xref: /sqlite-3.40.0/src/vdbeaux.c (revision e99cb2da)
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
14 */
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
17 
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
21 
22 /*
23 ** Create a new virtual database engine.
24 */
25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26   sqlite3 *db = pParse->db;
27   Vdbe *p;
28   p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29   if( p==0 ) return 0;
30   memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31   p->db = db;
32   if( db->pVdbe ){
33     db->pVdbe->pPrev = p;
34   }
35   p->pNext = db->pVdbe;
36   p->pPrev = 0;
37   db->pVdbe = p;
38   p->magic = VDBE_MAGIC_INIT;
39   p->pParse = pParse;
40   pParse->pVdbe = p;
41   assert( pParse->aLabel==0 );
42   assert( pParse->nLabel==0 );
43   assert( p->nOpAlloc==0 );
44   assert( pParse->szOpAlloc==0 );
45   sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46   return p;
47 }
48 
49 /*
50 ** Return the Parse object that owns a Vdbe object.
51 */
52 Parse *sqlite3VdbeParser(Vdbe *p){
53   return p->pParse;
54 }
55 
56 /*
57 ** Change the error string stored in Vdbe.zErrMsg
58 */
59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60   va_list ap;
61   sqlite3DbFree(p->db, p->zErrMsg);
62   va_start(ap, zFormat);
63   p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64   va_end(ap);
65 }
66 
67 /*
68 ** Remember the SQL string for a prepared statement.
69 */
70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71   if( p==0 ) return;
72   p->prepFlags = prepFlags;
73   if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74     p->expmask = 0;
75   }
76   assert( p->zSql==0 );
77   p->zSql = sqlite3DbStrNDup(p->db, z, n);
78 }
79 
80 #ifdef SQLITE_ENABLE_NORMALIZE
81 /*
82 ** Add a new element to the Vdbe->pDblStr list.
83 */
84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85   if( p ){
86     int n = sqlite3Strlen30(z);
87     DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88                             sizeof(*pStr)+n+1-sizeof(pStr->z));
89     if( pStr ){
90       pStr->pNextStr = p->pDblStr;
91       p->pDblStr = pStr;
92       memcpy(pStr->z, z, n+1);
93     }
94   }
95 }
96 #endif
97 
98 #ifdef SQLITE_ENABLE_NORMALIZE
99 /*
100 ** zId of length nId is a double-quoted identifier.  Check to see if
101 ** that identifier is really used as a string literal.
102 */
103 int sqlite3VdbeUsesDoubleQuotedString(
104   Vdbe *pVdbe,            /* The prepared statement */
105   const char *zId         /* The double-quoted identifier, already dequoted */
106 ){
107   DblquoteStr *pStr;
108   assert( zId!=0 );
109   if( pVdbe->pDblStr==0 ) return 0;
110   for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111     if( strcmp(zId, pStr->z)==0 ) return 1;
112   }
113   return 0;
114 }
115 #endif
116 
117 /*
118 ** Swap all content between two VDBE structures.
119 */
120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
121   Vdbe tmp, *pTmp;
122   char *zTmp;
123   assert( pA->db==pB->db );
124   tmp = *pA;
125   *pA = *pB;
126   *pB = tmp;
127   pTmp = pA->pNext;
128   pA->pNext = pB->pNext;
129   pB->pNext = pTmp;
130   pTmp = pA->pPrev;
131   pA->pPrev = pB->pPrev;
132   pB->pPrev = pTmp;
133   zTmp = pA->zSql;
134   pA->zSql = pB->zSql;
135   pB->zSql = zTmp;
136 #ifdef SQLITE_ENABLE_NORMALIZE
137   zTmp = pA->zNormSql;
138   pA->zNormSql = pB->zNormSql;
139   pB->zNormSql = zTmp;
140 #endif
141   pB->expmask = pA->expmask;
142   pB->prepFlags = pA->prepFlags;
143   memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
144   pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
145 }
146 
147 /*
148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
149 ** than its current size. nOp is guaranteed to be less than or equal
150 ** to 1024/sizeof(Op).
151 **
152 ** If an out-of-memory error occurs while resizing the array, return
153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
154 ** unchanged (this is so that any opcodes already allocated can be
155 ** correctly deallocated along with the rest of the Vdbe).
156 */
157 static int growOpArray(Vdbe *v, int nOp){
158   VdbeOp *pNew;
159   Parse *p = v->pParse;
160 
161   /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
162   ** more frequent reallocs and hence provide more opportunities for
163   ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used
164   ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array
165   ** by the minimum* amount required until the size reaches 512.  Normal
166   ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
167   ** size of the op array or add 1KB of space, whichever is smaller. */
168 #ifdef SQLITE_TEST_REALLOC_STRESS
169   sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
170                         : (sqlite3_int64)v->nOpAlloc+nOp);
171 #else
172   sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
173                         : (sqlite3_int64)(1024/sizeof(Op)));
174   UNUSED_PARAMETER(nOp);
175 #endif
176 
177   /* Ensure that the size of a VDBE does not grow too large */
178   if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
179     sqlite3OomFault(p->db);
180     return SQLITE_NOMEM;
181   }
182 
183   assert( nOp<=(1024/sizeof(Op)) );
184   assert( nNew>=(v->nOpAlloc+nOp) );
185   pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
186   if( pNew ){
187     p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
188     v->nOpAlloc = p->szOpAlloc/sizeof(Op);
189     v->aOp = pNew;
190   }
191   return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
192 }
193 
194 #ifdef SQLITE_DEBUG
195 /* This routine is just a convenient place to set a breakpoint that will
196 ** fire after each opcode is inserted and displayed using
197 ** "PRAGMA vdbe_addoptrace=on".
198 */
199 static void test_addop_breakpoint(void){
200   static int n = 0;
201   n++;
202 }
203 #endif
204 
205 /*
206 ** Add a new instruction to the list of instructions current in the
207 ** VDBE.  Return the address of the new instruction.
208 **
209 ** Parameters:
210 **
211 **    p               Pointer to the VDBE
212 **
213 **    op              The opcode for this instruction
214 **
215 **    p1, p2, p3      Operands
216 **
217 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
218 ** the sqlite3VdbeChangeP4() function to change the value of the P4
219 ** operand.
220 */
221 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
222   assert( p->nOpAlloc<=p->nOp );
223   if( growOpArray(p, 1) ) return 1;
224   assert( p->nOpAlloc>p->nOp );
225   return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
226 }
227 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
228   int i;
229   VdbeOp *pOp;
230 
231   i = p->nOp;
232   assert( p->magic==VDBE_MAGIC_INIT );
233   assert( op>=0 && op<0xff );
234   if( p->nOpAlloc<=i ){
235     return growOp3(p, op, p1, p2, p3);
236   }
237   p->nOp++;
238   pOp = &p->aOp[i];
239   pOp->opcode = (u8)op;
240   pOp->p5 = 0;
241   pOp->p1 = p1;
242   pOp->p2 = p2;
243   pOp->p3 = p3;
244   pOp->p4.p = 0;
245   pOp->p4type = P4_NOTUSED;
246 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
247   pOp->zComment = 0;
248 #endif
249 #ifdef SQLITE_DEBUG
250   if( p->db->flags & SQLITE_VdbeAddopTrace ){
251     sqlite3VdbePrintOp(0, i, &p->aOp[i]);
252     test_addop_breakpoint();
253   }
254 #endif
255 #ifdef VDBE_PROFILE
256   pOp->cycles = 0;
257   pOp->cnt = 0;
258 #endif
259 #ifdef SQLITE_VDBE_COVERAGE
260   pOp->iSrcLine = 0;
261 #endif
262   return i;
263 }
264 int sqlite3VdbeAddOp0(Vdbe *p, int op){
265   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
266 }
267 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
268   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
269 }
270 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
271   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
272 }
273 
274 /* Generate code for an unconditional jump to instruction iDest
275 */
276 int sqlite3VdbeGoto(Vdbe *p, int iDest){
277   return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
278 }
279 
280 /* Generate code to cause the string zStr to be loaded into
281 ** register iDest
282 */
283 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
284   return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
285 }
286 
287 /*
288 ** Generate code that initializes multiple registers to string or integer
289 ** constants.  The registers begin with iDest and increase consecutively.
290 ** One register is initialized for each characgter in zTypes[].  For each
291 ** "s" character in zTypes[], the register is a string if the argument is
292 ** not NULL, or OP_Null if the value is a null pointer.  For each "i" character
293 ** in zTypes[], the register is initialized to an integer.
294 **
295 ** If the input string does not end with "X" then an OP_ResultRow instruction
296 ** is generated for the values inserted.
297 */
298 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
299   va_list ap;
300   int i;
301   char c;
302   va_start(ap, zTypes);
303   for(i=0; (c = zTypes[i])!=0; i++){
304     if( c=='s' ){
305       const char *z = va_arg(ap, const char*);
306       sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
307     }else if( c=='i' ){
308       sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
309     }else{
310       goto skip_op_resultrow;
311     }
312   }
313   sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
314 skip_op_resultrow:
315   va_end(ap);
316 }
317 
318 /*
319 ** Add an opcode that includes the p4 value as a pointer.
320 */
321 int sqlite3VdbeAddOp4(
322   Vdbe *p,            /* Add the opcode to this VM */
323   int op,             /* The new opcode */
324   int p1,             /* The P1 operand */
325   int p2,             /* The P2 operand */
326   int p3,             /* The P3 operand */
327   const char *zP4,    /* The P4 operand */
328   int p4type          /* P4 operand type */
329 ){
330   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
331   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
332   return addr;
333 }
334 
335 /*
336 ** Add an OP_Function or OP_PureFunc opcode.
337 **
338 ** The eCallCtx argument is information (typically taken from Expr.op2)
339 ** that describes the calling context of the function.  0 means a general
340 ** function call.  NC_IsCheck means called by a check constraint,
341 ** NC_IdxExpr means called as part of an index expression.  NC_PartIdx
342 ** means in the WHERE clause of a partial index.  NC_GenCol means called
343 ** while computing a generated column value.  0 is the usual case.
344 */
345 int sqlite3VdbeAddFunctionCall(
346   Parse *pParse,        /* Parsing context */
347   int p1,               /* Constant argument mask */
348   int p2,               /* First argument register */
349   int p3,               /* Register into which results are written */
350   int nArg,             /* Number of argument */
351   const FuncDef *pFunc, /* The function to be invoked */
352   int eCallCtx          /* Calling context */
353 ){
354   Vdbe *v = pParse->pVdbe;
355   int nByte;
356   int addr;
357   sqlite3_context *pCtx;
358   assert( v );
359   nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
360   pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
361   if( pCtx==0 ){
362     assert( pParse->db->mallocFailed );
363     freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
364     return 0;
365   }
366   pCtx->pOut = 0;
367   pCtx->pFunc = (FuncDef*)pFunc;
368   pCtx->pVdbe = 0;
369   pCtx->isError = 0;
370   pCtx->argc = nArg;
371   pCtx->iOp = sqlite3VdbeCurrentAddr(v);
372   addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
373                            p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
374   sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
375   return addr;
376 }
377 
378 /*
379 ** Add an opcode that includes the p4 value with a P4_INT64 or
380 ** P4_REAL type.
381 */
382 int sqlite3VdbeAddOp4Dup8(
383   Vdbe *p,            /* Add the opcode to this VM */
384   int op,             /* The new opcode */
385   int p1,             /* The P1 operand */
386   int p2,             /* The P2 operand */
387   int p3,             /* The P3 operand */
388   const u8 *zP4,      /* The P4 operand */
389   int p4type          /* P4 operand type */
390 ){
391   char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
392   if( p4copy ) memcpy(p4copy, zP4, 8);
393   return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
394 }
395 
396 #ifndef SQLITE_OMIT_EXPLAIN
397 /*
398 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
399 ** 0 means "none".
400 */
401 int sqlite3VdbeExplainParent(Parse *pParse){
402   VdbeOp *pOp;
403   if( pParse->addrExplain==0 ) return 0;
404   pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
405   return pOp->p2;
406 }
407 
408 /*
409 ** Set a debugger breakpoint on the following routine in order to
410 ** monitor the EXPLAIN QUERY PLAN code generation.
411 */
412 #if defined(SQLITE_DEBUG)
413 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
414   (void)z1;
415   (void)z2;
416 }
417 #endif
418 
419 /*
420 ** Add a new OP_ opcode.
421 **
422 ** If the bPush flag is true, then make this opcode the parent for
423 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
424 */
425 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
426 #ifndef SQLITE_DEBUG
427   /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
428   ** But omit them (for performance) during production builds */
429   if( pParse->explain==2 )
430 #endif
431   {
432     char *zMsg;
433     Vdbe *v;
434     va_list ap;
435     int iThis;
436     va_start(ap, zFmt);
437     zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
438     va_end(ap);
439     v = pParse->pVdbe;
440     iThis = v->nOp;
441     sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
442                       zMsg, P4_DYNAMIC);
443     sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z);
444     if( bPush){
445       pParse->addrExplain = iThis;
446     }
447   }
448 }
449 
450 /*
451 ** Pop the EXPLAIN QUERY PLAN stack one level.
452 */
453 void sqlite3VdbeExplainPop(Parse *pParse){
454   sqlite3ExplainBreakpoint("POP", 0);
455   pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
456 }
457 #endif /* SQLITE_OMIT_EXPLAIN */
458 
459 /*
460 ** Add an OP_ParseSchema opcode.  This routine is broken out from
461 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
462 ** as having been used.
463 **
464 ** The zWhere string must have been obtained from sqlite3_malloc().
465 ** This routine will take ownership of the allocated memory.
466 */
467 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
468   int j;
469   sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
470   for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
471 }
472 
473 /*
474 ** Add an opcode that includes the p4 value as an integer.
475 */
476 int sqlite3VdbeAddOp4Int(
477   Vdbe *p,            /* Add the opcode to this VM */
478   int op,             /* The new opcode */
479   int p1,             /* The P1 operand */
480   int p2,             /* The P2 operand */
481   int p3,             /* The P3 operand */
482   int p4              /* The P4 operand as an integer */
483 ){
484   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
485   if( p->db->mallocFailed==0 ){
486     VdbeOp *pOp = &p->aOp[addr];
487     pOp->p4type = P4_INT32;
488     pOp->p4.i = p4;
489   }
490   return addr;
491 }
492 
493 /* Insert the end of a co-routine
494 */
495 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
496   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
497 
498   /* Clear the temporary register cache, thereby ensuring that each
499   ** co-routine has its own independent set of registers, because co-routines
500   ** might expect their registers to be preserved across an OP_Yield, and
501   ** that could cause problems if two or more co-routines are using the same
502   ** temporary register.
503   */
504   v->pParse->nTempReg = 0;
505   v->pParse->nRangeReg = 0;
506 }
507 
508 /*
509 ** Create a new symbolic label for an instruction that has yet to be
510 ** coded.  The symbolic label is really just a negative number.  The
511 ** label can be used as the P2 value of an operation.  Later, when
512 ** the label is resolved to a specific address, the VDBE will scan
513 ** through its operation list and change all values of P2 which match
514 ** the label into the resolved address.
515 **
516 ** The VDBE knows that a P2 value is a label because labels are
517 ** always negative and P2 values are suppose to be non-negative.
518 ** Hence, a negative P2 value is a label that has yet to be resolved.
519 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
520 ** property.
521 **
522 ** Variable usage notes:
523 **
524 **     Parse.aLabel[x]     Stores the address that the x-th label resolves
525 **                         into.  For testing (SQLITE_DEBUG), unresolved
526 **                         labels stores -1, but that is not required.
527 **     Parse.nLabelAlloc   Number of slots allocated to Parse.aLabel[]
528 **     Parse.nLabel        The *negative* of the number of labels that have
529 **                         been issued.  The negative is stored because
530 **                         that gives a performance improvement over storing
531 **                         the equivalent positive value.
532 */
533 int sqlite3VdbeMakeLabel(Parse *pParse){
534   return --pParse->nLabel;
535 }
536 
537 /*
538 ** Resolve label "x" to be the address of the next instruction to
539 ** be inserted.  The parameter "x" must have been obtained from
540 ** a prior call to sqlite3VdbeMakeLabel().
541 */
542 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
543   int nNewSize = 10 - p->nLabel;
544   p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
545                      nNewSize*sizeof(p->aLabel[0]));
546   if( p->aLabel==0 ){
547     p->nLabelAlloc = 0;
548   }else{
549 #ifdef SQLITE_DEBUG
550     int i;
551     for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
552 #endif
553     p->nLabelAlloc = nNewSize;
554     p->aLabel[j] = v->nOp;
555   }
556 }
557 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
558   Parse *p = v->pParse;
559   int j = ADDR(x);
560   assert( v->magic==VDBE_MAGIC_INIT );
561   assert( j<-p->nLabel );
562   assert( j>=0 );
563 #ifdef SQLITE_DEBUG
564   if( p->db->flags & SQLITE_VdbeAddopTrace ){
565     printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
566   }
567 #endif
568   if( p->nLabelAlloc + p->nLabel < 0 ){
569     resizeResolveLabel(p,v,j);
570   }else{
571     assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
572     p->aLabel[j] = v->nOp;
573   }
574 }
575 
576 /*
577 ** Mark the VDBE as one that can only be run one time.
578 */
579 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
580   p->runOnlyOnce = 1;
581 }
582 
583 /*
584 ** Mark the VDBE as one that can only be run multiple times.
585 */
586 void sqlite3VdbeReusable(Vdbe *p){
587   p->runOnlyOnce = 0;
588 }
589 
590 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
591 
592 /*
593 ** The following type and function are used to iterate through all opcodes
594 ** in a Vdbe main program and each of the sub-programs (triggers) it may
595 ** invoke directly or indirectly. It should be used as follows:
596 **
597 **   Op *pOp;
598 **   VdbeOpIter sIter;
599 **
600 **   memset(&sIter, 0, sizeof(sIter));
601 **   sIter.v = v;                            // v is of type Vdbe*
602 **   while( (pOp = opIterNext(&sIter)) ){
603 **     // Do something with pOp
604 **   }
605 **   sqlite3DbFree(v->db, sIter.apSub);
606 **
607 */
608 typedef struct VdbeOpIter VdbeOpIter;
609 struct VdbeOpIter {
610   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
611   SubProgram **apSub;        /* Array of subprograms */
612   int nSub;                  /* Number of entries in apSub */
613   int iAddr;                 /* Address of next instruction to return */
614   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
615 };
616 static Op *opIterNext(VdbeOpIter *p){
617   Vdbe *v = p->v;
618   Op *pRet = 0;
619   Op *aOp;
620   int nOp;
621 
622   if( p->iSub<=p->nSub ){
623 
624     if( p->iSub==0 ){
625       aOp = v->aOp;
626       nOp = v->nOp;
627     }else{
628       aOp = p->apSub[p->iSub-1]->aOp;
629       nOp = p->apSub[p->iSub-1]->nOp;
630     }
631     assert( p->iAddr<nOp );
632 
633     pRet = &aOp[p->iAddr];
634     p->iAddr++;
635     if( p->iAddr==nOp ){
636       p->iSub++;
637       p->iAddr = 0;
638     }
639 
640     if( pRet->p4type==P4_SUBPROGRAM ){
641       int nByte = (p->nSub+1)*sizeof(SubProgram*);
642       int j;
643       for(j=0; j<p->nSub; j++){
644         if( p->apSub[j]==pRet->p4.pProgram ) break;
645       }
646       if( j==p->nSub ){
647         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
648         if( !p->apSub ){
649           pRet = 0;
650         }else{
651           p->apSub[p->nSub++] = pRet->p4.pProgram;
652         }
653       }
654     }
655   }
656 
657   return pRet;
658 }
659 
660 /*
661 ** Check if the program stored in the VM associated with pParse may
662 ** throw an ABORT exception (causing the statement, but not entire transaction
663 ** to be rolled back). This condition is true if the main program or any
664 ** sub-programs contains any of the following:
665 **
666 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
667 **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
668 **   *  OP_Destroy
669 **   *  OP_VUpdate
670 **   *  OP_VCreate
671 **   *  OP_VRename
672 **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
673 **   *  OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
674 **      (for CREATE TABLE AS SELECT ...)
675 **
676 ** Then check that the value of Parse.mayAbort is true if an
677 ** ABORT may be thrown, or false otherwise. Return true if it does
678 ** match, or false otherwise. This function is intended to be used as
679 ** part of an assert statement in the compiler. Similar to:
680 **
681 **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
682 */
683 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
684   int hasAbort = 0;
685   int hasFkCounter = 0;
686   int hasCreateTable = 0;
687   int hasCreateIndex = 0;
688   int hasInitCoroutine = 0;
689   Op *pOp;
690   VdbeOpIter sIter;
691   memset(&sIter, 0, sizeof(sIter));
692   sIter.v = v;
693 
694   while( (pOp = opIterNext(&sIter))!=0 ){
695     int opcode = pOp->opcode;
696     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
697      || opcode==OP_VDestroy
698      || opcode==OP_VCreate
699      || (opcode==OP_ParseSchema && pOp->p4.z==0)
700      || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
701       && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
702     ){
703       hasAbort = 1;
704       break;
705     }
706     if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
707     if( mayAbort ){
708       /* hasCreateIndex may also be set for some DELETE statements that use
709       ** OP_Clear. So this routine may end up returning true in the case
710       ** where a "DELETE FROM tbl" has a statement-journal but does not
711       ** require one. This is not so bad - it is an inefficiency, not a bug. */
712       if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
713       if( opcode==OP_Clear ) hasCreateIndex = 1;
714     }
715     if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
716 #ifndef SQLITE_OMIT_FOREIGN_KEY
717     if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
718       hasFkCounter = 1;
719     }
720 #endif
721   }
722   sqlite3DbFree(v->db, sIter.apSub);
723 
724   /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
725   ** If malloc failed, then the while() loop above may not have iterated
726   ** through all opcodes and hasAbort may be set incorrectly. Return
727   ** true for this case to prevent the assert() in the callers frame
728   ** from failing.  */
729   return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
730         || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
731   );
732 }
733 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
734 
735 #ifdef SQLITE_DEBUG
736 /*
737 ** Increment the nWrite counter in the VDBE if the cursor is not an
738 ** ephemeral cursor, or if the cursor argument is NULL.
739 */
740 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
741   if( pC==0
742    || (pC->eCurType!=CURTYPE_SORTER
743        && pC->eCurType!=CURTYPE_PSEUDO
744        && !pC->isEphemeral)
745   ){
746     p->nWrite++;
747   }
748 }
749 #endif
750 
751 #ifdef SQLITE_DEBUG
752 /*
753 ** Assert if an Abort at this point in time might result in a corrupt
754 ** database.
755 */
756 void sqlite3VdbeAssertAbortable(Vdbe *p){
757   assert( p->nWrite==0 || p->usesStmtJournal );
758 }
759 #endif
760 
761 /*
762 ** This routine is called after all opcodes have been inserted.  It loops
763 ** through all the opcodes and fixes up some details.
764 **
765 ** (1) For each jump instruction with a negative P2 value (a label)
766 **     resolve the P2 value to an actual address.
767 **
768 ** (2) Compute the maximum number of arguments used by any SQL function
769 **     and store that value in *pMaxFuncArgs.
770 **
771 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
772 **     indicate what the prepared statement actually does.
773 **
774 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
775 **
776 ** (5) Reclaim the memory allocated for storing labels.
777 **
778 ** This routine will only function correctly if the mkopcodeh.tcl generator
779 ** script numbers the opcodes correctly.  Changes to this routine must be
780 ** coordinated with changes to mkopcodeh.tcl.
781 */
782 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
783   int nMaxArgs = *pMaxFuncArgs;
784   Op *pOp;
785   Parse *pParse = p->pParse;
786   int *aLabel = pParse->aLabel;
787   p->readOnly = 1;
788   p->bIsReader = 0;
789   pOp = &p->aOp[p->nOp-1];
790   while(1){
791 
792     /* Only JUMP opcodes and the short list of special opcodes in the switch
793     ** below need to be considered.  The mkopcodeh.tcl generator script groups
794     ** all these opcodes together near the front of the opcode list.  Skip
795     ** any opcode that does not need processing by virtual of the fact that
796     ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
797     */
798     if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
799       /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
800       ** cases from this switch! */
801       switch( pOp->opcode ){
802         case OP_Transaction: {
803           if( pOp->p2!=0 ) p->readOnly = 0;
804           /* fall thru */
805         }
806         case OP_AutoCommit:
807         case OP_Savepoint: {
808           p->bIsReader = 1;
809           break;
810         }
811 #ifndef SQLITE_OMIT_WAL
812         case OP_Checkpoint:
813 #endif
814         case OP_Vacuum:
815         case OP_JournalMode: {
816           p->readOnly = 0;
817           p->bIsReader = 1;
818           break;
819         }
820         case OP_Next:
821         case OP_SorterNext: {
822           pOp->p4.xAdvance = sqlite3BtreeNext;
823           pOp->p4type = P4_ADVANCE;
824           /* The code generator never codes any of these opcodes as a jump
825           ** to a label.  They are always coded as a jump backwards to a
826           ** known address */
827           assert( pOp->p2>=0 );
828           break;
829         }
830         case OP_Prev: {
831           pOp->p4.xAdvance = sqlite3BtreePrevious;
832           pOp->p4type = P4_ADVANCE;
833           /* The code generator never codes any of these opcodes as a jump
834           ** to a label.  They are always coded as a jump backwards to a
835           ** known address */
836           assert( pOp->p2>=0 );
837           break;
838         }
839 #ifndef SQLITE_OMIT_VIRTUALTABLE
840         case OP_VUpdate: {
841           if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
842           break;
843         }
844         case OP_VFilter: {
845           int n;
846           assert( (pOp - p->aOp) >= 3 );
847           assert( pOp[-1].opcode==OP_Integer );
848           n = pOp[-1].p1;
849           if( n>nMaxArgs ) nMaxArgs = n;
850           /* Fall through into the default case */
851         }
852 #endif
853         default: {
854           if( pOp->p2<0 ){
855             /* The mkopcodeh.tcl script has so arranged things that the only
856             ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
857             ** have non-negative values for P2. */
858             assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
859             assert( ADDR(pOp->p2)<-pParse->nLabel );
860             pOp->p2 = aLabel[ADDR(pOp->p2)];
861           }
862           break;
863         }
864       }
865       /* The mkopcodeh.tcl script has so arranged things that the only
866       ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
867       ** have non-negative values for P2. */
868       assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
869     }
870     if( pOp==p->aOp ) break;
871     pOp--;
872   }
873   sqlite3DbFree(p->db, pParse->aLabel);
874   pParse->aLabel = 0;
875   pParse->nLabel = 0;
876   *pMaxFuncArgs = nMaxArgs;
877   assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
878 }
879 
880 /*
881 ** Return the address of the next instruction to be inserted.
882 */
883 int sqlite3VdbeCurrentAddr(Vdbe *p){
884   assert( p->magic==VDBE_MAGIC_INIT );
885   return p->nOp;
886 }
887 
888 /*
889 ** Verify that at least N opcode slots are available in p without
890 ** having to malloc for more space (except when compiled using
891 ** SQLITE_TEST_REALLOC_STRESS).  This interface is used during testing
892 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
893 ** fail due to a OOM fault and hence that the return value from
894 ** sqlite3VdbeAddOpList() will always be non-NULL.
895 */
896 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
897 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
898   assert( p->nOp + N <= p->nOpAlloc );
899 }
900 #endif
901 
902 /*
903 ** Verify that the VM passed as the only argument does not contain
904 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
905 ** by code in pragma.c to ensure that the implementation of certain
906 ** pragmas comports with the flags specified in the mkpragmatab.tcl
907 ** script.
908 */
909 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
910 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
911   int i;
912   for(i=0; i<p->nOp; i++){
913     assert( p->aOp[i].opcode!=OP_ResultRow );
914   }
915 }
916 #endif
917 
918 /*
919 ** Generate code (a single OP_Abortable opcode) that will
920 ** verify that the VDBE program can safely call Abort in the current
921 ** context.
922 */
923 #if defined(SQLITE_DEBUG)
924 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
925   if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
926 }
927 #endif
928 
929 /*
930 ** This function returns a pointer to the array of opcodes associated with
931 ** the Vdbe passed as the first argument. It is the callers responsibility
932 ** to arrange for the returned array to be eventually freed using the
933 ** vdbeFreeOpArray() function.
934 **
935 ** Before returning, *pnOp is set to the number of entries in the returned
936 ** array. Also, *pnMaxArg is set to the larger of its current value and
937 ** the number of entries in the Vdbe.apArg[] array required to execute the
938 ** returned program.
939 */
940 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
941   VdbeOp *aOp = p->aOp;
942   assert( aOp && !p->db->mallocFailed );
943 
944   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
945   assert( DbMaskAllZero(p->btreeMask) );
946 
947   resolveP2Values(p, pnMaxArg);
948   *pnOp = p->nOp;
949   p->aOp = 0;
950   return aOp;
951 }
952 
953 /*
954 ** Add a whole list of operations to the operation stack.  Return a
955 ** pointer to the first operation inserted.
956 **
957 ** Non-zero P2 arguments to jump instructions are automatically adjusted
958 ** so that the jump target is relative to the first operation inserted.
959 */
960 VdbeOp *sqlite3VdbeAddOpList(
961   Vdbe *p,                     /* Add opcodes to the prepared statement */
962   int nOp,                     /* Number of opcodes to add */
963   VdbeOpList const *aOp,       /* The opcodes to be added */
964   int iLineno                  /* Source-file line number of first opcode */
965 ){
966   int i;
967   VdbeOp *pOut, *pFirst;
968   assert( nOp>0 );
969   assert( p->magic==VDBE_MAGIC_INIT );
970   if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
971     return 0;
972   }
973   pFirst = pOut = &p->aOp[p->nOp];
974   for(i=0; i<nOp; i++, aOp++, pOut++){
975     pOut->opcode = aOp->opcode;
976     pOut->p1 = aOp->p1;
977     pOut->p2 = aOp->p2;
978     assert( aOp->p2>=0 );
979     if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
980       pOut->p2 += p->nOp;
981     }
982     pOut->p3 = aOp->p3;
983     pOut->p4type = P4_NOTUSED;
984     pOut->p4.p = 0;
985     pOut->p5 = 0;
986 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
987     pOut->zComment = 0;
988 #endif
989 #ifdef SQLITE_VDBE_COVERAGE
990     pOut->iSrcLine = iLineno+i;
991 #else
992     (void)iLineno;
993 #endif
994 #ifdef SQLITE_DEBUG
995     if( p->db->flags & SQLITE_VdbeAddopTrace ){
996       sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
997     }
998 #endif
999   }
1000   p->nOp += nOp;
1001   return pFirst;
1002 }
1003 
1004 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1005 /*
1006 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1007 */
1008 void sqlite3VdbeScanStatus(
1009   Vdbe *p,                        /* VM to add scanstatus() to */
1010   int addrExplain,                /* Address of OP_Explain (or 0) */
1011   int addrLoop,                   /* Address of loop counter */
1012   int addrVisit,                  /* Address of rows visited counter */
1013   LogEst nEst,                    /* Estimated number of output rows */
1014   const char *zName               /* Name of table or index being scanned */
1015 ){
1016   sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1017   ScanStatus *aNew;
1018   aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1019   if( aNew ){
1020     ScanStatus *pNew = &aNew[p->nScan++];
1021     pNew->addrExplain = addrExplain;
1022     pNew->addrLoop = addrLoop;
1023     pNew->addrVisit = addrVisit;
1024     pNew->nEst = nEst;
1025     pNew->zName = sqlite3DbStrDup(p->db, zName);
1026     p->aScan = aNew;
1027   }
1028 }
1029 #endif
1030 
1031 
1032 /*
1033 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1034 ** for a specific instruction.
1035 */
1036 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1037   sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1038 }
1039 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1040   sqlite3VdbeGetOp(p,addr)->p1 = val;
1041 }
1042 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1043   sqlite3VdbeGetOp(p,addr)->p2 = val;
1044 }
1045 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1046   sqlite3VdbeGetOp(p,addr)->p3 = val;
1047 }
1048 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1049   assert( p->nOp>0 || p->db->mallocFailed );
1050   if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1051 }
1052 
1053 /*
1054 ** Change the P2 operand of instruction addr so that it points to
1055 ** the address of the next instruction to be coded.
1056 */
1057 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1058   sqlite3VdbeChangeP2(p, addr, p->nOp);
1059 }
1060 
1061 
1062 /*
1063 ** If the input FuncDef structure is ephemeral, then free it.  If
1064 ** the FuncDef is not ephermal, then do nothing.
1065 */
1066 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1067   if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1068     sqlite3DbFreeNN(db, pDef);
1069   }
1070 }
1071 
1072 /*
1073 ** Delete a P4 value if necessary.
1074 */
1075 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1076   if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1077   sqlite3DbFreeNN(db, p);
1078 }
1079 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1080   freeEphemeralFunction(db, p->pFunc);
1081   sqlite3DbFreeNN(db, p);
1082 }
1083 static void freeP4(sqlite3 *db, int p4type, void *p4){
1084   assert( db );
1085   switch( p4type ){
1086     case P4_FUNCCTX: {
1087       freeP4FuncCtx(db, (sqlite3_context*)p4);
1088       break;
1089     }
1090     case P4_REAL:
1091     case P4_INT64:
1092     case P4_DYNAMIC:
1093     case P4_DYNBLOB:
1094     case P4_INTARRAY: {
1095       sqlite3DbFree(db, p4);
1096       break;
1097     }
1098     case P4_KEYINFO: {
1099       if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1100       break;
1101     }
1102 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1103     case P4_EXPR: {
1104       sqlite3ExprDelete(db, (Expr*)p4);
1105       break;
1106     }
1107 #endif
1108     case P4_FUNCDEF: {
1109       freeEphemeralFunction(db, (FuncDef*)p4);
1110       break;
1111     }
1112     case P4_MEM: {
1113       if( db->pnBytesFreed==0 ){
1114         sqlite3ValueFree((sqlite3_value*)p4);
1115       }else{
1116         freeP4Mem(db, (Mem*)p4);
1117       }
1118       break;
1119     }
1120     case P4_VTAB : {
1121       if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1122       break;
1123     }
1124   }
1125 }
1126 
1127 /*
1128 ** Free the space allocated for aOp and any p4 values allocated for the
1129 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1130 ** nOp entries.
1131 */
1132 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1133   if( aOp ){
1134     Op *pOp;
1135     for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
1136       if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1137 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1138       sqlite3DbFree(db, pOp->zComment);
1139 #endif
1140     }
1141     sqlite3DbFreeNN(db, aOp);
1142   }
1143 }
1144 
1145 /*
1146 ** Link the SubProgram object passed as the second argument into the linked
1147 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1148 ** objects when the VM is no longer required.
1149 */
1150 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1151   p->pNext = pVdbe->pProgram;
1152   pVdbe->pProgram = p;
1153 }
1154 
1155 /*
1156 ** Return true if the given Vdbe has any SubPrograms.
1157 */
1158 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1159   return pVdbe->pProgram!=0;
1160 }
1161 
1162 /*
1163 ** Change the opcode at addr into OP_Noop
1164 */
1165 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1166   VdbeOp *pOp;
1167   if( p->db->mallocFailed ) return 0;
1168   assert( addr>=0 && addr<p->nOp );
1169   pOp = &p->aOp[addr];
1170   freeP4(p->db, pOp->p4type, pOp->p4.p);
1171   pOp->p4type = P4_NOTUSED;
1172   pOp->p4.z = 0;
1173   pOp->opcode = OP_Noop;
1174   return 1;
1175 }
1176 
1177 /*
1178 ** If the last opcode is "op" and it is not a jump destination,
1179 ** then remove it.  Return true if and only if an opcode was removed.
1180 */
1181 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1182   if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1183     return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1184   }else{
1185     return 0;
1186   }
1187 }
1188 
1189 /*
1190 ** Change the value of the P4 operand for a specific instruction.
1191 ** This routine is useful when a large program is loaded from a
1192 ** static array using sqlite3VdbeAddOpList but we want to make a
1193 ** few minor changes to the program.
1194 **
1195 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1196 ** the string is made into memory obtained from sqlite3_malloc().
1197 ** A value of n==0 means copy bytes of zP4 up to and including the
1198 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
1199 **
1200 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1201 ** to a string or structure that is guaranteed to exist for the lifetime of
1202 ** the Vdbe. In these cases we can just copy the pointer.
1203 **
1204 ** If addr<0 then change P4 on the most recently inserted instruction.
1205 */
1206 static void SQLITE_NOINLINE vdbeChangeP4Full(
1207   Vdbe *p,
1208   Op *pOp,
1209   const char *zP4,
1210   int n
1211 ){
1212   if( pOp->p4type ){
1213     freeP4(p->db, pOp->p4type, pOp->p4.p);
1214     pOp->p4type = 0;
1215     pOp->p4.p = 0;
1216   }
1217   if( n<0 ){
1218     sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1219   }else{
1220     if( n==0 ) n = sqlite3Strlen30(zP4);
1221     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1222     pOp->p4type = P4_DYNAMIC;
1223   }
1224 }
1225 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1226   Op *pOp;
1227   sqlite3 *db;
1228   assert( p!=0 );
1229   db = p->db;
1230   assert( p->magic==VDBE_MAGIC_INIT );
1231   assert( p->aOp!=0 || db->mallocFailed );
1232   if( db->mallocFailed ){
1233     if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1234     return;
1235   }
1236   assert( p->nOp>0 );
1237   assert( addr<p->nOp );
1238   if( addr<0 ){
1239     addr = p->nOp - 1;
1240   }
1241   pOp = &p->aOp[addr];
1242   if( n>=0 || pOp->p4type ){
1243     vdbeChangeP4Full(p, pOp, zP4, n);
1244     return;
1245   }
1246   if( n==P4_INT32 ){
1247     /* Note: this cast is safe, because the origin data point was an int
1248     ** that was cast to a (const char *). */
1249     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1250     pOp->p4type = P4_INT32;
1251   }else if( zP4!=0 ){
1252     assert( n<0 );
1253     pOp->p4.p = (void*)zP4;
1254     pOp->p4type = (signed char)n;
1255     if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1256   }
1257 }
1258 
1259 /*
1260 ** Change the P4 operand of the most recently coded instruction
1261 ** to the value defined by the arguments.  This is a high-speed
1262 ** version of sqlite3VdbeChangeP4().
1263 **
1264 ** The P4 operand must not have been previously defined.  And the new
1265 ** P4 must not be P4_INT32.  Use sqlite3VdbeChangeP4() in either of
1266 ** those cases.
1267 */
1268 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1269   VdbeOp *pOp;
1270   assert( n!=P4_INT32 && n!=P4_VTAB );
1271   assert( n<=0 );
1272   if( p->db->mallocFailed ){
1273     freeP4(p->db, n, pP4);
1274   }else{
1275     assert( pP4!=0 );
1276     assert( p->nOp>0 );
1277     pOp = &p->aOp[p->nOp-1];
1278     assert( pOp->p4type==P4_NOTUSED );
1279     pOp->p4type = n;
1280     pOp->p4.p = pP4;
1281   }
1282 }
1283 
1284 /*
1285 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1286 ** index given.
1287 */
1288 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1289   Vdbe *v = pParse->pVdbe;
1290   KeyInfo *pKeyInfo;
1291   assert( v!=0 );
1292   assert( pIdx!=0 );
1293   pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1294   if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1295 }
1296 
1297 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1298 /*
1299 ** Change the comment on the most recently coded instruction.  Or
1300 ** insert a No-op and add the comment to that new instruction.  This
1301 ** makes the code easier to read during debugging.  None of this happens
1302 ** in a production build.
1303 */
1304 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1305   assert( p->nOp>0 || p->aOp==0 );
1306   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed
1307           || p->pParse->nErr>0 );
1308   if( p->nOp ){
1309     assert( p->aOp );
1310     sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1311     p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1312   }
1313 }
1314 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1315   va_list ap;
1316   if( p ){
1317     va_start(ap, zFormat);
1318     vdbeVComment(p, zFormat, ap);
1319     va_end(ap);
1320   }
1321 }
1322 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1323   va_list ap;
1324   if( p ){
1325     sqlite3VdbeAddOp0(p, OP_Noop);
1326     va_start(ap, zFormat);
1327     vdbeVComment(p, zFormat, ap);
1328     va_end(ap);
1329   }
1330 }
1331 #endif  /* NDEBUG */
1332 
1333 #ifdef SQLITE_VDBE_COVERAGE
1334 /*
1335 ** Set the value if the iSrcLine field for the previously coded instruction.
1336 */
1337 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1338   sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1339 }
1340 #endif /* SQLITE_VDBE_COVERAGE */
1341 
1342 /*
1343 ** Return the opcode for a given address.  If the address is -1, then
1344 ** return the most recently inserted opcode.
1345 **
1346 ** If a memory allocation error has occurred prior to the calling of this
1347 ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
1348 ** is readable but not writable, though it is cast to a writable value.
1349 ** The return of a dummy opcode allows the call to continue functioning
1350 ** after an OOM fault without having to check to see if the return from
1351 ** this routine is a valid pointer.  But because the dummy.opcode is 0,
1352 ** dummy will never be written to.  This is verified by code inspection and
1353 ** by running with Valgrind.
1354 */
1355 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1356   /* C89 specifies that the constant "dummy" will be initialized to all
1357   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
1358   static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
1359   assert( p->magic==VDBE_MAGIC_INIT );
1360   if( addr<0 ){
1361     addr = p->nOp - 1;
1362   }
1363   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1364   if( p->db->mallocFailed ){
1365     return (VdbeOp*)&dummy;
1366   }else{
1367     return &p->aOp[addr];
1368   }
1369 }
1370 
1371 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1372 /*
1373 ** Return an integer value for one of the parameters to the opcode pOp
1374 ** determined by character c.
1375 */
1376 static int translateP(char c, const Op *pOp){
1377   if( c=='1' ) return pOp->p1;
1378   if( c=='2' ) return pOp->p2;
1379   if( c=='3' ) return pOp->p3;
1380   if( c=='4' ) return pOp->p4.i;
1381   return pOp->p5;
1382 }
1383 
1384 /*
1385 ** Compute a string for the "comment" field of a VDBE opcode listing.
1386 **
1387 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1388 ** to an extra string that is appended to the sqlite3OpcodeName().  In the
1389 ** absence of other comments, this synopsis becomes the comment on the opcode.
1390 ** Some translation occurs:
1391 **
1392 **       "PX"      ->  "r[X]"
1393 **       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1
1394 **       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0
1395 **       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x
1396 */
1397 static int displayComment(
1398   const Op *pOp,     /* The opcode to be commented */
1399   const char *zP4,   /* Previously obtained value for P4 */
1400   char *zTemp,       /* Write result here */
1401   int nTemp          /* Space available in zTemp[] */
1402 ){
1403   const char *zOpName;
1404   const char *zSynopsis;
1405   int nOpName;
1406   int ii, jj;
1407   char zAlt[50];
1408   zOpName = sqlite3OpcodeName(pOp->opcode);
1409   nOpName = sqlite3Strlen30(zOpName);
1410   if( zOpName[nOpName+1] ){
1411     int seenCom = 0;
1412     char c;
1413     zSynopsis = zOpName += nOpName + 1;
1414     if( strncmp(zSynopsis,"IF ",3)==0 ){
1415       if( pOp->p5 & SQLITE_STOREP2 ){
1416         sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
1417       }else{
1418         sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1419       }
1420       zSynopsis = zAlt;
1421     }
1422     for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1423       if( c=='P' ){
1424         c = zSynopsis[++ii];
1425         if( c=='4' ){
1426           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1427         }else if( c=='X' ){
1428           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1429           seenCom = 1;
1430         }else{
1431           int v1 = translateP(c, pOp);
1432           int v2;
1433           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1434           if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1435             ii += 3;
1436             jj += sqlite3Strlen30(zTemp+jj);
1437             v2 = translateP(zSynopsis[ii], pOp);
1438             if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1439               ii += 2;
1440               v2++;
1441             }
1442             if( v2>1 ){
1443               sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1444             }
1445           }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1446             ii += 4;
1447           }
1448         }
1449         jj += sqlite3Strlen30(zTemp+jj);
1450       }else{
1451         zTemp[jj++] = c;
1452       }
1453     }
1454     if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1455       sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1456       jj += sqlite3Strlen30(zTemp+jj);
1457     }
1458     if( jj<nTemp ) zTemp[jj] = 0;
1459   }else if( pOp->zComment ){
1460     sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1461     jj = sqlite3Strlen30(zTemp);
1462   }else{
1463     zTemp[0] = 0;
1464     jj = 0;
1465   }
1466   return jj;
1467 }
1468 #endif /* SQLITE_DEBUG */
1469 
1470 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1471 /*
1472 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1473 ** that can be displayed in the P4 column of EXPLAIN output.
1474 */
1475 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1476   const char *zOp = 0;
1477   switch( pExpr->op ){
1478     case TK_STRING:
1479       sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1480       break;
1481     case TK_INTEGER:
1482       sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1483       break;
1484     case TK_NULL:
1485       sqlite3_str_appendf(p, "NULL");
1486       break;
1487     case TK_REGISTER: {
1488       sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1489       break;
1490     }
1491     case TK_COLUMN: {
1492       if( pExpr->iColumn<0 ){
1493         sqlite3_str_appendf(p, "rowid");
1494       }else{
1495         sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1496       }
1497       break;
1498     }
1499     case TK_LT:      zOp = "LT";      break;
1500     case TK_LE:      zOp = "LE";      break;
1501     case TK_GT:      zOp = "GT";      break;
1502     case TK_GE:      zOp = "GE";      break;
1503     case TK_NE:      zOp = "NE";      break;
1504     case TK_EQ:      zOp = "EQ";      break;
1505     case TK_IS:      zOp = "IS";      break;
1506     case TK_ISNOT:   zOp = "ISNOT";   break;
1507     case TK_AND:     zOp = "AND";     break;
1508     case TK_OR:      zOp = "OR";      break;
1509     case TK_PLUS:    zOp = "ADD";     break;
1510     case TK_STAR:    zOp = "MUL";     break;
1511     case TK_MINUS:   zOp = "SUB";     break;
1512     case TK_REM:     zOp = "REM";     break;
1513     case TK_BITAND:  zOp = "BITAND";  break;
1514     case TK_BITOR:   zOp = "BITOR";   break;
1515     case TK_SLASH:   zOp = "DIV";     break;
1516     case TK_LSHIFT:  zOp = "LSHIFT";  break;
1517     case TK_RSHIFT:  zOp = "RSHIFT";  break;
1518     case TK_CONCAT:  zOp = "CONCAT";  break;
1519     case TK_UMINUS:  zOp = "MINUS";   break;
1520     case TK_UPLUS:   zOp = "PLUS";    break;
1521     case TK_BITNOT:  zOp = "BITNOT";  break;
1522     case TK_NOT:     zOp = "NOT";     break;
1523     case TK_ISNULL:  zOp = "ISNULL";  break;
1524     case TK_NOTNULL: zOp = "NOTNULL"; break;
1525 
1526     default:
1527       sqlite3_str_appendf(p, "%s", "expr");
1528       break;
1529   }
1530 
1531   if( zOp ){
1532     sqlite3_str_appendf(p, "%s(", zOp);
1533     displayP4Expr(p, pExpr->pLeft);
1534     if( pExpr->pRight ){
1535       sqlite3_str_append(p, ",", 1);
1536       displayP4Expr(p, pExpr->pRight);
1537     }
1538     sqlite3_str_append(p, ")", 1);
1539   }
1540 }
1541 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1542 
1543 
1544 #if VDBE_DISPLAY_P4
1545 /*
1546 ** Compute a string that describes the P4 parameter for an opcode.
1547 ** Use zTemp for any required temporary buffer space.
1548 */
1549 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1550   char *zP4 = zTemp;
1551   StrAccum x;
1552   assert( nTemp>=20 );
1553   sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
1554   switch( pOp->p4type ){
1555     case P4_KEYINFO: {
1556       int j;
1557       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1558       assert( pKeyInfo->aSortFlags!=0 );
1559       sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1560       for(j=0; j<pKeyInfo->nKeyField; j++){
1561         CollSeq *pColl = pKeyInfo->aColl[j];
1562         const char *zColl = pColl ? pColl->zName : "";
1563         if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1564         sqlite3_str_appendf(&x, ",%s%s%s",
1565                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1566                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1567                zColl);
1568       }
1569       sqlite3_str_append(&x, ")", 1);
1570       break;
1571     }
1572 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1573     case P4_EXPR: {
1574       displayP4Expr(&x, pOp->p4.pExpr);
1575       break;
1576     }
1577 #endif
1578     case P4_COLLSEQ: {
1579       CollSeq *pColl = pOp->p4.pColl;
1580       sqlite3_str_appendf(&x, "(%.20s)", pColl->zName);
1581       break;
1582     }
1583     case P4_FUNCDEF: {
1584       FuncDef *pDef = pOp->p4.pFunc;
1585       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1586       break;
1587     }
1588     case P4_FUNCCTX: {
1589       FuncDef *pDef = pOp->p4.pCtx->pFunc;
1590       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1591       break;
1592     }
1593     case P4_INT64: {
1594       sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1595       break;
1596     }
1597     case P4_INT32: {
1598       sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1599       break;
1600     }
1601     case P4_REAL: {
1602       sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1603       break;
1604     }
1605     case P4_MEM: {
1606       Mem *pMem = pOp->p4.pMem;
1607       if( pMem->flags & MEM_Str ){
1608         zP4 = pMem->z;
1609       }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1610         sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1611       }else if( pMem->flags & MEM_Real ){
1612         sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1613       }else if( pMem->flags & MEM_Null ){
1614         zP4 = "NULL";
1615       }else{
1616         assert( pMem->flags & MEM_Blob );
1617         zP4 = "(blob)";
1618       }
1619       break;
1620     }
1621 #ifndef SQLITE_OMIT_VIRTUALTABLE
1622     case P4_VTAB: {
1623       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1624       sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1625       break;
1626     }
1627 #endif
1628     case P4_INTARRAY: {
1629       int i;
1630       int *ai = pOp->p4.ai;
1631       int n = ai[0];   /* The first element of an INTARRAY is always the
1632                        ** count of the number of elements to follow */
1633       for(i=1; i<=n; i++){
1634         sqlite3_str_appendf(&x, ",%d", ai[i]);
1635       }
1636       zTemp[0] = '[';
1637       sqlite3_str_append(&x, "]", 1);
1638       break;
1639     }
1640     case P4_SUBPROGRAM: {
1641       sqlite3_str_appendf(&x, "program");
1642       break;
1643     }
1644     case P4_DYNBLOB:
1645     case P4_ADVANCE: {
1646       zTemp[0] = 0;
1647       break;
1648     }
1649     case P4_TABLE: {
1650       sqlite3_str_appendf(&x, "%s", pOp->p4.pTab->zName);
1651       break;
1652     }
1653     default: {
1654       zP4 = pOp->p4.z;
1655       if( zP4==0 ){
1656         zP4 = zTemp;
1657         zTemp[0] = 0;
1658       }
1659     }
1660   }
1661   sqlite3StrAccumFinish(&x);
1662   assert( zP4!=0 );
1663   return zP4;
1664 }
1665 #endif /* VDBE_DISPLAY_P4 */
1666 
1667 /*
1668 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1669 **
1670 ** The prepared statements need to know in advance the complete set of
1671 ** attached databases that will be use.  A mask of these databases
1672 ** is maintained in p->btreeMask.  The p->lockMask value is the subset of
1673 ** p->btreeMask of databases that will require a lock.
1674 */
1675 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1676   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1677   assert( i<(int)sizeof(p->btreeMask)*8 );
1678   DbMaskSet(p->btreeMask, i);
1679   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1680     DbMaskSet(p->lockMask, i);
1681   }
1682 }
1683 
1684 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1685 /*
1686 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1687 ** this routine obtains the mutex associated with each BtShared structure
1688 ** that may be accessed by the VM passed as an argument. In doing so it also
1689 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1690 ** that the correct busy-handler callback is invoked if required.
1691 **
1692 ** If SQLite is not threadsafe but does support shared-cache mode, then
1693 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1694 ** of all of BtShared structures accessible via the database handle
1695 ** associated with the VM.
1696 **
1697 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1698 ** function is a no-op.
1699 **
1700 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1701 ** statement p will ever use.  Let N be the number of bits in p->btreeMask
1702 ** corresponding to btrees that use shared cache.  Then the runtime of
1703 ** this routine is N*N.  But as N is rarely more than 1, this should not
1704 ** be a problem.
1705 */
1706 void sqlite3VdbeEnter(Vdbe *p){
1707   int i;
1708   sqlite3 *db;
1709   Db *aDb;
1710   int nDb;
1711   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1712   db = p->db;
1713   aDb = db->aDb;
1714   nDb = db->nDb;
1715   for(i=0; i<nDb; i++){
1716     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1717       sqlite3BtreeEnter(aDb[i].pBt);
1718     }
1719   }
1720 }
1721 #endif
1722 
1723 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1724 /*
1725 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1726 */
1727 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1728   int i;
1729   sqlite3 *db;
1730   Db *aDb;
1731   int nDb;
1732   db = p->db;
1733   aDb = db->aDb;
1734   nDb = db->nDb;
1735   for(i=0; i<nDb; i++){
1736     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1737       sqlite3BtreeLeave(aDb[i].pBt);
1738     }
1739   }
1740 }
1741 void sqlite3VdbeLeave(Vdbe *p){
1742   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1743   vdbeLeave(p);
1744 }
1745 #endif
1746 
1747 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1748 /*
1749 ** Print a single opcode.  This routine is used for debugging only.
1750 */
1751 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
1752   char *zP4;
1753   char zPtr[50];
1754   char zCom[100];
1755   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1756   if( pOut==0 ) pOut = stdout;
1757   zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1758 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1759   displayComment(pOp, zP4, zCom, sizeof(zCom));
1760 #else
1761   zCom[0] = 0;
1762 #endif
1763   /* NB:  The sqlite3OpcodeName() function is implemented by code created
1764   ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1765   ** information from the vdbe.c source text */
1766   fprintf(pOut, zFormat1, pc,
1767       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1768       zCom
1769   );
1770   fflush(pOut);
1771 }
1772 #endif
1773 
1774 /*
1775 ** Initialize an array of N Mem element.
1776 */
1777 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1778   while( (N--)>0 ){
1779     p->db = db;
1780     p->flags = flags;
1781     p->szMalloc = 0;
1782 #ifdef SQLITE_DEBUG
1783     p->pScopyFrom = 0;
1784 #endif
1785     p++;
1786   }
1787 }
1788 
1789 /*
1790 ** Release an array of N Mem elements
1791 */
1792 static void releaseMemArray(Mem *p, int N){
1793   if( p && N ){
1794     Mem *pEnd = &p[N];
1795     sqlite3 *db = p->db;
1796     if( db->pnBytesFreed ){
1797       do{
1798         if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1799       }while( (++p)<pEnd );
1800       return;
1801     }
1802     do{
1803       assert( (&p[1])==pEnd || p[0].db==p[1].db );
1804       assert( sqlite3VdbeCheckMemInvariants(p) );
1805 
1806       /* This block is really an inlined version of sqlite3VdbeMemRelease()
1807       ** that takes advantage of the fact that the memory cell value is
1808       ** being set to NULL after releasing any dynamic resources.
1809       **
1810       ** The justification for duplicating code is that according to
1811       ** callgrind, this causes a certain test case to hit the CPU 4.7
1812       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1813       ** sqlite3MemRelease() were called from here. With -O2, this jumps
1814       ** to 6.6 percent. The test case is inserting 1000 rows into a table
1815       ** with no indexes using a single prepared INSERT statement, bind()
1816       ** and reset(). Inserts are grouped into a transaction.
1817       */
1818       testcase( p->flags & MEM_Agg );
1819       testcase( p->flags & MEM_Dyn );
1820       testcase( p->xDel==sqlite3VdbeFrameMemDel );
1821       if( p->flags&(MEM_Agg|MEM_Dyn) ){
1822         sqlite3VdbeMemRelease(p);
1823       }else if( p->szMalloc ){
1824         sqlite3DbFreeNN(db, p->zMalloc);
1825         p->szMalloc = 0;
1826       }
1827 
1828       p->flags = MEM_Undefined;
1829     }while( (++p)<pEnd );
1830   }
1831 }
1832 
1833 #ifdef SQLITE_DEBUG
1834 /*
1835 ** Verify that pFrame is a valid VdbeFrame pointer.  Return true if it is
1836 ** and false if something is wrong.
1837 **
1838 ** This routine is intended for use inside of assert() statements only.
1839 */
1840 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
1841   if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
1842   return 1;
1843 }
1844 #endif
1845 
1846 
1847 /*
1848 ** This is a destructor on a Mem object (which is really an sqlite3_value)
1849 ** that deletes the Frame object that is attached to it as a blob.
1850 **
1851 ** This routine does not delete the Frame right away.  It merely adds the
1852 ** frame to a list of frames to be deleted when the Vdbe halts.
1853 */
1854 void sqlite3VdbeFrameMemDel(void *pArg){
1855   VdbeFrame *pFrame = (VdbeFrame*)pArg;
1856   assert( sqlite3VdbeFrameIsValid(pFrame) );
1857   pFrame->pParent = pFrame->v->pDelFrame;
1858   pFrame->v->pDelFrame = pFrame;
1859 }
1860 
1861 
1862 /*
1863 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1864 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1865 */
1866 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1867   int i;
1868   Mem *aMem = VdbeFrameMem(p);
1869   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1870   assert( sqlite3VdbeFrameIsValid(p) );
1871   for(i=0; i<p->nChildCsr; i++){
1872     sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1873   }
1874   releaseMemArray(aMem, p->nChildMem);
1875   sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
1876   sqlite3DbFree(p->v->db, p);
1877 }
1878 
1879 #ifndef SQLITE_OMIT_EXPLAIN
1880 /*
1881 ** Give a listing of the program in the virtual machine.
1882 **
1883 ** The interface is the same as sqlite3VdbeExec().  But instead of
1884 ** running the code, it invokes the callback once for each instruction.
1885 ** This feature is used to implement "EXPLAIN".
1886 **
1887 ** When p->explain==1, each instruction is listed.  When
1888 ** p->explain==2, only OP_Explain instructions are listed and these
1889 ** are shown in a different format.  p->explain==2 is used to implement
1890 ** EXPLAIN QUERY PLAN.
1891 ** 2018-04-24:  In p->explain==2 mode, the OP_Init opcodes of triggers
1892 ** are also shown, so that the boundaries between the main program and
1893 ** each trigger are clear.
1894 **
1895 ** When p->explain==1, first the main program is listed, then each of
1896 ** the trigger subprograms are listed one by one.
1897 */
1898 int sqlite3VdbeList(
1899   Vdbe *p                   /* The VDBE */
1900 ){
1901   int nRow;                            /* Stop when row count reaches this */
1902   int nSub = 0;                        /* Number of sub-vdbes seen so far */
1903   SubProgram **apSub = 0;              /* Array of sub-vdbes */
1904   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
1905   sqlite3 *db = p->db;                 /* The database connection */
1906   int i;                               /* Loop counter */
1907   int rc = SQLITE_OK;                  /* Return code */
1908   Mem *pMem = &p->aMem[1];             /* First Mem of result set */
1909   int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
1910   Op *pOp = 0;
1911 
1912   assert( p->explain );
1913   assert( p->magic==VDBE_MAGIC_RUN );
1914   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1915 
1916   /* Even though this opcode does not use dynamic strings for
1917   ** the result, result columns may become dynamic if the user calls
1918   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1919   */
1920   releaseMemArray(pMem, 8);
1921   p->pResultSet = 0;
1922 
1923   if( p->rc==SQLITE_NOMEM ){
1924     /* This happens if a malloc() inside a call to sqlite3_column_text() or
1925     ** sqlite3_column_text16() failed.  */
1926     sqlite3OomFault(db);
1927     return SQLITE_ERROR;
1928   }
1929 
1930   /* When the number of output rows reaches nRow, that means the
1931   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1932   ** nRow is the sum of the number of rows in the main program, plus
1933   ** the sum of the number of rows in all trigger subprograms encountered
1934   ** so far.  The nRow value will increase as new trigger subprograms are
1935   ** encountered, but p->pc will eventually catch up to nRow.
1936   */
1937   nRow = p->nOp;
1938   if( bListSubprogs ){
1939     /* The first 8 memory cells are used for the result set.  So we will
1940     ** commandeer the 9th cell to use as storage for an array of pointers
1941     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
1942     ** cells.  */
1943     assert( p->nMem>9 );
1944     pSub = &p->aMem[9];
1945     if( pSub->flags&MEM_Blob ){
1946       /* On the first call to sqlite3_step(), pSub will hold a NULL.  It is
1947       ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1948       nSub = pSub->n/sizeof(Vdbe*);
1949       apSub = (SubProgram **)pSub->z;
1950     }
1951     for(i=0; i<nSub; i++){
1952       nRow += apSub[i]->nOp;
1953     }
1954   }
1955 
1956   while(1){  /* Loop exits via break */
1957     i = p->pc++;
1958     if( i>=nRow ){
1959       p->rc = SQLITE_OK;
1960       rc = SQLITE_DONE;
1961       break;
1962     }
1963     if( i<p->nOp ){
1964       /* The output line number is small enough that we are still in the
1965       ** main program. */
1966       pOp = &p->aOp[i];
1967     }else{
1968       /* We are currently listing subprograms.  Figure out which one and
1969       ** pick up the appropriate opcode. */
1970       int j;
1971       i -= p->nOp;
1972       assert( apSub!=0 );
1973       assert( nSub>0 );
1974       for(j=0; i>=apSub[j]->nOp; j++){
1975         i -= apSub[j]->nOp;
1976         assert( i<apSub[j]->nOp || j+1<nSub );
1977       }
1978       pOp = &apSub[j]->aOp[i];
1979     }
1980 
1981     /* When an OP_Program opcode is encounter (the only opcode that has
1982     ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1983     ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1984     ** has not already been seen.
1985     */
1986     if( bListSubprogs && pOp->p4type==P4_SUBPROGRAM ){
1987       int nByte = (nSub+1)*sizeof(SubProgram*);
1988       int j;
1989       for(j=0; j<nSub; j++){
1990         if( apSub[j]==pOp->p4.pProgram ) break;
1991       }
1992       if( j==nSub ){
1993         p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
1994         if( p->rc!=SQLITE_OK ){
1995           rc = SQLITE_ERROR;
1996           break;
1997         }
1998         apSub = (SubProgram **)pSub->z;
1999         apSub[nSub++] = pOp->p4.pProgram;
2000         pSub->flags |= MEM_Blob;
2001         pSub->n = nSub*sizeof(SubProgram*);
2002         nRow += pOp->p4.pProgram->nOp;
2003       }
2004     }
2005     if( p->explain<2 ) break;
2006     if( pOp->opcode==OP_Explain ) break;
2007     if( pOp->opcode==OP_Init && p->pc>1 ) break;
2008   }
2009 
2010   if( rc==SQLITE_OK ){
2011     if( db->u1.isInterrupted ){
2012       p->rc = SQLITE_INTERRUPT;
2013       rc = SQLITE_ERROR;
2014       sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2015     }else{
2016       char *zP4;
2017       if( p->explain==1 ){
2018         pMem->flags = MEM_Int;
2019         pMem->u.i = i;                                /* Program counter */
2020         pMem++;
2021 
2022         pMem->flags = MEM_Static|MEM_Str|MEM_Term;
2023         pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
2024         assert( pMem->z!=0 );
2025         pMem->n = sqlite3Strlen30(pMem->z);
2026         pMem->enc = SQLITE_UTF8;
2027         pMem++;
2028       }
2029 
2030       pMem->flags = MEM_Int;
2031       pMem->u.i = pOp->p1;                          /* P1 */
2032       pMem++;
2033 
2034       pMem->flags = MEM_Int;
2035       pMem->u.i = pOp->p2;                          /* P2 */
2036       pMem++;
2037 
2038       pMem->flags = MEM_Int;
2039       pMem->u.i = pOp->p3;                          /* P3 */
2040       pMem++;
2041 
2042       if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
2043         assert( p->db->mallocFailed );
2044         return SQLITE_ERROR;
2045       }
2046       pMem->flags = MEM_Str|MEM_Term;
2047       zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
2048       if( zP4!=pMem->z ){
2049         pMem->n = 0;
2050         sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
2051       }else{
2052         assert( pMem->z!=0 );
2053         pMem->n = sqlite3Strlen30(pMem->z);
2054         pMem->enc = SQLITE_UTF8;
2055       }
2056       pMem++;
2057 
2058       if( p->explain==1 ){
2059         if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
2060           assert( p->db->mallocFailed );
2061           return SQLITE_ERROR;
2062         }
2063         pMem->flags = MEM_Str|MEM_Term;
2064         pMem->n = 2;
2065         sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
2066         pMem->enc = SQLITE_UTF8;
2067         pMem++;
2068 
2069 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2070         if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
2071           assert( p->db->mallocFailed );
2072           return SQLITE_ERROR;
2073         }
2074         pMem->flags = MEM_Str|MEM_Term;
2075         pMem->n = displayComment(pOp, zP4, pMem->z, 500);
2076         pMem->enc = SQLITE_UTF8;
2077 #else
2078         pMem->flags = MEM_Null;                       /* Comment */
2079 #endif
2080       }
2081 
2082       p->nResColumn = 8 - 4*(p->explain-1);
2083       p->pResultSet = &p->aMem[1];
2084       p->rc = SQLITE_OK;
2085       rc = SQLITE_ROW;
2086     }
2087   }
2088   return rc;
2089 }
2090 #endif /* SQLITE_OMIT_EXPLAIN */
2091 
2092 #ifdef SQLITE_DEBUG
2093 /*
2094 ** Print the SQL that was used to generate a VDBE program.
2095 */
2096 void sqlite3VdbePrintSql(Vdbe *p){
2097   const char *z = 0;
2098   if( p->zSql ){
2099     z = p->zSql;
2100   }else if( p->nOp>=1 ){
2101     const VdbeOp *pOp = &p->aOp[0];
2102     if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2103       z = pOp->p4.z;
2104       while( sqlite3Isspace(*z) ) z++;
2105     }
2106   }
2107   if( z ) printf("SQL: [%s]\n", z);
2108 }
2109 #endif
2110 
2111 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2112 /*
2113 ** Print an IOTRACE message showing SQL content.
2114 */
2115 void sqlite3VdbeIOTraceSql(Vdbe *p){
2116   int nOp = p->nOp;
2117   VdbeOp *pOp;
2118   if( sqlite3IoTrace==0 ) return;
2119   if( nOp<1 ) return;
2120   pOp = &p->aOp[0];
2121   if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2122     int i, j;
2123     char z[1000];
2124     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2125     for(i=0; sqlite3Isspace(z[i]); i++){}
2126     for(j=0; z[i]; i++){
2127       if( sqlite3Isspace(z[i]) ){
2128         if( z[i-1]!=' ' ){
2129           z[j++] = ' ';
2130         }
2131       }else{
2132         z[j++] = z[i];
2133       }
2134     }
2135     z[j] = 0;
2136     sqlite3IoTrace("SQL %s\n", z);
2137   }
2138 }
2139 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2140 
2141 /* An instance of this object describes bulk memory available for use
2142 ** by subcomponents of a prepared statement.  Space is allocated out
2143 ** of a ReusableSpace object by the allocSpace() routine below.
2144 */
2145 struct ReusableSpace {
2146   u8 *pSpace;            /* Available memory */
2147   sqlite3_int64 nFree;   /* Bytes of available memory */
2148   sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2149 };
2150 
2151 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2152 ** from the ReusableSpace object.  Return a pointer to the allocated
2153 ** memory on success.  If insufficient memory is available in the
2154 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2155 ** value by the amount needed and return NULL.
2156 **
2157 ** If pBuf is not initially NULL, that means that the memory has already
2158 ** been allocated by a prior call to this routine, so just return a copy
2159 ** of pBuf and leave ReusableSpace unchanged.
2160 **
2161 ** This allocator is employed to repurpose unused slots at the end of the
2162 ** opcode array of prepared state for other memory needs of the prepared
2163 ** statement.
2164 */
2165 static void *allocSpace(
2166   struct ReusableSpace *p,  /* Bulk memory available for allocation */
2167   void *pBuf,               /* Pointer to a prior allocation */
2168   sqlite3_int64 nByte       /* Bytes of memory needed */
2169 ){
2170   assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2171   if( pBuf==0 ){
2172     nByte = ROUND8(nByte);
2173     if( nByte <= p->nFree ){
2174       p->nFree -= nByte;
2175       pBuf = &p->pSpace[p->nFree];
2176     }else{
2177       p->nNeeded += nByte;
2178     }
2179   }
2180   assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2181   return pBuf;
2182 }
2183 
2184 /*
2185 ** Rewind the VDBE back to the beginning in preparation for
2186 ** running it.
2187 */
2188 void sqlite3VdbeRewind(Vdbe *p){
2189 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2190   int i;
2191 #endif
2192   assert( p!=0 );
2193   assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET );
2194 
2195   /* There should be at least one opcode.
2196   */
2197   assert( p->nOp>0 );
2198 
2199   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
2200   p->magic = VDBE_MAGIC_RUN;
2201 
2202 #ifdef SQLITE_DEBUG
2203   for(i=0; i<p->nMem; i++){
2204     assert( p->aMem[i].db==p->db );
2205   }
2206 #endif
2207   p->pc = -1;
2208   p->rc = SQLITE_OK;
2209   p->errorAction = OE_Abort;
2210   p->nChange = 0;
2211   p->cacheCtr = 1;
2212   p->minWriteFileFormat = 255;
2213   p->iStatement = 0;
2214   p->nFkConstraint = 0;
2215 #ifdef VDBE_PROFILE
2216   for(i=0; i<p->nOp; i++){
2217     p->aOp[i].cnt = 0;
2218     p->aOp[i].cycles = 0;
2219   }
2220 #endif
2221 }
2222 
2223 /*
2224 ** Prepare a virtual machine for execution for the first time after
2225 ** creating the virtual machine.  This involves things such
2226 ** as allocating registers and initializing the program counter.
2227 ** After the VDBE has be prepped, it can be executed by one or more
2228 ** calls to sqlite3VdbeExec().
2229 **
2230 ** This function may be called exactly once on each virtual machine.
2231 ** After this routine is called the VM has been "packaged" and is ready
2232 ** to run.  After this routine is called, further calls to
2233 ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
2234 ** the Vdbe from the Parse object that helped generate it so that the
2235 ** the Vdbe becomes an independent entity and the Parse object can be
2236 ** destroyed.
2237 **
2238 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2239 ** to its initial state after it has been run.
2240 */
2241 void sqlite3VdbeMakeReady(
2242   Vdbe *p,                       /* The VDBE */
2243   Parse *pParse                  /* Parsing context */
2244 ){
2245   sqlite3 *db;                   /* The database connection */
2246   int nVar;                      /* Number of parameters */
2247   int nMem;                      /* Number of VM memory registers */
2248   int nCursor;                   /* Number of cursors required */
2249   int nArg;                      /* Number of arguments in subprograms */
2250   int n;                         /* Loop counter */
2251   struct ReusableSpace x;        /* Reusable bulk memory */
2252 
2253   assert( p!=0 );
2254   assert( p->nOp>0 );
2255   assert( pParse!=0 );
2256   assert( p->magic==VDBE_MAGIC_INIT );
2257   assert( pParse==p->pParse );
2258   db = p->db;
2259   assert( db->mallocFailed==0 );
2260   nVar = pParse->nVar;
2261   nMem = pParse->nMem;
2262   nCursor = pParse->nTab;
2263   nArg = pParse->nMaxArg;
2264 
2265   /* Each cursor uses a memory cell.  The first cursor (cursor 0) can
2266   ** use aMem[0] which is not otherwise used by the VDBE program.  Allocate
2267   ** space at the end of aMem[] for cursors 1 and greater.
2268   ** See also: allocateCursor().
2269   */
2270   nMem += nCursor;
2271   if( nCursor==0 && nMem>0 ) nMem++;  /* Space for aMem[0] even if not used */
2272 
2273   /* Figure out how much reusable memory is available at the end of the
2274   ** opcode array.  This extra memory will be reallocated for other elements
2275   ** of the prepared statement.
2276   */
2277   n = ROUND8(sizeof(Op)*p->nOp);              /* Bytes of opcode memory used */
2278   x.pSpace = &((u8*)p->aOp)[n];               /* Unused opcode memory */
2279   assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2280   x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */
2281   assert( x.nFree>=0 );
2282   assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2283 
2284   resolveP2Values(p, &nArg);
2285   p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2286   if( pParse->explain ){
2287     static const char * const azColName[] = {
2288        "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2289        "id", "parent", "notused", "detail"
2290     };
2291     int iFirst, mx, i;
2292     if( nMem<10 ) nMem = 10;
2293     if( pParse->explain==2 ){
2294       sqlite3VdbeSetNumCols(p, 4);
2295       iFirst = 8;
2296       mx = 12;
2297     }else{
2298       sqlite3VdbeSetNumCols(p, 8);
2299       iFirst = 0;
2300       mx = 8;
2301     }
2302     for(i=iFirst; i<mx; i++){
2303       sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
2304                             azColName[i], SQLITE_STATIC);
2305     }
2306   }
2307   p->expired = 0;
2308 
2309   /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2310   ** passes.  On the first pass, we try to reuse unused memory at the
2311   ** end of the opcode array.  If we are unable to satisfy all memory
2312   ** requirements by reusing the opcode array tail, then the second
2313   ** pass will fill in the remainder using a fresh memory allocation.
2314   **
2315   ** This two-pass approach that reuses as much memory as possible from
2316   ** the leftover memory at the end of the opcode array.  This can significantly
2317   ** reduce the amount of memory held by a prepared statement.
2318   */
2319   x.nNeeded = 0;
2320   p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2321   p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2322   p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2323   p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2324 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2325   p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64));
2326 #endif
2327   if( x.nNeeded ){
2328     x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2329     x.nFree = x.nNeeded;
2330     if( !db->mallocFailed ){
2331       p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2332       p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2333       p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2334       p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2335 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2336       p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2337 #endif
2338     }
2339   }
2340 
2341   p->pVList = pParse->pVList;
2342   pParse->pVList =  0;
2343   p->explain = pParse->explain;
2344   if( db->mallocFailed ){
2345     p->nVar = 0;
2346     p->nCursor = 0;
2347     p->nMem = 0;
2348   }else{
2349     p->nCursor = nCursor;
2350     p->nVar = (ynVar)nVar;
2351     initMemArray(p->aVar, nVar, db, MEM_Null);
2352     p->nMem = nMem;
2353     initMemArray(p->aMem, nMem, db, MEM_Undefined);
2354     memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2355 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2356     memset(p->anExec, 0, p->nOp*sizeof(i64));
2357 #endif
2358   }
2359   sqlite3VdbeRewind(p);
2360 }
2361 
2362 /*
2363 ** Close a VDBE cursor and release all the resources that cursor
2364 ** happens to hold.
2365 */
2366 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2367   if( pCx==0 ){
2368     return;
2369   }
2370   assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2371   switch( pCx->eCurType ){
2372     case CURTYPE_SORTER: {
2373       sqlite3VdbeSorterClose(p->db, pCx);
2374       break;
2375     }
2376     case CURTYPE_BTREE: {
2377       if( pCx->isEphemeral ){
2378         if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx);
2379         /* The pCx->pCursor will be close automatically, if it exists, by
2380         ** the call above. */
2381       }else{
2382         assert( pCx->uc.pCursor!=0 );
2383         sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2384       }
2385       break;
2386     }
2387 #ifndef SQLITE_OMIT_VIRTUALTABLE
2388     case CURTYPE_VTAB: {
2389       sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2390       const sqlite3_module *pModule = pVCur->pVtab->pModule;
2391       assert( pVCur->pVtab->nRef>0 );
2392       pVCur->pVtab->nRef--;
2393       pModule->xClose(pVCur);
2394       break;
2395     }
2396 #endif
2397   }
2398 }
2399 
2400 /*
2401 ** Close all cursors in the current frame.
2402 */
2403 static void closeCursorsInFrame(Vdbe *p){
2404   if( p->apCsr ){
2405     int i;
2406     for(i=0; i<p->nCursor; i++){
2407       VdbeCursor *pC = p->apCsr[i];
2408       if( pC ){
2409         sqlite3VdbeFreeCursor(p, pC);
2410         p->apCsr[i] = 0;
2411       }
2412     }
2413   }
2414 }
2415 
2416 /*
2417 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2418 ** is used, for example, when a trigger sub-program is halted to restore
2419 ** control to the main program.
2420 */
2421 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2422   Vdbe *v = pFrame->v;
2423   closeCursorsInFrame(v);
2424 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2425   v->anExec = pFrame->anExec;
2426 #endif
2427   v->aOp = pFrame->aOp;
2428   v->nOp = pFrame->nOp;
2429   v->aMem = pFrame->aMem;
2430   v->nMem = pFrame->nMem;
2431   v->apCsr = pFrame->apCsr;
2432   v->nCursor = pFrame->nCursor;
2433   v->db->lastRowid = pFrame->lastRowid;
2434   v->nChange = pFrame->nChange;
2435   v->db->nChange = pFrame->nDbChange;
2436   sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2437   v->pAuxData = pFrame->pAuxData;
2438   pFrame->pAuxData = 0;
2439   return pFrame->pc;
2440 }
2441 
2442 /*
2443 ** Close all cursors.
2444 **
2445 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2446 ** cell array. This is necessary as the memory cell array may contain
2447 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2448 ** open cursors.
2449 */
2450 static void closeAllCursors(Vdbe *p){
2451   if( p->pFrame ){
2452     VdbeFrame *pFrame;
2453     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2454     sqlite3VdbeFrameRestore(pFrame);
2455     p->pFrame = 0;
2456     p->nFrame = 0;
2457   }
2458   assert( p->nFrame==0 );
2459   closeCursorsInFrame(p);
2460   if( p->aMem ){
2461     releaseMemArray(p->aMem, p->nMem);
2462   }
2463   while( p->pDelFrame ){
2464     VdbeFrame *pDel = p->pDelFrame;
2465     p->pDelFrame = pDel->pParent;
2466     sqlite3VdbeFrameDelete(pDel);
2467   }
2468 
2469   /* Delete any auxdata allocations made by the VM */
2470   if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2471   assert( p->pAuxData==0 );
2472 }
2473 
2474 /*
2475 ** Set the number of result columns that will be returned by this SQL
2476 ** statement. This is now set at compile time, rather than during
2477 ** execution of the vdbe program so that sqlite3_column_count() can
2478 ** be called on an SQL statement before sqlite3_step().
2479 */
2480 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2481   int n;
2482   sqlite3 *db = p->db;
2483 
2484   if( p->nResColumn ){
2485     releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2486     sqlite3DbFree(db, p->aColName);
2487   }
2488   n = nResColumn*COLNAME_N;
2489   p->nResColumn = (u16)nResColumn;
2490   p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2491   if( p->aColName==0 ) return;
2492   initMemArray(p->aColName, n, db, MEM_Null);
2493 }
2494 
2495 /*
2496 ** Set the name of the idx'th column to be returned by the SQL statement.
2497 ** zName must be a pointer to a nul terminated string.
2498 **
2499 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2500 **
2501 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2502 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2503 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2504 */
2505 int sqlite3VdbeSetColName(
2506   Vdbe *p,                         /* Vdbe being configured */
2507   int idx,                         /* Index of column zName applies to */
2508   int var,                         /* One of the COLNAME_* constants */
2509   const char *zName,               /* Pointer to buffer containing name */
2510   void (*xDel)(void*)              /* Memory management strategy for zName */
2511 ){
2512   int rc;
2513   Mem *pColName;
2514   assert( idx<p->nResColumn );
2515   assert( var<COLNAME_N );
2516   if( p->db->mallocFailed ){
2517     assert( !zName || xDel!=SQLITE_DYNAMIC );
2518     return SQLITE_NOMEM_BKPT;
2519   }
2520   assert( p->aColName!=0 );
2521   pColName = &(p->aColName[idx+var*p->nResColumn]);
2522   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2523   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2524   return rc;
2525 }
2526 
2527 /*
2528 ** A read or write transaction may or may not be active on database handle
2529 ** db. If a transaction is active, commit it. If there is a
2530 ** write-transaction spanning more than one database file, this routine
2531 ** takes care of the master journal trickery.
2532 */
2533 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2534   int i;
2535   int nTrans = 0;  /* Number of databases with an active write-transaction
2536                    ** that are candidates for a two-phase commit using a
2537                    ** master-journal */
2538   int rc = SQLITE_OK;
2539   int needXcommit = 0;
2540 
2541 #ifdef SQLITE_OMIT_VIRTUALTABLE
2542   /* With this option, sqlite3VtabSync() is defined to be simply
2543   ** SQLITE_OK so p is not used.
2544   */
2545   UNUSED_PARAMETER(p);
2546 #endif
2547 
2548   /* Before doing anything else, call the xSync() callback for any
2549   ** virtual module tables written in this transaction. This has to
2550   ** be done before determining whether a master journal file is
2551   ** required, as an xSync() callback may add an attached database
2552   ** to the transaction.
2553   */
2554   rc = sqlite3VtabSync(db, p);
2555 
2556   /* This loop determines (a) if the commit hook should be invoked and
2557   ** (b) how many database files have open write transactions, not
2558   ** including the temp database. (b) is important because if more than
2559   ** one database file has an open write transaction, a master journal
2560   ** file is required for an atomic commit.
2561   */
2562   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2563     Btree *pBt = db->aDb[i].pBt;
2564     if( sqlite3BtreeIsInTrans(pBt) ){
2565       /* Whether or not a database might need a master journal depends upon
2566       ** its journal mode (among other things).  This matrix determines which
2567       ** journal modes use a master journal and which do not */
2568       static const u8 aMJNeeded[] = {
2569         /* DELETE   */  1,
2570         /* PERSIST   */ 1,
2571         /* OFF       */ 0,
2572         /* TRUNCATE  */ 1,
2573         /* MEMORY    */ 0,
2574         /* WAL       */ 0
2575       };
2576       Pager *pPager;   /* Pager associated with pBt */
2577       needXcommit = 1;
2578       sqlite3BtreeEnter(pBt);
2579       pPager = sqlite3BtreePager(pBt);
2580       if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2581        && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2582        && sqlite3PagerIsMemdb(pPager)==0
2583       ){
2584         assert( i!=1 );
2585         nTrans++;
2586       }
2587       rc = sqlite3PagerExclusiveLock(pPager);
2588       sqlite3BtreeLeave(pBt);
2589     }
2590   }
2591   if( rc!=SQLITE_OK ){
2592     return rc;
2593   }
2594 
2595   /* If there are any write-transactions at all, invoke the commit hook */
2596   if( needXcommit && db->xCommitCallback ){
2597     rc = db->xCommitCallback(db->pCommitArg);
2598     if( rc ){
2599       return SQLITE_CONSTRAINT_COMMITHOOK;
2600     }
2601   }
2602 
2603   /* The simple case - no more than one database file (not counting the
2604   ** TEMP database) has a transaction active.   There is no need for the
2605   ** master-journal.
2606   **
2607   ** If the return value of sqlite3BtreeGetFilename() is a zero length
2608   ** string, it means the main database is :memory: or a temp file.  In
2609   ** that case we do not support atomic multi-file commits, so use the
2610   ** simple case then too.
2611   */
2612   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2613    || nTrans<=1
2614   ){
2615     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2616       Btree *pBt = db->aDb[i].pBt;
2617       if( pBt ){
2618         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2619       }
2620     }
2621 
2622     /* Do the commit only if all databases successfully complete phase 1.
2623     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2624     ** IO error while deleting or truncating a journal file. It is unlikely,
2625     ** but could happen. In this case abandon processing and return the error.
2626     */
2627     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2628       Btree *pBt = db->aDb[i].pBt;
2629       if( pBt ){
2630         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2631       }
2632     }
2633     if( rc==SQLITE_OK ){
2634       sqlite3VtabCommit(db);
2635     }
2636   }
2637 
2638   /* The complex case - There is a multi-file write-transaction active.
2639   ** This requires a master journal file to ensure the transaction is
2640   ** committed atomically.
2641   */
2642 #ifndef SQLITE_OMIT_DISKIO
2643   else{
2644     sqlite3_vfs *pVfs = db->pVfs;
2645     char *zMaster = 0;   /* File-name for the master journal */
2646     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2647     sqlite3_file *pMaster = 0;
2648     i64 offset = 0;
2649     int res;
2650     int retryCount = 0;
2651     int nMainFile;
2652 
2653     /* Select a master journal file name */
2654     nMainFile = sqlite3Strlen30(zMainFile);
2655     zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz%c%c", zMainFile, 0, 0);
2656     if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
2657     do {
2658       u32 iRandom;
2659       if( retryCount ){
2660         if( retryCount>100 ){
2661           sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2662           sqlite3OsDelete(pVfs, zMaster, 0);
2663           break;
2664         }else if( retryCount==1 ){
2665           sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2666         }
2667       }
2668       retryCount++;
2669       sqlite3_randomness(sizeof(iRandom), &iRandom);
2670       sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
2671                                (iRandom>>8)&0xffffff, iRandom&0xff);
2672       /* The antipenultimate character of the master journal name must
2673       ** be "9" to avoid name collisions when using 8+3 filenames. */
2674       assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2675       sqlite3FileSuffix3(zMainFile, zMaster);
2676       rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2677     }while( rc==SQLITE_OK && res );
2678     if( rc==SQLITE_OK ){
2679       /* Open the master journal. */
2680       rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2681           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2682           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2683       );
2684     }
2685     if( rc!=SQLITE_OK ){
2686       sqlite3DbFree(db, zMaster);
2687       return rc;
2688     }
2689 
2690     /* Write the name of each database file in the transaction into the new
2691     ** master journal file. If an error occurs at this point close
2692     ** and delete the master journal file. All the individual journal files
2693     ** still have 'null' as the master journal pointer, so they will roll
2694     ** back independently if a failure occurs.
2695     */
2696     for(i=0; i<db->nDb; i++){
2697       Btree *pBt = db->aDb[i].pBt;
2698       if( sqlite3BtreeIsInTrans(pBt) ){
2699         char const *zFile = sqlite3BtreeGetJournalname(pBt);
2700         if( zFile==0 ){
2701           continue;  /* Ignore TEMP and :memory: databases */
2702         }
2703         assert( zFile[0]!=0 );
2704         rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2705         offset += sqlite3Strlen30(zFile)+1;
2706         if( rc!=SQLITE_OK ){
2707           sqlite3OsCloseFree(pMaster);
2708           sqlite3OsDelete(pVfs, zMaster, 0);
2709           sqlite3DbFree(db, zMaster);
2710           return rc;
2711         }
2712       }
2713     }
2714 
2715     /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2716     ** flag is set this is not required.
2717     */
2718     if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2719      && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2720     ){
2721       sqlite3OsCloseFree(pMaster);
2722       sqlite3OsDelete(pVfs, zMaster, 0);
2723       sqlite3DbFree(db, zMaster);
2724       return rc;
2725     }
2726 
2727     /* Sync all the db files involved in the transaction. The same call
2728     ** sets the master journal pointer in each individual journal. If
2729     ** an error occurs here, do not delete the master journal file.
2730     **
2731     ** If the error occurs during the first call to
2732     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2733     ** master journal file will be orphaned. But we cannot delete it,
2734     ** in case the master journal file name was written into the journal
2735     ** file before the failure occurred.
2736     */
2737     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2738       Btree *pBt = db->aDb[i].pBt;
2739       if( pBt ){
2740         rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
2741       }
2742     }
2743     sqlite3OsCloseFree(pMaster);
2744     assert( rc!=SQLITE_BUSY );
2745     if( rc!=SQLITE_OK ){
2746       sqlite3DbFree(db, zMaster);
2747       return rc;
2748     }
2749 
2750     /* Delete the master journal file. This commits the transaction. After
2751     ** doing this the directory is synced again before any individual
2752     ** transaction files are deleted.
2753     */
2754     rc = sqlite3OsDelete(pVfs, zMaster, 1);
2755     sqlite3DbFree(db, zMaster);
2756     zMaster = 0;
2757     if( rc ){
2758       return rc;
2759     }
2760 
2761     /* All files and directories have already been synced, so the following
2762     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2763     ** deleting or truncating journals. If something goes wrong while
2764     ** this is happening we don't really care. The integrity of the
2765     ** transaction is already guaranteed, but some stray 'cold' journals
2766     ** may be lying around. Returning an error code won't help matters.
2767     */
2768     disable_simulated_io_errors();
2769     sqlite3BeginBenignMalloc();
2770     for(i=0; i<db->nDb; i++){
2771       Btree *pBt = db->aDb[i].pBt;
2772       if( pBt ){
2773         sqlite3BtreeCommitPhaseTwo(pBt, 1);
2774       }
2775     }
2776     sqlite3EndBenignMalloc();
2777     enable_simulated_io_errors();
2778 
2779     sqlite3VtabCommit(db);
2780   }
2781 #endif
2782 
2783   return rc;
2784 }
2785 
2786 /*
2787 ** This routine checks that the sqlite3.nVdbeActive count variable
2788 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2789 ** currently active. An assertion fails if the two counts do not match.
2790 ** This is an internal self-check only - it is not an essential processing
2791 ** step.
2792 **
2793 ** This is a no-op if NDEBUG is defined.
2794 */
2795 #ifndef NDEBUG
2796 static void checkActiveVdbeCnt(sqlite3 *db){
2797   Vdbe *p;
2798   int cnt = 0;
2799   int nWrite = 0;
2800   int nRead = 0;
2801   p = db->pVdbe;
2802   while( p ){
2803     if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2804       cnt++;
2805       if( p->readOnly==0 ) nWrite++;
2806       if( p->bIsReader ) nRead++;
2807     }
2808     p = p->pNext;
2809   }
2810   assert( cnt==db->nVdbeActive );
2811   assert( nWrite==db->nVdbeWrite );
2812   assert( nRead==db->nVdbeRead );
2813 }
2814 #else
2815 #define checkActiveVdbeCnt(x)
2816 #endif
2817 
2818 /*
2819 ** If the Vdbe passed as the first argument opened a statement-transaction,
2820 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2821 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2822 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2823 ** statement transaction is committed.
2824 **
2825 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2826 ** Otherwise SQLITE_OK.
2827 */
2828 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2829   sqlite3 *const db = p->db;
2830   int rc = SQLITE_OK;
2831   int i;
2832   const int iSavepoint = p->iStatement-1;
2833 
2834   assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2835   assert( db->nStatement>0 );
2836   assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2837 
2838   for(i=0; i<db->nDb; i++){
2839     int rc2 = SQLITE_OK;
2840     Btree *pBt = db->aDb[i].pBt;
2841     if( pBt ){
2842       if( eOp==SAVEPOINT_ROLLBACK ){
2843         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2844       }
2845       if( rc2==SQLITE_OK ){
2846         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2847       }
2848       if( rc==SQLITE_OK ){
2849         rc = rc2;
2850       }
2851     }
2852   }
2853   db->nStatement--;
2854   p->iStatement = 0;
2855 
2856   if( rc==SQLITE_OK ){
2857     if( eOp==SAVEPOINT_ROLLBACK ){
2858       rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2859     }
2860     if( rc==SQLITE_OK ){
2861       rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2862     }
2863   }
2864 
2865   /* If the statement transaction is being rolled back, also restore the
2866   ** database handles deferred constraint counter to the value it had when
2867   ** the statement transaction was opened.  */
2868   if( eOp==SAVEPOINT_ROLLBACK ){
2869     db->nDeferredCons = p->nStmtDefCons;
2870     db->nDeferredImmCons = p->nStmtDefImmCons;
2871   }
2872   return rc;
2873 }
2874 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2875   if( p->db->nStatement && p->iStatement ){
2876     return vdbeCloseStatement(p, eOp);
2877   }
2878   return SQLITE_OK;
2879 }
2880 
2881 
2882 /*
2883 ** This function is called when a transaction opened by the database
2884 ** handle associated with the VM passed as an argument is about to be
2885 ** committed. If there are outstanding deferred foreign key constraint
2886 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2887 **
2888 ** If there are outstanding FK violations and this function returns
2889 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2890 ** and write an error message to it. Then return SQLITE_ERROR.
2891 */
2892 #ifndef SQLITE_OMIT_FOREIGN_KEY
2893 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2894   sqlite3 *db = p->db;
2895   if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2896    || (!deferred && p->nFkConstraint>0)
2897   ){
2898     p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2899     p->errorAction = OE_Abort;
2900     sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
2901     return SQLITE_ERROR;
2902   }
2903   return SQLITE_OK;
2904 }
2905 #endif
2906 
2907 /*
2908 ** This routine is called the when a VDBE tries to halt.  If the VDBE
2909 ** has made changes and is in autocommit mode, then commit those
2910 ** changes.  If a rollback is needed, then do the rollback.
2911 **
2912 ** This routine is the only way to move the state of a VM from
2913 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
2914 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2915 **
2916 ** Return an error code.  If the commit could not complete because of
2917 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
2918 ** means the close did not happen and needs to be repeated.
2919 */
2920 int sqlite3VdbeHalt(Vdbe *p){
2921   int rc;                         /* Used to store transient return codes */
2922   sqlite3 *db = p->db;
2923 
2924   /* This function contains the logic that determines if a statement or
2925   ** transaction will be committed or rolled back as a result of the
2926   ** execution of this virtual machine.
2927   **
2928   ** If any of the following errors occur:
2929   **
2930   **     SQLITE_NOMEM
2931   **     SQLITE_IOERR
2932   **     SQLITE_FULL
2933   **     SQLITE_INTERRUPT
2934   **
2935   ** Then the internal cache might have been left in an inconsistent
2936   ** state.  We need to rollback the statement transaction, if there is
2937   ** one, or the complete transaction if there is no statement transaction.
2938   */
2939 
2940   if( p->magic!=VDBE_MAGIC_RUN ){
2941     return SQLITE_OK;
2942   }
2943   if( db->mallocFailed ){
2944     p->rc = SQLITE_NOMEM_BKPT;
2945   }
2946   closeAllCursors(p);
2947   checkActiveVdbeCnt(db);
2948 
2949   /* No commit or rollback needed if the program never started or if the
2950   ** SQL statement does not read or write a database file.  */
2951   if( p->pc>=0 && p->bIsReader ){
2952     int mrc;   /* Primary error code from p->rc */
2953     int eStatementOp = 0;
2954     int isSpecialError;            /* Set to true if a 'special' error */
2955 
2956     /* Lock all btrees used by the statement */
2957     sqlite3VdbeEnter(p);
2958 
2959     /* Check for one of the special errors */
2960     mrc = p->rc & 0xff;
2961     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2962                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2963     if( isSpecialError ){
2964       /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2965       ** no rollback is necessary. Otherwise, at least a savepoint
2966       ** transaction must be rolled back to restore the database to a
2967       ** consistent state.
2968       **
2969       ** Even if the statement is read-only, it is important to perform
2970       ** a statement or transaction rollback operation. If the error
2971       ** occurred while writing to the journal, sub-journal or database
2972       ** file as part of an effort to free up cache space (see function
2973       ** pagerStress() in pager.c), the rollback is required to restore
2974       ** the pager to a consistent state.
2975       */
2976       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2977         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2978           eStatementOp = SAVEPOINT_ROLLBACK;
2979         }else{
2980           /* We are forced to roll back the active transaction. Before doing
2981           ** so, abort any other statements this handle currently has active.
2982           */
2983           sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2984           sqlite3CloseSavepoints(db);
2985           db->autoCommit = 1;
2986           p->nChange = 0;
2987         }
2988       }
2989     }
2990 
2991     /* Check for immediate foreign key violations. */
2992     if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2993       sqlite3VdbeCheckFk(p, 0);
2994     }
2995 
2996     /* If the auto-commit flag is set and this is the only active writer
2997     ** VM, then we do either a commit or rollback of the current transaction.
2998     **
2999     ** Note: This block also runs if one of the special errors handled
3000     ** above has occurred.
3001     */
3002     if( !sqlite3VtabInSync(db)
3003      && db->autoCommit
3004      && db->nVdbeWrite==(p->readOnly==0)
3005     ){
3006       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3007         rc = sqlite3VdbeCheckFk(p, 1);
3008         if( rc!=SQLITE_OK ){
3009           if( NEVER(p->readOnly) ){
3010             sqlite3VdbeLeave(p);
3011             return SQLITE_ERROR;
3012           }
3013           rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3014         }else{
3015           /* The auto-commit flag is true, the vdbe program was successful
3016           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3017           ** key constraints to hold up the transaction. This means a commit
3018           ** is required. */
3019           rc = vdbeCommit(db, p);
3020         }
3021         if( rc==SQLITE_BUSY && p->readOnly ){
3022           sqlite3VdbeLeave(p);
3023           return SQLITE_BUSY;
3024         }else if( rc!=SQLITE_OK ){
3025           p->rc = rc;
3026           sqlite3RollbackAll(db, SQLITE_OK);
3027           p->nChange = 0;
3028         }else{
3029           db->nDeferredCons = 0;
3030           db->nDeferredImmCons = 0;
3031           db->flags &= ~(u64)SQLITE_DeferFKs;
3032           sqlite3CommitInternalChanges(db);
3033         }
3034       }else{
3035         sqlite3RollbackAll(db, SQLITE_OK);
3036         p->nChange = 0;
3037       }
3038       db->nStatement = 0;
3039     }else if( eStatementOp==0 ){
3040       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3041         eStatementOp = SAVEPOINT_RELEASE;
3042       }else if( p->errorAction==OE_Abort ){
3043         eStatementOp = SAVEPOINT_ROLLBACK;
3044       }else{
3045         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3046         sqlite3CloseSavepoints(db);
3047         db->autoCommit = 1;
3048         p->nChange = 0;
3049       }
3050     }
3051 
3052     /* If eStatementOp is non-zero, then a statement transaction needs to
3053     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3054     ** do so. If this operation returns an error, and the current statement
3055     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3056     ** current statement error code.
3057     */
3058     if( eStatementOp ){
3059       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3060       if( rc ){
3061         if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3062           p->rc = rc;
3063           sqlite3DbFree(db, p->zErrMsg);
3064           p->zErrMsg = 0;
3065         }
3066         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3067         sqlite3CloseSavepoints(db);
3068         db->autoCommit = 1;
3069         p->nChange = 0;
3070       }
3071     }
3072 
3073     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3074     ** has been rolled back, update the database connection change-counter.
3075     */
3076     if( p->changeCntOn ){
3077       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3078         sqlite3VdbeSetChanges(db, p->nChange);
3079       }else{
3080         sqlite3VdbeSetChanges(db, 0);
3081       }
3082       p->nChange = 0;
3083     }
3084 
3085     /* Release the locks */
3086     sqlite3VdbeLeave(p);
3087   }
3088 
3089   /* We have successfully halted and closed the VM.  Record this fact. */
3090   if( p->pc>=0 ){
3091     db->nVdbeActive--;
3092     if( !p->readOnly ) db->nVdbeWrite--;
3093     if( p->bIsReader ) db->nVdbeRead--;
3094     assert( db->nVdbeActive>=db->nVdbeRead );
3095     assert( db->nVdbeRead>=db->nVdbeWrite );
3096     assert( db->nVdbeWrite>=0 );
3097   }
3098   p->magic = VDBE_MAGIC_HALT;
3099   checkActiveVdbeCnt(db);
3100   if( db->mallocFailed ){
3101     p->rc = SQLITE_NOMEM_BKPT;
3102   }
3103 
3104   /* If the auto-commit flag is set to true, then any locks that were held
3105   ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3106   ** to invoke any required unlock-notify callbacks.
3107   */
3108   if( db->autoCommit ){
3109     sqlite3ConnectionUnlocked(db);
3110   }
3111 
3112   assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3113   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3114 }
3115 
3116 
3117 /*
3118 ** Each VDBE holds the result of the most recent sqlite3_step() call
3119 ** in p->rc.  This routine sets that result back to SQLITE_OK.
3120 */
3121 void sqlite3VdbeResetStepResult(Vdbe *p){
3122   p->rc = SQLITE_OK;
3123 }
3124 
3125 /*
3126 ** Copy the error code and error message belonging to the VDBE passed
3127 ** as the first argument to its database handle (so that they will be
3128 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3129 **
3130 ** This function does not clear the VDBE error code or message, just
3131 ** copies them to the database handle.
3132 */
3133 int sqlite3VdbeTransferError(Vdbe *p){
3134   sqlite3 *db = p->db;
3135   int rc = p->rc;
3136   if( p->zErrMsg ){
3137     db->bBenignMalloc++;
3138     sqlite3BeginBenignMalloc();
3139     if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3140     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3141     sqlite3EndBenignMalloc();
3142     db->bBenignMalloc--;
3143   }else if( db->pErr ){
3144     sqlite3ValueSetNull(db->pErr);
3145   }
3146   db->errCode = rc;
3147   return rc;
3148 }
3149 
3150 #ifdef SQLITE_ENABLE_SQLLOG
3151 /*
3152 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3153 ** invoke it.
3154 */
3155 static void vdbeInvokeSqllog(Vdbe *v){
3156   if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3157     char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3158     assert( v->db->init.busy==0 );
3159     if( zExpanded ){
3160       sqlite3GlobalConfig.xSqllog(
3161           sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3162       );
3163       sqlite3DbFree(v->db, zExpanded);
3164     }
3165   }
3166 }
3167 #else
3168 # define vdbeInvokeSqllog(x)
3169 #endif
3170 
3171 /*
3172 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3173 ** Write any error messages into *pzErrMsg.  Return the result code.
3174 **
3175 ** After this routine is run, the VDBE should be ready to be executed
3176 ** again.
3177 **
3178 ** To look at it another way, this routine resets the state of the
3179 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
3180 ** VDBE_MAGIC_INIT.
3181 */
3182 int sqlite3VdbeReset(Vdbe *p){
3183 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3184   int i;
3185 #endif
3186 
3187   sqlite3 *db;
3188   db = p->db;
3189 
3190   /* If the VM did not run to completion or if it encountered an
3191   ** error, then it might not have been halted properly.  So halt
3192   ** it now.
3193   */
3194   sqlite3VdbeHalt(p);
3195 
3196   /* If the VDBE has been run even partially, then transfer the error code
3197   ** and error message from the VDBE into the main database structure.  But
3198   ** if the VDBE has just been set to run but has not actually executed any
3199   ** instructions yet, leave the main database error information unchanged.
3200   */
3201   if( p->pc>=0 ){
3202     vdbeInvokeSqllog(p);
3203     sqlite3VdbeTransferError(p);
3204     if( p->runOnlyOnce ) p->expired = 1;
3205   }else if( p->rc && p->expired ){
3206     /* The expired flag was set on the VDBE before the first call
3207     ** to sqlite3_step(). For consistency (since sqlite3_step() was
3208     ** called), set the database error in this case as well.
3209     */
3210     sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
3211   }
3212 
3213   /* Reset register contents and reclaim error message memory.
3214   */
3215 #ifdef SQLITE_DEBUG
3216   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3217   ** Vdbe.aMem[] arrays have already been cleaned up.  */
3218   if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3219   if( p->aMem ){
3220     for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3221   }
3222 #endif
3223   sqlite3DbFree(db, p->zErrMsg);
3224   p->zErrMsg = 0;
3225   p->pResultSet = 0;
3226 #ifdef SQLITE_DEBUG
3227   p->nWrite = 0;
3228 #endif
3229 
3230   /* Save profiling information from this VDBE run.
3231   */
3232 #ifdef VDBE_PROFILE
3233   {
3234     FILE *out = fopen("vdbe_profile.out", "a");
3235     if( out ){
3236       fprintf(out, "---- ");
3237       for(i=0; i<p->nOp; i++){
3238         fprintf(out, "%02x", p->aOp[i].opcode);
3239       }
3240       fprintf(out, "\n");
3241       if( p->zSql ){
3242         char c, pc = 0;
3243         fprintf(out, "-- ");
3244         for(i=0; (c = p->zSql[i])!=0; i++){
3245           if( pc=='\n' ) fprintf(out, "-- ");
3246           putc(c, out);
3247           pc = c;
3248         }
3249         if( pc!='\n' ) fprintf(out, "\n");
3250       }
3251       for(i=0; i<p->nOp; i++){
3252         char zHdr[100];
3253         sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3254            p->aOp[i].cnt,
3255            p->aOp[i].cycles,
3256            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
3257         );
3258         fprintf(out, "%s", zHdr);
3259         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3260       }
3261       fclose(out);
3262     }
3263   }
3264 #endif
3265   p->magic = VDBE_MAGIC_RESET;
3266   return p->rc & db->errMask;
3267 }
3268 
3269 /*
3270 ** Clean up and delete a VDBE after execution.  Return an integer which is
3271 ** the result code.  Write any error message text into *pzErrMsg.
3272 */
3273 int sqlite3VdbeFinalize(Vdbe *p){
3274   int rc = SQLITE_OK;
3275   if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
3276     rc = sqlite3VdbeReset(p);
3277     assert( (rc & p->db->errMask)==rc );
3278   }
3279   sqlite3VdbeDelete(p);
3280   return rc;
3281 }
3282 
3283 /*
3284 ** If parameter iOp is less than zero, then invoke the destructor for
3285 ** all auxiliary data pointers currently cached by the VM passed as
3286 ** the first argument.
3287 **
3288 ** Or, if iOp is greater than or equal to zero, then the destructor is
3289 ** only invoked for those auxiliary data pointers created by the user
3290 ** function invoked by the OP_Function opcode at instruction iOp of
3291 ** VM pVdbe, and only then if:
3292 **
3293 **    * the associated function parameter is the 32nd or later (counting
3294 **      from left to right), or
3295 **
3296 **    * the corresponding bit in argument mask is clear (where the first
3297 **      function parameter corresponds to bit 0 etc.).
3298 */
3299 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3300   while( *pp ){
3301     AuxData *pAux = *pp;
3302     if( (iOp<0)
3303      || (pAux->iAuxOp==iOp
3304           && pAux->iAuxArg>=0
3305           && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3306     ){
3307       testcase( pAux->iAuxArg==31 );
3308       if( pAux->xDeleteAux ){
3309         pAux->xDeleteAux(pAux->pAux);
3310       }
3311       *pp = pAux->pNextAux;
3312       sqlite3DbFree(db, pAux);
3313     }else{
3314       pp= &pAux->pNextAux;
3315     }
3316   }
3317 }
3318 
3319 /*
3320 ** Free all memory associated with the Vdbe passed as the second argument,
3321 ** except for object itself, which is preserved.
3322 **
3323 ** The difference between this function and sqlite3VdbeDelete() is that
3324 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3325 ** the database connection and frees the object itself.
3326 */
3327 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3328   SubProgram *pSub, *pNext;
3329   assert( p->db==0 || p->db==db );
3330   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3331   for(pSub=p->pProgram; pSub; pSub=pNext){
3332     pNext = pSub->pNext;
3333     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3334     sqlite3DbFree(db, pSub);
3335   }
3336   if( p->magic!=VDBE_MAGIC_INIT ){
3337     releaseMemArray(p->aVar, p->nVar);
3338     sqlite3DbFree(db, p->pVList);
3339     sqlite3DbFree(db, p->pFree);
3340   }
3341   vdbeFreeOpArray(db, p->aOp, p->nOp);
3342   sqlite3DbFree(db, p->aColName);
3343   sqlite3DbFree(db, p->zSql);
3344 #ifdef SQLITE_ENABLE_NORMALIZE
3345   sqlite3DbFree(db, p->zNormSql);
3346   {
3347     DblquoteStr *pThis, *pNext;
3348     for(pThis=p->pDblStr; pThis; pThis=pNext){
3349       pNext = pThis->pNextStr;
3350       sqlite3DbFree(db, pThis);
3351     }
3352   }
3353 #endif
3354 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3355   {
3356     int i;
3357     for(i=0; i<p->nScan; i++){
3358       sqlite3DbFree(db, p->aScan[i].zName);
3359     }
3360     sqlite3DbFree(db, p->aScan);
3361   }
3362 #endif
3363 }
3364 
3365 /*
3366 ** Delete an entire VDBE.
3367 */
3368 void sqlite3VdbeDelete(Vdbe *p){
3369   sqlite3 *db;
3370 
3371   assert( p!=0 );
3372   db = p->db;
3373   assert( sqlite3_mutex_held(db->mutex) );
3374   sqlite3VdbeClearObject(db, p);
3375   if( p->pPrev ){
3376     p->pPrev->pNext = p->pNext;
3377   }else{
3378     assert( db->pVdbe==p );
3379     db->pVdbe = p->pNext;
3380   }
3381   if( p->pNext ){
3382     p->pNext->pPrev = p->pPrev;
3383   }
3384   p->magic = VDBE_MAGIC_DEAD;
3385   p->db = 0;
3386   sqlite3DbFreeNN(db, p);
3387 }
3388 
3389 /*
3390 ** The cursor "p" has a pending seek operation that has not yet been
3391 ** carried out.  Seek the cursor now.  If an error occurs, return
3392 ** the appropriate error code.
3393 */
3394 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
3395   int res, rc;
3396 #ifdef SQLITE_TEST
3397   extern int sqlite3_search_count;
3398 #endif
3399   assert( p->deferredMoveto );
3400   assert( p->isTable );
3401   assert( p->eCurType==CURTYPE_BTREE );
3402   rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
3403   if( rc ) return rc;
3404   if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3405 #ifdef SQLITE_TEST
3406   sqlite3_search_count++;
3407 #endif
3408   p->deferredMoveto = 0;
3409   p->cacheStatus = CACHE_STALE;
3410   return SQLITE_OK;
3411 }
3412 
3413 /*
3414 ** Something has moved cursor "p" out of place.  Maybe the row it was
3415 ** pointed to was deleted out from under it.  Or maybe the btree was
3416 ** rebalanced.  Whatever the cause, try to restore "p" to the place it
3417 ** is supposed to be pointing.  If the row was deleted out from under the
3418 ** cursor, set the cursor to point to a NULL row.
3419 */
3420 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3421   int isDifferentRow, rc;
3422   assert( p->eCurType==CURTYPE_BTREE );
3423   assert( p->uc.pCursor!=0 );
3424   assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3425   rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3426   p->cacheStatus = CACHE_STALE;
3427   if( isDifferentRow ) p->nullRow = 1;
3428   return rc;
3429 }
3430 
3431 /*
3432 ** Check to ensure that the cursor is valid.  Restore the cursor
3433 ** if need be.  Return any I/O error from the restore operation.
3434 */
3435 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3436   assert( p->eCurType==CURTYPE_BTREE );
3437   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3438     return handleMovedCursor(p);
3439   }
3440   return SQLITE_OK;
3441 }
3442 
3443 /*
3444 ** Make sure the cursor p is ready to read or write the row to which it
3445 ** was last positioned.  Return an error code if an OOM fault or I/O error
3446 ** prevents us from positioning the cursor to its correct position.
3447 **
3448 ** If a MoveTo operation is pending on the given cursor, then do that
3449 ** MoveTo now.  If no move is pending, check to see if the row has been
3450 ** deleted out from under the cursor and if it has, mark the row as
3451 ** a NULL row.
3452 **
3453 ** If the cursor is already pointing to the correct row and that row has
3454 ** not been deleted out from under the cursor, then this routine is a no-op.
3455 */
3456 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
3457   VdbeCursor *p = *pp;
3458   assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
3459   if( p->deferredMoveto ){
3460     int iMap;
3461     if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
3462       *pp = p->pAltCursor;
3463       *piCol = iMap - 1;
3464       return SQLITE_OK;
3465     }
3466     return handleDeferredMoveto(p);
3467   }
3468   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3469     return handleMovedCursor(p);
3470   }
3471   return SQLITE_OK;
3472 }
3473 
3474 /*
3475 ** The following functions:
3476 **
3477 ** sqlite3VdbeSerialType()
3478 ** sqlite3VdbeSerialTypeLen()
3479 ** sqlite3VdbeSerialLen()
3480 ** sqlite3VdbeSerialPut()
3481 ** sqlite3VdbeSerialGet()
3482 **
3483 ** encapsulate the code that serializes values for storage in SQLite
3484 ** data and index records. Each serialized value consists of a
3485 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3486 ** integer, stored as a varint.
3487 **
3488 ** In an SQLite index record, the serial type is stored directly before
3489 ** the blob of data that it corresponds to. In a table record, all serial
3490 ** types are stored at the start of the record, and the blobs of data at
3491 ** the end. Hence these functions allow the caller to handle the
3492 ** serial-type and data blob separately.
3493 **
3494 ** The following table describes the various storage classes for data:
3495 **
3496 **   serial type        bytes of data      type
3497 **   --------------     ---------------    ---------------
3498 **      0                     0            NULL
3499 **      1                     1            signed integer
3500 **      2                     2            signed integer
3501 **      3                     3            signed integer
3502 **      4                     4            signed integer
3503 **      5                     6            signed integer
3504 **      6                     8            signed integer
3505 **      7                     8            IEEE float
3506 **      8                     0            Integer constant 0
3507 **      9                     0            Integer constant 1
3508 **     10,11                               reserved for expansion
3509 **    N>=12 and even       (N-12)/2        BLOB
3510 **    N>=13 and odd        (N-13)/2        text
3511 **
3512 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
3513 ** of SQLite will not understand those serial types.
3514 */
3515 
3516 #if 0 /* Inlined into the OP_MakeRecord opcode */
3517 /*
3518 ** Return the serial-type for the value stored in pMem.
3519 **
3520 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3521 **
3522 ** 2019-07-11:  The primary user of this subroutine was the OP_MakeRecord
3523 ** opcode in the byte-code engine.  But by moving this routine in-line, we
3524 ** can omit some redundant tests and make that opcode a lot faster.  So
3525 ** this routine is now only used by the STAT3 logic and STAT3 support has
3526 ** ended.  The code is kept here for historical reference only.
3527 */
3528 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3529   int flags = pMem->flags;
3530   u32 n;
3531 
3532   assert( pLen!=0 );
3533   if( flags&MEM_Null ){
3534     *pLen = 0;
3535     return 0;
3536   }
3537   if( flags&(MEM_Int|MEM_IntReal) ){
3538     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3539 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3540     i64 i = pMem->u.i;
3541     u64 u;
3542     testcase( flags & MEM_Int );
3543     testcase( flags & MEM_IntReal );
3544     if( i<0 ){
3545       u = ~i;
3546     }else{
3547       u = i;
3548     }
3549     if( u<=127 ){
3550       if( (i&1)==i && file_format>=4 ){
3551         *pLen = 0;
3552         return 8+(u32)u;
3553       }else{
3554         *pLen = 1;
3555         return 1;
3556       }
3557     }
3558     if( u<=32767 ){ *pLen = 2; return 2; }
3559     if( u<=8388607 ){ *pLen = 3; return 3; }
3560     if( u<=2147483647 ){ *pLen = 4; return 4; }
3561     if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3562     *pLen = 8;
3563     if( flags&MEM_IntReal ){
3564       /* If the value is IntReal and is going to take up 8 bytes to store
3565       ** as an integer, then we might as well make it an 8-byte floating
3566       ** point value */
3567       pMem->u.r = (double)pMem->u.i;
3568       pMem->flags &= ~MEM_IntReal;
3569       pMem->flags |= MEM_Real;
3570       return 7;
3571     }
3572     return 6;
3573   }
3574   if( flags&MEM_Real ){
3575     *pLen = 8;
3576     return 7;
3577   }
3578   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3579   assert( pMem->n>=0 );
3580   n = (u32)pMem->n;
3581   if( flags & MEM_Zero ){
3582     n += pMem->u.nZero;
3583   }
3584   *pLen = n;
3585   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3586 }
3587 #endif /* inlined into OP_MakeRecord */
3588 
3589 /*
3590 ** The sizes for serial types less than 128
3591 */
3592 static const u8 sqlite3SmallTypeSizes[] = {
3593         /*  0   1   2   3   4   5   6   7   8   9 */
3594 /*   0 */   0,  1,  2,  3,  4,  6,  8,  8,  0,  0,
3595 /*  10 */   0,  0,  0,  0,  1,  1,  2,  2,  3,  3,
3596 /*  20 */   4,  4,  5,  5,  6,  6,  7,  7,  8,  8,
3597 /*  30 */   9,  9, 10, 10, 11, 11, 12, 12, 13, 13,
3598 /*  40 */  14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3599 /*  50 */  19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3600 /*  60 */  24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3601 /*  70 */  29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3602 /*  80 */  34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3603 /*  90 */  39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3604 /* 100 */  44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3605 /* 110 */  49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3606 /* 120 */  54, 54, 55, 55, 56, 56, 57, 57
3607 };
3608 
3609 /*
3610 ** Return the length of the data corresponding to the supplied serial-type.
3611 */
3612 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3613   if( serial_type>=128 ){
3614     return (serial_type-12)/2;
3615   }else{
3616     assert( serial_type<12
3617             || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3618     return sqlite3SmallTypeSizes[serial_type];
3619   }
3620 }
3621 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3622   assert( serial_type<128 );
3623   return sqlite3SmallTypeSizes[serial_type];
3624 }
3625 
3626 /*
3627 ** If we are on an architecture with mixed-endian floating
3628 ** points (ex: ARM7) then swap the lower 4 bytes with the
3629 ** upper 4 bytes.  Return the result.
3630 **
3631 ** For most architectures, this is a no-op.
3632 **
3633 ** (later):  It is reported to me that the mixed-endian problem
3634 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
3635 ** that early versions of GCC stored the two words of a 64-bit
3636 ** float in the wrong order.  And that error has been propagated
3637 ** ever since.  The blame is not necessarily with GCC, though.
3638 ** GCC might have just copying the problem from a prior compiler.
3639 ** I am also told that newer versions of GCC that follow a different
3640 ** ABI get the byte order right.
3641 **
3642 ** Developers using SQLite on an ARM7 should compile and run their
3643 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
3644 ** enabled, some asserts below will ensure that the byte order of
3645 ** floating point values is correct.
3646 **
3647 ** (2007-08-30)  Frank van Vugt has studied this problem closely
3648 ** and has send his findings to the SQLite developers.  Frank
3649 ** writes that some Linux kernels offer floating point hardware
3650 ** emulation that uses only 32-bit mantissas instead of a full
3651 ** 48-bits as required by the IEEE standard.  (This is the
3652 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
3653 ** byte swapping becomes very complicated.  To avoid problems,
3654 ** the necessary byte swapping is carried out using a 64-bit integer
3655 ** rather than a 64-bit float.  Frank assures us that the code here
3656 ** works for him.  We, the developers, have no way to independently
3657 ** verify this, but Frank seems to know what he is talking about
3658 ** so we trust him.
3659 */
3660 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3661 static u64 floatSwap(u64 in){
3662   union {
3663     u64 r;
3664     u32 i[2];
3665   } u;
3666   u32 t;
3667 
3668   u.r = in;
3669   t = u.i[0];
3670   u.i[0] = u.i[1];
3671   u.i[1] = t;
3672   return u.r;
3673 }
3674 # define swapMixedEndianFloat(X)  X = floatSwap(X)
3675 #else
3676 # define swapMixedEndianFloat(X)
3677 #endif
3678 
3679 /*
3680 ** Write the serialized data blob for the value stored in pMem into
3681 ** buf. It is assumed that the caller has allocated sufficient space.
3682 ** Return the number of bytes written.
3683 **
3684 ** nBuf is the amount of space left in buf[].  The caller is responsible
3685 ** for allocating enough space to buf[] to hold the entire field, exclusive
3686 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3687 **
3688 ** Return the number of bytes actually written into buf[].  The number
3689 ** of bytes in the zero-filled tail is included in the return value only
3690 ** if those bytes were zeroed in buf[].
3691 */
3692 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3693   u32 len;
3694 
3695   /* Integer and Real */
3696   if( serial_type<=7 && serial_type>0 ){
3697     u64 v;
3698     u32 i;
3699     if( serial_type==7 ){
3700       assert( sizeof(v)==sizeof(pMem->u.r) );
3701       memcpy(&v, &pMem->u.r, sizeof(v));
3702       swapMixedEndianFloat(v);
3703     }else{
3704       v = pMem->u.i;
3705     }
3706     len = i = sqlite3SmallTypeSizes[serial_type];
3707     assert( i>0 );
3708     do{
3709       buf[--i] = (u8)(v&0xFF);
3710       v >>= 8;
3711     }while( i );
3712     return len;
3713   }
3714 
3715   /* String or blob */
3716   if( serial_type>=12 ){
3717     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3718              == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3719     len = pMem->n;
3720     if( len>0 ) memcpy(buf, pMem->z, len);
3721     return len;
3722   }
3723 
3724   /* NULL or constants 0 or 1 */
3725   return 0;
3726 }
3727 
3728 /* Input "x" is a sequence of unsigned characters that represent a
3729 ** big-endian integer.  Return the equivalent native integer
3730 */
3731 #define ONE_BYTE_INT(x)    ((i8)(x)[0])
3732 #define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
3733 #define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3734 #define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3735 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3736 
3737 /*
3738 ** Deserialize the data blob pointed to by buf as serial type serial_type
3739 ** and store the result in pMem.  Return the number of bytes read.
3740 **
3741 ** This function is implemented as two separate routines for performance.
3742 ** The few cases that require local variables are broken out into a separate
3743 ** routine so that in most cases the overhead of moving the stack pointer
3744 ** is avoided.
3745 */
3746 static u32 serialGet(
3747   const unsigned char *buf,     /* Buffer to deserialize from */
3748   u32 serial_type,              /* Serial type to deserialize */
3749   Mem *pMem                     /* Memory cell to write value into */
3750 ){
3751   u64 x = FOUR_BYTE_UINT(buf);
3752   u32 y = FOUR_BYTE_UINT(buf+4);
3753   x = (x<<32) + y;
3754   if( serial_type==6 ){
3755     /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3756     ** twos-complement integer. */
3757     pMem->u.i = *(i64*)&x;
3758     pMem->flags = MEM_Int;
3759     testcase( pMem->u.i<0 );
3760   }else{
3761     /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3762     ** floating point number. */
3763 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3764     /* Verify that integers and floating point values use the same
3765     ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3766     ** defined that 64-bit floating point values really are mixed
3767     ** endian.
3768     */
3769     static const u64 t1 = ((u64)0x3ff00000)<<32;
3770     static const double r1 = 1.0;
3771     u64 t2 = t1;
3772     swapMixedEndianFloat(t2);
3773     assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3774 #endif
3775     assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3776     swapMixedEndianFloat(x);
3777     memcpy(&pMem->u.r, &x, sizeof(x));
3778     pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
3779   }
3780   return 8;
3781 }
3782 u32 sqlite3VdbeSerialGet(
3783   const unsigned char *buf,     /* Buffer to deserialize from */
3784   u32 serial_type,              /* Serial type to deserialize */
3785   Mem *pMem                     /* Memory cell to write value into */
3786 ){
3787   switch( serial_type ){
3788     case 10: { /* Internal use only: NULL with virtual table
3789                ** UPDATE no-change flag set */
3790       pMem->flags = MEM_Null|MEM_Zero;
3791       pMem->n = 0;
3792       pMem->u.nZero = 0;
3793       break;
3794     }
3795     case 11:   /* Reserved for future use */
3796     case 0: {  /* Null */
3797       /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3798       pMem->flags = MEM_Null;
3799       break;
3800     }
3801     case 1: {
3802       /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3803       ** integer. */
3804       pMem->u.i = ONE_BYTE_INT(buf);
3805       pMem->flags = MEM_Int;
3806       testcase( pMem->u.i<0 );
3807       return 1;
3808     }
3809     case 2: { /* 2-byte signed integer */
3810       /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3811       ** twos-complement integer. */
3812       pMem->u.i = TWO_BYTE_INT(buf);
3813       pMem->flags = MEM_Int;
3814       testcase( pMem->u.i<0 );
3815       return 2;
3816     }
3817     case 3: { /* 3-byte signed integer */
3818       /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3819       ** twos-complement integer. */
3820       pMem->u.i = THREE_BYTE_INT(buf);
3821       pMem->flags = MEM_Int;
3822       testcase( pMem->u.i<0 );
3823       return 3;
3824     }
3825     case 4: { /* 4-byte signed integer */
3826       /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3827       ** twos-complement integer. */
3828       pMem->u.i = FOUR_BYTE_INT(buf);
3829 #ifdef __HP_cc
3830       /* Work around a sign-extension bug in the HP compiler for HP/UX */
3831       if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3832 #endif
3833       pMem->flags = MEM_Int;
3834       testcase( pMem->u.i<0 );
3835       return 4;
3836     }
3837     case 5: { /* 6-byte signed integer */
3838       /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3839       ** twos-complement integer. */
3840       pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3841       pMem->flags = MEM_Int;
3842       testcase( pMem->u.i<0 );
3843       return 6;
3844     }
3845     case 6:   /* 8-byte signed integer */
3846     case 7: { /* IEEE floating point */
3847       /* These use local variables, so do them in a separate routine
3848       ** to avoid having to move the frame pointer in the common case */
3849       return serialGet(buf,serial_type,pMem);
3850     }
3851     case 8:    /* Integer 0 */
3852     case 9: {  /* Integer 1 */
3853       /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3854       /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3855       pMem->u.i = serial_type-8;
3856       pMem->flags = MEM_Int;
3857       return 0;
3858     }
3859     default: {
3860       /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3861       ** length.
3862       ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3863       ** (N-13)/2 bytes in length. */
3864       static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3865       pMem->z = (char *)buf;
3866       pMem->n = (serial_type-12)/2;
3867       pMem->flags = aFlag[serial_type&1];
3868       return pMem->n;
3869     }
3870   }
3871   return 0;
3872 }
3873 /*
3874 ** This routine is used to allocate sufficient space for an UnpackedRecord
3875 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3876 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3877 **
3878 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3879 ** the unaligned buffer passed via the second and third arguments (presumably
3880 ** stack space). If the former, then *ppFree is set to a pointer that should
3881 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3882 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3883 ** before returning.
3884 **
3885 ** If an OOM error occurs, NULL is returned.
3886 */
3887 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3888   KeyInfo *pKeyInfo               /* Description of the record */
3889 ){
3890   UnpackedRecord *p;              /* Unpacked record to return */
3891   int nByte;                      /* Number of bytes required for *p */
3892   nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
3893   p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3894   if( !p ) return 0;
3895   p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3896   assert( pKeyInfo->aSortFlags!=0 );
3897   p->pKeyInfo = pKeyInfo;
3898   p->nField = pKeyInfo->nKeyField + 1;
3899   return p;
3900 }
3901 
3902 /*
3903 ** Given the nKey-byte encoding of a record in pKey[], populate the
3904 ** UnpackedRecord structure indicated by the fourth argument with the
3905 ** contents of the decoded record.
3906 */
3907 void sqlite3VdbeRecordUnpack(
3908   KeyInfo *pKeyInfo,     /* Information about the record format */
3909   int nKey,              /* Size of the binary record */
3910   const void *pKey,      /* The binary record */
3911   UnpackedRecord *p      /* Populate this structure before returning. */
3912 ){
3913   const unsigned char *aKey = (const unsigned char *)pKey;
3914   u32 d;
3915   u32 idx;                        /* Offset in aKey[] to read from */
3916   u16 u;                          /* Unsigned loop counter */
3917   u32 szHdr;
3918   Mem *pMem = p->aMem;
3919 
3920   p->default_rc = 0;
3921   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
3922   idx = getVarint32(aKey, szHdr);
3923   d = szHdr;
3924   u = 0;
3925   while( idx<szHdr && d<=(u32)nKey ){
3926     u32 serial_type;
3927 
3928     idx += getVarint32(&aKey[idx], serial_type);
3929     pMem->enc = pKeyInfo->enc;
3930     pMem->db = pKeyInfo->db;
3931     /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
3932     pMem->szMalloc = 0;
3933     pMem->z = 0;
3934     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
3935     pMem++;
3936     if( (++u)>=p->nField ) break;
3937   }
3938   if( d>(u32)nKey && u ){
3939     assert( CORRUPT_DB );
3940     /* In a corrupt record entry, the last pMem might have been set up using
3941     ** uninitialized memory. Overwrite its value with NULL, to prevent
3942     ** warnings from MSAN. */
3943     sqlite3VdbeMemSetNull(pMem-1);
3944   }
3945   assert( u<=pKeyInfo->nKeyField + 1 );
3946   p->nField = u;
3947 }
3948 
3949 #ifdef SQLITE_DEBUG
3950 /*
3951 ** This function compares two index or table record keys in the same way
3952 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3953 ** this function deserializes and compares values using the
3954 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3955 ** in assert() statements to ensure that the optimized code in
3956 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
3957 **
3958 ** Return true if the result of comparison is equivalent to desiredResult.
3959 ** Return false if there is a disagreement.
3960 */
3961 static int vdbeRecordCompareDebug(
3962   int nKey1, const void *pKey1, /* Left key */
3963   const UnpackedRecord *pPKey2, /* Right key */
3964   int desiredResult             /* Correct answer */
3965 ){
3966   u32 d1;            /* Offset into aKey[] of next data element */
3967   u32 idx1;          /* Offset into aKey[] of next header element */
3968   u32 szHdr1;        /* Number of bytes in header */
3969   int i = 0;
3970   int rc = 0;
3971   const unsigned char *aKey1 = (const unsigned char *)pKey1;
3972   KeyInfo *pKeyInfo;
3973   Mem mem1;
3974 
3975   pKeyInfo = pPKey2->pKeyInfo;
3976   if( pKeyInfo->db==0 ) return 1;
3977   mem1.enc = pKeyInfo->enc;
3978   mem1.db = pKeyInfo->db;
3979   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
3980   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3981 
3982   /* Compilers may complain that mem1.u.i is potentially uninitialized.
3983   ** We could initialize it, as shown here, to silence those complaints.
3984   ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
3985   ** the unnecessary initialization has a measurable negative performance
3986   ** impact, since this routine is a very high runner.  And so, we choose
3987   ** to ignore the compiler warnings and leave this variable uninitialized.
3988   */
3989   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
3990 
3991   idx1 = getVarint32(aKey1, szHdr1);
3992   if( szHdr1>98307 ) return SQLITE_CORRUPT;
3993   d1 = szHdr1;
3994   assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
3995   assert( pKeyInfo->aSortFlags!=0 );
3996   assert( pKeyInfo->nKeyField>0 );
3997   assert( idx1<=szHdr1 || CORRUPT_DB );
3998   do{
3999     u32 serial_type1;
4000 
4001     /* Read the serial types for the next element in each key. */
4002     idx1 += getVarint32( aKey1+idx1, serial_type1 );
4003 
4004     /* Verify that there is enough key space remaining to avoid
4005     ** a buffer overread.  The "d1+serial_type1+2" subexpression will
4006     ** always be greater than or equal to the amount of required key space.
4007     ** Use that approximation to avoid the more expensive call to
4008     ** sqlite3VdbeSerialTypeLen() in the common case.
4009     */
4010     if( d1+(u64)serial_type1+2>(u64)nKey1
4011      && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4012     ){
4013       break;
4014     }
4015 
4016     /* Extract the values to be compared.
4017     */
4018     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4019 
4020     /* Do the comparison
4021     */
4022     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4023                            pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4024     if( rc!=0 ){
4025       assert( mem1.szMalloc==0 );  /* See comment below */
4026       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4027        && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4028       ){
4029         rc = -rc;
4030       }
4031       if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4032         rc = -rc;  /* Invert the result for DESC sort order. */
4033       }
4034       goto debugCompareEnd;
4035     }
4036     i++;
4037   }while( idx1<szHdr1 && i<pPKey2->nField );
4038 
4039   /* No memory allocation is ever used on mem1.  Prove this using
4040   ** the following assert().  If the assert() fails, it indicates a
4041   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4042   */
4043   assert( mem1.szMalloc==0 );
4044 
4045   /* rc==0 here means that one of the keys ran out of fields and
4046   ** all the fields up to that point were equal. Return the default_rc
4047   ** value.  */
4048   rc = pPKey2->default_rc;
4049 
4050 debugCompareEnd:
4051   if( desiredResult==0 && rc==0 ) return 1;
4052   if( desiredResult<0 && rc<0 ) return 1;
4053   if( desiredResult>0 && rc>0 ) return 1;
4054   if( CORRUPT_DB ) return 1;
4055   if( pKeyInfo->db->mallocFailed ) return 1;
4056   return 0;
4057 }
4058 #endif
4059 
4060 #ifdef SQLITE_DEBUG
4061 /*
4062 ** Count the number of fields (a.k.a. columns) in the record given by
4063 ** pKey,nKey.  The verify that this count is less than or equal to the
4064 ** limit given by pKeyInfo->nAllField.
4065 **
4066 ** If this constraint is not satisfied, it means that the high-speed
4067 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4068 ** not work correctly.  If this assert() ever fires, it probably means
4069 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4070 ** incorrectly.
4071 */
4072 static void vdbeAssertFieldCountWithinLimits(
4073   int nKey, const void *pKey,   /* The record to verify */
4074   const KeyInfo *pKeyInfo       /* Compare size with this KeyInfo */
4075 ){
4076   int nField = 0;
4077   u32 szHdr;
4078   u32 idx;
4079   u32 notUsed;
4080   const unsigned char *aKey = (const unsigned char*)pKey;
4081 
4082   if( CORRUPT_DB ) return;
4083   idx = getVarint32(aKey, szHdr);
4084   assert( nKey>=0 );
4085   assert( szHdr<=(u32)nKey );
4086   while( idx<szHdr ){
4087     idx += getVarint32(aKey+idx, notUsed);
4088     nField++;
4089   }
4090   assert( nField <= pKeyInfo->nAllField );
4091 }
4092 #else
4093 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4094 #endif
4095 
4096 /*
4097 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4098 ** using the collation sequence pColl. As usual, return a negative , zero
4099 ** or positive value if *pMem1 is less than, equal to or greater than
4100 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4101 */
4102 static int vdbeCompareMemString(
4103   const Mem *pMem1,
4104   const Mem *pMem2,
4105   const CollSeq *pColl,
4106   u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */
4107 ){
4108   if( pMem1->enc==pColl->enc ){
4109     /* The strings are already in the correct encoding.  Call the
4110      ** comparison function directly */
4111     return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4112   }else{
4113     int rc;
4114     const void *v1, *v2;
4115     Mem c1;
4116     Mem c2;
4117     sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4118     sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4119     sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4120     sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4121     v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4122     v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4123     if( (v1==0 || v2==0) ){
4124       if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4125       rc = 0;
4126     }else{
4127       rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4128     }
4129     sqlite3VdbeMemRelease(&c1);
4130     sqlite3VdbeMemRelease(&c2);
4131     return rc;
4132   }
4133 }
4134 
4135 /*
4136 ** The input pBlob is guaranteed to be a Blob that is not marked
4137 ** with MEM_Zero.  Return true if it could be a zero-blob.
4138 */
4139 static int isAllZero(const char *z, int n){
4140   int i;
4141   for(i=0; i<n; i++){
4142     if( z[i] ) return 0;
4143   }
4144   return 1;
4145 }
4146 
4147 /*
4148 ** Compare two blobs.  Return negative, zero, or positive if the first
4149 ** is less than, equal to, or greater than the second, respectively.
4150 ** If one blob is a prefix of the other, then the shorter is the lessor.
4151 */
4152 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4153   int c;
4154   int n1 = pB1->n;
4155   int n2 = pB2->n;
4156 
4157   /* It is possible to have a Blob value that has some non-zero content
4158   ** followed by zero content.  But that only comes up for Blobs formed
4159   ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4160   ** sqlite3MemCompare(). */
4161   assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4162   assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4163 
4164   if( (pB1->flags|pB2->flags) & MEM_Zero ){
4165     if( pB1->flags & pB2->flags & MEM_Zero ){
4166       return pB1->u.nZero - pB2->u.nZero;
4167     }else if( pB1->flags & MEM_Zero ){
4168       if( !isAllZero(pB2->z, pB2->n) ) return -1;
4169       return pB1->u.nZero - n2;
4170     }else{
4171       if( !isAllZero(pB1->z, pB1->n) ) return +1;
4172       return n1 - pB2->u.nZero;
4173     }
4174   }
4175   c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4176   if( c ) return c;
4177   return n1 - n2;
4178 }
4179 
4180 /*
4181 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4182 ** number.  Return negative, zero, or positive if the first (i64) is less than,
4183 ** equal to, or greater than the second (double).
4184 */
4185 static int sqlite3IntFloatCompare(i64 i, double r){
4186   if( sizeof(LONGDOUBLE_TYPE)>8 ){
4187     LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4188     if( x<r ) return -1;
4189     if( x>r ) return +1;
4190     return 0;
4191   }else{
4192     i64 y;
4193     double s;
4194     if( r<-9223372036854775808.0 ) return +1;
4195     if( r>=9223372036854775808.0 ) return -1;
4196     y = (i64)r;
4197     if( i<y ) return -1;
4198     if( i>y ) return +1;
4199     s = (double)i;
4200     if( s<r ) return -1;
4201     if( s>r ) return +1;
4202     return 0;
4203   }
4204 }
4205 
4206 /*
4207 ** Compare the values contained by the two memory cells, returning
4208 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4209 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4210 ** and reals) sorted numerically, followed by text ordered by the collating
4211 ** sequence pColl and finally blob's ordered by memcmp().
4212 **
4213 ** Two NULL values are considered equal by this function.
4214 */
4215 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4216   int f1, f2;
4217   int combined_flags;
4218 
4219   f1 = pMem1->flags;
4220   f2 = pMem2->flags;
4221   combined_flags = f1|f2;
4222   assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4223 
4224   /* If one value is NULL, it is less than the other. If both values
4225   ** are NULL, return 0.
4226   */
4227   if( combined_flags&MEM_Null ){
4228     return (f2&MEM_Null) - (f1&MEM_Null);
4229   }
4230 
4231   /* At least one of the two values is a number
4232   */
4233   if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4234     testcase( combined_flags & MEM_Int );
4235     testcase( combined_flags & MEM_Real );
4236     testcase( combined_flags & MEM_IntReal );
4237     if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4238       testcase( f1 & f2 & MEM_Int );
4239       testcase( f1 & f2 & MEM_IntReal );
4240       if( pMem1->u.i < pMem2->u.i ) return -1;
4241       if( pMem1->u.i > pMem2->u.i ) return +1;
4242       return 0;
4243     }
4244     if( (f1 & f2 & MEM_Real)!=0 ){
4245       if( pMem1->u.r < pMem2->u.r ) return -1;
4246       if( pMem1->u.r > pMem2->u.r ) return +1;
4247       return 0;
4248     }
4249     if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4250       testcase( f1 & MEM_Int );
4251       testcase( f1 & MEM_IntReal );
4252       if( (f2&MEM_Real)!=0 ){
4253         return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4254       }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4255         if( pMem1->u.i < pMem2->u.i ) return -1;
4256         if( pMem1->u.i > pMem2->u.i ) return +1;
4257         return 0;
4258       }else{
4259         return -1;
4260       }
4261     }
4262     if( (f1&MEM_Real)!=0 ){
4263       if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4264         testcase( f2 & MEM_Int );
4265         testcase( f2 & MEM_IntReal );
4266         return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4267       }else{
4268         return -1;
4269       }
4270     }
4271     return +1;
4272   }
4273 
4274   /* If one value is a string and the other is a blob, the string is less.
4275   ** If both are strings, compare using the collating functions.
4276   */
4277   if( combined_flags&MEM_Str ){
4278     if( (f1 & MEM_Str)==0 ){
4279       return 1;
4280     }
4281     if( (f2 & MEM_Str)==0 ){
4282       return -1;
4283     }
4284 
4285     assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4286     assert( pMem1->enc==SQLITE_UTF8 ||
4287             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4288 
4289     /* The collation sequence must be defined at this point, even if
4290     ** the user deletes the collation sequence after the vdbe program is
4291     ** compiled (this was not always the case).
4292     */
4293     assert( !pColl || pColl->xCmp );
4294 
4295     if( pColl ){
4296       return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4297     }
4298     /* If a NULL pointer was passed as the collate function, fall through
4299     ** to the blob case and use memcmp().  */
4300   }
4301 
4302   /* Both values must be blobs.  Compare using memcmp().  */
4303   return sqlite3BlobCompare(pMem1, pMem2);
4304 }
4305 
4306 
4307 /*
4308 ** The first argument passed to this function is a serial-type that
4309 ** corresponds to an integer - all values between 1 and 9 inclusive
4310 ** except 7. The second points to a buffer containing an integer value
4311 ** serialized according to serial_type. This function deserializes
4312 ** and returns the value.
4313 */
4314 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4315   u32 y;
4316   assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4317   switch( serial_type ){
4318     case 0:
4319     case 1:
4320       testcase( aKey[0]&0x80 );
4321       return ONE_BYTE_INT(aKey);
4322     case 2:
4323       testcase( aKey[0]&0x80 );
4324       return TWO_BYTE_INT(aKey);
4325     case 3:
4326       testcase( aKey[0]&0x80 );
4327       return THREE_BYTE_INT(aKey);
4328     case 4: {
4329       testcase( aKey[0]&0x80 );
4330       y = FOUR_BYTE_UINT(aKey);
4331       return (i64)*(int*)&y;
4332     }
4333     case 5: {
4334       testcase( aKey[0]&0x80 );
4335       return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4336     }
4337     case 6: {
4338       u64 x = FOUR_BYTE_UINT(aKey);
4339       testcase( aKey[0]&0x80 );
4340       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4341       return (i64)*(i64*)&x;
4342     }
4343   }
4344 
4345   return (serial_type - 8);
4346 }
4347 
4348 /*
4349 ** This function compares the two table rows or index records
4350 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
4351 ** or positive integer if key1 is less than, equal to or
4352 ** greater than key2.  The {nKey1, pKey1} key must be a blob
4353 ** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2
4354 ** key must be a parsed key such as obtained from
4355 ** sqlite3VdbeParseRecord.
4356 **
4357 ** If argument bSkip is non-zero, it is assumed that the caller has already
4358 ** determined that the first fields of the keys are equal.
4359 **
4360 ** Key1 and Key2 do not have to contain the same number of fields. If all
4361 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4362 ** returned.
4363 **
4364 ** If database corruption is discovered, set pPKey2->errCode to
4365 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4366 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4367 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4368 */
4369 int sqlite3VdbeRecordCompareWithSkip(
4370   int nKey1, const void *pKey1,   /* Left key */
4371   UnpackedRecord *pPKey2,         /* Right key */
4372   int bSkip                       /* If true, skip the first field */
4373 ){
4374   u32 d1;                         /* Offset into aKey[] of next data element */
4375   int i;                          /* Index of next field to compare */
4376   u32 szHdr1;                     /* Size of record header in bytes */
4377   u32 idx1;                       /* Offset of first type in header */
4378   int rc = 0;                     /* Return value */
4379   Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
4380   KeyInfo *pKeyInfo;
4381   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4382   Mem mem1;
4383 
4384   /* If bSkip is true, then the caller has already determined that the first
4385   ** two elements in the keys are equal. Fix the various stack variables so
4386   ** that this routine begins comparing at the second field. */
4387   if( bSkip ){
4388     u32 s1;
4389     idx1 = 1 + getVarint32(&aKey1[1], s1);
4390     szHdr1 = aKey1[0];
4391     d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4392     i = 1;
4393     pRhs++;
4394   }else{
4395     idx1 = getVarint32(aKey1, szHdr1);
4396     d1 = szHdr1;
4397     i = 0;
4398   }
4399   if( d1>(unsigned)nKey1 ){
4400     pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4401     return 0;  /* Corruption */
4402   }
4403 
4404   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4405   assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4406        || CORRUPT_DB );
4407   assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4408   assert( pPKey2->pKeyInfo->nKeyField>0 );
4409   assert( idx1<=szHdr1 || CORRUPT_DB );
4410   do{
4411     u32 serial_type;
4412 
4413     /* RHS is an integer */
4414     if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4415       testcase( pRhs->flags & MEM_Int );
4416       testcase( pRhs->flags & MEM_IntReal );
4417       serial_type = aKey1[idx1];
4418       testcase( serial_type==12 );
4419       if( serial_type>=10 ){
4420         rc = +1;
4421       }else if( serial_type==0 ){
4422         rc = -1;
4423       }else if( serial_type==7 ){
4424         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4425         rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4426       }else{
4427         i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4428         i64 rhs = pRhs->u.i;
4429         if( lhs<rhs ){
4430           rc = -1;
4431         }else if( lhs>rhs ){
4432           rc = +1;
4433         }
4434       }
4435     }
4436 
4437     /* RHS is real */
4438     else if( pRhs->flags & MEM_Real ){
4439       serial_type = aKey1[idx1];
4440       if( serial_type>=10 ){
4441         /* Serial types 12 or greater are strings and blobs (greater than
4442         ** numbers). Types 10 and 11 are currently "reserved for future
4443         ** use", so it doesn't really matter what the results of comparing
4444         ** them to numberic values are.  */
4445         rc = +1;
4446       }else if( serial_type==0 ){
4447         rc = -1;
4448       }else{
4449         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4450         if( serial_type==7 ){
4451           if( mem1.u.r<pRhs->u.r ){
4452             rc = -1;
4453           }else if( mem1.u.r>pRhs->u.r ){
4454             rc = +1;
4455           }
4456         }else{
4457           rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4458         }
4459       }
4460     }
4461 
4462     /* RHS is a string */
4463     else if( pRhs->flags & MEM_Str ){
4464       getVarint32(&aKey1[idx1], serial_type);
4465       testcase( serial_type==12 );
4466       if( serial_type<12 ){
4467         rc = -1;
4468       }else if( !(serial_type & 0x01) ){
4469         rc = +1;
4470       }else{
4471         mem1.n = (serial_type - 12) / 2;
4472         testcase( (d1+mem1.n)==(unsigned)nKey1 );
4473         testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4474         if( (d1+mem1.n) > (unsigned)nKey1
4475          || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4476         ){
4477           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4478           return 0;                /* Corruption */
4479         }else if( pKeyInfo->aColl[i] ){
4480           mem1.enc = pKeyInfo->enc;
4481           mem1.db = pKeyInfo->db;
4482           mem1.flags = MEM_Str;
4483           mem1.z = (char*)&aKey1[d1];
4484           rc = vdbeCompareMemString(
4485               &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4486           );
4487         }else{
4488           int nCmp = MIN(mem1.n, pRhs->n);
4489           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4490           if( rc==0 ) rc = mem1.n - pRhs->n;
4491         }
4492       }
4493     }
4494 
4495     /* RHS is a blob */
4496     else if( pRhs->flags & MEM_Blob ){
4497       assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4498       getVarint32(&aKey1[idx1], serial_type);
4499       testcase( serial_type==12 );
4500       if( serial_type<12 || (serial_type & 0x01) ){
4501         rc = -1;
4502       }else{
4503         int nStr = (serial_type - 12) / 2;
4504         testcase( (d1+nStr)==(unsigned)nKey1 );
4505         testcase( (d1+nStr+1)==(unsigned)nKey1 );
4506         if( (d1+nStr) > (unsigned)nKey1 ){
4507           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4508           return 0;                /* Corruption */
4509         }else if( pRhs->flags & MEM_Zero ){
4510           if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4511             rc = 1;
4512           }else{
4513             rc = nStr - pRhs->u.nZero;
4514           }
4515         }else{
4516           int nCmp = MIN(nStr, pRhs->n);
4517           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4518           if( rc==0 ) rc = nStr - pRhs->n;
4519         }
4520       }
4521     }
4522 
4523     /* RHS is null */
4524     else{
4525       serial_type = aKey1[idx1];
4526       rc = (serial_type!=0);
4527     }
4528 
4529     if( rc!=0 ){
4530       int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4531       if( sortFlags ){
4532         if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4533          || ((sortFlags & KEYINFO_ORDER_DESC)
4534            !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4535         ){
4536           rc = -rc;
4537         }
4538       }
4539       assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4540       assert( mem1.szMalloc==0 );  /* See comment below */
4541       return rc;
4542     }
4543 
4544     i++;
4545     if( i==pPKey2->nField ) break;
4546     pRhs++;
4547     d1 += sqlite3VdbeSerialTypeLen(serial_type);
4548     idx1 += sqlite3VarintLen(serial_type);
4549   }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 );
4550 
4551   /* No memory allocation is ever used on mem1.  Prove this using
4552   ** the following assert().  If the assert() fails, it indicates a
4553   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
4554   assert( mem1.szMalloc==0 );
4555 
4556   /* rc==0 here means that one or both of the keys ran out of fields and
4557   ** all the fields up to that point were equal. Return the default_rc
4558   ** value.  */
4559   assert( CORRUPT_DB
4560        || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4561        || pPKey2->pKeyInfo->db->mallocFailed
4562   );
4563   pPKey2->eqSeen = 1;
4564   return pPKey2->default_rc;
4565 }
4566 int sqlite3VdbeRecordCompare(
4567   int nKey1, const void *pKey1,   /* Left key */
4568   UnpackedRecord *pPKey2          /* Right key */
4569 ){
4570   return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4571 }
4572 
4573 
4574 /*
4575 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4576 ** that (a) the first field of pPKey2 is an integer, and (b) the
4577 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4578 ** byte (i.e. is less than 128).
4579 **
4580 ** To avoid concerns about buffer overreads, this routine is only used
4581 ** on schemas where the maximum valid header size is 63 bytes or less.
4582 */
4583 static int vdbeRecordCompareInt(
4584   int nKey1, const void *pKey1, /* Left key */
4585   UnpackedRecord *pPKey2        /* Right key */
4586 ){
4587   const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4588   int serial_type = ((const u8*)pKey1)[1];
4589   int res;
4590   u32 y;
4591   u64 x;
4592   i64 v;
4593   i64 lhs;
4594 
4595   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4596   assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4597   switch( serial_type ){
4598     case 1: { /* 1-byte signed integer */
4599       lhs = ONE_BYTE_INT(aKey);
4600       testcase( lhs<0 );
4601       break;
4602     }
4603     case 2: { /* 2-byte signed integer */
4604       lhs = TWO_BYTE_INT(aKey);
4605       testcase( lhs<0 );
4606       break;
4607     }
4608     case 3: { /* 3-byte signed integer */
4609       lhs = THREE_BYTE_INT(aKey);
4610       testcase( lhs<0 );
4611       break;
4612     }
4613     case 4: { /* 4-byte signed integer */
4614       y = FOUR_BYTE_UINT(aKey);
4615       lhs = (i64)*(int*)&y;
4616       testcase( lhs<0 );
4617       break;
4618     }
4619     case 5: { /* 6-byte signed integer */
4620       lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4621       testcase( lhs<0 );
4622       break;
4623     }
4624     case 6: { /* 8-byte signed integer */
4625       x = FOUR_BYTE_UINT(aKey);
4626       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4627       lhs = *(i64*)&x;
4628       testcase( lhs<0 );
4629       break;
4630     }
4631     case 8:
4632       lhs = 0;
4633       break;
4634     case 9:
4635       lhs = 1;
4636       break;
4637 
4638     /* This case could be removed without changing the results of running
4639     ** this code. Including it causes gcc to generate a faster switch
4640     ** statement (since the range of switch targets now starts at zero and
4641     ** is contiguous) but does not cause any duplicate code to be generated
4642     ** (as gcc is clever enough to combine the two like cases). Other
4643     ** compilers might be similar.  */
4644     case 0: case 7:
4645       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4646 
4647     default:
4648       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4649   }
4650 
4651   v = pPKey2->aMem[0].u.i;
4652   if( v>lhs ){
4653     res = pPKey2->r1;
4654   }else if( v<lhs ){
4655     res = pPKey2->r2;
4656   }else if( pPKey2->nField>1 ){
4657     /* The first fields of the two keys are equal. Compare the trailing
4658     ** fields.  */
4659     res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4660   }else{
4661     /* The first fields of the two keys are equal and there are no trailing
4662     ** fields. Return pPKey2->default_rc in this case. */
4663     res = pPKey2->default_rc;
4664     pPKey2->eqSeen = 1;
4665   }
4666 
4667   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4668   return res;
4669 }
4670 
4671 /*
4672 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4673 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4674 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4675 ** at the start of (pKey1/nKey1) fits in a single byte.
4676 */
4677 static int vdbeRecordCompareString(
4678   int nKey1, const void *pKey1, /* Left key */
4679   UnpackedRecord *pPKey2        /* Right key */
4680 ){
4681   const u8 *aKey1 = (const u8*)pKey1;
4682   int serial_type;
4683   int res;
4684 
4685   assert( pPKey2->aMem[0].flags & MEM_Str );
4686   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4687   getVarint32(&aKey1[1], serial_type);
4688   if( serial_type<12 ){
4689     res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
4690   }else if( !(serial_type & 0x01) ){
4691     res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
4692   }else{
4693     int nCmp;
4694     int nStr;
4695     int szHdr = aKey1[0];
4696 
4697     nStr = (serial_type-12) / 2;
4698     if( (szHdr + nStr) > nKey1 ){
4699       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4700       return 0;    /* Corruption */
4701     }
4702     nCmp = MIN( pPKey2->aMem[0].n, nStr );
4703     res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4704 
4705     if( res>0 ){
4706       res = pPKey2->r2;
4707     }else if( res<0 ){
4708       res = pPKey2->r1;
4709     }else{
4710       res = nStr - pPKey2->aMem[0].n;
4711       if( res==0 ){
4712         if( pPKey2->nField>1 ){
4713           res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4714         }else{
4715           res = pPKey2->default_rc;
4716           pPKey2->eqSeen = 1;
4717         }
4718       }else if( res>0 ){
4719         res = pPKey2->r2;
4720       }else{
4721         res = pPKey2->r1;
4722       }
4723     }
4724   }
4725 
4726   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4727        || CORRUPT_DB
4728        || pPKey2->pKeyInfo->db->mallocFailed
4729   );
4730   return res;
4731 }
4732 
4733 /*
4734 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4735 ** suitable for comparing serialized records to the unpacked record passed
4736 ** as the only argument.
4737 */
4738 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4739   /* varintRecordCompareInt() and varintRecordCompareString() both assume
4740   ** that the size-of-header varint that occurs at the start of each record
4741   ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4742   ** also assumes that it is safe to overread a buffer by at least the
4743   ** maximum possible legal header size plus 8 bytes. Because there is
4744   ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4745   ** buffer passed to varintRecordCompareInt() this makes it convenient to
4746   ** limit the size of the header to 64 bytes in cases where the first field
4747   ** is an integer.
4748   **
4749   ** The easiest way to enforce this limit is to consider only records with
4750   ** 13 fields or less. If the first field is an integer, the maximum legal
4751   ** header size is (12*5 + 1 + 1) bytes.  */
4752   if( p->pKeyInfo->nAllField<=13 ){
4753     int flags = p->aMem[0].flags;
4754     if( p->pKeyInfo->aSortFlags[0] ){
4755       if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
4756         return sqlite3VdbeRecordCompare;
4757       }
4758       p->r1 = 1;
4759       p->r2 = -1;
4760     }else{
4761       p->r1 = -1;
4762       p->r2 = 1;
4763     }
4764     if( (flags & MEM_Int) ){
4765       return vdbeRecordCompareInt;
4766     }
4767     testcase( flags & MEM_Real );
4768     testcase( flags & MEM_Null );
4769     testcase( flags & MEM_Blob );
4770     if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
4771      && p->pKeyInfo->aColl[0]==0
4772     ){
4773       assert( flags & MEM_Str );
4774       return vdbeRecordCompareString;
4775     }
4776   }
4777 
4778   return sqlite3VdbeRecordCompare;
4779 }
4780 
4781 /*
4782 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4783 ** Read the rowid (the last field in the record) and store it in *rowid.
4784 ** Return SQLITE_OK if everything works, or an error code otherwise.
4785 **
4786 ** pCur might be pointing to text obtained from a corrupt database file.
4787 ** So the content cannot be trusted.  Do appropriate checks on the content.
4788 */
4789 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4790   i64 nCellKey = 0;
4791   int rc;
4792   u32 szHdr;        /* Size of the header */
4793   u32 typeRowid;    /* Serial type of the rowid */
4794   u32 lenRowid;     /* Size of the rowid */
4795   Mem m, v;
4796 
4797   /* Get the size of the index entry.  Only indices entries of less
4798   ** than 2GiB are support - anything large must be database corruption.
4799   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4800   ** this code can safely assume that nCellKey is 32-bits
4801   */
4802   assert( sqlite3BtreeCursorIsValid(pCur) );
4803   nCellKey = sqlite3BtreePayloadSize(pCur);
4804   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4805 
4806   /* Read in the complete content of the index entry */
4807   sqlite3VdbeMemInit(&m, db, 0);
4808   rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4809   if( rc ){
4810     return rc;
4811   }
4812 
4813   /* The index entry must begin with a header size */
4814   (void)getVarint32((u8*)m.z, szHdr);
4815   testcase( szHdr==3 );
4816   testcase( szHdr==m.n );
4817   testcase( szHdr>0x7fffffff );
4818   assert( m.n>=0 );
4819   if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
4820     goto idx_rowid_corruption;
4821   }
4822 
4823   /* The last field of the index should be an integer - the ROWID.
4824   ** Verify that the last entry really is an integer. */
4825   (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
4826   testcase( typeRowid==1 );
4827   testcase( typeRowid==2 );
4828   testcase( typeRowid==3 );
4829   testcase( typeRowid==4 );
4830   testcase( typeRowid==5 );
4831   testcase( typeRowid==6 );
4832   testcase( typeRowid==8 );
4833   testcase( typeRowid==9 );
4834   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4835     goto idx_rowid_corruption;
4836   }
4837   lenRowid = sqlite3SmallTypeSizes[typeRowid];
4838   testcase( (u32)m.n==szHdr+lenRowid );
4839   if( unlikely((u32)m.n<szHdr+lenRowid) ){
4840     goto idx_rowid_corruption;
4841   }
4842 
4843   /* Fetch the integer off the end of the index record */
4844   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4845   *rowid = v.u.i;
4846   sqlite3VdbeMemRelease(&m);
4847   return SQLITE_OK;
4848 
4849   /* Jump here if database corruption is detected after m has been
4850   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
4851 idx_rowid_corruption:
4852   testcase( m.szMalloc!=0 );
4853   sqlite3VdbeMemRelease(&m);
4854   return SQLITE_CORRUPT_BKPT;
4855 }
4856 
4857 /*
4858 ** Compare the key of the index entry that cursor pC is pointing to against
4859 ** the key string in pUnpacked.  Write into *pRes a number
4860 ** that is negative, zero, or positive if pC is less than, equal to,
4861 ** or greater than pUnpacked.  Return SQLITE_OK on success.
4862 **
4863 ** pUnpacked is either created without a rowid or is truncated so that it
4864 ** omits the rowid at the end.  The rowid at the end of the index entry
4865 ** is ignored as well.  Hence, this routine only compares the prefixes
4866 ** of the keys prior to the final rowid, not the entire key.
4867 */
4868 int sqlite3VdbeIdxKeyCompare(
4869   sqlite3 *db,                     /* Database connection */
4870   VdbeCursor *pC,                  /* The cursor to compare against */
4871   UnpackedRecord *pUnpacked,       /* Unpacked version of key */
4872   int *res                         /* Write the comparison result here */
4873 ){
4874   i64 nCellKey = 0;
4875   int rc;
4876   BtCursor *pCur;
4877   Mem m;
4878 
4879   assert( pC->eCurType==CURTYPE_BTREE );
4880   pCur = pC->uc.pCursor;
4881   assert( sqlite3BtreeCursorIsValid(pCur) );
4882   nCellKey = sqlite3BtreePayloadSize(pCur);
4883   /* nCellKey will always be between 0 and 0xffffffff because of the way
4884   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4885   if( nCellKey<=0 || nCellKey>0x7fffffff ){
4886     *res = 0;
4887     return SQLITE_CORRUPT_BKPT;
4888   }
4889   sqlite3VdbeMemInit(&m, db, 0);
4890   rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4891   if( rc ){
4892     return rc;
4893   }
4894   *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
4895   sqlite3VdbeMemRelease(&m);
4896   return SQLITE_OK;
4897 }
4898 
4899 /*
4900 ** This routine sets the value to be returned by subsequent calls to
4901 ** sqlite3_changes() on the database handle 'db'.
4902 */
4903 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
4904   assert( sqlite3_mutex_held(db->mutex) );
4905   db->nChange = nChange;
4906   db->nTotalChange += nChange;
4907 }
4908 
4909 /*
4910 ** Set a flag in the vdbe to update the change counter when it is finalised
4911 ** or reset.
4912 */
4913 void sqlite3VdbeCountChanges(Vdbe *v){
4914   v->changeCntOn = 1;
4915 }
4916 
4917 /*
4918 ** Mark every prepared statement associated with a database connection
4919 ** as expired.
4920 **
4921 ** An expired statement means that recompilation of the statement is
4922 ** recommend.  Statements expire when things happen that make their
4923 ** programs obsolete.  Removing user-defined functions or collating
4924 ** sequences, or changing an authorization function are the types of
4925 ** things that make prepared statements obsolete.
4926 **
4927 ** If iCode is 1, then expiration is advisory.  The statement should
4928 ** be reprepared before being restarted, but if it is already running
4929 ** it is allowed to run to completion.
4930 **
4931 ** Internally, this function just sets the Vdbe.expired flag on all
4932 ** prepared statements.  The flag is set to 1 for an immediate expiration
4933 ** and set to 2 for an advisory expiration.
4934 */
4935 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
4936   Vdbe *p;
4937   for(p = db->pVdbe; p; p=p->pNext){
4938     p->expired = iCode+1;
4939   }
4940 }
4941 
4942 /*
4943 ** Return the database associated with the Vdbe.
4944 */
4945 sqlite3 *sqlite3VdbeDb(Vdbe *v){
4946   return v->db;
4947 }
4948 
4949 /*
4950 ** Return the SQLITE_PREPARE flags for a Vdbe.
4951 */
4952 u8 sqlite3VdbePrepareFlags(Vdbe *v){
4953   return v->prepFlags;
4954 }
4955 
4956 /*
4957 ** Return a pointer to an sqlite3_value structure containing the value bound
4958 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4959 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4960 ** constants) to the value before returning it.
4961 **
4962 ** The returned value must be freed by the caller using sqlite3ValueFree().
4963 */
4964 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
4965   assert( iVar>0 );
4966   if( v ){
4967     Mem *pMem = &v->aVar[iVar-1];
4968     assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
4969     if( 0==(pMem->flags & MEM_Null) ){
4970       sqlite3_value *pRet = sqlite3ValueNew(v->db);
4971       if( pRet ){
4972         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4973         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
4974       }
4975       return pRet;
4976     }
4977   }
4978   return 0;
4979 }
4980 
4981 /*
4982 ** Configure SQL variable iVar so that binding a new value to it signals
4983 ** to sqlite3_reoptimize() that re-preparing the statement may result
4984 ** in a better query plan.
4985 */
4986 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
4987   assert( iVar>0 );
4988   assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
4989   if( iVar>=32 ){
4990     v->expmask |= 0x80000000;
4991   }else{
4992     v->expmask |= ((u32)1 << (iVar-1));
4993   }
4994 }
4995 
4996 /*
4997 ** Cause a function to throw an error if it was call from OP_PureFunc
4998 ** rather than OP_Function.
4999 **
5000 ** OP_PureFunc means that the function must be deterministic, and should
5001 ** throw an error if it is given inputs that would make it non-deterministic.
5002 ** This routine is invoked by date/time functions that use non-deterministic
5003 ** features such as 'now'.
5004 */
5005 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5006   const VdbeOp *pOp;
5007 #ifdef SQLITE_ENABLE_STAT4
5008   if( pCtx->pVdbe==0 ) return 1;
5009 #endif
5010   pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5011   if( pOp->opcode==OP_PureFunc ){
5012     const char *zContext;
5013     char *zMsg;
5014     if( pOp->p5 & NC_IsCheck ){
5015       zContext = "a CHECK constraint";
5016     }else if( pOp->p5 & NC_GenCol ){
5017       zContext = "a generated column";
5018     }else{
5019       zContext = "an index";
5020     }
5021     zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5022                            pCtx->pFunc->zName, zContext);
5023     sqlite3_result_error(pCtx, zMsg, -1);
5024     sqlite3_free(zMsg);
5025     return 0;
5026   }
5027   return 1;
5028 }
5029 
5030 #ifndef SQLITE_OMIT_VIRTUALTABLE
5031 /*
5032 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5033 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5034 ** in memory obtained from sqlite3DbMalloc).
5035 */
5036 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5037   if( pVtab->zErrMsg ){
5038     sqlite3 *db = p->db;
5039     sqlite3DbFree(db, p->zErrMsg);
5040     p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5041     sqlite3_free(pVtab->zErrMsg);
5042     pVtab->zErrMsg = 0;
5043   }
5044 }
5045 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5046 
5047 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5048 
5049 /*
5050 ** If the second argument is not NULL, release any allocations associated
5051 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5052 ** structure itself, using sqlite3DbFree().
5053 **
5054 ** This function is used to free UnpackedRecord structures allocated by
5055 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5056 */
5057 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5058   if( p ){
5059     int i;
5060     for(i=0; i<nField; i++){
5061       Mem *pMem = &p->aMem[i];
5062       if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
5063     }
5064     sqlite3DbFreeNN(db, p);
5065   }
5066 }
5067 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5068 
5069 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5070 /*
5071 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5072 ** then cursor passed as the second argument should point to the row about
5073 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5074 ** the required value will be read from the row the cursor points to.
5075 */
5076 void sqlite3VdbePreUpdateHook(
5077   Vdbe *v,                        /* Vdbe pre-update hook is invoked by */
5078   VdbeCursor *pCsr,               /* Cursor to grab old.* values from */
5079   int op,                         /* SQLITE_INSERT, UPDATE or DELETE */
5080   const char *zDb,                /* Database name */
5081   Table *pTab,                    /* Modified table */
5082   i64 iKey1,                      /* Initial key value */
5083   int iReg                        /* Register for new.* record */
5084 ){
5085   sqlite3 *db = v->db;
5086   i64 iKey2;
5087   PreUpdate preupdate;
5088   const char *zTbl = pTab->zName;
5089   static const u8 fakeSortOrder = 0;
5090 
5091   assert( db->pPreUpdate==0 );
5092   memset(&preupdate, 0, sizeof(PreUpdate));
5093   if( HasRowid(pTab)==0 ){
5094     iKey1 = iKey2 = 0;
5095     preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5096   }else{
5097     if( op==SQLITE_UPDATE ){
5098       iKey2 = v->aMem[iReg].u.i;
5099     }else{
5100       iKey2 = iKey1;
5101     }
5102   }
5103 
5104   assert( pCsr->nField==pTab->nCol
5105        || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
5106   );
5107 
5108   preupdate.v = v;
5109   preupdate.pCsr = pCsr;
5110   preupdate.op = op;
5111   preupdate.iNewReg = iReg;
5112   preupdate.keyinfo.db = db;
5113   preupdate.keyinfo.enc = ENC(db);
5114   preupdate.keyinfo.nKeyField = pTab->nCol;
5115   preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5116   preupdate.iKey1 = iKey1;
5117   preupdate.iKey2 = iKey2;
5118   preupdate.pTab = pTab;
5119 
5120   db->pPreUpdate = &preupdate;
5121   db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5122   db->pPreUpdate = 0;
5123   sqlite3DbFree(db, preupdate.aRecord);
5124   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5125   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5126   if( preupdate.aNew ){
5127     int i;
5128     for(i=0; i<pCsr->nField; i++){
5129       sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5130     }
5131     sqlite3DbFreeNN(db, preupdate.aNew);
5132   }
5133 }
5134 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5135