ 2329 sqlite3VdbeFreeCursor(p, pC); 2330 p->apCsr[i] = 0; 2331 } 2332 } 2333 } 2334 } 2335 2336 /* 2337 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2338 ** is used, for example, when a trigger sub-program is halted to restore 2339 ** control to the main program. 2340 */ 2341 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2342 Vdbe *v = pFrame->v; 2343 closeCursorsInFrame(v); 2344 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2345 v->anExec = pFrame->anExec; 2346 #endif 2347 v->aOp = pFrame->aOp; 2348 v->nOp = pFrame->nOp; 2349 v->aMem = pFrame->aMem; 2350 v->nMem = pFrame->nMem; 2351 v->apCsr = pFrame->apCsr; 2352 v->nCursor = pFrame->nCursor; 2353 v->db->lastRowid = pFrame->lastRowid; 2354 v->nChange = pFrame->nChange; 2355 v->db->nChange = pFrame->nDbChange; 2356 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2357 v->pAuxData = pFrame->pAuxData; 2358 pFrame->pAuxData = 0; 2359 return pFrame->pc; 2360 } 2361 2362 /* 2363 ** Close all cursors. 2364 ** 2365 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2366 ** cell array. This is necessary as the memory cell array may contain 2367 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2368 ** open cursors. 2369 */ 2370 static void closeAllCursors(Vdbe *p){ 2371 if( p->pFrame ){ 2372 VdbeFrame *pFrame; 2373 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2374 sqlite3VdbeFrameRestore(pFrame); 2375 p->pFrame = 0; 2376 p->nFrame = 0; 2377 } 2378 assert( p->nFrame==0 ); 2379 closeCursorsInFrame(p); 2380 if( p->aMem ){ 2381 releaseMemArray(p->aMem, p->nMem); 2382 } 2383 while( p->pDelFrame ){ 2384 VdbeFrame *pDel = p->pDelFrame; 2385 p->pDelFrame = pDel->pParent; 2386 sqlite3VdbeFrameDelete(pDel); 2387 } 2388 2389 /* Delete any auxdata allocations made by the VM */ 2390 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2391 assert( p->pAuxData==0 ); 2392 } 2393 2394 /* 2395 ** Set the number of result columns that will be returned by this SQL 2396 ** statement. This is now set at compile time, rather than during 2397 ** execution of the vdbe program so that sqlite3_column_count() can 2398 ** be called on an SQL statement before sqlite3_step(). 2399 */ 2400 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2401 int n; 2402 sqlite3 *db = p->db; 2403 2404 if( p->nResColumn ){ 2405 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2406 sqlite3DbFree(db, p->aColName); 2407 } 2408 n = nResColumn*COLNAME_N; 2409 p->nResColumn = (u16)nResColumn; 2410 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2411 if( p->aColName==0 ) return; 2412 initMemArray(p->aColName, n, db, MEM_Null); 2413 } 2414 2415 /* 2416 ** Set the name of the idx'th column to be returned by the SQL statement. 2417 ** zName must be a pointer to a nul terminated string. 2418 ** 2419 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2420 ** 2421 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2422 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2423 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2424 */ 2425 int sqlite3VdbeSetColName( 2426 Vdbe *p, /* Vdbe being configured */ 2427 int idx, /* Index of column zName applies to */ 2428 int var, /* One of the COLNAME_* constants */ 2429 const char *zName, /* Pointer to buffer containing name */ 2430 void (*xDel)(void*) /* Memory management strategy for zName */ 2431 ){ 2432 int rc; 2433 Mem *pColName; 2434 assert( idx<p->nResColumn ); 2435 assert( var<COLNAME_N ); 2436 if( p->db->mallocFailed ){ 2437 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2438 return SQLITE_NOMEM_BKPT; 2439 } 2440 assert( p->aColName!=0 ); 2441 pColName = &(p->aColName[idx+var*p->nResColumn]); 2442 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2443 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2444 return rc; 2445 } 2446 2447 /* 2448 ** A read or write transaction may or may not be active on database handle 2449 ** db. If a transaction is active, commit it. If there is a 2450 ** write-transaction spanning more than one database file, this routine 2451 ** takes care of the master journal trickery. 2452 */ 2453 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2454 int i; 2455 int nTrans = 0; /* Number of databases with an active write-transaction 2456 ** that are candidates for a two-phase commit using a 2457 ** master-journal */ 2458 int rc = SQLITE_OK; 2459 int needXcommit = 0; 2460 2461 #ifdef SQLITE_OMIT_VIRTUALTABLE 2462 /* With this option, sqlite3VtabSync() is defined to be simply 2463 ** SQLITE_OK so p is not used. 2464 */ 2465 UNUSED_PARAMETER(p); 2466 #endif 2467 2468 /* Before doing anything else, call the xSync() callback for any 2469 ** virtual module tables written in this transaction. This has to 2470 ** be done before determining whether a master journal file is 2471 ** required, as an xSync() callback may add an attached database 2472 ** to the transaction. 2473 */ 2474 rc = sqlite3VtabSync(db, p); 2475 2476 /* This loop determines (a) if the commit hook should be invoked and 2477 ** (b) how many database files have open write transactions, not 2478 ** including the temp database. (b) is important because if more than 2479 ** one database file has an open write transaction, a master journal 2480 ** file is required for an atomic commit. 2481 */ 2482 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2483 Btree *pBt = db->aDb[i].pBt; 2484 if( sqlite3BtreeIsInTrans(pBt) ){ 2485 /* Whether or not a database might need a master journal depends upon 2486 ** its journal mode (among other things). This matrix determines which 2487 ** journal modes use a master journal and which do not */ 2488 static const u8 aMJNeeded[] = { 2489 /* DELETE */ 1, 2490 /* PERSIST */ 1, 2491 /* OFF */ 0, 2492 /* TRUNCATE */ 1, 2493 /* MEMORY */ 0, 2494 /* WAL */ 0 2495 }; 2496 Pager *pPager; /* Pager associated with pBt */ 2497 needXcommit = 1; 2498 sqlite3BtreeEnter(pBt); 2499 pPager = sqlite3BtreePager(pBt); 2500 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2501 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2502 && sqlite3PagerIsMemdb(pPager)==0 2503 ){ 2504 assert( i!=1 ); 2505 nTrans++; 2506 } 2507 rc = sqlite3PagerExclusiveLock(pPager); 2508 sqlite3BtreeLeave(pBt); 2509 } 2510 } 2511 if( rc!=SQLITE_OK ){ 2512 return rc; 2513 } 2514 2515 /* If there are any write-transactions at all, invoke the commit hook */ 2516 if( needXcommit && db->xCommitCallback ){ 2517 rc = db->xCommitCallback(db->pCommitArg); 2518 if( rc ){ 2519 return SQLITE_CONSTRAINT_COMMITHOOK; 2520 } 2521 } 2522 2523 /* The simple case - no more than one database file (not counting the 2524 ** TEMP database) has a transaction active. There is no need for the 2525 ** master-journal. 2526 ** 2527 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2528 ** string, it means the main database is :memory: or a temp file. In 2529 ** that case we do not support atomic multi-file commits, so use the 2530 ** simple case then too. 2531 */ 2532 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2533 || nTrans<=1 2534 ){ 2535 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2536 Btree *pBt = db->aDb[i].pBt; 2537 if( pBt ){ 2538 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2539 } 2540 } 2541 2542 /* Do the commit only if all databases successfully complete phase 1. 2543 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2544 ** IO error while deleting or truncating a journal file. It is unlikely, 2545 ** but could happen. In this case abandon processing and return the error. 2546 */ 2547 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2548 Btree *pBt = db->aDb[i].pBt; 2549 if( pBt ){ 2550 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2551 } 2552 } 2553 if( rc==SQLITE_OK ){ 2554 sqlite3VtabCommit(db); 2555 } 2556 } 2557 2558 /* The complex case - There is a multi-file write-transaction active. 2559 ** This requires a master journal file to ensure the transaction is 2560 ** committed atomically. 2561 */ 2562 #ifndef SQLITE_OMIT_DISKIO 2563 else{ 2564 sqlite3_vfs *pVfs = db->pVfs; 2565 char *zMaster = 0; /* File-name for the master journal */ 2566 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2567 sqlite3_file *pMaster = 0; 2568 i64 offset = 0; 2569 int res; 2570 int retryCount = 0; 2571 int nMainFile; 2572 2573 /* Select a master journal file name */ 2574 nMainFile = sqlite3Strlen30(zMainFile); 2575 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); 2576 if( zMaster==0 ) return SQLITE_NOMEM_BKPT; 2577 do { 2578 u32 iRandom; 2579 if( retryCount ){ 2580 if( retryCount>100 ){ 2581 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 2582 sqlite3OsDelete(pVfs, zMaster, 0); 2583 break; 2584 }else if( retryCount==1 ){ 2585 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2586 } 2587 } 2588 retryCount++; 2589 sqlite3_randomness(sizeof(iRandom), &iRandom); 2590 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2591 (iRandom>>8)&0xffffff, iRandom&0xff); 2592 /* The antipenultimate character of the master journal name must 2593 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2594 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2595 sqlite3FileSuffix3(zMainFile, zMaster); 2596 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2597 }while( rc==SQLITE_OK && res ); 2598 if( rc==SQLITE_OK ){ 2599 /* Open the master journal. */ 2600 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2601 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2602 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2603 ); 2604 } 2605 if( rc!=SQLITE_OK ){ 2606 sqlite3DbFree(db, zMaster); 2607 return rc; 2608 } 2609 2610 /* Write the name of each database file in the transaction into the new 2611 ** master journal file. If an error occurs at this point close 2612 ** and delete the master journal file. All the individual journal files 2613 ** still have 'null' as the master journal pointer, so they will roll 2614 ** back independently if a failure occurs. 2615 */ 2616 for(i=0; i<db->nDb; i++){ 2617 Btree *pBt = db->aDb[i].pBt; 2618 if( sqlite3BtreeIsInTrans(pBt) ){ 2619 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2620 if( zFile==0 ){ 2621 continue; /* Ignore TEMP and :memory: databases */ 2622 } 2623 assert( zFile[0]!=0 ); 2624 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2625 offset += sqlite3Strlen30(zFile)+1; 2626 if( rc!=SQLITE_OK ){ 2627 sqlite3OsCloseFree(pMaster); 2628 sqlite3OsDelete(pVfs, zMaster, 0); 2629 sqlite3DbFree(db, zMaster); 2630 return rc; 2631 } 2632 } 2633 } 2634 2635 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2636 ** flag is set this is not required. 2637 */ 2638 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2639 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2640 ){ 2641 sqlite3OsCloseFree(pMaster); 2642 sqlite3OsDelete(pVfs, zMaster, 0); 2643 sqlite3DbFree(db, zMaster); 2644 return rc; 2645 } 2646 2647 /* Sync all the db files involved in the transaction. The same call 2648 ** sets the master journal pointer in each individual journal. If 2649 ** an error occurs here, do not delete the master journal file. 2650 ** 2651 ** If the error occurs during the first call to 2652 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2653 ** master journal file will be orphaned. But we cannot delete it, 2654 ** in case the master journal file name was written into the journal 2655 ** file before the failure occurred. 2656 */ 2657 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2658 Btree *pBt = db->aDb[i].pBt; 2659 if( pBt ){ 2660 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2661 } 2662 } 2663 sqlite3OsCloseFree(pMaster); 2664 assert( rc!=SQLITE_BUSY ); 2665 if( rc!=SQLITE_OK ){ 2666 sqlite3DbFree(db, zMaster); 2667 return rc; 2668 } 2669 2670 /* Delete the master journal file. This commits the transaction. After 2671 ** doing this the directory is synced again before any individual 2672 ** transaction files are deleted. 2673 */ 2674 rc = sqlite3OsDelete(pVfs, zMaster, 1); 2675 sqlite3DbFree(db, zMaster); 2676 zMaster = 0; 2677 if( rc ){ 2678 return rc; 2679 } 2680 2681 /* All files and directories have already been synced, so the following 2682 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2683 ** deleting or truncating journals. If something goes wrong while 2684 ** this is happening we don't really care. The integrity of the 2685 ** transaction is already guaranteed, but some stray 'cold' journals 2686 ** may be lying around. Returning an error code won't help matters. 2687 */ 2688 disable_simulated_io_errors(); 2689 sqlite3BeginBenignMalloc(); 2690 for(i=0; i<db->nDb; i++){ 2691 Btree *pBt = db->aDb[i].pBt; 2692 if( pBt ){ 2693 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2694 } 2695 } 2696 sqlite3EndBenignMalloc(); 2697 enable_simulated_io_errors(); 2698 2699 sqlite3VtabCommit(db); 2700 } 2701 #endif 2702 2703 return rc; 2704 } 2705 2706 /* 2707 ** This routine checks that the sqlite3.nVdbeActive count variable 2708 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2709 ** currently active. An assertion fails if the two counts do not match. 2710 ** This is an internal self-check only - it is not an essential processing 2711 ** step. 2712 ** 2713 ** This is a no-op if NDEBUG is defined. 2714 */ 2715 #ifndef NDEBUG 2716 static void checkActiveVdbeCnt(sqlite3 *db){ 2717 Vdbe *p; 2718 int cnt = 0; 2719 int nWrite = 0; 2720 int nRead = 0; 2721 p = db->pVdbe; 2722 while( p ){ 2723 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2724 cnt++; 2725 if( p->readOnly==0 ) nWrite++; 2726 if( p->bIsReader ) nRead++; 2727 } 2728 p = p->pNext; 2729 } 2730 assert( cnt==db->nVdbeActive ); 2731 assert( nWrite==db->nVdbeWrite ); 2732 assert( nRead==db->nVdbeRead ); 2733 } 2734 #else 2735 #define checkActiveVdbeCnt(x) 2736 #endif 2737 2738 /* 2739 ** If the Vdbe passed as the first argument opened a statement-transaction, 2740 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2741 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2742 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2743 ** statement transaction is committed. 2744 ** 2745 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2746 ** Otherwise SQLITE_OK. 2747 */ 2748 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 2749 sqlite3 *const db = p->db; 2750 int rc = SQLITE_OK; 2751 int i; 2752 const int iSavepoint = p->iStatement-1; 2753 2754 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2755 assert( db->nStatement>0 ); 2756 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2757 2758 for(i=0; i<db->nDb; i++){ 2759 int rc2 = SQLITE_OK; 2760 Btree *pBt = db->aDb[i].pBt; 2761 if( pBt ){ 2762 if( eOp==SAVEPOINT_ROLLBACK ){ 2763 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2764 } 2765 if( rc2==SQLITE_OK ){ 2766 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2767 } 2768 if( rc==SQLITE_OK ){ 2769 rc = rc2; 2770 } 2771 } 2772 } 2773 db->nStatement--; 2774 p->iStatement = 0; 2775 2776 if( rc==SQLITE_OK ){ 2777 if( eOp==SAVEPOINT_ROLLBACK ){ 2778 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2779 } 2780 if( rc==SQLITE_OK ){ 2781 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2782 } 2783 } 2784 2785 /* If the statement transaction is being rolled back, also restore the 2786 ** database handles deferred constraint counter to the value it had when 2787 ** the statement transaction was opened. */ 2788 if( eOp==SAVEPOINT_ROLLBACK ){ 2789 db->nDeferredCons = p->nStmtDefCons; 2790 db->nDeferredImmCons = p->nStmtDefImmCons; 2791 } 2792 return rc; 2793 } 2794 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2795 if( p->db->nStatement && p->iStatement ){ 2796 return vdbeCloseStatement(p, eOp); 2797 } 2798 return SQLITE_OK; 2799 } 2800 2801 2802 /* 2803 ** This function is called when a transaction opened by the database 2804 ** handle associated with the VM passed as an argument is about to be 2805 ** committed. If there are outstanding deferred foreign key constraint 2806 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2807 ** 2808 ** If there are outstanding FK violations and this function returns 2809 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2810 ** and write an error message to it. Then return SQLITE_ERROR. 2811 */ 2812 #ifndef SQLITE_OMIT_FOREIGN_KEY 2813 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2814 sqlite3 *db = p->db; 2815 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2816 || (!deferred && p->nFkConstraint>0) 2817 ){ 2818 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2819 p->errorAction = OE_Abort; 2820 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2821 return SQLITE_ERROR; 2822 } 2823 return SQLITE_OK; 2824 } 2825 #endif 2826 2827 /* 2828 ** This routine is called the when a VDBE tries to halt. If the VDBE 2829 ** has made changes and is in autocommit mode, then commit those 2830 ** changes. If a rollback is needed, then do the rollback. 2831 ** 2832 ** This routine is the only way to move the state of a VM from 2833 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2834 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2835 ** 2836 ** Return an error code. If the commit could not complete because of 2837 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2838 ** means the close did not happen and needs to be repeated. 2839 */ 2840 int sqlite3VdbeHalt(Vdbe *p){ 2841 int rc; /* Used to store transient return codes */ 2842 sqlite3 *db = p->db; 2843 2844 /* This function contains the logic that determines if a statement or 2845 ** transaction will be committed or rolled back as a result of the 2846 ** execution of this virtual machine. 2847 ** 2848 ** If any of the following errors occur: 2849 ** 2850 ** SQLITE_NOMEM 2851 ** SQLITE_IOERR 2852 ** SQLITE_FULL 2853 ** SQLITE_INTERRUPT 2854 ** 2855 ** Then the internal cache might have been left in an inconsistent 2856 ** state. We need to rollback the statement transaction, if there is 2857 ** one, or the complete transaction if there is no statement transaction. 2858 */ 2859 2860 if( p->magic!=VDBE_MAGIC_RUN ){ 2861 return SQLITE_OK; 2862 } 2863 if( db->mallocFailed ){ 2864 p->rc = SQLITE_NOMEM_BKPT; 2865 } 2866 closeAllCursors(p); 2867 checkActiveVdbeCnt(db); 2868 2869 /* No commit or rollback needed if the program never started or if the 2870 ** SQL statement does not read or write a database file. */ 2871 if( p->pc>=0 && p->bIsReader ){ 2872 int mrc; /* Primary error code from p->rc */ 2873 int eStatementOp = 0; 2874 int isSpecialError; /* Set to true if a 'special' error */ 2875 2876 /* Lock all btrees used by the statement */ 2877 sqlite3VdbeEnter(p); 2878 2879 /* Check for one of the special errors */ 2880 mrc = p->rc & 0xff; 2881 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2882 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2883 if( isSpecialError ){ 2884 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2885 ** no rollback is necessary. Otherwise, at least a savepoint 2886 ** transaction must be rolled back to restore the database to a 2887 ** consistent state. 2888 ** 2889 ** Even if the statement is read-only, it is important to perform 2890 ** a statement or transaction rollback operation. If the error 2891 ** occurred while writing to the journal, sub-journal or database 2892 ** file as part of an effort to free up cache space (see function 2893 ** pagerStress() in pager.c), the rollback is required to restore 2894 ** the pager to a consistent state. 2895 */ 2896 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2897 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2898 eStatementOp = SAVEPOINT_ROLLBACK; 2899 }else{ 2900 /* We are forced to roll back the active transaction. Before doing 2901 ** so, abort any other statements this handle currently has active. 2902 */ 2903 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2904 sqlite3CloseSavepoints(db); 2905 db->autoCommit = 1; 2906 p->nChange = 0; 2907 } 2908 } 2909 } 2910 2911 /* Check for immediate foreign key violations. */ 2912 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2913 sqlite3VdbeCheckFk(p, 0); 2914 } 2915 2916 /* If the auto-commit flag is set and this is the only active writer 2917 ** VM, then we do either a commit or rollback of the current transaction. 2918 ** 2919 ** Note: This block also runs if one of the special errors handled 2920 ** above has occurred. 2921 */ 2922 if( !sqlite3VtabInSync(db) 2923 && db->autoCommit 2924 && db->nVdbeWrite==(p->readOnly==0) 2925 ){ 2926 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2927 rc = sqlite3VdbeCheckFk(p, 1); 2928 if( rc!=SQLITE_OK ){ 2929 if( NEVER(p->readOnly) ){ 2930 sqlite3VdbeLeave(p); 2931 return SQLITE_ERROR; 2932 } 2933 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2934 }else{ 2935 /* The auto-commit flag is true, the vdbe program was successful 2936 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2937 ** key constraints to hold up the transaction. This means a commit 2938 ** is required. */ 2939 rc = vdbeCommit(db, p); 2940 } 2941 if( rc==SQLITE_BUSY && p->readOnly ){ 2942 sqlite3VdbeLeave(p); 2943 return SQLITE_BUSY; 2944 }else if( rc!=SQLITE_OK ){ 2945 p->rc = rc; 2946 sqlite3RollbackAll(db, SQLITE_OK); 2947 p->nChange = 0; 2948 }else{ 2949 db->nDeferredCons = 0; 2950 db->nDeferredImmCons = 0; 2951 db->flags &= ~(u64)SQLITE_DeferFKs; 2952 sqlite3CommitInternalChanges(db); 2953 } 2954 }else{ 2955 sqlite3RollbackAll(db, SQLITE_OK); 2956 p->nChange = 0; 2957 } 2958 db->nStatement = 0; 2959 }else if( eStatementOp==0 ){ 2960 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2961 eStatementOp = SAVEPOINT_RELEASE; 2962 }else if( p->errorAction==OE_Abort ){ 2963 eStatementOp = SAVEPOINT_ROLLBACK; 2964 }else{ 2965 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2966 sqlite3CloseSavepoints(db); 2967 db->autoCommit = 1; 2968 p->nChange = 0; 2969 } 2970 } 2971 2972 /* If eStatementOp is non-zero, then a statement transaction needs to 2973 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2974 ** do so. If this operation returns an error, and the current statement 2975 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2976 ** current statement error code. 2977 */ 2978 if( eStatementOp ){ 2979 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2980 if( rc ){ 2981 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 2982 p->rc = rc; 2983 sqlite3DbFree(db, p->zErrMsg); 2984 p->zErrMsg = 0; 2985 } 2986 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2987 sqlite3CloseSavepoints(db); 2988 db->autoCommit = 1; 2989 p->nChange = 0; 2990 } 2991 } 2992 2993 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2994 ** has been rolled back, update the database connection change-counter. 2995 */ 2996 if( p->changeCntOn ){ 2997 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2998 sqlite3VdbeSetChanges(db, p->nChange); 2999 }else{ 3000 sqlite3VdbeSetChanges(db, 0); 3001 } 3002 p->nChange = 0; 3003 } 3004 3005 /* Release the locks */ 3006 sqlite3VdbeLeave(p); 3007 } 3008 3009 /* We have successfully halted and closed the VM. Record this fact. */ 3010 if( p->pc>=0 ){ 3011 db->nVdbeActive--; 3012 if( !p->readOnly ) db->nVdbeWrite--; 3013 if( p->bIsReader ) db->nVdbeRead--; 3014 assert( db->nVdbeActive>=db->nVdbeRead ); 3015 assert( db->nVdbeRead>=db->nVdbeWrite ); 3016 assert( db->nVdbeWrite>=0 ); 3017 } 3018 p->magic = VDBE_MAGIC_HALT; 3019 checkActiveVdbeCnt(db); 3020 if( db->mallocFailed ){ 3021 p->rc = SQLITE_NOMEM_BKPT; 3022 } 3023 3024 /* If the auto-commit flag is set to true, then any locks that were held 3025 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 3026 ** to invoke any required unlock-notify callbacks. 3027 */ 3028 if( db->autoCommit ){ 3029 sqlite3ConnectionUnlocked(db); 3030 } 3031 3032 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 3033 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 3034 } 3035 3036 3037 /* 3038 ** Each VDBE holds the result of the most recent sqlite3_step() call 3039 ** in p->rc. This routine sets that result back to SQLITE_OK. 3040 */ 3041 void sqlite3VdbeResetStepResult(Vdbe *p){ 3042 p->rc = SQLITE_OK; 3043 } 3044 3045 /* 3046 ** Copy the error code and error message belonging to the VDBE passed 3047 ** as the first argument to its database handle (so that they will be 3048 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 3049 ** 3050 ** This function does not clear the VDBE error code or message, just 3051 ** copies them to the database handle. 3052 */ 3053 int sqlite3VdbeTransferError(Vdbe *p){ 3054 sqlite3 *db = p->db; 3055 int rc = p->rc; 3056 if( p->zErrMsg ){ 3057 db->bBenignMalloc++; 3058 sqlite3BeginBenignMalloc(); 3059 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 3060 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 3061 sqlite3EndBenignMalloc(); 3062 db->bBenignMalloc--; 3063 }else if( db->pErr ){ 3064 sqlite3ValueSetNull(db->pErr); 3065 } 3066 db->errCode = rc; 3067 return rc; 3068 } 3069 3070 #ifdef SQLITE_ENABLE_SQLLOG 3071 /* 3072 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 3073 ** invoke it. 3074 */ 3075 static void vdbeInvokeSqllog(Vdbe *v){ 3076 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 3077 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 3078 assert( v->db->init.busy==0 ); 3079 if( zExpanded ){ 3080 sqlite3GlobalConfig.xSqllog( 3081 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 3082 ); 3083 sqlite3DbFree(v->db, zExpanded); 3084 } 3085 } 3086 } 3087 #else 3088 # define vdbeInvokeSqllog(x) 3089 #endif 3090 3091 /* 3092 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 3093 ** Write any error messages into *pzErrMsg. Return the result code. 3094 ** 3095 ** After this routine is run, the VDBE should be ready to be executed 3096 ** again. 3097 ** 3098 ** To look at it another way, this routine resets the state of the 3099 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 3100 ** VDBE_MAGIC_INIT. 3101 */ 3102 int sqlite3VdbeReset(Vdbe *p){ 3103 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 3104 int i; 3105 #endif 3106 3107 sqlite3 *db; 3108 db = p->db; 3109 3110 /* If the VM did not run to completion or if it encountered an 3111 ** error, then it might not have been halted properly. So halt 3112 ** it now. 3113 */ 3114 sqlite3VdbeHalt(p); 3115 3116 /* If the VDBE has been run even partially, then transfer the error code 3117 ** and error message from the VDBE into the main database structure. But 3118 ** if the VDBE has just been set to run but has not actually executed any 3119 ** instructions yet, leave the main database error information unchanged. 3120 */ 3121 if( p->pc>=0 ){ 3122 vdbeInvokeSqllog(p); 3123 sqlite3VdbeTransferError(p); 3124 if( p->runOnlyOnce ) p->expired = 1; 3125 }else if( p->rc && p->expired ){ 3126 /* The expired flag was set on the VDBE before the first call 3127 ** to sqlite3_step(). For consistency (since sqlite3_step() was 3128 ** called), set the database error in this case as well. 3129 */ 3130 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 3131 } 3132 3133 /* Reset register contents and reclaim error message memory. 3134 */ 3135 #ifdef SQLITE_DEBUG 3136 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 3137 ** Vdbe.aMem[] arrays have already been cleaned up. */ 3138 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 3139 if( p->aMem ){ 3140 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 3141 } 3142 #endif 3143 sqlite3DbFree(db, p->zErrMsg); 3144 p->zErrMsg = 0; 3145 p->pResultSet = 0; 3146 #ifdef SQLITE_DEBUG 3147 p->nWrite = 0; 3148 #endif 3149 3150 /* Save profiling information from this VDBE run. 3151 */ 3152 #ifdef VDBE_PROFILE 3153 { 3154 FILE *out = fopen("vdbe_profile.out", "a"); 3155 if( out ){ 3156 fprintf(out, "---- "); 3157 for(i=0; i<p->nOp; i++){ 3158 fprintf(out, "%02x", p->aOp[i].opcode); 3159 } 3160 fprintf(out, "\n"); 3161 if( p->zSql ){ 3162 char c, pc = 0; 3163 fprintf(out, "-- "); 3164 for(i=0; (c = p->zSql[i])!=0; i++){ 3165 if( pc=='\n' ) fprintf(out, "-- "); 3166 putc(c, out); 3167 pc = c; 3168 } 3169 if( pc!='\n' ) fprintf(out, "\n"); 3170 } 3171 for(i=0; i<p->nOp; i++){ 3172 char zHdr[100]; 3173 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 3174 p->aOp[i].cnt, 3175 p->aOp[i].cycles, 3176 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 3177 ); 3178 fprintf(out, "%s", zHdr); 3179 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 3180 } 3181 fclose(out); 3182 } 3183 } 3184 #endif 3185 p->magic = VDBE_MAGIC_RESET; 3186 return p->rc & db->errMask; 3187 } 3188 3189 /* 3190 ** Clean up and delete a VDBE after execution. Return an integer which is 3191 ** the result code. Write any error message text into *pzErrMsg. 3192 */ 3193 int sqlite3VdbeFinalize(Vdbe *p){ 3194 int rc = SQLITE_OK; 3195 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 3196 rc = sqlite3VdbeReset(p); 3197 assert( (rc & p->db->errMask)==rc ); 3198 } 3199 sqlite3VdbeDelete(p); 3200 return rc; 3201 } 3202 3203 /* 3204 ** If parameter iOp is less than zero, then invoke the destructor for 3205 ** all auxiliary data pointers currently cached by the VM passed as 3206 ** the first argument. 3207 ** 3208 ** Or, if iOp is greater than or equal to zero, then the destructor is 3209 ** only invoked for those auxiliary data pointers created by the user 3210 ** function invoked by the OP_Function opcode at instruction iOp of 3211 ** VM pVdbe, and only then if: 3212 ** 3213 ** * the associated function parameter is the 32nd or later (counting 3214 ** from left to right), or 3215 ** 3216 ** * the corresponding bit in argument mask is clear (where the first 3217 ** function parameter corresponds to bit 0 etc.). 3218 */ 3219 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 3220 while( *pp ){ 3221 AuxData *pAux = *pp; 3222 if( (iOp<0) 3223 || (pAux->iAuxOp==iOp 3224 && pAux->iAuxArg>=0 3225 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 3226 ){ 3227 testcase( pAux->iAuxArg==31 ); 3228 if( pAux->xDeleteAux ){ 3229 pAux->xDeleteAux(pAux->pAux); 3230 } 3231 *pp = pAux->pNextAux; 3232 sqlite3DbFree(db, pAux); 3233 }else{ 3234 pp= &pAux->pNextAux; 3235 } 3236 } 3237 } 3238 3239 /* 3240 ** Free all memory associated with the Vdbe passed as the second argument, 3241 ** except for object itself, which is preserved. 3242 ** 3243 ** The difference between this function and sqlite3VdbeDelete() is that 3244 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 3245 ** the database connection and frees the object itself. 3246 */ 3247 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 3248 SubProgram *pSub, *pNext; 3249 assert( p->db==0 || p->db==db ); 3250 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 3251 for(pSub=p->pProgram; pSub; pSub=pNext){ 3252 pNext = pSub->pNext; 3253 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 3254 sqlite3DbFree(db, pSub); 3255 } 3256 if( p->magic!=VDBE_MAGIC_INIT ){ 3257 releaseMemArray(p->aVar, p->nVar); 3258 sqlite3DbFree(db, p->pVList); 3259 sqlite3DbFree(db, p->pFree); 3260 } 3261 vdbeFreeOpArray(db, p->aOp, p->nOp); 3262 sqlite3DbFree(db, p->aColName); 3263 sqlite3DbFree(db, p->zSql); 3264 #ifdef SQLITE_ENABLE_NORMALIZE 3265 sqlite3DbFree(db, p->zNormSql); 3266 { 3267 DblquoteStr *pThis, *pNext; 3268 for(pThis=p->pDblStr; pThis; pThis=pNext){ 3269 pNext = pThis->pNextStr; 3270 sqlite3DbFree(db, pThis); 3271 } 3272 } 3273 #endif 3274 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3275 { 3276 int i; 3277 for(i=0; i<p->nScan; i++){ 3278 sqlite3DbFree(db, p->aScan[i].zName); 3279 } 3280 sqlite3DbFree(db, p->aScan); 3281 } 3282 #endif 3283 } 3284 3285 /* 3286 ** Delete an entire VDBE. 3287 */ 3288 void sqlite3VdbeDelete(Vdbe *p){ 3289 sqlite3 *db; 3290 3291 assert( p!=0 ); 3292 db = p->db; 3293 assert( sqlite3_mutex_held(db->mutex) ); 3294 sqlite3VdbeClearObject(db, p); 3295 if( p->pPrev ){ 3296 p->pPrev->pNext = p->pNext; 3297 }else{ 3298 assert( db->pVdbe==p ); 3299 db->pVdbe = p->pNext; 3300 } 3301 if( p->pNext ){ 3302 p->pNext->pPrev = p->pPrev; 3303 } 3304 p->magic = VDBE_MAGIC_DEAD; 3305 p->db = 0; 3306 sqlite3DbFreeNN(db, p); 3307 } 3308 3309 /* 3310 ** The cursor "p" has a pending seek operation that has not yet been 3311 ** carried out. Seek the cursor now. If an error occurs, return 3312 ** the appropriate error code. 3313 */ 3314 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ 3315 int res, rc; 3316 #ifdef SQLITE_TEST 3317 extern int sqlite3_search_count; 3318 #endif 3319 assert( p->deferredMoveto ); 3320 assert( p->isTable ); 3321 assert( p->eCurType==CURTYPE_BTREE ); 3322 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); 3323 if( rc ) return rc; 3324 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3325 #ifdef SQLITE_TEST 3326 sqlite3_search_count++; 3327 #endif 3328 p->deferredMoveto = 0; 3329 p->cacheStatus = CACHE_STALE; 3330 return SQLITE_OK; 3331 } 3332 3333 /* 3334 ** Something has moved cursor "p" out of place. Maybe the row it was 3335 ** pointed to was deleted out from under it. Or maybe the btree was 3336 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3337 ** is supposed to be pointing. If the row was deleted out from under the 3338 ** cursor, set the cursor to point to a NULL row. 3339 */ 3340 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 3341 int isDifferentRow, rc; 3342 assert( p->eCurType==CURTYPE_BTREE ); 3343 assert( p->uc.pCursor!=0 ); 3344 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3345 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3346 p->cacheStatus = CACHE_STALE; 3347 if( isDifferentRow ) p->nullRow = 1; 3348 return rc; 3349 } 3350 3351 /* 3352 ** Check to ensure that the cursor is valid. Restore the cursor 3353 ** if need be. Return any I/O error from the restore operation. 3354 */ 3355 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3356 assert( p->eCurType==CURTYPE_BTREE ); 3357 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3358 return handleMovedCursor(p); 3359 } 3360 return SQLITE_OK; 3361 } 3362 3363 /* 3364 ** Make sure the cursor p is ready to read or write the row to which it 3365 ** was last positioned. Return an error code if an OOM fault or I/O error 3366 ** prevents us from positioning the cursor to its correct position. 3367 ** 3368 ** If a MoveTo operation is pending on the given cursor, then do that 3369 ** MoveTo now. If no move is pending, check to see if the row has been 3370 ** deleted out from under the cursor and if it has, mark the row as 3371 ** a NULL row. 3372 ** 3373 ** If the cursor is already pointing to the correct row and that row has 3374 ** not been deleted out from under the cursor, then this routine is a no-op. 3375 */ 3376 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){ 3377 VdbeCursor *p = *pp; 3378 assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO ); 3379 if( p->deferredMoveto ){ 3380 int iMap; 3381 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){ 3382 *pp = p->pAltCursor; 3383 *piCol = iMap - 1; 3384 return SQLITE_OK; 3385 } 3386 return handleDeferredMoveto(p); 3387 } 3388 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3389 return handleMovedCursor(p); 3390 } 3391 return SQLITE_OK; 3392 } 3393 3394 /* 3395 ** The following functions: 3396 ** 3397 ** sqlite3VdbeSerialType() 3398 ** sqlite3VdbeSerialTypeLen() 3399 ** sqlite3VdbeSerialLen() 3400 ** sqlite3VdbeSerialPut() 3401 ** sqlite3VdbeSerialGet() 3402 ** 3403 ** encapsulate the code that serializes values for storage in SQLite 3404 ** data and index records. Each serialized value consists of a 3405 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3406 ** integer, stored as a varint. 3407 ** 3408 ** In an SQLite index record, the serial type is stored directly before 3409 ** the blob of data that it corresponds to. In a table record, all serial 3410 ** types are stored at the start of the record, and the blobs of data at 3411 ** the end. Hence these functions allow the caller to handle the 3412 ** serial-type and data blob separately. 3413 ** 3414 ** The following table describes the various storage classes for data: 3415 ** 3416 ** serial type bytes of data type 3417 ** -------------- --------------- --------------- 3418 ** 0 0 NULL 3419 ** 1 1 signed integer 3420 ** 2 2 signed integer 3421 ** 3 3 signed integer 3422 ** 4 4 signed integer 3423 ** 5 6 signed integer 3424 ** 6 8 signed integer 3425 ** 7 8 IEEE float 3426 ** 8 0 Integer constant 0 3427 ** 9 0 Integer constant 1 3428 ** 10,11 reserved for expansion 3429 ** N>=12 and even (N-12)/2 BLOB 3430 ** N>=13 and odd (N-13)/2 text 3431 ** 3432 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3433 ** of SQLite will not understand those serial types. 3434 */ 3435 3436 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 3437 /* 3438 ** Return the serial-type for the value stored in pMem. 3439 ** 3440 ** This routine might convert a large MEM_IntReal value into MEM_Real. 3441 ** 3442 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord 3443 ** opcode in the byte-code engine. But by moving this routine in-line, we 3444 ** can omit some redundant tests and make that opcode a lot faster. So 3445 ** this routine is now only used by the STAT3/4 logic. 3446 */ 3447 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3448 int flags = pMem->flags; 3449 u32 n; 3450 3451 assert( pLen!=0 ); 3452 if( flags&MEM_Null ){ 3453 *pLen = 0; 3454 return 0; 3455 } 3456 if( flags&(MEM_Int|MEM_IntReal) ){ 3457 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3458 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3459 i64 i = pMem->u.i; 3460 u64 u; 3461 testcase( flags & MEM_Int ); 3462 testcase( flags & MEM_IntReal ); 3463 if( i<0 ){ 3464 u = ~i; 3465 }else{ 3466 u = i; 3467 } 3468 if( u<=127 ){ 3469 if( (i&1)==i && file_format>=4 ){ 3470 *pLen = 0; 3471 return 8+(u32)u; 3472 }else{ 3473 *pLen = 1; 3474 return 1; 3475 } 3476 } 3477 if( u<=32767 ){ *pLen = 2; return 2; } 3478 if( u<=8388607 ){ *pLen = 3; return 3; } 3479 if( u<=2147483647 ){ *pLen = 4; return 4; } 3480 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3481 *pLen = 8; 3482 if( flags&MEM_IntReal ){ 3483 /* If the value is IntReal and is going to take up 8 bytes to store 3484 ** as an integer, then we might as well make it an 8-byte floating 3485 ** point value */ 3486 pMem->u.r = (double)pMem->u.i; 3487 pMem->flags &= ~MEM_IntReal; 3488 pMem->flags |= MEM_Real; 3489 return 7; 3490 } 3491 return 6; 3492 } 3493 if( flags&MEM_Real ){ 3494 *pLen = 8; 3495 return 7; 3496 } 3497 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3498 assert( pMem->n>=0 ); 3499 n = (u32)pMem->n; 3500 if( flags & MEM_Zero ){ 3501 n += pMem->u.nZero; 3502 } 3503 *pLen = n; 3504 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3505 } 3506 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 3507 3508 /* 3509 ** The sizes for serial types less than 128 3510 */ 3511 static const u8 sqlite3SmallTypeSizes[] = { 3512 /* 0 1 2 3 4 5 6 7 8 9 */ 3513 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3514 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3515 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3516 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3517 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3518 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3519 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3520 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3521 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3522 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3523 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3524 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3525 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3526 }; 3527 3528 /* 3529 ** Return the length of the data corresponding to the supplied serial-type. 3530 */ 3531 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3532 if( serial_type>=128 ){ 3533 return (serial_type-12)/2; 3534 }else{ 3535 assert( serial_type<12 3536 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3537 return sqlite3SmallTypeSizes[serial_type]; 3538 } 3539 } 3540 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3541 assert( serial_type<128 ); 3542 return sqlite3SmallTypeSizes[serial_type]; 3543 } 3544 3545 /* 3546 ** If we are on an architecture with mixed-endian floating 3547 ** points (ex: ARM7) then swap the lower 4 bytes with the 3548 ** upper 4 bytes. Return the result. 3549 ** 3550 ** For most architectures, this is a no-op. 3551 ** 3552 ** (later): It is reported to me that the mixed-endian problem 3553 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3554 ** that early versions of GCC stored the two words of a 64-bit 3555 ** float in the wrong order. And that error has been propagated 3556 ** ever since. The blame is not necessarily with GCC, though. 3557 ** GCC might have just copying the problem from a prior compiler. 3558 ** I am also told that newer versions of GCC that follow a different 3559 ** ABI get the byte order right. 3560 ** 3561 ** Developers using SQLite on an ARM7 should compile and run their 3562 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3563 ** enabled, some asserts below will ensure that the byte order of 3564 ** floating point values is correct. 3565 ** 3566 ** (2007-08-30) Frank van Vugt has studied this problem closely 3567 ** and has send his findings to the SQLite developers. Frank 3568 ** writes that some Linux kernels offer floating point hardware 3569 ** emulation that uses only 32-bit mantissas instead of a full 3570 ** 48-bits as required by the IEEE standard. (This is the 3571 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3572 ** byte swapping becomes very complicated. To avoid problems, 3573 ** the necessary byte swapping is carried out using a 64-bit integer 3574 ** rather than a 64-bit float. Frank assures us that the code here 3575 ** works for him. We, the developers, have no way to independently 3576 ** verify this, but Frank seems to know what he is talking about 3577 ** so we trust him. 3578 */ 3579 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3580 static u64 floatSwap(u64 in){ 3581 union { 3582 u64 r; 3583 u32 i[2]; 3584 } u; 3585 u32 t; 3586 3587 u.r = in; 3588 t = u.i[0]; 3589 u.i[0] = u.i[1]; 3590 u.i[1] = t; 3591 return u.r; 3592 } 3593 # define swapMixedEndianFloat(X) X = floatSwap(X) 3594 #else 3595 # define swapMixedEndianFloat(X) 3596 #endif 3597 3598 /* 3599 ** Write the serialized data blob for the value stored in pMem into 3600 ** buf. It is assumed that the caller has allocated sufficient space. 3601 ** Return the number of bytes written. 3602 ** 3603 ** nBuf is the amount of space left in buf[]. The caller is responsible 3604 ** for allocating enough space to buf[] to hold the entire field, exclusive 3605 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3606 ** 3607 ** Return the number of bytes actually written into buf[]. The number 3608 ** of bytes in the zero-filled tail is included in the return value only 3609 ** if those bytes were zeroed in buf[]. 3610 */ 3611 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3612 u32 len; 3613 3614 /* Integer and Real */ 3615 if( serial_type<=7 && serial_type>0 ){ 3616 u64 v; 3617 u32 i; 3618 if( serial_type==7 ){ 3619 assert( sizeof(v)==sizeof(pMem->u.r) ); 3620 memcpy(&v, &pMem->u.r, sizeof(v)); 3621 swapMixedEndianFloat(v); 3622 }else{ 3623 v = pMem->u.i; 3624 } 3625 len = i = sqlite3SmallTypeSizes[serial_type]; 3626 assert( i>0 ); 3627 do{ 3628 buf[--i] = (u8)(v&0xFF); 3629 v >>= 8; 3630 }while( i ); 3631 return len; 3632 } 3633 3634 /* String or blob */ 3635 if( serial_type>=12 ){ 3636 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3637 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3638 len = pMem->n; 3639 if( len>0 ) memcpy(buf, pMem->z, len); 3640 return len; 3641 } 3642 3643 /* NULL or constants 0 or 1 */ 3644 return 0; 3645 } 3646 3647 /* Input "x" is a sequence of unsigned characters that represent a 3648 ** big-endian integer. Return the equivalent native integer 3649 */ 3650 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3651 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3652 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3653 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3654 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3655 3656 /* 3657 ** Deserialize the data blob pointed to by buf as serial type serial_type 3658 ** and store the result in pMem. Return the number of bytes read. 3659 ** 3660 ** This function is implemented as two separate routines for performance. 3661 ** The few cases that require local variables are broken out into a separate 3662 ** routine so that in most cases the overhead of moving the stack pointer 3663 ** is avoided. 3664 */ 3665 static u32 serialGet( 3666 const unsigned char *buf, /* Buffer to deserialize from */ 3667 u32 serial_type, /* Serial type to deserialize */ 3668 Mem *pMem /* Memory cell to write value into */ 3669 ){ 3670 u64 x = FOUR_BYTE_UINT(buf); 3671 u32 y = FOUR_BYTE_UINT(buf+4); 3672 x = (x<<32) + y; 3673 if( serial_type==6 ){ 3674 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3675 ** twos-complement integer. */ 3676 pMem->u.i = *(i64*)&x; 3677 pMem->flags = MEM_Int; 3678 testcase( pMem->u.i<0 ); 3679 }else{ 3680 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3681 ** floating point number. */ 3682 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3683 /* Verify that integers and floating point values use the same 3684 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3685 ** defined that 64-bit floating point values really are mixed 3686 ** endian. 3687 */ 3688 static const u64 t1 = ((u64)0x3ff00000)<<32; 3689 static const double r1 = 1.0; 3690 u64 t2 = t1; 3691 swapMixedEndianFloat(t2); 3692 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3693 #endif 3694 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3695 swapMixedEndianFloat(x); 3696 memcpy(&pMem->u.r, &x, sizeof(x)); 3697 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real; 3698 } 3699 return 8; 3700 } 3701 u32 sqlite3VdbeSerialGet( 3702 const unsigned char *buf, /* Buffer to deserialize from */ 3703 u32 serial_type, /* Serial type to deserialize */ 3704 Mem *pMem /* Memory cell to write value into */ 3705 ){ 3706 switch( serial_type ){ 3707 case 10: { /* Internal use only: NULL with virtual table 3708 ** UPDATE no-change flag set */ 3709 pMem->flags = MEM_Null|MEM_Zero; 3710 pMem->n = 0; 3711 pMem->u.nZero = 0; 3712 break; 3713 } 3714 case 11: /* Reserved for future use */ 3715 case 0: { /* Null */ 3716 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3717 pMem->flags = MEM_Null; 3718 break; 3719 } 3720 case 1: { 3721 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3722 ** integer. */ 3723 pMem->u.i = ONE_BYTE_INT(buf); 3724 pMem->flags = MEM_Int; 3725 testcase( pMem->u.i<0 ); 3726 return 1; 3727 } 3728 case 2: { /* 2-byte signed integer */ 3729 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3730 ** twos-complement integer. */ 3731 pMem->u.i = TWO_BYTE_INT(buf); 3732 pMem->flags = MEM_Int; 3733 testcase( pMem->u.i<0 ); 3734 return 2; 3735 } 3736 case 3: { /* 3-byte signed integer */ 3737 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3738 ** twos-complement integer. */ 3739 pMem->u.i = THREE_BYTE_INT(buf); 3740 pMem->flags = MEM_Int; 3741 testcase( pMem->u.i<0 ); 3742 return 3; 3743 } 3744 case 4: { /* 4-byte signed integer */ 3745 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3746 ** twos-complement integer. */ 3747 pMem->u.i = FOUR_BYTE_INT(buf); 3748 #ifdef __HP_cc 3749 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3750 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3751 #endif 3752 pMem->flags = MEM_Int; 3753 testcase( pMem->u.i<0 ); 3754 return 4; 3755 } 3756 case 5: { /* 6-byte signed integer */ 3757 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3758 ** twos-complement integer. */ 3759 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3760 pMem->flags = MEM_Int; 3761 testcase( pMem->u.i<0 ); 3762 return 6; 3763 } 3764 case 6: /* 8-byte signed integer */ 3765 case 7: { /* IEEE floating point */ 3766 /* These use local variables, so do them in a separate routine 3767 ** to avoid having to move the frame pointer in the common case */ 3768 return serialGet(buf,serial_type,pMem); 3769 } 3770 case 8: /* Integer 0 */ 3771 case 9: { /* Integer 1 */ 3772 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3773 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3774 pMem->u.i = serial_type-8; 3775 pMem->flags = MEM_Int; 3776 return 0; 3777 } 3778 default: { 3779 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3780 ** length. 3781 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3782 ** (N-13)/2 bytes in length. */ 3783 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3784 pMem->z = (char *)buf; 3785 pMem->n = (serial_type-12)/2; 3786 pMem->flags = aFlag[serial_type&1]; 3787 return pMem->n; 3788 } 3789 } 3790 return 0; 3791 } 3792 /* 3793 ** This routine is used to allocate sufficient space for an UnpackedRecord 3794 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3795 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3796 ** 3797 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3798 ** the unaligned buffer passed via the second and third arguments (presumably 3799 ** stack space). If the former, then *ppFree is set to a pointer that should 3800 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3801 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3802 ** before returning. 3803 ** 3804 ** If an OOM error occurs, NULL is returned. 3805 */ 3806 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3807 KeyInfo *pKeyInfo /* Description of the record */ 3808 ){ 3809 UnpackedRecord *p; /* Unpacked record to return */ 3810 int nByte; /* Number of bytes required for *p */ 3811 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 3812 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3813 if( !p ) return 0; 3814 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3815 assert( pKeyInfo->aSortOrder!=0 ); 3816 p->pKeyInfo = pKeyInfo; 3817 p->nField = pKeyInfo->nKeyField + 1; 3818 return p; 3819 } 3820 3821 /* 3822 ** Given the nKey-byte encoding of a record in pKey[], populate the 3823 ** UnpackedRecord structure indicated by the fourth argument with the 3824 ** contents of the decoded record. 3825 */ 3826 void sqlite3VdbeRecordUnpack( 3827 KeyInfo *pKeyInfo, /* Information about the record format */ 3828 int nKey, /* Size of the binary record */ 3829 const void *pKey, /* The binary record */ 3830 UnpackedRecord *p /* Populate this structure before returning. */ 3831 ){ 3832 const unsigned char *aKey = (const unsigned char *)pKey; 3833 u32 d; 3834 u32 idx; /* Offset in aKey[] to read from */ 3835 u16 u; /* Unsigned loop counter */ 3836 u32 szHdr; 3837 Mem *pMem = p->aMem; 3838 3839 p->default_rc = 0; 3840 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3841 idx = getVarint32(aKey, szHdr); 3842 d = szHdr; 3843 u = 0; 3844 while( idx<szHdr && d<=(u32)nKey ){ 3845 u32 serial_type; 3846 3847 idx += getVarint32(&aKey[idx], serial_type); 3848 pMem->enc = pKeyInfo->enc; 3849 pMem->db = pKeyInfo->db; 3850 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 3851 pMem->szMalloc = 0; 3852 pMem->z = 0; 3853 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3854 pMem++; 3855 if( (++u)>=p->nField ) break; 3856 } 3857 if( d>(u32)nKey && u ){ 3858 assert( CORRUPT_DB ); 3859 /* In a corrupt record entry, the last pMem might have been set up using 3860 ** uninitialized memory. Overwrite its value with NULL, to prevent 3861 ** warnings from MSAN. */ 3862 sqlite3VdbeMemSetNull(pMem-1); 3863 } 3864 assert( u<=pKeyInfo->nKeyField + 1 ); 3865 p->nField = u; 3866 } 3867 3868 #ifdef SQLITE_DEBUG 3869 /* 3870 ** This function compares two index or table record keys in the same way 3871 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 3872 ** this function deserializes and compares values using the 3873 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 3874 ** in assert() statements to ensure that the optimized code in 3875 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 3876 ** 3877 ** Return true if the result of comparison is equivalent to desiredResult. 3878 ** Return false if there is a disagreement. 3879 */ 3880 static int vdbeRecordCompareDebug( 3881 int nKey1, const void *pKey1, /* Left key */ 3882 const UnpackedRecord *pPKey2, /* Right key */ 3883 int desiredResult /* Correct answer */ 3884 ){ 3885 u32 d1; /* Offset into aKey[] of next data element */ 3886 u32 idx1; /* Offset into aKey[] of next header element */ 3887 u32 szHdr1; /* Number of bytes in header */ 3888 int i = 0; 3889 int rc = 0; 3890 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3891 KeyInfo *pKeyInfo; 3892 Mem mem1; 3893 3894 pKeyInfo = pPKey2->pKeyInfo; 3895 if( pKeyInfo->db==0 ) return 1; 3896 mem1.enc = pKeyInfo->enc; 3897 mem1.db = pKeyInfo->db; 3898 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 3899 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3900 3901 /* Compilers may complain that mem1.u.i is potentially uninitialized. 3902 ** We could initialize it, as shown here, to silence those complaints. 3903 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 3904 ** the unnecessary initialization has a measurable negative performance 3905 ** impact, since this routine is a very high runner. And so, we choose 3906 ** to ignore the compiler warnings and leave this variable uninitialized. 3907 */ 3908 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 3909 3910 idx1 = getVarint32(aKey1, szHdr1); 3911 if( szHdr1>98307 ) return SQLITE_CORRUPT; 3912 d1 = szHdr1; 3913 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 3914 assert( pKeyInfo->aSortOrder!=0 ); 3915 assert( pKeyInfo->nKeyField>0 ); 3916 assert( idx1<=szHdr1 || CORRUPT_DB ); 3917 do{ 3918 u32 serial_type1; 3919 3920 /* Read the serial types for the next element in each key. */ 3921 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 3922 3923 /* Verify that there is enough key space remaining to avoid 3924 ** a buffer overread. The "d1+serial_type1+2" subexpression will 3925 ** always be greater than or equal to the amount of required key space. 3926 ** Use that approximation to avoid the more expensive call to 3927 ** sqlite3VdbeSerialTypeLen() in the common case. 3928 */ 3929 if( d1+(u64)serial_type1+2>(u64)nKey1 3930 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 3931 ){ 3932 break; 3933 } 3934 3935 /* Extract the values to be compared. 3936 */ 3937 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 3938 3939 /* Do the comparison 3940 */ 3941 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], 3942 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0); 3943 if( rc!=0 ){ 3944 assert( mem1.szMalloc==0 ); /* See comment below */ 3945 if( pKeyInfo->aSortOrder[i] ){ 3946 rc = -rc; /* Invert the result for DESC sort order. */ 3947 } 3948 goto debugCompareEnd; 3949 } 3950 i++; 3951 }while( idx1<szHdr1 && i<pPKey2->nField ); 3952 3953 /* No memory allocation is ever used on mem1. Prove this using 3954 ** the following assert(). If the assert() fails, it indicates a 3955 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 3956 */ 3957 assert( mem1.szMalloc==0 ); 3958 3959 /* rc==0 here means that one of the keys ran out of fields and 3960 ** all the fields up to that point were equal. Return the default_rc 3961 ** value. */ 3962 rc = pPKey2->default_rc; 3963 3964 debugCompareEnd: 3965 if( desiredResult==0 && rc==0 ) return 1; 3966 if( desiredResult<0 && rc<0 ) return 1; 3967 if( desiredResult>0 && rc>0 ) return 1; 3968 if( CORRUPT_DB ) return 1; 3969 if( pKeyInfo->db->mallocFailed ) return 1; 3970 return 0; 3971 } 3972 #endif 3973 3974 #ifdef SQLITE_DEBUG 3975 /* 3976 ** Count the number of fields (a.k.a. columns) in the record given by 3977 ** pKey,nKey. The verify that this count is less than or equal to the 3978 ** limit given by pKeyInfo->nAllField. 3979 ** 3980 ** If this constraint is not satisfied, it means that the high-speed 3981 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 3982 ** not work correctly. If this assert() ever fires, it probably means 3983 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 3984 ** incorrectly. 3985 */ 3986 static void vdbeAssertFieldCountWithinLimits( 3987 int nKey, const void *pKey, /* The record to verify */ 3988 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 3989 ){ 3990 int nField = 0; 3991 u32 szHdr; 3992 u32 idx; 3993 u32 notUsed; 3994 const unsigned char *aKey = (const unsigned char*)pKey; 3995 3996 if( CORRUPT_DB ) return; 3997 idx = getVarint32(aKey, szHdr); 3998 assert( nKey>=0 ); 3999 assert( szHdr<=(u32)nKey ); 4000 while( idx<szHdr ){ 4001 idx += getVarint32(aKey+idx, notUsed); 4002 nField++; 4003 } 4004 assert( nField <= pKeyInfo->nAllField ); 4005 } 4006 #else 4007 # define vdbeAssertFieldCountWithinLimits(A,B,C) 4008 #endif 4009 4010 /* 4011 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 4012 ** using the collation sequence pColl. As usual, return a negative , zero 4013 ** or positive value if *pMem1 is less than, equal to or greater than 4014 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 4015 */ 4016 static int vdbeCompareMemString( 4017 const Mem *pMem1, 4018 const Mem *pMem2, 4019 const CollSeq *pColl, 4020 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 4021 ){ 4022 if( pMem1->enc==pColl->enc ){ 4023 /* The strings are already in the correct encoding. Call the 4024 ** comparison function directly */ 4025 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 4026 }else{ 4027 int rc; 4028 const void *v1, *v2; 4029 Mem c1; 4030 Mem c2; 4031 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 4032 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 4033 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 4034 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 4035 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 4036 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 4037 if( (v1==0 || v2==0) ){ 4038 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 4039 rc = 0; 4040 }else{ 4041 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 4042 } 4043 sqlite3VdbeMemRelease(&c1); 4044 sqlite3VdbeMemRelease(&c2); 4045 return rc; 4046 } 4047 } 4048 4049 /* 4050 ** The input pBlob is guaranteed to be a Blob that is not marked 4051 ** with MEM_Zero. Return true if it could be a zero-blob. 4052 */ 4053 static int isAllZero(const char *z, int n){ 4054 int i; 4055 for(i=0; i<n; i++){ 4056 if( z[i] ) return 0; 4057 } 4058 return 1; 4059 } 4060 4061 /* 4062 ** Compare two blobs. Return negative, zero, or positive if the first 4063 ** is less than, equal to, or greater than the second, respectively. 4064 ** If one blob is a prefix of the other, then the shorter is the lessor. 4065 */ 4066 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 4067 int c; 4068 int n1 = pB1->n; 4069 int n2 = pB2->n; 4070 4071 /* It is possible to have a Blob value that has some non-zero content 4072 ** followed by zero content. But that only comes up for Blobs formed 4073 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 4074 ** sqlite3MemCompare(). */ 4075 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 4076 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 4077 4078 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 4079 if( pB1->flags & pB2->flags & MEM_Zero ){ 4080 return pB1->u.nZero - pB2->u.nZero; 4081 }else if( pB1->flags & MEM_Zero ){ 4082 if( !isAllZero(pB2->z, pB2->n) ) return -1; 4083 return pB1->u.nZero - n2; 4084 }else{ 4085 if( !isAllZero(pB1->z, pB1->n) ) return +1; 4086 return n1 - pB2->u.nZero; 4087 } 4088 } 4089 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 4090 if( c ) return c; 4091 return n1 - n2; 4092 } 4093 4094 /* 4095 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 4096 ** number. Return negative, zero, or positive if the first (i64) is less than, 4097 ** equal to, or greater than the second (double). 4098 */ 4099 static int sqlite3IntFloatCompare(i64 i, double r){ 4100 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 4101 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 4102 if( x<r ) return -1; 4103 if( x>r ) return +1; 4104 return 0; 4105 }else{ 4106 i64 y; 4107 double s; 4108 if( r<-9223372036854775808.0 ) return +1; 4109 if( r>=9223372036854775808.0 ) return -1; 4110 y = (i64)r; 4111 if( i<y ) return -1; 4112 if( i>y ) return +1; 4113 s = (double)i; 4114 if( s<r ) return -1; 4115 if( s>r ) return +1; 4116 return 0; 4117 } 4118 } 4119 4120 /* 4121 ** Compare the values contained by the two memory cells, returning 4122 ** negative, zero or positive if pMem1 is less than, equal to, or greater 4123 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 4124 ** and reals) sorted numerically, followed by text ordered by the collating 4125 ** sequence pColl and finally blob's ordered by memcmp(). 4126 ** 4127 ** Two NULL values are considered equal by this function. 4128 */ 4129 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 4130 int f1, f2; 4131 int combined_flags; 4132 4133 f1 = pMem1->flags; 4134 f2 = pMem2->flags; 4135 combined_flags = f1|f2; 4136 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); 4137 4138 /* If one value is NULL, it is less than the other. If both values 4139 ** are NULL, return 0. 4140 */ 4141 if( combined_flags&MEM_Null ){ 4142 return (f2&MEM_Null) - (f1&MEM_Null); 4143 } 4144 4145 /* At least one of the two values is a number 4146 */ 4147 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ 4148 testcase( combined_flags & MEM_Int ); 4149 testcase( combined_flags & MEM_Real ); 4150 testcase( combined_flags & MEM_IntReal ); 4151 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ 4152 testcase( f1 & f2 & MEM_Int ); 4153 testcase( f1 & f2 & MEM_IntReal ); 4154 if( pMem1->u.i < pMem2->u.i ) return -1; 4155 if( pMem1->u.i > pMem2->u.i ) return +1; 4156 return 0; 4157 } 4158 if( (f1 & f2 & MEM_Real)!=0 ){ 4159 if( pMem1->u.r < pMem2->u.r ) return -1; 4160 if( pMem1->u.r > pMem2->u.r ) return +1; 4161 return 0; 4162 } 4163 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ 4164 testcase( f1 & MEM_Int ); 4165 testcase( f1 & MEM_IntReal ); 4166 if( (f2&MEM_Real)!=0 ){ 4167 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 4168 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4169 if( pMem1->u.i < pMem2->u.i ) return -1; 4170 if( pMem1->u.i > pMem2->u.i ) return +1; 4171 return 0; 4172 }else{ 4173 return -1; 4174 } 4175 } 4176 if( (f1&MEM_Real)!=0 ){ 4177 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4178 testcase( f2 & MEM_Int ); 4179 testcase( f2 & MEM_IntReal ); 4180 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 4181 }else{ 4182 return -1; 4183 } 4184 } 4185 return +1; 4186 } 4187 4188 /* If one value is a string and the other is a blob, the string is less. 4189 ** If both are strings, compare using the collating functions. 4190 */ 4191 if( combined_flags&MEM_Str ){ 4192 if( (f1 & MEM_Str)==0 ){ 4193 return 1; 4194 } 4195 if( (f2 & MEM_Str)==0 ){ 4196 return -1; 4197 } 4198 4199 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 4200 assert( pMem1->enc==SQLITE_UTF8 || 4201 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 4202 4203 /* The collation sequence must be defined at this point, even if 4204 ** the user deletes the collation sequence after the vdbe program is 4205 ** compiled (this was not always the case). 4206 */ 4207 assert( !pColl || pColl->xCmp ); 4208 4209 if( pColl ){ 4210 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 4211 } 4212 /* If a NULL pointer was passed as the collate function, fall through 4213 ** to the blob case and use memcmp(). */ 4214 } 4215 4216 /* Both values must be blobs. Compare using memcmp(). */ 4217 return sqlite3BlobCompare(pMem1, pMem2); 4218 } 4219 4220 4221 /* 4222 ** The first argument passed to this function is a serial-type that 4223 ** corresponds to an integer - all values between 1 and 9 inclusive 4224 ** except 7. The second points to a buffer containing an integer value 4225 ** serialized according to serial_type. This function deserializes 4226 ** and returns the value. 4227 */ 4228 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 4229 u32 y; 4230 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 4231 switch( serial_type ){ 4232 case 0: 4233 case 1: 4234 testcase( aKey[0]&0x80 ); 4235 return ONE_BYTE_INT(aKey); 4236 case 2: 4237 testcase( aKey[0]&0x80 ); 4238 return TWO_BYTE_INT(aKey); 4239 case 3: 4240 testcase( aKey[0]&0x80 ); 4241 return THREE_BYTE_INT(aKey); 4242 case 4: { 4243 testcase( aKey[0]&0x80 ); 4244 y = FOUR_BYTE_UINT(aKey); 4245 return (i64)*(int*)&y; 4246 } 4247 case 5: { 4248 testcase( aKey[0]&0x80 ); 4249 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4250 } 4251 case 6: { 4252 u64 x = FOUR_BYTE_UINT(aKey); 4253 testcase( aKey[0]&0x80 ); 4254 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4255 return (i64)*(i64*)&x; 4256 } 4257 } 4258 4259 return (serial_type - 8); 4260 } 4261 4262 /* 4263 ** This function compares the two table rows or index records 4264 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 4265 ** or positive integer if key1 is less than, equal to or 4266 ** greater than key2. The {nKey1, pKey1} key must be a blob 4267 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 4268 ** key must be a parsed key such as obtained from 4269 ** sqlite3VdbeParseRecord. 4270 ** 4271 ** If argument bSkip is non-zero, it is assumed that the caller has already 4272 ** determined that the first fields of the keys are equal. 4273 ** 4274 ** Key1 and Key2 do not have to contain the same number of fields. If all 4275 ** fields that appear in both keys are equal, then pPKey2->default_rc is 4276 ** returned. 4277 ** 4278 ** If database corruption is discovered, set pPKey2->errCode to 4279 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 4280 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 4281 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 4282 */ 4283 int sqlite3VdbeRecordCompareWithSkip( 4284 int nKey1, const void *pKey1, /* Left key */ 4285 UnpackedRecord *pPKey2, /* Right key */ 4286 int bSkip /* If true, skip the first field */ 4287 ){ 4288 u32 d1; /* Offset into aKey[] of next data element */ 4289 int i; /* Index of next field to compare */ 4290 u32 szHdr1; /* Size of record header in bytes */ 4291 u32 idx1; /* Offset of first type in header */ 4292 int rc = 0; /* Return value */ 4293 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 4294 KeyInfo *pKeyInfo; 4295 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4296 Mem mem1; 4297 4298 /* If bSkip is true, then the caller has already determined that the first 4299 ** two elements in the keys are equal. Fix the various stack variables so 4300 ** that this routine begins comparing at the second field. */ 4301 if( bSkip ){ 4302 u32 s1; 4303 idx1 = 1 + getVarint32(&aKey1[1], s1); 4304 szHdr1 = aKey1[0]; 4305 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 4306 i = 1; 4307 pRhs++; 4308 }else{ 4309 idx1 = getVarint32(aKey1, szHdr1); 4310 d1 = szHdr1; 4311 i = 0; 4312 } 4313 if( d1>(unsigned)nKey1 ){ 4314 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4315 return 0; /* Corruption */ 4316 } 4317 4318 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4319 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 4320 || CORRUPT_DB ); 4321 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); 4322 assert( pPKey2->pKeyInfo->nKeyField>0 ); 4323 assert( idx1<=szHdr1 || CORRUPT_DB ); 4324 do{ 4325 u32 serial_type; 4326 4327 /* RHS is an integer */ 4328 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ 4329 testcase( pRhs->flags & MEM_Int ); 4330 testcase( pRhs->flags & MEM_IntReal ); 4331 serial_type = aKey1[idx1]; 4332 testcase( serial_type==12 ); 4333 if( serial_type>=10 ){ 4334 rc = +1; 4335 }else if( serial_type==0 ){ 4336 rc = -1; 4337 }else if( serial_type==7 ){ 4338 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4339 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4340 }else{ 4341 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4342 i64 rhs = pRhs->u.i; 4343 if( lhs<rhs ){ 4344 rc = -1; 4345 }else if( lhs>rhs ){ 4346 rc = +1; 4347 } 4348 } 4349 } 4350 4351 /* RHS is real */ 4352 else if( pRhs->flags & MEM_Real ){ 4353 serial_type = aKey1[idx1]; 4354 if( serial_type>=10 ){ 4355 /* Serial types 12 or greater are strings and blobs (greater than 4356 ** numbers). Types 10 and 11 are currently "reserved for future 4357 ** use", so it doesn't really matter what the results of comparing 4358 ** them to numberic values are. */ 4359 rc = +1; 4360 }else if( serial_type==0 ){ 4361 rc = -1; 4362 }else{ 4363 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4364 if( serial_type==7 ){ 4365 if( mem1.u.r<pRhs->u.r ){ 4366 rc = -1; 4367 }else if( mem1.u.r>pRhs->u.r ){ 4368 rc = +1; 4369 } 4370 }else{ 4371 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4372 } 4373 } 4374 } 4375 4376 /* RHS is a string */ 4377 else if( pRhs->flags & MEM_Str ){ 4378 getVarint32(&aKey1[idx1], serial_type); 4379 testcase( serial_type==12 ); 4380 if( serial_type<12 ){ 4381 rc = -1; 4382 }else if( !(serial_type & 0x01) ){ 4383 rc = +1; 4384 }else{ 4385 mem1.n = (serial_type - 12) / 2; 4386 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4387 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4388 if( (d1+mem1.n) > (unsigned)nKey1 4389 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i 4390 ){ 4391 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4392 return 0; /* Corruption */ 4393 }else if( pKeyInfo->aColl[i] ){ 4394 mem1.enc = pKeyInfo->enc; 4395 mem1.db = pKeyInfo->db; 4396 mem1.flags = MEM_Str; 4397 mem1.z = (char*)&aKey1[d1]; 4398 rc = vdbeCompareMemString( 4399 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4400 ); 4401 }else{ 4402 int nCmp = MIN(mem1.n, pRhs->n); 4403 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4404 if( rc==0 ) rc = mem1.n - pRhs->n; 4405 } 4406 } 4407 } 4408 4409 /* RHS is a blob */ 4410 else if( pRhs->flags & MEM_Blob ){ 4411 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4412 getVarint32(&aKey1[idx1], serial_type); 4413 testcase( serial_type==12 ); 4414 if( serial_type<12 || (serial_type & 0x01) ){ 4415 rc = -1; 4416 }else{ 4417 int nStr = (serial_type - 12) / 2; 4418 testcase( (d1+nStr)==(unsigned)nKey1 ); 4419 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4420 if( (d1+nStr) > (unsigned)nKey1 ){ 4421 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4422 return 0; /* Corruption */ 4423 }else if( pRhs->flags & MEM_Zero ){ 4424 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4425 rc = 1; 4426 }else{ 4427 rc = nStr - pRhs->u.nZero; 4428 } 4429 }else{ 4430 int nCmp = MIN(nStr, pRhs->n); 4431 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4432 if( rc==0 ) rc = nStr - pRhs->n; 4433 } 4434 } 4435 } 4436 4437 /* RHS is null */ 4438 else{ 4439 serial_type = aKey1[idx1]; 4440 rc = (serial_type!=0); 4441 } 4442 4443 if( rc!=0 ){ 4444 if( pPKey2->pKeyInfo->aSortOrder[i] ){ 4445 rc = -rc; 4446 } 4447 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4448 assert( mem1.szMalloc==0 ); /* See comment below */ 4449 return rc; 4450 } 4451 4452 i++; 4453 if( i==pPKey2->nField ) break; 4454 pRhs++; 4455 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4456 idx1 += sqlite3VarintLen(serial_type); 4457 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 ); 4458 4459 /* No memory allocation is ever used on mem1. Prove this using 4460 ** the following assert(). If the assert() fails, it indicates a 4461 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4462 assert( mem1.szMalloc==0 ); 4463 4464 /* rc==0 here means that one or both of the keys ran out of fields and 4465 ** all the fields up to that point were equal. Return the default_rc 4466 ** value. */ 4467 assert( CORRUPT_DB 4468 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4469 || pPKey2->pKeyInfo->db->mallocFailed 4470 ); 4471 pPKey2->eqSeen = 1; 4472 return pPKey2->default_rc; 4473 } 4474 int sqlite3VdbeRecordCompare( 4475 int nKey1, const void *pKey1, /* Left key */ 4476 UnpackedRecord *pPKey2 /* Right key */ 4477 ){ 4478 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4479 } 4480 4481 4482 /* 4483 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4484 ** that (a) the first field of pPKey2 is an integer, and (b) the 4485 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4486 ** byte (i.e. is less than 128). 4487 ** 4488 ** To avoid concerns about buffer overreads, this routine is only used 4489 ** on schemas where the maximum valid header size is 63 bytes or less. 4490 */ 4491 static int vdbeRecordCompareInt( 4492 int nKey1, const void *pKey1, /* Left key */ 4493 UnpackedRecord *pPKey2 /* Right key */ 4494 ){ 4495 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4496 int serial_type = ((const u8*)pKey1)[1]; 4497 int res; 4498 u32 y; 4499 u64 x; 4500 i64 v; 4501 i64 lhs; 4502 4503 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4504 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4505 switch( serial_type ){ 4506 case 1: { /* 1-byte signed integer */ 4507 lhs = ONE_BYTE_INT(aKey); 4508 testcase( lhs<0 ); 4509 break; 4510 } 4511 case 2: { /* 2-byte signed integer */ 4512 lhs = TWO_BYTE_INT(aKey); 4513 testcase( lhs<0 ); 4514 break; 4515 } 4516 case 3: { /* 3-byte signed integer */ 4517 lhs = THREE_BYTE_INT(aKey); 4518 testcase( lhs<0 ); 4519 break; 4520 } 4521 case 4: { /* 4-byte signed integer */ 4522 y = FOUR_BYTE_UINT(aKey); 4523 lhs = (i64)*(int*)&y; 4524 testcase( lhs<0 ); 4525 break; 4526 } 4527 case 5: { /* 6-byte signed integer */ 4528 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4529 testcase( lhs<0 ); 4530 break; 4531 } 4532 case 6: { /* 8-byte signed integer */ 4533 x = FOUR_BYTE_UINT(aKey); 4534 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4535 lhs = *(i64*)&x; 4536 testcase( lhs<0 ); 4537 break; 4538 } 4539 case 8: 4540 lhs = 0; 4541 break; 4542 case 9: 4543 lhs = 1; 4544 break; 4545 4546 /* This case could be removed without changing the results of running 4547 ** this code. Including it causes gcc to generate a faster switch 4548 ** statement (since the range of switch targets now starts at zero and 4549 ** is contiguous) but does not cause any duplicate code to be generated 4550 ** (as gcc is clever enough to combine the two like cases). Other 4551 ** compilers might be similar. */ 4552 case 0: case 7: 4553 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4554 4555 default: 4556 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4557 } 4558 4559 v = pPKey2->aMem[0].u.i; 4560 if( v>lhs ){ 4561 res = pPKey2->r1; 4562 }else if( v<lhs ){ 4563 res = pPKey2->r2; 4564 }else if( pPKey2->nField>1 ){ 4565 /* The first fields of the two keys are equal. Compare the trailing 4566 ** fields. */ 4567 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4568 }else{ 4569 /* The first fields of the two keys are equal and there are no trailing 4570 ** fields. Return pPKey2->default_rc in this case. */ 4571 res = pPKey2->default_rc; 4572 pPKey2->eqSeen = 1; 4573 } 4574 4575 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4576 return res; 4577 } 4578 4579 /* 4580 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4581 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4582 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4583 ** at the start of (pKey1/nKey1) fits in a single byte. 4584 */ 4585 static int vdbeRecordCompareString( 4586 int nKey1, const void *pKey1, /* Left key */ 4587 UnpackedRecord *pPKey2 /* Right key */ 4588 ){ 4589 const u8 *aKey1 = (const u8*)pKey1; 4590 int serial_type; 4591 int res; 4592 4593 assert( pPKey2->aMem[0].flags & MEM_Str ); 4594 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4595 getVarint32(&aKey1[1], serial_type); 4596 if( serial_type<12 ){ 4597 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4598 }else if( !(serial_type & 0x01) ){ 4599 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4600 }else{ 4601 int nCmp; 4602 int nStr; 4603 int szHdr = aKey1[0]; 4604 4605 nStr = (serial_type-12) / 2; 4606 if( (szHdr + nStr) > nKey1 ){ 4607 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4608 return 0; /* Corruption */ 4609 } 4610 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4611 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4612 4613 if( res>0 ){ 4614 res = pPKey2->r2; 4615 }else if( res<0 ){ 4616 res = pPKey2->r1; 4617 }else{ 4618 res = nStr - pPKey2->aMem[0].n; 4619 if( res==0 ){ 4620 if( pPKey2->nField>1 ){ 4621 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4622 }else{ 4623 res = pPKey2->default_rc; 4624 pPKey2->eqSeen = 1; 4625 } 4626 }else if( res>0 ){ 4627 res = pPKey2->r2; 4628 }else{ 4629 res = pPKey2->r1; 4630 } 4631 } 4632 } 4633 4634 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4635 || CORRUPT_DB 4636 || pPKey2->pKeyInfo->db->mallocFailed 4637 ); 4638 return res; 4639 } 4640 4641 /* 4642 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4643 ** suitable for comparing serialized records to the unpacked record passed 4644 ** as the only argument. 4645 */ 4646 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4647 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4648 ** that the size-of-header varint that occurs at the start of each record 4649 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4650 ** also assumes that it is safe to overread a buffer by at least the 4651 ** maximum possible legal header size plus 8 bytes. Because there is 4652 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4653 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4654 ** limit the size of the header to 64 bytes in cases where the first field 4655 ** is an integer. 4656 ** 4657 ** The easiest way to enforce this limit is to consider only records with 4658 ** 13 fields or less. If the first field is an integer, the maximum legal 4659 ** header size is (12*5 + 1 + 1) bytes. */ 4660 if( p->pKeyInfo->nAllField<=13 ){ 4661 int flags = p->aMem[0].flags; 4662 if( p->pKeyInfo->aSortOrder[0] ){ 4663 p->r1 = 1; 4664 p->r2 = -1; 4665 }else{ 4666 p->r1 = -1; 4667 p->r2 = 1; 4668 } 4669 if( (flags & MEM_Int) ){ 4670 return vdbeRecordCompareInt; 4671 } 4672 testcase( flags & MEM_Real ); 4673 testcase( flags & MEM_Null ); 4674 testcase( flags & MEM_Blob ); 4675 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 4676 && p->pKeyInfo->aColl[0]==0 4677 ){ 4678 assert( flags & MEM_Str ); 4679 return vdbeRecordCompareString; 4680 } 4681 } 4682 4683 return sqlite3VdbeRecordCompare; 4684 } 4685 4686 /* 4687 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4688 ** Read the rowid (the last field in the record) and store it in *rowid. 4689 ** Return SQLITE_OK if everything works, or an error code otherwise. 4690 ** 4691 ** pCur might be pointing to text obtained from a corrupt database file. 4692 ** So the content cannot be trusted. Do appropriate checks on the content. 4693 */ 4694 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4695 i64 nCellKey = 0; 4696 int rc; 4697 u32 szHdr; /* Size of the header */ 4698 u32 typeRowid; /* Serial type of the rowid */ 4699 u32 lenRowid; /* Size of the rowid */ 4700 Mem m, v; 4701 4702 /* Get the size of the index entry. Only indices entries of less 4703 ** than 2GiB are support - anything large must be database corruption. 4704 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4705 ** this code can safely assume that nCellKey is 32-bits 4706 */ 4707 assert( sqlite3BtreeCursorIsValid(pCur) ); 4708 nCellKey = sqlite3BtreePayloadSize(pCur); 4709 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4710 4711 /* Read in the complete content of the index entry */ 4712 sqlite3VdbeMemInit(&m, db, 0); 4713 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4714 if( rc ){ 4715 return rc; 4716 } 4717 4718 /* The index entry must begin with a header size */ 4719 (void)getVarint32((u8*)m.z, szHdr); 4720 testcase( szHdr==3 ); 4721 testcase( szHdr==m.n ); 4722 testcase( szHdr>0x7fffffff ); 4723 assert( m.n>=0 ); 4724 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ 4725 goto idx_rowid_corruption; 4726 } 4727 4728 /* The last field of the index should be an integer - the ROWID. 4729 ** Verify that the last entry really is an integer. */ 4730 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 4731 testcase( typeRowid==1 ); 4732 testcase( typeRowid==2 ); 4733 testcase( typeRowid==3 ); 4734 testcase( typeRowid==4 ); 4735 testcase( typeRowid==5 ); 4736 testcase( typeRowid==6 ); 4737 testcase( typeRowid==8 ); 4738 testcase( typeRowid==9 ); 4739 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4740 goto idx_rowid_corruption; 4741 } 4742 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4743 testcase( (u32)m.n==szHdr+lenRowid ); 4744 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4745 goto idx_rowid_corruption; 4746 } 4747 4748 /* Fetch the integer off the end of the index record */ 4749 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4750 *rowid = v.u.i; 4751 sqlite3VdbeMemRelease(&m); 4752 return SQLITE_OK; 4753 4754 /* Jump here if database corruption is detected after m has been 4755 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4756 idx_rowid_corruption: 4757 testcase( m.szMalloc!=0 ); 4758 sqlite3VdbeMemRelease(&m); 4759 return SQLITE_CORRUPT_BKPT; 4760 } 4761 4762 /* 4763 ** Compare the key of the index entry that cursor pC is pointing to against 4764 ** the key string in pUnpacked. Write into *pRes a number 4765 ** that is negative, zero, or positive if pC is less than, equal to, 4766 ** or greater than pUnpacked. Return SQLITE_OK on success. 4767 ** 4768 ** pUnpacked is either created without a rowid or is truncated so that it 4769 ** omits the rowid at the end. The rowid at the end of the index entry 4770 ** is ignored as well. Hence, this routine only compares the prefixes 4771 ** of the keys prior to the final rowid, not the entire key. 4772 */ 4773 int sqlite3VdbeIdxKeyCompare( 4774 sqlite3 *db, /* Database connection */ 4775 VdbeCursor *pC, /* The cursor to compare against */ 4776 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4777 int *res /* Write the comparison result here */ 4778 ){ 4779 i64 nCellKey = 0; 4780 int rc; 4781 BtCursor *pCur; 4782 Mem m; 4783 4784 assert( pC->eCurType==CURTYPE_BTREE ); 4785 pCur = pC->uc.pCursor; 4786 assert( sqlite3BtreeCursorIsValid(pCur) ); 4787 nCellKey = sqlite3BtreePayloadSize(pCur); 4788 /* nCellKey will always be between 0 and 0xffffffff because of the way 4789 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4790 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4791 *res = 0; 4792 return SQLITE_CORRUPT_BKPT; 4793 } 4794 sqlite3VdbeMemInit(&m, db, 0); 4795 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4796 if( rc ){ 4797 return rc; 4798 } 4799 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); 4800 sqlite3VdbeMemRelease(&m); 4801 return SQLITE_OK; 4802 } 4803 4804 /* 4805 ** This routine sets the value to be returned by subsequent calls to 4806 ** sqlite3_changes() on the database handle 'db'. 4807 */ 4808 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 4809 assert( sqlite3_mutex_held(db->mutex) ); 4810 db->nChange = nChange; 4811 db->nTotalChange += nChange; 4812 } 4813 4814 /* 4815 ** Set a flag in the vdbe to update the change counter when it is finalised 4816 ** or reset. 4817 */ 4818 void sqlite3VdbeCountChanges(Vdbe *v){ 4819 v->changeCntOn = 1; 4820 } 4821 4822 /* 4823 ** Mark every prepared statement associated with a database connection 4824 ** as expired. 4825 ** 4826 ** An expired statement means that recompilation of the statement is 4827 ** recommend. Statements expire when things happen that make their 4828 ** programs obsolete. Removing user-defined functions or collating 4829 ** sequences, or changing an authorization function are the types of 4830 ** things that make prepared statements obsolete. 4831 ** 4832 ** If iCode is 1, then expiration is advisory. The statement should 4833 ** be reprepared before being restarted, but if it is already running 4834 ** it is allowed to run to completion. 4835 ** 4836 ** Internally, this function just sets the Vdbe.expired flag on all 4837 ** prepared statements. The flag is set to 1 for an immediate expiration 4838 ** and set to 2 for an advisory expiration. 4839 */ 4840 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ 4841 Vdbe *p; 4842 for(p = db->pVdbe; p; p=p->pNext){ 4843 p->expired = iCode+1; 4844 } 4845 } 4846 4847 /* 4848 ** Return the database associated with the Vdbe. 4849 */ 4850 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 4851 return v->db; 4852 } 4853 4854 /* 4855 ** Return the SQLITE_PREPARE flags for a Vdbe. 4856 */ 4857 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 4858 return v->prepFlags; 4859 } 4860 4861 /* 4862 ** Return a pointer to an sqlite3_value structure containing the value bound 4863 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 4864 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 4865 ** constants) to the value before returning it. 4866 ** 4867 ** The returned value must be freed by the caller using sqlite3ValueFree(). 4868 */ 4869 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 4870 assert( iVar>0 ); 4871 if( v ){ 4872 Mem *pMem = &v->aVar[iVar-1]; 4873 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 4874 if( 0==(pMem->flags & MEM_Null) ){ 4875 sqlite3_value *pRet = sqlite3ValueNew(v->db); 4876 if( pRet ){ 4877 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 4878 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 4879 } 4880 return pRet; 4881 } 4882 } 4883 return 0; 4884 } 4885 4886 /* 4887 ** Configure SQL variable iVar so that binding a new value to it signals 4888 ** to sqlite3_reoptimize() that re-preparing the statement may result 4889 ** in a better query plan. 4890 */ 4891 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 4892 assert( iVar>0 ); 4893 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 4894 if( iVar>=32 ){ 4895 v->expmask |= 0x80000000; 4896 }else{ 4897 v->expmask |= ((u32)1 << (iVar-1)); 4898 } 4899 } 4900 4901 /* 4902 ** Cause a function to throw an error if it was call from OP_PureFunc 4903 ** rather than OP_Function. 4904 ** 4905 ** OP_PureFunc means that the function must be deterministic, and should 4906 ** throw an error if it is given inputs that would make it non-deterministic. 4907 ** This routine is invoked by date/time functions that use non-deterministic 4908 ** features such as 'now'. 4909 */ 4910 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 4911 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 4912 if( pCtx->pVdbe==0 ) return 1; 4913 #endif 4914 if( pCtx->pVdbe->aOp[pCtx->iOp].opcode==OP_PureFunc ){ 4915 sqlite3_result_error(pCtx, 4916 "non-deterministic function in index expression or CHECK constraint", 4917 -1); 4918 return 0; 4919 } 4920 return 1; 4921 } 4922 4923 #ifndef SQLITE_OMIT_VIRTUALTABLE 4924 /* 4925 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 4926 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 4927 ** in memory obtained from sqlite3DbMalloc). 4928 */ 4929 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 4930 if( pVtab->zErrMsg ){ 4931 sqlite3 *db = p->db; 4932 sqlite3DbFree(db, p->zErrMsg); 4933 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 4934 sqlite3_free(pVtab->zErrMsg); 4935 pVtab->zErrMsg = 0; 4936 } 4937 } 4938 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4939 4940 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4941 4942 /* 4943 ** If the second argument is not NULL, release any allocations associated 4944 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 4945 ** structure itself, using sqlite3DbFree(). 4946 ** 4947 ** This function is used to free UnpackedRecord structures allocated by 4948 ** the vdbeUnpackRecord() function found in vdbeapi.c. 4949 */ 4950 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 4951 if( p ){ 4952 int i; 4953 for(i=0; i<nField; i++){ 4954 Mem *pMem = &p->aMem[i]; 4955 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem); 4956 } 4957 sqlite3DbFreeNN(db, p); 4958 } 4959 } 4960 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4961 4962 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4963 /* 4964 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 4965 ** then cursor passed as the second argument should point to the row about 4966 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 4967 ** the required value will be read from the row the cursor points to. 4968 */ 4969 void sqlite3VdbePreUpdateHook( 4970 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 4971 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 4972 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 4973 const char *zDb, /* Database name */ 4974 Table *pTab, /* Modified table */ 4975 i64 iKey1, /* Initial key value */ 4976 int iReg /* Register for new.* record */ 4977 ){ 4978 sqlite3 *db = v->db; 4979 i64 iKey2; 4980 PreUpdate preupdate; 4981 const char *zTbl = pTab->zName; 4982 static const u8 fakeSortOrder = 0; 4983 4984 assert( db->pPreUpdate==0 ); 4985 memset(&preupdate, 0, sizeof(PreUpdate)); 4986 if( HasRowid(pTab)==0 ){ 4987 iKey1 = iKey2 = 0; 4988 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 4989 }else{ 4990 if( op==SQLITE_UPDATE ){ 4991 iKey2 = v->aMem[iReg].u.i; 4992 }else{ 4993 iKey2 = iKey1; 4994 } 4995 } 4996 4997 assert( pCsr->nField==pTab->nCol 4998 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 4999 ); 5000 5001 preupdate.v = v; 5002 preupdate.pCsr = pCsr; 5003 preupdate.op = op; 5004 preupdate.iNewReg = iReg; 5005 preupdate.keyinfo.db = db; 5006 preupdate.keyinfo.enc = ENC(db); 5007 preupdate.keyinfo.nKeyField = pTab->nCol; 5008 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder; 5009 preupdate.iKey1 = iKey1; 5010 preupdate.iKey2 = iKey2; 5011 preupdate.pTab = pTab; 5012 5013 db->pPreUpdate = &preupdate; 5014 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 5015 db->pPreUpdate = 0; 5016 sqlite3DbFree(db, preupdate.aRecord); 5017 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 5018 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 5019 if( preupdate.aNew ){ 5020 int i; 5021 for(i=0; i<pCsr->nField; i++){ 5022 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 5023 } 5024 sqlite3DbFreeNN(db, preupdate.aNew); 5025 } 5026 } 5027 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5028