1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* 19 ** Create a new virtual database engine. 20 */ 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 22 sqlite3 *db = pParse->db; 23 Vdbe *p; 24 p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); 25 if( p==0 ) return 0; 26 p->db = db; 27 if( db->pVdbe ){ 28 db->pVdbe->pPrev = p; 29 } 30 p->pNext = db->pVdbe; 31 p->pPrev = 0; 32 db->pVdbe = p; 33 p->magic = VDBE_MAGIC_INIT; 34 p->pParse = pParse; 35 assert( pParse->aLabel==0 ); 36 assert( pParse->nLabel==0 ); 37 assert( pParse->nOpAlloc==0 ); 38 assert( pParse->szOpAlloc==0 ); 39 return p; 40 } 41 42 /* 43 ** Change the error string stored in Vdbe.zErrMsg 44 */ 45 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 46 va_list ap; 47 sqlite3DbFree(p->db, p->zErrMsg); 48 va_start(ap, zFormat); 49 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 50 va_end(ap); 51 } 52 53 /* 54 ** Remember the SQL string for a prepared statement. 55 */ 56 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ 57 assert( isPrepareV2==1 || isPrepareV2==0 ); 58 if( p==0 ) return; 59 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG) 60 if( !isPrepareV2 ) return; 61 #endif 62 assert( p->zSql==0 ); 63 p->zSql = sqlite3DbStrNDup(p->db, z, n); 64 p->isPrepareV2 = (u8)isPrepareV2; 65 } 66 67 /* 68 ** Return the SQL associated with a prepared statement 69 */ 70 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 71 Vdbe *p = (Vdbe *)pStmt; 72 return p ? p->zSql : 0; 73 } 74 75 /* 76 ** Swap all content between two VDBE structures. 77 */ 78 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 79 Vdbe tmp, *pTmp; 80 char *zTmp; 81 tmp = *pA; 82 *pA = *pB; 83 *pB = tmp; 84 pTmp = pA->pNext; 85 pA->pNext = pB->pNext; 86 pB->pNext = pTmp; 87 pTmp = pA->pPrev; 88 pA->pPrev = pB->pPrev; 89 pB->pPrev = pTmp; 90 zTmp = pA->zSql; 91 pA->zSql = pB->zSql; 92 pB->zSql = zTmp; 93 pB->isPrepareV2 = pA->isPrepareV2; 94 } 95 96 /* 97 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 98 ** than its current size. nOp is guaranteed to be less than or equal 99 ** to 1024/sizeof(Op). 100 ** 101 ** If an out-of-memory error occurs while resizing the array, return 102 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain 103 ** unchanged (this is so that any opcodes already allocated can be 104 ** correctly deallocated along with the rest of the Vdbe). 105 */ 106 static int growOpArray(Vdbe *v, int nOp){ 107 VdbeOp *pNew; 108 Parse *p = v->pParse; 109 110 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 111 ** more frequent reallocs and hence provide more opportunities for 112 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 113 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 114 ** by the minimum* amount required until the size reaches 512. Normal 115 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 116 ** size of the op array or add 1KB of space, whichever is smaller. */ 117 #ifdef SQLITE_TEST_REALLOC_STRESS 118 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); 119 #else 120 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 121 UNUSED_PARAMETER(nOp); 122 #endif 123 124 assert( nOp<=(1024/sizeof(Op)) ); 125 assert( nNew>=(p->nOpAlloc+nOp) ); 126 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 127 if( pNew ){ 128 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 129 p->nOpAlloc = p->szOpAlloc/sizeof(Op); 130 v->aOp = pNew; 131 } 132 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 133 } 134 135 #ifdef SQLITE_DEBUG 136 /* This routine is just a convenient place to set a breakpoint that will 137 ** fire after each opcode is inserted and displayed using 138 ** "PRAGMA vdbe_addoptrace=on". 139 */ 140 static void test_addop_breakpoint(void){ 141 static int n = 0; 142 n++; 143 } 144 #endif 145 146 /* 147 ** Add a new instruction to the list of instructions current in the 148 ** VDBE. Return the address of the new instruction. 149 ** 150 ** Parameters: 151 ** 152 ** p Pointer to the VDBE 153 ** 154 ** op The opcode for this instruction 155 ** 156 ** p1, p2, p3 Operands 157 ** 158 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 159 ** the sqlite3VdbeChangeP4() function to change the value of the P4 160 ** operand. 161 */ 162 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 163 assert( p->pParse->nOpAlloc<=p->nOp ); 164 if( growOpArray(p, 1) ) return 1; 165 assert( p->pParse->nOpAlloc>p->nOp ); 166 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 167 } 168 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 169 int i; 170 VdbeOp *pOp; 171 172 i = p->nOp; 173 assert( p->magic==VDBE_MAGIC_INIT ); 174 assert( op>=0 && op<0xff ); 175 if( p->pParse->nOpAlloc<=i ){ 176 return growOp3(p, op, p1, p2, p3); 177 } 178 p->nOp++; 179 pOp = &p->aOp[i]; 180 pOp->opcode = (u8)op; 181 pOp->p5 = 0; 182 pOp->p1 = p1; 183 pOp->p2 = p2; 184 pOp->p3 = p3; 185 pOp->p4.p = 0; 186 pOp->p4type = P4_NOTUSED; 187 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 188 pOp->zComment = 0; 189 #endif 190 #ifdef SQLITE_DEBUG 191 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 192 int jj, kk; 193 Parse *pParse = p->pParse; 194 for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){ 195 struct yColCache *x = pParse->aColCache + jj; 196 if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue; 197 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); 198 kk++; 199 } 200 if( kk ) printf("\n"); 201 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 202 test_addop_breakpoint(); 203 } 204 #endif 205 #ifdef VDBE_PROFILE 206 pOp->cycles = 0; 207 pOp->cnt = 0; 208 #endif 209 #ifdef SQLITE_VDBE_COVERAGE 210 pOp->iSrcLine = 0; 211 #endif 212 return i; 213 } 214 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 215 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 216 } 217 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 218 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 219 } 220 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 221 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 222 } 223 224 /* Generate code for an unconditional jump to instruction iDest 225 */ 226 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 227 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 228 } 229 230 /* Generate code to cause the string zStr to be loaded into 231 ** register iDest 232 */ 233 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 234 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 235 } 236 237 /* 238 ** Generate code that initializes multiple registers to string or integer 239 ** constants. The registers begin with iDest and increase consecutively. 240 ** One register is initialized for each characgter in zTypes[]. For each 241 ** "s" character in zTypes[], the register is a string if the argument is 242 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 243 ** in zTypes[], the register is initialized to an integer. 244 */ 245 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 246 va_list ap; 247 int i; 248 char c; 249 va_start(ap, zTypes); 250 for(i=0; (c = zTypes[i])!=0; i++){ 251 if( c=='s' ){ 252 const char *z = va_arg(ap, const char*); 253 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0); 254 }else{ 255 assert( c=='i' ); 256 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++); 257 } 258 } 259 va_end(ap); 260 } 261 262 /* 263 ** Add an opcode that includes the p4 value as a pointer. 264 */ 265 int sqlite3VdbeAddOp4( 266 Vdbe *p, /* Add the opcode to this VM */ 267 int op, /* The new opcode */ 268 int p1, /* The P1 operand */ 269 int p2, /* The P2 operand */ 270 int p3, /* The P3 operand */ 271 const char *zP4, /* The P4 operand */ 272 int p4type /* P4 operand type */ 273 ){ 274 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 275 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 276 return addr; 277 } 278 279 /* 280 ** Add an opcode that includes the p4 value with a P4_INT64 or 281 ** P4_REAL type. 282 */ 283 int sqlite3VdbeAddOp4Dup8( 284 Vdbe *p, /* Add the opcode to this VM */ 285 int op, /* The new opcode */ 286 int p1, /* The P1 operand */ 287 int p2, /* The P2 operand */ 288 int p3, /* The P3 operand */ 289 const u8 *zP4, /* The P4 operand */ 290 int p4type /* P4 operand type */ 291 ){ 292 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 293 if( p4copy ) memcpy(p4copy, zP4, 8); 294 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 295 } 296 297 /* 298 ** Add an OP_ParseSchema opcode. This routine is broken out from 299 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 300 ** as having been used. 301 ** 302 ** The zWhere string must have been obtained from sqlite3_malloc(). 303 ** This routine will take ownership of the allocated memory. 304 */ 305 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 306 int j; 307 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 308 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 309 } 310 311 /* 312 ** Add an opcode that includes the p4 value as an integer. 313 */ 314 int sqlite3VdbeAddOp4Int( 315 Vdbe *p, /* Add the opcode to this VM */ 316 int op, /* The new opcode */ 317 int p1, /* The P1 operand */ 318 int p2, /* The P2 operand */ 319 int p3, /* The P3 operand */ 320 int p4 /* The P4 operand as an integer */ 321 ){ 322 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 323 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32); 324 return addr; 325 } 326 327 /* Insert the end of a co-routine 328 */ 329 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 330 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 331 332 /* Clear the temporary register cache, thereby ensuring that each 333 ** co-routine has its own independent set of registers, because co-routines 334 ** might expect their registers to be preserved across an OP_Yield, and 335 ** that could cause problems if two or more co-routines are using the same 336 ** temporary register. 337 */ 338 v->pParse->nTempReg = 0; 339 v->pParse->nRangeReg = 0; 340 } 341 342 /* 343 ** Create a new symbolic label for an instruction that has yet to be 344 ** coded. The symbolic label is really just a negative number. The 345 ** label can be used as the P2 value of an operation. Later, when 346 ** the label is resolved to a specific address, the VDBE will scan 347 ** through its operation list and change all values of P2 which match 348 ** the label into the resolved address. 349 ** 350 ** The VDBE knows that a P2 value is a label because labels are 351 ** always negative and P2 values are suppose to be non-negative. 352 ** Hence, a negative P2 value is a label that has yet to be resolved. 353 ** 354 ** Zero is returned if a malloc() fails. 355 */ 356 int sqlite3VdbeMakeLabel(Vdbe *v){ 357 Parse *p = v->pParse; 358 int i = p->nLabel++; 359 assert( v->magic==VDBE_MAGIC_INIT ); 360 if( (i & (i-1))==0 ){ 361 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 362 (i*2+1)*sizeof(p->aLabel[0])); 363 } 364 if( p->aLabel ){ 365 p->aLabel[i] = -1; 366 } 367 return ADDR(i); 368 } 369 370 /* 371 ** Resolve label "x" to be the address of the next instruction to 372 ** be inserted. The parameter "x" must have been obtained from 373 ** a prior call to sqlite3VdbeMakeLabel(). 374 */ 375 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 376 Parse *p = v->pParse; 377 int j = ADDR(x); 378 assert( v->magic==VDBE_MAGIC_INIT ); 379 assert( j<p->nLabel ); 380 assert( j>=0 ); 381 if( p->aLabel ){ 382 p->aLabel[j] = v->nOp; 383 } 384 p->iFixedOp = v->nOp - 1; 385 } 386 387 /* 388 ** Mark the VDBE as one that can only be run one time. 389 */ 390 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 391 p->runOnlyOnce = 1; 392 } 393 394 /* 395 ** Mark the VDBE as one that can only be run multiple times. 396 */ 397 void sqlite3VdbeReusable(Vdbe *p){ 398 p->runOnlyOnce = 0; 399 } 400 401 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 402 403 /* 404 ** The following type and function are used to iterate through all opcodes 405 ** in a Vdbe main program and each of the sub-programs (triggers) it may 406 ** invoke directly or indirectly. It should be used as follows: 407 ** 408 ** Op *pOp; 409 ** VdbeOpIter sIter; 410 ** 411 ** memset(&sIter, 0, sizeof(sIter)); 412 ** sIter.v = v; // v is of type Vdbe* 413 ** while( (pOp = opIterNext(&sIter)) ){ 414 ** // Do something with pOp 415 ** } 416 ** sqlite3DbFree(v->db, sIter.apSub); 417 ** 418 */ 419 typedef struct VdbeOpIter VdbeOpIter; 420 struct VdbeOpIter { 421 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 422 SubProgram **apSub; /* Array of subprograms */ 423 int nSub; /* Number of entries in apSub */ 424 int iAddr; /* Address of next instruction to return */ 425 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 426 }; 427 static Op *opIterNext(VdbeOpIter *p){ 428 Vdbe *v = p->v; 429 Op *pRet = 0; 430 Op *aOp; 431 int nOp; 432 433 if( p->iSub<=p->nSub ){ 434 435 if( p->iSub==0 ){ 436 aOp = v->aOp; 437 nOp = v->nOp; 438 }else{ 439 aOp = p->apSub[p->iSub-1]->aOp; 440 nOp = p->apSub[p->iSub-1]->nOp; 441 } 442 assert( p->iAddr<nOp ); 443 444 pRet = &aOp[p->iAddr]; 445 p->iAddr++; 446 if( p->iAddr==nOp ){ 447 p->iSub++; 448 p->iAddr = 0; 449 } 450 451 if( pRet->p4type==P4_SUBPROGRAM ){ 452 int nByte = (p->nSub+1)*sizeof(SubProgram*); 453 int j; 454 for(j=0; j<p->nSub; j++){ 455 if( p->apSub[j]==pRet->p4.pProgram ) break; 456 } 457 if( j==p->nSub ){ 458 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 459 if( !p->apSub ){ 460 pRet = 0; 461 }else{ 462 p->apSub[p->nSub++] = pRet->p4.pProgram; 463 } 464 } 465 } 466 } 467 468 return pRet; 469 } 470 471 /* 472 ** Check if the program stored in the VM associated with pParse may 473 ** throw an ABORT exception (causing the statement, but not entire transaction 474 ** to be rolled back). This condition is true if the main program or any 475 ** sub-programs contains any of the following: 476 ** 477 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 478 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 479 ** * OP_Destroy 480 ** * OP_VUpdate 481 ** * OP_VRename 482 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 483 ** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...) 484 ** 485 ** Then check that the value of Parse.mayAbort is true if an 486 ** ABORT may be thrown, or false otherwise. Return true if it does 487 ** match, or false otherwise. This function is intended to be used as 488 ** part of an assert statement in the compiler. Similar to: 489 ** 490 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 491 */ 492 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 493 int hasAbort = 0; 494 int hasFkCounter = 0; 495 int hasCreateTable = 0; 496 int hasInitCoroutine = 0; 497 Op *pOp; 498 VdbeOpIter sIter; 499 memset(&sIter, 0, sizeof(sIter)); 500 sIter.v = v; 501 502 while( (pOp = opIterNext(&sIter))!=0 ){ 503 int opcode = pOp->opcode; 504 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 505 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 506 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 507 ){ 508 hasAbort = 1; 509 break; 510 } 511 if( opcode==OP_CreateTable ) hasCreateTable = 1; 512 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 513 #ifndef SQLITE_OMIT_FOREIGN_KEY 514 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 515 hasFkCounter = 1; 516 } 517 #endif 518 } 519 sqlite3DbFree(v->db, sIter.apSub); 520 521 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 522 ** If malloc failed, then the while() loop above may not have iterated 523 ** through all opcodes and hasAbort may be set incorrectly. Return 524 ** true for this case to prevent the assert() in the callers frame 525 ** from failing. */ 526 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 527 || (hasCreateTable && hasInitCoroutine) ); 528 } 529 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 530 531 /* 532 ** This routine is called after all opcodes have been inserted. It loops 533 ** through all the opcodes and fixes up some details. 534 ** 535 ** (1) For each jump instruction with a negative P2 value (a label) 536 ** resolve the P2 value to an actual address. 537 ** 538 ** (2) Compute the maximum number of arguments used by any SQL function 539 ** and store that value in *pMaxFuncArgs. 540 ** 541 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 542 ** indicate what the prepared statement actually does. 543 ** 544 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 545 ** 546 ** (5) Reclaim the memory allocated for storing labels. 547 */ 548 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 549 int i; 550 int nMaxArgs = *pMaxFuncArgs; 551 Op *pOp; 552 Parse *pParse = p->pParse; 553 int *aLabel = pParse->aLabel; 554 p->readOnly = 1; 555 p->bIsReader = 0; 556 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ 557 u8 opcode = pOp->opcode; 558 559 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 560 ** cases from this switch! */ 561 switch( opcode ){ 562 case OP_Transaction: { 563 if( pOp->p2!=0 ) p->readOnly = 0; 564 /* fall thru */ 565 } 566 case OP_AutoCommit: 567 case OP_Savepoint: { 568 p->bIsReader = 1; 569 break; 570 } 571 #ifndef SQLITE_OMIT_WAL 572 case OP_Checkpoint: 573 #endif 574 case OP_Vacuum: 575 case OP_JournalMode: { 576 p->readOnly = 0; 577 p->bIsReader = 1; 578 break; 579 } 580 #ifndef SQLITE_OMIT_VIRTUALTABLE 581 case OP_VUpdate: { 582 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 583 break; 584 } 585 case OP_VFilter: { 586 int n; 587 assert( p->nOp - i >= 3 ); 588 assert( pOp[-1].opcode==OP_Integer ); 589 n = pOp[-1].p1; 590 if( n>nMaxArgs ) nMaxArgs = n; 591 break; 592 } 593 #endif 594 case OP_Next: 595 case OP_NextIfOpen: 596 case OP_SorterNext: { 597 pOp->p4.xAdvance = sqlite3BtreeNext; 598 pOp->p4type = P4_ADVANCE; 599 break; 600 } 601 case OP_Prev: 602 case OP_PrevIfOpen: { 603 pOp->p4.xAdvance = sqlite3BtreePrevious; 604 pOp->p4type = P4_ADVANCE; 605 break; 606 } 607 } 608 609 pOp->opflags = sqlite3OpcodeProperty[opcode]; 610 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){ 611 assert( ADDR(pOp->p2)<pParse->nLabel ); 612 pOp->p2 = aLabel[ADDR(pOp->p2)]; 613 } 614 } 615 sqlite3DbFree(p->db, pParse->aLabel); 616 pParse->aLabel = 0; 617 pParse->nLabel = 0; 618 *pMaxFuncArgs = nMaxArgs; 619 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 620 } 621 622 /* 623 ** Return the address of the next instruction to be inserted. 624 */ 625 int sqlite3VdbeCurrentAddr(Vdbe *p){ 626 assert( p->magic==VDBE_MAGIC_INIT ); 627 return p->nOp; 628 } 629 630 /* 631 ** Verify that at least N opcode slots are available in p without 632 ** having to malloc for more space (except when compiled using 633 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 634 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 635 ** fail due to a OOM fault and hence that the return value from 636 ** sqlite3VdbeAddOpList() will always be non-NULL. 637 */ 638 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 639 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 640 assert( p->nOp + N <= p->pParse->nOpAlloc ); 641 } 642 #endif 643 644 /* 645 ** This function returns a pointer to the array of opcodes associated with 646 ** the Vdbe passed as the first argument. It is the callers responsibility 647 ** to arrange for the returned array to be eventually freed using the 648 ** vdbeFreeOpArray() function. 649 ** 650 ** Before returning, *pnOp is set to the number of entries in the returned 651 ** array. Also, *pnMaxArg is set to the larger of its current value and 652 ** the number of entries in the Vdbe.apArg[] array required to execute the 653 ** returned program. 654 */ 655 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 656 VdbeOp *aOp = p->aOp; 657 assert( aOp && !p->db->mallocFailed ); 658 659 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 660 assert( DbMaskAllZero(p->btreeMask) ); 661 662 resolveP2Values(p, pnMaxArg); 663 *pnOp = p->nOp; 664 p->aOp = 0; 665 return aOp; 666 } 667 668 /* 669 ** Add a whole list of operations to the operation stack. Return a 670 ** pointer to the first operation inserted. 671 ** 672 ** Non-zero P2 arguments to jump instructions are automatically adjusted 673 ** so that the jump target is relative to the first operation inserted. 674 */ 675 VdbeOp *sqlite3VdbeAddOpList( 676 Vdbe *p, /* Add opcodes to the prepared statement */ 677 int nOp, /* Number of opcodes to add */ 678 VdbeOpList const *aOp, /* The opcodes to be added */ 679 int iLineno /* Source-file line number of first opcode */ 680 ){ 681 int i; 682 VdbeOp *pOut, *pFirst; 683 assert( nOp>0 ); 684 assert( p->magic==VDBE_MAGIC_INIT ); 685 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ 686 return 0; 687 } 688 pFirst = pOut = &p->aOp[p->nOp]; 689 for(i=0; i<nOp; i++, aOp++, pOut++){ 690 pOut->opcode = aOp->opcode; 691 pOut->p1 = aOp->p1; 692 pOut->p2 = aOp->p2; 693 assert( aOp->p2>=0 ); 694 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 695 pOut->p2 += p->nOp; 696 } 697 pOut->p3 = aOp->p3; 698 pOut->p4type = P4_NOTUSED; 699 pOut->p4.p = 0; 700 pOut->p5 = 0; 701 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 702 pOut->zComment = 0; 703 #endif 704 #ifdef SQLITE_VDBE_COVERAGE 705 pOut->iSrcLine = iLineno+i; 706 #else 707 (void)iLineno; 708 #endif 709 #ifdef SQLITE_DEBUG 710 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 711 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 712 } 713 #endif 714 } 715 p->nOp += nOp; 716 return pFirst; 717 } 718 719 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 720 /* 721 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 722 */ 723 void sqlite3VdbeScanStatus( 724 Vdbe *p, /* VM to add scanstatus() to */ 725 int addrExplain, /* Address of OP_Explain (or 0) */ 726 int addrLoop, /* Address of loop counter */ 727 int addrVisit, /* Address of rows visited counter */ 728 LogEst nEst, /* Estimated number of output rows */ 729 const char *zName /* Name of table or index being scanned */ 730 ){ 731 int nByte = (p->nScan+1) * sizeof(ScanStatus); 732 ScanStatus *aNew; 733 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 734 if( aNew ){ 735 ScanStatus *pNew = &aNew[p->nScan++]; 736 pNew->addrExplain = addrExplain; 737 pNew->addrLoop = addrLoop; 738 pNew->addrVisit = addrVisit; 739 pNew->nEst = nEst; 740 pNew->zName = sqlite3DbStrDup(p->db, zName); 741 p->aScan = aNew; 742 } 743 } 744 #endif 745 746 747 /* 748 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 749 ** for a specific instruction. 750 */ 751 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){ 752 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 753 } 754 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ 755 sqlite3VdbeGetOp(p,addr)->p1 = val; 756 } 757 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ 758 sqlite3VdbeGetOp(p,addr)->p2 = val; 759 } 760 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ 761 sqlite3VdbeGetOp(p,addr)->p3 = val; 762 } 763 void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){ 764 if( !p->db->mallocFailed ) p->aOp[p->nOp-1].p5 = p5; 765 } 766 767 /* 768 ** Change the P2 operand of instruction addr so that it points to 769 ** the address of the next instruction to be coded. 770 */ 771 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 772 p->pParse->iFixedOp = p->nOp - 1; 773 sqlite3VdbeChangeP2(p, addr, p->nOp); 774 } 775 776 777 /* 778 ** If the input FuncDef structure is ephemeral, then free it. If 779 ** the FuncDef is not ephermal, then do nothing. 780 */ 781 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 782 if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 783 sqlite3DbFree(db, pDef); 784 } 785 } 786 787 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 788 789 /* 790 ** Delete a P4 value if necessary. 791 */ 792 static void freeP4(sqlite3 *db, int p4type, void *p4){ 793 if( p4 ){ 794 assert( db ); 795 switch( p4type ){ 796 case P4_FUNCCTX: { 797 freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc); 798 /* Fall through into the next case */ 799 } 800 case P4_REAL: 801 case P4_INT64: 802 case P4_DYNAMIC: 803 case P4_INTARRAY: { 804 sqlite3DbFree(db, p4); 805 break; 806 } 807 case P4_KEYINFO: { 808 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 809 break; 810 } 811 #ifdef SQLITE_ENABLE_CURSOR_HINTS 812 case P4_EXPR: { 813 sqlite3ExprDelete(db, (Expr*)p4); 814 break; 815 } 816 #endif 817 case P4_MPRINTF: { 818 if( db->pnBytesFreed==0 ) sqlite3_free(p4); 819 break; 820 } 821 case P4_FUNCDEF: { 822 freeEphemeralFunction(db, (FuncDef*)p4); 823 break; 824 } 825 case P4_MEM: { 826 if( db->pnBytesFreed==0 ){ 827 sqlite3ValueFree((sqlite3_value*)p4); 828 }else{ 829 Mem *p = (Mem*)p4; 830 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 831 sqlite3DbFree(db, p); 832 } 833 break; 834 } 835 case P4_VTAB : { 836 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 837 break; 838 } 839 } 840 } 841 } 842 843 /* 844 ** Free the space allocated for aOp and any p4 values allocated for the 845 ** opcodes contained within. If aOp is not NULL it is assumed to contain 846 ** nOp entries. 847 */ 848 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 849 if( aOp ){ 850 Op *pOp; 851 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ 852 if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p); 853 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 854 sqlite3DbFree(db, pOp->zComment); 855 #endif 856 } 857 } 858 sqlite3DbFree(db, aOp); 859 } 860 861 /* 862 ** Link the SubProgram object passed as the second argument into the linked 863 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 864 ** objects when the VM is no longer required. 865 */ 866 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 867 p->pNext = pVdbe->pProgram; 868 pVdbe->pProgram = p; 869 } 870 871 /* 872 ** Change the opcode at addr into OP_Noop 873 */ 874 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 875 VdbeOp *pOp; 876 if( p->db->mallocFailed ) return 0; 877 assert( addr>=0 && addr<p->nOp ); 878 pOp = &p->aOp[addr]; 879 freeP4(p->db, pOp->p4type, pOp->p4.p); 880 pOp->p4type = P4_NOTUSED; 881 pOp->p4.z = 0; 882 pOp->opcode = OP_Noop; 883 return 1; 884 } 885 886 /* 887 ** If the last opcode is "op" and it is not a jump destination, 888 ** then remove it. Return true if and only if an opcode was removed. 889 */ 890 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 891 if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){ 892 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 893 }else{ 894 return 0; 895 } 896 } 897 898 /* 899 ** Change the value of the P4 operand for a specific instruction. 900 ** This routine is useful when a large program is loaded from a 901 ** static array using sqlite3VdbeAddOpList but we want to make a 902 ** few minor changes to the program. 903 ** 904 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 905 ** the string is made into memory obtained from sqlite3_malloc(). 906 ** A value of n==0 means copy bytes of zP4 up to and including the 907 ** first null byte. If n>0 then copy n+1 bytes of zP4. 908 ** 909 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 910 ** to a string or structure that is guaranteed to exist for the lifetime of 911 ** the Vdbe. In these cases we can just copy the pointer. 912 ** 913 ** If addr<0 then change P4 on the most recently inserted instruction. 914 */ 915 static void SQLITE_NOINLINE vdbeChangeP4Full( 916 Vdbe *p, 917 Op *pOp, 918 const char *zP4, 919 int n 920 ){ 921 if( pOp->p4type ){ 922 freeP4(p->db, pOp->p4type, pOp->p4.p); 923 pOp->p4type = 0; 924 pOp->p4.p = 0; 925 } 926 if( n<0 ){ 927 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 928 }else{ 929 if( n==0 ) n = sqlite3Strlen30(zP4); 930 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 931 pOp->p4type = P4_DYNAMIC; 932 } 933 } 934 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 935 Op *pOp; 936 sqlite3 *db; 937 assert( p!=0 ); 938 db = p->db; 939 assert( p->magic==VDBE_MAGIC_INIT ); 940 assert( p->aOp!=0 || db->mallocFailed ); 941 if( db->mallocFailed ){ 942 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 943 return; 944 } 945 assert( p->nOp>0 ); 946 assert( addr<p->nOp ); 947 if( addr<0 ){ 948 addr = p->nOp - 1; 949 } 950 pOp = &p->aOp[addr]; 951 if( n>=0 || pOp->p4type ){ 952 vdbeChangeP4Full(p, pOp, zP4, n); 953 return; 954 } 955 if( n==P4_INT32 ){ 956 /* Note: this cast is safe, because the origin data point was an int 957 ** that was cast to a (const char *). */ 958 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 959 pOp->p4type = P4_INT32; 960 }else if( zP4!=0 ){ 961 assert( n<0 ); 962 pOp->p4.p = (void*)zP4; 963 pOp->p4type = (signed char)n; 964 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 965 } 966 } 967 968 /* 969 ** Set the P4 on the most recently added opcode to the KeyInfo for the 970 ** index given. 971 */ 972 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 973 Vdbe *v = pParse->pVdbe; 974 assert( v!=0 ); 975 assert( pIdx!=0 ); 976 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx), 977 P4_KEYINFO); 978 } 979 980 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 981 /* 982 ** Change the comment on the most recently coded instruction. Or 983 ** insert a No-op and add the comment to that new instruction. This 984 ** makes the code easier to read during debugging. None of this happens 985 ** in a production build. 986 */ 987 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 988 assert( p->nOp>0 || p->aOp==0 ); 989 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 990 if( p->nOp ){ 991 assert( p->aOp ); 992 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 993 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 994 } 995 } 996 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 997 va_list ap; 998 if( p ){ 999 va_start(ap, zFormat); 1000 vdbeVComment(p, zFormat, ap); 1001 va_end(ap); 1002 } 1003 } 1004 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1005 va_list ap; 1006 if( p ){ 1007 sqlite3VdbeAddOp0(p, OP_Noop); 1008 va_start(ap, zFormat); 1009 vdbeVComment(p, zFormat, ap); 1010 va_end(ap); 1011 } 1012 } 1013 #endif /* NDEBUG */ 1014 1015 #ifdef SQLITE_VDBE_COVERAGE 1016 /* 1017 ** Set the value if the iSrcLine field for the previously coded instruction. 1018 */ 1019 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1020 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1021 } 1022 #endif /* SQLITE_VDBE_COVERAGE */ 1023 1024 /* 1025 ** Return the opcode for a given address. If the address is -1, then 1026 ** return the most recently inserted opcode. 1027 ** 1028 ** If a memory allocation error has occurred prior to the calling of this 1029 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1030 ** is readable but not writable, though it is cast to a writable value. 1031 ** The return of a dummy opcode allows the call to continue functioning 1032 ** after an OOM fault without having to check to see if the return from 1033 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1034 ** dummy will never be written to. This is verified by code inspection and 1035 ** by running with Valgrind. 1036 */ 1037 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1038 /* C89 specifies that the constant "dummy" will be initialized to all 1039 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1040 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1041 assert( p->magic==VDBE_MAGIC_INIT ); 1042 if( addr<0 ){ 1043 addr = p->nOp - 1; 1044 } 1045 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1046 if( p->db->mallocFailed ){ 1047 return (VdbeOp*)&dummy; 1048 }else{ 1049 return &p->aOp[addr]; 1050 } 1051 } 1052 1053 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1054 /* 1055 ** Return an integer value for one of the parameters to the opcode pOp 1056 ** determined by character c. 1057 */ 1058 static int translateP(char c, const Op *pOp){ 1059 if( c=='1' ) return pOp->p1; 1060 if( c=='2' ) return pOp->p2; 1061 if( c=='3' ) return pOp->p3; 1062 if( c=='4' ) return pOp->p4.i; 1063 return pOp->p5; 1064 } 1065 1066 /* 1067 ** Compute a string for the "comment" field of a VDBE opcode listing. 1068 ** 1069 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1070 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1071 ** absence of other comments, this synopsis becomes the comment on the opcode. 1072 ** Some translation occurs: 1073 ** 1074 ** "PX" -> "r[X]" 1075 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1076 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1077 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1078 */ 1079 static int displayComment( 1080 const Op *pOp, /* The opcode to be commented */ 1081 const char *zP4, /* Previously obtained value for P4 */ 1082 char *zTemp, /* Write result here */ 1083 int nTemp /* Space available in zTemp[] */ 1084 ){ 1085 const char *zOpName; 1086 const char *zSynopsis; 1087 int nOpName; 1088 int ii, jj; 1089 zOpName = sqlite3OpcodeName(pOp->opcode); 1090 nOpName = sqlite3Strlen30(zOpName); 1091 if( zOpName[nOpName+1] ){ 1092 int seenCom = 0; 1093 char c; 1094 zSynopsis = zOpName += nOpName + 1; 1095 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 1096 if( c=='P' ){ 1097 c = zSynopsis[++ii]; 1098 if( c=='4' ){ 1099 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 1100 }else if( c=='X' ){ 1101 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 1102 seenCom = 1; 1103 }else{ 1104 int v1 = translateP(c, pOp); 1105 int v2; 1106 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 1107 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1108 ii += 3; 1109 jj += sqlite3Strlen30(zTemp+jj); 1110 v2 = translateP(zSynopsis[ii], pOp); 1111 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1112 ii += 2; 1113 v2++; 1114 } 1115 if( v2>1 ){ 1116 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 1117 } 1118 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1119 ii += 4; 1120 } 1121 } 1122 jj += sqlite3Strlen30(zTemp+jj); 1123 }else{ 1124 zTemp[jj++] = c; 1125 } 1126 } 1127 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 1128 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 1129 jj += sqlite3Strlen30(zTemp+jj); 1130 } 1131 if( jj<nTemp ) zTemp[jj] = 0; 1132 }else if( pOp->zComment ){ 1133 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 1134 jj = sqlite3Strlen30(zTemp); 1135 }else{ 1136 zTemp[0] = 0; 1137 jj = 0; 1138 } 1139 return jj; 1140 } 1141 #endif /* SQLITE_DEBUG */ 1142 1143 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1144 /* 1145 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1146 ** that can be displayed in the P4 column of EXPLAIN output. 1147 */ 1148 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1149 const char *zOp = 0; 1150 switch( pExpr->op ){ 1151 case TK_STRING: 1152 sqlite3XPrintf(p, "%Q", pExpr->u.zToken); 1153 break; 1154 case TK_INTEGER: 1155 sqlite3XPrintf(p, "%d", pExpr->u.iValue); 1156 break; 1157 case TK_NULL: 1158 sqlite3XPrintf(p, "NULL"); 1159 break; 1160 case TK_REGISTER: { 1161 sqlite3XPrintf(p, "r[%d]", pExpr->iTable); 1162 break; 1163 } 1164 case TK_COLUMN: { 1165 if( pExpr->iColumn<0 ){ 1166 sqlite3XPrintf(p, "rowid"); 1167 }else{ 1168 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn); 1169 } 1170 break; 1171 } 1172 case TK_LT: zOp = "LT"; break; 1173 case TK_LE: zOp = "LE"; break; 1174 case TK_GT: zOp = "GT"; break; 1175 case TK_GE: zOp = "GE"; break; 1176 case TK_NE: zOp = "NE"; break; 1177 case TK_EQ: zOp = "EQ"; break; 1178 case TK_IS: zOp = "IS"; break; 1179 case TK_ISNOT: zOp = "ISNOT"; break; 1180 case TK_AND: zOp = "AND"; break; 1181 case TK_OR: zOp = "OR"; break; 1182 case TK_PLUS: zOp = "ADD"; break; 1183 case TK_STAR: zOp = "MUL"; break; 1184 case TK_MINUS: zOp = "SUB"; break; 1185 case TK_REM: zOp = "REM"; break; 1186 case TK_BITAND: zOp = "BITAND"; break; 1187 case TK_BITOR: zOp = "BITOR"; break; 1188 case TK_SLASH: zOp = "DIV"; break; 1189 case TK_LSHIFT: zOp = "LSHIFT"; break; 1190 case TK_RSHIFT: zOp = "RSHIFT"; break; 1191 case TK_CONCAT: zOp = "CONCAT"; break; 1192 case TK_UMINUS: zOp = "MINUS"; break; 1193 case TK_UPLUS: zOp = "PLUS"; break; 1194 case TK_BITNOT: zOp = "BITNOT"; break; 1195 case TK_NOT: zOp = "NOT"; break; 1196 case TK_ISNULL: zOp = "ISNULL"; break; 1197 case TK_NOTNULL: zOp = "NOTNULL"; break; 1198 1199 default: 1200 sqlite3XPrintf(p, "%s", "expr"); 1201 break; 1202 } 1203 1204 if( zOp ){ 1205 sqlite3XPrintf(p, "%s(", zOp); 1206 displayP4Expr(p, pExpr->pLeft); 1207 if( pExpr->pRight ){ 1208 sqlite3StrAccumAppend(p, ",", 1); 1209 displayP4Expr(p, pExpr->pRight); 1210 } 1211 sqlite3StrAccumAppend(p, ")", 1); 1212 } 1213 } 1214 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1215 1216 1217 #if VDBE_DISPLAY_P4 1218 /* 1219 ** Compute a string that describes the P4 parameter for an opcode. 1220 ** Use zTemp for any required temporary buffer space. 1221 */ 1222 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 1223 char *zP4 = zTemp; 1224 StrAccum x; 1225 assert( nTemp>=20 ); 1226 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0); 1227 switch( pOp->p4type ){ 1228 case P4_KEYINFO: { 1229 int j; 1230 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1231 assert( pKeyInfo->aSortOrder!=0 ); 1232 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nField); 1233 for(j=0; j<pKeyInfo->nField; j++){ 1234 CollSeq *pColl = pKeyInfo->aColl[j]; 1235 const char *zColl = pColl ? pColl->zName : ""; 1236 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1237 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl); 1238 } 1239 sqlite3StrAccumAppend(&x, ")", 1); 1240 break; 1241 } 1242 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1243 case P4_EXPR: { 1244 displayP4Expr(&x, pOp->p4.pExpr); 1245 break; 1246 } 1247 #endif 1248 case P4_COLLSEQ: { 1249 CollSeq *pColl = pOp->p4.pColl; 1250 sqlite3XPrintf(&x, "(%.20s)", pColl->zName); 1251 break; 1252 } 1253 case P4_FUNCDEF: { 1254 FuncDef *pDef = pOp->p4.pFunc; 1255 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1256 break; 1257 } 1258 #ifdef SQLITE_DEBUG 1259 case P4_FUNCCTX: { 1260 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1261 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1262 break; 1263 } 1264 #endif 1265 case P4_INT64: { 1266 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64); 1267 break; 1268 } 1269 case P4_INT32: { 1270 sqlite3XPrintf(&x, "%d", pOp->p4.i); 1271 break; 1272 } 1273 case P4_REAL: { 1274 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal); 1275 break; 1276 } 1277 case P4_MEM: { 1278 Mem *pMem = pOp->p4.pMem; 1279 if( pMem->flags & MEM_Str ){ 1280 zP4 = pMem->z; 1281 }else if( pMem->flags & MEM_Int ){ 1282 sqlite3XPrintf(&x, "%lld", pMem->u.i); 1283 }else if( pMem->flags & MEM_Real ){ 1284 sqlite3XPrintf(&x, "%.16g", pMem->u.r); 1285 }else if( pMem->flags & MEM_Null ){ 1286 zP4 = "NULL"; 1287 }else{ 1288 assert( pMem->flags & MEM_Blob ); 1289 zP4 = "(blob)"; 1290 } 1291 break; 1292 } 1293 #ifndef SQLITE_OMIT_VIRTUALTABLE 1294 case P4_VTAB: { 1295 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1296 sqlite3XPrintf(&x, "vtab:%p", pVtab); 1297 break; 1298 } 1299 #endif 1300 case P4_INTARRAY: { 1301 int i; 1302 int *ai = pOp->p4.ai; 1303 int n = ai[0]; /* The first element of an INTARRAY is always the 1304 ** count of the number of elements to follow */ 1305 for(i=1; i<n; i++){ 1306 sqlite3XPrintf(&x, ",%d", ai[i]); 1307 } 1308 zTemp[0] = '['; 1309 sqlite3StrAccumAppend(&x, "]", 1); 1310 break; 1311 } 1312 case P4_SUBPROGRAM: { 1313 sqlite3XPrintf(&x, "program"); 1314 break; 1315 } 1316 case P4_ADVANCE: { 1317 zTemp[0] = 0; 1318 break; 1319 } 1320 default: { 1321 zP4 = pOp->p4.z; 1322 if( zP4==0 ){ 1323 zP4 = zTemp; 1324 zTemp[0] = 0; 1325 } 1326 } 1327 } 1328 sqlite3StrAccumFinish(&x); 1329 assert( zP4!=0 ); 1330 return zP4; 1331 } 1332 #endif /* VDBE_DISPLAY_P4 */ 1333 1334 /* 1335 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1336 ** 1337 ** The prepared statements need to know in advance the complete set of 1338 ** attached databases that will be use. A mask of these databases 1339 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1340 ** p->btreeMask of databases that will require a lock. 1341 */ 1342 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1343 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1344 assert( i<(int)sizeof(p->btreeMask)*8 ); 1345 DbMaskSet(p->btreeMask, i); 1346 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1347 DbMaskSet(p->lockMask, i); 1348 } 1349 } 1350 1351 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1352 /* 1353 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1354 ** this routine obtains the mutex associated with each BtShared structure 1355 ** that may be accessed by the VM passed as an argument. In doing so it also 1356 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1357 ** that the correct busy-handler callback is invoked if required. 1358 ** 1359 ** If SQLite is not threadsafe but does support shared-cache mode, then 1360 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1361 ** of all of BtShared structures accessible via the database handle 1362 ** associated with the VM. 1363 ** 1364 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1365 ** function is a no-op. 1366 ** 1367 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1368 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1369 ** corresponding to btrees that use shared cache. Then the runtime of 1370 ** this routine is N*N. But as N is rarely more than 1, this should not 1371 ** be a problem. 1372 */ 1373 void sqlite3VdbeEnter(Vdbe *p){ 1374 int i; 1375 sqlite3 *db; 1376 Db *aDb; 1377 int nDb; 1378 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1379 db = p->db; 1380 aDb = db->aDb; 1381 nDb = db->nDb; 1382 for(i=0; i<nDb; i++){ 1383 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1384 sqlite3BtreeEnter(aDb[i].pBt); 1385 } 1386 } 1387 } 1388 #endif 1389 1390 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1391 /* 1392 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1393 */ 1394 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1395 int i; 1396 sqlite3 *db; 1397 Db *aDb; 1398 int nDb; 1399 db = p->db; 1400 aDb = db->aDb; 1401 nDb = db->nDb; 1402 for(i=0; i<nDb; i++){ 1403 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1404 sqlite3BtreeLeave(aDb[i].pBt); 1405 } 1406 } 1407 } 1408 void sqlite3VdbeLeave(Vdbe *p){ 1409 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1410 vdbeLeave(p); 1411 } 1412 #endif 1413 1414 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1415 /* 1416 ** Print a single opcode. This routine is used for debugging only. 1417 */ 1418 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ 1419 char *zP4; 1420 char zPtr[50]; 1421 char zCom[100]; 1422 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1423 if( pOut==0 ) pOut = stdout; 1424 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1425 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1426 displayComment(pOp, zP4, zCom, sizeof(zCom)); 1427 #else 1428 zCom[0] = 0; 1429 #endif 1430 /* NB: The sqlite3OpcodeName() function is implemented by code created 1431 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1432 ** information from the vdbe.c source text */ 1433 fprintf(pOut, zFormat1, pc, 1434 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1435 zCom 1436 ); 1437 fflush(pOut); 1438 } 1439 #endif 1440 1441 /* 1442 ** Release an array of N Mem elements 1443 */ 1444 static void releaseMemArray(Mem *p, int N){ 1445 if( p && N ){ 1446 Mem *pEnd = &p[N]; 1447 sqlite3 *db = p->db; 1448 if( db->pnBytesFreed ){ 1449 do{ 1450 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1451 }while( (++p)<pEnd ); 1452 return; 1453 } 1454 do{ 1455 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1456 assert( sqlite3VdbeCheckMemInvariants(p) ); 1457 1458 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1459 ** that takes advantage of the fact that the memory cell value is 1460 ** being set to NULL after releasing any dynamic resources. 1461 ** 1462 ** The justification for duplicating code is that according to 1463 ** callgrind, this causes a certain test case to hit the CPU 4.7 1464 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1465 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1466 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1467 ** with no indexes using a single prepared INSERT statement, bind() 1468 ** and reset(). Inserts are grouped into a transaction. 1469 */ 1470 testcase( p->flags & MEM_Agg ); 1471 testcase( p->flags & MEM_Dyn ); 1472 testcase( p->flags & MEM_Frame ); 1473 testcase( p->flags & MEM_RowSet ); 1474 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ 1475 sqlite3VdbeMemRelease(p); 1476 }else if( p->szMalloc ){ 1477 sqlite3DbFree(db, p->zMalloc); 1478 p->szMalloc = 0; 1479 } 1480 1481 p->flags = MEM_Undefined; 1482 }while( (++p)<pEnd ); 1483 } 1484 } 1485 1486 /* 1487 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1488 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1489 */ 1490 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1491 int i; 1492 Mem *aMem = VdbeFrameMem(p); 1493 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1494 for(i=0; i<p->nChildCsr; i++){ 1495 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1496 } 1497 releaseMemArray(aMem, p->nChildMem); 1498 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 1499 sqlite3DbFree(p->v->db, p); 1500 } 1501 1502 #ifndef SQLITE_OMIT_EXPLAIN 1503 /* 1504 ** Give a listing of the program in the virtual machine. 1505 ** 1506 ** The interface is the same as sqlite3VdbeExec(). But instead of 1507 ** running the code, it invokes the callback once for each instruction. 1508 ** This feature is used to implement "EXPLAIN". 1509 ** 1510 ** When p->explain==1, each instruction is listed. When 1511 ** p->explain==2, only OP_Explain instructions are listed and these 1512 ** are shown in a different format. p->explain==2 is used to implement 1513 ** EXPLAIN QUERY PLAN. 1514 ** 1515 ** When p->explain==1, first the main program is listed, then each of 1516 ** the trigger subprograms are listed one by one. 1517 */ 1518 int sqlite3VdbeList( 1519 Vdbe *p /* The VDBE */ 1520 ){ 1521 int nRow; /* Stop when row count reaches this */ 1522 int nSub = 0; /* Number of sub-vdbes seen so far */ 1523 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1524 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1525 sqlite3 *db = p->db; /* The database connection */ 1526 int i; /* Loop counter */ 1527 int rc = SQLITE_OK; /* Return code */ 1528 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 1529 1530 assert( p->explain ); 1531 assert( p->magic==VDBE_MAGIC_RUN ); 1532 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1533 1534 /* Even though this opcode does not use dynamic strings for 1535 ** the result, result columns may become dynamic if the user calls 1536 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1537 */ 1538 releaseMemArray(pMem, 8); 1539 p->pResultSet = 0; 1540 1541 if( p->rc==SQLITE_NOMEM_BKPT ){ 1542 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1543 ** sqlite3_column_text16() failed. */ 1544 sqlite3OomFault(db); 1545 return SQLITE_ERROR; 1546 } 1547 1548 /* When the number of output rows reaches nRow, that means the 1549 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1550 ** nRow is the sum of the number of rows in the main program, plus 1551 ** the sum of the number of rows in all trigger subprograms encountered 1552 ** so far. The nRow value will increase as new trigger subprograms are 1553 ** encountered, but p->pc will eventually catch up to nRow. 1554 */ 1555 nRow = p->nOp; 1556 if( p->explain==1 ){ 1557 /* The first 8 memory cells are used for the result set. So we will 1558 ** commandeer the 9th cell to use as storage for an array of pointers 1559 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1560 ** cells. */ 1561 assert( p->nMem>9 ); 1562 pSub = &p->aMem[9]; 1563 if( pSub->flags&MEM_Blob ){ 1564 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1565 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1566 nSub = pSub->n/sizeof(Vdbe*); 1567 apSub = (SubProgram **)pSub->z; 1568 } 1569 for(i=0; i<nSub; i++){ 1570 nRow += apSub[i]->nOp; 1571 } 1572 } 1573 1574 do{ 1575 i = p->pc++; 1576 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); 1577 if( i>=nRow ){ 1578 p->rc = SQLITE_OK; 1579 rc = SQLITE_DONE; 1580 }else if( db->u1.isInterrupted ){ 1581 p->rc = SQLITE_INTERRUPT; 1582 rc = SQLITE_ERROR; 1583 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 1584 }else{ 1585 char *zP4; 1586 Op *pOp; 1587 if( i<p->nOp ){ 1588 /* The output line number is small enough that we are still in the 1589 ** main program. */ 1590 pOp = &p->aOp[i]; 1591 }else{ 1592 /* We are currently listing subprograms. Figure out which one and 1593 ** pick up the appropriate opcode. */ 1594 int j; 1595 i -= p->nOp; 1596 for(j=0; i>=apSub[j]->nOp; j++){ 1597 i -= apSub[j]->nOp; 1598 } 1599 pOp = &apSub[j]->aOp[i]; 1600 } 1601 if( p->explain==1 ){ 1602 pMem->flags = MEM_Int; 1603 pMem->u.i = i; /* Program counter */ 1604 pMem++; 1605 1606 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1607 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1608 assert( pMem->z!=0 ); 1609 pMem->n = sqlite3Strlen30(pMem->z); 1610 pMem->enc = SQLITE_UTF8; 1611 pMem++; 1612 1613 /* When an OP_Program opcode is encounter (the only opcode that has 1614 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1615 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1616 ** has not already been seen. 1617 */ 1618 if( pOp->p4type==P4_SUBPROGRAM ){ 1619 int nByte = (nSub+1)*sizeof(SubProgram*); 1620 int j; 1621 for(j=0; j<nSub; j++){ 1622 if( apSub[j]==pOp->p4.pProgram ) break; 1623 } 1624 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){ 1625 apSub = (SubProgram **)pSub->z; 1626 apSub[nSub++] = pOp->p4.pProgram; 1627 pSub->flags |= MEM_Blob; 1628 pSub->n = nSub*sizeof(SubProgram*); 1629 } 1630 } 1631 } 1632 1633 pMem->flags = MEM_Int; 1634 pMem->u.i = pOp->p1; /* P1 */ 1635 pMem++; 1636 1637 pMem->flags = MEM_Int; 1638 pMem->u.i = pOp->p2; /* P2 */ 1639 pMem++; 1640 1641 pMem->flags = MEM_Int; 1642 pMem->u.i = pOp->p3; /* P3 */ 1643 pMem++; 1644 1645 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */ 1646 assert( p->db->mallocFailed ); 1647 return SQLITE_ERROR; 1648 } 1649 pMem->flags = MEM_Str|MEM_Term; 1650 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc); 1651 if( zP4!=pMem->z ){ 1652 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 1653 }else{ 1654 assert( pMem->z!=0 ); 1655 pMem->n = sqlite3Strlen30(pMem->z); 1656 pMem->enc = SQLITE_UTF8; 1657 } 1658 pMem++; 1659 1660 if( p->explain==1 ){ 1661 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ 1662 assert( p->db->mallocFailed ); 1663 return SQLITE_ERROR; 1664 } 1665 pMem->flags = MEM_Str|MEM_Term; 1666 pMem->n = 2; 1667 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1668 pMem->enc = SQLITE_UTF8; 1669 pMem++; 1670 1671 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1672 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ 1673 assert( p->db->mallocFailed ); 1674 return SQLITE_ERROR; 1675 } 1676 pMem->flags = MEM_Str|MEM_Term; 1677 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 1678 pMem->enc = SQLITE_UTF8; 1679 #else 1680 pMem->flags = MEM_Null; /* Comment */ 1681 #endif 1682 } 1683 1684 p->nResColumn = 8 - 4*(p->explain-1); 1685 p->pResultSet = &p->aMem[1]; 1686 p->rc = SQLITE_OK; 1687 rc = SQLITE_ROW; 1688 } 1689 return rc; 1690 } 1691 #endif /* SQLITE_OMIT_EXPLAIN */ 1692 1693 #ifdef SQLITE_DEBUG 1694 /* 1695 ** Print the SQL that was used to generate a VDBE program. 1696 */ 1697 void sqlite3VdbePrintSql(Vdbe *p){ 1698 const char *z = 0; 1699 if( p->zSql ){ 1700 z = p->zSql; 1701 }else if( p->nOp>=1 ){ 1702 const VdbeOp *pOp = &p->aOp[0]; 1703 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1704 z = pOp->p4.z; 1705 while( sqlite3Isspace(*z) ) z++; 1706 } 1707 } 1708 if( z ) printf("SQL: [%s]\n", z); 1709 } 1710 #endif 1711 1712 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 1713 /* 1714 ** Print an IOTRACE message showing SQL content. 1715 */ 1716 void sqlite3VdbeIOTraceSql(Vdbe *p){ 1717 int nOp = p->nOp; 1718 VdbeOp *pOp; 1719 if( sqlite3IoTrace==0 ) return; 1720 if( nOp<1 ) return; 1721 pOp = &p->aOp[0]; 1722 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1723 int i, j; 1724 char z[1000]; 1725 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 1726 for(i=0; sqlite3Isspace(z[i]); i++){} 1727 for(j=0; z[i]; i++){ 1728 if( sqlite3Isspace(z[i]) ){ 1729 if( z[i-1]!=' ' ){ 1730 z[j++] = ' '; 1731 } 1732 }else{ 1733 z[j++] = z[i]; 1734 } 1735 } 1736 z[j] = 0; 1737 sqlite3IoTrace("SQL %s\n", z); 1738 } 1739 } 1740 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 1741 1742 /* An instance of this object describes bulk memory available for use 1743 ** by subcomponents of a prepared statement. Space is allocated out 1744 ** of a ReusableSpace object by the allocSpace() routine below. 1745 */ 1746 struct ReusableSpace { 1747 u8 *pSpace; /* Available memory */ 1748 int nFree; /* Bytes of available memory */ 1749 int nNeeded; /* Total bytes that could not be allocated */ 1750 }; 1751 1752 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 1753 ** from the ReusableSpace object. Return a pointer to the allocated 1754 ** memory on success. If insufficient memory is available in the 1755 ** ReusableSpace object, increase the ReusableSpace.nNeeded 1756 ** value by the amount needed and return NULL. 1757 ** 1758 ** If pBuf is not initially NULL, that means that the memory has already 1759 ** been allocated by a prior call to this routine, so just return a copy 1760 ** of pBuf and leave ReusableSpace unchanged. 1761 ** 1762 ** This allocator is employed to repurpose unused slots at the end of the 1763 ** opcode array of prepared state for other memory needs of the prepared 1764 ** statement. 1765 */ 1766 static void *allocSpace( 1767 struct ReusableSpace *p, /* Bulk memory available for allocation */ 1768 void *pBuf, /* Pointer to a prior allocation */ 1769 int nByte /* Bytes of memory needed */ 1770 ){ 1771 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 1772 if( pBuf==0 ){ 1773 nByte = ROUND8(nByte); 1774 if( nByte <= p->nFree ){ 1775 p->nFree -= nByte; 1776 pBuf = &p->pSpace[p->nFree]; 1777 }else{ 1778 p->nNeeded += nByte; 1779 } 1780 } 1781 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 1782 return pBuf; 1783 } 1784 1785 /* 1786 ** Rewind the VDBE back to the beginning in preparation for 1787 ** running it. 1788 */ 1789 void sqlite3VdbeRewind(Vdbe *p){ 1790 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1791 int i; 1792 #endif 1793 assert( p!=0 ); 1794 assert( p->magic==VDBE_MAGIC_INIT ); 1795 1796 /* There should be at least one opcode. 1797 */ 1798 assert( p->nOp>0 ); 1799 1800 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 1801 p->magic = VDBE_MAGIC_RUN; 1802 1803 #ifdef SQLITE_DEBUG 1804 for(i=0; i<p->nMem; i++){ 1805 assert( p->aMem[i].db==p->db ); 1806 } 1807 #endif 1808 p->pc = -1; 1809 p->rc = SQLITE_OK; 1810 p->errorAction = OE_Abort; 1811 p->nChange = 0; 1812 p->cacheCtr = 1; 1813 p->minWriteFileFormat = 255; 1814 p->iStatement = 0; 1815 p->nFkConstraint = 0; 1816 #ifdef VDBE_PROFILE 1817 for(i=0; i<p->nOp; i++){ 1818 p->aOp[i].cnt = 0; 1819 p->aOp[i].cycles = 0; 1820 } 1821 #endif 1822 } 1823 1824 /* 1825 ** Prepare a virtual machine for execution for the first time after 1826 ** creating the virtual machine. This involves things such 1827 ** as allocating registers and initializing the program counter. 1828 ** After the VDBE has be prepped, it can be executed by one or more 1829 ** calls to sqlite3VdbeExec(). 1830 ** 1831 ** This function may be called exactly once on each virtual machine. 1832 ** After this routine is called the VM has been "packaged" and is ready 1833 ** to run. After this routine is called, further calls to 1834 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 1835 ** the Vdbe from the Parse object that helped generate it so that the 1836 ** the Vdbe becomes an independent entity and the Parse object can be 1837 ** destroyed. 1838 ** 1839 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 1840 ** to its initial state after it has been run. 1841 */ 1842 void sqlite3VdbeMakeReady( 1843 Vdbe *p, /* The VDBE */ 1844 Parse *pParse /* Parsing context */ 1845 ){ 1846 sqlite3 *db; /* The database connection */ 1847 int nVar; /* Number of parameters */ 1848 int nMem; /* Number of VM memory registers */ 1849 int nCursor; /* Number of cursors required */ 1850 int nArg; /* Number of arguments in subprograms */ 1851 int nOnce; /* Number of OP_Once instructions */ 1852 int n; /* Loop counter */ 1853 struct ReusableSpace x; /* Reusable bulk memory */ 1854 1855 assert( p!=0 ); 1856 assert( p->nOp>0 ); 1857 assert( pParse!=0 ); 1858 assert( p->magic==VDBE_MAGIC_INIT ); 1859 assert( pParse==p->pParse ); 1860 db = p->db; 1861 assert( db->mallocFailed==0 ); 1862 nVar = pParse->nVar; 1863 nMem = pParse->nMem; 1864 nCursor = pParse->nTab; 1865 nArg = pParse->nMaxArg; 1866 nOnce = pParse->nOnce; 1867 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */ 1868 1869 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 1870 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 1871 ** space at the end of aMem[] for cursors 1 and greater. 1872 ** See also: allocateCursor(). 1873 */ 1874 nMem += nCursor; 1875 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 1876 1877 /* Figure out how much reusable memory is available at the end of the 1878 ** opcode array. This extra memory will be reallocated for other elements 1879 ** of the prepared statement. 1880 */ 1881 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 1882 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 1883 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 1884 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 1885 assert( x.nFree>=0 ); 1886 if( x.nFree>0 ){ 1887 memset(x.pSpace, 0, x.nFree); 1888 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 1889 } 1890 1891 resolveP2Values(p, &nArg); 1892 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 1893 if( pParse->explain && nMem<10 ){ 1894 nMem = 10; 1895 } 1896 p->expired = 0; 1897 1898 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 1899 ** passes. On the first pass, we try to reuse unused memory at the 1900 ** end of the opcode array. If we are unable to satisfy all memory 1901 ** requirements by reusing the opcode array tail, then the second 1902 ** pass will fill in the remainder using a fresh memory allocation. 1903 ** 1904 ** This two-pass approach that reuses as much memory as possible from 1905 ** the leftover memory at the end of the opcode array. This can significantly 1906 ** reduce the amount of memory held by a prepared statement. 1907 */ 1908 do { 1909 x.nNeeded = 0; 1910 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 1911 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 1912 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 1913 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 1914 p->aOnceFlag = allocSpace(&x, p->aOnceFlag, nOnce); 1915 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1916 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 1917 #endif 1918 if( x.nNeeded==0 ) break; 1919 x.pSpace = p->pFree = sqlite3DbMallocZero(db, x.nNeeded); 1920 x.nFree = x.nNeeded; 1921 }while( !db->mallocFailed ); 1922 1923 p->nCursor = nCursor; 1924 p->nOnceFlag = nOnce; 1925 if( p->aVar ){ 1926 p->nVar = (ynVar)nVar; 1927 for(n=0; n<nVar; n++){ 1928 p->aVar[n].flags = MEM_Null; 1929 p->aVar[n].db = db; 1930 } 1931 } 1932 p->nzVar = pParse->nzVar; 1933 p->azVar = pParse->azVar; 1934 pParse->nzVar = 0; 1935 pParse->azVar = 0; 1936 if( p->aMem ){ 1937 p->nMem = nMem; 1938 for(n=0; n<nMem; n++){ 1939 p->aMem[n].flags = MEM_Undefined; 1940 p->aMem[n].db = db; 1941 } 1942 } 1943 p->explain = pParse->explain; 1944 sqlite3VdbeRewind(p); 1945 } 1946 1947 /* 1948 ** Close a VDBE cursor and release all the resources that cursor 1949 ** happens to hold. 1950 */ 1951 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 1952 if( pCx==0 ){ 1953 return; 1954 } 1955 assert( pCx->pBt==0 || pCx->eCurType==CURTYPE_BTREE ); 1956 switch( pCx->eCurType ){ 1957 case CURTYPE_SORTER: { 1958 sqlite3VdbeSorterClose(p->db, pCx); 1959 break; 1960 } 1961 case CURTYPE_BTREE: { 1962 if( pCx->pBt ){ 1963 sqlite3BtreeClose(pCx->pBt); 1964 /* The pCx->pCursor will be close automatically, if it exists, by 1965 ** the call above. */ 1966 }else{ 1967 assert( pCx->uc.pCursor!=0 ); 1968 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 1969 } 1970 break; 1971 } 1972 #ifndef SQLITE_OMIT_VIRTUALTABLE 1973 case CURTYPE_VTAB: { 1974 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 1975 const sqlite3_module *pModule = pVCur->pVtab->pModule; 1976 assert( pVCur->pVtab->nRef>0 ); 1977 pVCur->pVtab->nRef--; 1978 pModule->xClose(pVCur); 1979 break; 1980 } 1981 #endif 1982 } 1983 } 1984 1985 /* 1986 ** Close all cursors in the current frame. 1987 */ 1988 static void closeCursorsInFrame(Vdbe *p){ 1989 if( p->apCsr ){ 1990 int i; 1991 for(i=0; i<p->nCursor; i++){ 1992 VdbeCursor *pC = p->apCsr[i]; 1993 if( pC ){ 1994 sqlite3VdbeFreeCursor(p, pC); 1995 p->apCsr[i] = 0; 1996 } 1997 } 1998 } 1999 } 2000 2001 /* 2002 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2003 ** is used, for example, when a trigger sub-program is halted to restore 2004 ** control to the main program. 2005 */ 2006 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2007 Vdbe *v = pFrame->v; 2008 closeCursorsInFrame(v); 2009 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2010 v->anExec = pFrame->anExec; 2011 #endif 2012 v->aOnceFlag = pFrame->aOnceFlag; 2013 v->nOnceFlag = pFrame->nOnceFlag; 2014 v->aOp = pFrame->aOp; 2015 v->nOp = pFrame->nOp; 2016 v->aMem = pFrame->aMem; 2017 v->nMem = pFrame->nMem; 2018 v->apCsr = pFrame->apCsr; 2019 v->nCursor = pFrame->nCursor; 2020 v->db->lastRowid = pFrame->lastRowid; 2021 v->nChange = pFrame->nChange; 2022 v->db->nChange = pFrame->nDbChange; 2023 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2024 v->pAuxData = pFrame->pAuxData; 2025 pFrame->pAuxData = 0; 2026 return pFrame->pc; 2027 } 2028 2029 /* 2030 ** Close all cursors. 2031 ** 2032 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2033 ** cell array. This is necessary as the memory cell array may contain 2034 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2035 ** open cursors. 2036 */ 2037 static void closeAllCursors(Vdbe *p){ 2038 if( p->pFrame ){ 2039 VdbeFrame *pFrame; 2040 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2041 sqlite3VdbeFrameRestore(pFrame); 2042 p->pFrame = 0; 2043 p->nFrame = 0; 2044 } 2045 assert( p->nFrame==0 ); 2046 closeCursorsInFrame(p); 2047 if( p->aMem ){ 2048 releaseMemArray(p->aMem, p->nMem); 2049 } 2050 while( p->pDelFrame ){ 2051 VdbeFrame *pDel = p->pDelFrame; 2052 p->pDelFrame = pDel->pParent; 2053 sqlite3VdbeFrameDelete(pDel); 2054 } 2055 2056 /* Delete any auxdata allocations made by the VM */ 2057 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2058 assert( p->pAuxData==0 ); 2059 } 2060 2061 /* 2062 ** Clean up the VM after a single run. 2063 */ 2064 static void Cleanup(Vdbe *p){ 2065 sqlite3 *db = p->db; 2066 2067 #ifdef SQLITE_DEBUG 2068 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 2069 ** Vdbe.aMem[] arrays have already been cleaned up. */ 2070 int i; 2071 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 2072 if( p->aMem ){ 2073 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 2074 } 2075 #endif 2076 2077 sqlite3DbFree(db, p->zErrMsg); 2078 p->zErrMsg = 0; 2079 p->pResultSet = 0; 2080 } 2081 2082 /* 2083 ** Set the number of result columns that will be returned by this SQL 2084 ** statement. This is now set at compile time, rather than during 2085 ** execution of the vdbe program so that sqlite3_column_count() can 2086 ** be called on an SQL statement before sqlite3_step(). 2087 */ 2088 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2089 Mem *pColName; 2090 int n; 2091 sqlite3 *db = p->db; 2092 2093 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2094 sqlite3DbFree(db, p->aColName); 2095 n = nResColumn*COLNAME_N; 2096 p->nResColumn = (u16)nResColumn; 2097 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n ); 2098 if( p->aColName==0 ) return; 2099 while( n-- > 0 ){ 2100 pColName->flags = MEM_Null; 2101 pColName->db = p->db; 2102 pColName++; 2103 } 2104 } 2105 2106 /* 2107 ** Set the name of the idx'th column to be returned by the SQL statement. 2108 ** zName must be a pointer to a nul terminated string. 2109 ** 2110 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2111 ** 2112 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2113 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2114 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2115 */ 2116 int sqlite3VdbeSetColName( 2117 Vdbe *p, /* Vdbe being configured */ 2118 int idx, /* Index of column zName applies to */ 2119 int var, /* One of the COLNAME_* constants */ 2120 const char *zName, /* Pointer to buffer containing name */ 2121 void (*xDel)(void*) /* Memory management strategy for zName */ 2122 ){ 2123 int rc; 2124 Mem *pColName; 2125 assert( idx<p->nResColumn ); 2126 assert( var<COLNAME_N ); 2127 if( p->db->mallocFailed ){ 2128 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2129 return SQLITE_NOMEM_BKPT; 2130 } 2131 assert( p->aColName!=0 ); 2132 pColName = &(p->aColName[idx+var*p->nResColumn]); 2133 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2134 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2135 return rc; 2136 } 2137 2138 /* 2139 ** A read or write transaction may or may not be active on database handle 2140 ** db. If a transaction is active, commit it. If there is a 2141 ** write-transaction spanning more than one database file, this routine 2142 ** takes care of the master journal trickery. 2143 */ 2144 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2145 int i; 2146 int nTrans = 0; /* Number of databases with an active write-transaction 2147 ** that are candidates for a two-phase commit using a 2148 ** master-journal */ 2149 int rc = SQLITE_OK; 2150 int needXcommit = 0; 2151 2152 #ifdef SQLITE_OMIT_VIRTUALTABLE 2153 /* With this option, sqlite3VtabSync() is defined to be simply 2154 ** SQLITE_OK so p is not used. 2155 */ 2156 UNUSED_PARAMETER(p); 2157 #endif 2158 2159 /* Before doing anything else, call the xSync() callback for any 2160 ** virtual module tables written in this transaction. This has to 2161 ** be done before determining whether a master journal file is 2162 ** required, as an xSync() callback may add an attached database 2163 ** to the transaction. 2164 */ 2165 rc = sqlite3VtabSync(db, p); 2166 2167 /* This loop determines (a) if the commit hook should be invoked and 2168 ** (b) how many database files have open write transactions, not 2169 ** including the temp database. (b) is important because if more than 2170 ** one database file has an open write transaction, a master journal 2171 ** file is required for an atomic commit. 2172 */ 2173 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2174 Btree *pBt = db->aDb[i].pBt; 2175 if( sqlite3BtreeIsInTrans(pBt) ){ 2176 /* Whether or not a database might need a master journal depends upon 2177 ** its journal mode (among other things). This matrix determines which 2178 ** journal modes use a master journal and which do not */ 2179 static const u8 aMJNeeded[] = { 2180 /* DELETE */ 1, 2181 /* PERSIST */ 1, 2182 /* OFF */ 0, 2183 /* TRUNCATE */ 1, 2184 /* MEMORY */ 0, 2185 /* WAL */ 0 2186 }; 2187 Pager *pPager; /* Pager associated with pBt */ 2188 needXcommit = 1; 2189 sqlite3BtreeEnter(pBt); 2190 pPager = sqlite3BtreePager(pBt); 2191 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2192 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2193 ){ 2194 assert( i!=1 ); 2195 nTrans++; 2196 } 2197 rc = sqlite3PagerExclusiveLock(pPager); 2198 sqlite3BtreeLeave(pBt); 2199 } 2200 } 2201 if( rc!=SQLITE_OK ){ 2202 return rc; 2203 } 2204 2205 /* If there are any write-transactions at all, invoke the commit hook */ 2206 if( needXcommit && db->xCommitCallback ){ 2207 rc = db->xCommitCallback(db->pCommitArg); 2208 if( rc ){ 2209 return SQLITE_CONSTRAINT_COMMITHOOK; 2210 } 2211 } 2212 2213 /* The simple case - no more than one database file (not counting the 2214 ** TEMP database) has a transaction active. There is no need for the 2215 ** master-journal. 2216 ** 2217 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2218 ** string, it means the main database is :memory: or a temp file. In 2219 ** that case we do not support atomic multi-file commits, so use the 2220 ** simple case then too. 2221 */ 2222 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2223 || nTrans<=1 2224 ){ 2225 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2226 Btree *pBt = db->aDb[i].pBt; 2227 if( pBt ){ 2228 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2229 } 2230 } 2231 2232 /* Do the commit only if all databases successfully complete phase 1. 2233 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2234 ** IO error while deleting or truncating a journal file. It is unlikely, 2235 ** but could happen. In this case abandon processing and return the error. 2236 */ 2237 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2238 Btree *pBt = db->aDb[i].pBt; 2239 if( pBt ){ 2240 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2241 } 2242 } 2243 if( rc==SQLITE_OK ){ 2244 sqlite3VtabCommit(db); 2245 } 2246 } 2247 2248 /* The complex case - There is a multi-file write-transaction active. 2249 ** This requires a master journal file to ensure the transaction is 2250 ** committed atomically. 2251 */ 2252 #ifndef SQLITE_OMIT_DISKIO 2253 else{ 2254 sqlite3_vfs *pVfs = db->pVfs; 2255 char *zMaster = 0; /* File-name for the master journal */ 2256 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2257 sqlite3_file *pMaster = 0; 2258 i64 offset = 0; 2259 int res; 2260 int retryCount = 0; 2261 int nMainFile; 2262 2263 /* Select a master journal file name */ 2264 nMainFile = sqlite3Strlen30(zMainFile); 2265 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); 2266 if( zMaster==0 ) return SQLITE_NOMEM_BKPT; 2267 do { 2268 u32 iRandom; 2269 if( retryCount ){ 2270 if( retryCount>100 ){ 2271 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 2272 sqlite3OsDelete(pVfs, zMaster, 0); 2273 break; 2274 }else if( retryCount==1 ){ 2275 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2276 } 2277 } 2278 retryCount++; 2279 sqlite3_randomness(sizeof(iRandom), &iRandom); 2280 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2281 (iRandom>>8)&0xffffff, iRandom&0xff); 2282 /* The antipenultimate character of the master journal name must 2283 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2284 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2285 sqlite3FileSuffix3(zMainFile, zMaster); 2286 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2287 }while( rc==SQLITE_OK && res ); 2288 if( rc==SQLITE_OK ){ 2289 /* Open the master journal. */ 2290 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2291 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2292 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2293 ); 2294 } 2295 if( rc!=SQLITE_OK ){ 2296 sqlite3DbFree(db, zMaster); 2297 return rc; 2298 } 2299 2300 /* Write the name of each database file in the transaction into the new 2301 ** master journal file. If an error occurs at this point close 2302 ** and delete the master journal file. All the individual journal files 2303 ** still have 'null' as the master journal pointer, so they will roll 2304 ** back independently if a failure occurs. 2305 */ 2306 for(i=0; i<db->nDb; i++){ 2307 Btree *pBt = db->aDb[i].pBt; 2308 if( sqlite3BtreeIsInTrans(pBt) ){ 2309 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2310 if( zFile==0 ){ 2311 continue; /* Ignore TEMP and :memory: databases */ 2312 } 2313 assert( zFile[0]!=0 ); 2314 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2315 offset += sqlite3Strlen30(zFile)+1; 2316 if( rc!=SQLITE_OK ){ 2317 sqlite3OsCloseFree(pMaster); 2318 sqlite3OsDelete(pVfs, zMaster, 0); 2319 sqlite3DbFree(db, zMaster); 2320 return rc; 2321 } 2322 } 2323 } 2324 2325 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2326 ** flag is set this is not required. 2327 */ 2328 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2329 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2330 ){ 2331 sqlite3OsCloseFree(pMaster); 2332 sqlite3OsDelete(pVfs, zMaster, 0); 2333 sqlite3DbFree(db, zMaster); 2334 return rc; 2335 } 2336 2337 /* Sync all the db files involved in the transaction. The same call 2338 ** sets the master journal pointer in each individual journal. If 2339 ** an error occurs here, do not delete the master journal file. 2340 ** 2341 ** If the error occurs during the first call to 2342 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2343 ** master journal file will be orphaned. But we cannot delete it, 2344 ** in case the master journal file name was written into the journal 2345 ** file before the failure occurred. 2346 */ 2347 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2348 Btree *pBt = db->aDb[i].pBt; 2349 if( pBt ){ 2350 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2351 } 2352 } 2353 sqlite3OsCloseFree(pMaster); 2354 assert( rc!=SQLITE_BUSY ); 2355 if( rc!=SQLITE_OK ){ 2356 sqlite3DbFree(db, zMaster); 2357 return rc; 2358 } 2359 2360 /* Delete the master journal file. This commits the transaction. After 2361 ** doing this the directory is synced again before any individual 2362 ** transaction files are deleted. 2363 */ 2364 rc = sqlite3OsDelete(pVfs, zMaster, 1); 2365 sqlite3DbFree(db, zMaster); 2366 zMaster = 0; 2367 if( rc ){ 2368 return rc; 2369 } 2370 2371 /* All files and directories have already been synced, so the following 2372 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2373 ** deleting or truncating journals. If something goes wrong while 2374 ** this is happening we don't really care. The integrity of the 2375 ** transaction is already guaranteed, but some stray 'cold' journals 2376 ** may be lying around. Returning an error code won't help matters. 2377 */ 2378 disable_simulated_io_errors(); 2379 sqlite3BeginBenignMalloc(); 2380 for(i=0; i<db->nDb; i++){ 2381 Btree *pBt = db->aDb[i].pBt; 2382 if( pBt ){ 2383 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2384 } 2385 } 2386 sqlite3EndBenignMalloc(); 2387 enable_simulated_io_errors(); 2388 2389 sqlite3VtabCommit(db); 2390 } 2391 #endif 2392 2393 return rc; 2394 } 2395 2396 /* 2397 ** This routine checks that the sqlite3.nVdbeActive count variable 2398 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2399 ** currently active. An assertion fails if the two counts do not match. 2400 ** This is an internal self-check only - it is not an essential processing 2401 ** step. 2402 ** 2403 ** This is a no-op if NDEBUG is defined. 2404 */ 2405 #ifndef NDEBUG 2406 static void checkActiveVdbeCnt(sqlite3 *db){ 2407 Vdbe *p; 2408 int cnt = 0; 2409 int nWrite = 0; 2410 int nRead = 0; 2411 p = db->pVdbe; 2412 while( p ){ 2413 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2414 cnt++; 2415 if( p->readOnly==0 ) nWrite++; 2416 if( p->bIsReader ) nRead++; 2417 } 2418 p = p->pNext; 2419 } 2420 assert( cnt==db->nVdbeActive ); 2421 assert( nWrite==db->nVdbeWrite ); 2422 assert( nRead==db->nVdbeRead ); 2423 } 2424 #else 2425 #define checkActiveVdbeCnt(x) 2426 #endif 2427 2428 /* 2429 ** If the Vdbe passed as the first argument opened a statement-transaction, 2430 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2431 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2432 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2433 ** statement transaction is committed. 2434 ** 2435 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2436 ** Otherwise SQLITE_OK. 2437 */ 2438 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2439 sqlite3 *const db = p->db; 2440 int rc = SQLITE_OK; 2441 2442 /* If p->iStatement is greater than zero, then this Vdbe opened a 2443 ** statement transaction that should be closed here. The only exception 2444 ** is that an IO error may have occurred, causing an emergency rollback. 2445 ** In this case (db->nStatement==0), and there is nothing to do. 2446 */ 2447 if( db->nStatement && p->iStatement ){ 2448 int i; 2449 const int iSavepoint = p->iStatement-1; 2450 2451 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2452 assert( db->nStatement>0 ); 2453 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2454 2455 for(i=0; i<db->nDb; i++){ 2456 int rc2 = SQLITE_OK; 2457 Btree *pBt = db->aDb[i].pBt; 2458 if( pBt ){ 2459 if( eOp==SAVEPOINT_ROLLBACK ){ 2460 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2461 } 2462 if( rc2==SQLITE_OK ){ 2463 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2464 } 2465 if( rc==SQLITE_OK ){ 2466 rc = rc2; 2467 } 2468 } 2469 } 2470 db->nStatement--; 2471 p->iStatement = 0; 2472 2473 if( rc==SQLITE_OK ){ 2474 if( eOp==SAVEPOINT_ROLLBACK ){ 2475 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2476 } 2477 if( rc==SQLITE_OK ){ 2478 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2479 } 2480 } 2481 2482 /* If the statement transaction is being rolled back, also restore the 2483 ** database handles deferred constraint counter to the value it had when 2484 ** the statement transaction was opened. */ 2485 if( eOp==SAVEPOINT_ROLLBACK ){ 2486 db->nDeferredCons = p->nStmtDefCons; 2487 db->nDeferredImmCons = p->nStmtDefImmCons; 2488 } 2489 } 2490 return rc; 2491 } 2492 2493 /* 2494 ** This function is called when a transaction opened by the database 2495 ** handle associated with the VM passed as an argument is about to be 2496 ** committed. If there are outstanding deferred foreign key constraint 2497 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2498 ** 2499 ** If there are outstanding FK violations and this function returns 2500 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2501 ** and write an error message to it. Then return SQLITE_ERROR. 2502 */ 2503 #ifndef SQLITE_OMIT_FOREIGN_KEY 2504 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2505 sqlite3 *db = p->db; 2506 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2507 || (!deferred && p->nFkConstraint>0) 2508 ){ 2509 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2510 p->errorAction = OE_Abort; 2511 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2512 return SQLITE_ERROR; 2513 } 2514 return SQLITE_OK; 2515 } 2516 #endif 2517 2518 /* 2519 ** This routine is called the when a VDBE tries to halt. If the VDBE 2520 ** has made changes and is in autocommit mode, then commit those 2521 ** changes. If a rollback is needed, then do the rollback. 2522 ** 2523 ** This routine is the only way to move the state of a VM from 2524 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2525 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2526 ** 2527 ** Return an error code. If the commit could not complete because of 2528 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2529 ** means the close did not happen and needs to be repeated. 2530 */ 2531 int sqlite3VdbeHalt(Vdbe *p){ 2532 int rc; /* Used to store transient return codes */ 2533 sqlite3 *db = p->db; 2534 2535 /* This function contains the logic that determines if a statement or 2536 ** transaction will be committed or rolled back as a result of the 2537 ** execution of this virtual machine. 2538 ** 2539 ** If any of the following errors occur: 2540 ** 2541 ** SQLITE_NOMEM 2542 ** SQLITE_IOERR 2543 ** SQLITE_FULL 2544 ** SQLITE_INTERRUPT 2545 ** 2546 ** Then the internal cache might have been left in an inconsistent 2547 ** state. We need to rollback the statement transaction, if there is 2548 ** one, or the complete transaction if there is no statement transaction. 2549 */ 2550 2551 if( db->mallocFailed ){ 2552 p->rc = SQLITE_NOMEM_BKPT; 2553 } 2554 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag); 2555 closeAllCursors(p); 2556 if( p->magic!=VDBE_MAGIC_RUN ){ 2557 return SQLITE_OK; 2558 } 2559 checkActiveVdbeCnt(db); 2560 2561 /* No commit or rollback needed if the program never started or if the 2562 ** SQL statement does not read or write a database file. */ 2563 if( p->pc>=0 && p->bIsReader ){ 2564 int mrc; /* Primary error code from p->rc */ 2565 int eStatementOp = 0; 2566 int isSpecialError; /* Set to true if a 'special' error */ 2567 2568 /* Lock all btrees used by the statement */ 2569 sqlite3VdbeEnter(p); 2570 2571 /* Check for one of the special errors */ 2572 mrc = p->rc & 0xff; 2573 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2574 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2575 if( isSpecialError ){ 2576 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2577 ** no rollback is necessary. Otherwise, at least a savepoint 2578 ** transaction must be rolled back to restore the database to a 2579 ** consistent state. 2580 ** 2581 ** Even if the statement is read-only, it is important to perform 2582 ** a statement or transaction rollback operation. If the error 2583 ** occurred while writing to the journal, sub-journal or database 2584 ** file as part of an effort to free up cache space (see function 2585 ** pagerStress() in pager.c), the rollback is required to restore 2586 ** the pager to a consistent state. 2587 */ 2588 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2589 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2590 eStatementOp = SAVEPOINT_ROLLBACK; 2591 }else{ 2592 /* We are forced to roll back the active transaction. Before doing 2593 ** so, abort any other statements this handle currently has active. 2594 */ 2595 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2596 sqlite3CloseSavepoints(db); 2597 db->autoCommit = 1; 2598 p->nChange = 0; 2599 } 2600 } 2601 } 2602 2603 /* Check for immediate foreign key violations. */ 2604 if( p->rc==SQLITE_OK ){ 2605 sqlite3VdbeCheckFk(p, 0); 2606 } 2607 2608 /* If the auto-commit flag is set and this is the only active writer 2609 ** VM, then we do either a commit or rollback of the current transaction. 2610 ** 2611 ** Note: This block also runs if one of the special errors handled 2612 ** above has occurred. 2613 */ 2614 if( !sqlite3VtabInSync(db) 2615 && db->autoCommit 2616 && db->nVdbeWrite==(p->readOnly==0) 2617 ){ 2618 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2619 rc = sqlite3VdbeCheckFk(p, 1); 2620 if( rc!=SQLITE_OK ){ 2621 if( NEVER(p->readOnly) ){ 2622 sqlite3VdbeLeave(p); 2623 return SQLITE_ERROR; 2624 } 2625 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2626 }else{ 2627 /* The auto-commit flag is true, the vdbe program was successful 2628 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2629 ** key constraints to hold up the transaction. This means a commit 2630 ** is required. */ 2631 rc = vdbeCommit(db, p); 2632 } 2633 if( rc==SQLITE_BUSY && p->readOnly ){ 2634 sqlite3VdbeLeave(p); 2635 return SQLITE_BUSY; 2636 }else if( rc!=SQLITE_OK ){ 2637 p->rc = rc; 2638 sqlite3RollbackAll(db, SQLITE_OK); 2639 p->nChange = 0; 2640 }else{ 2641 db->nDeferredCons = 0; 2642 db->nDeferredImmCons = 0; 2643 db->flags &= ~SQLITE_DeferFKs; 2644 sqlite3CommitInternalChanges(db); 2645 } 2646 }else{ 2647 sqlite3RollbackAll(db, SQLITE_OK); 2648 p->nChange = 0; 2649 } 2650 db->nStatement = 0; 2651 }else if( eStatementOp==0 ){ 2652 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2653 eStatementOp = SAVEPOINT_RELEASE; 2654 }else if( p->errorAction==OE_Abort ){ 2655 eStatementOp = SAVEPOINT_ROLLBACK; 2656 }else{ 2657 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2658 sqlite3CloseSavepoints(db); 2659 db->autoCommit = 1; 2660 p->nChange = 0; 2661 } 2662 } 2663 2664 /* If eStatementOp is non-zero, then a statement transaction needs to 2665 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2666 ** do so. If this operation returns an error, and the current statement 2667 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2668 ** current statement error code. 2669 */ 2670 if( eStatementOp ){ 2671 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2672 if( rc ){ 2673 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 2674 p->rc = rc; 2675 sqlite3DbFree(db, p->zErrMsg); 2676 p->zErrMsg = 0; 2677 } 2678 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2679 sqlite3CloseSavepoints(db); 2680 db->autoCommit = 1; 2681 p->nChange = 0; 2682 } 2683 } 2684 2685 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2686 ** has been rolled back, update the database connection change-counter. 2687 */ 2688 if( p->changeCntOn ){ 2689 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2690 sqlite3VdbeSetChanges(db, p->nChange); 2691 }else{ 2692 sqlite3VdbeSetChanges(db, 0); 2693 } 2694 p->nChange = 0; 2695 } 2696 2697 /* Release the locks */ 2698 sqlite3VdbeLeave(p); 2699 } 2700 2701 /* We have successfully halted and closed the VM. Record this fact. */ 2702 if( p->pc>=0 ){ 2703 db->nVdbeActive--; 2704 if( !p->readOnly ) db->nVdbeWrite--; 2705 if( p->bIsReader ) db->nVdbeRead--; 2706 assert( db->nVdbeActive>=db->nVdbeRead ); 2707 assert( db->nVdbeRead>=db->nVdbeWrite ); 2708 assert( db->nVdbeWrite>=0 ); 2709 } 2710 p->magic = VDBE_MAGIC_HALT; 2711 checkActiveVdbeCnt(db); 2712 if( db->mallocFailed ){ 2713 p->rc = SQLITE_NOMEM_BKPT; 2714 } 2715 2716 /* If the auto-commit flag is set to true, then any locks that were held 2717 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2718 ** to invoke any required unlock-notify callbacks. 2719 */ 2720 if( db->autoCommit ){ 2721 sqlite3ConnectionUnlocked(db); 2722 } 2723 2724 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 2725 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 2726 } 2727 2728 2729 /* 2730 ** Each VDBE holds the result of the most recent sqlite3_step() call 2731 ** in p->rc. This routine sets that result back to SQLITE_OK. 2732 */ 2733 void sqlite3VdbeResetStepResult(Vdbe *p){ 2734 p->rc = SQLITE_OK; 2735 } 2736 2737 /* 2738 ** Copy the error code and error message belonging to the VDBE passed 2739 ** as the first argument to its database handle (so that they will be 2740 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 2741 ** 2742 ** This function does not clear the VDBE error code or message, just 2743 ** copies them to the database handle. 2744 */ 2745 int sqlite3VdbeTransferError(Vdbe *p){ 2746 sqlite3 *db = p->db; 2747 int rc = p->rc; 2748 if( p->zErrMsg ){ 2749 db->bBenignMalloc++; 2750 sqlite3BeginBenignMalloc(); 2751 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 2752 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 2753 sqlite3EndBenignMalloc(); 2754 db->bBenignMalloc--; 2755 db->errCode = rc; 2756 }else{ 2757 sqlite3Error(db, rc); 2758 } 2759 return rc; 2760 } 2761 2762 #ifdef SQLITE_ENABLE_SQLLOG 2763 /* 2764 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 2765 ** invoke it. 2766 */ 2767 static void vdbeInvokeSqllog(Vdbe *v){ 2768 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 2769 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 2770 assert( v->db->init.busy==0 ); 2771 if( zExpanded ){ 2772 sqlite3GlobalConfig.xSqllog( 2773 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 2774 ); 2775 sqlite3DbFree(v->db, zExpanded); 2776 } 2777 } 2778 } 2779 #else 2780 # define vdbeInvokeSqllog(x) 2781 #endif 2782 2783 /* 2784 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 2785 ** Write any error messages into *pzErrMsg. Return the result code. 2786 ** 2787 ** After this routine is run, the VDBE should be ready to be executed 2788 ** again. 2789 ** 2790 ** To look at it another way, this routine resets the state of the 2791 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 2792 ** VDBE_MAGIC_INIT. 2793 */ 2794 int sqlite3VdbeReset(Vdbe *p){ 2795 sqlite3 *db; 2796 db = p->db; 2797 2798 /* If the VM did not run to completion or if it encountered an 2799 ** error, then it might not have been halted properly. So halt 2800 ** it now. 2801 */ 2802 sqlite3VdbeHalt(p); 2803 2804 /* If the VDBE has be run even partially, then transfer the error code 2805 ** and error message from the VDBE into the main database structure. But 2806 ** if the VDBE has just been set to run but has not actually executed any 2807 ** instructions yet, leave the main database error information unchanged. 2808 */ 2809 if( p->pc>=0 ){ 2810 vdbeInvokeSqllog(p); 2811 sqlite3VdbeTransferError(p); 2812 sqlite3DbFree(db, p->zErrMsg); 2813 p->zErrMsg = 0; 2814 if( p->runOnlyOnce ) p->expired = 1; 2815 }else if( p->rc && p->expired ){ 2816 /* The expired flag was set on the VDBE before the first call 2817 ** to sqlite3_step(). For consistency (since sqlite3_step() was 2818 ** called), set the database error in this case as well. 2819 */ 2820 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 2821 sqlite3DbFree(db, p->zErrMsg); 2822 p->zErrMsg = 0; 2823 } 2824 2825 /* Reclaim all memory used by the VDBE 2826 */ 2827 Cleanup(p); 2828 2829 /* Save profiling information from this VDBE run. 2830 */ 2831 #ifdef VDBE_PROFILE 2832 { 2833 FILE *out = fopen("vdbe_profile.out", "a"); 2834 if( out ){ 2835 int i; 2836 fprintf(out, "---- "); 2837 for(i=0; i<p->nOp; i++){ 2838 fprintf(out, "%02x", p->aOp[i].opcode); 2839 } 2840 fprintf(out, "\n"); 2841 if( p->zSql ){ 2842 char c, pc = 0; 2843 fprintf(out, "-- "); 2844 for(i=0; (c = p->zSql[i])!=0; i++){ 2845 if( pc=='\n' ) fprintf(out, "-- "); 2846 putc(c, out); 2847 pc = c; 2848 } 2849 if( pc!='\n' ) fprintf(out, "\n"); 2850 } 2851 for(i=0; i<p->nOp; i++){ 2852 char zHdr[100]; 2853 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 2854 p->aOp[i].cnt, 2855 p->aOp[i].cycles, 2856 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 2857 ); 2858 fprintf(out, "%s", zHdr); 2859 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 2860 } 2861 fclose(out); 2862 } 2863 } 2864 #endif 2865 p->iCurrentTime = 0; 2866 p->magic = VDBE_MAGIC_INIT; 2867 return p->rc & db->errMask; 2868 } 2869 2870 /* 2871 ** Clean up and delete a VDBE after execution. Return an integer which is 2872 ** the result code. Write any error message text into *pzErrMsg. 2873 */ 2874 int sqlite3VdbeFinalize(Vdbe *p){ 2875 int rc = SQLITE_OK; 2876 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 2877 rc = sqlite3VdbeReset(p); 2878 assert( (rc & p->db->errMask)==rc ); 2879 } 2880 sqlite3VdbeDelete(p); 2881 return rc; 2882 } 2883 2884 /* 2885 ** If parameter iOp is less than zero, then invoke the destructor for 2886 ** all auxiliary data pointers currently cached by the VM passed as 2887 ** the first argument. 2888 ** 2889 ** Or, if iOp is greater than or equal to zero, then the destructor is 2890 ** only invoked for those auxiliary data pointers created by the user 2891 ** function invoked by the OP_Function opcode at instruction iOp of 2892 ** VM pVdbe, and only then if: 2893 ** 2894 ** * the associated function parameter is the 32nd or later (counting 2895 ** from left to right), or 2896 ** 2897 ** * the corresponding bit in argument mask is clear (where the first 2898 ** function parameter corresponds to bit 0 etc.). 2899 */ 2900 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 2901 while( *pp ){ 2902 AuxData *pAux = *pp; 2903 if( (iOp<0) 2904 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg)))) 2905 ){ 2906 testcase( pAux->iArg==31 ); 2907 if( pAux->xDelete ){ 2908 pAux->xDelete(pAux->pAux); 2909 } 2910 *pp = pAux->pNext; 2911 sqlite3DbFree(db, pAux); 2912 }else{ 2913 pp= &pAux->pNext; 2914 } 2915 } 2916 } 2917 2918 /* 2919 ** Free all memory associated with the Vdbe passed as the second argument, 2920 ** except for object itself, which is preserved. 2921 ** 2922 ** The difference between this function and sqlite3VdbeDelete() is that 2923 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 2924 ** the database connection and frees the object itself. 2925 */ 2926 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 2927 SubProgram *pSub, *pNext; 2928 int i; 2929 assert( p->db==0 || p->db==db ); 2930 releaseMemArray(p->aVar, p->nVar); 2931 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2932 for(pSub=p->pProgram; pSub; pSub=pNext){ 2933 pNext = pSub->pNext; 2934 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 2935 sqlite3DbFree(db, pSub); 2936 } 2937 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); 2938 sqlite3DbFree(db, p->azVar); 2939 vdbeFreeOpArray(db, p->aOp, p->nOp); 2940 sqlite3DbFree(db, p->aColName); 2941 sqlite3DbFree(db, p->zSql); 2942 sqlite3DbFree(db, p->pFree); 2943 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2944 for(i=0; i<p->nScan; i++){ 2945 sqlite3DbFree(db, p->aScan[i].zName); 2946 } 2947 sqlite3DbFree(db, p->aScan); 2948 #endif 2949 } 2950 2951 /* 2952 ** Delete an entire VDBE. 2953 */ 2954 void sqlite3VdbeDelete(Vdbe *p){ 2955 sqlite3 *db; 2956 2957 if( NEVER(p==0) ) return; 2958 db = p->db; 2959 assert( sqlite3_mutex_held(db->mutex) ); 2960 sqlite3VdbeClearObject(db, p); 2961 if( p->pPrev ){ 2962 p->pPrev->pNext = p->pNext; 2963 }else{ 2964 assert( db->pVdbe==p ); 2965 db->pVdbe = p->pNext; 2966 } 2967 if( p->pNext ){ 2968 p->pNext->pPrev = p->pPrev; 2969 } 2970 p->magic = VDBE_MAGIC_DEAD; 2971 p->db = 0; 2972 sqlite3DbFree(db, p); 2973 } 2974 2975 /* 2976 ** The cursor "p" has a pending seek operation that has not yet been 2977 ** carried out. Seek the cursor now. If an error occurs, return 2978 ** the appropriate error code. 2979 */ 2980 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ 2981 int res, rc; 2982 #ifdef SQLITE_TEST 2983 extern int sqlite3_search_count; 2984 #endif 2985 assert( p->deferredMoveto ); 2986 assert( p->isTable ); 2987 assert( p->eCurType==CURTYPE_BTREE ); 2988 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); 2989 if( rc ) return rc; 2990 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 2991 #ifdef SQLITE_TEST 2992 sqlite3_search_count++; 2993 #endif 2994 p->deferredMoveto = 0; 2995 p->cacheStatus = CACHE_STALE; 2996 return SQLITE_OK; 2997 } 2998 2999 /* 3000 ** Something has moved cursor "p" out of place. Maybe the row it was 3001 ** pointed to was deleted out from under it. Or maybe the btree was 3002 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3003 ** is supposed to be pointing. If the row was deleted out from under the 3004 ** cursor, set the cursor to point to a NULL row. 3005 */ 3006 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 3007 int isDifferentRow, rc; 3008 assert( p->eCurType==CURTYPE_BTREE ); 3009 assert( p->uc.pCursor!=0 ); 3010 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3011 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3012 p->cacheStatus = CACHE_STALE; 3013 if( isDifferentRow ) p->nullRow = 1; 3014 return rc; 3015 } 3016 3017 /* 3018 ** Check to ensure that the cursor is valid. Restore the cursor 3019 ** if need be. Return any I/O error from the restore operation. 3020 */ 3021 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3022 assert( p->eCurType==CURTYPE_BTREE ); 3023 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3024 return handleMovedCursor(p); 3025 } 3026 return SQLITE_OK; 3027 } 3028 3029 /* 3030 ** Make sure the cursor p is ready to read or write the row to which it 3031 ** was last positioned. Return an error code if an OOM fault or I/O error 3032 ** prevents us from positioning the cursor to its correct position. 3033 ** 3034 ** If a MoveTo operation is pending on the given cursor, then do that 3035 ** MoveTo now. If no move is pending, check to see if the row has been 3036 ** deleted out from under the cursor and if it has, mark the row as 3037 ** a NULL row. 3038 ** 3039 ** If the cursor is already pointing to the correct row and that row has 3040 ** not been deleted out from under the cursor, then this routine is a no-op. 3041 */ 3042 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){ 3043 VdbeCursor *p = *pp; 3044 if( p->eCurType==CURTYPE_BTREE ){ 3045 if( p->deferredMoveto ){ 3046 int iMap; 3047 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){ 3048 *pp = p->pAltCursor; 3049 *piCol = iMap - 1; 3050 return SQLITE_OK; 3051 } 3052 return handleDeferredMoveto(p); 3053 } 3054 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3055 return handleMovedCursor(p); 3056 } 3057 } 3058 return SQLITE_OK; 3059 } 3060 3061 /* 3062 ** The following functions: 3063 ** 3064 ** sqlite3VdbeSerialType() 3065 ** sqlite3VdbeSerialTypeLen() 3066 ** sqlite3VdbeSerialLen() 3067 ** sqlite3VdbeSerialPut() 3068 ** sqlite3VdbeSerialGet() 3069 ** 3070 ** encapsulate the code that serializes values for storage in SQLite 3071 ** data and index records. Each serialized value consists of a 3072 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3073 ** integer, stored as a varint. 3074 ** 3075 ** In an SQLite index record, the serial type is stored directly before 3076 ** the blob of data that it corresponds to. In a table record, all serial 3077 ** types are stored at the start of the record, and the blobs of data at 3078 ** the end. Hence these functions allow the caller to handle the 3079 ** serial-type and data blob separately. 3080 ** 3081 ** The following table describes the various storage classes for data: 3082 ** 3083 ** serial type bytes of data type 3084 ** -------------- --------------- --------------- 3085 ** 0 0 NULL 3086 ** 1 1 signed integer 3087 ** 2 2 signed integer 3088 ** 3 3 signed integer 3089 ** 4 4 signed integer 3090 ** 5 6 signed integer 3091 ** 6 8 signed integer 3092 ** 7 8 IEEE float 3093 ** 8 0 Integer constant 0 3094 ** 9 0 Integer constant 1 3095 ** 10,11 reserved for expansion 3096 ** N>=12 and even (N-12)/2 BLOB 3097 ** N>=13 and odd (N-13)/2 text 3098 ** 3099 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3100 ** of SQLite will not understand those serial types. 3101 */ 3102 3103 /* 3104 ** Return the serial-type for the value stored in pMem. 3105 */ 3106 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3107 int flags = pMem->flags; 3108 u32 n; 3109 3110 assert( pLen!=0 ); 3111 if( flags&MEM_Null ){ 3112 *pLen = 0; 3113 return 0; 3114 } 3115 if( flags&MEM_Int ){ 3116 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3117 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3118 i64 i = pMem->u.i; 3119 u64 u; 3120 if( i<0 ){ 3121 u = ~i; 3122 }else{ 3123 u = i; 3124 } 3125 if( u<=127 ){ 3126 if( (i&1)==i && file_format>=4 ){ 3127 *pLen = 0; 3128 return 8+(u32)u; 3129 }else{ 3130 *pLen = 1; 3131 return 1; 3132 } 3133 } 3134 if( u<=32767 ){ *pLen = 2; return 2; } 3135 if( u<=8388607 ){ *pLen = 3; return 3; } 3136 if( u<=2147483647 ){ *pLen = 4; return 4; } 3137 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3138 *pLen = 8; 3139 return 6; 3140 } 3141 if( flags&MEM_Real ){ 3142 *pLen = 8; 3143 return 7; 3144 } 3145 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3146 assert( pMem->n>=0 ); 3147 n = (u32)pMem->n; 3148 if( flags & MEM_Zero ){ 3149 n += pMem->u.nZero; 3150 } 3151 *pLen = n; 3152 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3153 } 3154 3155 /* 3156 ** The sizes for serial types less than 128 3157 */ 3158 static const u8 sqlite3SmallTypeSizes[] = { 3159 /* 0 1 2 3 4 5 6 7 8 9 */ 3160 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3161 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3162 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3163 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3164 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3165 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3166 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3167 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3168 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3169 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3170 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3171 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3172 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3173 }; 3174 3175 /* 3176 ** Return the length of the data corresponding to the supplied serial-type. 3177 */ 3178 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3179 if( serial_type>=128 ){ 3180 return (serial_type-12)/2; 3181 }else{ 3182 assert( serial_type<12 3183 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3184 return sqlite3SmallTypeSizes[serial_type]; 3185 } 3186 } 3187 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3188 assert( serial_type<128 ); 3189 return sqlite3SmallTypeSizes[serial_type]; 3190 } 3191 3192 /* 3193 ** If we are on an architecture with mixed-endian floating 3194 ** points (ex: ARM7) then swap the lower 4 bytes with the 3195 ** upper 4 bytes. Return the result. 3196 ** 3197 ** For most architectures, this is a no-op. 3198 ** 3199 ** (later): It is reported to me that the mixed-endian problem 3200 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3201 ** that early versions of GCC stored the two words of a 64-bit 3202 ** float in the wrong order. And that error has been propagated 3203 ** ever since. The blame is not necessarily with GCC, though. 3204 ** GCC might have just copying the problem from a prior compiler. 3205 ** I am also told that newer versions of GCC that follow a different 3206 ** ABI get the byte order right. 3207 ** 3208 ** Developers using SQLite on an ARM7 should compile and run their 3209 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3210 ** enabled, some asserts below will ensure that the byte order of 3211 ** floating point values is correct. 3212 ** 3213 ** (2007-08-30) Frank van Vugt has studied this problem closely 3214 ** and has send his findings to the SQLite developers. Frank 3215 ** writes that some Linux kernels offer floating point hardware 3216 ** emulation that uses only 32-bit mantissas instead of a full 3217 ** 48-bits as required by the IEEE standard. (This is the 3218 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3219 ** byte swapping becomes very complicated. To avoid problems, 3220 ** the necessary byte swapping is carried out using a 64-bit integer 3221 ** rather than a 64-bit float. Frank assures us that the code here 3222 ** works for him. We, the developers, have no way to independently 3223 ** verify this, but Frank seems to know what he is talking about 3224 ** so we trust him. 3225 */ 3226 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3227 static u64 floatSwap(u64 in){ 3228 union { 3229 u64 r; 3230 u32 i[2]; 3231 } u; 3232 u32 t; 3233 3234 u.r = in; 3235 t = u.i[0]; 3236 u.i[0] = u.i[1]; 3237 u.i[1] = t; 3238 return u.r; 3239 } 3240 # define swapMixedEndianFloat(X) X = floatSwap(X) 3241 #else 3242 # define swapMixedEndianFloat(X) 3243 #endif 3244 3245 /* 3246 ** Write the serialized data blob for the value stored in pMem into 3247 ** buf. It is assumed that the caller has allocated sufficient space. 3248 ** Return the number of bytes written. 3249 ** 3250 ** nBuf is the amount of space left in buf[]. The caller is responsible 3251 ** for allocating enough space to buf[] to hold the entire field, exclusive 3252 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3253 ** 3254 ** Return the number of bytes actually written into buf[]. The number 3255 ** of bytes in the zero-filled tail is included in the return value only 3256 ** if those bytes were zeroed in buf[]. 3257 */ 3258 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3259 u32 len; 3260 3261 /* Integer and Real */ 3262 if( serial_type<=7 && serial_type>0 ){ 3263 u64 v; 3264 u32 i; 3265 if( serial_type==7 ){ 3266 assert( sizeof(v)==sizeof(pMem->u.r) ); 3267 memcpy(&v, &pMem->u.r, sizeof(v)); 3268 swapMixedEndianFloat(v); 3269 }else{ 3270 v = pMem->u.i; 3271 } 3272 len = i = sqlite3SmallTypeSizes[serial_type]; 3273 assert( i>0 ); 3274 do{ 3275 buf[--i] = (u8)(v&0xFF); 3276 v >>= 8; 3277 }while( i ); 3278 return len; 3279 } 3280 3281 /* String or blob */ 3282 if( serial_type>=12 ){ 3283 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3284 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3285 len = pMem->n; 3286 if( len>0 ) memcpy(buf, pMem->z, len); 3287 return len; 3288 } 3289 3290 /* NULL or constants 0 or 1 */ 3291 return 0; 3292 } 3293 3294 /* Input "x" is a sequence of unsigned characters that represent a 3295 ** big-endian integer. Return the equivalent native integer 3296 */ 3297 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3298 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3299 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3300 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3301 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3302 3303 /* 3304 ** Deserialize the data blob pointed to by buf as serial type serial_type 3305 ** and store the result in pMem. Return the number of bytes read. 3306 ** 3307 ** This function is implemented as two separate routines for performance. 3308 ** The few cases that require local variables are broken out into a separate 3309 ** routine so that in most cases the overhead of moving the stack pointer 3310 ** is avoided. 3311 */ 3312 static u32 SQLITE_NOINLINE serialGet( 3313 const unsigned char *buf, /* Buffer to deserialize from */ 3314 u32 serial_type, /* Serial type to deserialize */ 3315 Mem *pMem /* Memory cell to write value into */ 3316 ){ 3317 u64 x = FOUR_BYTE_UINT(buf); 3318 u32 y = FOUR_BYTE_UINT(buf+4); 3319 x = (x<<32) + y; 3320 if( serial_type==6 ){ 3321 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3322 ** twos-complement integer. */ 3323 pMem->u.i = *(i64*)&x; 3324 pMem->flags = MEM_Int; 3325 testcase( pMem->u.i<0 ); 3326 }else{ 3327 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3328 ** floating point number. */ 3329 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3330 /* Verify that integers and floating point values use the same 3331 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3332 ** defined that 64-bit floating point values really are mixed 3333 ** endian. 3334 */ 3335 static const u64 t1 = ((u64)0x3ff00000)<<32; 3336 static const double r1 = 1.0; 3337 u64 t2 = t1; 3338 swapMixedEndianFloat(t2); 3339 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3340 #endif 3341 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3342 swapMixedEndianFloat(x); 3343 memcpy(&pMem->u.r, &x, sizeof(x)); 3344 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; 3345 } 3346 return 8; 3347 } 3348 u32 sqlite3VdbeSerialGet( 3349 const unsigned char *buf, /* Buffer to deserialize from */ 3350 u32 serial_type, /* Serial type to deserialize */ 3351 Mem *pMem /* Memory cell to write value into */ 3352 ){ 3353 switch( serial_type ){ 3354 case 10: /* Reserved for future use */ 3355 case 11: /* Reserved for future use */ 3356 case 0: { /* Null */ 3357 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3358 pMem->flags = MEM_Null; 3359 break; 3360 } 3361 case 1: { 3362 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3363 ** integer. */ 3364 pMem->u.i = ONE_BYTE_INT(buf); 3365 pMem->flags = MEM_Int; 3366 testcase( pMem->u.i<0 ); 3367 return 1; 3368 } 3369 case 2: { /* 2-byte signed integer */ 3370 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3371 ** twos-complement integer. */ 3372 pMem->u.i = TWO_BYTE_INT(buf); 3373 pMem->flags = MEM_Int; 3374 testcase( pMem->u.i<0 ); 3375 return 2; 3376 } 3377 case 3: { /* 3-byte signed integer */ 3378 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3379 ** twos-complement integer. */ 3380 pMem->u.i = THREE_BYTE_INT(buf); 3381 pMem->flags = MEM_Int; 3382 testcase( pMem->u.i<0 ); 3383 return 3; 3384 } 3385 case 4: { /* 4-byte signed integer */ 3386 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3387 ** twos-complement integer. */ 3388 pMem->u.i = FOUR_BYTE_INT(buf); 3389 #ifdef __HP_cc 3390 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3391 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3392 #endif 3393 pMem->flags = MEM_Int; 3394 testcase( pMem->u.i<0 ); 3395 return 4; 3396 } 3397 case 5: { /* 6-byte signed integer */ 3398 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3399 ** twos-complement integer. */ 3400 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3401 pMem->flags = MEM_Int; 3402 testcase( pMem->u.i<0 ); 3403 return 6; 3404 } 3405 case 6: /* 8-byte signed integer */ 3406 case 7: { /* IEEE floating point */ 3407 /* These use local variables, so do them in a separate routine 3408 ** to avoid having to move the frame pointer in the common case */ 3409 return serialGet(buf,serial_type,pMem); 3410 } 3411 case 8: /* Integer 0 */ 3412 case 9: { /* Integer 1 */ 3413 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3414 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3415 pMem->u.i = serial_type-8; 3416 pMem->flags = MEM_Int; 3417 return 0; 3418 } 3419 default: { 3420 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3421 ** length. 3422 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3423 ** (N-13)/2 bytes in length. */ 3424 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3425 pMem->z = (char *)buf; 3426 pMem->n = (serial_type-12)/2; 3427 pMem->flags = aFlag[serial_type&1]; 3428 return pMem->n; 3429 } 3430 } 3431 return 0; 3432 } 3433 /* 3434 ** This routine is used to allocate sufficient space for an UnpackedRecord 3435 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3436 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3437 ** 3438 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3439 ** the unaligned buffer passed via the second and third arguments (presumably 3440 ** stack space). If the former, then *ppFree is set to a pointer that should 3441 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3442 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3443 ** before returning. 3444 ** 3445 ** If an OOM error occurs, NULL is returned. 3446 */ 3447 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3448 KeyInfo *pKeyInfo, /* Description of the record */ 3449 char *pSpace, /* Unaligned space available */ 3450 int szSpace, /* Size of pSpace[] in bytes */ 3451 char **ppFree /* OUT: Caller should free this pointer */ 3452 ){ 3453 UnpackedRecord *p; /* Unpacked record to return */ 3454 int nOff; /* Increment pSpace by nOff to align it */ 3455 int nByte; /* Number of bytes required for *p */ 3456 3457 /* We want to shift the pointer pSpace up such that it is 8-byte aligned. 3458 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift 3459 ** it by. If pSpace is already 8-byte aligned, nOff should be zero. 3460 */ 3461 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7; 3462 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); 3463 if( nByte>szSpace+nOff ){ 3464 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3465 *ppFree = (char *)p; 3466 if( !p ) return 0; 3467 }else{ 3468 p = (UnpackedRecord*)&pSpace[nOff]; 3469 *ppFree = 0; 3470 } 3471 3472 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3473 assert( pKeyInfo->aSortOrder!=0 ); 3474 p->pKeyInfo = pKeyInfo; 3475 p->nField = pKeyInfo->nField + 1; 3476 return p; 3477 } 3478 3479 /* 3480 ** Given the nKey-byte encoding of a record in pKey[], populate the 3481 ** UnpackedRecord structure indicated by the fourth argument with the 3482 ** contents of the decoded record. 3483 */ 3484 void sqlite3VdbeRecordUnpack( 3485 KeyInfo *pKeyInfo, /* Information about the record format */ 3486 int nKey, /* Size of the binary record */ 3487 const void *pKey, /* The binary record */ 3488 UnpackedRecord *p /* Populate this structure before returning. */ 3489 ){ 3490 const unsigned char *aKey = (const unsigned char *)pKey; 3491 int d; 3492 u32 idx; /* Offset in aKey[] to read from */ 3493 u16 u; /* Unsigned loop counter */ 3494 u32 szHdr; 3495 Mem *pMem = p->aMem; 3496 3497 p->default_rc = 0; 3498 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3499 idx = getVarint32(aKey, szHdr); 3500 d = szHdr; 3501 u = 0; 3502 while( idx<szHdr && d<=nKey ){ 3503 u32 serial_type; 3504 3505 idx += getVarint32(&aKey[idx], serial_type); 3506 pMem->enc = pKeyInfo->enc; 3507 pMem->db = pKeyInfo->db; 3508 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 3509 pMem->szMalloc = 0; 3510 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3511 pMem++; 3512 if( (++u)>=p->nField ) break; 3513 } 3514 assert( u<=pKeyInfo->nField + 1 ); 3515 p->nField = u; 3516 } 3517 3518 #if SQLITE_DEBUG 3519 /* 3520 ** This function compares two index or table record keys in the same way 3521 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 3522 ** this function deserializes and compares values using the 3523 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 3524 ** in assert() statements to ensure that the optimized code in 3525 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 3526 ** 3527 ** Return true if the result of comparison is equivalent to desiredResult. 3528 ** Return false if there is a disagreement. 3529 */ 3530 static int vdbeRecordCompareDebug( 3531 int nKey1, const void *pKey1, /* Left key */ 3532 const UnpackedRecord *pPKey2, /* Right key */ 3533 int desiredResult /* Correct answer */ 3534 ){ 3535 u32 d1; /* Offset into aKey[] of next data element */ 3536 u32 idx1; /* Offset into aKey[] of next header element */ 3537 u32 szHdr1; /* Number of bytes in header */ 3538 int i = 0; 3539 int rc = 0; 3540 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3541 KeyInfo *pKeyInfo; 3542 Mem mem1; 3543 3544 pKeyInfo = pPKey2->pKeyInfo; 3545 if( pKeyInfo->db==0 ) return 1; 3546 mem1.enc = pKeyInfo->enc; 3547 mem1.db = pKeyInfo->db; 3548 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 3549 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3550 3551 /* Compilers may complain that mem1.u.i is potentially uninitialized. 3552 ** We could initialize it, as shown here, to silence those complaints. 3553 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 3554 ** the unnecessary initialization has a measurable negative performance 3555 ** impact, since this routine is a very high runner. And so, we choose 3556 ** to ignore the compiler warnings and leave this variable uninitialized. 3557 */ 3558 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 3559 3560 idx1 = getVarint32(aKey1, szHdr1); 3561 if( szHdr1>98307 ) return SQLITE_CORRUPT; 3562 d1 = szHdr1; 3563 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB ); 3564 assert( pKeyInfo->aSortOrder!=0 ); 3565 assert( pKeyInfo->nField>0 ); 3566 assert( idx1<=szHdr1 || CORRUPT_DB ); 3567 do{ 3568 u32 serial_type1; 3569 3570 /* Read the serial types for the next element in each key. */ 3571 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 3572 3573 /* Verify that there is enough key space remaining to avoid 3574 ** a buffer overread. The "d1+serial_type1+2" subexpression will 3575 ** always be greater than or equal to the amount of required key space. 3576 ** Use that approximation to avoid the more expensive call to 3577 ** sqlite3VdbeSerialTypeLen() in the common case. 3578 */ 3579 if( d1+serial_type1+2>(u32)nKey1 3580 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 3581 ){ 3582 break; 3583 } 3584 3585 /* Extract the values to be compared. 3586 */ 3587 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 3588 3589 /* Do the comparison 3590 */ 3591 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); 3592 if( rc!=0 ){ 3593 assert( mem1.szMalloc==0 ); /* See comment below */ 3594 if( pKeyInfo->aSortOrder[i] ){ 3595 rc = -rc; /* Invert the result for DESC sort order. */ 3596 } 3597 goto debugCompareEnd; 3598 } 3599 i++; 3600 }while( idx1<szHdr1 && i<pPKey2->nField ); 3601 3602 /* No memory allocation is ever used on mem1. Prove this using 3603 ** the following assert(). If the assert() fails, it indicates a 3604 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 3605 */ 3606 assert( mem1.szMalloc==0 ); 3607 3608 /* rc==0 here means that one of the keys ran out of fields and 3609 ** all the fields up to that point were equal. Return the default_rc 3610 ** value. */ 3611 rc = pPKey2->default_rc; 3612 3613 debugCompareEnd: 3614 if( desiredResult==0 && rc==0 ) return 1; 3615 if( desiredResult<0 && rc<0 ) return 1; 3616 if( desiredResult>0 && rc>0 ) return 1; 3617 if( CORRUPT_DB ) return 1; 3618 if( pKeyInfo->db->mallocFailed ) return 1; 3619 return 0; 3620 } 3621 #endif 3622 3623 #if SQLITE_DEBUG 3624 /* 3625 ** Count the number of fields (a.k.a. columns) in the record given by 3626 ** pKey,nKey. The verify that this count is less than or equal to the 3627 ** limit given by pKeyInfo->nField + pKeyInfo->nXField. 3628 ** 3629 ** If this constraint is not satisfied, it means that the high-speed 3630 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 3631 ** not work correctly. If this assert() ever fires, it probably means 3632 ** that the KeyInfo.nField or KeyInfo.nXField values were computed 3633 ** incorrectly. 3634 */ 3635 static void vdbeAssertFieldCountWithinLimits( 3636 int nKey, const void *pKey, /* The record to verify */ 3637 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 3638 ){ 3639 int nField = 0; 3640 u32 szHdr; 3641 u32 idx; 3642 u32 notUsed; 3643 const unsigned char *aKey = (const unsigned char*)pKey; 3644 3645 if( CORRUPT_DB ) return; 3646 idx = getVarint32(aKey, szHdr); 3647 assert( nKey>=0 ); 3648 assert( szHdr<=(u32)nKey ); 3649 while( idx<szHdr ){ 3650 idx += getVarint32(aKey+idx, notUsed); 3651 nField++; 3652 } 3653 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField ); 3654 } 3655 #else 3656 # define vdbeAssertFieldCountWithinLimits(A,B,C) 3657 #endif 3658 3659 /* 3660 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 3661 ** using the collation sequence pColl. As usual, return a negative , zero 3662 ** or positive value if *pMem1 is less than, equal to or greater than 3663 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 3664 */ 3665 static int vdbeCompareMemString( 3666 const Mem *pMem1, 3667 const Mem *pMem2, 3668 const CollSeq *pColl, 3669 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 3670 ){ 3671 if( pMem1->enc==pColl->enc ){ 3672 /* The strings are already in the correct encoding. Call the 3673 ** comparison function directly */ 3674 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 3675 }else{ 3676 int rc; 3677 const void *v1, *v2; 3678 int n1, n2; 3679 Mem c1; 3680 Mem c2; 3681 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 3682 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 3683 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 3684 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 3685 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 3686 n1 = v1==0 ? 0 : c1.n; 3687 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 3688 n2 = v2==0 ? 0 : c2.n; 3689 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); 3690 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 3691 sqlite3VdbeMemRelease(&c1); 3692 sqlite3VdbeMemRelease(&c2); 3693 return rc; 3694 } 3695 } 3696 3697 /* 3698 ** Compare two blobs. Return negative, zero, or positive if the first 3699 ** is less than, equal to, or greater than the second, respectively. 3700 ** If one blob is a prefix of the other, then the shorter is the lessor. 3701 */ 3702 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 3703 int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n); 3704 if( c ) return c; 3705 return pB1->n - pB2->n; 3706 } 3707 3708 /* 3709 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 3710 ** number. Return negative, zero, or positive if the first (i64) is less than, 3711 ** equal to, or greater than the second (double). 3712 */ 3713 static int sqlite3IntFloatCompare(i64 i, double r){ 3714 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 3715 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 3716 if( x<r ) return -1; 3717 if( x>r ) return +1; 3718 return 0; 3719 }else{ 3720 i64 y; 3721 double s; 3722 if( r<-9223372036854775808.0 ) return +1; 3723 if( r>9223372036854775807.0 ) return -1; 3724 y = (i64)r; 3725 if( i<y ) return -1; 3726 if( i>y ){ 3727 if( y==SMALLEST_INT64 && r>0.0 ) return -1; 3728 return +1; 3729 } 3730 s = (double)i; 3731 if( s<r ) return -1; 3732 if( s>r ) return +1; 3733 return 0; 3734 } 3735 } 3736 3737 /* 3738 ** Compare the values contained by the two memory cells, returning 3739 ** negative, zero or positive if pMem1 is less than, equal to, or greater 3740 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 3741 ** and reals) sorted numerically, followed by text ordered by the collating 3742 ** sequence pColl and finally blob's ordered by memcmp(). 3743 ** 3744 ** Two NULL values are considered equal by this function. 3745 */ 3746 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 3747 int f1, f2; 3748 int combined_flags; 3749 3750 f1 = pMem1->flags; 3751 f2 = pMem2->flags; 3752 combined_flags = f1|f2; 3753 assert( (combined_flags & MEM_RowSet)==0 ); 3754 3755 /* If one value is NULL, it is less than the other. If both values 3756 ** are NULL, return 0. 3757 */ 3758 if( combined_flags&MEM_Null ){ 3759 return (f2&MEM_Null) - (f1&MEM_Null); 3760 } 3761 3762 /* At least one of the two values is a number 3763 */ 3764 if( combined_flags&(MEM_Int|MEM_Real) ){ 3765 if( (f1 & f2 & MEM_Int)!=0 ){ 3766 if( pMem1->u.i < pMem2->u.i ) return -1; 3767 if( pMem1->u.i > pMem2->u.i ) return +1; 3768 return 0; 3769 } 3770 if( (f1 & f2 & MEM_Real)!=0 ){ 3771 if( pMem1->u.r < pMem2->u.r ) return -1; 3772 if( pMem1->u.r > pMem2->u.r ) return +1; 3773 return 0; 3774 } 3775 if( (f1&MEM_Int)!=0 ){ 3776 if( (f2&MEM_Real)!=0 ){ 3777 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 3778 }else{ 3779 return -1; 3780 } 3781 } 3782 if( (f1&MEM_Real)!=0 ){ 3783 if( (f2&MEM_Int)!=0 ){ 3784 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 3785 }else{ 3786 return -1; 3787 } 3788 } 3789 return +1; 3790 } 3791 3792 /* If one value is a string and the other is a blob, the string is less. 3793 ** If both are strings, compare using the collating functions. 3794 */ 3795 if( combined_flags&MEM_Str ){ 3796 if( (f1 & MEM_Str)==0 ){ 3797 return 1; 3798 } 3799 if( (f2 & MEM_Str)==0 ){ 3800 return -1; 3801 } 3802 3803 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 3804 assert( pMem1->enc==SQLITE_UTF8 || 3805 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 3806 3807 /* The collation sequence must be defined at this point, even if 3808 ** the user deletes the collation sequence after the vdbe program is 3809 ** compiled (this was not always the case). 3810 */ 3811 assert( !pColl || pColl->xCmp ); 3812 3813 if( pColl ){ 3814 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 3815 } 3816 /* If a NULL pointer was passed as the collate function, fall through 3817 ** to the blob case and use memcmp(). */ 3818 } 3819 3820 /* Both values must be blobs. Compare using memcmp(). */ 3821 return sqlite3BlobCompare(pMem1, pMem2); 3822 } 3823 3824 3825 /* 3826 ** The first argument passed to this function is a serial-type that 3827 ** corresponds to an integer - all values between 1 and 9 inclusive 3828 ** except 7. The second points to a buffer containing an integer value 3829 ** serialized according to serial_type. This function deserializes 3830 ** and returns the value. 3831 */ 3832 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 3833 u32 y; 3834 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 3835 switch( serial_type ){ 3836 case 0: 3837 case 1: 3838 testcase( aKey[0]&0x80 ); 3839 return ONE_BYTE_INT(aKey); 3840 case 2: 3841 testcase( aKey[0]&0x80 ); 3842 return TWO_BYTE_INT(aKey); 3843 case 3: 3844 testcase( aKey[0]&0x80 ); 3845 return THREE_BYTE_INT(aKey); 3846 case 4: { 3847 testcase( aKey[0]&0x80 ); 3848 y = FOUR_BYTE_UINT(aKey); 3849 return (i64)*(int*)&y; 3850 } 3851 case 5: { 3852 testcase( aKey[0]&0x80 ); 3853 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 3854 } 3855 case 6: { 3856 u64 x = FOUR_BYTE_UINT(aKey); 3857 testcase( aKey[0]&0x80 ); 3858 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 3859 return (i64)*(i64*)&x; 3860 } 3861 } 3862 3863 return (serial_type - 8); 3864 } 3865 3866 /* 3867 ** This function compares the two table rows or index records 3868 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 3869 ** or positive integer if key1 is less than, equal to or 3870 ** greater than key2. The {nKey1, pKey1} key must be a blob 3871 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 3872 ** key must be a parsed key such as obtained from 3873 ** sqlite3VdbeParseRecord. 3874 ** 3875 ** If argument bSkip is non-zero, it is assumed that the caller has already 3876 ** determined that the first fields of the keys are equal. 3877 ** 3878 ** Key1 and Key2 do not have to contain the same number of fields. If all 3879 ** fields that appear in both keys are equal, then pPKey2->default_rc is 3880 ** returned. 3881 ** 3882 ** If database corruption is discovered, set pPKey2->errCode to 3883 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 3884 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 3885 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 3886 */ 3887 int sqlite3VdbeRecordCompareWithSkip( 3888 int nKey1, const void *pKey1, /* Left key */ 3889 UnpackedRecord *pPKey2, /* Right key */ 3890 int bSkip /* If true, skip the first field */ 3891 ){ 3892 u32 d1; /* Offset into aKey[] of next data element */ 3893 int i; /* Index of next field to compare */ 3894 u32 szHdr1; /* Size of record header in bytes */ 3895 u32 idx1; /* Offset of first type in header */ 3896 int rc = 0; /* Return value */ 3897 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 3898 KeyInfo *pKeyInfo = pPKey2->pKeyInfo; 3899 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3900 Mem mem1; 3901 3902 /* If bSkip is true, then the caller has already determined that the first 3903 ** two elements in the keys are equal. Fix the various stack variables so 3904 ** that this routine begins comparing at the second field. */ 3905 if( bSkip ){ 3906 u32 s1; 3907 idx1 = 1 + getVarint32(&aKey1[1], s1); 3908 szHdr1 = aKey1[0]; 3909 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 3910 i = 1; 3911 pRhs++; 3912 }else{ 3913 idx1 = getVarint32(aKey1, szHdr1); 3914 d1 = szHdr1; 3915 if( d1>(unsigned)nKey1 ){ 3916 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3917 return 0; /* Corruption */ 3918 } 3919 i = 0; 3920 } 3921 3922 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3923 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 3924 || CORRUPT_DB ); 3925 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); 3926 assert( pPKey2->pKeyInfo->nField>0 ); 3927 assert( idx1<=szHdr1 || CORRUPT_DB ); 3928 do{ 3929 u32 serial_type; 3930 3931 /* RHS is an integer */ 3932 if( pRhs->flags & MEM_Int ){ 3933 serial_type = aKey1[idx1]; 3934 testcase( serial_type==12 ); 3935 if( serial_type>=10 ){ 3936 rc = +1; 3937 }else if( serial_type==0 ){ 3938 rc = -1; 3939 }else if( serial_type==7 ){ 3940 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 3941 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 3942 }else{ 3943 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 3944 i64 rhs = pRhs->u.i; 3945 if( lhs<rhs ){ 3946 rc = -1; 3947 }else if( lhs>rhs ){ 3948 rc = +1; 3949 } 3950 } 3951 } 3952 3953 /* RHS is real */ 3954 else if( pRhs->flags & MEM_Real ){ 3955 serial_type = aKey1[idx1]; 3956 if( serial_type>=10 ){ 3957 /* Serial types 12 or greater are strings and blobs (greater than 3958 ** numbers). Types 10 and 11 are currently "reserved for future 3959 ** use", so it doesn't really matter what the results of comparing 3960 ** them to numberic values are. */ 3961 rc = +1; 3962 }else if( serial_type==0 ){ 3963 rc = -1; 3964 }else{ 3965 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 3966 if( serial_type==7 ){ 3967 if( mem1.u.r<pRhs->u.r ){ 3968 rc = -1; 3969 }else if( mem1.u.r>pRhs->u.r ){ 3970 rc = +1; 3971 } 3972 }else{ 3973 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 3974 } 3975 } 3976 } 3977 3978 /* RHS is a string */ 3979 else if( pRhs->flags & MEM_Str ){ 3980 getVarint32(&aKey1[idx1], serial_type); 3981 testcase( serial_type==12 ); 3982 if( serial_type<12 ){ 3983 rc = -1; 3984 }else if( !(serial_type & 0x01) ){ 3985 rc = +1; 3986 }else{ 3987 mem1.n = (serial_type - 12) / 2; 3988 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 3989 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 3990 if( (d1+mem1.n) > (unsigned)nKey1 ){ 3991 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3992 return 0; /* Corruption */ 3993 }else if( pKeyInfo->aColl[i] ){ 3994 mem1.enc = pKeyInfo->enc; 3995 mem1.db = pKeyInfo->db; 3996 mem1.flags = MEM_Str; 3997 mem1.z = (char*)&aKey1[d1]; 3998 rc = vdbeCompareMemString( 3999 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4000 ); 4001 }else{ 4002 int nCmp = MIN(mem1.n, pRhs->n); 4003 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4004 if( rc==0 ) rc = mem1.n - pRhs->n; 4005 } 4006 } 4007 } 4008 4009 /* RHS is a blob */ 4010 else if( pRhs->flags & MEM_Blob ){ 4011 getVarint32(&aKey1[idx1], serial_type); 4012 testcase( serial_type==12 ); 4013 if( serial_type<12 || (serial_type & 0x01) ){ 4014 rc = -1; 4015 }else{ 4016 int nStr = (serial_type - 12) / 2; 4017 testcase( (d1+nStr)==(unsigned)nKey1 ); 4018 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4019 if( (d1+nStr) > (unsigned)nKey1 ){ 4020 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4021 return 0; /* Corruption */ 4022 }else{ 4023 int nCmp = MIN(nStr, pRhs->n); 4024 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4025 if( rc==0 ) rc = nStr - pRhs->n; 4026 } 4027 } 4028 } 4029 4030 /* RHS is null */ 4031 else{ 4032 serial_type = aKey1[idx1]; 4033 rc = (serial_type!=0); 4034 } 4035 4036 if( rc!=0 ){ 4037 if( pKeyInfo->aSortOrder[i] ){ 4038 rc = -rc; 4039 } 4040 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4041 assert( mem1.szMalloc==0 ); /* See comment below */ 4042 return rc; 4043 } 4044 4045 i++; 4046 pRhs++; 4047 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4048 idx1 += sqlite3VarintLen(serial_type); 4049 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); 4050 4051 /* No memory allocation is ever used on mem1. Prove this using 4052 ** the following assert(). If the assert() fails, it indicates a 4053 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4054 assert( mem1.szMalloc==0 ); 4055 4056 /* rc==0 here means that one or both of the keys ran out of fields and 4057 ** all the fields up to that point were equal. Return the default_rc 4058 ** value. */ 4059 assert( CORRUPT_DB 4060 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4061 || pKeyInfo->db->mallocFailed 4062 ); 4063 pPKey2->eqSeen = 1; 4064 return pPKey2->default_rc; 4065 } 4066 int sqlite3VdbeRecordCompare( 4067 int nKey1, const void *pKey1, /* Left key */ 4068 UnpackedRecord *pPKey2 /* Right key */ 4069 ){ 4070 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4071 } 4072 4073 4074 /* 4075 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4076 ** that (a) the first field of pPKey2 is an integer, and (b) the 4077 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4078 ** byte (i.e. is less than 128). 4079 ** 4080 ** To avoid concerns about buffer overreads, this routine is only used 4081 ** on schemas where the maximum valid header size is 63 bytes or less. 4082 */ 4083 static int vdbeRecordCompareInt( 4084 int nKey1, const void *pKey1, /* Left key */ 4085 UnpackedRecord *pPKey2 /* Right key */ 4086 ){ 4087 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4088 int serial_type = ((const u8*)pKey1)[1]; 4089 int res; 4090 u32 y; 4091 u64 x; 4092 i64 v = pPKey2->aMem[0].u.i; 4093 i64 lhs; 4094 4095 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4096 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4097 switch( serial_type ){ 4098 case 1: { /* 1-byte signed integer */ 4099 lhs = ONE_BYTE_INT(aKey); 4100 testcase( lhs<0 ); 4101 break; 4102 } 4103 case 2: { /* 2-byte signed integer */ 4104 lhs = TWO_BYTE_INT(aKey); 4105 testcase( lhs<0 ); 4106 break; 4107 } 4108 case 3: { /* 3-byte signed integer */ 4109 lhs = THREE_BYTE_INT(aKey); 4110 testcase( lhs<0 ); 4111 break; 4112 } 4113 case 4: { /* 4-byte signed integer */ 4114 y = FOUR_BYTE_UINT(aKey); 4115 lhs = (i64)*(int*)&y; 4116 testcase( lhs<0 ); 4117 break; 4118 } 4119 case 5: { /* 6-byte signed integer */ 4120 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4121 testcase( lhs<0 ); 4122 break; 4123 } 4124 case 6: { /* 8-byte signed integer */ 4125 x = FOUR_BYTE_UINT(aKey); 4126 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4127 lhs = *(i64*)&x; 4128 testcase( lhs<0 ); 4129 break; 4130 } 4131 case 8: 4132 lhs = 0; 4133 break; 4134 case 9: 4135 lhs = 1; 4136 break; 4137 4138 /* This case could be removed without changing the results of running 4139 ** this code. Including it causes gcc to generate a faster switch 4140 ** statement (since the range of switch targets now starts at zero and 4141 ** is contiguous) but does not cause any duplicate code to be generated 4142 ** (as gcc is clever enough to combine the two like cases). Other 4143 ** compilers might be similar. */ 4144 case 0: case 7: 4145 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4146 4147 default: 4148 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4149 } 4150 4151 if( v>lhs ){ 4152 res = pPKey2->r1; 4153 }else if( v<lhs ){ 4154 res = pPKey2->r2; 4155 }else if( pPKey2->nField>1 ){ 4156 /* The first fields of the two keys are equal. Compare the trailing 4157 ** fields. */ 4158 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4159 }else{ 4160 /* The first fields of the two keys are equal and there are no trailing 4161 ** fields. Return pPKey2->default_rc in this case. */ 4162 res = pPKey2->default_rc; 4163 pPKey2->eqSeen = 1; 4164 } 4165 4166 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4167 return res; 4168 } 4169 4170 /* 4171 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4172 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4173 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4174 ** at the start of (pKey1/nKey1) fits in a single byte. 4175 */ 4176 static int vdbeRecordCompareString( 4177 int nKey1, const void *pKey1, /* Left key */ 4178 UnpackedRecord *pPKey2 /* Right key */ 4179 ){ 4180 const u8 *aKey1 = (const u8*)pKey1; 4181 int serial_type; 4182 int res; 4183 4184 assert( pPKey2->aMem[0].flags & MEM_Str ); 4185 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4186 getVarint32(&aKey1[1], serial_type); 4187 if( serial_type<12 ){ 4188 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4189 }else if( !(serial_type & 0x01) ){ 4190 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4191 }else{ 4192 int nCmp; 4193 int nStr; 4194 int szHdr = aKey1[0]; 4195 4196 nStr = (serial_type-12) / 2; 4197 if( (szHdr + nStr) > nKey1 ){ 4198 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4199 return 0; /* Corruption */ 4200 } 4201 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4202 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4203 4204 if( res==0 ){ 4205 res = nStr - pPKey2->aMem[0].n; 4206 if( res==0 ){ 4207 if( pPKey2->nField>1 ){ 4208 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4209 }else{ 4210 res = pPKey2->default_rc; 4211 pPKey2->eqSeen = 1; 4212 } 4213 }else if( res>0 ){ 4214 res = pPKey2->r2; 4215 }else{ 4216 res = pPKey2->r1; 4217 } 4218 }else if( res>0 ){ 4219 res = pPKey2->r2; 4220 }else{ 4221 res = pPKey2->r1; 4222 } 4223 } 4224 4225 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4226 || CORRUPT_DB 4227 || pPKey2->pKeyInfo->db->mallocFailed 4228 ); 4229 return res; 4230 } 4231 4232 /* 4233 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4234 ** suitable for comparing serialized records to the unpacked record passed 4235 ** as the only argument. 4236 */ 4237 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4238 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4239 ** that the size-of-header varint that occurs at the start of each record 4240 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4241 ** also assumes that it is safe to overread a buffer by at least the 4242 ** maximum possible legal header size plus 8 bytes. Because there is 4243 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4244 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4245 ** limit the size of the header to 64 bytes in cases where the first field 4246 ** is an integer. 4247 ** 4248 ** The easiest way to enforce this limit is to consider only records with 4249 ** 13 fields or less. If the first field is an integer, the maximum legal 4250 ** header size is (12*5 + 1 + 1) bytes. */ 4251 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){ 4252 int flags = p->aMem[0].flags; 4253 if( p->pKeyInfo->aSortOrder[0] ){ 4254 p->r1 = 1; 4255 p->r2 = -1; 4256 }else{ 4257 p->r1 = -1; 4258 p->r2 = 1; 4259 } 4260 if( (flags & MEM_Int) ){ 4261 return vdbeRecordCompareInt; 4262 } 4263 testcase( flags & MEM_Real ); 4264 testcase( flags & MEM_Null ); 4265 testcase( flags & MEM_Blob ); 4266 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ 4267 assert( flags & MEM_Str ); 4268 return vdbeRecordCompareString; 4269 } 4270 } 4271 4272 return sqlite3VdbeRecordCompare; 4273 } 4274 4275 /* 4276 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4277 ** Read the rowid (the last field in the record) and store it in *rowid. 4278 ** Return SQLITE_OK if everything works, or an error code otherwise. 4279 ** 4280 ** pCur might be pointing to text obtained from a corrupt database file. 4281 ** So the content cannot be trusted. Do appropriate checks on the content. 4282 */ 4283 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4284 i64 nCellKey = 0; 4285 int rc; 4286 u32 szHdr; /* Size of the header */ 4287 u32 typeRowid; /* Serial type of the rowid */ 4288 u32 lenRowid; /* Size of the rowid */ 4289 Mem m, v; 4290 4291 /* Get the size of the index entry. Only indices entries of less 4292 ** than 2GiB are support - anything large must be database corruption. 4293 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4294 ** this code can safely assume that nCellKey is 32-bits 4295 */ 4296 assert( sqlite3BtreeCursorIsValid(pCur) ); 4297 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); 4298 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 4299 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4300 4301 /* Read in the complete content of the index entry */ 4302 sqlite3VdbeMemInit(&m, db, 0); 4303 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m); 4304 if( rc ){ 4305 return rc; 4306 } 4307 4308 /* The index entry must begin with a header size */ 4309 (void)getVarint32((u8*)m.z, szHdr); 4310 testcase( szHdr==3 ); 4311 testcase( szHdr==m.n ); 4312 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ 4313 goto idx_rowid_corruption; 4314 } 4315 4316 /* The last field of the index should be an integer - the ROWID. 4317 ** Verify that the last entry really is an integer. */ 4318 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 4319 testcase( typeRowid==1 ); 4320 testcase( typeRowid==2 ); 4321 testcase( typeRowid==3 ); 4322 testcase( typeRowid==4 ); 4323 testcase( typeRowid==5 ); 4324 testcase( typeRowid==6 ); 4325 testcase( typeRowid==8 ); 4326 testcase( typeRowid==9 ); 4327 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4328 goto idx_rowid_corruption; 4329 } 4330 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4331 testcase( (u32)m.n==szHdr+lenRowid ); 4332 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4333 goto idx_rowid_corruption; 4334 } 4335 4336 /* Fetch the integer off the end of the index record */ 4337 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4338 *rowid = v.u.i; 4339 sqlite3VdbeMemRelease(&m); 4340 return SQLITE_OK; 4341 4342 /* Jump here if database corruption is detected after m has been 4343 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4344 idx_rowid_corruption: 4345 testcase( m.szMalloc!=0 ); 4346 sqlite3VdbeMemRelease(&m); 4347 return SQLITE_CORRUPT_BKPT; 4348 } 4349 4350 /* 4351 ** Compare the key of the index entry that cursor pC is pointing to against 4352 ** the key string in pUnpacked. Write into *pRes a number 4353 ** that is negative, zero, or positive if pC is less than, equal to, 4354 ** or greater than pUnpacked. Return SQLITE_OK on success. 4355 ** 4356 ** pUnpacked is either created without a rowid or is truncated so that it 4357 ** omits the rowid at the end. The rowid at the end of the index entry 4358 ** is ignored as well. Hence, this routine only compares the prefixes 4359 ** of the keys prior to the final rowid, not the entire key. 4360 */ 4361 int sqlite3VdbeIdxKeyCompare( 4362 sqlite3 *db, /* Database connection */ 4363 VdbeCursor *pC, /* The cursor to compare against */ 4364 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4365 int *res /* Write the comparison result here */ 4366 ){ 4367 i64 nCellKey = 0; 4368 int rc; 4369 BtCursor *pCur; 4370 Mem m; 4371 4372 assert( pC->eCurType==CURTYPE_BTREE ); 4373 pCur = pC->uc.pCursor; 4374 assert( sqlite3BtreeCursorIsValid(pCur) ); 4375 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); 4376 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 4377 /* nCellKey will always be between 0 and 0xffffffff because of the way 4378 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4379 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4380 *res = 0; 4381 return SQLITE_CORRUPT_BKPT; 4382 } 4383 sqlite3VdbeMemInit(&m, db, 0); 4384 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m); 4385 if( rc ){ 4386 return rc; 4387 } 4388 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); 4389 sqlite3VdbeMemRelease(&m); 4390 return SQLITE_OK; 4391 } 4392 4393 /* 4394 ** This routine sets the value to be returned by subsequent calls to 4395 ** sqlite3_changes() on the database handle 'db'. 4396 */ 4397 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 4398 assert( sqlite3_mutex_held(db->mutex) ); 4399 db->nChange = nChange; 4400 db->nTotalChange += nChange; 4401 } 4402 4403 /* 4404 ** Set a flag in the vdbe to update the change counter when it is finalised 4405 ** or reset. 4406 */ 4407 void sqlite3VdbeCountChanges(Vdbe *v){ 4408 v->changeCntOn = 1; 4409 } 4410 4411 /* 4412 ** Mark every prepared statement associated with a database connection 4413 ** as expired. 4414 ** 4415 ** An expired statement means that recompilation of the statement is 4416 ** recommend. Statements expire when things happen that make their 4417 ** programs obsolete. Removing user-defined functions or collating 4418 ** sequences, or changing an authorization function are the types of 4419 ** things that make prepared statements obsolete. 4420 */ 4421 void sqlite3ExpirePreparedStatements(sqlite3 *db){ 4422 Vdbe *p; 4423 for(p = db->pVdbe; p; p=p->pNext){ 4424 p->expired = 1; 4425 } 4426 } 4427 4428 /* 4429 ** Return the database associated with the Vdbe. 4430 */ 4431 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 4432 return v->db; 4433 } 4434 4435 /* 4436 ** Return a pointer to an sqlite3_value structure containing the value bound 4437 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 4438 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 4439 ** constants) to the value before returning it. 4440 ** 4441 ** The returned value must be freed by the caller using sqlite3ValueFree(). 4442 */ 4443 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 4444 assert( iVar>0 ); 4445 if( v ){ 4446 Mem *pMem = &v->aVar[iVar-1]; 4447 if( 0==(pMem->flags & MEM_Null) ){ 4448 sqlite3_value *pRet = sqlite3ValueNew(v->db); 4449 if( pRet ){ 4450 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 4451 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 4452 } 4453 return pRet; 4454 } 4455 } 4456 return 0; 4457 } 4458 4459 /* 4460 ** Configure SQL variable iVar so that binding a new value to it signals 4461 ** to sqlite3_reoptimize() that re-preparing the statement may result 4462 ** in a better query plan. 4463 */ 4464 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 4465 assert( iVar>0 ); 4466 if( iVar>32 ){ 4467 v->expmask = 0xffffffff; 4468 }else{ 4469 v->expmask |= ((u32)1 << (iVar-1)); 4470 } 4471 } 4472 4473 #ifndef SQLITE_OMIT_VIRTUALTABLE 4474 /* 4475 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 4476 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 4477 ** in memory obtained from sqlite3DbMalloc). 4478 */ 4479 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 4480 if( pVtab->zErrMsg ){ 4481 sqlite3 *db = p->db; 4482 sqlite3DbFree(db, p->zErrMsg); 4483 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 4484 sqlite3_free(pVtab->zErrMsg); 4485 pVtab->zErrMsg = 0; 4486 } 4487 } 4488 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4489