1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior 14 ** to version 2.8.7, all this code was combined into the vdbe.c source file. 15 ** But that file was getting too big so this subroutines were split out. 16 */ 17 #include "sqliteInt.h" 18 #include "vdbeInt.h" 19 20 21 22 /* 23 ** When debugging the code generator in a symbolic debugger, one can 24 ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed 25 ** as they are added to the instruction stream. 26 */ 27 #ifdef SQLITE_DEBUG 28 int sqlite3VdbeAddopTrace = 0; 29 #endif 30 31 32 /* 33 ** Create a new virtual database engine. 34 */ 35 Vdbe *sqlite3VdbeCreate(sqlite3 *db){ 36 Vdbe *p; 37 p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); 38 if( p==0 ) return 0; 39 p->db = db; 40 if( db->pVdbe ){ 41 db->pVdbe->pPrev = p; 42 } 43 p->pNext = db->pVdbe; 44 p->pPrev = 0; 45 db->pVdbe = p; 46 p->magic = VDBE_MAGIC_INIT; 47 return p; 48 } 49 50 /* 51 ** Remember the SQL string for a prepared statement. 52 */ 53 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ 54 assert( isPrepareV2==1 || isPrepareV2==0 ); 55 if( p==0 ) return; 56 #ifdef SQLITE_OMIT_TRACE 57 if( !isPrepareV2 ) return; 58 #endif 59 assert( p->zSql==0 ); 60 p->zSql = sqlite3DbStrNDup(p->db, z, n); 61 p->isPrepareV2 = (u8)isPrepareV2; 62 } 63 64 /* 65 ** Return the SQL associated with a prepared statement 66 */ 67 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 68 Vdbe *p = (Vdbe *)pStmt; 69 return (p && p->isPrepareV2) ? p->zSql : 0; 70 } 71 72 /* 73 ** Swap all content between two VDBE structures. 74 */ 75 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 76 Vdbe tmp, *pTmp; 77 char *zTmp; 78 tmp = *pA; 79 *pA = *pB; 80 *pB = tmp; 81 pTmp = pA->pNext; 82 pA->pNext = pB->pNext; 83 pB->pNext = pTmp; 84 pTmp = pA->pPrev; 85 pA->pPrev = pB->pPrev; 86 pB->pPrev = pTmp; 87 zTmp = pA->zSql; 88 pA->zSql = pB->zSql; 89 pB->zSql = zTmp; 90 pB->isPrepareV2 = pA->isPrepareV2; 91 } 92 93 #ifdef SQLITE_DEBUG 94 /* 95 ** Turn tracing on or off 96 */ 97 void sqlite3VdbeTrace(Vdbe *p, FILE *trace){ 98 p->trace = trace; 99 } 100 #endif 101 102 /* 103 ** Resize the Vdbe.aOp array so that it is at least one op larger than 104 ** it was. 105 ** 106 ** If an out-of-memory error occurs while resizing the array, return 107 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain 108 ** unchanged (this is so that any opcodes already allocated can be 109 ** correctly deallocated along with the rest of the Vdbe). 110 */ 111 static int growOpArray(Vdbe *p){ 112 VdbeOp *pNew; 113 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 114 pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op)); 115 if( pNew ){ 116 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op); 117 p->aOp = pNew; 118 } 119 return (pNew ? SQLITE_OK : SQLITE_NOMEM); 120 } 121 122 /* 123 ** Add a new instruction to the list of instructions current in the 124 ** VDBE. Return the address of the new instruction. 125 ** 126 ** Parameters: 127 ** 128 ** p Pointer to the VDBE 129 ** 130 ** op The opcode for this instruction 131 ** 132 ** p1, p2, p3 Operands 133 ** 134 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 135 ** the sqlite3VdbeChangeP4() function to change the value of the P4 136 ** operand. 137 */ 138 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 139 int i; 140 VdbeOp *pOp; 141 142 i = p->nOp; 143 assert( p->magic==VDBE_MAGIC_INIT ); 144 assert( op>0 && op<0xff ); 145 if( p->nOpAlloc<=i ){ 146 if( growOpArray(p) ){ 147 return 1; 148 } 149 } 150 p->nOp++; 151 pOp = &p->aOp[i]; 152 pOp->opcode = (u8)op; 153 pOp->p5 = 0; 154 pOp->p1 = p1; 155 pOp->p2 = p2; 156 pOp->p3 = p3; 157 pOp->p4.p = 0; 158 pOp->p4type = P4_NOTUSED; 159 p->expired = 0; 160 #ifdef SQLITE_DEBUG 161 pOp->zComment = 0; 162 if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]); 163 #endif 164 #ifdef VDBE_PROFILE 165 pOp->cycles = 0; 166 pOp->cnt = 0; 167 #endif 168 return i; 169 } 170 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 171 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 172 } 173 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 174 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 175 } 176 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 177 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 178 } 179 180 181 /* 182 ** Add an opcode that includes the p4 value as a pointer. 183 */ 184 int sqlite3VdbeAddOp4( 185 Vdbe *p, /* Add the opcode to this VM */ 186 int op, /* The new opcode */ 187 int p1, /* The P1 operand */ 188 int p2, /* The P2 operand */ 189 int p3, /* The P3 operand */ 190 const char *zP4, /* The P4 operand */ 191 int p4type /* P4 operand type */ 192 ){ 193 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 194 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 195 return addr; 196 } 197 198 /* 199 ** Add an opcode that includes the p4 value as an integer. 200 */ 201 int sqlite3VdbeAddOp4Int( 202 Vdbe *p, /* Add the opcode to this VM */ 203 int op, /* The new opcode */ 204 int p1, /* The P1 operand */ 205 int p2, /* The P2 operand */ 206 int p3, /* The P3 operand */ 207 int p4 /* The P4 operand as an integer */ 208 ){ 209 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 210 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32); 211 return addr; 212 } 213 214 /* 215 ** Create a new symbolic label for an instruction that has yet to be 216 ** coded. The symbolic label is really just a negative number. The 217 ** label can be used as the P2 value of an operation. Later, when 218 ** the label is resolved to a specific address, the VDBE will scan 219 ** through its operation list and change all values of P2 which match 220 ** the label into the resolved address. 221 ** 222 ** The VDBE knows that a P2 value is a label because labels are 223 ** always negative and P2 values are suppose to be non-negative. 224 ** Hence, a negative P2 value is a label that has yet to be resolved. 225 ** 226 ** Zero is returned if a malloc() fails. 227 */ 228 int sqlite3VdbeMakeLabel(Vdbe *p){ 229 int i; 230 i = p->nLabel++; 231 assert( p->magic==VDBE_MAGIC_INIT ); 232 if( i>=p->nLabelAlloc ){ 233 int n = p->nLabelAlloc*2 + 5; 234 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 235 n*sizeof(p->aLabel[0])); 236 p->nLabelAlloc = sqlite3DbMallocSize(p->db, p->aLabel)/sizeof(p->aLabel[0]); 237 } 238 if( p->aLabel ){ 239 p->aLabel[i] = -1; 240 } 241 return -1-i; 242 } 243 244 /* 245 ** Resolve label "x" to be the address of the next instruction to 246 ** be inserted. The parameter "x" must have been obtained from 247 ** a prior call to sqlite3VdbeMakeLabel(). 248 */ 249 void sqlite3VdbeResolveLabel(Vdbe *p, int x){ 250 int j = -1-x; 251 assert( p->magic==VDBE_MAGIC_INIT ); 252 assert( j>=0 && j<p->nLabel ); 253 if( p->aLabel ){ 254 p->aLabel[j] = p->nOp; 255 } 256 } 257 258 /* 259 ** Mark the VDBE as one that can only be run one time. 260 */ 261 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 262 p->runOnlyOnce = 1; 263 } 264 265 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 266 267 /* 268 ** The following type and function are used to iterate through all opcodes 269 ** in a Vdbe main program and each of the sub-programs (triggers) it may 270 ** invoke directly or indirectly. It should be used as follows: 271 ** 272 ** Op *pOp; 273 ** VdbeOpIter sIter; 274 ** 275 ** memset(&sIter, 0, sizeof(sIter)); 276 ** sIter.v = v; // v is of type Vdbe* 277 ** while( (pOp = opIterNext(&sIter)) ){ 278 ** // Do something with pOp 279 ** } 280 ** sqlite3DbFree(v->db, sIter.apSub); 281 ** 282 */ 283 typedef struct VdbeOpIter VdbeOpIter; 284 struct VdbeOpIter { 285 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 286 SubProgram **apSub; /* Array of subprograms */ 287 int nSub; /* Number of entries in apSub */ 288 int iAddr; /* Address of next instruction to return */ 289 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 290 }; 291 static Op *opIterNext(VdbeOpIter *p){ 292 Vdbe *v = p->v; 293 Op *pRet = 0; 294 Op *aOp; 295 int nOp; 296 297 if( p->iSub<=p->nSub ){ 298 299 if( p->iSub==0 ){ 300 aOp = v->aOp; 301 nOp = v->nOp; 302 }else{ 303 aOp = p->apSub[p->iSub-1]->aOp; 304 nOp = p->apSub[p->iSub-1]->nOp; 305 } 306 assert( p->iAddr<nOp ); 307 308 pRet = &aOp[p->iAddr]; 309 p->iAddr++; 310 if( p->iAddr==nOp ){ 311 p->iSub++; 312 p->iAddr = 0; 313 } 314 315 if( pRet->p4type==P4_SUBPROGRAM ){ 316 int nByte = (p->nSub+1)*sizeof(SubProgram*); 317 int j; 318 for(j=0; j<p->nSub; j++){ 319 if( p->apSub[j]==pRet->p4.pProgram ) break; 320 } 321 if( j==p->nSub ){ 322 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 323 if( !p->apSub ){ 324 pRet = 0; 325 }else{ 326 p->apSub[p->nSub++] = pRet->p4.pProgram; 327 } 328 } 329 } 330 } 331 332 return pRet; 333 } 334 335 /* 336 ** Check if the program stored in the VM associated with pParse may 337 ** throw an ABORT exception (causing the statement, but not entire transaction 338 ** to be rolled back). This condition is true if the main program or any 339 ** sub-programs contains any of the following: 340 ** 341 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 342 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 343 ** * OP_Destroy 344 ** * OP_VUpdate 345 ** * OP_VRename 346 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 347 ** 348 ** Then check that the value of Parse.mayAbort is true if an 349 ** ABORT may be thrown, or false otherwise. Return true if it does 350 ** match, or false otherwise. This function is intended to be used as 351 ** part of an assert statement in the compiler. Similar to: 352 ** 353 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 354 */ 355 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 356 int hasAbort = 0; 357 Op *pOp; 358 VdbeOpIter sIter; 359 memset(&sIter, 0, sizeof(sIter)); 360 sIter.v = v; 361 362 while( (pOp = opIterNext(&sIter))!=0 ){ 363 int opcode = pOp->opcode; 364 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 365 #ifndef SQLITE_OMIT_FOREIGN_KEY 366 || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1) 367 #endif 368 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 369 && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 370 ){ 371 hasAbort = 1; 372 break; 373 } 374 } 375 sqlite3DbFree(v->db, sIter.apSub); 376 377 /* Return true if hasAbort==mayAbort. Or if a malloc failure occured. 378 ** If malloc failed, then the while() loop above may not have iterated 379 ** through all opcodes and hasAbort may be set incorrectly. Return 380 ** true for this case to prevent the assert() in the callers frame 381 ** from failing. */ 382 return ( v->db->mallocFailed || hasAbort==mayAbort ); 383 } 384 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 385 386 /* 387 ** Loop through the program looking for P2 values that are negative 388 ** on jump instructions. Each such value is a label. Resolve the 389 ** label by setting the P2 value to its correct non-zero value. 390 ** 391 ** This routine is called once after all opcodes have been inserted. 392 ** 393 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 394 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by 395 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array. 396 ** 397 ** The Op.opflags field is set on all opcodes. 398 */ 399 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 400 int i; 401 int nMaxArgs = *pMaxFuncArgs; 402 Op *pOp; 403 int *aLabel = p->aLabel; 404 p->readOnly = 1; 405 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ 406 u8 opcode = pOp->opcode; 407 408 pOp->opflags = sqlite3OpcodeProperty[opcode]; 409 if( opcode==OP_Function || opcode==OP_AggStep ){ 410 if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5; 411 }else if( opcode==OP_Transaction && pOp->p2!=0 ){ 412 p->readOnly = 0; 413 #ifndef SQLITE_OMIT_VIRTUALTABLE 414 }else if( opcode==OP_VUpdate ){ 415 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 416 }else if( opcode==OP_VFilter ){ 417 int n; 418 assert( p->nOp - i >= 3 ); 419 assert( pOp[-1].opcode==OP_Integer ); 420 n = pOp[-1].p1; 421 if( n>nMaxArgs ) nMaxArgs = n; 422 #endif 423 } 424 425 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){ 426 assert( -1-pOp->p2<p->nLabel ); 427 pOp->p2 = aLabel[-1-pOp->p2]; 428 } 429 } 430 sqlite3DbFree(p->db, p->aLabel); 431 p->aLabel = 0; 432 433 *pMaxFuncArgs = nMaxArgs; 434 } 435 436 /* 437 ** Return the address of the next instruction to be inserted. 438 */ 439 int sqlite3VdbeCurrentAddr(Vdbe *p){ 440 assert( p->magic==VDBE_MAGIC_INIT ); 441 return p->nOp; 442 } 443 444 /* 445 ** This function returns a pointer to the array of opcodes associated with 446 ** the Vdbe passed as the first argument. It is the callers responsibility 447 ** to arrange for the returned array to be eventually freed using the 448 ** vdbeFreeOpArray() function. 449 ** 450 ** Before returning, *pnOp is set to the number of entries in the returned 451 ** array. Also, *pnMaxArg is set to the larger of its current value and 452 ** the number of entries in the Vdbe.apArg[] array required to execute the 453 ** returned program. 454 */ 455 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 456 VdbeOp *aOp = p->aOp; 457 assert( aOp && !p->db->mallocFailed ); 458 459 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 460 assert( p->aMutex.nMutex==0 ); 461 462 resolveP2Values(p, pnMaxArg); 463 *pnOp = p->nOp; 464 p->aOp = 0; 465 return aOp; 466 } 467 468 /* 469 ** Add a whole list of operations to the operation stack. Return the 470 ** address of the first operation added. 471 */ 472 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ 473 int addr; 474 assert( p->magic==VDBE_MAGIC_INIT ); 475 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){ 476 return 0; 477 } 478 addr = p->nOp; 479 if( ALWAYS(nOp>0) ){ 480 int i; 481 VdbeOpList const *pIn = aOp; 482 for(i=0; i<nOp; i++, pIn++){ 483 int p2 = pIn->p2; 484 VdbeOp *pOut = &p->aOp[i+addr]; 485 pOut->opcode = pIn->opcode; 486 pOut->p1 = pIn->p1; 487 if( p2<0 && (sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP)!=0 ){ 488 pOut->p2 = addr + ADDR(p2); 489 }else{ 490 pOut->p2 = p2; 491 } 492 pOut->p3 = pIn->p3; 493 pOut->p4type = P4_NOTUSED; 494 pOut->p4.p = 0; 495 pOut->p5 = 0; 496 #ifdef SQLITE_DEBUG 497 pOut->zComment = 0; 498 if( sqlite3VdbeAddopTrace ){ 499 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); 500 } 501 #endif 502 } 503 p->nOp += nOp; 504 } 505 return addr; 506 } 507 508 /* 509 ** Change the value of the P1 operand for a specific instruction. 510 ** This routine is useful when a large program is loaded from a 511 ** static array using sqlite3VdbeAddOpList but we want to make a 512 ** few minor changes to the program. 513 */ 514 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ 515 assert( p!=0 ); 516 assert( addr>=0 ); 517 if( p->nOp>addr ){ 518 p->aOp[addr].p1 = val; 519 } 520 } 521 522 /* 523 ** Change the value of the P2 operand for a specific instruction. 524 ** This routine is useful for setting a jump destination. 525 */ 526 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ 527 assert( p!=0 ); 528 assert( addr>=0 ); 529 if( p->nOp>addr ){ 530 p->aOp[addr].p2 = val; 531 } 532 } 533 534 /* 535 ** Change the value of the P3 operand for a specific instruction. 536 */ 537 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ 538 assert( p!=0 ); 539 assert( addr>=0 ); 540 if( p->nOp>addr ){ 541 p->aOp[addr].p3 = val; 542 } 543 } 544 545 /* 546 ** Change the value of the P5 operand for the most recently 547 ** added operation. 548 */ 549 void sqlite3VdbeChangeP5(Vdbe *p, u8 val){ 550 assert( p!=0 ); 551 if( p->aOp ){ 552 assert( p->nOp>0 ); 553 p->aOp[p->nOp-1].p5 = val; 554 } 555 } 556 557 /* 558 ** Change the P2 operand of instruction addr so that it points to 559 ** the address of the next instruction to be coded. 560 */ 561 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 562 sqlite3VdbeChangeP2(p, addr, p->nOp); 563 } 564 565 566 /* 567 ** If the input FuncDef structure is ephemeral, then free it. If 568 ** the FuncDef is not ephermal, then do nothing. 569 */ 570 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 571 if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){ 572 sqlite3DbFree(db, pDef); 573 } 574 } 575 576 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 577 578 /* 579 ** Delete a P4 value if necessary. 580 */ 581 static void freeP4(sqlite3 *db, int p4type, void *p4){ 582 if( p4 ){ 583 assert( db ); 584 switch( p4type ){ 585 case P4_REAL: 586 case P4_INT64: 587 case P4_DYNAMIC: 588 case P4_KEYINFO: 589 case P4_INTARRAY: 590 case P4_KEYINFO_HANDOFF: { 591 sqlite3DbFree(db, p4); 592 break; 593 } 594 case P4_MPRINTF: { 595 if( db->pnBytesFreed==0 ) sqlite3_free(p4); 596 break; 597 } 598 case P4_VDBEFUNC: { 599 VdbeFunc *pVdbeFunc = (VdbeFunc *)p4; 600 freeEphemeralFunction(db, pVdbeFunc->pFunc); 601 if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0); 602 sqlite3DbFree(db, pVdbeFunc); 603 break; 604 } 605 case P4_FUNCDEF: { 606 freeEphemeralFunction(db, (FuncDef*)p4); 607 break; 608 } 609 case P4_MEM: { 610 if( db->pnBytesFreed==0 ){ 611 sqlite3ValueFree((sqlite3_value*)p4); 612 }else{ 613 Mem *p = (Mem*)p4; 614 sqlite3DbFree(db, p->zMalloc); 615 sqlite3DbFree(db, p); 616 } 617 break; 618 } 619 case P4_VTAB : { 620 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 621 break; 622 } 623 } 624 } 625 } 626 627 /* 628 ** Free the space allocated for aOp and any p4 values allocated for the 629 ** opcodes contained within. If aOp is not NULL it is assumed to contain 630 ** nOp entries. 631 */ 632 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 633 if( aOp ){ 634 Op *pOp; 635 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ 636 freeP4(db, pOp->p4type, pOp->p4.p); 637 #ifdef SQLITE_DEBUG 638 sqlite3DbFree(db, pOp->zComment); 639 #endif 640 } 641 } 642 sqlite3DbFree(db, aOp); 643 } 644 645 /* 646 ** Link the SubProgram object passed as the second argument into the linked 647 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 648 ** objects when the VM is no longer required. 649 */ 650 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 651 p->pNext = pVdbe->pProgram; 652 pVdbe->pProgram = p; 653 } 654 655 /* 656 ** Change N opcodes starting at addr to No-ops. 657 */ 658 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){ 659 if( p->aOp ){ 660 VdbeOp *pOp = &p->aOp[addr]; 661 sqlite3 *db = p->db; 662 while( N-- ){ 663 freeP4(db, pOp->p4type, pOp->p4.p); 664 memset(pOp, 0, sizeof(pOp[0])); 665 pOp->opcode = OP_Noop; 666 pOp++; 667 } 668 } 669 } 670 671 /* 672 ** Change the value of the P4 operand for a specific instruction. 673 ** This routine is useful when a large program is loaded from a 674 ** static array using sqlite3VdbeAddOpList but we want to make a 675 ** few minor changes to the program. 676 ** 677 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 678 ** the string is made into memory obtained from sqlite3_malloc(). 679 ** A value of n==0 means copy bytes of zP4 up to and including the 680 ** first null byte. If n>0 then copy n+1 bytes of zP4. 681 ** 682 ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure. 683 ** A copy is made of the KeyInfo structure into memory obtained from 684 ** sqlite3_malloc, to be freed when the Vdbe is finalized. 685 ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure 686 ** stored in memory that the caller has obtained from sqlite3_malloc. The 687 ** caller should not free the allocation, it will be freed when the Vdbe is 688 ** finalized. 689 ** 690 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 691 ** to a string or structure that is guaranteed to exist for the lifetime of 692 ** the Vdbe. In these cases we can just copy the pointer. 693 ** 694 ** If addr<0 then change P4 on the most recently inserted instruction. 695 */ 696 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 697 Op *pOp; 698 sqlite3 *db; 699 assert( p!=0 ); 700 db = p->db; 701 assert( p->magic==VDBE_MAGIC_INIT ); 702 if( p->aOp==0 || db->mallocFailed ){ 703 if ( n!=P4_KEYINFO && n!=P4_VTAB ) { 704 freeP4(db, n, (void*)*(char**)&zP4); 705 } 706 return; 707 } 708 assert( p->nOp>0 ); 709 assert( addr<p->nOp ); 710 if( addr<0 ){ 711 addr = p->nOp - 1; 712 } 713 pOp = &p->aOp[addr]; 714 freeP4(db, pOp->p4type, pOp->p4.p); 715 pOp->p4.p = 0; 716 if( n==P4_INT32 ){ 717 /* Note: this cast is safe, because the origin data point was an int 718 ** that was cast to a (const char *). */ 719 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 720 pOp->p4type = P4_INT32; 721 }else if( zP4==0 ){ 722 pOp->p4.p = 0; 723 pOp->p4type = P4_NOTUSED; 724 }else if( n==P4_KEYINFO ){ 725 KeyInfo *pKeyInfo; 726 int nField, nByte; 727 728 nField = ((KeyInfo*)zP4)->nField; 729 nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField; 730 pKeyInfo = sqlite3DbMallocRaw(0, nByte); 731 pOp->p4.pKeyInfo = pKeyInfo; 732 if( pKeyInfo ){ 733 u8 *aSortOrder; 734 memcpy((char*)pKeyInfo, zP4, nByte - nField); 735 aSortOrder = pKeyInfo->aSortOrder; 736 if( aSortOrder ){ 737 pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField]; 738 memcpy(pKeyInfo->aSortOrder, aSortOrder, nField); 739 } 740 pOp->p4type = P4_KEYINFO; 741 }else{ 742 p->db->mallocFailed = 1; 743 pOp->p4type = P4_NOTUSED; 744 } 745 }else if( n==P4_KEYINFO_HANDOFF ){ 746 pOp->p4.p = (void*)zP4; 747 pOp->p4type = P4_KEYINFO; 748 }else if( n==P4_VTAB ){ 749 pOp->p4.p = (void*)zP4; 750 pOp->p4type = P4_VTAB; 751 sqlite3VtabLock((VTable *)zP4); 752 assert( ((VTable *)zP4)->db==p->db ); 753 }else if( n<0 ){ 754 pOp->p4.p = (void*)zP4; 755 pOp->p4type = (signed char)n; 756 }else{ 757 if( n==0 ) n = sqlite3Strlen30(zP4); 758 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 759 pOp->p4type = P4_DYNAMIC; 760 } 761 } 762 763 #ifndef NDEBUG 764 /* 765 ** Change the comment on the the most recently coded instruction. Or 766 ** insert a No-op and add the comment to that new instruction. This 767 ** makes the code easier to read during debugging. None of this happens 768 ** in a production build. 769 */ 770 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 771 va_list ap; 772 if( !p ) return; 773 assert( p->nOp>0 || p->aOp==0 ); 774 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 775 if( p->nOp ){ 776 char **pz = &p->aOp[p->nOp-1].zComment; 777 va_start(ap, zFormat); 778 sqlite3DbFree(p->db, *pz); 779 *pz = sqlite3VMPrintf(p->db, zFormat, ap); 780 va_end(ap); 781 } 782 } 783 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 784 va_list ap; 785 if( !p ) return; 786 sqlite3VdbeAddOp0(p, OP_Noop); 787 assert( p->nOp>0 || p->aOp==0 ); 788 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 789 if( p->nOp ){ 790 char **pz = &p->aOp[p->nOp-1].zComment; 791 va_start(ap, zFormat); 792 sqlite3DbFree(p->db, *pz); 793 *pz = sqlite3VMPrintf(p->db, zFormat, ap); 794 va_end(ap); 795 } 796 } 797 #endif /* NDEBUG */ 798 799 /* 800 ** Return the opcode for a given address. If the address is -1, then 801 ** return the most recently inserted opcode. 802 ** 803 ** If a memory allocation error has occurred prior to the calling of this 804 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 805 ** is readable but not writable, though it is cast to a writable value. 806 ** The return of a dummy opcode allows the call to continue functioning 807 ** after a OOM fault without having to check to see if the return from 808 ** this routine is a valid pointer. But because the dummy.opcode is 0, 809 ** dummy will never be written to. This is verified by code inspection and 810 ** by running with Valgrind. 811 ** 812 ** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called 813 ** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE, 814 ** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as 815 ** a new VDBE is created. So we are free to set addr to p->nOp-1 without 816 ** having to double-check to make sure that the result is non-negative. But 817 ** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to 818 ** check the value of p->nOp-1 before continuing. 819 */ 820 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 821 /* C89 specifies that the constant "dummy" will be initialized to all 822 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 823 static const VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 824 assert( p->magic==VDBE_MAGIC_INIT ); 825 if( addr<0 ){ 826 #ifdef SQLITE_OMIT_TRACE 827 if( p->nOp==0 ) return (VdbeOp*)&dummy; 828 #endif 829 addr = p->nOp - 1; 830 } 831 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 832 if( p->db->mallocFailed ){ 833 return (VdbeOp*)&dummy; 834 }else{ 835 return &p->aOp[addr]; 836 } 837 } 838 839 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ 840 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 841 /* 842 ** Compute a string that describes the P4 parameter for an opcode. 843 ** Use zTemp for any required temporary buffer space. 844 */ 845 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 846 char *zP4 = zTemp; 847 assert( nTemp>=20 ); 848 switch( pOp->p4type ){ 849 case P4_KEYINFO_STATIC: 850 case P4_KEYINFO: { 851 int i, j; 852 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 853 sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField); 854 i = sqlite3Strlen30(zTemp); 855 for(j=0; j<pKeyInfo->nField; j++){ 856 CollSeq *pColl = pKeyInfo->aColl[j]; 857 if( pColl ){ 858 int n = sqlite3Strlen30(pColl->zName); 859 if( i+n>nTemp-6 ){ 860 memcpy(&zTemp[i],",...",4); 861 break; 862 } 863 zTemp[i++] = ','; 864 if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){ 865 zTemp[i++] = '-'; 866 } 867 memcpy(&zTemp[i], pColl->zName,n+1); 868 i += n; 869 }else if( i+4<nTemp-6 ){ 870 memcpy(&zTemp[i],",nil",4); 871 i += 4; 872 } 873 } 874 zTemp[i++] = ')'; 875 zTemp[i] = 0; 876 assert( i<nTemp ); 877 break; 878 } 879 case P4_COLLSEQ: { 880 CollSeq *pColl = pOp->p4.pColl; 881 sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName); 882 break; 883 } 884 case P4_FUNCDEF: { 885 FuncDef *pDef = pOp->p4.pFunc; 886 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); 887 break; 888 } 889 case P4_INT64: { 890 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); 891 break; 892 } 893 case P4_INT32: { 894 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); 895 break; 896 } 897 case P4_REAL: { 898 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal); 899 break; 900 } 901 case P4_MEM: { 902 Mem *pMem = pOp->p4.pMem; 903 assert( (pMem->flags & MEM_Null)==0 ); 904 if( pMem->flags & MEM_Str ){ 905 zP4 = pMem->z; 906 }else if( pMem->flags & MEM_Int ){ 907 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); 908 }else if( pMem->flags & MEM_Real ){ 909 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r); 910 }else{ 911 assert( pMem->flags & MEM_Blob ); 912 zP4 = "(blob)"; 913 } 914 break; 915 } 916 #ifndef SQLITE_OMIT_VIRTUALTABLE 917 case P4_VTAB: { 918 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 919 sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule); 920 break; 921 } 922 #endif 923 case P4_INTARRAY: { 924 sqlite3_snprintf(nTemp, zTemp, "intarray"); 925 break; 926 } 927 case P4_SUBPROGRAM: { 928 sqlite3_snprintf(nTemp, zTemp, "program"); 929 break; 930 } 931 default: { 932 zP4 = pOp->p4.z; 933 if( zP4==0 ){ 934 zP4 = zTemp; 935 zTemp[0] = 0; 936 } 937 } 938 } 939 assert( zP4!=0 ); 940 return zP4; 941 } 942 #endif 943 944 /* 945 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 946 ** 947 ** The prepared statement has to know in advance which Btree objects 948 ** will be used so that it can acquire mutexes on them all in sorted 949 ** order (via sqlite3VdbeMutexArrayEnter(). Mutexes are acquired 950 ** in order (and released in reverse order) to avoid deadlocks. 951 */ 952 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 953 int mask; 954 assert( i>=0 && i<p->db->nDb && i<sizeof(u32)*8 ); 955 assert( i<(int)sizeof(p->btreeMask)*8 ); 956 mask = ((u32)1)<<i; 957 if( (p->btreeMask & mask)==0 ){ 958 p->btreeMask |= mask; 959 sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt); 960 } 961 } 962 963 964 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 965 /* 966 ** Print a single opcode. This routine is used for debugging only. 967 */ 968 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ 969 char *zP4; 970 char zPtr[50]; 971 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n"; 972 if( pOut==0 ) pOut = stdout; 973 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 974 fprintf(pOut, zFormat1, pc, 975 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 976 #ifdef SQLITE_DEBUG 977 pOp->zComment ? pOp->zComment : "" 978 #else 979 "" 980 #endif 981 ); 982 fflush(pOut); 983 } 984 #endif 985 986 /* 987 ** Release an array of N Mem elements 988 */ 989 static void releaseMemArray(Mem *p, int N){ 990 if( p && N ){ 991 Mem *pEnd; 992 sqlite3 *db = p->db; 993 u8 malloc_failed = db->mallocFailed; 994 if( db->pnBytesFreed ){ 995 for(pEnd=&p[N]; p<pEnd; p++){ 996 sqlite3DbFree(db, p->zMalloc); 997 } 998 return; 999 } 1000 for(pEnd=&p[N]; p<pEnd; p++){ 1001 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1002 1003 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1004 ** that takes advantage of the fact that the memory cell value is 1005 ** being set to NULL after releasing any dynamic resources. 1006 ** 1007 ** The justification for duplicating code is that according to 1008 ** callgrind, this causes a certain test case to hit the CPU 4.7 1009 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1010 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1011 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1012 ** with no indexes using a single prepared INSERT statement, bind() 1013 ** and reset(). Inserts are grouped into a transaction. 1014 */ 1015 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ 1016 sqlite3VdbeMemRelease(p); 1017 }else if( p->zMalloc ){ 1018 sqlite3DbFree(db, p->zMalloc); 1019 p->zMalloc = 0; 1020 } 1021 1022 p->flags = MEM_Null; 1023 } 1024 db->mallocFailed = malloc_failed; 1025 } 1026 } 1027 1028 /* 1029 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1030 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1031 */ 1032 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1033 int i; 1034 Mem *aMem = VdbeFrameMem(p); 1035 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1036 for(i=0; i<p->nChildCsr; i++){ 1037 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1038 } 1039 releaseMemArray(aMem, p->nChildMem); 1040 sqlite3DbFree(p->v->db, p); 1041 } 1042 1043 #ifndef SQLITE_OMIT_EXPLAIN 1044 /* 1045 ** Give a listing of the program in the virtual machine. 1046 ** 1047 ** The interface is the same as sqlite3VdbeExec(). But instead of 1048 ** running the code, it invokes the callback once for each instruction. 1049 ** This feature is used to implement "EXPLAIN". 1050 ** 1051 ** When p->explain==1, each instruction is listed. When 1052 ** p->explain==2, only OP_Explain instructions are listed and these 1053 ** are shown in a different format. p->explain==2 is used to implement 1054 ** EXPLAIN QUERY PLAN. 1055 ** 1056 ** When p->explain==1, first the main program is listed, then each of 1057 ** the trigger subprograms are listed one by one. 1058 */ 1059 int sqlite3VdbeList( 1060 Vdbe *p /* The VDBE */ 1061 ){ 1062 int nRow; /* Stop when row count reaches this */ 1063 int nSub = 0; /* Number of sub-vdbes seen so far */ 1064 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1065 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1066 sqlite3 *db = p->db; /* The database connection */ 1067 int i; /* Loop counter */ 1068 int rc = SQLITE_OK; /* Return code */ 1069 Mem *pMem = p->pResultSet = &p->aMem[1]; /* First Mem of result set */ 1070 1071 assert( p->explain ); 1072 assert( p->magic==VDBE_MAGIC_RUN ); 1073 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1074 1075 /* Even though this opcode does not use dynamic strings for 1076 ** the result, result columns may become dynamic if the user calls 1077 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1078 */ 1079 releaseMemArray(pMem, 8); 1080 1081 if( p->rc==SQLITE_NOMEM ){ 1082 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1083 ** sqlite3_column_text16() failed. */ 1084 db->mallocFailed = 1; 1085 return SQLITE_ERROR; 1086 } 1087 1088 /* When the number of output rows reaches nRow, that means the 1089 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1090 ** nRow is the sum of the number of rows in the main program, plus 1091 ** the sum of the number of rows in all trigger subprograms encountered 1092 ** so far. The nRow value will increase as new trigger subprograms are 1093 ** encountered, but p->pc will eventually catch up to nRow. 1094 */ 1095 nRow = p->nOp; 1096 if( p->explain==1 ){ 1097 /* The first 8 memory cells are used for the result set. So we will 1098 ** commandeer the 9th cell to use as storage for an array of pointers 1099 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1100 ** cells. */ 1101 assert( p->nMem>9 ); 1102 pSub = &p->aMem[9]; 1103 if( pSub->flags&MEM_Blob ){ 1104 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1105 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1106 nSub = pSub->n/sizeof(Vdbe*); 1107 apSub = (SubProgram **)pSub->z; 1108 } 1109 for(i=0; i<nSub; i++){ 1110 nRow += apSub[i]->nOp; 1111 } 1112 } 1113 1114 do{ 1115 i = p->pc++; 1116 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); 1117 if( i>=nRow ){ 1118 p->rc = SQLITE_OK; 1119 rc = SQLITE_DONE; 1120 }else if( db->u1.isInterrupted ){ 1121 p->rc = SQLITE_INTERRUPT; 1122 rc = SQLITE_ERROR; 1123 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc)); 1124 }else{ 1125 char *z; 1126 Op *pOp; 1127 if( i<p->nOp ){ 1128 /* The output line number is small enough that we are still in the 1129 ** main program. */ 1130 pOp = &p->aOp[i]; 1131 }else{ 1132 /* We are currently listing subprograms. Figure out which one and 1133 ** pick up the appropriate opcode. */ 1134 int j; 1135 i -= p->nOp; 1136 for(j=0; i>=apSub[j]->nOp; j++){ 1137 i -= apSub[j]->nOp; 1138 } 1139 pOp = &apSub[j]->aOp[i]; 1140 } 1141 if( p->explain==1 ){ 1142 pMem->flags = MEM_Int; 1143 pMem->type = SQLITE_INTEGER; 1144 pMem->u.i = i; /* Program counter */ 1145 pMem++; 1146 1147 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1148 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1149 assert( pMem->z!=0 ); 1150 pMem->n = sqlite3Strlen30(pMem->z); 1151 pMem->type = SQLITE_TEXT; 1152 pMem->enc = SQLITE_UTF8; 1153 pMem++; 1154 1155 /* When an OP_Program opcode is encounter (the only opcode that has 1156 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1157 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1158 ** has not already been seen. 1159 */ 1160 if( pOp->p4type==P4_SUBPROGRAM ){ 1161 int nByte = (nSub+1)*sizeof(SubProgram*); 1162 int j; 1163 for(j=0; j<nSub; j++){ 1164 if( apSub[j]==pOp->p4.pProgram ) break; 1165 } 1166 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){ 1167 apSub = (SubProgram **)pSub->z; 1168 apSub[nSub++] = pOp->p4.pProgram; 1169 pSub->flags |= MEM_Blob; 1170 pSub->n = nSub*sizeof(SubProgram*); 1171 } 1172 } 1173 } 1174 1175 pMem->flags = MEM_Int; 1176 pMem->u.i = pOp->p1; /* P1 */ 1177 pMem->type = SQLITE_INTEGER; 1178 pMem++; 1179 1180 pMem->flags = MEM_Int; 1181 pMem->u.i = pOp->p2; /* P2 */ 1182 pMem->type = SQLITE_INTEGER; 1183 pMem++; 1184 1185 if( p->explain==1 ){ 1186 pMem->flags = MEM_Int; 1187 pMem->u.i = pOp->p3; /* P3 */ 1188 pMem->type = SQLITE_INTEGER; 1189 pMem++; 1190 } 1191 1192 if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */ 1193 assert( p->db->mallocFailed ); 1194 return SQLITE_ERROR; 1195 } 1196 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; 1197 z = displayP4(pOp, pMem->z, 32); 1198 if( z!=pMem->z ){ 1199 sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0); 1200 }else{ 1201 assert( pMem->z!=0 ); 1202 pMem->n = sqlite3Strlen30(pMem->z); 1203 pMem->enc = SQLITE_UTF8; 1204 } 1205 pMem->type = SQLITE_TEXT; 1206 pMem++; 1207 1208 if( p->explain==1 ){ 1209 if( sqlite3VdbeMemGrow(pMem, 4, 0) ){ 1210 assert( p->db->mallocFailed ); 1211 return SQLITE_ERROR; 1212 } 1213 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; 1214 pMem->n = 2; 1215 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1216 pMem->type = SQLITE_TEXT; 1217 pMem->enc = SQLITE_UTF8; 1218 pMem++; 1219 1220 #ifdef SQLITE_DEBUG 1221 if( pOp->zComment ){ 1222 pMem->flags = MEM_Str|MEM_Term; 1223 pMem->z = pOp->zComment; 1224 pMem->n = sqlite3Strlen30(pMem->z); 1225 pMem->enc = SQLITE_UTF8; 1226 pMem->type = SQLITE_TEXT; 1227 }else 1228 #endif 1229 { 1230 pMem->flags = MEM_Null; /* Comment */ 1231 pMem->type = SQLITE_NULL; 1232 } 1233 } 1234 1235 p->nResColumn = 8 - 5*(p->explain-1); 1236 p->rc = SQLITE_OK; 1237 rc = SQLITE_ROW; 1238 } 1239 return rc; 1240 } 1241 #endif /* SQLITE_OMIT_EXPLAIN */ 1242 1243 #ifdef SQLITE_DEBUG 1244 /* 1245 ** Print the SQL that was used to generate a VDBE program. 1246 */ 1247 void sqlite3VdbePrintSql(Vdbe *p){ 1248 int nOp = p->nOp; 1249 VdbeOp *pOp; 1250 if( nOp<1 ) return; 1251 pOp = &p->aOp[0]; 1252 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ 1253 const char *z = pOp->p4.z; 1254 while( sqlite3Isspace(*z) ) z++; 1255 printf("SQL: [%s]\n", z); 1256 } 1257 } 1258 #endif 1259 1260 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 1261 /* 1262 ** Print an IOTRACE message showing SQL content. 1263 */ 1264 void sqlite3VdbeIOTraceSql(Vdbe *p){ 1265 int nOp = p->nOp; 1266 VdbeOp *pOp; 1267 if( sqlite3IoTrace==0 ) return; 1268 if( nOp<1 ) return; 1269 pOp = &p->aOp[0]; 1270 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ 1271 int i, j; 1272 char z[1000]; 1273 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 1274 for(i=0; sqlite3Isspace(z[i]); i++){} 1275 for(j=0; z[i]; i++){ 1276 if( sqlite3Isspace(z[i]) ){ 1277 if( z[i-1]!=' ' ){ 1278 z[j++] = ' '; 1279 } 1280 }else{ 1281 z[j++] = z[i]; 1282 } 1283 } 1284 z[j] = 0; 1285 sqlite3IoTrace("SQL %s\n", z); 1286 } 1287 } 1288 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 1289 1290 /* 1291 ** Allocate space from a fixed size buffer and return a pointer to 1292 ** that space. If insufficient space is available, return NULL. 1293 ** 1294 ** The pBuf parameter is the initial value of a pointer which will 1295 ** receive the new memory. pBuf is normally NULL. If pBuf is not 1296 ** NULL, it means that memory space has already been allocated and that 1297 ** this routine should not allocate any new memory. When pBuf is not 1298 ** NULL simply return pBuf. Only allocate new memory space when pBuf 1299 ** is NULL. 1300 ** 1301 ** nByte is the number of bytes of space needed. 1302 ** 1303 ** *ppFrom points to available space and pEnd points to the end of the 1304 ** available space. When space is allocated, *ppFrom is advanced past 1305 ** the end of the allocated space. 1306 ** 1307 ** *pnByte is a counter of the number of bytes of space that have failed 1308 ** to allocate. If there is insufficient space in *ppFrom to satisfy the 1309 ** request, then increment *pnByte by the amount of the request. 1310 */ 1311 static void *allocSpace( 1312 void *pBuf, /* Where return pointer will be stored */ 1313 int nByte, /* Number of bytes to allocate */ 1314 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */ 1315 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */ 1316 int *pnByte /* If allocation cannot be made, increment *pnByte */ 1317 ){ 1318 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) ); 1319 if( pBuf ) return pBuf; 1320 nByte = ROUND8(nByte); 1321 if( &(*ppFrom)[nByte] <= pEnd ){ 1322 pBuf = (void*)*ppFrom; 1323 *ppFrom += nByte; 1324 }else{ 1325 *pnByte += nByte; 1326 } 1327 return pBuf; 1328 } 1329 1330 /* 1331 ** Prepare a virtual machine for execution. This involves things such 1332 ** as allocating stack space and initializing the program counter. 1333 ** After the VDBE has be prepped, it can be executed by one or more 1334 ** calls to sqlite3VdbeExec(). 1335 ** 1336 ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to 1337 ** VDBE_MAGIC_RUN. 1338 ** 1339 ** This function may be called more than once on a single virtual machine. 1340 ** The first call is made while compiling the SQL statement. Subsequent 1341 ** calls are made as part of the process of resetting a statement to be 1342 ** re-executed (from a call to sqlite3_reset()). The nVar, nMem, nCursor 1343 ** and isExplain parameters are only passed correct values the first time 1344 ** the function is called. On subsequent calls, from sqlite3_reset(), nVar 1345 ** is passed -1 and nMem, nCursor and isExplain are all passed zero. 1346 */ 1347 void sqlite3VdbeMakeReady( 1348 Vdbe *p, /* The VDBE */ 1349 int nVar, /* Number of '?' see in the SQL statement */ 1350 int nMem, /* Number of memory cells to allocate */ 1351 int nCursor, /* Number of cursors to allocate */ 1352 int nArg, /* Maximum number of args in SubPrograms */ 1353 int isExplain, /* True if the EXPLAIN keywords is present */ 1354 int usesStmtJournal /* True to set Vdbe.usesStmtJournal */ 1355 ){ 1356 int n; 1357 sqlite3 *db = p->db; 1358 1359 assert( p!=0 ); 1360 assert( p->magic==VDBE_MAGIC_INIT ); 1361 1362 /* There should be at least one opcode. 1363 */ 1364 assert( p->nOp>0 ); 1365 1366 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 1367 p->magic = VDBE_MAGIC_RUN; 1368 1369 /* For each cursor required, also allocate a memory cell. Memory 1370 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by 1371 ** the vdbe program. Instead they are used to allocate space for 1372 ** VdbeCursor/BtCursor structures. The blob of memory associated with 1373 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) 1374 ** stores the blob of memory associated with cursor 1, etc. 1375 ** 1376 ** See also: allocateCursor(). 1377 */ 1378 nMem += nCursor; 1379 1380 /* Allocate space for memory registers, SQL variables, VDBE cursors and 1381 ** an array to marshal SQL function arguments in. This is only done the 1382 ** first time this function is called for a given VDBE, not when it is 1383 ** being called from sqlite3_reset() to reset the virtual machine. 1384 */ 1385 if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){ 1386 u8 *zCsr = (u8 *)&p->aOp[p->nOp]; /* Memory avaliable for alloation */ 1387 u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc]; /* First byte past available mem */ 1388 int nByte; /* How much extra memory needed */ 1389 1390 resolveP2Values(p, &nArg); 1391 p->usesStmtJournal = (u8)usesStmtJournal; 1392 if( isExplain && nMem<10 ){ 1393 nMem = 10; 1394 } 1395 memset(zCsr, 0, zEnd-zCsr); 1396 zCsr += (zCsr - (u8*)0)&7; 1397 assert( EIGHT_BYTE_ALIGNMENT(zCsr) ); 1398 1399 /* Memory for registers, parameters, cursor, etc, is allocated in two 1400 ** passes. On the first pass, we try to reuse unused space at the 1401 ** end of the opcode array. If we are unable to satisfy all memory 1402 ** requirements by reusing the opcode array tail, then the second 1403 ** pass will fill in the rest using a fresh allocation. 1404 ** 1405 ** This two-pass approach that reuses as much memory as possible from 1406 ** the leftover space at the end of the opcode array can significantly 1407 ** reduce the amount of memory held by a prepared statement. 1408 */ 1409 do { 1410 nByte = 0; 1411 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte); 1412 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte); 1413 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte); 1414 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte); 1415 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*), 1416 &zCsr, zEnd, &nByte); 1417 if( nByte ){ 1418 p->pFree = sqlite3DbMallocZero(db, nByte); 1419 } 1420 zCsr = p->pFree; 1421 zEnd = &zCsr[nByte]; 1422 }while( nByte && !db->mallocFailed ); 1423 1424 p->nCursor = (u16)nCursor; 1425 if( p->aVar ){ 1426 p->nVar = (ynVar)nVar; 1427 for(n=0; n<nVar; n++){ 1428 p->aVar[n].flags = MEM_Null; 1429 p->aVar[n].db = db; 1430 } 1431 } 1432 if( p->aMem ){ 1433 p->aMem--; /* aMem[] goes from 1..nMem */ 1434 p->nMem = nMem; /* not from 0..nMem-1 */ 1435 for(n=1; n<=nMem; n++){ 1436 p->aMem[n].flags = MEM_Null; 1437 p->aMem[n].db = db; 1438 } 1439 } 1440 } 1441 #ifdef SQLITE_DEBUG 1442 for(n=1; n<p->nMem; n++){ 1443 assert( p->aMem[n].db==db ); 1444 } 1445 #endif 1446 1447 p->pc = -1; 1448 p->rc = SQLITE_OK; 1449 p->errorAction = OE_Abort; 1450 p->explain |= isExplain; 1451 p->magic = VDBE_MAGIC_RUN; 1452 p->nChange = 0; 1453 p->cacheCtr = 1; 1454 p->minWriteFileFormat = 255; 1455 p->iStatement = 0; 1456 p->nFkConstraint = 0; 1457 #ifdef VDBE_PROFILE 1458 { 1459 int i; 1460 for(i=0; i<p->nOp; i++){ 1461 p->aOp[i].cnt = 0; 1462 p->aOp[i].cycles = 0; 1463 } 1464 } 1465 #endif 1466 } 1467 1468 /* 1469 ** Close a VDBE cursor and release all the resources that cursor 1470 ** happens to hold. 1471 */ 1472 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 1473 if( pCx==0 ){ 1474 return; 1475 } 1476 if( pCx->pBt ){ 1477 sqlite3BtreeClose(pCx->pBt); 1478 /* The pCx->pCursor will be close automatically, if it exists, by 1479 ** the call above. */ 1480 }else if( pCx->pCursor ){ 1481 sqlite3BtreeCloseCursor(pCx->pCursor); 1482 } 1483 #ifndef SQLITE_OMIT_VIRTUALTABLE 1484 if( pCx->pVtabCursor ){ 1485 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; 1486 const sqlite3_module *pModule = pCx->pModule; 1487 p->inVtabMethod = 1; 1488 pModule->xClose(pVtabCursor); 1489 p->inVtabMethod = 0; 1490 } 1491 #endif 1492 } 1493 1494 /* 1495 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 1496 ** is used, for example, when a trigger sub-program is halted to restore 1497 ** control to the main program. 1498 */ 1499 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 1500 Vdbe *v = pFrame->v; 1501 v->aOp = pFrame->aOp; 1502 v->nOp = pFrame->nOp; 1503 v->aMem = pFrame->aMem; 1504 v->nMem = pFrame->nMem; 1505 v->apCsr = pFrame->apCsr; 1506 v->nCursor = pFrame->nCursor; 1507 v->db->lastRowid = pFrame->lastRowid; 1508 v->nChange = pFrame->nChange; 1509 return pFrame->pc; 1510 } 1511 1512 /* 1513 ** Close all cursors. 1514 ** 1515 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 1516 ** cell array. This is necessary as the memory cell array may contain 1517 ** pointers to VdbeFrame objects, which may in turn contain pointers to 1518 ** open cursors. 1519 */ 1520 static void closeAllCursors(Vdbe *p){ 1521 if( p->pFrame ){ 1522 VdbeFrame *pFrame = p->pFrame; 1523 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 1524 sqlite3VdbeFrameRestore(pFrame); 1525 } 1526 p->pFrame = 0; 1527 p->nFrame = 0; 1528 1529 if( p->apCsr ){ 1530 int i; 1531 for(i=0; i<p->nCursor; i++){ 1532 VdbeCursor *pC = p->apCsr[i]; 1533 if( pC ){ 1534 sqlite3VdbeFreeCursor(p, pC); 1535 p->apCsr[i] = 0; 1536 } 1537 } 1538 } 1539 if( p->aMem ){ 1540 releaseMemArray(&p->aMem[1], p->nMem); 1541 } 1542 } 1543 1544 /* 1545 ** Clean up the VM after execution. 1546 ** 1547 ** This routine will automatically close any cursors, lists, and/or 1548 ** sorters that were left open. It also deletes the values of 1549 ** variables in the aVar[] array. 1550 */ 1551 static void Cleanup(Vdbe *p){ 1552 sqlite3 *db = p->db; 1553 1554 #ifdef SQLITE_DEBUG 1555 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 1556 ** Vdbe.aMem[] arrays have already been cleaned up. */ 1557 int i; 1558 for(i=0; i<p->nCursor; i++) assert( p->apCsr==0 || p->apCsr[i]==0 ); 1559 for(i=1; i<=p->nMem; i++) assert( p->aMem==0 || p->aMem[i].flags==MEM_Null ); 1560 #endif 1561 1562 sqlite3DbFree(db, p->zErrMsg); 1563 p->zErrMsg = 0; 1564 p->pResultSet = 0; 1565 } 1566 1567 /* 1568 ** Set the number of result columns that will be returned by this SQL 1569 ** statement. This is now set at compile time, rather than during 1570 ** execution of the vdbe program so that sqlite3_column_count() can 1571 ** be called on an SQL statement before sqlite3_step(). 1572 */ 1573 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 1574 Mem *pColName; 1575 int n; 1576 sqlite3 *db = p->db; 1577 1578 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 1579 sqlite3DbFree(db, p->aColName); 1580 n = nResColumn*COLNAME_N; 1581 p->nResColumn = (u16)nResColumn; 1582 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n ); 1583 if( p->aColName==0 ) return; 1584 while( n-- > 0 ){ 1585 pColName->flags = MEM_Null; 1586 pColName->db = p->db; 1587 pColName++; 1588 } 1589 } 1590 1591 /* 1592 ** Set the name of the idx'th column to be returned by the SQL statement. 1593 ** zName must be a pointer to a nul terminated string. 1594 ** 1595 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 1596 ** 1597 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 1598 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 1599 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 1600 */ 1601 int sqlite3VdbeSetColName( 1602 Vdbe *p, /* Vdbe being configured */ 1603 int idx, /* Index of column zName applies to */ 1604 int var, /* One of the COLNAME_* constants */ 1605 const char *zName, /* Pointer to buffer containing name */ 1606 void (*xDel)(void*) /* Memory management strategy for zName */ 1607 ){ 1608 int rc; 1609 Mem *pColName; 1610 assert( idx<p->nResColumn ); 1611 assert( var<COLNAME_N ); 1612 if( p->db->mallocFailed ){ 1613 assert( !zName || xDel!=SQLITE_DYNAMIC ); 1614 return SQLITE_NOMEM; 1615 } 1616 assert( p->aColName!=0 ); 1617 pColName = &(p->aColName[idx+var*p->nResColumn]); 1618 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 1619 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 1620 return rc; 1621 } 1622 1623 /* 1624 ** A read or write transaction may or may not be active on database handle 1625 ** db. If a transaction is active, commit it. If there is a 1626 ** write-transaction spanning more than one database file, this routine 1627 ** takes care of the master journal trickery. 1628 */ 1629 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 1630 int i; 1631 int nTrans = 0; /* Number of databases with an active write-transaction */ 1632 int rc = SQLITE_OK; 1633 int needXcommit = 0; 1634 1635 #ifdef SQLITE_OMIT_VIRTUALTABLE 1636 /* With this option, sqlite3VtabSync() is defined to be simply 1637 ** SQLITE_OK so p is not used. 1638 */ 1639 UNUSED_PARAMETER(p); 1640 #endif 1641 1642 /* Before doing anything else, call the xSync() callback for any 1643 ** virtual module tables written in this transaction. This has to 1644 ** be done before determining whether a master journal file is 1645 ** required, as an xSync() callback may add an attached database 1646 ** to the transaction. 1647 */ 1648 rc = sqlite3VtabSync(db, &p->zErrMsg); 1649 1650 /* This loop determines (a) if the commit hook should be invoked and 1651 ** (b) how many database files have open write transactions, not 1652 ** including the temp database. (b) is important because if more than 1653 ** one database file has an open write transaction, a master journal 1654 ** file is required for an atomic commit. 1655 */ 1656 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 1657 Btree *pBt = db->aDb[i].pBt; 1658 if( sqlite3BtreeIsInTrans(pBt) ){ 1659 needXcommit = 1; 1660 if( i!=1 ) nTrans++; 1661 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt)); 1662 } 1663 } 1664 if( rc!=SQLITE_OK ){ 1665 return rc; 1666 } 1667 1668 /* If there are any write-transactions at all, invoke the commit hook */ 1669 if( needXcommit && db->xCommitCallback ){ 1670 rc = db->xCommitCallback(db->pCommitArg); 1671 if( rc ){ 1672 return SQLITE_CONSTRAINT; 1673 } 1674 } 1675 1676 /* The simple case - no more than one database file (not counting the 1677 ** TEMP database) has a transaction active. There is no need for the 1678 ** master-journal. 1679 ** 1680 ** If the return value of sqlite3BtreeGetFilename() is a zero length 1681 ** string, it means the main database is :memory: or a temp file. In 1682 ** that case we do not support atomic multi-file commits, so use the 1683 ** simple case then too. 1684 */ 1685 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 1686 || nTrans<=1 1687 ){ 1688 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 1689 Btree *pBt = db->aDb[i].pBt; 1690 if( pBt ){ 1691 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 1692 } 1693 } 1694 1695 /* Do the commit only if all databases successfully complete phase 1. 1696 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 1697 ** IO error while deleting or truncating a journal file. It is unlikely, 1698 ** but could happen. In this case abandon processing and return the error. 1699 */ 1700 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 1701 Btree *pBt = db->aDb[i].pBt; 1702 if( pBt ){ 1703 rc = sqlite3BtreeCommitPhaseTwo(pBt); 1704 } 1705 } 1706 if( rc==SQLITE_OK ){ 1707 sqlite3VtabCommit(db); 1708 } 1709 } 1710 1711 /* The complex case - There is a multi-file write-transaction active. 1712 ** This requires a master journal file to ensure the transaction is 1713 ** committed atomicly. 1714 */ 1715 #ifndef SQLITE_OMIT_DISKIO 1716 else{ 1717 sqlite3_vfs *pVfs = db->pVfs; 1718 int needSync = 0; 1719 char *zMaster = 0; /* File-name for the master journal */ 1720 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 1721 sqlite3_file *pMaster = 0; 1722 i64 offset = 0; 1723 int res; 1724 1725 /* Select a master journal file name */ 1726 do { 1727 u32 iRandom; 1728 sqlite3DbFree(db, zMaster); 1729 sqlite3_randomness(sizeof(iRandom), &iRandom); 1730 zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, iRandom&0x7fffffff); 1731 if( !zMaster ){ 1732 return SQLITE_NOMEM; 1733 } 1734 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 1735 }while( rc==SQLITE_OK && res ); 1736 if( rc==SQLITE_OK ){ 1737 /* Open the master journal. */ 1738 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 1739 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 1740 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 1741 ); 1742 } 1743 if( rc!=SQLITE_OK ){ 1744 sqlite3DbFree(db, zMaster); 1745 return rc; 1746 } 1747 1748 /* Write the name of each database file in the transaction into the new 1749 ** master journal file. If an error occurs at this point close 1750 ** and delete the master journal file. All the individual journal files 1751 ** still have 'null' as the master journal pointer, so they will roll 1752 ** back independently if a failure occurs. 1753 */ 1754 for(i=0; i<db->nDb; i++){ 1755 Btree *pBt = db->aDb[i].pBt; 1756 if( sqlite3BtreeIsInTrans(pBt) ){ 1757 char const *zFile = sqlite3BtreeGetJournalname(pBt); 1758 if( zFile==0 ){ 1759 continue; /* Ignore TEMP and :memory: databases */ 1760 } 1761 assert( zFile[0]!=0 ); 1762 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){ 1763 needSync = 1; 1764 } 1765 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 1766 offset += sqlite3Strlen30(zFile)+1; 1767 if( rc!=SQLITE_OK ){ 1768 sqlite3OsCloseFree(pMaster); 1769 sqlite3OsDelete(pVfs, zMaster, 0); 1770 sqlite3DbFree(db, zMaster); 1771 return rc; 1772 } 1773 } 1774 } 1775 1776 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 1777 ** flag is set this is not required. 1778 */ 1779 if( needSync 1780 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 1781 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 1782 ){ 1783 sqlite3OsCloseFree(pMaster); 1784 sqlite3OsDelete(pVfs, zMaster, 0); 1785 sqlite3DbFree(db, zMaster); 1786 return rc; 1787 } 1788 1789 /* Sync all the db files involved in the transaction. The same call 1790 ** sets the master journal pointer in each individual journal. If 1791 ** an error occurs here, do not delete the master journal file. 1792 ** 1793 ** If the error occurs during the first call to 1794 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 1795 ** master journal file will be orphaned. But we cannot delete it, 1796 ** in case the master journal file name was written into the journal 1797 ** file before the failure occurred. 1798 */ 1799 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 1800 Btree *pBt = db->aDb[i].pBt; 1801 if( pBt ){ 1802 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 1803 } 1804 } 1805 sqlite3OsCloseFree(pMaster); 1806 assert( rc!=SQLITE_BUSY ); 1807 if( rc!=SQLITE_OK ){ 1808 sqlite3DbFree(db, zMaster); 1809 return rc; 1810 } 1811 1812 /* Delete the master journal file. This commits the transaction. After 1813 ** doing this the directory is synced again before any individual 1814 ** transaction files are deleted. 1815 */ 1816 rc = sqlite3OsDelete(pVfs, zMaster, 1); 1817 sqlite3DbFree(db, zMaster); 1818 zMaster = 0; 1819 if( rc ){ 1820 return rc; 1821 } 1822 1823 /* All files and directories have already been synced, so the following 1824 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 1825 ** deleting or truncating journals. If something goes wrong while 1826 ** this is happening we don't really care. The integrity of the 1827 ** transaction is already guaranteed, but some stray 'cold' journals 1828 ** may be lying around. Returning an error code won't help matters. 1829 */ 1830 disable_simulated_io_errors(); 1831 sqlite3BeginBenignMalloc(); 1832 for(i=0; i<db->nDb; i++){ 1833 Btree *pBt = db->aDb[i].pBt; 1834 if( pBt ){ 1835 sqlite3BtreeCommitPhaseTwo(pBt); 1836 } 1837 } 1838 sqlite3EndBenignMalloc(); 1839 enable_simulated_io_errors(); 1840 1841 sqlite3VtabCommit(db); 1842 } 1843 #endif 1844 1845 return rc; 1846 } 1847 1848 /* 1849 ** This routine checks that the sqlite3.activeVdbeCnt count variable 1850 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 1851 ** currently active. An assertion fails if the two counts do not match. 1852 ** This is an internal self-check only - it is not an essential processing 1853 ** step. 1854 ** 1855 ** This is a no-op if NDEBUG is defined. 1856 */ 1857 #ifndef NDEBUG 1858 static void checkActiveVdbeCnt(sqlite3 *db){ 1859 Vdbe *p; 1860 int cnt = 0; 1861 int nWrite = 0; 1862 p = db->pVdbe; 1863 while( p ){ 1864 if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){ 1865 cnt++; 1866 if( p->readOnly==0 ) nWrite++; 1867 } 1868 p = p->pNext; 1869 } 1870 assert( cnt==db->activeVdbeCnt ); 1871 assert( nWrite==db->writeVdbeCnt ); 1872 } 1873 #else 1874 #define checkActiveVdbeCnt(x) 1875 #endif 1876 1877 /* 1878 ** For every Btree that in database connection db which 1879 ** has been modified, "trip" or invalidate each cursor in 1880 ** that Btree might have been modified so that the cursor 1881 ** can never be used again. This happens when a rollback 1882 *** occurs. We have to trip all the other cursors, even 1883 ** cursor from other VMs in different database connections, 1884 ** so that none of them try to use the data at which they 1885 ** were pointing and which now may have been changed due 1886 ** to the rollback. 1887 ** 1888 ** Remember that a rollback can delete tables complete and 1889 ** reorder rootpages. So it is not sufficient just to save 1890 ** the state of the cursor. We have to invalidate the cursor 1891 ** so that it is never used again. 1892 */ 1893 static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){ 1894 int i; 1895 for(i=0; i<db->nDb; i++){ 1896 Btree *p = db->aDb[i].pBt; 1897 if( p && sqlite3BtreeIsInTrans(p) ){ 1898 sqlite3BtreeTripAllCursors(p, SQLITE_ABORT); 1899 } 1900 } 1901 } 1902 1903 /* 1904 ** If the Vdbe passed as the first argument opened a statement-transaction, 1905 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 1906 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 1907 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 1908 ** statement transaction is commtted. 1909 ** 1910 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 1911 ** Otherwise SQLITE_OK. 1912 */ 1913 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 1914 sqlite3 *const db = p->db; 1915 int rc = SQLITE_OK; 1916 1917 /* If p->iStatement is greater than zero, then this Vdbe opened a 1918 ** statement transaction that should be closed here. The only exception 1919 ** is that an IO error may have occured, causing an emergency rollback. 1920 ** In this case (db->nStatement==0), and there is nothing to do. 1921 */ 1922 if( db->nStatement && p->iStatement ){ 1923 int i; 1924 const int iSavepoint = p->iStatement-1; 1925 1926 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 1927 assert( db->nStatement>0 ); 1928 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 1929 1930 for(i=0; i<db->nDb; i++){ 1931 int rc2 = SQLITE_OK; 1932 Btree *pBt = db->aDb[i].pBt; 1933 if( pBt ){ 1934 if( eOp==SAVEPOINT_ROLLBACK ){ 1935 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 1936 } 1937 if( rc2==SQLITE_OK ){ 1938 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 1939 } 1940 if( rc==SQLITE_OK ){ 1941 rc = rc2; 1942 } 1943 } 1944 } 1945 db->nStatement--; 1946 p->iStatement = 0; 1947 1948 /* If the statement transaction is being rolled back, also restore the 1949 ** database handles deferred constraint counter to the value it had when 1950 ** the statement transaction was opened. */ 1951 if( eOp==SAVEPOINT_ROLLBACK ){ 1952 db->nDeferredCons = p->nStmtDefCons; 1953 } 1954 } 1955 return rc; 1956 } 1957 1958 /* 1959 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1960 ** this routine obtains the mutex associated with each BtShared structure 1961 ** that may be accessed by the VM passed as an argument. In doing so it 1962 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1963 ** that the correct busy-handler callback is invoked if required. 1964 ** 1965 ** If SQLite is not threadsafe but does support shared-cache mode, then 1966 ** sqlite3BtreeEnterAll() is invoked to set the BtShared.db variables 1967 ** of all of BtShared structures accessible via the database handle 1968 ** associated with the VM. Of course only a subset of these structures 1969 ** will be accessed by the VM, and we could use Vdbe.btreeMask to figure 1970 ** that subset out, but there is no advantage to doing so. 1971 ** 1972 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1973 ** function is a no-op. 1974 */ 1975 #ifndef SQLITE_OMIT_SHARED_CACHE 1976 void sqlite3VdbeMutexArrayEnter(Vdbe *p){ 1977 #if SQLITE_THREADSAFE 1978 sqlite3BtreeMutexArrayEnter(&p->aMutex); 1979 #else 1980 sqlite3BtreeEnterAll(p->db); 1981 #endif 1982 } 1983 #endif 1984 1985 /* 1986 ** This function is called when a transaction opened by the database 1987 ** handle associated with the VM passed as an argument is about to be 1988 ** committed. If there are outstanding deferred foreign key constraint 1989 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 1990 ** 1991 ** If there are outstanding FK violations and this function returns 1992 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT and write 1993 ** an error message to it. Then return SQLITE_ERROR. 1994 */ 1995 #ifndef SQLITE_OMIT_FOREIGN_KEY 1996 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 1997 sqlite3 *db = p->db; 1998 if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){ 1999 p->rc = SQLITE_CONSTRAINT; 2000 p->errorAction = OE_Abort; 2001 sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed"); 2002 return SQLITE_ERROR; 2003 } 2004 return SQLITE_OK; 2005 } 2006 #endif 2007 2008 /* 2009 ** This routine is called the when a VDBE tries to halt. If the VDBE 2010 ** has made changes and is in autocommit mode, then commit those 2011 ** changes. If a rollback is needed, then do the rollback. 2012 ** 2013 ** This routine is the only way to move the state of a VM from 2014 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2015 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2016 ** 2017 ** Return an error code. If the commit could not complete because of 2018 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2019 ** means the close did not happen and needs to be repeated. 2020 */ 2021 int sqlite3VdbeHalt(Vdbe *p){ 2022 int rc; /* Used to store transient return codes */ 2023 sqlite3 *db = p->db; 2024 2025 /* This function contains the logic that determines if a statement or 2026 ** transaction will be committed or rolled back as a result of the 2027 ** execution of this virtual machine. 2028 ** 2029 ** If any of the following errors occur: 2030 ** 2031 ** SQLITE_NOMEM 2032 ** SQLITE_IOERR 2033 ** SQLITE_FULL 2034 ** SQLITE_INTERRUPT 2035 ** 2036 ** Then the internal cache might have been left in an inconsistent 2037 ** state. We need to rollback the statement transaction, if there is 2038 ** one, or the complete transaction if there is no statement transaction. 2039 */ 2040 2041 if( p->db->mallocFailed ){ 2042 p->rc = SQLITE_NOMEM; 2043 } 2044 closeAllCursors(p); 2045 if( p->magic!=VDBE_MAGIC_RUN ){ 2046 return SQLITE_OK; 2047 } 2048 checkActiveVdbeCnt(db); 2049 2050 /* No commit or rollback needed if the program never started */ 2051 if( p->pc>=0 ){ 2052 int mrc; /* Primary error code from p->rc */ 2053 int eStatementOp = 0; 2054 int isSpecialError; /* Set to true if a 'special' error */ 2055 2056 /* Lock all btrees used by the statement */ 2057 sqlite3VdbeMutexArrayEnter(p); 2058 2059 /* Check for one of the special errors */ 2060 mrc = p->rc & 0xff; 2061 assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */ 2062 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2063 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2064 if( isSpecialError ){ 2065 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2066 ** no rollback is necessary. Otherwise, at least a savepoint 2067 ** transaction must be rolled back to restore the database to a 2068 ** consistent state. 2069 ** 2070 ** Even if the statement is read-only, it is important to perform 2071 ** a statement or transaction rollback operation. If the error 2072 ** occured while writing to the journal, sub-journal or database 2073 ** file as part of an effort to free up cache space (see function 2074 ** pagerStress() in pager.c), the rollback is required to restore 2075 ** the pager to a consistent state. 2076 */ 2077 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2078 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2079 eStatementOp = SAVEPOINT_ROLLBACK; 2080 }else{ 2081 /* We are forced to roll back the active transaction. Before doing 2082 ** so, abort any other statements this handle currently has active. 2083 */ 2084 invalidateCursorsOnModifiedBtrees(db); 2085 sqlite3RollbackAll(db); 2086 sqlite3CloseSavepoints(db); 2087 db->autoCommit = 1; 2088 } 2089 } 2090 } 2091 2092 /* Check for immediate foreign key violations. */ 2093 if( p->rc==SQLITE_OK ){ 2094 sqlite3VdbeCheckFk(p, 0); 2095 } 2096 2097 /* If the auto-commit flag is set and this is the only active writer 2098 ** VM, then we do either a commit or rollback of the current transaction. 2099 ** 2100 ** Note: This block also runs if one of the special errors handled 2101 ** above has occurred. 2102 */ 2103 if( !sqlite3VtabInSync(db) 2104 && db->autoCommit 2105 && db->writeVdbeCnt==(p->readOnly==0) 2106 ){ 2107 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2108 if( sqlite3VdbeCheckFk(p, 1) ){ 2109 sqlite3BtreeMutexArrayLeave(&p->aMutex); 2110 return SQLITE_ERROR; 2111 } 2112 /* The auto-commit flag is true, the vdbe program was successful 2113 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2114 ** key constraints to hold up the transaction. This means a commit 2115 ** is required. */ 2116 rc = vdbeCommit(db, p); 2117 if( rc==SQLITE_BUSY ){ 2118 sqlite3BtreeMutexArrayLeave(&p->aMutex); 2119 return SQLITE_BUSY; 2120 }else if( rc!=SQLITE_OK ){ 2121 p->rc = rc; 2122 sqlite3RollbackAll(db); 2123 }else{ 2124 db->nDeferredCons = 0; 2125 sqlite3CommitInternalChanges(db); 2126 } 2127 }else{ 2128 sqlite3RollbackAll(db); 2129 } 2130 db->nStatement = 0; 2131 }else if( eStatementOp==0 ){ 2132 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2133 eStatementOp = SAVEPOINT_RELEASE; 2134 }else if( p->errorAction==OE_Abort ){ 2135 eStatementOp = SAVEPOINT_ROLLBACK; 2136 }else{ 2137 invalidateCursorsOnModifiedBtrees(db); 2138 sqlite3RollbackAll(db); 2139 sqlite3CloseSavepoints(db); 2140 db->autoCommit = 1; 2141 } 2142 } 2143 2144 /* If eStatementOp is non-zero, then a statement transaction needs to 2145 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2146 ** do so. If this operation returns an error, and the current statement 2147 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2148 ** current statement error code. 2149 ** 2150 ** Note that sqlite3VdbeCloseStatement() can only fail if eStatementOp 2151 ** is SAVEPOINT_ROLLBACK. But if p->rc==SQLITE_OK then eStatementOp 2152 ** must be SAVEPOINT_RELEASE. Hence the NEVER(p->rc==SQLITE_OK) in 2153 ** the following code. 2154 */ 2155 if( eStatementOp ){ 2156 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2157 if( rc ){ 2158 assert( eStatementOp==SAVEPOINT_ROLLBACK ); 2159 if( NEVER(p->rc==SQLITE_OK) || p->rc==SQLITE_CONSTRAINT ){ 2160 p->rc = rc; 2161 sqlite3DbFree(db, p->zErrMsg); 2162 p->zErrMsg = 0; 2163 } 2164 invalidateCursorsOnModifiedBtrees(db); 2165 sqlite3RollbackAll(db); 2166 sqlite3CloseSavepoints(db); 2167 db->autoCommit = 1; 2168 } 2169 } 2170 2171 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2172 ** has been rolled back, update the database connection change-counter. 2173 */ 2174 if( p->changeCntOn ){ 2175 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2176 sqlite3VdbeSetChanges(db, p->nChange); 2177 }else{ 2178 sqlite3VdbeSetChanges(db, 0); 2179 } 2180 p->nChange = 0; 2181 } 2182 2183 /* Rollback or commit any schema changes that occurred. */ 2184 if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){ 2185 sqlite3ResetInternalSchema(db, 0); 2186 db->flags = (db->flags | SQLITE_InternChanges); 2187 } 2188 2189 /* Release the locks */ 2190 sqlite3BtreeMutexArrayLeave(&p->aMutex); 2191 } 2192 2193 /* We have successfully halted and closed the VM. Record this fact. */ 2194 if( p->pc>=0 ){ 2195 db->activeVdbeCnt--; 2196 if( !p->readOnly ){ 2197 db->writeVdbeCnt--; 2198 } 2199 assert( db->activeVdbeCnt>=db->writeVdbeCnt ); 2200 } 2201 p->magic = VDBE_MAGIC_HALT; 2202 checkActiveVdbeCnt(db); 2203 if( p->db->mallocFailed ){ 2204 p->rc = SQLITE_NOMEM; 2205 } 2206 2207 /* If the auto-commit flag is set to true, then any locks that were held 2208 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2209 ** to invoke any required unlock-notify callbacks. 2210 */ 2211 if( db->autoCommit ){ 2212 sqlite3ConnectionUnlocked(db); 2213 } 2214 2215 assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 ); 2216 return SQLITE_OK; 2217 } 2218 2219 2220 /* 2221 ** Each VDBE holds the result of the most recent sqlite3_step() call 2222 ** in p->rc. This routine sets that result back to SQLITE_OK. 2223 */ 2224 void sqlite3VdbeResetStepResult(Vdbe *p){ 2225 p->rc = SQLITE_OK; 2226 } 2227 2228 /* 2229 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 2230 ** Write any error messages into *pzErrMsg. Return the result code. 2231 ** 2232 ** After this routine is run, the VDBE should be ready to be executed 2233 ** again. 2234 ** 2235 ** To look at it another way, this routine resets the state of the 2236 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 2237 ** VDBE_MAGIC_INIT. 2238 */ 2239 int sqlite3VdbeReset(Vdbe *p){ 2240 sqlite3 *db; 2241 db = p->db; 2242 2243 /* If the VM did not run to completion or if it encountered an 2244 ** error, then it might not have been halted properly. So halt 2245 ** it now. 2246 */ 2247 sqlite3VdbeHalt(p); 2248 2249 /* If the VDBE has be run even partially, then transfer the error code 2250 ** and error message from the VDBE into the main database structure. But 2251 ** if the VDBE has just been set to run but has not actually executed any 2252 ** instructions yet, leave the main database error information unchanged. 2253 */ 2254 if( p->pc>=0 ){ 2255 if( p->zErrMsg ){ 2256 sqlite3BeginBenignMalloc(); 2257 sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT); 2258 sqlite3EndBenignMalloc(); 2259 db->errCode = p->rc; 2260 sqlite3DbFree(db, p->zErrMsg); 2261 p->zErrMsg = 0; 2262 }else if( p->rc ){ 2263 sqlite3Error(db, p->rc, 0); 2264 }else{ 2265 sqlite3Error(db, SQLITE_OK, 0); 2266 } 2267 if( p->runOnlyOnce ) p->expired = 1; 2268 }else if( p->rc && p->expired ){ 2269 /* The expired flag was set on the VDBE before the first call 2270 ** to sqlite3_step(). For consistency (since sqlite3_step() was 2271 ** called), set the database error in this case as well. 2272 */ 2273 sqlite3Error(db, p->rc, 0); 2274 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 2275 sqlite3DbFree(db, p->zErrMsg); 2276 p->zErrMsg = 0; 2277 } 2278 2279 /* Reclaim all memory used by the VDBE 2280 */ 2281 Cleanup(p); 2282 2283 /* Save profiling information from this VDBE run. 2284 */ 2285 #ifdef VDBE_PROFILE 2286 { 2287 FILE *out = fopen("vdbe_profile.out", "a"); 2288 if( out ){ 2289 int i; 2290 fprintf(out, "---- "); 2291 for(i=0; i<p->nOp; i++){ 2292 fprintf(out, "%02x", p->aOp[i].opcode); 2293 } 2294 fprintf(out, "\n"); 2295 for(i=0; i<p->nOp; i++){ 2296 fprintf(out, "%6d %10lld %8lld ", 2297 p->aOp[i].cnt, 2298 p->aOp[i].cycles, 2299 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 2300 ); 2301 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 2302 } 2303 fclose(out); 2304 } 2305 } 2306 #endif 2307 p->magic = VDBE_MAGIC_INIT; 2308 return p->rc & db->errMask; 2309 } 2310 2311 /* 2312 ** Clean up and delete a VDBE after execution. Return an integer which is 2313 ** the result code. Write any error message text into *pzErrMsg. 2314 */ 2315 int sqlite3VdbeFinalize(Vdbe *p){ 2316 int rc = SQLITE_OK; 2317 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 2318 rc = sqlite3VdbeReset(p); 2319 assert( (rc & p->db->errMask)==rc ); 2320 } 2321 sqlite3VdbeDelete(p); 2322 return rc; 2323 } 2324 2325 /* 2326 ** Call the destructor for each auxdata entry in pVdbeFunc for which 2327 ** the corresponding bit in mask is clear. Auxdata entries beyond 31 2328 ** are always destroyed. To destroy all auxdata entries, call this 2329 ** routine with mask==0. 2330 */ 2331 void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){ 2332 int i; 2333 for(i=0; i<pVdbeFunc->nAux; i++){ 2334 struct AuxData *pAux = &pVdbeFunc->apAux[i]; 2335 if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){ 2336 if( pAux->xDelete ){ 2337 pAux->xDelete(pAux->pAux); 2338 } 2339 pAux->pAux = 0; 2340 } 2341 } 2342 } 2343 2344 /* 2345 ** Free all memory associated with the Vdbe passed as the second argument. 2346 ** The difference between this function and sqlite3VdbeDelete() is that 2347 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 2348 ** the database connection. 2349 */ 2350 void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){ 2351 SubProgram *pSub, *pNext; 2352 assert( p->db==0 || p->db==db ); 2353 releaseMemArray(p->aVar, p->nVar); 2354 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2355 for(pSub=p->pProgram; pSub; pSub=pNext){ 2356 pNext = pSub->pNext; 2357 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 2358 sqlite3DbFree(db, pSub); 2359 } 2360 vdbeFreeOpArray(db, p->aOp, p->nOp); 2361 sqlite3DbFree(db, p->aLabel); 2362 sqlite3DbFree(db, p->aColName); 2363 sqlite3DbFree(db, p->zSql); 2364 sqlite3DbFree(db, p->pFree); 2365 sqlite3DbFree(db, p); 2366 } 2367 2368 /* 2369 ** Delete an entire VDBE. 2370 */ 2371 void sqlite3VdbeDelete(Vdbe *p){ 2372 sqlite3 *db; 2373 2374 if( NEVER(p==0) ) return; 2375 db = p->db; 2376 if( p->pPrev ){ 2377 p->pPrev->pNext = p->pNext; 2378 }else{ 2379 assert( db->pVdbe==p ); 2380 db->pVdbe = p->pNext; 2381 } 2382 if( p->pNext ){ 2383 p->pNext->pPrev = p->pPrev; 2384 } 2385 p->magic = VDBE_MAGIC_DEAD; 2386 p->db = 0; 2387 sqlite3VdbeDeleteObject(db, p); 2388 } 2389 2390 /* 2391 ** Make sure the cursor p is ready to read or write the row to which it 2392 ** was last positioned. Return an error code if an OOM fault or I/O error 2393 ** prevents us from positioning the cursor to its correct position. 2394 ** 2395 ** If a MoveTo operation is pending on the given cursor, then do that 2396 ** MoveTo now. If no move is pending, check to see if the row has been 2397 ** deleted out from under the cursor and if it has, mark the row as 2398 ** a NULL row. 2399 ** 2400 ** If the cursor is already pointing to the correct row and that row has 2401 ** not been deleted out from under the cursor, then this routine is a no-op. 2402 */ 2403 int sqlite3VdbeCursorMoveto(VdbeCursor *p){ 2404 if( p->deferredMoveto ){ 2405 int res, rc; 2406 #ifdef SQLITE_TEST 2407 extern int sqlite3_search_count; 2408 #endif 2409 assert( p->isTable ); 2410 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res); 2411 if( rc ) return rc; 2412 p->lastRowid = p->movetoTarget; 2413 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 2414 p->rowidIsValid = 1; 2415 #ifdef SQLITE_TEST 2416 sqlite3_search_count++; 2417 #endif 2418 p->deferredMoveto = 0; 2419 p->cacheStatus = CACHE_STALE; 2420 }else if( ALWAYS(p->pCursor) ){ 2421 int hasMoved; 2422 int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved); 2423 if( rc ) return rc; 2424 if( hasMoved ){ 2425 p->cacheStatus = CACHE_STALE; 2426 p->nullRow = 1; 2427 } 2428 } 2429 return SQLITE_OK; 2430 } 2431 2432 /* 2433 ** The following functions: 2434 ** 2435 ** sqlite3VdbeSerialType() 2436 ** sqlite3VdbeSerialTypeLen() 2437 ** sqlite3VdbeSerialLen() 2438 ** sqlite3VdbeSerialPut() 2439 ** sqlite3VdbeSerialGet() 2440 ** 2441 ** encapsulate the code that serializes values for storage in SQLite 2442 ** data and index records. Each serialized value consists of a 2443 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 2444 ** integer, stored as a varint. 2445 ** 2446 ** In an SQLite index record, the serial type is stored directly before 2447 ** the blob of data that it corresponds to. In a table record, all serial 2448 ** types are stored at the start of the record, and the blobs of data at 2449 ** the end. Hence these functions allow the caller to handle the 2450 ** serial-type and data blob seperately. 2451 ** 2452 ** The following table describes the various storage classes for data: 2453 ** 2454 ** serial type bytes of data type 2455 ** -------------- --------------- --------------- 2456 ** 0 0 NULL 2457 ** 1 1 signed integer 2458 ** 2 2 signed integer 2459 ** 3 3 signed integer 2460 ** 4 4 signed integer 2461 ** 5 6 signed integer 2462 ** 6 8 signed integer 2463 ** 7 8 IEEE float 2464 ** 8 0 Integer constant 0 2465 ** 9 0 Integer constant 1 2466 ** 10,11 reserved for expansion 2467 ** N>=12 and even (N-12)/2 BLOB 2468 ** N>=13 and odd (N-13)/2 text 2469 ** 2470 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 2471 ** of SQLite will not understand those serial types. 2472 */ 2473 2474 /* 2475 ** Return the serial-type for the value stored in pMem. 2476 */ 2477 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ 2478 int flags = pMem->flags; 2479 int n; 2480 2481 if( flags&MEM_Null ){ 2482 return 0; 2483 } 2484 if( flags&MEM_Int ){ 2485 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 2486 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 2487 i64 i = pMem->u.i; 2488 u64 u; 2489 if( file_format>=4 && (i&1)==i ){ 2490 return 8+(u32)i; 2491 } 2492 u = i<0 ? -i : i; 2493 if( u<=127 ) return 1; 2494 if( u<=32767 ) return 2; 2495 if( u<=8388607 ) return 3; 2496 if( u<=2147483647 ) return 4; 2497 if( u<=MAX_6BYTE ) return 5; 2498 return 6; 2499 } 2500 if( flags&MEM_Real ){ 2501 return 7; 2502 } 2503 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 2504 n = pMem->n; 2505 if( flags & MEM_Zero ){ 2506 n += pMem->u.nZero; 2507 } 2508 assert( n>=0 ); 2509 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 2510 } 2511 2512 /* 2513 ** Return the length of the data corresponding to the supplied serial-type. 2514 */ 2515 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 2516 if( serial_type>=12 ){ 2517 return (serial_type-12)/2; 2518 }else{ 2519 static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 }; 2520 return aSize[serial_type]; 2521 } 2522 } 2523 2524 /* 2525 ** If we are on an architecture with mixed-endian floating 2526 ** points (ex: ARM7) then swap the lower 4 bytes with the 2527 ** upper 4 bytes. Return the result. 2528 ** 2529 ** For most architectures, this is a no-op. 2530 ** 2531 ** (later): It is reported to me that the mixed-endian problem 2532 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 2533 ** that early versions of GCC stored the two words of a 64-bit 2534 ** float in the wrong order. And that error has been propagated 2535 ** ever since. The blame is not necessarily with GCC, though. 2536 ** GCC might have just copying the problem from a prior compiler. 2537 ** I am also told that newer versions of GCC that follow a different 2538 ** ABI get the byte order right. 2539 ** 2540 ** Developers using SQLite on an ARM7 should compile and run their 2541 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 2542 ** enabled, some asserts below will ensure that the byte order of 2543 ** floating point values is correct. 2544 ** 2545 ** (2007-08-30) Frank van Vugt has studied this problem closely 2546 ** and has send his findings to the SQLite developers. Frank 2547 ** writes that some Linux kernels offer floating point hardware 2548 ** emulation that uses only 32-bit mantissas instead of a full 2549 ** 48-bits as required by the IEEE standard. (This is the 2550 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 2551 ** byte swapping becomes very complicated. To avoid problems, 2552 ** the necessary byte swapping is carried out using a 64-bit integer 2553 ** rather than a 64-bit float. Frank assures us that the code here 2554 ** works for him. We, the developers, have no way to independently 2555 ** verify this, but Frank seems to know what he is talking about 2556 ** so we trust him. 2557 */ 2558 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 2559 static u64 floatSwap(u64 in){ 2560 union { 2561 u64 r; 2562 u32 i[2]; 2563 } u; 2564 u32 t; 2565 2566 u.r = in; 2567 t = u.i[0]; 2568 u.i[0] = u.i[1]; 2569 u.i[1] = t; 2570 return u.r; 2571 } 2572 # define swapMixedEndianFloat(X) X = floatSwap(X) 2573 #else 2574 # define swapMixedEndianFloat(X) 2575 #endif 2576 2577 /* 2578 ** Write the serialized data blob for the value stored in pMem into 2579 ** buf. It is assumed that the caller has allocated sufficient space. 2580 ** Return the number of bytes written. 2581 ** 2582 ** nBuf is the amount of space left in buf[]. nBuf must always be 2583 ** large enough to hold the entire field. Except, if the field is 2584 ** a blob with a zero-filled tail, then buf[] might be just the right 2585 ** size to hold everything except for the zero-filled tail. If buf[] 2586 ** is only big enough to hold the non-zero prefix, then only write that 2587 ** prefix into buf[]. But if buf[] is large enough to hold both the 2588 ** prefix and the tail then write the prefix and set the tail to all 2589 ** zeros. 2590 ** 2591 ** Return the number of bytes actually written into buf[]. The number 2592 ** of bytes in the zero-filled tail is included in the return value only 2593 ** if those bytes were zeroed in buf[]. 2594 */ 2595 u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){ 2596 u32 serial_type = sqlite3VdbeSerialType(pMem, file_format); 2597 u32 len; 2598 2599 /* Integer and Real */ 2600 if( serial_type<=7 && serial_type>0 ){ 2601 u64 v; 2602 u32 i; 2603 if( serial_type==7 ){ 2604 assert( sizeof(v)==sizeof(pMem->r) ); 2605 memcpy(&v, &pMem->r, sizeof(v)); 2606 swapMixedEndianFloat(v); 2607 }else{ 2608 v = pMem->u.i; 2609 } 2610 len = i = sqlite3VdbeSerialTypeLen(serial_type); 2611 assert( len<=(u32)nBuf ); 2612 while( i-- ){ 2613 buf[i] = (u8)(v&0xFF); 2614 v >>= 8; 2615 } 2616 return len; 2617 } 2618 2619 /* String or blob */ 2620 if( serial_type>=12 ){ 2621 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 2622 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 2623 assert( pMem->n<=nBuf ); 2624 len = pMem->n; 2625 memcpy(buf, pMem->z, len); 2626 if( pMem->flags & MEM_Zero ){ 2627 len += pMem->u.nZero; 2628 assert( nBuf>=0 ); 2629 if( len > (u32)nBuf ){ 2630 len = (u32)nBuf; 2631 } 2632 memset(&buf[pMem->n], 0, len-pMem->n); 2633 } 2634 return len; 2635 } 2636 2637 /* NULL or constants 0 or 1 */ 2638 return 0; 2639 } 2640 2641 /* 2642 ** Deserialize the data blob pointed to by buf as serial type serial_type 2643 ** and store the result in pMem. Return the number of bytes read. 2644 */ 2645 u32 sqlite3VdbeSerialGet( 2646 const unsigned char *buf, /* Buffer to deserialize from */ 2647 u32 serial_type, /* Serial type to deserialize */ 2648 Mem *pMem /* Memory cell to write value into */ 2649 ){ 2650 switch( serial_type ){ 2651 case 10: /* Reserved for future use */ 2652 case 11: /* Reserved for future use */ 2653 case 0: { /* NULL */ 2654 pMem->flags = MEM_Null; 2655 break; 2656 } 2657 case 1: { /* 1-byte signed integer */ 2658 pMem->u.i = (signed char)buf[0]; 2659 pMem->flags = MEM_Int; 2660 return 1; 2661 } 2662 case 2: { /* 2-byte signed integer */ 2663 pMem->u.i = (((signed char)buf[0])<<8) | buf[1]; 2664 pMem->flags = MEM_Int; 2665 return 2; 2666 } 2667 case 3: { /* 3-byte signed integer */ 2668 pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2]; 2669 pMem->flags = MEM_Int; 2670 return 3; 2671 } 2672 case 4: { /* 4-byte signed integer */ 2673 pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; 2674 pMem->flags = MEM_Int; 2675 return 4; 2676 } 2677 case 5: { /* 6-byte signed integer */ 2678 u64 x = (((signed char)buf[0])<<8) | buf[1]; 2679 u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5]; 2680 x = (x<<32) | y; 2681 pMem->u.i = *(i64*)&x; 2682 pMem->flags = MEM_Int; 2683 return 6; 2684 } 2685 case 6: /* 8-byte signed integer */ 2686 case 7: { /* IEEE floating point */ 2687 u64 x; 2688 u32 y; 2689 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 2690 /* Verify that integers and floating point values use the same 2691 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 2692 ** defined that 64-bit floating point values really are mixed 2693 ** endian. 2694 */ 2695 static const u64 t1 = ((u64)0x3ff00000)<<32; 2696 static const double r1 = 1.0; 2697 u64 t2 = t1; 2698 swapMixedEndianFloat(t2); 2699 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 2700 #endif 2701 2702 x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; 2703 y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7]; 2704 x = (x<<32) | y; 2705 if( serial_type==6 ){ 2706 pMem->u.i = *(i64*)&x; 2707 pMem->flags = MEM_Int; 2708 }else{ 2709 assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); 2710 swapMixedEndianFloat(x); 2711 memcpy(&pMem->r, &x, sizeof(x)); 2712 pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real; 2713 } 2714 return 8; 2715 } 2716 case 8: /* Integer 0 */ 2717 case 9: { /* Integer 1 */ 2718 pMem->u.i = serial_type-8; 2719 pMem->flags = MEM_Int; 2720 return 0; 2721 } 2722 default: { 2723 u32 len = (serial_type-12)/2; 2724 pMem->z = (char *)buf; 2725 pMem->n = len; 2726 pMem->xDel = 0; 2727 if( serial_type&0x01 ){ 2728 pMem->flags = MEM_Str | MEM_Ephem; 2729 }else{ 2730 pMem->flags = MEM_Blob | MEM_Ephem; 2731 } 2732 return len; 2733 } 2734 } 2735 return 0; 2736 } 2737 2738 2739 /* 2740 ** Given the nKey-byte encoding of a record in pKey[], parse the 2741 ** record into a UnpackedRecord structure. Return a pointer to 2742 ** that structure. 2743 ** 2744 ** The calling function might provide szSpace bytes of memory 2745 ** space at pSpace. This space can be used to hold the returned 2746 ** VDbeParsedRecord structure if it is large enough. If it is 2747 ** not big enough, space is obtained from sqlite3_malloc(). 2748 ** 2749 ** The returned structure should be closed by a call to 2750 ** sqlite3VdbeDeleteUnpackedRecord(). 2751 */ 2752 UnpackedRecord *sqlite3VdbeRecordUnpack( 2753 KeyInfo *pKeyInfo, /* Information about the record format */ 2754 int nKey, /* Size of the binary record */ 2755 const void *pKey, /* The binary record */ 2756 char *pSpace, /* Unaligned space available to hold the object */ 2757 int szSpace /* Size of pSpace[] in bytes */ 2758 ){ 2759 const unsigned char *aKey = (const unsigned char *)pKey; 2760 UnpackedRecord *p; /* The unpacked record that we will return */ 2761 int nByte; /* Memory space needed to hold p, in bytes */ 2762 int d; 2763 u32 idx; 2764 u16 u; /* Unsigned loop counter */ 2765 u32 szHdr; 2766 Mem *pMem; 2767 int nOff; /* Increase pSpace by this much to 8-byte align it */ 2768 2769 /* 2770 ** We want to shift the pointer pSpace up such that it is 8-byte aligned. 2771 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift 2772 ** it by. If pSpace is already 8-byte aligned, nOff should be zero. 2773 */ 2774 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7; 2775 pSpace += nOff; 2776 szSpace -= nOff; 2777 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); 2778 if( nByte>szSpace ){ 2779 p = sqlite3DbMallocRaw(pKeyInfo->db, nByte); 2780 if( p==0 ) return 0; 2781 p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY; 2782 }else{ 2783 p = (UnpackedRecord*)pSpace; 2784 p->flags = UNPACKED_NEED_DESTROY; 2785 } 2786 p->pKeyInfo = pKeyInfo; 2787 p->nField = pKeyInfo->nField + 1; 2788 p->aMem = pMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 2789 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 2790 idx = getVarint32(aKey, szHdr); 2791 d = szHdr; 2792 u = 0; 2793 while( idx<szHdr && u<p->nField && d<=nKey ){ 2794 u32 serial_type; 2795 2796 idx += getVarint32(&aKey[idx], serial_type); 2797 pMem->enc = pKeyInfo->enc; 2798 pMem->db = pKeyInfo->db; 2799 pMem->flags = 0; 2800 pMem->zMalloc = 0; 2801 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 2802 pMem++; 2803 u++; 2804 } 2805 assert( u<=pKeyInfo->nField + 1 ); 2806 p->nField = u; 2807 return (void*)p; 2808 } 2809 2810 /* 2811 ** This routine destroys a UnpackedRecord object. 2812 */ 2813 void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){ 2814 int i; 2815 Mem *pMem; 2816 2817 assert( p!=0 ); 2818 assert( p->flags & UNPACKED_NEED_DESTROY ); 2819 for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){ 2820 /* The unpacked record is always constructed by the 2821 ** sqlite3VdbeUnpackRecord() function above, which makes all 2822 ** strings and blobs static. And none of the elements are 2823 ** ever transformed, so there is never anything to delete. 2824 */ 2825 if( NEVER(pMem->zMalloc) ) sqlite3VdbeMemRelease(pMem); 2826 } 2827 if( p->flags & UNPACKED_NEED_FREE ){ 2828 sqlite3DbFree(p->pKeyInfo->db, p); 2829 } 2830 } 2831 2832 /* 2833 ** This function compares the two table rows or index records 2834 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 2835 ** or positive integer if key1 is less than, equal to or 2836 ** greater than key2. The {nKey1, pKey1} key must be a blob 2837 ** created by th OP_MakeRecord opcode of the VDBE. The pPKey2 2838 ** key must be a parsed key such as obtained from 2839 ** sqlite3VdbeParseRecord. 2840 ** 2841 ** Key1 and Key2 do not have to contain the same number of fields. 2842 ** The key with fewer fields is usually compares less than the 2843 ** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set 2844 ** and the common prefixes are equal, then key1 is less than key2. 2845 ** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are 2846 ** equal, then the keys are considered to be equal and 2847 ** the parts beyond the common prefix are ignored. 2848 ** 2849 ** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of 2850 ** the header of pKey1 is ignored. It is assumed that pKey1 is 2851 ** an index key, and thus ends with a rowid value. The last byte 2852 ** of the header will therefore be the serial type of the rowid: 2853 ** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types. 2854 ** The serial type of the final rowid will always be a single byte. 2855 ** By ignoring this last byte of the header, we force the comparison 2856 ** to ignore the rowid at the end of key1. 2857 */ 2858 int sqlite3VdbeRecordCompare( 2859 int nKey1, const void *pKey1, /* Left key */ 2860 UnpackedRecord *pPKey2 /* Right key */ 2861 ){ 2862 int d1; /* Offset into aKey[] of next data element */ 2863 u32 idx1; /* Offset into aKey[] of next header element */ 2864 u32 szHdr1; /* Number of bytes in header */ 2865 int i = 0; 2866 int nField; 2867 int rc = 0; 2868 const unsigned char *aKey1 = (const unsigned char *)pKey1; 2869 KeyInfo *pKeyInfo; 2870 Mem mem1; 2871 2872 pKeyInfo = pPKey2->pKeyInfo; 2873 mem1.enc = pKeyInfo->enc; 2874 mem1.db = pKeyInfo->db; 2875 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 2876 VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */ 2877 2878 /* Compilers may complain that mem1.u.i is potentially uninitialized. 2879 ** We could initialize it, as shown here, to silence those complaints. 2880 ** But in fact, mem1.u.i will never actually be used initialized, and doing 2881 ** the unnecessary initialization has a measurable negative performance 2882 ** impact, since this routine is a very high runner. And so, we choose 2883 ** to ignore the compiler warnings and leave this variable uninitialized. 2884 */ 2885 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 2886 2887 idx1 = getVarint32(aKey1, szHdr1); 2888 d1 = szHdr1; 2889 if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){ 2890 szHdr1--; 2891 } 2892 nField = pKeyInfo->nField; 2893 while( idx1<szHdr1 && i<pPKey2->nField ){ 2894 u32 serial_type1; 2895 2896 /* Read the serial types for the next element in each key. */ 2897 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 2898 if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break; 2899 2900 /* Extract the values to be compared. 2901 */ 2902 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 2903 2904 /* Do the comparison 2905 */ 2906 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], 2907 i<nField ? pKeyInfo->aColl[i] : 0); 2908 if( rc!=0 ){ 2909 assert( mem1.zMalloc==0 ); /* See comment below */ 2910 2911 /* Invert the result if we are using DESC sort order. */ 2912 if( pKeyInfo->aSortOrder && i<nField && pKeyInfo->aSortOrder[i] ){ 2913 rc = -rc; 2914 } 2915 2916 /* If the PREFIX_SEARCH flag is set and all fields except the final 2917 ** rowid field were equal, then clear the PREFIX_SEARCH flag and set 2918 ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1). 2919 ** This is used by the OP_IsUnique opcode. 2920 */ 2921 if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){ 2922 assert( idx1==szHdr1 && rc ); 2923 assert( mem1.flags & MEM_Int ); 2924 pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH; 2925 pPKey2->rowid = mem1.u.i; 2926 } 2927 2928 return rc; 2929 } 2930 i++; 2931 } 2932 2933 /* No memory allocation is ever used on mem1. Prove this using 2934 ** the following assert(). If the assert() fails, it indicates a 2935 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 2936 */ 2937 assert( mem1.zMalloc==0 ); 2938 2939 /* rc==0 here means that one of the keys ran out of fields and 2940 ** all the fields up to that point were equal. If the UNPACKED_INCRKEY 2941 ** flag is set, then break the tie by treating key2 as larger. 2942 ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes 2943 ** are considered to be equal. Otherwise, the longer key is the 2944 ** larger. As it happens, the pPKey2 will always be the longer 2945 ** if there is a difference. 2946 */ 2947 assert( rc==0 ); 2948 if( pPKey2->flags & UNPACKED_INCRKEY ){ 2949 rc = -1; 2950 }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){ 2951 /* Leave rc==0 */ 2952 }else if( idx1<szHdr1 ){ 2953 rc = 1; 2954 } 2955 return rc; 2956 } 2957 2958 2959 /* 2960 ** pCur points at an index entry created using the OP_MakeRecord opcode. 2961 ** Read the rowid (the last field in the record) and store it in *rowid. 2962 ** Return SQLITE_OK if everything works, or an error code otherwise. 2963 ** 2964 ** pCur might be pointing to text obtained from a corrupt database file. 2965 ** So the content cannot be trusted. Do appropriate checks on the content. 2966 */ 2967 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 2968 i64 nCellKey = 0; 2969 int rc; 2970 u32 szHdr; /* Size of the header */ 2971 u32 typeRowid; /* Serial type of the rowid */ 2972 u32 lenRowid; /* Size of the rowid */ 2973 Mem m, v; 2974 2975 UNUSED_PARAMETER(db); 2976 2977 /* Get the size of the index entry. Only indices entries of less 2978 ** than 2GiB are support - anything large must be database corruption. 2979 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 2980 ** this code can safely assume that nCellKey is 32-bits 2981 */ 2982 assert( sqlite3BtreeCursorIsValid(pCur) ); 2983 rc = sqlite3BtreeKeySize(pCur, &nCellKey); 2984 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 2985 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 2986 2987 /* Read in the complete content of the index entry */ 2988 memset(&m, 0, sizeof(m)); 2989 rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m); 2990 if( rc ){ 2991 return rc; 2992 } 2993 2994 /* The index entry must begin with a header size */ 2995 (void)getVarint32((u8*)m.z, szHdr); 2996 testcase( szHdr==3 ); 2997 testcase( szHdr==m.n ); 2998 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ 2999 goto idx_rowid_corruption; 3000 } 3001 3002 /* The last field of the index should be an integer - the ROWID. 3003 ** Verify that the last entry really is an integer. */ 3004 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 3005 testcase( typeRowid==1 ); 3006 testcase( typeRowid==2 ); 3007 testcase( typeRowid==3 ); 3008 testcase( typeRowid==4 ); 3009 testcase( typeRowid==5 ); 3010 testcase( typeRowid==6 ); 3011 testcase( typeRowid==8 ); 3012 testcase( typeRowid==9 ); 3013 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 3014 goto idx_rowid_corruption; 3015 } 3016 lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); 3017 testcase( (u32)m.n==szHdr+lenRowid ); 3018 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 3019 goto idx_rowid_corruption; 3020 } 3021 3022 /* Fetch the integer off the end of the index record */ 3023 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 3024 *rowid = v.u.i; 3025 sqlite3VdbeMemRelease(&m); 3026 return SQLITE_OK; 3027 3028 /* Jump here if database corruption is detected after m has been 3029 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 3030 idx_rowid_corruption: 3031 testcase( m.zMalloc!=0 ); 3032 sqlite3VdbeMemRelease(&m); 3033 return SQLITE_CORRUPT_BKPT; 3034 } 3035 3036 /* 3037 ** Compare the key of the index entry that cursor pC is pointing to against 3038 ** the key string in pUnpacked. Write into *pRes a number 3039 ** that is negative, zero, or positive if pC is less than, equal to, 3040 ** or greater than pUnpacked. Return SQLITE_OK on success. 3041 ** 3042 ** pUnpacked is either created without a rowid or is truncated so that it 3043 ** omits the rowid at the end. The rowid at the end of the index entry 3044 ** is ignored as well. Hence, this routine only compares the prefixes 3045 ** of the keys prior to the final rowid, not the entire key. 3046 */ 3047 int sqlite3VdbeIdxKeyCompare( 3048 VdbeCursor *pC, /* The cursor to compare against */ 3049 UnpackedRecord *pUnpacked, /* Unpacked version of key to compare against */ 3050 int *res /* Write the comparison result here */ 3051 ){ 3052 i64 nCellKey = 0; 3053 int rc; 3054 BtCursor *pCur = pC->pCursor; 3055 Mem m; 3056 3057 assert( sqlite3BtreeCursorIsValid(pCur) ); 3058 rc = sqlite3BtreeKeySize(pCur, &nCellKey); 3059 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 3060 /* nCellKey will always be between 0 and 0xffffffff because of the say 3061 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 3062 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 3063 *res = 0; 3064 return SQLITE_CORRUPT_BKPT; 3065 } 3066 memset(&m, 0, sizeof(m)); 3067 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m); 3068 if( rc ){ 3069 return rc; 3070 } 3071 assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID ); 3072 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); 3073 sqlite3VdbeMemRelease(&m); 3074 return SQLITE_OK; 3075 } 3076 3077 /* 3078 ** This routine sets the value to be returned by subsequent calls to 3079 ** sqlite3_changes() on the database handle 'db'. 3080 */ 3081 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 3082 assert( sqlite3_mutex_held(db->mutex) ); 3083 db->nChange = nChange; 3084 db->nTotalChange += nChange; 3085 } 3086 3087 /* 3088 ** Set a flag in the vdbe to update the change counter when it is finalised 3089 ** or reset. 3090 */ 3091 void sqlite3VdbeCountChanges(Vdbe *v){ 3092 v->changeCntOn = 1; 3093 } 3094 3095 /* 3096 ** Mark every prepared statement associated with a database connection 3097 ** as expired. 3098 ** 3099 ** An expired statement means that recompilation of the statement is 3100 ** recommend. Statements expire when things happen that make their 3101 ** programs obsolete. Removing user-defined functions or collating 3102 ** sequences, or changing an authorization function are the types of 3103 ** things that make prepared statements obsolete. 3104 */ 3105 void sqlite3ExpirePreparedStatements(sqlite3 *db){ 3106 Vdbe *p; 3107 for(p = db->pVdbe; p; p=p->pNext){ 3108 p->expired = 1; 3109 } 3110 } 3111 3112 /* 3113 ** Return the database associated with the Vdbe. 3114 */ 3115 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 3116 return v->db; 3117 } 3118 3119 /* 3120 ** Return a pointer to an sqlite3_value structure containing the value bound 3121 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 3122 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 3123 ** constants) to the value before returning it. 3124 ** 3125 ** The returned value must be freed by the caller using sqlite3ValueFree(). 3126 */ 3127 sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){ 3128 assert( iVar>0 ); 3129 if( v ){ 3130 Mem *pMem = &v->aVar[iVar-1]; 3131 if( 0==(pMem->flags & MEM_Null) ){ 3132 sqlite3_value *pRet = sqlite3ValueNew(v->db); 3133 if( pRet ){ 3134 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 3135 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 3136 sqlite3VdbeMemStoreType((Mem *)pRet); 3137 } 3138 return pRet; 3139 } 3140 } 3141 return 0; 3142 } 3143 3144 /* 3145 ** Configure SQL variable iVar so that binding a new value to it signals 3146 ** to sqlite3_reoptimize() that re-preparing the statement may result 3147 ** in a better query plan. 3148 */ 3149 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 3150 assert( iVar>0 ); 3151 if( iVar>32 ){ 3152 v->expmask = 0xffffffff; 3153 }else{ 3154 v->expmask |= ((u32)1 << (iVar-1)); 3155 } 3156 } 3157