1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* Forward references */ 19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef); 20 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 21 22 /* 23 ** Create a new virtual database engine. 24 */ 25 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 26 sqlite3 *db = pParse->db; 27 Vdbe *p; 28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 29 if( p==0 ) return 0; 30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 31 p->db = db; 32 if( db->pVdbe ){ 33 db->pVdbe->ppVPrev = &p->pVNext; 34 } 35 p->pVNext = db->pVdbe; 36 p->ppVPrev = &db->pVdbe; 37 db->pVdbe = p; 38 assert( p->eVdbeState==VDBE_INIT_STATE ); 39 p->pParse = pParse; 40 pParse->pVdbe = p; 41 assert( pParse->aLabel==0 ); 42 assert( pParse->nLabel==0 ); 43 assert( p->nOpAlloc==0 ); 44 assert( pParse->szOpAlloc==0 ); 45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1); 46 return p; 47 } 48 49 /* 50 ** Return the Parse object that owns a Vdbe object. 51 */ 52 Parse *sqlite3VdbeParser(Vdbe *p){ 53 return p->pParse; 54 } 55 56 /* 57 ** Change the error string stored in Vdbe.zErrMsg 58 */ 59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 60 va_list ap; 61 sqlite3DbFree(p->db, p->zErrMsg); 62 va_start(ap, zFormat); 63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 64 va_end(ap); 65 } 66 67 /* 68 ** Remember the SQL string for a prepared statement. 69 */ 70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 71 if( p==0 ) return; 72 p->prepFlags = prepFlags; 73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 74 p->expmask = 0; 75 } 76 assert( p->zSql==0 ); 77 p->zSql = sqlite3DbStrNDup(p->db, z, n); 78 } 79 80 #ifdef SQLITE_ENABLE_NORMALIZE 81 /* 82 ** Add a new element to the Vdbe->pDblStr list. 83 */ 84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ 85 if( p ){ 86 int n = sqlite3Strlen30(z); 87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db, 88 sizeof(*pStr)+n+1-sizeof(pStr->z)); 89 if( pStr ){ 90 pStr->pNextStr = p->pDblStr; 91 p->pDblStr = pStr; 92 memcpy(pStr->z, z, n+1); 93 } 94 } 95 } 96 #endif 97 98 #ifdef SQLITE_ENABLE_NORMALIZE 99 /* 100 ** zId of length nId is a double-quoted identifier. Check to see if 101 ** that identifier is really used as a string literal. 102 */ 103 int sqlite3VdbeUsesDoubleQuotedString( 104 Vdbe *pVdbe, /* The prepared statement */ 105 const char *zId /* The double-quoted identifier, already dequoted */ 106 ){ 107 DblquoteStr *pStr; 108 assert( zId!=0 ); 109 if( pVdbe->pDblStr==0 ) return 0; 110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ 111 if( strcmp(zId, pStr->z)==0 ) return 1; 112 } 113 return 0; 114 } 115 #endif 116 117 /* 118 ** Swap byte-code between two VDBE structures. 119 ** 120 ** This happens after pB was previously run and returned 121 ** SQLITE_SCHEMA. The statement was then reprepared in pA. 122 ** This routine transfers the new bytecode in pA over to pB 123 ** so that pB can be run again. The old pB byte code is 124 ** moved back to pA so that it will be cleaned up when pA is 125 ** finalized. 126 */ 127 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 128 Vdbe tmp, *pTmp, **ppTmp; 129 char *zTmp; 130 assert( pA->db==pB->db ); 131 tmp = *pA; 132 *pA = *pB; 133 *pB = tmp; 134 pTmp = pA->pVNext; 135 pA->pVNext = pB->pVNext; 136 pB->pVNext = pTmp; 137 ppTmp = pA->ppVPrev; 138 pA->ppVPrev = pB->ppVPrev; 139 pB->ppVPrev = ppTmp; 140 zTmp = pA->zSql; 141 pA->zSql = pB->zSql; 142 pB->zSql = zTmp; 143 #ifdef SQLITE_ENABLE_NORMALIZE 144 zTmp = pA->zNormSql; 145 pA->zNormSql = pB->zNormSql; 146 pB->zNormSql = zTmp; 147 #endif 148 pB->expmask = pA->expmask; 149 pB->prepFlags = pA->prepFlags; 150 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 151 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 152 } 153 154 /* 155 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 156 ** than its current size. nOp is guaranteed to be less than or equal 157 ** to 1024/sizeof(Op). 158 ** 159 ** If an out-of-memory error occurs while resizing the array, return 160 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain 161 ** unchanged (this is so that any opcodes already allocated can be 162 ** correctly deallocated along with the rest of the Vdbe). 163 */ 164 static int growOpArray(Vdbe *v, int nOp){ 165 VdbeOp *pNew; 166 Parse *p = v->pParse; 167 168 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 169 ** more frequent reallocs and hence provide more opportunities for 170 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 171 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 172 ** by the minimum* amount required until the size reaches 512. Normal 173 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 174 ** size of the op array or add 1KB of space, whichever is smaller. */ 175 #ifdef SQLITE_TEST_REALLOC_STRESS 176 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc 177 : (sqlite3_int64)v->nOpAlloc+nOp); 178 #else 179 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc 180 : (sqlite3_int64)(1024/sizeof(Op))); 181 UNUSED_PARAMETER(nOp); 182 #endif 183 184 /* Ensure that the size of a VDBE does not grow too large */ 185 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 186 sqlite3OomFault(p->db); 187 return SQLITE_NOMEM; 188 } 189 190 assert( nOp<=(int)(1024/sizeof(Op)) ); 191 assert( nNew>=(v->nOpAlloc+nOp) ); 192 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 193 if( pNew ){ 194 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 195 v->nOpAlloc = p->szOpAlloc/sizeof(Op); 196 v->aOp = pNew; 197 } 198 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 199 } 200 201 #ifdef SQLITE_DEBUG 202 /* This routine is just a convenient place to set a breakpoint that will 203 ** fire after each opcode is inserted and displayed using 204 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and 205 ** pOp are available to make the breakpoint conditional. 206 ** 207 ** Other useful labels for breakpoints include: 208 ** test_trace_breakpoint(pc,pOp) 209 ** sqlite3CorruptError(lineno) 210 ** sqlite3MisuseError(lineno) 211 ** sqlite3CantopenError(lineno) 212 */ 213 static void test_addop_breakpoint(int pc, Op *pOp){ 214 static int n = 0; 215 n++; 216 } 217 #endif 218 219 /* 220 ** Add a new instruction to the list of instructions current in the 221 ** VDBE. Return the address of the new instruction. 222 ** 223 ** Parameters: 224 ** 225 ** p Pointer to the VDBE 226 ** 227 ** op The opcode for this instruction 228 ** 229 ** p1, p2, p3 Operands 230 ** 231 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 232 ** the sqlite3VdbeChangeP4() function to change the value of the P4 233 ** operand. 234 */ 235 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 236 assert( p->nOpAlloc<=p->nOp ); 237 if( growOpArray(p, 1) ) return 1; 238 assert( p->nOpAlloc>p->nOp ); 239 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 240 } 241 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 242 int i; 243 VdbeOp *pOp; 244 245 i = p->nOp; 246 assert( p->eVdbeState==VDBE_INIT_STATE ); 247 assert( op>=0 && op<0xff ); 248 if( p->nOpAlloc<=i ){ 249 return growOp3(p, op, p1, p2, p3); 250 } 251 assert( p->aOp!=0 ); 252 p->nOp++; 253 pOp = &p->aOp[i]; 254 assert( pOp!=0 ); 255 pOp->opcode = (u8)op; 256 pOp->p5 = 0; 257 pOp->p1 = p1; 258 pOp->p2 = p2; 259 pOp->p3 = p3; 260 pOp->p4.p = 0; 261 pOp->p4type = P4_NOTUSED; 262 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 263 pOp->zComment = 0; 264 #endif 265 #ifdef SQLITE_DEBUG 266 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 267 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 268 test_addop_breakpoint(i, &p->aOp[i]); 269 } 270 #endif 271 #ifdef VDBE_PROFILE 272 pOp->cycles = 0; 273 pOp->cnt = 0; 274 #endif 275 #ifdef SQLITE_VDBE_COVERAGE 276 pOp->iSrcLine = 0; 277 #endif 278 return i; 279 } 280 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 281 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 282 } 283 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 284 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 285 } 286 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 287 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 288 } 289 290 /* Generate code for an unconditional jump to instruction iDest 291 */ 292 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 293 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 294 } 295 296 /* Generate code to cause the string zStr to be loaded into 297 ** register iDest 298 */ 299 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 300 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 301 } 302 303 /* 304 ** Generate code that initializes multiple registers to string or integer 305 ** constants. The registers begin with iDest and increase consecutively. 306 ** One register is initialized for each characgter in zTypes[]. For each 307 ** "s" character in zTypes[], the register is a string if the argument is 308 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 309 ** in zTypes[], the register is initialized to an integer. 310 ** 311 ** If the input string does not end with "X" then an OP_ResultRow instruction 312 ** is generated for the values inserted. 313 */ 314 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 315 va_list ap; 316 int i; 317 char c; 318 va_start(ap, zTypes); 319 for(i=0; (c = zTypes[i])!=0; i++){ 320 if( c=='s' ){ 321 const char *z = va_arg(ap, const char*); 322 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 323 }else if( c=='i' ){ 324 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 325 }else{ 326 goto skip_op_resultrow; 327 } 328 } 329 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 330 skip_op_resultrow: 331 va_end(ap); 332 } 333 334 /* 335 ** Add an opcode that includes the p4 value as a pointer. 336 */ 337 int sqlite3VdbeAddOp4( 338 Vdbe *p, /* Add the opcode to this VM */ 339 int op, /* The new opcode */ 340 int p1, /* The P1 operand */ 341 int p2, /* The P2 operand */ 342 int p3, /* The P3 operand */ 343 const char *zP4, /* The P4 operand */ 344 int p4type /* P4 operand type */ 345 ){ 346 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 347 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 348 return addr; 349 } 350 351 /* 352 ** Add an OP_Function or OP_PureFunc opcode. 353 ** 354 ** The eCallCtx argument is information (typically taken from Expr.op2) 355 ** that describes the calling context of the function. 0 means a general 356 ** function call. NC_IsCheck means called by a check constraint, 357 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx 358 ** means in the WHERE clause of a partial index. NC_GenCol means called 359 ** while computing a generated column value. 0 is the usual case. 360 */ 361 int sqlite3VdbeAddFunctionCall( 362 Parse *pParse, /* Parsing context */ 363 int p1, /* Constant argument mask */ 364 int p2, /* First argument register */ 365 int p3, /* Register into which results are written */ 366 int nArg, /* Number of argument */ 367 const FuncDef *pFunc, /* The function to be invoked */ 368 int eCallCtx /* Calling context */ 369 ){ 370 Vdbe *v = pParse->pVdbe; 371 int nByte; 372 int addr; 373 sqlite3_context *pCtx; 374 assert( v ); 375 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*); 376 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte); 377 if( pCtx==0 ){ 378 assert( pParse->db->mallocFailed ); 379 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc); 380 return 0; 381 } 382 pCtx->pOut = 0; 383 pCtx->pFunc = (FuncDef*)pFunc; 384 pCtx->pVdbe = 0; 385 pCtx->isError = 0; 386 pCtx->argc = nArg; 387 pCtx->iOp = sqlite3VdbeCurrentAddr(v); 388 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function, 389 p1, p2, p3, (char*)pCtx, P4_FUNCCTX); 390 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef); 391 sqlite3MayAbort(pParse); 392 return addr; 393 } 394 395 /* 396 ** Add an opcode that includes the p4 value with a P4_INT64 or 397 ** P4_REAL type. 398 */ 399 int sqlite3VdbeAddOp4Dup8( 400 Vdbe *p, /* Add the opcode to this VM */ 401 int op, /* The new opcode */ 402 int p1, /* The P1 operand */ 403 int p2, /* The P2 operand */ 404 int p3, /* The P3 operand */ 405 const u8 *zP4, /* The P4 operand */ 406 int p4type /* P4 operand type */ 407 ){ 408 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 409 if( p4copy ) memcpy(p4copy, zP4, 8); 410 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 411 } 412 413 #ifndef SQLITE_OMIT_EXPLAIN 414 /* 415 ** Return the address of the current EXPLAIN QUERY PLAN baseline. 416 ** 0 means "none". 417 */ 418 int sqlite3VdbeExplainParent(Parse *pParse){ 419 VdbeOp *pOp; 420 if( pParse->addrExplain==0 ) return 0; 421 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); 422 return pOp->p2; 423 } 424 425 /* 426 ** Set a debugger breakpoint on the following routine in order to 427 ** monitor the EXPLAIN QUERY PLAN code generation. 428 */ 429 #if defined(SQLITE_DEBUG) 430 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ 431 (void)z1; 432 (void)z2; 433 } 434 #endif 435 436 /* 437 ** Add a new OP_Explain opcode. 438 ** 439 ** If the bPush flag is true, then make this opcode the parent for 440 ** subsequent Explains until sqlite3VdbeExplainPop() is called. 441 */ 442 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ 443 #ifndef SQLITE_DEBUG 444 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined. 445 ** But omit them (for performance) during production builds */ 446 if( pParse->explain==2 ) 447 #endif 448 { 449 char *zMsg; 450 Vdbe *v; 451 va_list ap; 452 int iThis; 453 va_start(ap, zFmt); 454 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); 455 va_end(ap); 456 v = pParse->pVdbe; 457 iThis = v->nOp; 458 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, 459 zMsg, P4_DYNAMIC); 460 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z); 461 if( bPush){ 462 pParse->addrExplain = iThis; 463 } 464 } 465 } 466 467 /* 468 ** Pop the EXPLAIN QUERY PLAN stack one level. 469 */ 470 void sqlite3VdbeExplainPop(Parse *pParse){ 471 sqlite3ExplainBreakpoint("POP", 0); 472 pParse->addrExplain = sqlite3VdbeExplainParent(pParse); 473 } 474 #endif /* SQLITE_OMIT_EXPLAIN */ 475 476 /* 477 ** Add an OP_ParseSchema opcode. This routine is broken out from 478 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 479 ** as having been used. 480 ** 481 ** The zWhere string must have been obtained from sqlite3_malloc(). 482 ** This routine will take ownership of the allocated memory. 483 */ 484 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){ 485 int j; 486 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 487 sqlite3VdbeChangeP5(p, p5); 488 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 489 sqlite3MayAbort(p->pParse); 490 } 491 492 /* 493 ** Add an opcode that includes the p4 value as an integer. 494 */ 495 int sqlite3VdbeAddOp4Int( 496 Vdbe *p, /* Add the opcode to this VM */ 497 int op, /* The new opcode */ 498 int p1, /* The P1 operand */ 499 int p2, /* The P2 operand */ 500 int p3, /* The P3 operand */ 501 int p4 /* The P4 operand as an integer */ 502 ){ 503 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 504 if( p->db->mallocFailed==0 ){ 505 VdbeOp *pOp = &p->aOp[addr]; 506 pOp->p4type = P4_INT32; 507 pOp->p4.i = p4; 508 } 509 return addr; 510 } 511 512 /* Insert the end of a co-routine 513 */ 514 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 515 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 516 517 /* Clear the temporary register cache, thereby ensuring that each 518 ** co-routine has its own independent set of registers, because co-routines 519 ** might expect their registers to be preserved across an OP_Yield, and 520 ** that could cause problems if two or more co-routines are using the same 521 ** temporary register. 522 */ 523 v->pParse->nTempReg = 0; 524 v->pParse->nRangeReg = 0; 525 } 526 527 /* 528 ** Create a new symbolic label for an instruction that has yet to be 529 ** coded. The symbolic label is really just a negative number. The 530 ** label can be used as the P2 value of an operation. Later, when 531 ** the label is resolved to a specific address, the VDBE will scan 532 ** through its operation list and change all values of P2 which match 533 ** the label into the resolved address. 534 ** 535 ** The VDBE knows that a P2 value is a label because labels are 536 ** always negative and P2 values are suppose to be non-negative. 537 ** Hence, a negative P2 value is a label that has yet to be resolved. 538 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP 539 ** property. 540 ** 541 ** Variable usage notes: 542 ** 543 ** Parse.aLabel[x] Stores the address that the x-th label resolves 544 ** into. For testing (SQLITE_DEBUG), unresolved 545 ** labels stores -1, but that is not required. 546 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[] 547 ** Parse.nLabel The *negative* of the number of labels that have 548 ** been issued. The negative is stored because 549 ** that gives a performance improvement over storing 550 ** the equivalent positive value. 551 */ 552 int sqlite3VdbeMakeLabel(Parse *pParse){ 553 return --pParse->nLabel; 554 } 555 556 /* 557 ** Resolve label "x" to be the address of the next instruction to 558 ** be inserted. The parameter "x" must have been obtained from 559 ** a prior call to sqlite3VdbeMakeLabel(). 560 */ 561 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){ 562 int nNewSize = 10 - p->nLabel; 563 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 564 nNewSize*sizeof(p->aLabel[0])); 565 if( p->aLabel==0 ){ 566 p->nLabelAlloc = 0; 567 }else{ 568 #ifdef SQLITE_DEBUG 569 int i; 570 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1; 571 #endif 572 p->nLabelAlloc = nNewSize; 573 p->aLabel[j] = v->nOp; 574 } 575 } 576 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 577 Parse *p = v->pParse; 578 int j = ADDR(x); 579 assert( v->eVdbeState==VDBE_INIT_STATE ); 580 assert( j<-p->nLabel ); 581 assert( j>=0 ); 582 #ifdef SQLITE_DEBUG 583 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 584 printf("RESOLVE LABEL %d to %d\n", x, v->nOp); 585 } 586 #endif 587 if( p->nLabelAlloc + p->nLabel < 0 ){ 588 resizeResolveLabel(p,v,j); 589 }else{ 590 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ 591 p->aLabel[j] = v->nOp; 592 } 593 } 594 595 /* 596 ** Mark the VDBE as one that can only be run one time. 597 */ 598 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 599 sqlite3VdbeAddOp2(p, OP_Expire, 1, 1); 600 } 601 602 /* 603 ** Mark the VDBE as one that can be run multiple times. 604 */ 605 void sqlite3VdbeReusable(Vdbe *p){ 606 int i; 607 for(i=1; ALWAYS(i<p->nOp); i++){ 608 if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){ 609 p->aOp[1].opcode = OP_Noop; 610 break; 611 } 612 } 613 } 614 615 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 616 617 /* 618 ** The following type and function are used to iterate through all opcodes 619 ** in a Vdbe main program and each of the sub-programs (triggers) it may 620 ** invoke directly or indirectly. It should be used as follows: 621 ** 622 ** Op *pOp; 623 ** VdbeOpIter sIter; 624 ** 625 ** memset(&sIter, 0, sizeof(sIter)); 626 ** sIter.v = v; // v is of type Vdbe* 627 ** while( (pOp = opIterNext(&sIter)) ){ 628 ** // Do something with pOp 629 ** } 630 ** sqlite3DbFree(v->db, sIter.apSub); 631 ** 632 */ 633 typedef struct VdbeOpIter VdbeOpIter; 634 struct VdbeOpIter { 635 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 636 SubProgram **apSub; /* Array of subprograms */ 637 int nSub; /* Number of entries in apSub */ 638 int iAddr; /* Address of next instruction to return */ 639 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 640 }; 641 static Op *opIterNext(VdbeOpIter *p){ 642 Vdbe *v = p->v; 643 Op *pRet = 0; 644 Op *aOp; 645 int nOp; 646 647 if( p->iSub<=p->nSub ){ 648 649 if( p->iSub==0 ){ 650 aOp = v->aOp; 651 nOp = v->nOp; 652 }else{ 653 aOp = p->apSub[p->iSub-1]->aOp; 654 nOp = p->apSub[p->iSub-1]->nOp; 655 } 656 assert( p->iAddr<nOp ); 657 658 pRet = &aOp[p->iAddr]; 659 p->iAddr++; 660 if( p->iAddr==nOp ){ 661 p->iSub++; 662 p->iAddr = 0; 663 } 664 665 if( pRet->p4type==P4_SUBPROGRAM ){ 666 int nByte = (p->nSub+1)*sizeof(SubProgram*); 667 int j; 668 for(j=0; j<p->nSub; j++){ 669 if( p->apSub[j]==pRet->p4.pProgram ) break; 670 } 671 if( j==p->nSub ){ 672 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 673 if( !p->apSub ){ 674 pRet = 0; 675 }else{ 676 p->apSub[p->nSub++] = pRet->p4.pProgram; 677 } 678 } 679 } 680 } 681 682 return pRet; 683 } 684 685 /* 686 ** Check if the program stored in the VM associated with pParse may 687 ** throw an ABORT exception (causing the statement, but not entire transaction 688 ** to be rolled back). This condition is true if the main program or any 689 ** sub-programs contains any of the following: 690 ** 691 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 692 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 693 ** * OP_Destroy 694 ** * OP_VUpdate 695 ** * OP_VCreate 696 ** * OP_VRename 697 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 698 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 699 ** (for CREATE TABLE AS SELECT ...) 700 ** 701 ** Then check that the value of Parse.mayAbort is true if an 702 ** ABORT may be thrown, or false otherwise. Return true if it does 703 ** match, or false otherwise. This function is intended to be used as 704 ** part of an assert statement in the compiler. Similar to: 705 ** 706 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 707 */ 708 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 709 int hasAbort = 0; 710 int hasFkCounter = 0; 711 int hasCreateTable = 0; 712 int hasCreateIndex = 0; 713 int hasInitCoroutine = 0; 714 Op *pOp; 715 VdbeOpIter sIter; 716 717 if( v==0 ) return 0; 718 memset(&sIter, 0, sizeof(sIter)); 719 sIter.v = v; 720 721 while( (pOp = opIterNext(&sIter))!=0 ){ 722 int opcode = pOp->opcode; 723 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 724 || opcode==OP_VDestroy 725 || opcode==OP_VCreate 726 || opcode==OP_ParseSchema 727 || opcode==OP_Function || opcode==OP_PureFunc 728 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 729 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort)) 730 ){ 731 hasAbort = 1; 732 break; 733 } 734 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; 735 if( mayAbort ){ 736 /* hasCreateIndex may also be set for some DELETE statements that use 737 ** OP_Clear. So this routine may end up returning true in the case 738 ** where a "DELETE FROM tbl" has a statement-journal but does not 739 ** require one. This is not so bad - it is an inefficiency, not a bug. */ 740 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1; 741 if( opcode==OP_Clear ) hasCreateIndex = 1; 742 } 743 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 744 #ifndef SQLITE_OMIT_FOREIGN_KEY 745 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 746 hasFkCounter = 1; 747 } 748 #endif 749 } 750 sqlite3DbFree(v->db, sIter.apSub); 751 752 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 753 ** If malloc failed, then the while() loop above may not have iterated 754 ** through all opcodes and hasAbort may be set incorrectly. Return 755 ** true for this case to prevent the assert() in the callers frame 756 ** from failing. */ 757 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 758 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex 759 ); 760 } 761 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 762 763 #ifdef SQLITE_DEBUG 764 /* 765 ** Increment the nWrite counter in the VDBE if the cursor is not an 766 ** ephemeral cursor, or if the cursor argument is NULL. 767 */ 768 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ 769 if( pC==0 770 || (pC->eCurType!=CURTYPE_SORTER 771 && pC->eCurType!=CURTYPE_PSEUDO 772 && !pC->isEphemeral) 773 ){ 774 p->nWrite++; 775 } 776 } 777 #endif 778 779 #ifdef SQLITE_DEBUG 780 /* 781 ** Assert if an Abort at this point in time might result in a corrupt 782 ** database. 783 */ 784 void sqlite3VdbeAssertAbortable(Vdbe *p){ 785 assert( p->nWrite==0 || p->usesStmtJournal ); 786 } 787 #endif 788 789 /* 790 ** This routine is called after all opcodes have been inserted. It loops 791 ** through all the opcodes and fixes up some details. 792 ** 793 ** (1) For each jump instruction with a negative P2 value (a label) 794 ** resolve the P2 value to an actual address. 795 ** 796 ** (2) Compute the maximum number of arguments used by any SQL function 797 ** and store that value in *pMaxFuncArgs. 798 ** 799 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 800 ** indicate what the prepared statement actually does. 801 ** 802 ** (4) (discontinued) 803 ** 804 ** (5) Reclaim the memory allocated for storing labels. 805 ** 806 ** This routine will only function correctly if the mkopcodeh.tcl generator 807 ** script numbers the opcodes correctly. Changes to this routine must be 808 ** coordinated with changes to mkopcodeh.tcl. 809 */ 810 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 811 int nMaxArgs = *pMaxFuncArgs; 812 Op *pOp; 813 Parse *pParse = p->pParse; 814 int *aLabel = pParse->aLabel; 815 p->readOnly = 1; 816 p->bIsReader = 0; 817 pOp = &p->aOp[p->nOp-1]; 818 assert( p->aOp[0].opcode==OP_Init ); 819 while( 1 /* Loop termates when it reaches the OP_Init opcode */ ){ 820 /* Only JUMP opcodes and the short list of special opcodes in the switch 821 ** below need to be considered. The mkopcodeh.tcl generator script groups 822 ** all these opcodes together near the front of the opcode list. Skip 823 ** any opcode that does not need processing by virtual of the fact that 824 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 825 */ 826 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 827 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 828 ** cases from this switch! */ 829 switch( pOp->opcode ){ 830 case OP_Transaction: { 831 if( pOp->p2!=0 ) p->readOnly = 0; 832 /* no break */ deliberate_fall_through 833 } 834 case OP_AutoCommit: 835 case OP_Savepoint: { 836 p->bIsReader = 1; 837 break; 838 } 839 #ifndef SQLITE_OMIT_WAL 840 case OP_Checkpoint: 841 #endif 842 case OP_Vacuum: 843 case OP_JournalMode: { 844 p->readOnly = 0; 845 p->bIsReader = 1; 846 break; 847 } 848 case OP_Init: { 849 assert( pOp->p2>=0 ); 850 goto resolve_p2_values_loop_exit; 851 } 852 #ifndef SQLITE_OMIT_VIRTUALTABLE 853 case OP_VUpdate: { 854 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 855 break; 856 } 857 case OP_VFilter: { 858 int n; 859 assert( (pOp - p->aOp) >= 3 ); 860 assert( pOp[-1].opcode==OP_Integer ); 861 n = pOp[-1].p1; 862 if( n>nMaxArgs ) nMaxArgs = n; 863 /* Fall through into the default case */ 864 /* no break */ deliberate_fall_through 865 } 866 #endif 867 default: { 868 if( pOp->p2<0 ){ 869 /* The mkopcodeh.tcl script has so arranged things that the only 870 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 871 ** have non-negative values for P2. */ 872 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 873 assert( ADDR(pOp->p2)<-pParse->nLabel ); 874 pOp->p2 = aLabel[ADDR(pOp->p2)]; 875 } 876 break; 877 } 878 } 879 /* The mkopcodeh.tcl script has so arranged things that the only 880 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 881 ** have non-negative values for P2. */ 882 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 883 } 884 assert( pOp>p->aOp ); 885 pOp--; 886 } 887 resolve_p2_values_loop_exit: 888 if( aLabel ){ 889 sqlite3DbNNFreeNN(p->db, pParse->aLabel); 890 pParse->aLabel = 0; 891 } 892 pParse->nLabel = 0; 893 *pMaxFuncArgs = nMaxArgs; 894 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 895 } 896 897 #ifdef SQLITE_DEBUG 898 /* 899 ** Check to see if a subroutine contains a jump to a location outside of 900 ** the subroutine. If a jump outside the subroutine is detected, add code 901 ** that will cause the program to halt with an error message. 902 ** 903 ** The subroutine consists of opcodes between iFirst and iLast. Jumps to 904 ** locations within the subroutine are acceptable. iRetReg is a register 905 ** that contains the return address. Jumps to outside the range of iFirst 906 ** through iLast are also acceptable as long as the jump destination is 907 ** an OP_Return to iReturnAddr. 908 ** 909 ** A jump to an unresolved label means that the jump destination will be 910 ** beyond the current address. That is normally a jump to an early 911 ** termination and is consider acceptable. 912 ** 913 ** This routine only runs during debug builds. The purpose is (of course) 914 ** to detect invalid escapes out of a subroutine. The OP_Halt opcode 915 ** is generated rather than an assert() or other error, so that ".eqp full" 916 ** will still work to show the original bytecode, to aid in debugging. 917 */ 918 void sqlite3VdbeNoJumpsOutsideSubrtn( 919 Vdbe *v, /* The byte-code program under construction */ 920 int iFirst, /* First opcode of the subroutine */ 921 int iLast, /* Last opcode of the subroutine */ 922 int iRetReg /* Subroutine return address register */ 923 ){ 924 VdbeOp *pOp; 925 Parse *pParse; 926 int i; 927 sqlite3_str *pErr = 0; 928 assert( v!=0 ); 929 pParse = v->pParse; 930 assert( pParse!=0 ); 931 if( pParse->nErr ) return; 932 assert( iLast>=iFirst ); 933 assert( iLast<v->nOp ); 934 pOp = &v->aOp[iFirst]; 935 for(i=iFirst; i<=iLast; i++, pOp++){ 936 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){ 937 int iDest = pOp->p2; /* Jump destination */ 938 if( iDest==0 ) continue; 939 if( pOp->opcode==OP_Gosub ) continue; 940 if( iDest<0 ){ 941 int j = ADDR(iDest); 942 assert( j>=0 ); 943 if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){ 944 continue; 945 } 946 iDest = pParse->aLabel[j]; 947 } 948 if( iDest<iFirst || iDest>iLast ){ 949 int j = iDest; 950 for(; j<v->nOp; j++){ 951 VdbeOp *pX = &v->aOp[j]; 952 if( pX->opcode==OP_Return ){ 953 if( pX->p1==iRetReg ) break; 954 continue; 955 } 956 if( pX->opcode==OP_Noop ) continue; 957 if( pX->opcode==OP_Explain ) continue; 958 if( pErr==0 ){ 959 pErr = sqlite3_str_new(0); 960 }else{ 961 sqlite3_str_appendchar(pErr, 1, '\n'); 962 } 963 sqlite3_str_appendf(pErr, 964 "Opcode at %d jumps to %d which is outside the " 965 "subroutine at %d..%d", 966 i, iDest, iFirst, iLast); 967 break; 968 } 969 } 970 } 971 } 972 if( pErr ){ 973 char *zErr = sqlite3_str_finish(pErr); 974 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0); 975 sqlite3_free(zErr); 976 sqlite3MayAbort(pParse); 977 } 978 } 979 #endif /* SQLITE_DEBUG */ 980 981 /* 982 ** Return the address of the next instruction to be inserted. 983 */ 984 int sqlite3VdbeCurrentAddr(Vdbe *p){ 985 assert( p->eVdbeState==VDBE_INIT_STATE ); 986 return p->nOp; 987 } 988 989 /* 990 ** Verify that at least N opcode slots are available in p without 991 ** having to malloc for more space (except when compiled using 992 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 993 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 994 ** fail due to a OOM fault and hence that the return value from 995 ** sqlite3VdbeAddOpList() will always be non-NULL. 996 */ 997 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 998 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 999 assert( p->nOp + N <= p->nOpAlloc ); 1000 } 1001 #endif 1002 1003 /* 1004 ** Verify that the VM passed as the only argument does not contain 1005 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 1006 ** by code in pragma.c to ensure that the implementation of certain 1007 ** pragmas comports with the flags specified in the mkpragmatab.tcl 1008 ** script. 1009 */ 1010 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 1011 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 1012 int i; 1013 for(i=0; i<p->nOp; i++){ 1014 assert( p->aOp[i].opcode!=OP_ResultRow ); 1015 } 1016 } 1017 #endif 1018 1019 /* 1020 ** Generate code (a single OP_Abortable opcode) that will 1021 ** verify that the VDBE program can safely call Abort in the current 1022 ** context. 1023 */ 1024 #if defined(SQLITE_DEBUG) 1025 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ 1026 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); 1027 } 1028 #endif 1029 1030 /* 1031 ** This function returns a pointer to the array of opcodes associated with 1032 ** the Vdbe passed as the first argument. It is the callers responsibility 1033 ** to arrange for the returned array to be eventually freed using the 1034 ** vdbeFreeOpArray() function. 1035 ** 1036 ** Before returning, *pnOp is set to the number of entries in the returned 1037 ** array. Also, *pnMaxArg is set to the larger of its current value and 1038 ** the number of entries in the Vdbe.apArg[] array required to execute the 1039 ** returned program. 1040 */ 1041 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 1042 VdbeOp *aOp = p->aOp; 1043 assert( aOp && !p->db->mallocFailed ); 1044 1045 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 1046 assert( DbMaskAllZero(p->btreeMask) ); 1047 1048 resolveP2Values(p, pnMaxArg); 1049 *pnOp = p->nOp; 1050 p->aOp = 0; 1051 return aOp; 1052 } 1053 1054 /* 1055 ** Add a whole list of operations to the operation stack. Return a 1056 ** pointer to the first operation inserted. 1057 ** 1058 ** Non-zero P2 arguments to jump instructions are automatically adjusted 1059 ** so that the jump target is relative to the first operation inserted. 1060 */ 1061 VdbeOp *sqlite3VdbeAddOpList( 1062 Vdbe *p, /* Add opcodes to the prepared statement */ 1063 int nOp, /* Number of opcodes to add */ 1064 VdbeOpList const *aOp, /* The opcodes to be added */ 1065 int iLineno /* Source-file line number of first opcode */ 1066 ){ 1067 int i; 1068 VdbeOp *pOut, *pFirst; 1069 assert( nOp>0 ); 1070 assert( p->eVdbeState==VDBE_INIT_STATE ); 1071 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){ 1072 return 0; 1073 } 1074 pFirst = pOut = &p->aOp[p->nOp]; 1075 for(i=0; i<nOp; i++, aOp++, pOut++){ 1076 pOut->opcode = aOp->opcode; 1077 pOut->p1 = aOp->p1; 1078 pOut->p2 = aOp->p2; 1079 assert( aOp->p2>=0 ); 1080 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 1081 pOut->p2 += p->nOp; 1082 } 1083 pOut->p3 = aOp->p3; 1084 pOut->p4type = P4_NOTUSED; 1085 pOut->p4.p = 0; 1086 pOut->p5 = 0; 1087 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1088 pOut->zComment = 0; 1089 #endif 1090 #ifdef SQLITE_VDBE_COVERAGE 1091 pOut->iSrcLine = iLineno+i; 1092 #else 1093 (void)iLineno; 1094 #endif 1095 #ifdef SQLITE_DEBUG 1096 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 1097 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 1098 } 1099 #endif 1100 } 1101 p->nOp += nOp; 1102 return pFirst; 1103 } 1104 1105 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 1106 /* 1107 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 1108 */ 1109 void sqlite3VdbeScanStatus( 1110 Vdbe *p, /* VM to add scanstatus() to */ 1111 int addrExplain, /* Address of OP_Explain (or 0) */ 1112 int addrLoop, /* Address of loop counter */ 1113 int addrVisit, /* Address of rows visited counter */ 1114 LogEst nEst, /* Estimated number of output rows */ 1115 const char *zName /* Name of table or index being scanned */ 1116 ){ 1117 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus); 1118 ScanStatus *aNew; 1119 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 1120 if( aNew ){ 1121 ScanStatus *pNew = &aNew[p->nScan++]; 1122 pNew->addrExplain = addrExplain; 1123 pNew->addrLoop = addrLoop; 1124 pNew->addrVisit = addrVisit; 1125 pNew->nEst = nEst; 1126 pNew->zName = sqlite3DbStrDup(p->db, zName); 1127 p->aScan = aNew; 1128 } 1129 } 1130 #endif 1131 1132 1133 /* 1134 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 1135 ** for a specific instruction. 1136 */ 1137 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){ 1138 assert( addr>=0 ); 1139 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 1140 } 1141 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ 1142 assert( addr>=0 ); 1143 sqlite3VdbeGetOp(p,addr)->p1 = val; 1144 } 1145 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ 1146 assert( addr>=0 || p->db->mallocFailed ); 1147 sqlite3VdbeGetOp(p,addr)->p2 = val; 1148 } 1149 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ 1150 assert( addr>=0 ); 1151 sqlite3VdbeGetOp(p,addr)->p3 = val; 1152 } 1153 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 1154 assert( p->nOp>0 || p->db->mallocFailed ); 1155 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 1156 } 1157 1158 /* 1159 ** If the previous opcode is an OP_Column that delivers results 1160 ** into register iDest, then add the OPFLAG_TYPEOF flag to that 1161 ** opcode. 1162 */ 1163 void sqlite3VdbeTypeofColumn(Vdbe *p, int iDest){ 1164 if( p->nOp>0 ){ 1165 VdbeOp *pOp = &p->aOp[p->nOp-1]; 1166 if( pOp->opcode==OP_Column && pOp->p3==iDest ){ 1167 pOp->p5 |= OPFLAG_TYPEOFARG; 1168 } 1169 }else{ 1170 assert( p->db->mallocFailed ); 1171 } 1172 } 1173 1174 /* 1175 ** Change the P2 operand of instruction addr so that it points to 1176 ** the address of the next instruction to be coded. 1177 */ 1178 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 1179 sqlite3VdbeChangeP2(p, addr, p->nOp); 1180 } 1181 1182 /* 1183 ** Change the P2 operand of the jump instruction at addr so that 1184 ** the jump lands on the next opcode. Or if the jump instruction was 1185 ** the previous opcode (and is thus a no-op) then simply back up 1186 ** the next instruction counter by one slot so that the jump is 1187 ** overwritten by the next inserted opcode. 1188 ** 1189 ** This routine is an optimization of sqlite3VdbeJumpHere() that 1190 ** strives to omit useless byte-code like this: 1191 ** 1192 ** 7 Once 0 8 0 1193 ** 8 ... 1194 */ 1195 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){ 1196 if( addr==p->nOp-1 ){ 1197 assert( p->aOp[addr].opcode==OP_Once 1198 || p->aOp[addr].opcode==OP_If 1199 || p->aOp[addr].opcode==OP_FkIfZero ); 1200 assert( p->aOp[addr].p4type==0 ); 1201 #ifdef SQLITE_VDBE_COVERAGE 1202 sqlite3VdbeGetLastOp(p)->iSrcLine = 0; /* Erase VdbeCoverage() macros */ 1203 #endif 1204 p->nOp--; 1205 }else{ 1206 sqlite3VdbeChangeP2(p, addr, p->nOp); 1207 } 1208 } 1209 1210 1211 /* 1212 ** If the input FuncDef structure is ephemeral, then free it. If 1213 ** the FuncDef is not ephermal, then do nothing. 1214 */ 1215 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 1216 assert( db!=0 ); 1217 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 1218 sqlite3DbNNFreeNN(db, pDef); 1219 } 1220 } 1221 1222 /* 1223 ** Delete a P4 value if necessary. 1224 */ 1225 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 1226 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1227 sqlite3DbNNFreeNN(db, p); 1228 } 1229 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 1230 assert( db!=0 ); 1231 freeEphemeralFunction(db, p->pFunc); 1232 sqlite3DbNNFreeNN(db, p); 1233 } 1234 static void freeP4(sqlite3 *db, int p4type, void *p4){ 1235 assert( db ); 1236 switch( p4type ){ 1237 case P4_FUNCCTX: { 1238 freeP4FuncCtx(db, (sqlite3_context*)p4); 1239 break; 1240 } 1241 case P4_REAL: 1242 case P4_INT64: 1243 case P4_DYNAMIC: 1244 case P4_INTARRAY: { 1245 if( p4 ) sqlite3DbNNFreeNN(db, p4); 1246 break; 1247 } 1248 case P4_KEYINFO: { 1249 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 1250 break; 1251 } 1252 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1253 case P4_EXPR: { 1254 sqlite3ExprDelete(db, (Expr*)p4); 1255 break; 1256 } 1257 #endif 1258 case P4_FUNCDEF: { 1259 freeEphemeralFunction(db, (FuncDef*)p4); 1260 break; 1261 } 1262 case P4_MEM: { 1263 if( db->pnBytesFreed==0 ){ 1264 sqlite3ValueFree((sqlite3_value*)p4); 1265 }else{ 1266 freeP4Mem(db, (Mem*)p4); 1267 } 1268 break; 1269 } 1270 case P4_VTAB : { 1271 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 1272 break; 1273 } 1274 } 1275 } 1276 1277 /* 1278 ** Free the space allocated for aOp and any p4 values allocated for the 1279 ** opcodes contained within. If aOp is not NULL it is assumed to contain 1280 ** nOp entries. 1281 */ 1282 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 1283 assert( nOp>=0 ); 1284 assert( db!=0 ); 1285 if( aOp ){ 1286 Op *pOp = &aOp[nOp-1]; 1287 while(1){ /* Exit via break */ 1288 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 1289 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1290 sqlite3DbFree(db, pOp->zComment); 1291 #endif 1292 if( pOp==aOp ) break; 1293 pOp--; 1294 } 1295 sqlite3DbNNFreeNN(db, aOp); 1296 } 1297 } 1298 1299 /* 1300 ** Link the SubProgram object passed as the second argument into the linked 1301 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 1302 ** objects when the VM is no longer required. 1303 */ 1304 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 1305 p->pNext = pVdbe->pProgram; 1306 pVdbe->pProgram = p; 1307 } 1308 1309 /* 1310 ** Return true if the given Vdbe has any SubPrograms. 1311 */ 1312 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){ 1313 return pVdbe->pProgram!=0; 1314 } 1315 1316 /* 1317 ** Change the opcode at addr into OP_Noop 1318 */ 1319 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 1320 VdbeOp *pOp; 1321 if( p->db->mallocFailed ) return 0; 1322 assert( addr>=0 && addr<p->nOp ); 1323 pOp = &p->aOp[addr]; 1324 freeP4(p->db, pOp->p4type, pOp->p4.p); 1325 pOp->p4type = P4_NOTUSED; 1326 pOp->p4.z = 0; 1327 pOp->opcode = OP_Noop; 1328 return 1; 1329 } 1330 1331 /* 1332 ** If the last opcode is "op" and it is not a jump destination, 1333 ** then remove it. Return true if and only if an opcode was removed. 1334 */ 1335 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 1336 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 1337 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 1338 }else{ 1339 return 0; 1340 } 1341 } 1342 1343 #ifdef SQLITE_DEBUG 1344 /* 1345 ** Generate an OP_ReleaseReg opcode to indicate that a range of 1346 ** registers, except any identified by mask, are no longer in use. 1347 */ 1348 void sqlite3VdbeReleaseRegisters( 1349 Parse *pParse, /* Parsing context */ 1350 int iFirst, /* Index of first register to be released */ 1351 int N, /* Number of registers to release */ 1352 u32 mask, /* Mask of registers to NOT release */ 1353 int bUndefine /* If true, mark registers as undefined */ 1354 ){ 1355 if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return; 1356 assert( pParse->pVdbe ); 1357 assert( iFirst>=1 ); 1358 assert( iFirst+N-1<=pParse->nMem ); 1359 if( N<=31 && mask!=0 ){ 1360 while( N>0 && (mask&1)!=0 ){ 1361 mask >>= 1; 1362 iFirst++; 1363 N--; 1364 } 1365 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){ 1366 mask &= ~MASKBIT32(N-1); 1367 N--; 1368 } 1369 } 1370 if( N>0 ){ 1371 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); 1372 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); 1373 } 1374 } 1375 #endif /* SQLITE_DEBUG */ 1376 1377 1378 /* 1379 ** Change the value of the P4 operand for a specific instruction. 1380 ** This routine is useful when a large program is loaded from a 1381 ** static array using sqlite3VdbeAddOpList but we want to make a 1382 ** few minor changes to the program. 1383 ** 1384 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 1385 ** the string is made into memory obtained from sqlite3_malloc(). 1386 ** A value of n==0 means copy bytes of zP4 up to and including the 1387 ** first null byte. If n>0 then copy n+1 bytes of zP4. 1388 ** 1389 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 1390 ** to a string or structure that is guaranteed to exist for the lifetime of 1391 ** the Vdbe. In these cases we can just copy the pointer. 1392 ** 1393 ** If addr<0 then change P4 on the most recently inserted instruction. 1394 */ 1395 static void SQLITE_NOINLINE vdbeChangeP4Full( 1396 Vdbe *p, 1397 Op *pOp, 1398 const char *zP4, 1399 int n 1400 ){ 1401 if( pOp->p4type ){ 1402 freeP4(p->db, pOp->p4type, pOp->p4.p); 1403 pOp->p4type = 0; 1404 pOp->p4.p = 0; 1405 } 1406 if( n<0 ){ 1407 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 1408 }else{ 1409 if( n==0 ) n = sqlite3Strlen30(zP4); 1410 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 1411 pOp->p4type = P4_DYNAMIC; 1412 } 1413 } 1414 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 1415 Op *pOp; 1416 sqlite3 *db; 1417 assert( p!=0 ); 1418 db = p->db; 1419 assert( p->eVdbeState==VDBE_INIT_STATE ); 1420 assert( p->aOp!=0 || db->mallocFailed ); 1421 if( db->mallocFailed ){ 1422 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 1423 return; 1424 } 1425 assert( p->nOp>0 ); 1426 assert( addr<p->nOp ); 1427 if( addr<0 ){ 1428 addr = p->nOp - 1; 1429 } 1430 pOp = &p->aOp[addr]; 1431 if( n>=0 || pOp->p4type ){ 1432 vdbeChangeP4Full(p, pOp, zP4, n); 1433 return; 1434 } 1435 if( n==P4_INT32 ){ 1436 /* Note: this cast is safe, because the origin data point was an int 1437 ** that was cast to a (const char *). */ 1438 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 1439 pOp->p4type = P4_INT32; 1440 }else if( zP4!=0 ){ 1441 assert( n<0 ); 1442 pOp->p4.p = (void*)zP4; 1443 pOp->p4type = (signed char)n; 1444 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 1445 } 1446 } 1447 1448 /* 1449 ** Change the P4 operand of the most recently coded instruction 1450 ** to the value defined by the arguments. This is a high-speed 1451 ** version of sqlite3VdbeChangeP4(). 1452 ** 1453 ** The P4 operand must not have been previously defined. And the new 1454 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 1455 ** those cases. 1456 */ 1457 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1458 VdbeOp *pOp; 1459 assert( n!=P4_INT32 && n!=P4_VTAB ); 1460 assert( n<=0 ); 1461 if( p->db->mallocFailed ){ 1462 freeP4(p->db, n, pP4); 1463 }else{ 1464 assert( pP4!=0 ); 1465 assert( p->nOp>0 ); 1466 pOp = &p->aOp[p->nOp-1]; 1467 assert( pOp->p4type==P4_NOTUSED ); 1468 pOp->p4type = n; 1469 pOp->p4.p = pP4; 1470 } 1471 } 1472 1473 /* 1474 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1475 ** index given. 1476 */ 1477 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1478 Vdbe *v = pParse->pVdbe; 1479 KeyInfo *pKeyInfo; 1480 assert( v!=0 ); 1481 assert( pIdx!=0 ); 1482 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1483 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1484 } 1485 1486 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1487 /* 1488 ** Change the comment on the most recently coded instruction. Or 1489 ** insert a No-op and add the comment to that new instruction. This 1490 ** makes the code easier to read during debugging. None of this happens 1491 ** in a production build. 1492 */ 1493 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1494 assert( p->nOp>0 || p->aOp==0 ); 1495 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 ); 1496 if( p->nOp ){ 1497 assert( p->aOp ); 1498 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1499 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1500 } 1501 } 1502 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1503 va_list ap; 1504 if( p ){ 1505 va_start(ap, zFormat); 1506 vdbeVComment(p, zFormat, ap); 1507 va_end(ap); 1508 } 1509 } 1510 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1511 va_list ap; 1512 if( p ){ 1513 sqlite3VdbeAddOp0(p, OP_Noop); 1514 va_start(ap, zFormat); 1515 vdbeVComment(p, zFormat, ap); 1516 va_end(ap); 1517 } 1518 } 1519 #endif /* NDEBUG */ 1520 1521 #ifdef SQLITE_VDBE_COVERAGE 1522 /* 1523 ** Set the value if the iSrcLine field for the previously coded instruction. 1524 */ 1525 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1526 sqlite3VdbeGetLastOp(v)->iSrcLine = iLine; 1527 } 1528 #endif /* SQLITE_VDBE_COVERAGE */ 1529 1530 /* 1531 ** Return the opcode for a given address. The address must be non-negative. 1532 ** See sqlite3VdbeGetLastOp() to get the most recently added opcode. 1533 ** 1534 ** If a memory allocation error has occurred prior to the calling of this 1535 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1536 ** is readable but not writable, though it is cast to a writable value. 1537 ** The return of a dummy opcode allows the call to continue functioning 1538 ** after an OOM fault without having to check to see if the return from 1539 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1540 ** dummy will never be written to. This is verified by code inspection and 1541 ** by running with Valgrind. 1542 */ 1543 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1544 /* C89 specifies that the constant "dummy" will be initialized to all 1545 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1546 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1547 assert( p->eVdbeState==VDBE_INIT_STATE ); 1548 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1549 if( p->db->mallocFailed ){ 1550 return (VdbeOp*)&dummy; 1551 }else{ 1552 return &p->aOp[addr]; 1553 } 1554 } 1555 1556 /* Return the most recently added opcode 1557 */ 1558 VdbeOp * sqlite3VdbeGetLastOp(Vdbe *p){ 1559 return sqlite3VdbeGetOp(p, p->nOp - 1); 1560 } 1561 1562 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1563 /* 1564 ** Return an integer value for one of the parameters to the opcode pOp 1565 ** determined by character c. 1566 */ 1567 static int translateP(char c, const Op *pOp){ 1568 if( c=='1' ) return pOp->p1; 1569 if( c=='2' ) return pOp->p2; 1570 if( c=='3' ) return pOp->p3; 1571 if( c=='4' ) return pOp->p4.i; 1572 return pOp->p5; 1573 } 1574 1575 /* 1576 ** Compute a string for the "comment" field of a VDBE opcode listing. 1577 ** 1578 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1579 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1580 ** absence of other comments, this synopsis becomes the comment on the opcode. 1581 ** Some translation occurs: 1582 ** 1583 ** "PX" -> "r[X]" 1584 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1585 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1586 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1587 */ 1588 char *sqlite3VdbeDisplayComment( 1589 sqlite3 *db, /* Optional - Oom error reporting only */ 1590 const Op *pOp, /* The opcode to be commented */ 1591 const char *zP4 /* Previously obtained value for P4 */ 1592 ){ 1593 const char *zOpName; 1594 const char *zSynopsis; 1595 int nOpName; 1596 int ii; 1597 char zAlt[50]; 1598 StrAccum x; 1599 1600 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1601 zOpName = sqlite3OpcodeName(pOp->opcode); 1602 nOpName = sqlite3Strlen30(zOpName); 1603 if( zOpName[nOpName+1] ){ 1604 int seenCom = 0; 1605 char c; 1606 zSynopsis = zOpName + nOpName + 1; 1607 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1608 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1609 zSynopsis = zAlt; 1610 } 1611 for(ii=0; (c = zSynopsis[ii])!=0; ii++){ 1612 if( c=='P' ){ 1613 c = zSynopsis[++ii]; 1614 if( c=='4' ){ 1615 sqlite3_str_appendall(&x, zP4); 1616 }else if( c=='X' ){ 1617 if( pOp->zComment && pOp->zComment[0] ){ 1618 sqlite3_str_appendall(&x, pOp->zComment); 1619 seenCom = 1; 1620 break; 1621 } 1622 }else{ 1623 int v1 = translateP(c, pOp); 1624 int v2; 1625 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1626 ii += 3; 1627 v2 = translateP(zSynopsis[ii], pOp); 1628 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1629 ii += 2; 1630 v2++; 1631 } 1632 if( v2<2 ){ 1633 sqlite3_str_appendf(&x, "%d", v1); 1634 }else{ 1635 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1); 1636 } 1637 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){ 1638 sqlite3_context *pCtx = pOp->p4.pCtx; 1639 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){ 1640 sqlite3_str_appendf(&x, "%d", v1); 1641 }else if( pCtx->argc>1 ){ 1642 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1); 1643 }else if( x.accError==0 ){ 1644 assert( x.nChar>2 ); 1645 x.nChar -= 2; 1646 ii++; 1647 } 1648 ii += 3; 1649 }else{ 1650 sqlite3_str_appendf(&x, "%d", v1); 1651 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1652 ii += 4; 1653 } 1654 } 1655 } 1656 }else{ 1657 sqlite3_str_appendchar(&x, 1, c); 1658 } 1659 } 1660 if( !seenCom && pOp->zComment ){ 1661 sqlite3_str_appendf(&x, "; %s", pOp->zComment); 1662 } 1663 }else if( pOp->zComment ){ 1664 sqlite3_str_appendall(&x, pOp->zComment); 1665 } 1666 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){ 1667 sqlite3OomFault(db); 1668 } 1669 return sqlite3StrAccumFinish(&x); 1670 } 1671 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */ 1672 1673 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1674 /* 1675 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1676 ** that can be displayed in the P4 column of EXPLAIN output. 1677 */ 1678 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1679 const char *zOp = 0; 1680 switch( pExpr->op ){ 1681 case TK_STRING: 1682 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1683 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); 1684 break; 1685 case TK_INTEGER: 1686 sqlite3_str_appendf(p, "%d", pExpr->u.iValue); 1687 break; 1688 case TK_NULL: 1689 sqlite3_str_appendf(p, "NULL"); 1690 break; 1691 case TK_REGISTER: { 1692 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); 1693 break; 1694 } 1695 case TK_COLUMN: { 1696 if( pExpr->iColumn<0 ){ 1697 sqlite3_str_appendf(p, "rowid"); 1698 }else{ 1699 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); 1700 } 1701 break; 1702 } 1703 case TK_LT: zOp = "LT"; break; 1704 case TK_LE: zOp = "LE"; break; 1705 case TK_GT: zOp = "GT"; break; 1706 case TK_GE: zOp = "GE"; break; 1707 case TK_NE: zOp = "NE"; break; 1708 case TK_EQ: zOp = "EQ"; break; 1709 case TK_IS: zOp = "IS"; break; 1710 case TK_ISNOT: zOp = "ISNOT"; break; 1711 case TK_AND: zOp = "AND"; break; 1712 case TK_OR: zOp = "OR"; break; 1713 case TK_PLUS: zOp = "ADD"; break; 1714 case TK_STAR: zOp = "MUL"; break; 1715 case TK_MINUS: zOp = "SUB"; break; 1716 case TK_REM: zOp = "REM"; break; 1717 case TK_BITAND: zOp = "BITAND"; break; 1718 case TK_BITOR: zOp = "BITOR"; break; 1719 case TK_SLASH: zOp = "DIV"; break; 1720 case TK_LSHIFT: zOp = "LSHIFT"; break; 1721 case TK_RSHIFT: zOp = "RSHIFT"; break; 1722 case TK_CONCAT: zOp = "CONCAT"; break; 1723 case TK_UMINUS: zOp = "MINUS"; break; 1724 case TK_UPLUS: zOp = "PLUS"; break; 1725 case TK_BITNOT: zOp = "BITNOT"; break; 1726 case TK_NOT: zOp = "NOT"; break; 1727 case TK_ISNULL: zOp = "ISNULL"; break; 1728 case TK_NOTNULL: zOp = "NOTNULL"; break; 1729 1730 default: 1731 sqlite3_str_appendf(p, "%s", "expr"); 1732 break; 1733 } 1734 1735 if( zOp ){ 1736 sqlite3_str_appendf(p, "%s(", zOp); 1737 displayP4Expr(p, pExpr->pLeft); 1738 if( pExpr->pRight ){ 1739 sqlite3_str_append(p, ",", 1); 1740 displayP4Expr(p, pExpr->pRight); 1741 } 1742 sqlite3_str_append(p, ")", 1); 1743 } 1744 } 1745 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1746 1747 1748 #if VDBE_DISPLAY_P4 1749 /* 1750 ** Compute a string that describes the P4 parameter for an opcode. 1751 ** Use zTemp for any required temporary buffer space. 1752 */ 1753 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){ 1754 char *zP4 = 0; 1755 StrAccum x; 1756 1757 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1758 switch( pOp->p4type ){ 1759 case P4_KEYINFO: { 1760 int j; 1761 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1762 assert( pKeyInfo->aSortFlags!=0 ); 1763 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); 1764 for(j=0; j<pKeyInfo->nKeyField; j++){ 1765 CollSeq *pColl = pKeyInfo->aColl[j]; 1766 const char *zColl = pColl ? pColl->zName : ""; 1767 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1768 sqlite3_str_appendf(&x, ",%s%s%s", 1769 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "", 1770 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "", 1771 zColl); 1772 } 1773 sqlite3_str_append(&x, ")", 1); 1774 break; 1775 } 1776 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1777 case P4_EXPR: { 1778 displayP4Expr(&x, pOp->p4.pExpr); 1779 break; 1780 } 1781 #endif 1782 case P4_COLLSEQ: { 1783 static const char *const encnames[] = {"?", "8", "16LE", "16BE"}; 1784 CollSeq *pColl = pOp->p4.pColl; 1785 assert( pColl->enc<4 ); 1786 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName, 1787 encnames[pColl->enc]); 1788 break; 1789 } 1790 case P4_FUNCDEF: { 1791 FuncDef *pDef = pOp->p4.pFunc; 1792 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1793 break; 1794 } 1795 case P4_FUNCCTX: { 1796 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1797 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1798 break; 1799 } 1800 case P4_INT64: { 1801 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); 1802 break; 1803 } 1804 case P4_INT32: { 1805 sqlite3_str_appendf(&x, "%d", pOp->p4.i); 1806 break; 1807 } 1808 case P4_REAL: { 1809 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); 1810 break; 1811 } 1812 case P4_MEM: { 1813 Mem *pMem = pOp->p4.pMem; 1814 if( pMem->flags & MEM_Str ){ 1815 zP4 = pMem->z; 1816 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1817 sqlite3_str_appendf(&x, "%lld", pMem->u.i); 1818 }else if( pMem->flags & MEM_Real ){ 1819 sqlite3_str_appendf(&x, "%.16g", pMem->u.r); 1820 }else if( pMem->flags & MEM_Null ){ 1821 zP4 = "NULL"; 1822 }else{ 1823 assert( pMem->flags & MEM_Blob ); 1824 zP4 = "(blob)"; 1825 } 1826 break; 1827 } 1828 #ifndef SQLITE_OMIT_VIRTUALTABLE 1829 case P4_VTAB: { 1830 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1831 sqlite3_str_appendf(&x, "vtab:%p", pVtab); 1832 break; 1833 } 1834 #endif 1835 case P4_INTARRAY: { 1836 u32 i; 1837 u32 *ai = pOp->p4.ai; 1838 u32 n = ai[0]; /* The first element of an INTARRAY is always the 1839 ** count of the number of elements to follow */ 1840 for(i=1; i<=n; i++){ 1841 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]); 1842 } 1843 sqlite3_str_append(&x, "]", 1); 1844 break; 1845 } 1846 case P4_SUBPROGRAM: { 1847 zP4 = "program"; 1848 break; 1849 } 1850 case P4_TABLE: { 1851 zP4 = pOp->p4.pTab->zName; 1852 break; 1853 } 1854 default: { 1855 zP4 = pOp->p4.z; 1856 } 1857 } 1858 if( zP4 ) sqlite3_str_appendall(&x, zP4); 1859 if( (x.accError & SQLITE_NOMEM)!=0 ){ 1860 sqlite3OomFault(db); 1861 } 1862 return sqlite3StrAccumFinish(&x); 1863 } 1864 #endif /* VDBE_DISPLAY_P4 */ 1865 1866 /* 1867 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1868 ** 1869 ** The prepared statements need to know in advance the complete set of 1870 ** attached databases that will be use. A mask of these databases 1871 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1872 ** p->btreeMask of databases that will require a lock. 1873 */ 1874 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1875 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1876 assert( i<(int)sizeof(p->btreeMask)*8 ); 1877 DbMaskSet(p->btreeMask, i); 1878 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1879 DbMaskSet(p->lockMask, i); 1880 } 1881 } 1882 1883 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1884 /* 1885 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1886 ** this routine obtains the mutex associated with each BtShared structure 1887 ** that may be accessed by the VM passed as an argument. In doing so it also 1888 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1889 ** that the correct busy-handler callback is invoked if required. 1890 ** 1891 ** If SQLite is not threadsafe but does support shared-cache mode, then 1892 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1893 ** of all of BtShared structures accessible via the database handle 1894 ** associated with the VM. 1895 ** 1896 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1897 ** function is a no-op. 1898 ** 1899 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1900 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1901 ** corresponding to btrees that use shared cache. Then the runtime of 1902 ** this routine is N*N. But as N is rarely more than 1, this should not 1903 ** be a problem. 1904 */ 1905 void sqlite3VdbeEnter(Vdbe *p){ 1906 int i; 1907 sqlite3 *db; 1908 Db *aDb; 1909 int nDb; 1910 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1911 db = p->db; 1912 aDb = db->aDb; 1913 nDb = db->nDb; 1914 for(i=0; i<nDb; i++){ 1915 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1916 sqlite3BtreeEnter(aDb[i].pBt); 1917 } 1918 } 1919 } 1920 #endif 1921 1922 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1923 /* 1924 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1925 */ 1926 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1927 int i; 1928 sqlite3 *db; 1929 Db *aDb; 1930 int nDb; 1931 db = p->db; 1932 aDb = db->aDb; 1933 nDb = db->nDb; 1934 for(i=0; i<nDb; i++){ 1935 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1936 sqlite3BtreeLeave(aDb[i].pBt); 1937 } 1938 } 1939 } 1940 void sqlite3VdbeLeave(Vdbe *p){ 1941 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1942 vdbeLeave(p); 1943 } 1944 #endif 1945 1946 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1947 /* 1948 ** Print a single opcode. This routine is used for debugging only. 1949 */ 1950 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ 1951 char *zP4; 1952 char *zCom; 1953 sqlite3 dummyDb; 1954 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1955 if( pOut==0 ) pOut = stdout; 1956 sqlite3BeginBenignMalloc(); 1957 dummyDb.mallocFailed = 1; 1958 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp); 1959 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1960 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4); 1961 #else 1962 zCom = 0; 1963 #endif 1964 /* NB: The sqlite3OpcodeName() function is implemented by code created 1965 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1966 ** information from the vdbe.c source text */ 1967 fprintf(pOut, zFormat1, pc, 1968 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, 1969 zP4 ? zP4 : "", pOp->p5, 1970 zCom ? zCom : "" 1971 ); 1972 fflush(pOut); 1973 sqlite3_free(zP4); 1974 sqlite3_free(zCom); 1975 sqlite3EndBenignMalloc(); 1976 } 1977 #endif 1978 1979 /* 1980 ** Initialize an array of N Mem element. 1981 ** 1982 ** This is a high-runner, so only those fields that really do need to 1983 ** be initialized are set. The Mem structure is organized so that 1984 ** the fields that get initialized are nearby and hopefully on the same 1985 ** cache line. 1986 ** 1987 ** Mem.flags = flags 1988 ** Mem.db = db 1989 ** Mem.szMalloc = 0 1990 ** 1991 ** All other fields of Mem can safely remain uninitialized for now. They 1992 ** will be initialized before use. 1993 */ 1994 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1995 if( N>0 ){ 1996 do{ 1997 p->flags = flags; 1998 p->db = db; 1999 p->szMalloc = 0; 2000 #ifdef SQLITE_DEBUG 2001 p->pScopyFrom = 0; 2002 #endif 2003 p++; 2004 }while( (--N)>0 ); 2005 } 2006 } 2007 2008 /* 2009 ** Release auxiliary memory held in an array of N Mem elements. 2010 ** 2011 ** After this routine returns, all Mem elements in the array will still 2012 ** be valid. Those Mem elements that were not holding auxiliary resources 2013 ** will be unchanged. Mem elements which had something freed will be 2014 ** set to MEM_Undefined. 2015 */ 2016 static void releaseMemArray(Mem *p, int N){ 2017 if( p && N ){ 2018 Mem *pEnd = &p[N]; 2019 sqlite3 *db = p->db; 2020 if( db->pnBytesFreed ){ 2021 do{ 2022 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 2023 }while( (++p)<pEnd ); 2024 return; 2025 } 2026 do{ 2027 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 2028 assert( sqlite3VdbeCheckMemInvariants(p) ); 2029 2030 /* This block is really an inlined version of sqlite3VdbeMemRelease() 2031 ** that takes advantage of the fact that the memory cell value is 2032 ** being set to NULL after releasing any dynamic resources. 2033 ** 2034 ** The justification for duplicating code is that according to 2035 ** callgrind, this causes a certain test case to hit the CPU 4.7 2036 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 2037 ** sqlite3MemRelease() were called from here. With -O2, this jumps 2038 ** to 6.6 percent. The test case is inserting 1000 rows into a table 2039 ** with no indexes using a single prepared INSERT statement, bind() 2040 ** and reset(). Inserts are grouped into a transaction. 2041 */ 2042 testcase( p->flags & MEM_Agg ); 2043 testcase( p->flags & MEM_Dyn ); 2044 if( p->flags&(MEM_Agg|MEM_Dyn) ){ 2045 testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel ); 2046 sqlite3VdbeMemRelease(p); 2047 p->flags = MEM_Undefined; 2048 }else if( p->szMalloc ){ 2049 sqlite3DbNNFreeNN(db, p->zMalloc); 2050 p->szMalloc = 0; 2051 p->flags = MEM_Undefined; 2052 } 2053 #ifdef SQLITE_DEBUG 2054 else{ 2055 p->flags = MEM_Undefined; 2056 } 2057 #endif 2058 }while( (++p)<pEnd ); 2059 } 2060 } 2061 2062 #ifdef SQLITE_DEBUG 2063 /* 2064 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is 2065 ** and false if something is wrong. 2066 ** 2067 ** This routine is intended for use inside of assert() statements only. 2068 */ 2069 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){ 2070 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; 2071 return 1; 2072 } 2073 #endif 2074 2075 2076 /* 2077 ** This is a destructor on a Mem object (which is really an sqlite3_value) 2078 ** that deletes the Frame object that is attached to it as a blob. 2079 ** 2080 ** This routine does not delete the Frame right away. It merely adds the 2081 ** frame to a list of frames to be deleted when the Vdbe halts. 2082 */ 2083 void sqlite3VdbeFrameMemDel(void *pArg){ 2084 VdbeFrame *pFrame = (VdbeFrame*)pArg; 2085 assert( sqlite3VdbeFrameIsValid(pFrame) ); 2086 pFrame->pParent = pFrame->v->pDelFrame; 2087 pFrame->v->pDelFrame = pFrame; 2088 } 2089 2090 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN) 2091 /* 2092 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN 2093 ** QUERY PLAN output. 2094 ** 2095 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no 2096 ** more opcodes to be displayed. 2097 */ 2098 int sqlite3VdbeNextOpcode( 2099 Vdbe *p, /* The statement being explained */ 2100 Mem *pSub, /* Storage for keeping track of subprogram nesting */ 2101 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */ 2102 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */ 2103 int *piAddr, /* OUT: Write index into (*paOp)[] here */ 2104 Op **paOp /* OUT: Write the opcode array here */ 2105 ){ 2106 int nRow; /* Stop when row count reaches this */ 2107 int nSub = 0; /* Number of sub-vdbes seen so far */ 2108 SubProgram **apSub = 0; /* Array of sub-vdbes */ 2109 int i; /* Next instruction address */ 2110 int rc = SQLITE_OK; /* Result code */ 2111 Op *aOp = 0; /* Opcode array */ 2112 int iPc; /* Rowid. Copy of value in *piPc */ 2113 2114 /* When the number of output rows reaches nRow, that means the 2115 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 2116 ** nRow is the sum of the number of rows in the main program, plus 2117 ** the sum of the number of rows in all trigger subprograms encountered 2118 ** so far. The nRow value will increase as new trigger subprograms are 2119 ** encountered, but p->pc will eventually catch up to nRow. 2120 */ 2121 nRow = p->nOp; 2122 if( pSub!=0 ){ 2123 if( pSub->flags&MEM_Blob ){ 2124 /* pSub is initiallly NULL. It is initialized to a BLOB by 2125 ** the P4_SUBPROGRAM processing logic below */ 2126 nSub = pSub->n/sizeof(Vdbe*); 2127 apSub = (SubProgram **)pSub->z; 2128 } 2129 for(i=0; i<nSub; i++){ 2130 nRow += apSub[i]->nOp; 2131 } 2132 } 2133 iPc = *piPc; 2134 while(1){ /* Loop exits via break */ 2135 i = iPc++; 2136 if( i>=nRow ){ 2137 p->rc = SQLITE_OK; 2138 rc = SQLITE_DONE; 2139 break; 2140 } 2141 if( i<p->nOp ){ 2142 /* The rowid is small enough that we are still in the 2143 ** main program. */ 2144 aOp = p->aOp; 2145 }else{ 2146 /* We are currently listing subprograms. Figure out which one and 2147 ** pick up the appropriate opcode. */ 2148 int j; 2149 i -= p->nOp; 2150 assert( apSub!=0 ); 2151 assert( nSub>0 ); 2152 for(j=0; i>=apSub[j]->nOp; j++){ 2153 i -= apSub[j]->nOp; 2154 assert( i<apSub[j]->nOp || j+1<nSub ); 2155 } 2156 aOp = apSub[j]->aOp; 2157 } 2158 2159 /* When an OP_Program opcode is encounter (the only opcode that has 2160 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 2161 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 2162 ** has not already been seen. 2163 */ 2164 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){ 2165 int nByte = (nSub+1)*sizeof(SubProgram*); 2166 int j; 2167 for(j=0; j<nSub; j++){ 2168 if( apSub[j]==aOp[i].p4.pProgram ) break; 2169 } 2170 if( j==nSub ){ 2171 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); 2172 if( p->rc!=SQLITE_OK ){ 2173 rc = SQLITE_ERROR; 2174 break; 2175 } 2176 apSub = (SubProgram **)pSub->z; 2177 apSub[nSub++] = aOp[i].p4.pProgram; 2178 MemSetTypeFlag(pSub, MEM_Blob); 2179 pSub->n = nSub*sizeof(SubProgram*); 2180 nRow += aOp[i].p4.pProgram->nOp; 2181 } 2182 } 2183 if( eMode==0 ) break; 2184 #ifdef SQLITE_ENABLE_BYTECODE_VTAB 2185 if( eMode==2 ){ 2186 Op *pOp = aOp + i; 2187 if( pOp->opcode==OP_OpenRead ) break; 2188 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break; 2189 if( pOp->opcode==OP_ReopenIdx ) break; 2190 }else 2191 #endif 2192 { 2193 assert( eMode==1 ); 2194 if( aOp[i].opcode==OP_Explain ) break; 2195 if( aOp[i].opcode==OP_Init && iPc>1 ) break; 2196 } 2197 } 2198 *piPc = iPc; 2199 *piAddr = i; 2200 *paOp = aOp; 2201 return rc; 2202 } 2203 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */ 2204 2205 2206 /* 2207 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 2208 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 2209 */ 2210 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 2211 int i; 2212 Mem *aMem = VdbeFrameMem(p); 2213 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 2214 assert( sqlite3VdbeFrameIsValid(p) ); 2215 for(i=0; i<p->nChildCsr; i++){ 2216 if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]); 2217 } 2218 releaseMemArray(aMem, p->nChildMem); 2219 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 2220 sqlite3DbFree(p->v->db, p); 2221 } 2222 2223 #ifndef SQLITE_OMIT_EXPLAIN 2224 /* 2225 ** Give a listing of the program in the virtual machine. 2226 ** 2227 ** The interface is the same as sqlite3VdbeExec(). But instead of 2228 ** running the code, it invokes the callback once for each instruction. 2229 ** This feature is used to implement "EXPLAIN". 2230 ** 2231 ** When p->explain==1, each instruction is listed. When 2232 ** p->explain==2, only OP_Explain instructions are listed and these 2233 ** are shown in a different format. p->explain==2 is used to implement 2234 ** EXPLAIN QUERY PLAN. 2235 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers 2236 ** are also shown, so that the boundaries between the main program and 2237 ** each trigger are clear. 2238 ** 2239 ** When p->explain==1, first the main program is listed, then each of 2240 ** the trigger subprograms are listed one by one. 2241 */ 2242 int sqlite3VdbeList( 2243 Vdbe *p /* The VDBE */ 2244 ){ 2245 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 2246 sqlite3 *db = p->db; /* The database connection */ 2247 int i; /* Loop counter */ 2248 int rc = SQLITE_OK; /* Return code */ 2249 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 2250 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); 2251 Op *aOp; /* Array of opcodes */ 2252 Op *pOp; /* Current opcode */ 2253 2254 assert( p->explain ); 2255 assert( p->eVdbeState==VDBE_RUN_STATE ); 2256 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 2257 2258 /* Even though this opcode does not use dynamic strings for 2259 ** the result, result columns may become dynamic if the user calls 2260 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 2261 */ 2262 releaseMemArray(pMem, 8); 2263 p->pResultSet = 0; 2264 2265 if( p->rc==SQLITE_NOMEM ){ 2266 /* This happens if a malloc() inside a call to sqlite3_column_text() or 2267 ** sqlite3_column_text16() failed. */ 2268 sqlite3OomFault(db); 2269 return SQLITE_ERROR; 2270 } 2271 2272 if( bListSubprogs ){ 2273 /* The first 8 memory cells are used for the result set. So we will 2274 ** commandeer the 9th cell to use as storage for an array of pointers 2275 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 2276 ** cells. */ 2277 assert( p->nMem>9 ); 2278 pSub = &p->aMem[9]; 2279 }else{ 2280 pSub = 0; 2281 } 2282 2283 /* Figure out which opcode is next to display */ 2284 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp); 2285 2286 if( rc==SQLITE_OK ){ 2287 pOp = aOp + i; 2288 if( AtomicLoad(&db->u1.isInterrupted) ){ 2289 p->rc = SQLITE_INTERRUPT; 2290 rc = SQLITE_ERROR; 2291 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 2292 }else{ 2293 char *zP4 = sqlite3VdbeDisplayP4(db, pOp); 2294 if( p->explain==2 ){ 2295 sqlite3VdbeMemSetInt64(pMem, pOp->p1); 2296 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2); 2297 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3); 2298 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free); 2299 p->nResColumn = 4; 2300 }else{ 2301 sqlite3VdbeMemSetInt64(pMem+0, i); 2302 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode), 2303 -1, SQLITE_UTF8, SQLITE_STATIC); 2304 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1); 2305 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2); 2306 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3); 2307 /* pMem+5 for p4 is done last */ 2308 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5); 2309 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2310 { 2311 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4); 2312 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free); 2313 } 2314 #else 2315 sqlite3VdbeMemSetNull(pMem+7); 2316 #endif 2317 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free); 2318 p->nResColumn = 8; 2319 } 2320 p->pResultSet = pMem; 2321 if( db->mallocFailed ){ 2322 p->rc = SQLITE_NOMEM; 2323 rc = SQLITE_ERROR; 2324 }else{ 2325 p->rc = SQLITE_OK; 2326 rc = SQLITE_ROW; 2327 } 2328 } 2329 } 2330 return rc; 2331 } 2332 #endif /* SQLITE_OMIT_EXPLAIN */ 2333 2334 #ifdef SQLITE_DEBUG 2335 /* 2336 ** Print the SQL that was used to generate a VDBE program. 2337 */ 2338 void sqlite3VdbePrintSql(Vdbe *p){ 2339 const char *z = 0; 2340 if( p->zSql ){ 2341 z = p->zSql; 2342 }else if( p->nOp>=1 ){ 2343 const VdbeOp *pOp = &p->aOp[0]; 2344 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2345 z = pOp->p4.z; 2346 while( sqlite3Isspace(*z) ) z++; 2347 } 2348 } 2349 if( z ) printf("SQL: [%s]\n", z); 2350 } 2351 #endif 2352 2353 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 2354 /* 2355 ** Print an IOTRACE message showing SQL content. 2356 */ 2357 void sqlite3VdbeIOTraceSql(Vdbe *p){ 2358 int nOp = p->nOp; 2359 VdbeOp *pOp; 2360 if( sqlite3IoTrace==0 ) return; 2361 if( nOp<1 ) return; 2362 pOp = &p->aOp[0]; 2363 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2364 int i, j; 2365 char z[1000]; 2366 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 2367 for(i=0; sqlite3Isspace(z[i]); i++){} 2368 for(j=0; z[i]; i++){ 2369 if( sqlite3Isspace(z[i]) ){ 2370 if( z[i-1]!=' ' ){ 2371 z[j++] = ' '; 2372 } 2373 }else{ 2374 z[j++] = z[i]; 2375 } 2376 } 2377 z[j] = 0; 2378 sqlite3IoTrace("SQL %s\n", z); 2379 } 2380 } 2381 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 2382 2383 /* An instance of this object describes bulk memory available for use 2384 ** by subcomponents of a prepared statement. Space is allocated out 2385 ** of a ReusableSpace object by the allocSpace() routine below. 2386 */ 2387 struct ReusableSpace { 2388 u8 *pSpace; /* Available memory */ 2389 sqlite3_int64 nFree; /* Bytes of available memory */ 2390 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */ 2391 }; 2392 2393 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 2394 ** from the ReusableSpace object. Return a pointer to the allocated 2395 ** memory on success. If insufficient memory is available in the 2396 ** ReusableSpace object, increase the ReusableSpace.nNeeded 2397 ** value by the amount needed and return NULL. 2398 ** 2399 ** If pBuf is not initially NULL, that means that the memory has already 2400 ** been allocated by a prior call to this routine, so just return a copy 2401 ** of pBuf and leave ReusableSpace unchanged. 2402 ** 2403 ** This allocator is employed to repurpose unused slots at the end of the 2404 ** opcode array of prepared state for other memory needs of the prepared 2405 ** statement. 2406 */ 2407 static void *allocSpace( 2408 struct ReusableSpace *p, /* Bulk memory available for allocation */ 2409 void *pBuf, /* Pointer to a prior allocation */ 2410 sqlite3_int64 nByte /* Bytes of memory needed. */ 2411 ){ 2412 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 2413 if( pBuf==0 ){ 2414 nByte = ROUND8P(nByte); 2415 if( nByte <= p->nFree ){ 2416 p->nFree -= nByte; 2417 pBuf = &p->pSpace[p->nFree]; 2418 }else{ 2419 p->nNeeded += nByte; 2420 } 2421 } 2422 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 2423 return pBuf; 2424 } 2425 2426 /* 2427 ** Rewind the VDBE back to the beginning in preparation for 2428 ** running it. 2429 */ 2430 void sqlite3VdbeRewind(Vdbe *p){ 2431 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 2432 int i; 2433 #endif 2434 assert( p!=0 ); 2435 assert( p->eVdbeState==VDBE_INIT_STATE 2436 || p->eVdbeState==VDBE_READY_STATE 2437 || p->eVdbeState==VDBE_HALT_STATE ); 2438 2439 /* There should be at least one opcode. 2440 */ 2441 assert( p->nOp>0 ); 2442 2443 p->eVdbeState = VDBE_READY_STATE; 2444 2445 #ifdef SQLITE_DEBUG 2446 for(i=0; i<p->nMem; i++){ 2447 assert( p->aMem[i].db==p->db ); 2448 } 2449 #endif 2450 p->pc = -1; 2451 p->rc = SQLITE_OK; 2452 p->errorAction = OE_Abort; 2453 p->nChange = 0; 2454 p->cacheCtr = 1; 2455 p->minWriteFileFormat = 255; 2456 p->iStatement = 0; 2457 p->nFkConstraint = 0; 2458 #ifdef VDBE_PROFILE 2459 for(i=0; i<p->nOp; i++){ 2460 p->aOp[i].cnt = 0; 2461 p->aOp[i].cycles = 0; 2462 } 2463 #endif 2464 } 2465 2466 /* 2467 ** Prepare a virtual machine for execution for the first time after 2468 ** creating the virtual machine. This involves things such 2469 ** as allocating registers and initializing the program counter. 2470 ** After the VDBE has be prepped, it can be executed by one or more 2471 ** calls to sqlite3VdbeExec(). 2472 ** 2473 ** This function may be called exactly once on each virtual machine. 2474 ** After this routine is called the VM has been "packaged" and is ready 2475 ** to run. After this routine is called, further calls to 2476 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 2477 ** the Vdbe from the Parse object that helped generate it so that the 2478 ** the Vdbe becomes an independent entity and the Parse object can be 2479 ** destroyed. 2480 ** 2481 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 2482 ** to its initial state after it has been run. 2483 */ 2484 void sqlite3VdbeMakeReady( 2485 Vdbe *p, /* The VDBE */ 2486 Parse *pParse /* Parsing context */ 2487 ){ 2488 sqlite3 *db; /* The database connection */ 2489 int nVar; /* Number of parameters */ 2490 int nMem; /* Number of VM memory registers */ 2491 int nCursor; /* Number of cursors required */ 2492 int nArg; /* Number of arguments in subprograms */ 2493 int n; /* Loop counter */ 2494 struct ReusableSpace x; /* Reusable bulk memory */ 2495 2496 assert( p!=0 ); 2497 assert( p->nOp>0 ); 2498 assert( pParse!=0 ); 2499 assert( p->eVdbeState==VDBE_INIT_STATE ); 2500 assert( pParse==p->pParse ); 2501 p->pVList = pParse->pVList; 2502 pParse->pVList = 0; 2503 db = p->db; 2504 assert( db->mallocFailed==0 ); 2505 nVar = pParse->nVar; 2506 nMem = pParse->nMem; 2507 nCursor = pParse->nTab; 2508 nArg = pParse->nMaxArg; 2509 2510 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 2511 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 2512 ** space at the end of aMem[] for cursors 1 and greater. 2513 ** See also: allocateCursor(). 2514 */ 2515 nMem += nCursor; 2516 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 2517 2518 /* Figure out how much reusable memory is available at the end of the 2519 ** opcode array. This extra memory will be reallocated for other elements 2520 ** of the prepared statement. 2521 */ 2522 n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 2523 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 2524 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 2525 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 2526 assert( x.nFree>=0 ); 2527 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 2528 2529 resolveP2Values(p, &nArg); 2530 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 2531 if( pParse->explain ){ 2532 static const char * const azColName[] = { 2533 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", 2534 "id", "parent", "notused", "detail" 2535 }; 2536 int iFirst, mx, i; 2537 if( nMem<10 ) nMem = 10; 2538 p->explain = pParse->explain; 2539 if( pParse->explain==2 ){ 2540 sqlite3VdbeSetNumCols(p, 4); 2541 iFirst = 8; 2542 mx = 12; 2543 }else{ 2544 sqlite3VdbeSetNumCols(p, 8); 2545 iFirst = 0; 2546 mx = 8; 2547 } 2548 for(i=iFirst; i<mx; i++){ 2549 sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME, 2550 azColName[i], SQLITE_STATIC); 2551 } 2552 } 2553 p->expired = 0; 2554 2555 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 2556 ** passes. On the first pass, we try to reuse unused memory at the 2557 ** end of the opcode array. If we are unable to satisfy all memory 2558 ** requirements by reusing the opcode array tail, then the second 2559 ** pass will fill in the remainder using a fresh memory allocation. 2560 ** 2561 ** This two-pass approach that reuses as much memory as possible from 2562 ** the leftover memory at the end of the opcode array. This can significantly 2563 ** reduce the amount of memory held by a prepared statement. 2564 */ 2565 x.nNeeded = 0; 2566 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem)); 2567 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem)); 2568 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*)); 2569 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*)); 2570 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2571 p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64)); 2572 #endif 2573 if( x.nNeeded ){ 2574 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 2575 x.nFree = x.nNeeded; 2576 if( !db->mallocFailed ){ 2577 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 2578 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 2579 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 2580 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 2581 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2582 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 2583 #endif 2584 } 2585 } 2586 2587 if( db->mallocFailed ){ 2588 p->nVar = 0; 2589 p->nCursor = 0; 2590 p->nMem = 0; 2591 }else{ 2592 p->nCursor = nCursor; 2593 p->nVar = (ynVar)nVar; 2594 initMemArray(p->aVar, nVar, db, MEM_Null); 2595 p->nMem = nMem; 2596 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2597 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2598 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2599 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2600 #endif 2601 } 2602 sqlite3VdbeRewind(p); 2603 } 2604 2605 /* 2606 ** Close a VDBE cursor and release all the resources that cursor 2607 ** happens to hold. 2608 */ 2609 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2610 if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx); 2611 } 2612 void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){ 2613 switch( pCx->eCurType ){ 2614 case CURTYPE_SORTER: { 2615 sqlite3VdbeSorterClose(p->db, pCx); 2616 break; 2617 } 2618 case CURTYPE_BTREE: { 2619 assert( pCx->uc.pCursor!=0 ); 2620 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2621 break; 2622 } 2623 #ifndef SQLITE_OMIT_VIRTUALTABLE 2624 case CURTYPE_VTAB: { 2625 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2626 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2627 assert( pVCur->pVtab->nRef>0 ); 2628 pVCur->pVtab->nRef--; 2629 pModule->xClose(pVCur); 2630 break; 2631 } 2632 #endif 2633 } 2634 } 2635 2636 /* 2637 ** Close all cursors in the current frame. 2638 */ 2639 static void closeCursorsInFrame(Vdbe *p){ 2640 int i; 2641 for(i=0; i<p->nCursor; i++){ 2642 VdbeCursor *pC = p->apCsr[i]; 2643 if( pC ){ 2644 sqlite3VdbeFreeCursorNN(p, pC); 2645 p->apCsr[i] = 0; 2646 } 2647 } 2648 } 2649 2650 /* 2651 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2652 ** is used, for example, when a trigger sub-program is halted to restore 2653 ** control to the main program. 2654 */ 2655 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2656 Vdbe *v = pFrame->v; 2657 closeCursorsInFrame(v); 2658 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2659 v->anExec = pFrame->anExec; 2660 #endif 2661 v->aOp = pFrame->aOp; 2662 v->nOp = pFrame->nOp; 2663 v->aMem = pFrame->aMem; 2664 v->nMem = pFrame->nMem; 2665 v->apCsr = pFrame->apCsr; 2666 v->nCursor = pFrame->nCursor; 2667 v->db->lastRowid = pFrame->lastRowid; 2668 v->nChange = pFrame->nChange; 2669 v->db->nChange = pFrame->nDbChange; 2670 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2671 v->pAuxData = pFrame->pAuxData; 2672 pFrame->pAuxData = 0; 2673 return pFrame->pc; 2674 } 2675 2676 /* 2677 ** Close all cursors. 2678 ** 2679 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2680 ** cell array. This is necessary as the memory cell array may contain 2681 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2682 ** open cursors. 2683 */ 2684 static void closeAllCursors(Vdbe *p){ 2685 if( p->pFrame ){ 2686 VdbeFrame *pFrame; 2687 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2688 sqlite3VdbeFrameRestore(pFrame); 2689 p->pFrame = 0; 2690 p->nFrame = 0; 2691 } 2692 assert( p->nFrame==0 ); 2693 closeCursorsInFrame(p); 2694 releaseMemArray(p->aMem, p->nMem); 2695 while( p->pDelFrame ){ 2696 VdbeFrame *pDel = p->pDelFrame; 2697 p->pDelFrame = pDel->pParent; 2698 sqlite3VdbeFrameDelete(pDel); 2699 } 2700 2701 /* Delete any auxdata allocations made by the VM */ 2702 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2703 assert( p->pAuxData==0 ); 2704 } 2705 2706 /* 2707 ** Set the number of result columns that will be returned by this SQL 2708 ** statement. This is now set at compile time, rather than during 2709 ** execution of the vdbe program so that sqlite3_column_count() can 2710 ** be called on an SQL statement before sqlite3_step(). 2711 */ 2712 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2713 int n; 2714 sqlite3 *db = p->db; 2715 2716 if( p->nResColumn ){ 2717 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2718 sqlite3DbFree(db, p->aColName); 2719 } 2720 n = nResColumn*COLNAME_N; 2721 p->nResColumn = (u16)nResColumn; 2722 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2723 if( p->aColName==0 ) return; 2724 initMemArray(p->aColName, n, db, MEM_Null); 2725 } 2726 2727 /* 2728 ** Set the name of the idx'th column to be returned by the SQL statement. 2729 ** zName must be a pointer to a nul terminated string. 2730 ** 2731 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2732 ** 2733 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2734 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2735 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2736 */ 2737 int sqlite3VdbeSetColName( 2738 Vdbe *p, /* Vdbe being configured */ 2739 int idx, /* Index of column zName applies to */ 2740 int var, /* One of the COLNAME_* constants */ 2741 const char *zName, /* Pointer to buffer containing name */ 2742 void (*xDel)(void*) /* Memory management strategy for zName */ 2743 ){ 2744 int rc; 2745 Mem *pColName; 2746 assert( idx<p->nResColumn ); 2747 assert( var<COLNAME_N ); 2748 if( p->db->mallocFailed ){ 2749 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2750 return SQLITE_NOMEM_BKPT; 2751 } 2752 assert( p->aColName!=0 ); 2753 pColName = &(p->aColName[idx+var*p->nResColumn]); 2754 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2755 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2756 return rc; 2757 } 2758 2759 /* 2760 ** A read or write transaction may or may not be active on database handle 2761 ** db. If a transaction is active, commit it. If there is a 2762 ** write-transaction spanning more than one database file, this routine 2763 ** takes care of the super-journal trickery. 2764 */ 2765 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2766 int i; 2767 int nTrans = 0; /* Number of databases with an active write-transaction 2768 ** that are candidates for a two-phase commit using a 2769 ** super-journal */ 2770 int rc = SQLITE_OK; 2771 int needXcommit = 0; 2772 2773 #ifdef SQLITE_OMIT_VIRTUALTABLE 2774 /* With this option, sqlite3VtabSync() is defined to be simply 2775 ** SQLITE_OK so p is not used. 2776 */ 2777 UNUSED_PARAMETER(p); 2778 #endif 2779 2780 /* Before doing anything else, call the xSync() callback for any 2781 ** virtual module tables written in this transaction. This has to 2782 ** be done before determining whether a super-journal file is 2783 ** required, as an xSync() callback may add an attached database 2784 ** to the transaction. 2785 */ 2786 rc = sqlite3VtabSync(db, p); 2787 2788 /* This loop determines (a) if the commit hook should be invoked and 2789 ** (b) how many database files have open write transactions, not 2790 ** including the temp database. (b) is important because if more than 2791 ** one database file has an open write transaction, a super-journal 2792 ** file is required for an atomic commit. 2793 */ 2794 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2795 Btree *pBt = db->aDb[i].pBt; 2796 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 2797 /* Whether or not a database might need a super-journal depends upon 2798 ** its journal mode (among other things). This matrix determines which 2799 ** journal modes use a super-journal and which do not */ 2800 static const u8 aMJNeeded[] = { 2801 /* DELETE */ 1, 2802 /* PERSIST */ 1, 2803 /* OFF */ 0, 2804 /* TRUNCATE */ 1, 2805 /* MEMORY */ 0, 2806 /* WAL */ 0 2807 }; 2808 Pager *pPager; /* Pager associated with pBt */ 2809 needXcommit = 1; 2810 sqlite3BtreeEnter(pBt); 2811 pPager = sqlite3BtreePager(pBt); 2812 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2813 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2814 && sqlite3PagerIsMemdb(pPager)==0 2815 ){ 2816 assert( i!=1 ); 2817 nTrans++; 2818 } 2819 rc = sqlite3PagerExclusiveLock(pPager); 2820 sqlite3BtreeLeave(pBt); 2821 } 2822 } 2823 if( rc!=SQLITE_OK ){ 2824 return rc; 2825 } 2826 2827 /* If there are any write-transactions at all, invoke the commit hook */ 2828 if( needXcommit && db->xCommitCallback ){ 2829 rc = db->xCommitCallback(db->pCommitArg); 2830 if( rc ){ 2831 return SQLITE_CONSTRAINT_COMMITHOOK; 2832 } 2833 } 2834 2835 /* The simple case - no more than one database file (not counting the 2836 ** TEMP database) has a transaction active. There is no need for the 2837 ** super-journal. 2838 ** 2839 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2840 ** string, it means the main database is :memory: or a temp file. In 2841 ** that case we do not support atomic multi-file commits, so use the 2842 ** simple case then too. 2843 */ 2844 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2845 || nTrans<=1 2846 ){ 2847 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2848 Btree *pBt = db->aDb[i].pBt; 2849 if( pBt ){ 2850 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2851 } 2852 } 2853 2854 /* Do the commit only if all databases successfully complete phase 1. 2855 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2856 ** IO error while deleting or truncating a journal file. It is unlikely, 2857 ** but could happen. In this case abandon processing and return the error. 2858 */ 2859 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2860 Btree *pBt = db->aDb[i].pBt; 2861 if( pBt ){ 2862 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2863 } 2864 } 2865 if( rc==SQLITE_OK ){ 2866 sqlite3VtabCommit(db); 2867 } 2868 } 2869 2870 /* The complex case - There is a multi-file write-transaction active. 2871 ** This requires a super-journal file to ensure the transaction is 2872 ** committed atomically. 2873 */ 2874 #ifndef SQLITE_OMIT_DISKIO 2875 else{ 2876 sqlite3_vfs *pVfs = db->pVfs; 2877 char *zSuper = 0; /* File-name for the super-journal */ 2878 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2879 sqlite3_file *pSuperJrnl = 0; 2880 i64 offset = 0; 2881 int res; 2882 int retryCount = 0; 2883 int nMainFile; 2884 2885 /* Select a super-journal file name */ 2886 nMainFile = sqlite3Strlen30(zMainFile); 2887 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0); 2888 if( zSuper==0 ) return SQLITE_NOMEM_BKPT; 2889 zSuper += 4; 2890 do { 2891 u32 iRandom; 2892 if( retryCount ){ 2893 if( retryCount>100 ){ 2894 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper); 2895 sqlite3OsDelete(pVfs, zSuper, 0); 2896 break; 2897 }else if( retryCount==1 ){ 2898 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper); 2899 } 2900 } 2901 retryCount++; 2902 sqlite3_randomness(sizeof(iRandom), &iRandom); 2903 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X", 2904 (iRandom>>8)&0xffffff, iRandom&0xff); 2905 /* The antipenultimate character of the super-journal name must 2906 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2907 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' ); 2908 sqlite3FileSuffix3(zMainFile, zSuper); 2909 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); 2910 }while( rc==SQLITE_OK && res ); 2911 if( rc==SQLITE_OK ){ 2912 /* Open the super-journal. */ 2913 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl, 2914 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2915 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0 2916 ); 2917 } 2918 if( rc!=SQLITE_OK ){ 2919 sqlite3DbFree(db, zSuper-4); 2920 return rc; 2921 } 2922 2923 /* Write the name of each database file in the transaction into the new 2924 ** super-journal file. If an error occurs at this point close 2925 ** and delete the super-journal file. All the individual journal files 2926 ** still have 'null' as the super-journal pointer, so they will roll 2927 ** back independently if a failure occurs. 2928 */ 2929 for(i=0; i<db->nDb; i++){ 2930 Btree *pBt = db->aDb[i].pBt; 2931 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 2932 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2933 if( zFile==0 ){ 2934 continue; /* Ignore TEMP and :memory: databases */ 2935 } 2936 assert( zFile[0]!=0 ); 2937 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset); 2938 offset += sqlite3Strlen30(zFile)+1; 2939 if( rc!=SQLITE_OK ){ 2940 sqlite3OsCloseFree(pSuperJrnl); 2941 sqlite3OsDelete(pVfs, zSuper, 0); 2942 sqlite3DbFree(db, zSuper-4); 2943 return rc; 2944 } 2945 } 2946 } 2947 2948 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device 2949 ** flag is set this is not required. 2950 */ 2951 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL) 2952 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL)) 2953 ){ 2954 sqlite3OsCloseFree(pSuperJrnl); 2955 sqlite3OsDelete(pVfs, zSuper, 0); 2956 sqlite3DbFree(db, zSuper-4); 2957 return rc; 2958 } 2959 2960 /* Sync all the db files involved in the transaction. The same call 2961 ** sets the super-journal pointer in each individual journal. If 2962 ** an error occurs here, do not delete the super-journal file. 2963 ** 2964 ** If the error occurs during the first call to 2965 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2966 ** super-journal file will be orphaned. But we cannot delete it, 2967 ** in case the super-journal file name was written into the journal 2968 ** file before the failure occurred. 2969 */ 2970 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2971 Btree *pBt = db->aDb[i].pBt; 2972 if( pBt ){ 2973 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper); 2974 } 2975 } 2976 sqlite3OsCloseFree(pSuperJrnl); 2977 assert( rc!=SQLITE_BUSY ); 2978 if( rc!=SQLITE_OK ){ 2979 sqlite3DbFree(db, zSuper-4); 2980 return rc; 2981 } 2982 2983 /* Delete the super-journal file. This commits the transaction. After 2984 ** doing this the directory is synced again before any individual 2985 ** transaction files are deleted. 2986 */ 2987 rc = sqlite3OsDelete(pVfs, zSuper, 1); 2988 sqlite3DbFree(db, zSuper-4); 2989 zSuper = 0; 2990 if( rc ){ 2991 return rc; 2992 } 2993 2994 /* All files and directories have already been synced, so the following 2995 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2996 ** deleting or truncating journals. If something goes wrong while 2997 ** this is happening we don't really care. The integrity of the 2998 ** transaction is already guaranteed, but some stray 'cold' journals 2999 ** may be lying around. Returning an error code won't help matters. 3000 */ 3001 disable_simulated_io_errors(); 3002 sqlite3BeginBenignMalloc(); 3003 for(i=0; i<db->nDb; i++){ 3004 Btree *pBt = db->aDb[i].pBt; 3005 if( pBt ){ 3006 sqlite3BtreeCommitPhaseTwo(pBt, 1); 3007 } 3008 } 3009 sqlite3EndBenignMalloc(); 3010 enable_simulated_io_errors(); 3011 3012 sqlite3VtabCommit(db); 3013 } 3014 #endif 3015 3016 return rc; 3017 } 3018 3019 /* 3020 ** This routine checks that the sqlite3.nVdbeActive count variable 3021 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 3022 ** currently active. An assertion fails if the two counts do not match. 3023 ** This is an internal self-check only - it is not an essential processing 3024 ** step. 3025 ** 3026 ** This is a no-op if NDEBUG is defined. 3027 */ 3028 #ifndef NDEBUG 3029 static void checkActiveVdbeCnt(sqlite3 *db){ 3030 Vdbe *p; 3031 int cnt = 0; 3032 int nWrite = 0; 3033 int nRead = 0; 3034 p = db->pVdbe; 3035 while( p ){ 3036 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 3037 cnt++; 3038 if( p->readOnly==0 ) nWrite++; 3039 if( p->bIsReader ) nRead++; 3040 } 3041 p = p->pVNext; 3042 } 3043 assert( cnt==db->nVdbeActive ); 3044 assert( nWrite==db->nVdbeWrite ); 3045 assert( nRead==db->nVdbeRead ); 3046 } 3047 #else 3048 #define checkActiveVdbeCnt(x) 3049 #endif 3050 3051 /* 3052 ** If the Vdbe passed as the first argument opened a statement-transaction, 3053 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 3054 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 3055 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 3056 ** statement transaction is committed. 3057 ** 3058 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 3059 ** Otherwise SQLITE_OK. 3060 */ 3061 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 3062 sqlite3 *const db = p->db; 3063 int rc = SQLITE_OK; 3064 int i; 3065 const int iSavepoint = p->iStatement-1; 3066 3067 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 3068 assert( db->nStatement>0 ); 3069 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 3070 3071 for(i=0; i<db->nDb; i++){ 3072 int rc2 = SQLITE_OK; 3073 Btree *pBt = db->aDb[i].pBt; 3074 if( pBt ){ 3075 if( eOp==SAVEPOINT_ROLLBACK ){ 3076 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 3077 } 3078 if( rc2==SQLITE_OK ){ 3079 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 3080 } 3081 if( rc==SQLITE_OK ){ 3082 rc = rc2; 3083 } 3084 } 3085 } 3086 db->nStatement--; 3087 p->iStatement = 0; 3088 3089 if( rc==SQLITE_OK ){ 3090 if( eOp==SAVEPOINT_ROLLBACK ){ 3091 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 3092 } 3093 if( rc==SQLITE_OK ){ 3094 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 3095 } 3096 } 3097 3098 /* If the statement transaction is being rolled back, also restore the 3099 ** database handles deferred constraint counter to the value it had when 3100 ** the statement transaction was opened. */ 3101 if( eOp==SAVEPOINT_ROLLBACK ){ 3102 db->nDeferredCons = p->nStmtDefCons; 3103 db->nDeferredImmCons = p->nStmtDefImmCons; 3104 } 3105 return rc; 3106 } 3107 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 3108 if( p->db->nStatement && p->iStatement ){ 3109 return vdbeCloseStatement(p, eOp); 3110 } 3111 return SQLITE_OK; 3112 } 3113 3114 3115 /* 3116 ** This function is called when a transaction opened by the database 3117 ** handle associated with the VM passed as an argument is about to be 3118 ** committed. If there are outstanding deferred foreign key constraint 3119 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 3120 ** 3121 ** If there are outstanding FK violations and this function returns 3122 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 3123 ** and write an error message to it. Then return SQLITE_ERROR. 3124 */ 3125 #ifndef SQLITE_OMIT_FOREIGN_KEY 3126 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 3127 sqlite3 *db = p->db; 3128 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 3129 || (!deferred && p->nFkConstraint>0) 3130 ){ 3131 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 3132 p->errorAction = OE_Abort; 3133 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 3134 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR; 3135 return SQLITE_CONSTRAINT_FOREIGNKEY; 3136 } 3137 return SQLITE_OK; 3138 } 3139 #endif 3140 3141 /* 3142 ** This routine is called the when a VDBE tries to halt. If the VDBE 3143 ** has made changes and is in autocommit mode, then commit those 3144 ** changes. If a rollback is needed, then do the rollback. 3145 ** 3146 ** This routine is the only way to move the sqlite3eOpenState of a VM from 3147 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to 3148 ** call this on a VM that is in the SQLITE_STATE_HALT state. 3149 ** 3150 ** Return an error code. If the commit could not complete because of 3151 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 3152 ** means the close did not happen and needs to be repeated. 3153 */ 3154 int sqlite3VdbeHalt(Vdbe *p){ 3155 int rc; /* Used to store transient return codes */ 3156 sqlite3 *db = p->db; 3157 3158 /* This function contains the logic that determines if a statement or 3159 ** transaction will be committed or rolled back as a result of the 3160 ** execution of this virtual machine. 3161 ** 3162 ** If any of the following errors occur: 3163 ** 3164 ** SQLITE_NOMEM 3165 ** SQLITE_IOERR 3166 ** SQLITE_FULL 3167 ** SQLITE_INTERRUPT 3168 ** 3169 ** Then the internal cache might have been left in an inconsistent 3170 ** state. We need to rollback the statement transaction, if there is 3171 ** one, or the complete transaction if there is no statement transaction. 3172 */ 3173 3174 assert( p->eVdbeState==VDBE_RUN_STATE ); 3175 if( db->mallocFailed ){ 3176 p->rc = SQLITE_NOMEM_BKPT; 3177 } 3178 closeAllCursors(p); 3179 checkActiveVdbeCnt(db); 3180 3181 /* No commit or rollback needed if the program never started or if the 3182 ** SQL statement does not read or write a database file. */ 3183 if( p->bIsReader ){ 3184 int mrc; /* Primary error code from p->rc */ 3185 int eStatementOp = 0; 3186 int isSpecialError; /* Set to true if a 'special' error */ 3187 3188 /* Lock all btrees used by the statement */ 3189 sqlite3VdbeEnter(p); 3190 3191 /* Check for one of the special errors */ 3192 if( p->rc ){ 3193 mrc = p->rc & 0xff; 3194 isSpecialError = mrc==SQLITE_NOMEM 3195 || mrc==SQLITE_IOERR 3196 || mrc==SQLITE_INTERRUPT 3197 || mrc==SQLITE_FULL; 3198 }else{ 3199 mrc = isSpecialError = 0; 3200 } 3201 if( isSpecialError ){ 3202 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 3203 ** no rollback is necessary. Otherwise, at least a savepoint 3204 ** transaction must be rolled back to restore the database to a 3205 ** consistent state. 3206 ** 3207 ** Even if the statement is read-only, it is important to perform 3208 ** a statement or transaction rollback operation. If the error 3209 ** occurred while writing to the journal, sub-journal or database 3210 ** file as part of an effort to free up cache space (see function 3211 ** pagerStress() in pager.c), the rollback is required to restore 3212 ** the pager to a consistent state. 3213 */ 3214 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 3215 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 3216 eStatementOp = SAVEPOINT_ROLLBACK; 3217 }else{ 3218 /* We are forced to roll back the active transaction. Before doing 3219 ** so, abort any other statements this handle currently has active. 3220 */ 3221 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3222 sqlite3CloseSavepoints(db); 3223 db->autoCommit = 1; 3224 p->nChange = 0; 3225 } 3226 } 3227 } 3228 3229 /* Check for immediate foreign key violations. */ 3230 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3231 sqlite3VdbeCheckFk(p, 0); 3232 } 3233 3234 /* If the auto-commit flag is set and this is the only active writer 3235 ** VM, then we do either a commit or rollback of the current transaction. 3236 ** 3237 ** Note: This block also runs if one of the special errors handled 3238 ** above has occurred. 3239 */ 3240 if( !sqlite3VtabInSync(db) 3241 && db->autoCommit 3242 && db->nVdbeWrite==(p->readOnly==0) 3243 ){ 3244 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3245 rc = sqlite3VdbeCheckFk(p, 1); 3246 if( rc!=SQLITE_OK ){ 3247 if( NEVER(p->readOnly) ){ 3248 sqlite3VdbeLeave(p); 3249 return SQLITE_ERROR; 3250 } 3251 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 3252 }else if( db->flags & SQLITE_CorruptRdOnly ){ 3253 rc = SQLITE_CORRUPT; 3254 db->flags &= ~SQLITE_CorruptRdOnly; 3255 }else{ 3256 /* The auto-commit flag is true, the vdbe program was successful 3257 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 3258 ** key constraints to hold up the transaction. This means a commit 3259 ** is required. */ 3260 rc = vdbeCommit(db, p); 3261 } 3262 if( rc==SQLITE_BUSY && p->readOnly ){ 3263 sqlite3VdbeLeave(p); 3264 return SQLITE_BUSY; 3265 }else if( rc!=SQLITE_OK ){ 3266 p->rc = rc; 3267 sqlite3RollbackAll(db, SQLITE_OK); 3268 p->nChange = 0; 3269 }else{ 3270 db->nDeferredCons = 0; 3271 db->nDeferredImmCons = 0; 3272 db->flags &= ~(u64)SQLITE_DeferFKs; 3273 sqlite3CommitInternalChanges(db); 3274 } 3275 }else{ 3276 sqlite3RollbackAll(db, SQLITE_OK); 3277 p->nChange = 0; 3278 } 3279 db->nStatement = 0; 3280 }else if( eStatementOp==0 ){ 3281 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 3282 eStatementOp = SAVEPOINT_RELEASE; 3283 }else if( p->errorAction==OE_Abort ){ 3284 eStatementOp = SAVEPOINT_ROLLBACK; 3285 }else{ 3286 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3287 sqlite3CloseSavepoints(db); 3288 db->autoCommit = 1; 3289 p->nChange = 0; 3290 } 3291 } 3292 3293 /* If eStatementOp is non-zero, then a statement transaction needs to 3294 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 3295 ** do so. If this operation returns an error, and the current statement 3296 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 3297 ** current statement error code. 3298 */ 3299 if( eStatementOp ){ 3300 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 3301 if( rc ){ 3302 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 3303 p->rc = rc; 3304 sqlite3DbFree(db, p->zErrMsg); 3305 p->zErrMsg = 0; 3306 } 3307 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3308 sqlite3CloseSavepoints(db); 3309 db->autoCommit = 1; 3310 p->nChange = 0; 3311 } 3312 } 3313 3314 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 3315 ** has been rolled back, update the database connection change-counter. 3316 */ 3317 if( p->changeCntOn ){ 3318 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 3319 sqlite3VdbeSetChanges(db, p->nChange); 3320 }else{ 3321 sqlite3VdbeSetChanges(db, 0); 3322 } 3323 p->nChange = 0; 3324 } 3325 3326 /* Release the locks */ 3327 sqlite3VdbeLeave(p); 3328 } 3329 3330 /* We have successfully halted and closed the VM. Record this fact. */ 3331 db->nVdbeActive--; 3332 if( !p->readOnly ) db->nVdbeWrite--; 3333 if( p->bIsReader ) db->nVdbeRead--; 3334 assert( db->nVdbeActive>=db->nVdbeRead ); 3335 assert( db->nVdbeRead>=db->nVdbeWrite ); 3336 assert( db->nVdbeWrite>=0 ); 3337 p->eVdbeState = VDBE_HALT_STATE; 3338 checkActiveVdbeCnt(db); 3339 if( db->mallocFailed ){ 3340 p->rc = SQLITE_NOMEM_BKPT; 3341 } 3342 3343 /* If the auto-commit flag is set to true, then any locks that were held 3344 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 3345 ** to invoke any required unlock-notify callbacks. 3346 */ 3347 if( db->autoCommit ){ 3348 sqlite3ConnectionUnlocked(db); 3349 } 3350 3351 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 3352 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 3353 } 3354 3355 3356 /* 3357 ** Each VDBE holds the result of the most recent sqlite3_step() call 3358 ** in p->rc. This routine sets that result back to SQLITE_OK. 3359 */ 3360 void sqlite3VdbeResetStepResult(Vdbe *p){ 3361 p->rc = SQLITE_OK; 3362 } 3363 3364 /* 3365 ** Copy the error code and error message belonging to the VDBE passed 3366 ** as the first argument to its database handle (so that they will be 3367 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 3368 ** 3369 ** This function does not clear the VDBE error code or message, just 3370 ** copies them to the database handle. 3371 */ 3372 int sqlite3VdbeTransferError(Vdbe *p){ 3373 sqlite3 *db = p->db; 3374 int rc = p->rc; 3375 if( p->zErrMsg ){ 3376 db->bBenignMalloc++; 3377 sqlite3BeginBenignMalloc(); 3378 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 3379 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 3380 sqlite3EndBenignMalloc(); 3381 db->bBenignMalloc--; 3382 }else if( db->pErr ){ 3383 sqlite3ValueSetNull(db->pErr); 3384 } 3385 db->errCode = rc; 3386 db->errByteOffset = -1; 3387 return rc; 3388 } 3389 3390 #ifdef SQLITE_ENABLE_SQLLOG 3391 /* 3392 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 3393 ** invoke it. 3394 */ 3395 static void vdbeInvokeSqllog(Vdbe *v){ 3396 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 3397 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 3398 assert( v->db->init.busy==0 ); 3399 if( zExpanded ){ 3400 sqlite3GlobalConfig.xSqllog( 3401 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 3402 ); 3403 sqlite3DbFree(v->db, zExpanded); 3404 } 3405 } 3406 } 3407 #else 3408 # define vdbeInvokeSqllog(x) 3409 #endif 3410 3411 /* 3412 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 3413 ** Write any error messages into *pzErrMsg. Return the result code. 3414 ** 3415 ** After this routine is run, the VDBE should be ready to be executed 3416 ** again. 3417 ** 3418 ** To look at it another way, this routine resets the state of the 3419 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to 3420 ** VDBE_READY_STATE. 3421 */ 3422 int sqlite3VdbeReset(Vdbe *p){ 3423 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 3424 int i; 3425 #endif 3426 3427 sqlite3 *db; 3428 db = p->db; 3429 3430 /* If the VM did not run to completion or if it encountered an 3431 ** error, then it might not have been halted properly. So halt 3432 ** it now. 3433 */ 3434 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); 3435 3436 /* If the VDBE has been run even partially, then transfer the error code 3437 ** and error message from the VDBE into the main database structure. But 3438 ** if the VDBE has just been set to run but has not actually executed any 3439 ** instructions yet, leave the main database error information unchanged. 3440 */ 3441 if( p->pc>=0 ){ 3442 vdbeInvokeSqllog(p); 3443 if( db->pErr || p->zErrMsg ){ 3444 sqlite3VdbeTransferError(p); 3445 }else{ 3446 db->errCode = p->rc; 3447 } 3448 } 3449 3450 /* Reset register contents and reclaim error message memory. 3451 */ 3452 #ifdef SQLITE_DEBUG 3453 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 3454 ** Vdbe.aMem[] arrays have already been cleaned up. */ 3455 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 3456 if( p->aMem ){ 3457 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 3458 } 3459 #endif 3460 if( p->zErrMsg ){ 3461 sqlite3DbFree(db, p->zErrMsg); 3462 p->zErrMsg = 0; 3463 } 3464 p->pResultSet = 0; 3465 #ifdef SQLITE_DEBUG 3466 p->nWrite = 0; 3467 #endif 3468 3469 /* Save profiling information from this VDBE run. 3470 */ 3471 #ifdef VDBE_PROFILE 3472 { 3473 FILE *out = fopen("vdbe_profile.out", "a"); 3474 if( out ){ 3475 fprintf(out, "---- "); 3476 for(i=0; i<p->nOp; i++){ 3477 fprintf(out, "%02x", p->aOp[i].opcode); 3478 } 3479 fprintf(out, "\n"); 3480 if( p->zSql ){ 3481 char c, pc = 0; 3482 fprintf(out, "-- "); 3483 for(i=0; (c = p->zSql[i])!=0; i++){ 3484 if( pc=='\n' ) fprintf(out, "-- "); 3485 putc(c, out); 3486 pc = c; 3487 } 3488 if( pc!='\n' ) fprintf(out, "\n"); 3489 } 3490 for(i=0; i<p->nOp; i++){ 3491 char zHdr[100]; 3492 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 3493 p->aOp[i].cnt, 3494 p->aOp[i].cycles, 3495 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 3496 ); 3497 fprintf(out, "%s", zHdr); 3498 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 3499 } 3500 fclose(out); 3501 } 3502 } 3503 #endif 3504 return p->rc & db->errMask; 3505 } 3506 3507 /* 3508 ** Clean up and delete a VDBE after execution. Return an integer which is 3509 ** the result code. Write any error message text into *pzErrMsg. 3510 */ 3511 int sqlite3VdbeFinalize(Vdbe *p){ 3512 int rc = SQLITE_OK; 3513 assert( VDBE_RUN_STATE>VDBE_READY_STATE ); 3514 assert( VDBE_HALT_STATE>VDBE_READY_STATE ); 3515 assert( VDBE_INIT_STATE<VDBE_READY_STATE ); 3516 if( p->eVdbeState>=VDBE_READY_STATE ){ 3517 rc = sqlite3VdbeReset(p); 3518 assert( (rc & p->db->errMask)==rc ); 3519 } 3520 sqlite3VdbeDelete(p); 3521 return rc; 3522 } 3523 3524 /* 3525 ** If parameter iOp is less than zero, then invoke the destructor for 3526 ** all auxiliary data pointers currently cached by the VM passed as 3527 ** the first argument. 3528 ** 3529 ** Or, if iOp is greater than or equal to zero, then the destructor is 3530 ** only invoked for those auxiliary data pointers created by the user 3531 ** function invoked by the OP_Function opcode at instruction iOp of 3532 ** VM pVdbe, and only then if: 3533 ** 3534 ** * the associated function parameter is the 32nd or later (counting 3535 ** from left to right), or 3536 ** 3537 ** * the corresponding bit in argument mask is clear (where the first 3538 ** function parameter corresponds to bit 0 etc.). 3539 */ 3540 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 3541 while( *pp ){ 3542 AuxData *pAux = *pp; 3543 if( (iOp<0) 3544 || (pAux->iAuxOp==iOp 3545 && pAux->iAuxArg>=0 3546 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 3547 ){ 3548 testcase( pAux->iAuxArg==31 ); 3549 if( pAux->xDeleteAux ){ 3550 pAux->xDeleteAux(pAux->pAux); 3551 } 3552 *pp = pAux->pNextAux; 3553 sqlite3DbFree(db, pAux); 3554 }else{ 3555 pp= &pAux->pNextAux; 3556 } 3557 } 3558 } 3559 3560 /* 3561 ** Free all memory associated with the Vdbe passed as the second argument, 3562 ** except for object itself, which is preserved. 3563 ** 3564 ** The difference between this function and sqlite3VdbeDelete() is that 3565 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 3566 ** the database connection and frees the object itself. 3567 */ 3568 static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 3569 SubProgram *pSub, *pNext; 3570 assert( db!=0 ); 3571 assert( p->db==0 || p->db==db ); 3572 if( p->aColName ){ 3573 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 3574 sqlite3DbNNFreeNN(db, p->aColName); 3575 } 3576 for(pSub=p->pProgram; pSub; pSub=pNext){ 3577 pNext = pSub->pNext; 3578 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 3579 sqlite3DbFree(db, pSub); 3580 } 3581 if( p->eVdbeState!=VDBE_INIT_STATE ){ 3582 releaseMemArray(p->aVar, p->nVar); 3583 if( p->pVList ) sqlite3DbNNFreeNN(db, p->pVList); 3584 if( p->pFree ) sqlite3DbNNFreeNN(db, p->pFree); 3585 } 3586 vdbeFreeOpArray(db, p->aOp, p->nOp); 3587 if( p->zSql ) sqlite3DbNNFreeNN(db, p->zSql); 3588 #ifdef SQLITE_ENABLE_NORMALIZE 3589 sqlite3DbFree(db, p->zNormSql); 3590 { 3591 DblquoteStr *pThis, *pNext; 3592 for(pThis=p->pDblStr; pThis; pThis=pNext){ 3593 pNext = pThis->pNextStr; 3594 sqlite3DbFree(db, pThis); 3595 } 3596 } 3597 #endif 3598 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3599 { 3600 int i; 3601 for(i=0; i<p->nScan; i++){ 3602 sqlite3DbFree(db, p->aScan[i].zName); 3603 } 3604 sqlite3DbFree(db, p->aScan); 3605 } 3606 #endif 3607 } 3608 3609 /* 3610 ** Delete an entire VDBE. 3611 */ 3612 void sqlite3VdbeDelete(Vdbe *p){ 3613 sqlite3 *db; 3614 3615 assert( p!=0 ); 3616 db = p->db; 3617 assert( db!=0 ); 3618 assert( sqlite3_mutex_held(db->mutex) ); 3619 sqlite3VdbeClearObject(db, p); 3620 if( db->pnBytesFreed==0 ){ 3621 assert( p->ppVPrev!=0 ); 3622 *p->ppVPrev = p->pVNext; 3623 if( p->pVNext ){ 3624 p->pVNext->ppVPrev = p->ppVPrev; 3625 } 3626 } 3627 sqlite3DbNNFreeNN(db, p); 3628 } 3629 3630 /* 3631 ** The cursor "p" has a pending seek operation that has not yet been 3632 ** carried out. Seek the cursor now. If an error occurs, return 3633 ** the appropriate error code. 3634 */ 3635 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){ 3636 int res, rc; 3637 #ifdef SQLITE_TEST 3638 extern int sqlite3_search_count; 3639 #endif 3640 assert( p->deferredMoveto ); 3641 assert( p->isTable ); 3642 assert( p->eCurType==CURTYPE_BTREE ); 3643 rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res); 3644 if( rc ) return rc; 3645 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3646 #ifdef SQLITE_TEST 3647 sqlite3_search_count++; 3648 #endif 3649 p->deferredMoveto = 0; 3650 p->cacheStatus = CACHE_STALE; 3651 return SQLITE_OK; 3652 } 3653 3654 /* 3655 ** Something has moved cursor "p" out of place. Maybe the row it was 3656 ** pointed to was deleted out from under it. Or maybe the btree was 3657 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3658 ** is supposed to be pointing. If the row was deleted out from under the 3659 ** cursor, set the cursor to point to a NULL row. 3660 */ 3661 int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){ 3662 int isDifferentRow, rc; 3663 assert( p->eCurType==CURTYPE_BTREE ); 3664 assert( p->uc.pCursor!=0 ); 3665 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3666 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3667 p->cacheStatus = CACHE_STALE; 3668 if( isDifferentRow ) p->nullRow = 1; 3669 return rc; 3670 } 3671 3672 /* 3673 ** Check to ensure that the cursor is valid. Restore the cursor 3674 ** if need be. Return any I/O error from the restore operation. 3675 */ 3676 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3677 assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) ); 3678 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3679 return sqlite3VdbeHandleMovedCursor(p); 3680 } 3681 return SQLITE_OK; 3682 } 3683 3684 /* 3685 ** The following functions: 3686 ** 3687 ** sqlite3VdbeSerialType() 3688 ** sqlite3VdbeSerialTypeLen() 3689 ** sqlite3VdbeSerialLen() 3690 ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02 3691 ** sqlite3VdbeSerialGet() 3692 ** 3693 ** encapsulate the code that serializes values for storage in SQLite 3694 ** data and index records. Each serialized value consists of a 3695 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3696 ** integer, stored as a varint. 3697 ** 3698 ** In an SQLite index record, the serial type is stored directly before 3699 ** the blob of data that it corresponds to. In a table record, all serial 3700 ** types are stored at the start of the record, and the blobs of data at 3701 ** the end. Hence these functions allow the caller to handle the 3702 ** serial-type and data blob separately. 3703 ** 3704 ** The following table describes the various storage classes for data: 3705 ** 3706 ** serial type bytes of data type 3707 ** -------------- --------------- --------------- 3708 ** 0 0 NULL 3709 ** 1 1 signed integer 3710 ** 2 2 signed integer 3711 ** 3 3 signed integer 3712 ** 4 4 signed integer 3713 ** 5 6 signed integer 3714 ** 6 8 signed integer 3715 ** 7 8 IEEE float 3716 ** 8 0 Integer constant 0 3717 ** 9 0 Integer constant 1 3718 ** 10,11 reserved for expansion 3719 ** N>=12 and even (N-12)/2 BLOB 3720 ** N>=13 and odd (N-13)/2 text 3721 ** 3722 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3723 ** of SQLite will not understand those serial types. 3724 */ 3725 3726 #if 0 /* Inlined into the OP_MakeRecord opcode */ 3727 /* 3728 ** Return the serial-type for the value stored in pMem. 3729 ** 3730 ** This routine might convert a large MEM_IntReal value into MEM_Real. 3731 ** 3732 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord 3733 ** opcode in the byte-code engine. But by moving this routine in-line, we 3734 ** can omit some redundant tests and make that opcode a lot faster. So 3735 ** this routine is now only used by the STAT3 logic and STAT3 support has 3736 ** ended. The code is kept here for historical reference only. 3737 */ 3738 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3739 int flags = pMem->flags; 3740 u32 n; 3741 3742 assert( pLen!=0 ); 3743 if( flags&MEM_Null ){ 3744 *pLen = 0; 3745 return 0; 3746 } 3747 if( flags&(MEM_Int|MEM_IntReal) ){ 3748 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3749 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3750 i64 i = pMem->u.i; 3751 u64 u; 3752 testcase( flags & MEM_Int ); 3753 testcase( flags & MEM_IntReal ); 3754 if( i<0 ){ 3755 u = ~i; 3756 }else{ 3757 u = i; 3758 } 3759 if( u<=127 ){ 3760 if( (i&1)==i && file_format>=4 ){ 3761 *pLen = 0; 3762 return 8+(u32)u; 3763 }else{ 3764 *pLen = 1; 3765 return 1; 3766 } 3767 } 3768 if( u<=32767 ){ *pLen = 2; return 2; } 3769 if( u<=8388607 ){ *pLen = 3; return 3; } 3770 if( u<=2147483647 ){ *pLen = 4; return 4; } 3771 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3772 *pLen = 8; 3773 if( flags&MEM_IntReal ){ 3774 /* If the value is IntReal and is going to take up 8 bytes to store 3775 ** as an integer, then we might as well make it an 8-byte floating 3776 ** point value */ 3777 pMem->u.r = (double)pMem->u.i; 3778 pMem->flags &= ~MEM_IntReal; 3779 pMem->flags |= MEM_Real; 3780 return 7; 3781 } 3782 return 6; 3783 } 3784 if( flags&MEM_Real ){ 3785 *pLen = 8; 3786 return 7; 3787 } 3788 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3789 assert( pMem->n>=0 ); 3790 n = (u32)pMem->n; 3791 if( flags & MEM_Zero ){ 3792 n += pMem->u.nZero; 3793 } 3794 *pLen = n; 3795 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3796 } 3797 #endif /* inlined into OP_MakeRecord */ 3798 3799 /* 3800 ** The sizes for serial types less than 128 3801 */ 3802 const u8 sqlite3SmallTypeSizes[128] = { 3803 /* 0 1 2 3 4 5 6 7 8 9 */ 3804 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3805 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3806 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3807 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3808 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3809 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3810 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3811 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3812 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3813 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3814 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3815 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3816 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3817 }; 3818 3819 /* 3820 ** Return the length of the data corresponding to the supplied serial-type. 3821 */ 3822 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3823 if( serial_type>=128 ){ 3824 return (serial_type-12)/2; 3825 }else{ 3826 assert( serial_type<12 3827 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3828 return sqlite3SmallTypeSizes[serial_type]; 3829 } 3830 } 3831 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3832 assert( serial_type<128 ); 3833 return sqlite3SmallTypeSizes[serial_type]; 3834 } 3835 3836 /* 3837 ** If we are on an architecture with mixed-endian floating 3838 ** points (ex: ARM7) then swap the lower 4 bytes with the 3839 ** upper 4 bytes. Return the result. 3840 ** 3841 ** For most architectures, this is a no-op. 3842 ** 3843 ** (later): It is reported to me that the mixed-endian problem 3844 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3845 ** that early versions of GCC stored the two words of a 64-bit 3846 ** float in the wrong order. And that error has been propagated 3847 ** ever since. The blame is not necessarily with GCC, though. 3848 ** GCC might have just copying the problem from a prior compiler. 3849 ** I am also told that newer versions of GCC that follow a different 3850 ** ABI get the byte order right. 3851 ** 3852 ** Developers using SQLite on an ARM7 should compile and run their 3853 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3854 ** enabled, some asserts below will ensure that the byte order of 3855 ** floating point values is correct. 3856 ** 3857 ** (2007-08-30) Frank van Vugt has studied this problem closely 3858 ** and has send his findings to the SQLite developers. Frank 3859 ** writes that some Linux kernels offer floating point hardware 3860 ** emulation that uses only 32-bit mantissas instead of a full 3861 ** 48-bits as required by the IEEE standard. (This is the 3862 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3863 ** byte swapping becomes very complicated. To avoid problems, 3864 ** the necessary byte swapping is carried out using a 64-bit integer 3865 ** rather than a 64-bit float. Frank assures us that the code here 3866 ** works for him. We, the developers, have no way to independently 3867 ** verify this, but Frank seems to know what he is talking about 3868 ** so we trust him. 3869 */ 3870 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3871 u64 sqlite3FloatSwap(u64 in){ 3872 union { 3873 u64 r; 3874 u32 i[2]; 3875 } u; 3876 u32 t; 3877 3878 u.r = in; 3879 t = u.i[0]; 3880 u.i[0] = u.i[1]; 3881 u.i[1] = t; 3882 return u.r; 3883 } 3884 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */ 3885 3886 3887 /* Input "x" is a sequence of unsigned characters that represent a 3888 ** big-endian integer. Return the equivalent native integer 3889 */ 3890 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3891 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3892 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3893 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3894 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3895 3896 /* 3897 ** Deserialize the data blob pointed to by buf as serial type serial_type 3898 ** and store the result in pMem. 3899 ** 3900 ** This function is implemented as two separate routines for performance. 3901 ** The few cases that require local variables are broken out into a separate 3902 ** routine so that in most cases the overhead of moving the stack pointer 3903 ** is avoided. 3904 */ 3905 static void serialGet( 3906 const unsigned char *buf, /* Buffer to deserialize from */ 3907 u32 serial_type, /* Serial type to deserialize */ 3908 Mem *pMem /* Memory cell to write value into */ 3909 ){ 3910 u64 x = FOUR_BYTE_UINT(buf); 3911 u32 y = FOUR_BYTE_UINT(buf+4); 3912 x = (x<<32) + y; 3913 if( serial_type==6 ){ 3914 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3915 ** twos-complement integer. */ 3916 pMem->u.i = *(i64*)&x; 3917 pMem->flags = MEM_Int; 3918 testcase( pMem->u.i<0 ); 3919 }else{ 3920 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3921 ** floating point number. */ 3922 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3923 /* Verify that integers and floating point values use the same 3924 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3925 ** defined that 64-bit floating point values really are mixed 3926 ** endian. 3927 */ 3928 static const u64 t1 = ((u64)0x3ff00000)<<32; 3929 static const double r1 = 1.0; 3930 u64 t2 = t1; 3931 swapMixedEndianFloat(t2); 3932 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3933 #endif 3934 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3935 swapMixedEndianFloat(x); 3936 memcpy(&pMem->u.r, &x, sizeof(x)); 3937 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real; 3938 } 3939 } 3940 void sqlite3VdbeSerialGet( 3941 const unsigned char *buf, /* Buffer to deserialize from */ 3942 u32 serial_type, /* Serial type to deserialize */ 3943 Mem *pMem /* Memory cell to write value into */ 3944 ){ 3945 switch( serial_type ){ 3946 case 10: { /* Internal use only: NULL with virtual table 3947 ** UPDATE no-change flag set */ 3948 pMem->flags = MEM_Null|MEM_Zero; 3949 pMem->n = 0; 3950 pMem->u.nZero = 0; 3951 return; 3952 } 3953 case 11: /* Reserved for future use */ 3954 case 0: { /* Null */ 3955 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3956 pMem->flags = MEM_Null; 3957 return; 3958 } 3959 case 1: { 3960 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3961 ** integer. */ 3962 pMem->u.i = ONE_BYTE_INT(buf); 3963 pMem->flags = MEM_Int; 3964 testcase( pMem->u.i<0 ); 3965 return; 3966 } 3967 case 2: { /* 2-byte signed integer */ 3968 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3969 ** twos-complement integer. */ 3970 pMem->u.i = TWO_BYTE_INT(buf); 3971 pMem->flags = MEM_Int; 3972 testcase( pMem->u.i<0 ); 3973 return; 3974 } 3975 case 3: { /* 3-byte signed integer */ 3976 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3977 ** twos-complement integer. */ 3978 pMem->u.i = THREE_BYTE_INT(buf); 3979 pMem->flags = MEM_Int; 3980 testcase( pMem->u.i<0 ); 3981 return; 3982 } 3983 case 4: { /* 4-byte signed integer */ 3984 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3985 ** twos-complement integer. */ 3986 pMem->u.i = FOUR_BYTE_INT(buf); 3987 #ifdef __HP_cc 3988 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3989 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3990 #endif 3991 pMem->flags = MEM_Int; 3992 testcase( pMem->u.i<0 ); 3993 return; 3994 } 3995 case 5: { /* 6-byte signed integer */ 3996 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3997 ** twos-complement integer. */ 3998 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3999 pMem->flags = MEM_Int; 4000 testcase( pMem->u.i<0 ); 4001 return; 4002 } 4003 case 6: /* 8-byte signed integer */ 4004 case 7: { /* IEEE floating point */ 4005 /* These use local variables, so do them in a separate routine 4006 ** to avoid having to move the frame pointer in the common case */ 4007 serialGet(buf,serial_type,pMem); 4008 return; 4009 } 4010 case 8: /* Integer 0 */ 4011 case 9: { /* Integer 1 */ 4012 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 4013 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 4014 pMem->u.i = serial_type-8; 4015 pMem->flags = MEM_Int; 4016 return; 4017 } 4018 default: { 4019 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 4020 ** length. 4021 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 4022 ** (N-13)/2 bytes in length. */ 4023 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 4024 pMem->z = (char *)buf; 4025 pMem->n = (serial_type-12)/2; 4026 pMem->flags = aFlag[serial_type&1]; 4027 return; 4028 } 4029 } 4030 return; 4031 } 4032 /* 4033 ** This routine is used to allocate sufficient space for an UnpackedRecord 4034 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 4035 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 4036 ** 4037 ** The space is either allocated using sqlite3DbMallocRaw() or from within 4038 ** the unaligned buffer passed via the second and third arguments (presumably 4039 ** stack space). If the former, then *ppFree is set to a pointer that should 4040 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 4041 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 4042 ** before returning. 4043 ** 4044 ** If an OOM error occurs, NULL is returned. 4045 */ 4046 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 4047 KeyInfo *pKeyInfo /* Description of the record */ 4048 ){ 4049 UnpackedRecord *p; /* Unpacked record to return */ 4050 int nByte; /* Number of bytes required for *p */ 4051 nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 4052 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 4053 if( !p ) return 0; 4054 p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))]; 4055 assert( pKeyInfo->aSortFlags!=0 ); 4056 p->pKeyInfo = pKeyInfo; 4057 p->nField = pKeyInfo->nKeyField + 1; 4058 return p; 4059 } 4060 4061 /* 4062 ** Given the nKey-byte encoding of a record in pKey[], populate the 4063 ** UnpackedRecord structure indicated by the fourth argument with the 4064 ** contents of the decoded record. 4065 */ 4066 void sqlite3VdbeRecordUnpack( 4067 KeyInfo *pKeyInfo, /* Information about the record format */ 4068 int nKey, /* Size of the binary record */ 4069 const void *pKey, /* The binary record */ 4070 UnpackedRecord *p /* Populate this structure before returning. */ 4071 ){ 4072 const unsigned char *aKey = (const unsigned char *)pKey; 4073 u32 d; 4074 u32 idx; /* Offset in aKey[] to read from */ 4075 u16 u; /* Unsigned loop counter */ 4076 u32 szHdr; 4077 Mem *pMem = p->aMem; 4078 4079 p->default_rc = 0; 4080 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 4081 idx = getVarint32(aKey, szHdr); 4082 d = szHdr; 4083 u = 0; 4084 while( idx<szHdr && d<=(u32)nKey ){ 4085 u32 serial_type; 4086 4087 idx += getVarint32(&aKey[idx], serial_type); 4088 pMem->enc = pKeyInfo->enc; 4089 pMem->db = pKeyInfo->db; 4090 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 4091 pMem->szMalloc = 0; 4092 pMem->z = 0; 4093 sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 4094 d += sqlite3VdbeSerialTypeLen(serial_type); 4095 pMem++; 4096 if( (++u)>=p->nField ) break; 4097 } 4098 if( d>(u32)nKey && u ){ 4099 assert( CORRUPT_DB ); 4100 /* In a corrupt record entry, the last pMem might have been set up using 4101 ** uninitialized memory. Overwrite its value with NULL, to prevent 4102 ** warnings from MSAN. */ 4103 sqlite3VdbeMemSetNull(pMem-1); 4104 } 4105 assert( u<=pKeyInfo->nKeyField + 1 ); 4106 p->nField = u; 4107 } 4108 4109 #ifdef SQLITE_DEBUG 4110 /* 4111 ** This function compares two index or table record keys in the same way 4112 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 4113 ** this function deserializes and compares values using the 4114 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 4115 ** in assert() statements to ensure that the optimized code in 4116 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 4117 ** 4118 ** Return true if the result of comparison is equivalent to desiredResult. 4119 ** Return false if there is a disagreement. 4120 */ 4121 static int vdbeRecordCompareDebug( 4122 int nKey1, const void *pKey1, /* Left key */ 4123 const UnpackedRecord *pPKey2, /* Right key */ 4124 int desiredResult /* Correct answer */ 4125 ){ 4126 u32 d1; /* Offset into aKey[] of next data element */ 4127 u32 idx1; /* Offset into aKey[] of next header element */ 4128 u32 szHdr1; /* Number of bytes in header */ 4129 int i = 0; 4130 int rc = 0; 4131 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4132 KeyInfo *pKeyInfo; 4133 Mem mem1; 4134 4135 pKeyInfo = pPKey2->pKeyInfo; 4136 if( pKeyInfo->db==0 ) return 1; 4137 mem1.enc = pKeyInfo->enc; 4138 mem1.db = pKeyInfo->db; 4139 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 4140 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4141 4142 /* Compilers may complain that mem1.u.i is potentially uninitialized. 4143 ** We could initialize it, as shown here, to silence those complaints. 4144 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 4145 ** the unnecessary initialization has a measurable negative performance 4146 ** impact, since this routine is a very high runner. And so, we choose 4147 ** to ignore the compiler warnings and leave this variable uninitialized. 4148 */ 4149 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 4150 4151 idx1 = getVarint32(aKey1, szHdr1); 4152 if( szHdr1>98307 ) return SQLITE_CORRUPT; 4153 d1 = szHdr1; 4154 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 4155 assert( pKeyInfo->aSortFlags!=0 ); 4156 assert( pKeyInfo->nKeyField>0 ); 4157 assert( idx1<=szHdr1 || CORRUPT_DB ); 4158 do{ 4159 u32 serial_type1; 4160 4161 /* Read the serial types for the next element in each key. */ 4162 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 4163 4164 /* Verify that there is enough key space remaining to avoid 4165 ** a buffer overread. The "d1+serial_type1+2" subexpression will 4166 ** always be greater than or equal to the amount of required key space. 4167 ** Use that approximation to avoid the more expensive call to 4168 ** sqlite3VdbeSerialTypeLen() in the common case. 4169 */ 4170 if( d1+(u64)serial_type1+2>(u64)nKey1 4171 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 4172 ){ 4173 break; 4174 } 4175 4176 /* Extract the values to be compared. 4177 */ 4178 sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 4179 d1 += sqlite3VdbeSerialTypeLen(serial_type1); 4180 4181 /* Do the comparison 4182 */ 4183 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], 4184 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0); 4185 if( rc!=0 ){ 4186 assert( mem1.szMalloc==0 ); /* See comment below */ 4187 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 4188 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null)) 4189 ){ 4190 rc = -rc; 4191 } 4192 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){ 4193 rc = -rc; /* Invert the result for DESC sort order. */ 4194 } 4195 goto debugCompareEnd; 4196 } 4197 i++; 4198 }while( idx1<szHdr1 && i<pPKey2->nField ); 4199 4200 /* No memory allocation is ever used on mem1. Prove this using 4201 ** the following assert(). If the assert() fails, it indicates a 4202 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 4203 */ 4204 assert( mem1.szMalloc==0 ); 4205 4206 /* rc==0 here means that one of the keys ran out of fields and 4207 ** all the fields up to that point were equal. Return the default_rc 4208 ** value. */ 4209 rc = pPKey2->default_rc; 4210 4211 debugCompareEnd: 4212 if( desiredResult==0 && rc==0 ) return 1; 4213 if( desiredResult<0 && rc<0 ) return 1; 4214 if( desiredResult>0 && rc>0 ) return 1; 4215 if( CORRUPT_DB ) return 1; 4216 if( pKeyInfo->db->mallocFailed ) return 1; 4217 return 0; 4218 } 4219 #endif 4220 4221 #ifdef SQLITE_DEBUG 4222 /* 4223 ** Count the number of fields (a.k.a. columns) in the record given by 4224 ** pKey,nKey. The verify that this count is less than or equal to the 4225 ** limit given by pKeyInfo->nAllField. 4226 ** 4227 ** If this constraint is not satisfied, it means that the high-speed 4228 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 4229 ** not work correctly. If this assert() ever fires, it probably means 4230 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 4231 ** incorrectly. 4232 */ 4233 static void vdbeAssertFieldCountWithinLimits( 4234 int nKey, const void *pKey, /* The record to verify */ 4235 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 4236 ){ 4237 int nField = 0; 4238 u32 szHdr; 4239 u32 idx; 4240 u32 notUsed; 4241 const unsigned char *aKey = (const unsigned char*)pKey; 4242 4243 if( CORRUPT_DB ) return; 4244 idx = getVarint32(aKey, szHdr); 4245 assert( nKey>=0 ); 4246 assert( szHdr<=(u32)nKey ); 4247 while( idx<szHdr ){ 4248 idx += getVarint32(aKey+idx, notUsed); 4249 nField++; 4250 } 4251 assert( nField <= pKeyInfo->nAllField ); 4252 } 4253 #else 4254 # define vdbeAssertFieldCountWithinLimits(A,B,C) 4255 #endif 4256 4257 /* 4258 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 4259 ** using the collation sequence pColl. As usual, return a negative , zero 4260 ** or positive value if *pMem1 is less than, equal to or greater than 4261 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 4262 */ 4263 static int vdbeCompareMemString( 4264 const Mem *pMem1, 4265 const Mem *pMem2, 4266 const CollSeq *pColl, 4267 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 4268 ){ 4269 if( pMem1->enc==pColl->enc ){ 4270 /* The strings are already in the correct encoding. Call the 4271 ** comparison function directly */ 4272 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 4273 }else{ 4274 int rc; 4275 const void *v1, *v2; 4276 Mem c1; 4277 Mem c2; 4278 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 4279 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 4280 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 4281 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 4282 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 4283 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 4284 if( (v1==0 || v2==0) ){ 4285 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 4286 rc = 0; 4287 }else{ 4288 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 4289 } 4290 sqlite3VdbeMemReleaseMalloc(&c1); 4291 sqlite3VdbeMemReleaseMalloc(&c2); 4292 return rc; 4293 } 4294 } 4295 4296 /* 4297 ** The input pBlob is guaranteed to be a Blob that is not marked 4298 ** with MEM_Zero. Return true if it could be a zero-blob. 4299 */ 4300 static int isAllZero(const char *z, int n){ 4301 int i; 4302 for(i=0; i<n; i++){ 4303 if( z[i] ) return 0; 4304 } 4305 return 1; 4306 } 4307 4308 /* 4309 ** Compare two blobs. Return negative, zero, or positive if the first 4310 ** is less than, equal to, or greater than the second, respectively. 4311 ** If one blob is a prefix of the other, then the shorter is the lessor. 4312 */ 4313 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 4314 int c; 4315 int n1 = pB1->n; 4316 int n2 = pB2->n; 4317 4318 /* It is possible to have a Blob value that has some non-zero content 4319 ** followed by zero content. But that only comes up for Blobs formed 4320 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 4321 ** sqlite3MemCompare(). */ 4322 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 4323 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 4324 4325 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 4326 if( pB1->flags & pB2->flags & MEM_Zero ){ 4327 return pB1->u.nZero - pB2->u.nZero; 4328 }else if( pB1->flags & MEM_Zero ){ 4329 if( !isAllZero(pB2->z, pB2->n) ) return -1; 4330 return pB1->u.nZero - n2; 4331 }else{ 4332 if( !isAllZero(pB1->z, pB1->n) ) return +1; 4333 return n1 - pB2->u.nZero; 4334 } 4335 } 4336 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 4337 if( c ) return c; 4338 return n1 - n2; 4339 } 4340 4341 /* 4342 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 4343 ** number. Return negative, zero, or positive if the first (i64) is less than, 4344 ** equal to, or greater than the second (double). 4345 */ 4346 int sqlite3IntFloatCompare(i64 i, double r){ 4347 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 4348 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 4349 testcase( x<r ); 4350 testcase( x>r ); 4351 testcase( x==r ); 4352 if( x<r ) return -1; 4353 if( x>r ) return +1; /*NO_TEST*/ /* work around bugs in gcov */ 4354 return 0; /*NO_TEST*/ /* work around bugs in gcov */ 4355 }else{ 4356 i64 y; 4357 double s; 4358 if( r<-9223372036854775808.0 ) return +1; 4359 if( r>=9223372036854775808.0 ) return -1; 4360 y = (i64)r; 4361 if( i<y ) return -1; 4362 if( i>y ) return +1; 4363 s = (double)i; 4364 if( s<r ) return -1; 4365 if( s>r ) return +1; 4366 return 0; 4367 } 4368 } 4369 4370 /* 4371 ** Compare the values contained by the two memory cells, returning 4372 ** negative, zero or positive if pMem1 is less than, equal to, or greater 4373 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 4374 ** and reals) sorted numerically, followed by text ordered by the collating 4375 ** sequence pColl and finally blob's ordered by memcmp(). 4376 ** 4377 ** Two NULL values are considered equal by this function. 4378 */ 4379 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 4380 int f1, f2; 4381 int combined_flags; 4382 4383 f1 = pMem1->flags; 4384 f2 = pMem2->flags; 4385 combined_flags = f1|f2; 4386 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); 4387 4388 /* If one value is NULL, it is less than the other. If both values 4389 ** are NULL, return 0. 4390 */ 4391 if( combined_flags&MEM_Null ){ 4392 return (f2&MEM_Null) - (f1&MEM_Null); 4393 } 4394 4395 /* At least one of the two values is a number 4396 */ 4397 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ 4398 testcase( combined_flags & MEM_Int ); 4399 testcase( combined_flags & MEM_Real ); 4400 testcase( combined_flags & MEM_IntReal ); 4401 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ 4402 testcase( f1 & f2 & MEM_Int ); 4403 testcase( f1 & f2 & MEM_IntReal ); 4404 if( pMem1->u.i < pMem2->u.i ) return -1; 4405 if( pMem1->u.i > pMem2->u.i ) return +1; 4406 return 0; 4407 } 4408 if( (f1 & f2 & MEM_Real)!=0 ){ 4409 if( pMem1->u.r < pMem2->u.r ) return -1; 4410 if( pMem1->u.r > pMem2->u.r ) return +1; 4411 return 0; 4412 } 4413 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ 4414 testcase( f1 & MEM_Int ); 4415 testcase( f1 & MEM_IntReal ); 4416 if( (f2&MEM_Real)!=0 ){ 4417 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 4418 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4419 if( pMem1->u.i < pMem2->u.i ) return -1; 4420 if( pMem1->u.i > pMem2->u.i ) return +1; 4421 return 0; 4422 }else{ 4423 return -1; 4424 } 4425 } 4426 if( (f1&MEM_Real)!=0 ){ 4427 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4428 testcase( f2 & MEM_Int ); 4429 testcase( f2 & MEM_IntReal ); 4430 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 4431 }else{ 4432 return -1; 4433 } 4434 } 4435 return +1; 4436 } 4437 4438 /* If one value is a string and the other is a blob, the string is less. 4439 ** If both are strings, compare using the collating functions. 4440 */ 4441 if( combined_flags&MEM_Str ){ 4442 if( (f1 & MEM_Str)==0 ){ 4443 return 1; 4444 } 4445 if( (f2 & MEM_Str)==0 ){ 4446 return -1; 4447 } 4448 4449 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 4450 assert( pMem1->enc==SQLITE_UTF8 || 4451 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 4452 4453 /* The collation sequence must be defined at this point, even if 4454 ** the user deletes the collation sequence after the vdbe program is 4455 ** compiled (this was not always the case). 4456 */ 4457 assert( !pColl || pColl->xCmp ); 4458 4459 if( pColl ){ 4460 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 4461 } 4462 /* If a NULL pointer was passed as the collate function, fall through 4463 ** to the blob case and use memcmp(). */ 4464 } 4465 4466 /* Both values must be blobs. Compare using memcmp(). */ 4467 return sqlite3BlobCompare(pMem1, pMem2); 4468 } 4469 4470 4471 /* 4472 ** The first argument passed to this function is a serial-type that 4473 ** corresponds to an integer - all values between 1 and 9 inclusive 4474 ** except 7. The second points to a buffer containing an integer value 4475 ** serialized according to serial_type. This function deserializes 4476 ** and returns the value. 4477 */ 4478 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 4479 u32 y; 4480 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 4481 switch( serial_type ){ 4482 case 0: 4483 case 1: 4484 testcase( aKey[0]&0x80 ); 4485 return ONE_BYTE_INT(aKey); 4486 case 2: 4487 testcase( aKey[0]&0x80 ); 4488 return TWO_BYTE_INT(aKey); 4489 case 3: 4490 testcase( aKey[0]&0x80 ); 4491 return THREE_BYTE_INT(aKey); 4492 case 4: { 4493 testcase( aKey[0]&0x80 ); 4494 y = FOUR_BYTE_UINT(aKey); 4495 return (i64)*(int*)&y; 4496 } 4497 case 5: { 4498 testcase( aKey[0]&0x80 ); 4499 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4500 } 4501 case 6: { 4502 u64 x = FOUR_BYTE_UINT(aKey); 4503 testcase( aKey[0]&0x80 ); 4504 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4505 return (i64)*(i64*)&x; 4506 } 4507 } 4508 4509 return (serial_type - 8); 4510 } 4511 4512 /* 4513 ** This function compares the two table rows or index records 4514 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 4515 ** or positive integer if key1 is less than, equal to or 4516 ** greater than key2. The {nKey1, pKey1} key must be a blob 4517 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 4518 ** key must be a parsed key such as obtained from 4519 ** sqlite3VdbeParseRecord. 4520 ** 4521 ** If argument bSkip is non-zero, it is assumed that the caller has already 4522 ** determined that the first fields of the keys are equal. 4523 ** 4524 ** Key1 and Key2 do not have to contain the same number of fields. If all 4525 ** fields that appear in both keys are equal, then pPKey2->default_rc is 4526 ** returned. 4527 ** 4528 ** If database corruption is discovered, set pPKey2->errCode to 4529 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 4530 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 4531 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 4532 */ 4533 int sqlite3VdbeRecordCompareWithSkip( 4534 int nKey1, const void *pKey1, /* Left key */ 4535 UnpackedRecord *pPKey2, /* Right key */ 4536 int bSkip /* If true, skip the first field */ 4537 ){ 4538 u32 d1; /* Offset into aKey[] of next data element */ 4539 int i; /* Index of next field to compare */ 4540 u32 szHdr1; /* Size of record header in bytes */ 4541 u32 idx1; /* Offset of first type in header */ 4542 int rc = 0; /* Return value */ 4543 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 4544 KeyInfo *pKeyInfo; 4545 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4546 Mem mem1; 4547 4548 /* If bSkip is true, then the caller has already determined that the first 4549 ** two elements in the keys are equal. Fix the various stack variables so 4550 ** that this routine begins comparing at the second field. */ 4551 if( bSkip ){ 4552 u32 s1 = aKey1[1]; 4553 if( s1<0x80 ){ 4554 idx1 = 2; 4555 }else{ 4556 idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1); 4557 } 4558 szHdr1 = aKey1[0]; 4559 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 4560 i = 1; 4561 pRhs++; 4562 }else{ 4563 if( (szHdr1 = aKey1[0])<0x80 ){ 4564 idx1 = 1; 4565 }else{ 4566 idx1 = sqlite3GetVarint32(aKey1, &szHdr1); 4567 } 4568 d1 = szHdr1; 4569 i = 0; 4570 } 4571 if( d1>(unsigned)nKey1 ){ 4572 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4573 return 0; /* Corruption */ 4574 } 4575 4576 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4577 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 4578 || CORRUPT_DB ); 4579 assert( pPKey2->pKeyInfo->aSortFlags!=0 ); 4580 assert( pPKey2->pKeyInfo->nKeyField>0 ); 4581 assert( idx1<=szHdr1 || CORRUPT_DB ); 4582 do{ 4583 u32 serial_type; 4584 4585 /* RHS is an integer */ 4586 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ 4587 testcase( pRhs->flags & MEM_Int ); 4588 testcase( pRhs->flags & MEM_IntReal ); 4589 serial_type = aKey1[idx1]; 4590 testcase( serial_type==12 ); 4591 if( serial_type>=10 ){ 4592 rc = +1; 4593 }else if( serial_type==0 ){ 4594 rc = -1; 4595 }else if( serial_type==7 ){ 4596 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4597 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4598 }else{ 4599 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4600 i64 rhs = pRhs->u.i; 4601 if( lhs<rhs ){ 4602 rc = -1; 4603 }else if( lhs>rhs ){ 4604 rc = +1; 4605 } 4606 } 4607 } 4608 4609 /* RHS is real */ 4610 else if( pRhs->flags & MEM_Real ){ 4611 serial_type = aKey1[idx1]; 4612 if( serial_type>=10 ){ 4613 /* Serial types 12 or greater are strings and blobs (greater than 4614 ** numbers). Types 10 and 11 are currently "reserved for future 4615 ** use", so it doesn't really matter what the results of comparing 4616 ** them to numberic values are. */ 4617 rc = +1; 4618 }else if( serial_type==0 ){ 4619 rc = -1; 4620 }else{ 4621 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4622 if( serial_type==7 ){ 4623 if( mem1.u.r<pRhs->u.r ){ 4624 rc = -1; 4625 }else if( mem1.u.r>pRhs->u.r ){ 4626 rc = +1; 4627 } 4628 }else{ 4629 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4630 } 4631 } 4632 } 4633 4634 /* RHS is a string */ 4635 else if( pRhs->flags & MEM_Str ){ 4636 getVarint32NR(&aKey1[idx1], serial_type); 4637 testcase( serial_type==12 ); 4638 if( serial_type<12 ){ 4639 rc = -1; 4640 }else if( !(serial_type & 0x01) ){ 4641 rc = +1; 4642 }else{ 4643 mem1.n = (serial_type - 12) / 2; 4644 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4645 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4646 if( (d1+mem1.n) > (unsigned)nKey1 4647 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i 4648 ){ 4649 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4650 return 0; /* Corruption */ 4651 }else if( pKeyInfo->aColl[i] ){ 4652 mem1.enc = pKeyInfo->enc; 4653 mem1.db = pKeyInfo->db; 4654 mem1.flags = MEM_Str; 4655 mem1.z = (char*)&aKey1[d1]; 4656 rc = vdbeCompareMemString( 4657 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4658 ); 4659 }else{ 4660 int nCmp = MIN(mem1.n, pRhs->n); 4661 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4662 if( rc==0 ) rc = mem1.n - pRhs->n; 4663 } 4664 } 4665 } 4666 4667 /* RHS is a blob */ 4668 else if( pRhs->flags & MEM_Blob ){ 4669 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4670 getVarint32NR(&aKey1[idx1], serial_type); 4671 testcase( serial_type==12 ); 4672 if( serial_type<12 || (serial_type & 0x01) ){ 4673 rc = -1; 4674 }else{ 4675 int nStr = (serial_type - 12) / 2; 4676 testcase( (d1+nStr)==(unsigned)nKey1 ); 4677 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4678 if( (d1+nStr) > (unsigned)nKey1 ){ 4679 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4680 return 0; /* Corruption */ 4681 }else if( pRhs->flags & MEM_Zero ){ 4682 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4683 rc = 1; 4684 }else{ 4685 rc = nStr - pRhs->u.nZero; 4686 } 4687 }else{ 4688 int nCmp = MIN(nStr, pRhs->n); 4689 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4690 if( rc==0 ) rc = nStr - pRhs->n; 4691 } 4692 } 4693 } 4694 4695 /* RHS is null */ 4696 else{ 4697 serial_type = aKey1[idx1]; 4698 rc = (serial_type!=0); 4699 } 4700 4701 if( rc!=0 ){ 4702 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i]; 4703 if( sortFlags ){ 4704 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0 4705 || ((sortFlags & KEYINFO_ORDER_DESC) 4706 !=(serial_type==0 || (pRhs->flags&MEM_Null))) 4707 ){ 4708 rc = -rc; 4709 } 4710 } 4711 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4712 assert( mem1.szMalloc==0 ); /* See comment below */ 4713 return rc; 4714 } 4715 4716 i++; 4717 if( i==pPKey2->nField ) break; 4718 pRhs++; 4719 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4720 idx1 += sqlite3VarintLen(serial_type); 4721 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 ); 4722 4723 /* No memory allocation is ever used on mem1. Prove this using 4724 ** the following assert(). If the assert() fails, it indicates a 4725 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4726 assert( mem1.szMalloc==0 ); 4727 4728 /* rc==0 here means that one or both of the keys ran out of fields and 4729 ** all the fields up to that point were equal. Return the default_rc 4730 ** value. */ 4731 assert( CORRUPT_DB 4732 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4733 || pPKey2->pKeyInfo->db->mallocFailed 4734 ); 4735 pPKey2->eqSeen = 1; 4736 return pPKey2->default_rc; 4737 } 4738 int sqlite3VdbeRecordCompare( 4739 int nKey1, const void *pKey1, /* Left key */ 4740 UnpackedRecord *pPKey2 /* Right key */ 4741 ){ 4742 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4743 } 4744 4745 4746 /* 4747 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4748 ** that (a) the first field of pPKey2 is an integer, and (b) the 4749 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4750 ** byte (i.e. is less than 128). 4751 ** 4752 ** To avoid concerns about buffer overreads, this routine is only used 4753 ** on schemas where the maximum valid header size is 63 bytes or less. 4754 */ 4755 static int vdbeRecordCompareInt( 4756 int nKey1, const void *pKey1, /* Left key */ 4757 UnpackedRecord *pPKey2 /* Right key */ 4758 ){ 4759 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4760 int serial_type = ((const u8*)pKey1)[1]; 4761 int res; 4762 u32 y; 4763 u64 x; 4764 i64 v; 4765 i64 lhs; 4766 4767 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4768 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4769 switch( serial_type ){ 4770 case 1: { /* 1-byte signed integer */ 4771 lhs = ONE_BYTE_INT(aKey); 4772 testcase( lhs<0 ); 4773 break; 4774 } 4775 case 2: { /* 2-byte signed integer */ 4776 lhs = TWO_BYTE_INT(aKey); 4777 testcase( lhs<0 ); 4778 break; 4779 } 4780 case 3: { /* 3-byte signed integer */ 4781 lhs = THREE_BYTE_INT(aKey); 4782 testcase( lhs<0 ); 4783 break; 4784 } 4785 case 4: { /* 4-byte signed integer */ 4786 y = FOUR_BYTE_UINT(aKey); 4787 lhs = (i64)*(int*)&y; 4788 testcase( lhs<0 ); 4789 break; 4790 } 4791 case 5: { /* 6-byte signed integer */ 4792 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4793 testcase( lhs<0 ); 4794 break; 4795 } 4796 case 6: { /* 8-byte signed integer */ 4797 x = FOUR_BYTE_UINT(aKey); 4798 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4799 lhs = *(i64*)&x; 4800 testcase( lhs<0 ); 4801 break; 4802 } 4803 case 8: 4804 lhs = 0; 4805 break; 4806 case 9: 4807 lhs = 1; 4808 break; 4809 4810 /* This case could be removed without changing the results of running 4811 ** this code. Including it causes gcc to generate a faster switch 4812 ** statement (since the range of switch targets now starts at zero and 4813 ** is contiguous) but does not cause any duplicate code to be generated 4814 ** (as gcc is clever enough to combine the two like cases). Other 4815 ** compilers might be similar. */ 4816 case 0: case 7: 4817 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4818 4819 default: 4820 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4821 } 4822 4823 assert( pPKey2->u.i == pPKey2->aMem[0].u.i ); 4824 v = pPKey2->u.i; 4825 if( v>lhs ){ 4826 res = pPKey2->r1; 4827 }else if( v<lhs ){ 4828 res = pPKey2->r2; 4829 }else if( pPKey2->nField>1 ){ 4830 /* The first fields of the two keys are equal. Compare the trailing 4831 ** fields. */ 4832 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4833 }else{ 4834 /* The first fields of the two keys are equal and there are no trailing 4835 ** fields. Return pPKey2->default_rc in this case. */ 4836 res = pPKey2->default_rc; 4837 pPKey2->eqSeen = 1; 4838 } 4839 4840 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4841 return res; 4842 } 4843 4844 /* 4845 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4846 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4847 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4848 ** at the start of (pKey1/nKey1) fits in a single byte. 4849 */ 4850 static int vdbeRecordCompareString( 4851 int nKey1, const void *pKey1, /* Left key */ 4852 UnpackedRecord *pPKey2 /* Right key */ 4853 ){ 4854 const u8 *aKey1 = (const u8*)pKey1; 4855 int serial_type; 4856 int res; 4857 4858 assert( pPKey2->aMem[0].flags & MEM_Str ); 4859 assert( pPKey2->aMem[0].n == pPKey2->n ); 4860 assert( pPKey2->aMem[0].z == pPKey2->u.z ); 4861 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4862 serial_type = (signed char)(aKey1[1]); 4863 4864 vrcs_restart: 4865 if( serial_type<12 ){ 4866 if( serial_type<0 ){ 4867 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type); 4868 if( serial_type>=12 ) goto vrcs_restart; 4869 assert( CORRUPT_DB ); 4870 } 4871 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4872 }else if( !(serial_type & 0x01) ){ 4873 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4874 }else{ 4875 int nCmp; 4876 int nStr; 4877 int szHdr = aKey1[0]; 4878 4879 nStr = (serial_type-12) / 2; 4880 if( (szHdr + nStr) > nKey1 ){ 4881 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4882 return 0; /* Corruption */ 4883 } 4884 nCmp = MIN( pPKey2->n, nStr ); 4885 res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp); 4886 4887 if( res>0 ){ 4888 res = pPKey2->r2; 4889 }else if( res<0 ){ 4890 res = pPKey2->r1; 4891 }else{ 4892 res = nStr - pPKey2->n; 4893 if( res==0 ){ 4894 if( pPKey2->nField>1 ){ 4895 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4896 }else{ 4897 res = pPKey2->default_rc; 4898 pPKey2->eqSeen = 1; 4899 } 4900 }else if( res>0 ){ 4901 res = pPKey2->r2; 4902 }else{ 4903 res = pPKey2->r1; 4904 } 4905 } 4906 } 4907 4908 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4909 || CORRUPT_DB 4910 || pPKey2->pKeyInfo->db->mallocFailed 4911 ); 4912 return res; 4913 } 4914 4915 /* 4916 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4917 ** suitable for comparing serialized records to the unpacked record passed 4918 ** as the only argument. 4919 */ 4920 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4921 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4922 ** that the size-of-header varint that occurs at the start of each record 4923 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4924 ** also assumes that it is safe to overread a buffer by at least the 4925 ** maximum possible legal header size plus 8 bytes. Because there is 4926 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4927 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4928 ** limit the size of the header to 64 bytes in cases where the first field 4929 ** is an integer. 4930 ** 4931 ** The easiest way to enforce this limit is to consider only records with 4932 ** 13 fields or less. If the first field is an integer, the maximum legal 4933 ** header size is (12*5 + 1 + 1) bytes. */ 4934 if( p->pKeyInfo->nAllField<=13 ){ 4935 int flags = p->aMem[0].flags; 4936 if( p->pKeyInfo->aSortFlags[0] ){ 4937 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){ 4938 return sqlite3VdbeRecordCompare; 4939 } 4940 p->r1 = 1; 4941 p->r2 = -1; 4942 }else{ 4943 p->r1 = -1; 4944 p->r2 = 1; 4945 } 4946 if( (flags & MEM_Int) ){ 4947 p->u.i = p->aMem[0].u.i; 4948 return vdbeRecordCompareInt; 4949 } 4950 testcase( flags & MEM_Real ); 4951 testcase( flags & MEM_Null ); 4952 testcase( flags & MEM_Blob ); 4953 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 4954 && p->pKeyInfo->aColl[0]==0 4955 ){ 4956 assert( flags & MEM_Str ); 4957 p->u.z = p->aMem[0].z; 4958 p->n = p->aMem[0].n; 4959 return vdbeRecordCompareString; 4960 } 4961 } 4962 4963 return sqlite3VdbeRecordCompare; 4964 } 4965 4966 /* 4967 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4968 ** Read the rowid (the last field in the record) and store it in *rowid. 4969 ** Return SQLITE_OK if everything works, or an error code otherwise. 4970 ** 4971 ** pCur might be pointing to text obtained from a corrupt database file. 4972 ** So the content cannot be trusted. Do appropriate checks on the content. 4973 */ 4974 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4975 i64 nCellKey = 0; 4976 int rc; 4977 u32 szHdr; /* Size of the header */ 4978 u32 typeRowid; /* Serial type of the rowid */ 4979 u32 lenRowid; /* Size of the rowid */ 4980 Mem m, v; 4981 4982 /* Get the size of the index entry. Only indices entries of less 4983 ** than 2GiB are support - anything large must be database corruption. 4984 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4985 ** this code can safely assume that nCellKey is 32-bits 4986 */ 4987 assert( sqlite3BtreeCursorIsValid(pCur) ); 4988 nCellKey = sqlite3BtreePayloadSize(pCur); 4989 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4990 4991 /* Read in the complete content of the index entry */ 4992 sqlite3VdbeMemInit(&m, db, 0); 4993 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 4994 if( rc ){ 4995 return rc; 4996 } 4997 4998 /* The index entry must begin with a header size */ 4999 getVarint32NR((u8*)m.z, szHdr); 5000 testcase( szHdr==3 ); 5001 testcase( szHdr==(u32)m.n ); 5002 testcase( szHdr>0x7fffffff ); 5003 assert( m.n>=0 ); 5004 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ 5005 goto idx_rowid_corruption; 5006 } 5007 5008 /* The last field of the index should be an integer - the ROWID. 5009 ** Verify that the last entry really is an integer. */ 5010 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid); 5011 testcase( typeRowid==1 ); 5012 testcase( typeRowid==2 ); 5013 testcase( typeRowid==3 ); 5014 testcase( typeRowid==4 ); 5015 testcase( typeRowid==5 ); 5016 testcase( typeRowid==6 ); 5017 testcase( typeRowid==8 ); 5018 testcase( typeRowid==9 ); 5019 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 5020 goto idx_rowid_corruption; 5021 } 5022 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 5023 testcase( (u32)m.n==szHdr+lenRowid ); 5024 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 5025 goto idx_rowid_corruption; 5026 } 5027 5028 /* Fetch the integer off the end of the index record */ 5029 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 5030 *rowid = v.u.i; 5031 sqlite3VdbeMemReleaseMalloc(&m); 5032 return SQLITE_OK; 5033 5034 /* Jump here if database corruption is detected after m has been 5035 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 5036 idx_rowid_corruption: 5037 testcase( m.szMalloc!=0 ); 5038 sqlite3VdbeMemReleaseMalloc(&m); 5039 return SQLITE_CORRUPT_BKPT; 5040 } 5041 5042 /* 5043 ** Compare the key of the index entry that cursor pC is pointing to against 5044 ** the key string in pUnpacked. Write into *pRes a number 5045 ** that is negative, zero, or positive if pC is less than, equal to, 5046 ** or greater than pUnpacked. Return SQLITE_OK on success. 5047 ** 5048 ** pUnpacked is either created without a rowid or is truncated so that it 5049 ** omits the rowid at the end. The rowid at the end of the index entry 5050 ** is ignored as well. Hence, this routine only compares the prefixes 5051 ** of the keys prior to the final rowid, not the entire key. 5052 */ 5053 int sqlite3VdbeIdxKeyCompare( 5054 sqlite3 *db, /* Database connection */ 5055 VdbeCursor *pC, /* The cursor to compare against */ 5056 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 5057 int *res /* Write the comparison result here */ 5058 ){ 5059 i64 nCellKey = 0; 5060 int rc; 5061 BtCursor *pCur; 5062 Mem m; 5063 5064 assert( pC->eCurType==CURTYPE_BTREE ); 5065 pCur = pC->uc.pCursor; 5066 assert( sqlite3BtreeCursorIsValid(pCur) ); 5067 nCellKey = sqlite3BtreePayloadSize(pCur); 5068 /* nCellKey will always be between 0 and 0xffffffff because of the way 5069 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 5070 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 5071 *res = 0; 5072 return SQLITE_CORRUPT_BKPT; 5073 } 5074 sqlite3VdbeMemInit(&m, db, 0); 5075 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 5076 if( rc ){ 5077 return rc; 5078 } 5079 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); 5080 sqlite3VdbeMemReleaseMalloc(&m); 5081 return SQLITE_OK; 5082 } 5083 5084 /* 5085 ** This routine sets the value to be returned by subsequent calls to 5086 ** sqlite3_changes() on the database handle 'db'. 5087 */ 5088 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){ 5089 assert( sqlite3_mutex_held(db->mutex) ); 5090 db->nChange = nChange; 5091 db->nTotalChange += nChange; 5092 } 5093 5094 /* 5095 ** Set a flag in the vdbe to update the change counter when it is finalised 5096 ** or reset. 5097 */ 5098 void sqlite3VdbeCountChanges(Vdbe *v){ 5099 v->changeCntOn = 1; 5100 } 5101 5102 /* 5103 ** Mark every prepared statement associated with a database connection 5104 ** as expired. 5105 ** 5106 ** An expired statement means that recompilation of the statement is 5107 ** recommend. Statements expire when things happen that make their 5108 ** programs obsolete. Removing user-defined functions or collating 5109 ** sequences, or changing an authorization function are the types of 5110 ** things that make prepared statements obsolete. 5111 ** 5112 ** If iCode is 1, then expiration is advisory. The statement should 5113 ** be reprepared before being restarted, but if it is already running 5114 ** it is allowed to run to completion. 5115 ** 5116 ** Internally, this function just sets the Vdbe.expired flag on all 5117 ** prepared statements. The flag is set to 1 for an immediate expiration 5118 ** and set to 2 for an advisory expiration. 5119 */ 5120 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ 5121 Vdbe *p; 5122 for(p = db->pVdbe; p; p=p->pVNext){ 5123 p->expired = iCode+1; 5124 } 5125 } 5126 5127 /* 5128 ** Return the database associated with the Vdbe. 5129 */ 5130 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 5131 return v->db; 5132 } 5133 5134 /* 5135 ** Return the SQLITE_PREPARE flags for a Vdbe. 5136 */ 5137 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 5138 return v->prepFlags; 5139 } 5140 5141 /* 5142 ** Return a pointer to an sqlite3_value structure containing the value bound 5143 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 5144 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 5145 ** constants) to the value before returning it. 5146 ** 5147 ** The returned value must be freed by the caller using sqlite3ValueFree(). 5148 */ 5149 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 5150 assert( iVar>0 ); 5151 if( v ){ 5152 Mem *pMem = &v->aVar[iVar-1]; 5153 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5154 if( 0==(pMem->flags & MEM_Null) ){ 5155 sqlite3_value *pRet = sqlite3ValueNew(v->db); 5156 if( pRet ){ 5157 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 5158 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 5159 } 5160 return pRet; 5161 } 5162 } 5163 return 0; 5164 } 5165 5166 /* 5167 ** Configure SQL variable iVar so that binding a new value to it signals 5168 ** to sqlite3_reoptimize() that re-preparing the statement may result 5169 ** in a better query plan. 5170 */ 5171 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 5172 assert( iVar>0 ); 5173 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5174 if( iVar>=32 ){ 5175 v->expmask |= 0x80000000; 5176 }else{ 5177 v->expmask |= ((u32)1 << (iVar-1)); 5178 } 5179 } 5180 5181 /* 5182 ** Cause a function to throw an error if it was call from OP_PureFunc 5183 ** rather than OP_Function. 5184 ** 5185 ** OP_PureFunc means that the function must be deterministic, and should 5186 ** throw an error if it is given inputs that would make it non-deterministic. 5187 ** This routine is invoked by date/time functions that use non-deterministic 5188 ** features such as 'now'. 5189 */ 5190 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 5191 const VdbeOp *pOp; 5192 #ifdef SQLITE_ENABLE_STAT4 5193 if( pCtx->pVdbe==0 ) return 1; 5194 #endif 5195 pOp = pCtx->pVdbe->aOp + pCtx->iOp; 5196 if( pOp->opcode==OP_PureFunc ){ 5197 const char *zContext; 5198 char *zMsg; 5199 if( pOp->p5 & NC_IsCheck ){ 5200 zContext = "a CHECK constraint"; 5201 }else if( pOp->p5 & NC_GenCol ){ 5202 zContext = "a generated column"; 5203 }else{ 5204 zContext = "an index"; 5205 } 5206 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s", 5207 pCtx->pFunc->zName, zContext); 5208 sqlite3_result_error(pCtx, zMsg, -1); 5209 sqlite3_free(zMsg); 5210 return 0; 5211 } 5212 return 1; 5213 } 5214 5215 #ifndef SQLITE_OMIT_VIRTUALTABLE 5216 /* 5217 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 5218 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 5219 ** in memory obtained from sqlite3DbMalloc). 5220 */ 5221 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 5222 if( pVtab->zErrMsg ){ 5223 sqlite3 *db = p->db; 5224 sqlite3DbFree(db, p->zErrMsg); 5225 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 5226 sqlite3_free(pVtab->zErrMsg); 5227 pVtab->zErrMsg = 0; 5228 } 5229 } 5230 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5231 5232 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5233 5234 /* 5235 ** If the second argument is not NULL, release any allocations associated 5236 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 5237 ** structure itself, using sqlite3DbFree(). 5238 ** 5239 ** This function is used to free UnpackedRecord structures allocated by 5240 ** the vdbeUnpackRecord() function found in vdbeapi.c. 5241 */ 5242 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 5243 assert( db!=0 ); 5244 if( p ){ 5245 int i; 5246 for(i=0; i<nField; i++){ 5247 Mem *pMem = &p->aMem[i]; 5248 if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem); 5249 } 5250 sqlite3DbNNFreeNN(db, p); 5251 } 5252 } 5253 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5254 5255 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5256 /* 5257 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 5258 ** then cursor passed as the second argument should point to the row about 5259 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 5260 ** the required value will be read from the row the cursor points to. 5261 */ 5262 void sqlite3VdbePreUpdateHook( 5263 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 5264 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 5265 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 5266 const char *zDb, /* Database name */ 5267 Table *pTab, /* Modified table */ 5268 i64 iKey1, /* Initial key value */ 5269 int iReg, /* Register for new.* record */ 5270 int iBlobWrite 5271 ){ 5272 sqlite3 *db = v->db; 5273 i64 iKey2; 5274 PreUpdate preupdate; 5275 const char *zTbl = pTab->zName; 5276 static const u8 fakeSortOrder = 0; 5277 5278 assert( db->pPreUpdate==0 ); 5279 memset(&preupdate, 0, sizeof(PreUpdate)); 5280 if( HasRowid(pTab)==0 ){ 5281 iKey1 = iKey2 = 0; 5282 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 5283 }else{ 5284 if( op==SQLITE_UPDATE ){ 5285 iKey2 = v->aMem[iReg].u.i; 5286 }else{ 5287 iKey2 = iKey1; 5288 } 5289 } 5290 5291 assert( pCsr!=0 ); 5292 assert( pCsr->eCurType==CURTYPE_BTREE ); 5293 assert( pCsr->nField==pTab->nCol 5294 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 5295 ); 5296 5297 preupdate.v = v; 5298 preupdate.pCsr = pCsr; 5299 preupdate.op = op; 5300 preupdate.iNewReg = iReg; 5301 preupdate.keyinfo.db = db; 5302 preupdate.keyinfo.enc = ENC(db); 5303 preupdate.keyinfo.nKeyField = pTab->nCol; 5304 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder; 5305 preupdate.iKey1 = iKey1; 5306 preupdate.iKey2 = iKey2; 5307 preupdate.pTab = pTab; 5308 preupdate.iBlobWrite = iBlobWrite; 5309 5310 db->pPreUpdate = &preupdate; 5311 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 5312 db->pPreUpdate = 0; 5313 sqlite3DbFree(db, preupdate.aRecord); 5314 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 5315 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 5316 if( preupdate.aNew ){ 5317 int i; 5318 for(i=0; i<pCsr->nField; i++){ 5319 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 5320 } 5321 sqlite3DbNNFreeNN(db, preupdate.aNew); 5322 } 5323 } 5324 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5325