xref: /sqlite-3.40.0/src/vdbeaux.c (revision e995d2c2)
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
14 */
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
17 
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
21 
22 /*
23 ** Create a new virtual database engine.
24 */
25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26   sqlite3 *db = pParse->db;
27   Vdbe *p;
28   p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29   if( p==0 ) return 0;
30   memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31   p->db = db;
32   if( db->pVdbe ){
33     db->pVdbe->ppVPrev = &p->pVNext;
34   }
35   p->pVNext = db->pVdbe;
36   p->ppVPrev = &db->pVdbe;
37   db->pVdbe = p;
38   assert( p->eVdbeState==VDBE_INIT_STATE );
39   p->pParse = pParse;
40   pParse->pVdbe = p;
41   assert( pParse->aLabel==0 );
42   assert( pParse->nLabel==0 );
43   assert( p->nOpAlloc==0 );
44   assert( pParse->szOpAlloc==0 );
45   sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46   return p;
47 }
48 
49 /*
50 ** Return the Parse object that owns a Vdbe object.
51 */
52 Parse *sqlite3VdbeParser(Vdbe *p){
53   return p->pParse;
54 }
55 
56 /*
57 ** Change the error string stored in Vdbe.zErrMsg
58 */
59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60   va_list ap;
61   sqlite3DbFree(p->db, p->zErrMsg);
62   va_start(ap, zFormat);
63   p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64   va_end(ap);
65 }
66 
67 /*
68 ** Remember the SQL string for a prepared statement.
69 */
70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71   if( p==0 ) return;
72   p->prepFlags = prepFlags;
73   if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74     p->expmask = 0;
75   }
76   assert( p->zSql==0 );
77   p->zSql = sqlite3DbStrNDup(p->db, z, n);
78 }
79 
80 #ifdef SQLITE_ENABLE_NORMALIZE
81 /*
82 ** Add a new element to the Vdbe->pDblStr list.
83 */
84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85   if( p ){
86     int n = sqlite3Strlen30(z);
87     DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88                             sizeof(*pStr)+n+1-sizeof(pStr->z));
89     if( pStr ){
90       pStr->pNextStr = p->pDblStr;
91       p->pDblStr = pStr;
92       memcpy(pStr->z, z, n+1);
93     }
94   }
95 }
96 #endif
97 
98 #ifdef SQLITE_ENABLE_NORMALIZE
99 /*
100 ** zId of length nId is a double-quoted identifier.  Check to see if
101 ** that identifier is really used as a string literal.
102 */
103 int sqlite3VdbeUsesDoubleQuotedString(
104   Vdbe *pVdbe,            /* The prepared statement */
105   const char *zId         /* The double-quoted identifier, already dequoted */
106 ){
107   DblquoteStr *pStr;
108   assert( zId!=0 );
109   if( pVdbe->pDblStr==0 ) return 0;
110   for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111     if( strcmp(zId, pStr->z)==0 ) return 1;
112   }
113   return 0;
114 }
115 #endif
116 
117 /*
118 ** Swap byte-code between two VDBE structures.
119 **
120 ** This happens after pB was previously run and returned
121 ** SQLITE_SCHEMA.  The statement was then reprepared in pA.
122 ** This routine transfers the new bytecode in pA over to pB
123 ** so that pB can be run again.  The old pB byte code is
124 ** moved back to pA so that it will be cleaned up when pA is
125 ** finalized.
126 */
127 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
128   Vdbe tmp, *pTmp, **ppTmp;
129   char *zTmp;
130   assert( pA->db==pB->db );
131   tmp = *pA;
132   *pA = *pB;
133   *pB = tmp;
134   pTmp = pA->pVNext;
135   pA->pVNext = pB->pVNext;
136   pB->pVNext = pTmp;
137   ppTmp = pA->ppVPrev;
138   pA->ppVPrev = pB->ppVPrev;
139   pB->ppVPrev = ppTmp;
140   zTmp = pA->zSql;
141   pA->zSql = pB->zSql;
142   pB->zSql = zTmp;
143 #ifdef SQLITE_ENABLE_NORMALIZE
144   zTmp = pA->zNormSql;
145   pA->zNormSql = pB->zNormSql;
146   pB->zNormSql = zTmp;
147 #endif
148   pB->expmask = pA->expmask;
149   pB->prepFlags = pA->prepFlags;
150   memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
151   pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
152 }
153 
154 /*
155 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
156 ** than its current size. nOp is guaranteed to be less than or equal
157 ** to 1024/sizeof(Op).
158 **
159 ** If an out-of-memory error occurs while resizing the array, return
160 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
161 ** unchanged (this is so that any opcodes already allocated can be
162 ** correctly deallocated along with the rest of the Vdbe).
163 */
164 static int growOpArray(Vdbe *v, int nOp){
165   VdbeOp *pNew;
166   Parse *p = v->pParse;
167 
168   /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
169   ** more frequent reallocs and hence provide more opportunities for
170   ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used
171   ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array
172   ** by the minimum* amount required until the size reaches 512.  Normal
173   ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
174   ** size of the op array or add 1KB of space, whichever is smaller. */
175 #ifdef SQLITE_TEST_REALLOC_STRESS
176   sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
177                         : (sqlite3_int64)v->nOpAlloc+nOp);
178 #else
179   sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
180                         : (sqlite3_int64)(1024/sizeof(Op)));
181   UNUSED_PARAMETER(nOp);
182 #endif
183 
184   /* Ensure that the size of a VDBE does not grow too large */
185   if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
186     sqlite3OomFault(p->db);
187     return SQLITE_NOMEM;
188   }
189 
190   assert( nOp<=(int)(1024/sizeof(Op)) );
191   assert( nNew>=(v->nOpAlloc+nOp) );
192   pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
193   if( pNew ){
194     p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
195     v->nOpAlloc = p->szOpAlloc/sizeof(Op);
196     v->aOp = pNew;
197   }
198   return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
199 }
200 
201 #ifdef SQLITE_DEBUG
202 /* This routine is just a convenient place to set a breakpoint that will
203 ** fire after each opcode is inserted and displayed using
204 ** "PRAGMA vdbe_addoptrace=on".  Parameters "pc" (program counter) and
205 ** pOp are available to make the breakpoint conditional.
206 **
207 ** Other useful labels for breakpoints include:
208 **   test_trace_breakpoint(pc,pOp)
209 **   sqlite3CorruptError(lineno)
210 **   sqlite3MisuseError(lineno)
211 **   sqlite3CantopenError(lineno)
212 */
213 static void test_addop_breakpoint(int pc, Op *pOp){
214   static int n = 0;
215   n++;
216 }
217 #endif
218 
219 /*
220 ** Add a new instruction to the list of instructions current in the
221 ** VDBE.  Return the address of the new instruction.
222 **
223 ** Parameters:
224 **
225 **    p               Pointer to the VDBE
226 **
227 **    op              The opcode for this instruction
228 **
229 **    p1, p2, p3      Operands
230 **
231 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
232 ** the sqlite3VdbeChangeP4() function to change the value of the P4
233 ** operand.
234 */
235 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
236   assert( p->nOpAlloc<=p->nOp );
237   if( growOpArray(p, 1) ) return 1;
238   assert( p->nOpAlloc>p->nOp );
239   return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
240 }
241 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
242   int i;
243   VdbeOp *pOp;
244 
245   i = p->nOp;
246   assert( p->eVdbeState==VDBE_INIT_STATE );
247   assert( op>=0 && op<0xff );
248   if( p->nOpAlloc<=i ){
249     return growOp3(p, op, p1, p2, p3);
250   }
251   assert( p->aOp!=0 );
252   p->nOp++;
253   pOp = &p->aOp[i];
254   assert( pOp!=0 );
255   pOp->opcode = (u8)op;
256   pOp->p5 = 0;
257   pOp->p1 = p1;
258   pOp->p2 = p2;
259   pOp->p3 = p3;
260   pOp->p4.p = 0;
261   pOp->p4type = P4_NOTUSED;
262 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
263   pOp->zComment = 0;
264 #endif
265 #ifdef SQLITE_DEBUG
266   if( p->db->flags & SQLITE_VdbeAddopTrace ){
267     sqlite3VdbePrintOp(0, i, &p->aOp[i]);
268     test_addop_breakpoint(i, &p->aOp[i]);
269   }
270 #endif
271 #ifdef VDBE_PROFILE
272   pOp->cycles = 0;
273   pOp->cnt = 0;
274 #endif
275 #ifdef SQLITE_VDBE_COVERAGE
276   pOp->iSrcLine = 0;
277 #endif
278   return i;
279 }
280 int sqlite3VdbeAddOp0(Vdbe *p, int op){
281   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
282 }
283 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
284   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
285 }
286 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
287   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
288 }
289 
290 /* Generate code for an unconditional jump to instruction iDest
291 */
292 int sqlite3VdbeGoto(Vdbe *p, int iDest){
293   return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
294 }
295 
296 /* Generate code to cause the string zStr to be loaded into
297 ** register iDest
298 */
299 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
300   return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
301 }
302 
303 /*
304 ** Generate code that initializes multiple registers to string or integer
305 ** constants.  The registers begin with iDest and increase consecutively.
306 ** One register is initialized for each characgter in zTypes[].  For each
307 ** "s" character in zTypes[], the register is a string if the argument is
308 ** not NULL, or OP_Null if the value is a null pointer.  For each "i" character
309 ** in zTypes[], the register is initialized to an integer.
310 **
311 ** If the input string does not end with "X" then an OP_ResultRow instruction
312 ** is generated for the values inserted.
313 */
314 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
315   va_list ap;
316   int i;
317   char c;
318   va_start(ap, zTypes);
319   for(i=0; (c = zTypes[i])!=0; i++){
320     if( c=='s' ){
321       const char *z = va_arg(ap, const char*);
322       sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
323     }else if( c=='i' ){
324       sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
325     }else{
326       goto skip_op_resultrow;
327     }
328   }
329   sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
330 skip_op_resultrow:
331   va_end(ap);
332 }
333 
334 /*
335 ** Add an opcode that includes the p4 value as a pointer.
336 */
337 int sqlite3VdbeAddOp4(
338   Vdbe *p,            /* Add the opcode to this VM */
339   int op,             /* The new opcode */
340   int p1,             /* The P1 operand */
341   int p2,             /* The P2 operand */
342   int p3,             /* The P3 operand */
343   const char *zP4,    /* The P4 operand */
344   int p4type          /* P4 operand type */
345 ){
346   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
347   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
348   return addr;
349 }
350 
351 /*
352 ** Add an OP_Function or OP_PureFunc opcode.
353 **
354 ** The eCallCtx argument is information (typically taken from Expr.op2)
355 ** that describes the calling context of the function.  0 means a general
356 ** function call.  NC_IsCheck means called by a check constraint,
357 ** NC_IdxExpr means called as part of an index expression.  NC_PartIdx
358 ** means in the WHERE clause of a partial index.  NC_GenCol means called
359 ** while computing a generated column value.  0 is the usual case.
360 */
361 int sqlite3VdbeAddFunctionCall(
362   Parse *pParse,        /* Parsing context */
363   int p1,               /* Constant argument mask */
364   int p2,               /* First argument register */
365   int p3,               /* Register into which results are written */
366   int nArg,             /* Number of argument */
367   const FuncDef *pFunc, /* The function to be invoked */
368   int eCallCtx          /* Calling context */
369 ){
370   Vdbe *v = pParse->pVdbe;
371   int nByte;
372   int addr;
373   sqlite3_context *pCtx;
374   assert( v );
375   nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
376   pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
377   if( pCtx==0 ){
378     assert( pParse->db->mallocFailed );
379     freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
380     return 0;
381   }
382   pCtx->pOut = 0;
383   pCtx->pFunc = (FuncDef*)pFunc;
384   pCtx->pVdbe = 0;
385   pCtx->isError = 0;
386   pCtx->argc = nArg;
387   pCtx->iOp = sqlite3VdbeCurrentAddr(v);
388   addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
389                            p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
390   sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
391   sqlite3MayAbort(pParse);
392   return addr;
393 }
394 
395 /*
396 ** Add an opcode that includes the p4 value with a P4_INT64 or
397 ** P4_REAL type.
398 */
399 int sqlite3VdbeAddOp4Dup8(
400   Vdbe *p,            /* Add the opcode to this VM */
401   int op,             /* The new opcode */
402   int p1,             /* The P1 operand */
403   int p2,             /* The P2 operand */
404   int p3,             /* The P3 operand */
405   const u8 *zP4,      /* The P4 operand */
406   int p4type          /* P4 operand type */
407 ){
408   char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
409   if( p4copy ) memcpy(p4copy, zP4, 8);
410   return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
411 }
412 
413 #ifndef SQLITE_OMIT_EXPLAIN
414 /*
415 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
416 ** 0 means "none".
417 */
418 int sqlite3VdbeExplainParent(Parse *pParse){
419   VdbeOp *pOp;
420   if( pParse->addrExplain==0 ) return 0;
421   pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
422   return pOp->p2;
423 }
424 
425 /*
426 ** Set a debugger breakpoint on the following routine in order to
427 ** monitor the EXPLAIN QUERY PLAN code generation.
428 */
429 #if defined(SQLITE_DEBUG)
430 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
431   (void)z1;
432   (void)z2;
433 }
434 #endif
435 
436 /*
437 ** Add a new OP_Explain opcode.
438 **
439 ** If the bPush flag is true, then make this opcode the parent for
440 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
441 */
442 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
443 #ifndef SQLITE_DEBUG
444   /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
445   ** But omit them (for performance) during production builds */
446   if( pParse->explain==2 )
447 #endif
448   {
449     char *zMsg;
450     Vdbe *v;
451     va_list ap;
452     int iThis;
453     va_start(ap, zFmt);
454     zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
455     va_end(ap);
456     v = pParse->pVdbe;
457     iThis = v->nOp;
458     sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
459                       zMsg, P4_DYNAMIC);
460     sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z);
461     if( bPush){
462       pParse->addrExplain = iThis;
463     }
464   }
465 }
466 
467 /*
468 ** Pop the EXPLAIN QUERY PLAN stack one level.
469 */
470 void sqlite3VdbeExplainPop(Parse *pParse){
471   sqlite3ExplainBreakpoint("POP", 0);
472   pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
473 }
474 #endif /* SQLITE_OMIT_EXPLAIN */
475 
476 /*
477 ** Add an OP_ParseSchema opcode.  This routine is broken out from
478 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
479 ** as having been used.
480 **
481 ** The zWhere string must have been obtained from sqlite3_malloc().
482 ** This routine will take ownership of the allocated memory.
483 */
484 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){
485   int j;
486   sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
487   sqlite3VdbeChangeP5(p, p5);
488   for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
489   sqlite3MayAbort(p->pParse);
490 }
491 
492 /*
493 ** Add an opcode that includes the p4 value as an integer.
494 */
495 int sqlite3VdbeAddOp4Int(
496   Vdbe *p,            /* Add the opcode to this VM */
497   int op,             /* The new opcode */
498   int p1,             /* The P1 operand */
499   int p2,             /* The P2 operand */
500   int p3,             /* The P3 operand */
501   int p4              /* The P4 operand as an integer */
502 ){
503   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
504   if( p->db->mallocFailed==0 ){
505     VdbeOp *pOp = &p->aOp[addr];
506     pOp->p4type = P4_INT32;
507     pOp->p4.i = p4;
508   }
509   return addr;
510 }
511 
512 /* Insert the end of a co-routine
513 */
514 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
515   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
516 
517   /* Clear the temporary register cache, thereby ensuring that each
518   ** co-routine has its own independent set of registers, because co-routines
519   ** might expect their registers to be preserved across an OP_Yield, and
520   ** that could cause problems if two or more co-routines are using the same
521   ** temporary register.
522   */
523   v->pParse->nTempReg = 0;
524   v->pParse->nRangeReg = 0;
525 }
526 
527 /*
528 ** Create a new symbolic label for an instruction that has yet to be
529 ** coded.  The symbolic label is really just a negative number.  The
530 ** label can be used as the P2 value of an operation.  Later, when
531 ** the label is resolved to a specific address, the VDBE will scan
532 ** through its operation list and change all values of P2 which match
533 ** the label into the resolved address.
534 **
535 ** The VDBE knows that a P2 value is a label because labels are
536 ** always negative and P2 values are suppose to be non-negative.
537 ** Hence, a negative P2 value is a label that has yet to be resolved.
538 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
539 ** property.
540 **
541 ** Variable usage notes:
542 **
543 **     Parse.aLabel[x]     Stores the address that the x-th label resolves
544 **                         into.  For testing (SQLITE_DEBUG), unresolved
545 **                         labels stores -1, but that is not required.
546 **     Parse.nLabelAlloc   Number of slots allocated to Parse.aLabel[]
547 **     Parse.nLabel        The *negative* of the number of labels that have
548 **                         been issued.  The negative is stored because
549 **                         that gives a performance improvement over storing
550 **                         the equivalent positive value.
551 */
552 int sqlite3VdbeMakeLabel(Parse *pParse){
553   return --pParse->nLabel;
554 }
555 
556 /*
557 ** Resolve label "x" to be the address of the next instruction to
558 ** be inserted.  The parameter "x" must have been obtained from
559 ** a prior call to sqlite3VdbeMakeLabel().
560 */
561 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
562   int nNewSize = 10 - p->nLabel;
563   p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
564                      nNewSize*sizeof(p->aLabel[0]));
565   if( p->aLabel==0 ){
566     p->nLabelAlloc = 0;
567   }else{
568 #ifdef SQLITE_DEBUG
569     int i;
570     for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
571 #endif
572     p->nLabelAlloc = nNewSize;
573     p->aLabel[j] = v->nOp;
574   }
575 }
576 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
577   Parse *p = v->pParse;
578   int j = ADDR(x);
579   assert( v->eVdbeState==VDBE_INIT_STATE );
580   assert( j<-p->nLabel );
581   assert( j>=0 );
582 #ifdef SQLITE_DEBUG
583   if( p->db->flags & SQLITE_VdbeAddopTrace ){
584     printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
585   }
586 #endif
587   if( p->nLabelAlloc + p->nLabel < 0 ){
588     resizeResolveLabel(p,v,j);
589   }else{
590     assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
591     p->aLabel[j] = v->nOp;
592   }
593 }
594 
595 /*
596 ** Mark the VDBE as one that can only be run one time.
597 */
598 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
599   sqlite3VdbeAddOp2(p, OP_Expire, 1, 1);
600 }
601 
602 /*
603 ** Mark the VDBE as one that can be run multiple times.
604 */
605 void sqlite3VdbeReusable(Vdbe *p){
606   int i;
607   for(i=1; ALWAYS(i<p->nOp); i++){
608     if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){
609       p->aOp[1].opcode = OP_Noop;
610       break;
611     }
612   }
613 }
614 
615 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
616 
617 /*
618 ** The following type and function are used to iterate through all opcodes
619 ** in a Vdbe main program and each of the sub-programs (triggers) it may
620 ** invoke directly or indirectly. It should be used as follows:
621 **
622 **   Op *pOp;
623 **   VdbeOpIter sIter;
624 **
625 **   memset(&sIter, 0, sizeof(sIter));
626 **   sIter.v = v;                            // v is of type Vdbe*
627 **   while( (pOp = opIterNext(&sIter)) ){
628 **     // Do something with pOp
629 **   }
630 **   sqlite3DbFree(v->db, sIter.apSub);
631 **
632 */
633 typedef struct VdbeOpIter VdbeOpIter;
634 struct VdbeOpIter {
635   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
636   SubProgram **apSub;        /* Array of subprograms */
637   int nSub;                  /* Number of entries in apSub */
638   int iAddr;                 /* Address of next instruction to return */
639   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
640 };
641 static Op *opIterNext(VdbeOpIter *p){
642   Vdbe *v = p->v;
643   Op *pRet = 0;
644   Op *aOp;
645   int nOp;
646 
647   if( p->iSub<=p->nSub ){
648 
649     if( p->iSub==0 ){
650       aOp = v->aOp;
651       nOp = v->nOp;
652     }else{
653       aOp = p->apSub[p->iSub-1]->aOp;
654       nOp = p->apSub[p->iSub-1]->nOp;
655     }
656     assert( p->iAddr<nOp );
657 
658     pRet = &aOp[p->iAddr];
659     p->iAddr++;
660     if( p->iAddr==nOp ){
661       p->iSub++;
662       p->iAddr = 0;
663     }
664 
665     if( pRet->p4type==P4_SUBPROGRAM ){
666       int nByte = (p->nSub+1)*sizeof(SubProgram*);
667       int j;
668       for(j=0; j<p->nSub; j++){
669         if( p->apSub[j]==pRet->p4.pProgram ) break;
670       }
671       if( j==p->nSub ){
672         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
673         if( !p->apSub ){
674           pRet = 0;
675         }else{
676           p->apSub[p->nSub++] = pRet->p4.pProgram;
677         }
678       }
679     }
680   }
681 
682   return pRet;
683 }
684 
685 /*
686 ** Check if the program stored in the VM associated with pParse may
687 ** throw an ABORT exception (causing the statement, but not entire transaction
688 ** to be rolled back). This condition is true if the main program or any
689 ** sub-programs contains any of the following:
690 **
691 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
692 **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
693 **   *  OP_Destroy
694 **   *  OP_VUpdate
695 **   *  OP_VCreate
696 **   *  OP_VRename
697 **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
698 **   *  OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
699 **      (for CREATE TABLE AS SELECT ...)
700 **
701 ** Then check that the value of Parse.mayAbort is true if an
702 ** ABORT may be thrown, or false otherwise. Return true if it does
703 ** match, or false otherwise. This function is intended to be used as
704 ** part of an assert statement in the compiler. Similar to:
705 **
706 **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
707 */
708 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
709   int hasAbort = 0;
710   int hasFkCounter = 0;
711   int hasCreateTable = 0;
712   int hasCreateIndex = 0;
713   int hasInitCoroutine = 0;
714   Op *pOp;
715   VdbeOpIter sIter;
716 
717   if( v==0 ) return 0;
718   memset(&sIter, 0, sizeof(sIter));
719   sIter.v = v;
720 
721   while( (pOp = opIterNext(&sIter))!=0 ){
722     int opcode = pOp->opcode;
723     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
724      || opcode==OP_VDestroy
725      || opcode==OP_VCreate
726      || opcode==OP_ParseSchema
727      || opcode==OP_Function || opcode==OP_PureFunc
728      || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
729       && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
730     ){
731       hasAbort = 1;
732       break;
733     }
734     if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
735     if( mayAbort ){
736       /* hasCreateIndex may also be set for some DELETE statements that use
737       ** OP_Clear. So this routine may end up returning true in the case
738       ** where a "DELETE FROM tbl" has a statement-journal but does not
739       ** require one. This is not so bad - it is an inefficiency, not a bug. */
740       if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
741       if( opcode==OP_Clear ) hasCreateIndex = 1;
742     }
743     if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
744 #ifndef SQLITE_OMIT_FOREIGN_KEY
745     if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
746       hasFkCounter = 1;
747     }
748 #endif
749   }
750   sqlite3DbFree(v->db, sIter.apSub);
751 
752   /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
753   ** If malloc failed, then the while() loop above may not have iterated
754   ** through all opcodes and hasAbort may be set incorrectly. Return
755   ** true for this case to prevent the assert() in the callers frame
756   ** from failing.  */
757   return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
758         || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
759   );
760 }
761 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
762 
763 #ifdef SQLITE_DEBUG
764 /*
765 ** Increment the nWrite counter in the VDBE if the cursor is not an
766 ** ephemeral cursor, or if the cursor argument is NULL.
767 */
768 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
769   if( pC==0
770    || (pC->eCurType!=CURTYPE_SORTER
771        && pC->eCurType!=CURTYPE_PSEUDO
772        && !pC->isEphemeral)
773   ){
774     p->nWrite++;
775   }
776 }
777 #endif
778 
779 #ifdef SQLITE_DEBUG
780 /*
781 ** Assert if an Abort at this point in time might result in a corrupt
782 ** database.
783 */
784 void sqlite3VdbeAssertAbortable(Vdbe *p){
785   assert( p->nWrite==0 || p->usesStmtJournal );
786 }
787 #endif
788 
789 /*
790 ** This routine is called after all opcodes have been inserted.  It loops
791 ** through all the opcodes and fixes up some details.
792 **
793 ** (1) For each jump instruction with a negative P2 value (a label)
794 **     resolve the P2 value to an actual address.
795 **
796 ** (2) Compute the maximum number of arguments used by any SQL function
797 **     and store that value in *pMaxFuncArgs.
798 **
799 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
800 **     indicate what the prepared statement actually does.
801 **
802 ** (4) (discontinued)
803 **
804 ** (5) Reclaim the memory allocated for storing labels.
805 **
806 ** This routine will only function correctly if the mkopcodeh.tcl generator
807 ** script numbers the opcodes correctly.  Changes to this routine must be
808 ** coordinated with changes to mkopcodeh.tcl.
809 */
810 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
811   int nMaxArgs = *pMaxFuncArgs;
812   Op *pOp;
813   Parse *pParse = p->pParse;
814   int *aLabel = pParse->aLabel;
815   p->readOnly = 1;
816   p->bIsReader = 0;
817   pOp = &p->aOp[p->nOp-1];
818   assert( p->aOp[0].opcode==OP_Init );
819   while( 1 /* Loop termates when it reaches the OP_Init opcode */ ){
820     /* Only JUMP opcodes and the short list of special opcodes in the switch
821     ** below need to be considered.  The mkopcodeh.tcl generator script groups
822     ** all these opcodes together near the front of the opcode list.  Skip
823     ** any opcode that does not need processing by virtual of the fact that
824     ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
825     */
826     if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
827       /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
828       ** cases from this switch! */
829       switch( pOp->opcode ){
830         case OP_Transaction: {
831           if( pOp->p2!=0 ) p->readOnly = 0;
832           /* no break */ deliberate_fall_through
833         }
834         case OP_AutoCommit:
835         case OP_Savepoint: {
836           p->bIsReader = 1;
837           break;
838         }
839 #ifndef SQLITE_OMIT_WAL
840         case OP_Checkpoint:
841 #endif
842         case OP_Vacuum:
843         case OP_JournalMode: {
844           p->readOnly = 0;
845           p->bIsReader = 1;
846           break;
847         }
848         case OP_Init: {
849           assert( pOp->p2>=0 );
850           goto resolve_p2_values_loop_exit;
851         }
852 #ifndef SQLITE_OMIT_VIRTUALTABLE
853         case OP_VUpdate: {
854           if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
855           break;
856         }
857         case OP_VFilter: {
858           int n;
859           assert( (pOp - p->aOp) >= 3 );
860           assert( pOp[-1].opcode==OP_Integer );
861           n = pOp[-1].p1;
862           if( n>nMaxArgs ) nMaxArgs = n;
863           /* Fall through into the default case */
864           /* no break */ deliberate_fall_through
865         }
866 #endif
867         default: {
868           if( pOp->p2<0 ){
869             /* The mkopcodeh.tcl script has so arranged things that the only
870             ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
871             ** have non-negative values for P2. */
872             assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
873             assert( ADDR(pOp->p2)<-pParse->nLabel );
874             pOp->p2 = aLabel[ADDR(pOp->p2)];
875           }
876           break;
877         }
878       }
879       /* The mkopcodeh.tcl script has so arranged things that the only
880       ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
881       ** have non-negative values for P2. */
882       assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
883     }
884     assert( pOp>p->aOp );
885     pOp--;
886   }
887 resolve_p2_values_loop_exit:
888   if( aLabel ){
889     sqlite3DbNNFreeNN(p->db, pParse->aLabel);
890     pParse->aLabel = 0;
891   }
892   pParse->nLabel = 0;
893   *pMaxFuncArgs = nMaxArgs;
894   assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
895 }
896 
897 #ifdef SQLITE_DEBUG
898 /*
899 ** Check to see if a subroutine contains a jump to a location outside of
900 ** the subroutine.  If a jump outside the subroutine is detected, add code
901 ** that will cause the program to halt with an error message.
902 **
903 ** The subroutine consists of opcodes between iFirst and iLast.  Jumps to
904 ** locations within the subroutine are acceptable.  iRetReg is a register
905 ** that contains the return address.  Jumps to outside the range of iFirst
906 ** through iLast are also acceptable as long as the jump destination is
907 ** an OP_Return to iReturnAddr.
908 **
909 ** A jump to an unresolved label means that the jump destination will be
910 ** beyond the current address.  That is normally a jump to an early
911 ** termination and is consider acceptable.
912 **
913 ** This routine only runs during debug builds.  The purpose is (of course)
914 ** to detect invalid escapes out of a subroutine.  The OP_Halt opcode
915 ** is generated rather than an assert() or other error, so that ".eqp full"
916 ** will still work to show the original bytecode, to aid in debugging.
917 */
918 void sqlite3VdbeNoJumpsOutsideSubrtn(
919   Vdbe *v,          /* The byte-code program under construction */
920   int iFirst,       /* First opcode of the subroutine */
921   int iLast,        /* Last opcode of the subroutine */
922   int iRetReg       /* Subroutine return address register */
923 ){
924   VdbeOp *pOp;
925   Parse *pParse;
926   int i;
927   sqlite3_str *pErr = 0;
928   assert( v!=0 );
929   pParse = v->pParse;
930   assert( pParse!=0 );
931   if( pParse->nErr ) return;
932   assert( iLast>=iFirst );
933   assert( iLast<v->nOp );
934   pOp = &v->aOp[iFirst];
935   for(i=iFirst; i<=iLast; i++, pOp++){
936     if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){
937       int iDest = pOp->p2;   /* Jump destination */
938       if( iDest==0 ) continue;
939       if( pOp->opcode==OP_Gosub ) continue;
940       if( iDest<0 ){
941         int j = ADDR(iDest);
942         assert( j>=0 );
943         if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){
944           continue;
945         }
946         iDest = pParse->aLabel[j];
947       }
948       if( iDest<iFirst || iDest>iLast ){
949         int j = iDest;
950         for(; j<v->nOp; j++){
951           VdbeOp *pX = &v->aOp[j];
952           if( pX->opcode==OP_Return ){
953             if( pX->p1==iRetReg ) break;
954             continue;
955           }
956           if( pX->opcode==OP_Noop ) continue;
957           if( pX->opcode==OP_Explain ) continue;
958           if( pErr==0 ){
959             pErr = sqlite3_str_new(0);
960           }else{
961             sqlite3_str_appendchar(pErr, 1, '\n');
962           }
963           sqlite3_str_appendf(pErr,
964               "Opcode at %d jumps to %d which is outside the "
965               "subroutine at %d..%d",
966               i, iDest, iFirst, iLast);
967           break;
968         }
969       }
970     }
971   }
972   if( pErr ){
973     char *zErr = sqlite3_str_finish(pErr);
974     sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0);
975     sqlite3_free(zErr);
976     sqlite3MayAbort(pParse);
977   }
978 }
979 #endif /* SQLITE_DEBUG */
980 
981 /*
982 ** Return the address of the next instruction to be inserted.
983 */
984 int sqlite3VdbeCurrentAddr(Vdbe *p){
985   assert( p->eVdbeState==VDBE_INIT_STATE );
986   return p->nOp;
987 }
988 
989 /*
990 ** Verify that at least N opcode slots are available in p without
991 ** having to malloc for more space (except when compiled using
992 ** SQLITE_TEST_REALLOC_STRESS).  This interface is used during testing
993 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
994 ** fail due to a OOM fault and hence that the return value from
995 ** sqlite3VdbeAddOpList() will always be non-NULL.
996 */
997 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
998 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
999   assert( p->nOp + N <= p->nOpAlloc );
1000 }
1001 #endif
1002 
1003 /*
1004 ** Verify that the VM passed as the only argument does not contain
1005 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
1006 ** by code in pragma.c to ensure that the implementation of certain
1007 ** pragmas comports with the flags specified in the mkpragmatab.tcl
1008 ** script.
1009 */
1010 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
1011 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
1012   int i;
1013   for(i=0; i<p->nOp; i++){
1014     assert( p->aOp[i].opcode!=OP_ResultRow );
1015   }
1016 }
1017 #endif
1018 
1019 /*
1020 ** Generate code (a single OP_Abortable opcode) that will
1021 ** verify that the VDBE program can safely call Abort in the current
1022 ** context.
1023 */
1024 #if defined(SQLITE_DEBUG)
1025 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
1026   if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
1027 }
1028 #endif
1029 
1030 /*
1031 ** This function returns a pointer to the array of opcodes associated with
1032 ** the Vdbe passed as the first argument. It is the callers responsibility
1033 ** to arrange for the returned array to be eventually freed using the
1034 ** vdbeFreeOpArray() function.
1035 **
1036 ** Before returning, *pnOp is set to the number of entries in the returned
1037 ** array. Also, *pnMaxArg is set to the larger of its current value and
1038 ** the number of entries in the Vdbe.apArg[] array required to execute the
1039 ** returned program.
1040 */
1041 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
1042   VdbeOp *aOp = p->aOp;
1043   assert( aOp && !p->db->mallocFailed );
1044 
1045   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
1046   assert( DbMaskAllZero(p->btreeMask) );
1047 
1048   resolveP2Values(p, pnMaxArg);
1049   *pnOp = p->nOp;
1050   p->aOp = 0;
1051   return aOp;
1052 }
1053 
1054 /*
1055 ** Add a whole list of operations to the operation stack.  Return a
1056 ** pointer to the first operation inserted.
1057 **
1058 ** Non-zero P2 arguments to jump instructions are automatically adjusted
1059 ** so that the jump target is relative to the first operation inserted.
1060 */
1061 VdbeOp *sqlite3VdbeAddOpList(
1062   Vdbe *p,                     /* Add opcodes to the prepared statement */
1063   int nOp,                     /* Number of opcodes to add */
1064   VdbeOpList const *aOp,       /* The opcodes to be added */
1065   int iLineno                  /* Source-file line number of first opcode */
1066 ){
1067   int i;
1068   VdbeOp *pOut, *pFirst;
1069   assert( nOp>0 );
1070   assert( p->eVdbeState==VDBE_INIT_STATE );
1071   if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
1072     return 0;
1073   }
1074   pFirst = pOut = &p->aOp[p->nOp];
1075   for(i=0; i<nOp; i++, aOp++, pOut++){
1076     pOut->opcode = aOp->opcode;
1077     pOut->p1 = aOp->p1;
1078     pOut->p2 = aOp->p2;
1079     assert( aOp->p2>=0 );
1080     if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
1081       pOut->p2 += p->nOp;
1082     }
1083     pOut->p3 = aOp->p3;
1084     pOut->p4type = P4_NOTUSED;
1085     pOut->p4.p = 0;
1086     pOut->p5 = 0;
1087 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1088     pOut->zComment = 0;
1089 #endif
1090 #ifdef SQLITE_VDBE_COVERAGE
1091     pOut->iSrcLine = iLineno+i;
1092 #else
1093     (void)iLineno;
1094 #endif
1095 #ifdef SQLITE_DEBUG
1096     if( p->db->flags & SQLITE_VdbeAddopTrace ){
1097       sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1098     }
1099 #endif
1100   }
1101   p->nOp += nOp;
1102   return pFirst;
1103 }
1104 
1105 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1106 /*
1107 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1108 */
1109 void sqlite3VdbeScanStatus(
1110   Vdbe *p,                        /* VM to add scanstatus() to */
1111   int addrExplain,                /* Address of OP_Explain (or 0) */
1112   int addrLoop,                   /* Address of loop counter */
1113   int addrVisit,                  /* Address of rows visited counter */
1114   LogEst nEst,                    /* Estimated number of output rows */
1115   const char *zName               /* Name of table or index being scanned */
1116 ){
1117   sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1118   ScanStatus *aNew;
1119   aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1120   if( aNew ){
1121     ScanStatus *pNew = &aNew[p->nScan++];
1122     pNew->addrExplain = addrExplain;
1123     pNew->addrLoop = addrLoop;
1124     pNew->addrVisit = addrVisit;
1125     pNew->nEst = nEst;
1126     pNew->zName = sqlite3DbStrDup(p->db, zName);
1127     p->aScan = aNew;
1128   }
1129 }
1130 #endif
1131 
1132 
1133 /*
1134 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1135 ** for a specific instruction.
1136 */
1137 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1138   assert( addr>=0 );
1139   sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1140 }
1141 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1142   assert( addr>=0 );
1143   sqlite3VdbeGetOp(p,addr)->p1 = val;
1144 }
1145 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1146   assert( addr>=0 || p->db->mallocFailed );
1147   sqlite3VdbeGetOp(p,addr)->p2 = val;
1148 }
1149 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1150   assert( addr>=0 );
1151   sqlite3VdbeGetOp(p,addr)->p3 = val;
1152 }
1153 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1154   assert( p->nOp>0 || p->db->mallocFailed );
1155   if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1156 }
1157 
1158 /*
1159 ** If the previous opcode is an OP_Column that delivers results
1160 ** into register iDest, then add the OPFLAG_TYPEOF flag to that
1161 ** opcode.
1162 */
1163 void sqlite3VdbeTypeofColumn(Vdbe *p, int iDest){
1164   if( p->nOp>0 ){
1165     VdbeOp *pOp = &p->aOp[p->nOp-1];
1166     if( pOp->opcode==OP_Column && pOp->p3==iDest ){
1167       pOp->p5 |= OPFLAG_TYPEOFARG;
1168     }
1169   }else{
1170     assert( p->db->mallocFailed );
1171   }
1172 }
1173 
1174 /*
1175 ** Change the P2 operand of instruction addr so that it points to
1176 ** the address of the next instruction to be coded.
1177 */
1178 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1179   sqlite3VdbeChangeP2(p, addr, p->nOp);
1180 }
1181 
1182 /*
1183 ** Change the P2 operand of the jump instruction at addr so that
1184 ** the jump lands on the next opcode.  Or if the jump instruction was
1185 ** the previous opcode (and is thus a no-op) then simply back up
1186 ** the next instruction counter by one slot so that the jump is
1187 ** overwritten by the next inserted opcode.
1188 **
1189 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1190 ** strives to omit useless byte-code like this:
1191 **
1192 **        7   Once 0 8 0
1193 **        8   ...
1194 */
1195 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
1196   if( addr==p->nOp-1 ){
1197     assert( p->aOp[addr].opcode==OP_Once
1198          || p->aOp[addr].opcode==OP_If
1199          || p->aOp[addr].opcode==OP_FkIfZero );
1200     assert( p->aOp[addr].p4type==0 );
1201 #ifdef SQLITE_VDBE_COVERAGE
1202     sqlite3VdbeGetLastOp(p)->iSrcLine = 0;  /* Erase VdbeCoverage() macros */
1203 #endif
1204     p->nOp--;
1205   }else{
1206     sqlite3VdbeChangeP2(p, addr, p->nOp);
1207   }
1208 }
1209 
1210 
1211 /*
1212 ** If the input FuncDef structure is ephemeral, then free it.  If
1213 ** the FuncDef is not ephermal, then do nothing.
1214 */
1215 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1216   assert( db!=0 );
1217   if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1218     sqlite3DbNNFreeNN(db, pDef);
1219   }
1220 }
1221 
1222 /*
1223 ** Delete a P4 value if necessary.
1224 */
1225 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1226   if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1227   sqlite3DbNNFreeNN(db, p);
1228 }
1229 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1230   assert( db!=0 );
1231   freeEphemeralFunction(db, p->pFunc);
1232   sqlite3DbNNFreeNN(db, p);
1233 }
1234 static void freeP4(sqlite3 *db, int p4type, void *p4){
1235   assert( db );
1236   switch( p4type ){
1237     case P4_FUNCCTX: {
1238       freeP4FuncCtx(db, (sqlite3_context*)p4);
1239       break;
1240     }
1241     case P4_REAL:
1242     case P4_INT64:
1243     case P4_DYNAMIC:
1244     case P4_INTARRAY: {
1245       if( p4 ) sqlite3DbNNFreeNN(db, p4);
1246       break;
1247     }
1248     case P4_KEYINFO: {
1249       if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1250       break;
1251     }
1252 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1253     case P4_EXPR: {
1254       sqlite3ExprDelete(db, (Expr*)p4);
1255       break;
1256     }
1257 #endif
1258     case P4_FUNCDEF: {
1259       freeEphemeralFunction(db, (FuncDef*)p4);
1260       break;
1261     }
1262     case P4_MEM: {
1263       if( db->pnBytesFreed==0 ){
1264         sqlite3ValueFree((sqlite3_value*)p4);
1265       }else{
1266         freeP4Mem(db, (Mem*)p4);
1267       }
1268       break;
1269     }
1270     case P4_VTAB : {
1271       if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1272       break;
1273     }
1274   }
1275 }
1276 
1277 /*
1278 ** Free the space allocated for aOp and any p4 values allocated for the
1279 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1280 ** nOp entries.
1281 */
1282 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1283   assert( nOp>=0 );
1284   assert( db!=0 );
1285   if( aOp ){
1286     Op *pOp = &aOp[nOp-1];
1287     while(1){  /* Exit via break */
1288       if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1289 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1290       sqlite3DbFree(db, pOp->zComment);
1291 #endif
1292       if( pOp==aOp ) break;
1293       pOp--;
1294     }
1295     sqlite3DbNNFreeNN(db, aOp);
1296   }
1297 }
1298 
1299 /*
1300 ** Link the SubProgram object passed as the second argument into the linked
1301 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1302 ** objects when the VM is no longer required.
1303 */
1304 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1305   p->pNext = pVdbe->pProgram;
1306   pVdbe->pProgram = p;
1307 }
1308 
1309 /*
1310 ** Return true if the given Vdbe has any SubPrograms.
1311 */
1312 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1313   return pVdbe->pProgram!=0;
1314 }
1315 
1316 /*
1317 ** Change the opcode at addr into OP_Noop
1318 */
1319 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1320   VdbeOp *pOp;
1321   if( p->db->mallocFailed ) return 0;
1322   assert( addr>=0 && addr<p->nOp );
1323   pOp = &p->aOp[addr];
1324   freeP4(p->db, pOp->p4type, pOp->p4.p);
1325   pOp->p4type = P4_NOTUSED;
1326   pOp->p4.z = 0;
1327   pOp->opcode = OP_Noop;
1328   return 1;
1329 }
1330 
1331 /*
1332 ** If the last opcode is "op" and it is not a jump destination,
1333 ** then remove it.  Return true if and only if an opcode was removed.
1334 */
1335 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1336   if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1337     return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1338   }else{
1339     return 0;
1340   }
1341 }
1342 
1343 #ifdef SQLITE_DEBUG
1344 /*
1345 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1346 ** registers, except any identified by mask, are no longer in use.
1347 */
1348 void sqlite3VdbeReleaseRegisters(
1349   Parse *pParse,       /* Parsing context */
1350   int iFirst,          /* Index of first register to be released */
1351   int N,               /* Number of registers to release */
1352   u32 mask,            /* Mask of registers to NOT release */
1353   int bUndefine        /* If true, mark registers as undefined */
1354 ){
1355   if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return;
1356   assert( pParse->pVdbe );
1357   assert( iFirst>=1 );
1358   assert( iFirst+N-1<=pParse->nMem );
1359   if( N<=31 && mask!=0 ){
1360     while( N>0 && (mask&1)!=0 ){
1361       mask >>= 1;
1362       iFirst++;
1363       N--;
1364     }
1365     while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1366       mask &= ~MASKBIT32(N-1);
1367       N--;
1368     }
1369   }
1370   if( N>0 ){
1371     sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1372     if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1373   }
1374 }
1375 #endif /* SQLITE_DEBUG */
1376 
1377 
1378 /*
1379 ** Change the value of the P4 operand for a specific instruction.
1380 ** This routine is useful when a large program is loaded from a
1381 ** static array using sqlite3VdbeAddOpList but we want to make a
1382 ** few minor changes to the program.
1383 **
1384 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1385 ** the string is made into memory obtained from sqlite3_malloc().
1386 ** A value of n==0 means copy bytes of zP4 up to and including the
1387 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
1388 **
1389 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1390 ** to a string or structure that is guaranteed to exist for the lifetime of
1391 ** the Vdbe. In these cases we can just copy the pointer.
1392 **
1393 ** If addr<0 then change P4 on the most recently inserted instruction.
1394 */
1395 static void SQLITE_NOINLINE vdbeChangeP4Full(
1396   Vdbe *p,
1397   Op *pOp,
1398   const char *zP4,
1399   int n
1400 ){
1401   if( pOp->p4type ){
1402     freeP4(p->db, pOp->p4type, pOp->p4.p);
1403     pOp->p4type = 0;
1404     pOp->p4.p = 0;
1405   }
1406   if( n<0 ){
1407     sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1408   }else{
1409     if( n==0 ) n = sqlite3Strlen30(zP4);
1410     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1411     pOp->p4type = P4_DYNAMIC;
1412   }
1413 }
1414 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1415   Op *pOp;
1416   sqlite3 *db;
1417   assert( p!=0 );
1418   db = p->db;
1419   assert( p->eVdbeState==VDBE_INIT_STATE );
1420   assert( p->aOp!=0 || db->mallocFailed );
1421   if( db->mallocFailed ){
1422     if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1423     return;
1424   }
1425   assert( p->nOp>0 );
1426   assert( addr<p->nOp );
1427   if( addr<0 ){
1428     addr = p->nOp - 1;
1429   }
1430   pOp = &p->aOp[addr];
1431   if( n>=0 || pOp->p4type ){
1432     vdbeChangeP4Full(p, pOp, zP4, n);
1433     return;
1434   }
1435   if( n==P4_INT32 ){
1436     /* Note: this cast is safe, because the origin data point was an int
1437     ** that was cast to a (const char *). */
1438     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1439     pOp->p4type = P4_INT32;
1440   }else if( zP4!=0 ){
1441     assert( n<0 );
1442     pOp->p4.p = (void*)zP4;
1443     pOp->p4type = (signed char)n;
1444     if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1445   }
1446 }
1447 
1448 /*
1449 ** Change the P4 operand of the most recently coded instruction
1450 ** to the value defined by the arguments.  This is a high-speed
1451 ** version of sqlite3VdbeChangeP4().
1452 **
1453 ** The P4 operand must not have been previously defined.  And the new
1454 ** P4 must not be P4_INT32.  Use sqlite3VdbeChangeP4() in either of
1455 ** those cases.
1456 */
1457 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1458   VdbeOp *pOp;
1459   assert( n!=P4_INT32 && n!=P4_VTAB );
1460   assert( n<=0 );
1461   if( p->db->mallocFailed ){
1462     freeP4(p->db, n, pP4);
1463   }else{
1464     assert( pP4!=0 );
1465     assert( p->nOp>0 );
1466     pOp = &p->aOp[p->nOp-1];
1467     assert( pOp->p4type==P4_NOTUSED );
1468     pOp->p4type = n;
1469     pOp->p4.p = pP4;
1470   }
1471 }
1472 
1473 /*
1474 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1475 ** index given.
1476 */
1477 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1478   Vdbe *v = pParse->pVdbe;
1479   KeyInfo *pKeyInfo;
1480   assert( v!=0 );
1481   assert( pIdx!=0 );
1482   pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1483   if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1484 }
1485 
1486 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1487 /*
1488 ** Change the comment on the most recently coded instruction.  Or
1489 ** insert a No-op and add the comment to that new instruction.  This
1490 ** makes the code easier to read during debugging.  None of this happens
1491 ** in a production build.
1492 */
1493 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1494   assert( p->nOp>0 || p->aOp==0 );
1495   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 );
1496   if( p->nOp ){
1497     assert( p->aOp );
1498     sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1499     p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1500   }
1501 }
1502 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1503   va_list ap;
1504   if( p ){
1505     va_start(ap, zFormat);
1506     vdbeVComment(p, zFormat, ap);
1507     va_end(ap);
1508   }
1509 }
1510 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1511   va_list ap;
1512   if( p ){
1513     sqlite3VdbeAddOp0(p, OP_Noop);
1514     va_start(ap, zFormat);
1515     vdbeVComment(p, zFormat, ap);
1516     va_end(ap);
1517   }
1518 }
1519 #endif  /* NDEBUG */
1520 
1521 #ifdef SQLITE_VDBE_COVERAGE
1522 /*
1523 ** Set the value if the iSrcLine field for the previously coded instruction.
1524 */
1525 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1526   sqlite3VdbeGetLastOp(v)->iSrcLine = iLine;
1527 }
1528 #endif /* SQLITE_VDBE_COVERAGE */
1529 
1530 /*
1531 ** Return the opcode for a given address.  The address must be non-negative.
1532 ** See sqlite3VdbeGetLastOp() to get the most recently added opcode.
1533 **
1534 ** If a memory allocation error has occurred prior to the calling of this
1535 ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
1536 ** is readable but not writable, though it is cast to a writable value.
1537 ** The return of a dummy opcode allows the call to continue functioning
1538 ** after an OOM fault without having to check to see if the return from
1539 ** this routine is a valid pointer.  But because the dummy.opcode is 0,
1540 ** dummy will never be written to.  This is verified by code inspection and
1541 ** by running with Valgrind.
1542 */
1543 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1544   /* C89 specifies that the constant "dummy" will be initialized to all
1545   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
1546   static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
1547   assert( p->eVdbeState==VDBE_INIT_STATE );
1548   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1549   if( p->db->mallocFailed ){
1550     return (VdbeOp*)&dummy;
1551   }else{
1552     return &p->aOp[addr];
1553   }
1554 }
1555 
1556 /* Return the most recently added opcode
1557 */
1558 VdbeOp * sqlite3VdbeGetLastOp(Vdbe *p){
1559   return sqlite3VdbeGetOp(p, p->nOp - 1);
1560 }
1561 
1562 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1563 /*
1564 ** Return an integer value for one of the parameters to the opcode pOp
1565 ** determined by character c.
1566 */
1567 static int translateP(char c, const Op *pOp){
1568   if( c=='1' ) return pOp->p1;
1569   if( c=='2' ) return pOp->p2;
1570   if( c=='3' ) return pOp->p3;
1571   if( c=='4' ) return pOp->p4.i;
1572   return pOp->p5;
1573 }
1574 
1575 /*
1576 ** Compute a string for the "comment" field of a VDBE opcode listing.
1577 **
1578 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1579 ** to an extra string that is appended to the sqlite3OpcodeName().  In the
1580 ** absence of other comments, this synopsis becomes the comment on the opcode.
1581 ** Some translation occurs:
1582 **
1583 **       "PX"      ->  "r[X]"
1584 **       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1
1585 **       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0
1586 **       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x
1587 */
1588 char *sqlite3VdbeDisplayComment(
1589   sqlite3 *db,       /* Optional - Oom error reporting only */
1590   const Op *pOp,     /* The opcode to be commented */
1591   const char *zP4    /* Previously obtained value for P4 */
1592 ){
1593   const char *zOpName;
1594   const char *zSynopsis;
1595   int nOpName;
1596   int ii;
1597   char zAlt[50];
1598   StrAccum x;
1599 
1600   sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1601   zOpName = sqlite3OpcodeName(pOp->opcode);
1602   nOpName = sqlite3Strlen30(zOpName);
1603   if( zOpName[nOpName+1] ){
1604     int seenCom = 0;
1605     char c;
1606     zSynopsis = zOpName + nOpName + 1;
1607     if( strncmp(zSynopsis,"IF ",3)==0 ){
1608       sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1609       zSynopsis = zAlt;
1610     }
1611     for(ii=0; (c = zSynopsis[ii])!=0; ii++){
1612       if( c=='P' ){
1613         c = zSynopsis[++ii];
1614         if( c=='4' ){
1615           sqlite3_str_appendall(&x, zP4);
1616         }else if( c=='X' ){
1617           if( pOp->zComment && pOp->zComment[0] ){
1618             sqlite3_str_appendall(&x, pOp->zComment);
1619             seenCom = 1;
1620             break;
1621           }
1622         }else{
1623           int v1 = translateP(c, pOp);
1624           int v2;
1625           if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1626             ii += 3;
1627             v2 = translateP(zSynopsis[ii], pOp);
1628             if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1629               ii += 2;
1630               v2++;
1631             }
1632             if( v2<2 ){
1633               sqlite3_str_appendf(&x, "%d", v1);
1634             }else{
1635               sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
1636             }
1637           }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
1638             sqlite3_context *pCtx = pOp->p4.pCtx;
1639             if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
1640               sqlite3_str_appendf(&x, "%d", v1);
1641             }else if( pCtx->argc>1 ){
1642               sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
1643             }else if( x.accError==0 ){
1644               assert( x.nChar>2 );
1645               x.nChar -= 2;
1646               ii++;
1647             }
1648             ii += 3;
1649           }else{
1650             sqlite3_str_appendf(&x, "%d", v1);
1651             if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1652               ii += 4;
1653             }
1654           }
1655         }
1656       }else{
1657         sqlite3_str_appendchar(&x, 1, c);
1658       }
1659     }
1660     if( !seenCom && pOp->zComment ){
1661       sqlite3_str_appendf(&x, "; %s", pOp->zComment);
1662     }
1663   }else if( pOp->zComment ){
1664     sqlite3_str_appendall(&x, pOp->zComment);
1665   }
1666   if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
1667     sqlite3OomFault(db);
1668   }
1669   return sqlite3StrAccumFinish(&x);
1670 }
1671 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1672 
1673 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1674 /*
1675 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1676 ** that can be displayed in the P4 column of EXPLAIN output.
1677 */
1678 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1679   const char *zOp = 0;
1680   switch( pExpr->op ){
1681     case TK_STRING:
1682       assert( !ExprHasProperty(pExpr, EP_IntValue) );
1683       sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1684       break;
1685     case TK_INTEGER:
1686       sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1687       break;
1688     case TK_NULL:
1689       sqlite3_str_appendf(p, "NULL");
1690       break;
1691     case TK_REGISTER: {
1692       sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1693       break;
1694     }
1695     case TK_COLUMN: {
1696       if( pExpr->iColumn<0 ){
1697         sqlite3_str_appendf(p, "rowid");
1698       }else{
1699         sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1700       }
1701       break;
1702     }
1703     case TK_LT:      zOp = "LT";      break;
1704     case TK_LE:      zOp = "LE";      break;
1705     case TK_GT:      zOp = "GT";      break;
1706     case TK_GE:      zOp = "GE";      break;
1707     case TK_NE:      zOp = "NE";      break;
1708     case TK_EQ:      zOp = "EQ";      break;
1709     case TK_IS:      zOp = "IS";      break;
1710     case TK_ISNOT:   zOp = "ISNOT";   break;
1711     case TK_AND:     zOp = "AND";     break;
1712     case TK_OR:      zOp = "OR";      break;
1713     case TK_PLUS:    zOp = "ADD";     break;
1714     case TK_STAR:    zOp = "MUL";     break;
1715     case TK_MINUS:   zOp = "SUB";     break;
1716     case TK_REM:     zOp = "REM";     break;
1717     case TK_BITAND:  zOp = "BITAND";  break;
1718     case TK_BITOR:   zOp = "BITOR";   break;
1719     case TK_SLASH:   zOp = "DIV";     break;
1720     case TK_LSHIFT:  zOp = "LSHIFT";  break;
1721     case TK_RSHIFT:  zOp = "RSHIFT";  break;
1722     case TK_CONCAT:  zOp = "CONCAT";  break;
1723     case TK_UMINUS:  zOp = "MINUS";   break;
1724     case TK_UPLUS:   zOp = "PLUS";    break;
1725     case TK_BITNOT:  zOp = "BITNOT";  break;
1726     case TK_NOT:     zOp = "NOT";     break;
1727     case TK_ISNULL:  zOp = "ISNULL";  break;
1728     case TK_NOTNULL: zOp = "NOTNULL"; break;
1729 
1730     default:
1731       sqlite3_str_appendf(p, "%s", "expr");
1732       break;
1733   }
1734 
1735   if( zOp ){
1736     sqlite3_str_appendf(p, "%s(", zOp);
1737     displayP4Expr(p, pExpr->pLeft);
1738     if( pExpr->pRight ){
1739       sqlite3_str_append(p, ",", 1);
1740       displayP4Expr(p, pExpr->pRight);
1741     }
1742     sqlite3_str_append(p, ")", 1);
1743   }
1744 }
1745 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1746 
1747 
1748 #if VDBE_DISPLAY_P4
1749 /*
1750 ** Compute a string that describes the P4 parameter for an opcode.
1751 ** Use zTemp for any required temporary buffer space.
1752 */
1753 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
1754   char *zP4 = 0;
1755   StrAccum x;
1756 
1757   sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1758   switch( pOp->p4type ){
1759     case P4_KEYINFO: {
1760       int j;
1761       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1762       assert( pKeyInfo->aSortFlags!=0 );
1763       sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1764       for(j=0; j<pKeyInfo->nKeyField; j++){
1765         CollSeq *pColl = pKeyInfo->aColl[j];
1766         const char *zColl = pColl ? pColl->zName : "";
1767         if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1768         sqlite3_str_appendf(&x, ",%s%s%s",
1769                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1770                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1771                zColl);
1772       }
1773       sqlite3_str_append(&x, ")", 1);
1774       break;
1775     }
1776 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1777     case P4_EXPR: {
1778       displayP4Expr(&x, pOp->p4.pExpr);
1779       break;
1780     }
1781 #endif
1782     case P4_COLLSEQ: {
1783       static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
1784       CollSeq *pColl = pOp->p4.pColl;
1785       assert( pColl->enc<4 );
1786       sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
1787                           encnames[pColl->enc]);
1788       break;
1789     }
1790     case P4_FUNCDEF: {
1791       FuncDef *pDef = pOp->p4.pFunc;
1792       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1793       break;
1794     }
1795     case P4_FUNCCTX: {
1796       FuncDef *pDef = pOp->p4.pCtx->pFunc;
1797       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1798       break;
1799     }
1800     case P4_INT64: {
1801       sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1802       break;
1803     }
1804     case P4_INT32: {
1805       sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1806       break;
1807     }
1808     case P4_REAL: {
1809       sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1810       break;
1811     }
1812     case P4_MEM: {
1813       Mem *pMem = pOp->p4.pMem;
1814       if( pMem->flags & MEM_Str ){
1815         zP4 = pMem->z;
1816       }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1817         sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1818       }else if( pMem->flags & MEM_Real ){
1819         sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1820       }else if( pMem->flags & MEM_Null ){
1821         zP4 = "NULL";
1822       }else{
1823         assert( pMem->flags & MEM_Blob );
1824         zP4 = "(blob)";
1825       }
1826       break;
1827     }
1828 #ifndef SQLITE_OMIT_VIRTUALTABLE
1829     case P4_VTAB: {
1830       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1831       sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1832       break;
1833     }
1834 #endif
1835     case P4_INTARRAY: {
1836       u32 i;
1837       u32 *ai = pOp->p4.ai;
1838       u32 n = ai[0];   /* The first element of an INTARRAY is always the
1839                        ** count of the number of elements to follow */
1840       for(i=1; i<=n; i++){
1841         sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
1842       }
1843       sqlite3_str_append(&x, "]", 1);
1844       break;
1845     }
1846     case P4_SUBPROGRAM: {
1847       zP4 = "program";
1848       break;
1849     }
1850     case P4_TABLE: {
1851       zP4 = pOp->p4.pTab->zName;
1852       break;
1853     }
1854     default: {
1855       zP4 = pOp->p4.z;
1856     }
1857   }
1858   if( zP4 ) sqlite3_str_appendall(&x, zP4);
1859   if( (x.accError & SQLITE_NOMEM)!=0 ){
1860     sqlite3OomFault(db);
1861   }
1862   return sqlite3StrAccumFinish(&x);
1863 }
1864 #endif /* VDBE_DISPLAY_P4 */
1865 
1866 /*
1867 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1868 **
1869 ** The prepared statements need to know in advance the complete set of
1870 ** attached databases that will be use.  A mask of these databases
1871 ** is maintained in p->btreeMask.  The p->lockMask value is the subset of
1872 ** p->btreeMask of databases that will require a lock.
1873 */
1874 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1875   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1876   assert( i<(int)sizeof(p->btreeMask)*8 );
1877   DbMaskSet(p->btreeMask, i);
1878   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1879     DbMaskSet(p->lockMask, i);
1880   }
1881 }
1882 
1883 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1884 /*
1885 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1886 ** this routine obtains the mutex associated with each BtShared structure
1887 ** that may be accessed by the VM passed as an argument. In doing so it also
1888 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1889 ** that the correct busy-handler callback is invoked if required.
1890 **
1891 ** If SQLite is not threadsafe but does support shared-cache mode, then
1892 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1893 ** of all of BtShared structures accessible via the database handle
1894 ** associated with the VM.
1895 **
1896 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1897 ** function is a no-op.
1898 **
1899 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1900 ** statement p will ever use.  Let N be the number of bits in p->btreeMask
1901 ** corresponding to btrees that use shared cache.  Then the runtime of
1902 ** this routine is N*N.  But as N is rarely more than 1, this should not
1903 ** be a problem.
1904 */
1905 void sqlite3VdbeEnter(Vdbe *p){
1906   int i;
1907   sqlite3 *db;
1908   Db *aDb;
1909   int nDb;
1910   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1911   db = p->db;
1912   aDb = db->aDb;
1913   nDb = db->nDb;
1914   for(i=0; i<nDb; i++){
1915     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1916       sqlite3BtreeEnter(aDb[i].pBt);
1917     }
1918   }
1919 }
1920 #endif
1921 
1922 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1923 /*
1924 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1925 */
1926 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1927   int i;
1928   sqlite3 *db;
1929   Db *aDb;
1930   int nDb;
1931   db = p->db;
1932   aDb = db->aDb;
1933   nDb = db->nDb;
1934   for(i=0; i<nDb; i++){
1935     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1936       sqlite3BtreeLeave(aDb[i].pBt);
1937     }
1938   }
1939 }
1940 void sqlite3VdbeLeave(Vdbe *p){
1941   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1942   vdbeLeave(p);
1943 }
1944 #endif
1945 
1946 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1947 /*
1948 ** Print a single opcode.  This routine is used for debugging only.
1949 */
1950 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
1951   char *zP4;
1952   char *zCom;
1953   sqlite3 dummyDb;
1954   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1955   if( pOut==0 ) pOut = stdout;
1956   sqlite3BeginBenignMalloc();
1957   dummyDb.mallocFailed = 1;
1958   zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
1959 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1960   zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
1961 #else
1962   zCom = 0;
1963 #endif
1964   /* NB:  The sqlite3OpcodeName() function is implemented by code created
1965   ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1966   ** information from the vdbe.c source text */
1967   fprintf(pOut, zFormat1, pc,
1968       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
1969       zP4 ? zP4 : "", pOp->p5,
1970       zCom ? zCom : ""
1971   );
1972   fflush(pOut);
1973   sqlite3_free(zP4);
1974   sqlite3_free(zCom);
1975   sqlite3EndBenignMalloc();
1976 }
1977 #endif
1978 
1979 /*
1980 ** Initialize an array of N Mem element.
1981 **
1982 ** This is a high-runner, so only those fields that really do need to
1983 ** be initialized are set.  The Mem structure is organized so that
1984 ** the fields that get initialized are nearby and hopefully on the same
1985 ** cache line.
1986 **
1987 **    Mem.flags = flags
1988 **    Mem.db = db
1989 **    Mem.szMalloc = 0
1990 **
1991 ** All other fields of Mem can safely remain uninitialized for now.  They
1992 ** will be initialized before use.
1993 */
1994 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1995   if( N>0 ){
1996     do{
1997       p->flags = flags;
1998       p->db = db;
1999       p->szMalloc = 0;
2000 #ifdef SQLITE_DEBUG
2001       p->pScopyFrom = 0;
2002 #endif
2003       p++;
2004     }while( (--N)>0 );
2005   }
2006 }
2007 
2008 /*
2009 ** Release auxiliary memory held in an array of N Mem elements.
2010 **
2011 ** After this routine returns, all Mem elements in the array will still
2012 ** be valid.  Those Mem elements that were not holding auxiliary resources
2013 ** will be unchanged.  Mem elements which had something freed will be
2014 ** set to MEM_Undefined.
2015 */
2016 static void releaseMemArray(Mem *p, int N){
2017   if( p && N ){
2018     Mem *pEnd = &p[N];
2019     sqlite3 *db = p->db;
2020     if( db->pnBytesFreed ){
2021       do{
2022         if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
2023       }while( (++p)<pEnd );
2024       return;
2025     }
2026     do{
2027       assert( (&p[1])==pEnd || p[0].db==p[1].db );
2028       assert( sqlite3VdbeCheckMemInvariants(p) );
2029 
2030       /* This block is really an inlined version of sqlite3VdbeMemRelease()
2031       ** that takes advantage of the fact that the memory cell value is
2032       ** being set to NULL after releasing any dynamic resources.
2033       **
2034       ** The justification for duplicating code is that according to
2035       ** callgrind, this causes a certain test case to hit the CPU 4.7
2036       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
2037       ** sqlite3MemRelease() were called from here. With -O2, this jumps
2038       ** to 6.6 percent. The test case is inserting 1000 rows into a table
2039       ** with no indexes using a single prepared INSERT statement, bind()
2040       ** and reset(). Inserts are grouped into a transaction.
2041       */
2042       testcase( p->flags & MEM_Agg );
2043       testcase( p->flags & MEM_Dyn );
2044       if( p->flags&(MEM_Agg|MEM_Dyn) ){
2045         testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel );
2046         sqlite3VdbeMemRelease(p);
2047         p->flags = MEM_Undefined;
2048       }else if( p->szMalloc ){
2049         sqlite3DbNNFreeNN(db, p->zMalloc);
2050         p->szMalloc = 0;
2051         p->flags = MEM_Undefined;
2052       }
2053 #ifdef SQLITE_DEBUG
2054       else{
2055         p->flags = MEM_Undefined;
2056       }
2057 #endif
2058     }while( (++p)<pEnd );
2059   }
2060 }
2061 
2062 #ifdef SQLITE_DEBUG
2063 /*
2064 ** Verify that pFrame is a valid VdbeFrame pointer.  Return true if it is
2065 ** and false if something is wrong.
2066 **
2067 ** This routine is intended for use inside of assert() statements only.
2068 */
2069 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
2070   if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
2071   return 1;
2072 }
2073 #endif
2074 
2075 
2076 /*
2077 ** This is a destructor on a Mem object (which is really an sqlite3_value)
2078 ** that deletes the Frame object that is attached to it as a blob.
2079 **
2080 ** This routine does not delete the Frame right away.  It merely adds the
2081 ** frame to a list of frames to be deleted when the Vdbe halts.
2082 */
2083 void sqlite3VdbeFrameMemDel(void *pArg){
2084   VdbeFrame *pFrame = (VdbeFrame*)pArg;
2085   assert( sqlite3VdbeFrameIsValid(pFrame) );
2086   pFrame->pParent = pFrame->v->pDelFrame;
2087   pFrame->v->pDelFrame = pFrame;
2088 }
2089 
2090 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
2091 /*
2092 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
2093 ** QUERY PLAN output.
2094 **
2095 ** Return SQLITE_ROW on success.  Return SQLITE_DONE if there are no
2096 ** more opcodes to be displayed.
2097 */
2098 int sqlite3VdbeNextOpcode(
2099   Vdbe *p,         /* The statement being explained */
2100   Mem *pSub,       /* Storage for keeping track of subprogram nesting */
2101   int eMode,       /* 0: normal.  1: EQP.  2:  TablesUsed */
2102   int *piPc,       /* IN/OUT: Current rowid.  Overwritten with next rowid */
2103   int *piAddr,     /* OUT: Write index into (*paOp)[] here */
2104   Op **paOp        /* OUT: Write the opcode array here */
2105 ){
2106   int nRow;                            /* Stop when row count reaches this */
2107   int nSub = 0;                        /* Number of sub-vdbes seen so far */
2108   SubProgram **apSub = 0;              /* Array of sub-vdbes */
2109   int i;                               /* Next instruction address */
2110   int rc = SQLITE_OK;                  /* Result code */
2111   Op *aOp = 0;                         /* Opcode array */
2112   int iPc;                             /* Rowid.  Copy of value in *piPc */
2113 
2114   /* When the number of output rows reaches nRow, that means the
2115   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
2116   ** nRow is the sum of the number of rows in the main program, plus
2117   ** the sum of the number of rows in all trigger subprograms encountered
2118   ** so far.  The nRow value will increase as new trigger subprograms are
2119   ** encountered, but p->pc will eventually catch up to nRow.
2120   */
2121   nRow = p->nOp;
2122   if( pSub!=0 ){
2123     if( pSub->flags&MEM_Blob ){
2124       /* pSub is initiallly NULL.  It is initialized to a BLOB by
2125       ** the P4_SUBPROGRAM processing logic below */
2126       nSub = pSub->n/sizeof(Vdbe*);
2127       apSub = (SubProgram **)pSub->z;
2128     }
2129     for(i=0; i<nSub; i++){
2130       nRow += apSub[i]->nOp;
2131     }
2132   }
2133   iPc = *piPc;
2134   while(1){  /* Loop exits via break */
2135     i = iPc++;
2136     if( i>=nRow ){
2137       p->rc = SQLITE_OK;
2138       rc = SQLITE_DONE;
2139       break;
2140     }
2141     if( i<p->nOp ){
2142       /* The rowid is small enough that we are still in the
2143       ** main program. */
2144       aOp = p->aOp;
2145     }else{
2146       /* We are currently listing subprograms.  Figure out which one and
2147       ** pick up the appropriate opcode. */
2148       int j;
2149       i -= p->nOp;
2150       assert( apSub!=0 );
2151       assert( nSub>0 );
2152       for(j=0; i>=apSub[j]->nOp; j++){
2153         i -= apSub[j]->nOp;
2154         assert( i<apSub[j]->nOp || j+1<nSub );
2155       }
2156       aOp = apSub[j]->aOp;
2157     }
2158 
2159     /* When an OP_Program opcode is encounter (the only opcode that has
2160     ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2161     ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2162     ** has not already been seen.
2163     */
2164     if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
2165       int nByte = (nSub+1)*sizeof(SubProgram*);
2166       int j;
2167       for(j=0; j<nSub; j++){
2168         if( apSub[j]==aOp[i].p4.pProgram ) break;
2169       }
2170       if( j==nSub ){
2171         p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2172         if( p->rc!=SQLITE_OK ){
2173           rc = SQLITE_ERROR;
2174           break;
2175         }
2176         apSub = (SubProgram **)pSub->z;
2177         apSub[nSub++] = aOp[i].p4.pProgram;
2178         MemSetTypeFlag(pSub, MEM_Blob);
2179         pSub->n = nSub*sizeof(SubProgram*);
2180         nRow += aOp[i].p4.pProgram->nOp;
2181       }
2182     }
2183     if( eMode==0 ) break;
2184 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2185     if( eMode==2 ){
2186       Op *pOp = aOp + i;
2187       if( pOp->opcode==OP_OpenRead ) break;
2188       if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
2189       if( pOp->opcode==OP_ReopenIdx ) break;
2190     }else
2191 #endif
2192     {
2193       assert( eMode==1 );
2194       if( aOp[i].opcode==OP_Explain ) break;
2195       if( aOp[i].opcode==OP_Init && iPc>1 ) break;
2196     }
2197   }
2198   *piPc = iPc;
2199   *piAddr = i;
2200   *paOp = aOp;
2201   return rc;
2202 }
2203 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2204 
2205 
2206 /*
2207 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2208 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2209 */
2210 void sqlite3VdbeFrameDelete(VdbeFrame *p){
2211   int i;
2212   Mem *aMem = VdbeFrameMem(p);
2213   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
2214   assert( sqlite3VdbeFrameIsValid(p) );
2215   for(i=0; i<p->nChildCsr; i++){
2216     if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]);
2217   }
2218   releaseMemArray(aMem, p->nChildMem);
2219   sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
2220   sqlite3DbFree(p->v->db, p);
2221 }
2222 
2223 #ifndef SQLITE_OMIT_EXPLAIN
2224 /*
2225 ** Give a listing of the program in the virtual machine.
2226 **
2227 ** The interface is the same as sqlite3VdbeExec().  But instead of
2228 ** running the code, it invokes the callback once for each instruction.
2229 ** This feature is used to implement "EXPLAIN".
2230 **
2231 ** When p->explain==1, each instruction is listed.  When
2232 ** p->explain==2, only OP_Explain instructions are listed and these
2233 ** are shown in a different format.  p->explain==2 is used to implement
2234 ** EXPLAIN QUERY PLAN.
2235 ** 2018-04-24:  In p->explain==2 mode, the OP_Init opcodes of triggers
2236 ** are also shown, so that the boundaries between the main program and
2237 ** each trigger are clear.
2238 **
2239 ** When p->explain==1, first the main program is listed, then each of
2240 ** the trigger subprograms are listed one by one.
2241 */
2242 int sqlite3VdbeList(
2243   Vdbe *p                   /* The VDBE */
2244 ){
2245   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
2246   sqlite3 *db = p->db;                 /* The database connection */
2247   int i;                               /* Loop counter */
2248   int rc = SQLITE_OK;                  /* Return code */
2249   Mem *pMem = &p->aMem[1];             /* First Mem of result set */
2250   int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
2251   Op *aOp;                             /* Array of opcodes */
2252   Op *pOp;                             /* Current opcode */
2253 
2254   assert( p->explain );
2255   assert( p->eVdbeState==VDBE_RUN_STATE );
2256   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
2257 
2258   /* Even though this opcode does not use dynamic strings for
2259   ** the result, result columns may become dynamic if the user calls
2260   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2261   */
2262   releaseMemArray(pMem, 8);
2263   p->pResultSet = 0;
2264 
2265   if( p->rc==SQLITE_NOMEM ){
2266     /* This happens if a malloc() inside a call to sqlite3_column_text() or
2267     ** sqlite3_column_text16() failed.  */
2268     sqlite3OomFault(db);
2269     return SQLITE_ERROR;
2270   }
2271 
2272   if( bListSubprogs ){
2273     /* The first 8 memory cells are used for the result set.  So we will
2274     ** commandeer the 9th cell to use as storage for an array of pointers
2275     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
2276     ** cells.  */
2277     assert( p->nMem>9 );
2278     pSub = &p->aMem[9];
2279   }else{
2280     pSub = 0;
2281   }
2282 
2283   /* Figure out which opcode is next to display */
2284   rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
2285 
2286   if( rc==SQLITE_OK ){
2287     pOp = aOp + i;
2288     if( AtomicLoad(&db->u1.isInterrupted) ){
2289       p->rc = SQLITE_INTERRUPT;
2290       rc = SQLITE_ERROR;
2291       sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2292     }else{
2293       char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
2294       if( p->explain==2 ){
2295         sqlite3VdbeMemSetInt64(pMem, pOp->p1);
2296         sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
2297         sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
2298         sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
2299         p->nResColumn = 4;
2300       }else{
2301         sqlite3VdbeMemSetInt64(pMem+0, i);
2302         sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
2303                              -1, SQLITE_UTF8, SQLITE_STATIC);
2304         sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
2305         sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
2306         sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
2307         /* pMem+5 for p4 is done last */
2308         sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
2309 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2310         {
2311           char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
2312           sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
2313         }
2314 #else
2315         sqlite3VdbeMemSetNull(pMem+7);
2316 #endif
2317         sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
2318         p->nResColumn = 8;
2319       }
2320       p->pResultSet = pMem;
2321       if( db->mallocFailed ){
2322         p->rc = SQLITE_NOMEM;
2323         rc = SQLITE_ERROR;
2324       }else{
2325         p->rc = SQLITE_OK;
2326         rc = SQLITE_ROW;
2327       }
2328     }
2329   }
2330   return rc;
2331 }
2332 #endif /* SQLITE_OMIT_EXPLAIN */
2333 
2334 #ifdef SQLITE_DEBUG
2335 /*
2336 ** Print the SQL that was used to generate a VDBE program.
2337 */
2338 void sqlite3VdbePrintSql(Vdbe *p){
2339   const char *z = 0;
2340   if( p->zSql ){
2341     z = p->zSql;
2342   }else if( p->nOp>=1 ){
2343     const VdbeOp *pOp = &p->aOp[0];
2344     if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2345       z = pOp->p4.z;
2346       while( sqlite3Isspace(*z) ) z++;
2347     }
2348   }
2349   if( z ) printf("SQL: [%s]\n", z);
2350 }
2351 #endif
2352 
2353 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2354 /*
2355 ** Print an IOTRACE message showing SQL content.
2356 */
2357 void sqlite3VdbeIOTraceSql(Vdbe *p){
2358   int nOp = p->nOp;
2359   VdbeOp *pOp;
2360   if( sqlite3IoTrace==0 ) return;
2361   if( nOp<1 ) return;
2362   pOp = &p->aOp[0];
2363   if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2364     int i, j;
2365     char z[1000];
2366     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2367     for(i=0; sqlite3Isspace(z[i]); i++){}
2368     for(j=0; z[i]; i++){
2369       if( sqlite3Isspace(z[i]) ){
2370         if( z[i-1]!=' ' ){
2371           z[j++] = ' ';
2372         }
2373       }else{
2374         z[j++] = z[i];
2375       }
2376     }
2377     z[j] = 0;
2378     sqlite3IoTrace("SQL %s\n", z);
2379   }
2380 }
2381 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2382 
2383 /* An instance of this object describes bulk memory available for use
2384 ** by subcomponents of a prepared statement.  Space is allocated out
2385 ** of a ReusableSpace object by the allocSpace() routine below.
2386 */
2387 struct ReusableSpace {
2388   u8 *pSpace;            /* Available memory */
2389   sqlite3_int64 nFree;   /* Bytes of available memory */
2390   sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2391 };
2392 
2393 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2394 ** from the ReusableSpace object.  Return a pointer to the allocated
2395 ** memory on success.  If insufficient memory is available in the
2396 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2397 ** value by the amount needed and return NULL.
2398 **
2399 ** If pBuf is not initially NULL, that means that the memory has already
2400 ** been allocated by a prior call to this routine, so just return a copy
2401 ** of pBuf and leave ReusableSpace unchanged.
2402 **
2403 ** This allocator is employed to repurpose unused slots at the end of the
2404 ** opcode array of prepared state for other memory needs of the prepared
2405 ** statement.
2406 */
2407 static void *allocSpace(
2408   struct ReusableSpace *p,  /* Bulk memory available for allocation */
2409   void *pBuf,               /* Pointer to a prior allocation */
2410   sqlite3_int64 nByte       /* Bytes of memory needed. */
2411 ){
2412   assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2413   if( pBuf==0 ){
2414     nByte = ROUND8P(nByte);
2415     if( nByte <= p->nFree ){
2416       p->nFree -= nByte;
2417       pBuf = &p->pSpace[p->nFree];
2418     }else{
2419       p->nNeeded += nByte;
2420     }
2421   }
2422   assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2423   return pBuf;
2424 }
2425 
2426 /*
2427 ** Rewind the VDBE back to the beginning in preparation for
2428 ** running it.
2429 */
2430 void sqlite3VdbeRewind(Vdbe *p){
2431 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2432   int i;
2433 #endif
2434   assert( p!=0 );
2435   assert( p->eVdbeState==VDBE_INIT_STATE
2436        || p->eVdbeState==VDBE_READY_STATE
2437        || p->eVdbeState==VDBE_HALT_STATE );
2438 
2439   /* There should be at least one opcode.
2440   */
2441   assert( p->nOp>0 );
2442 
2443   p->eVdbeState = VDBE_READY_STATE;
2444 
2445 #ifdef SQLITE_DEBUG
2446   for(i=0; i<p->nMem; i++){
2447     assert( p->aMem[i].db==p->db );
2448   }
2449 #endif
2450   p->pc = -1;
2451   p->rc = SQLITE_OK;
2452   p->errorAction = OE_Abort;
2453   p->nChange = 0;
2454   p->cacheCtr = 1;
2455   p->minWriteFileFormat = 255;
2456   p->iStatement = 0;
2457   p->nFkConstraint = 0;
2458 #ifdef VDBE_PROFILE
2459   for(i=0; i<p->nOp; i++){
2460     p->aOp[i].cnt = 0;
2461     p->aOp[i].cycles = 0;
2462   }
2463 #endif
2464 }
2465 
2466 /*
2467 ** Prepare a virtual machine for execution for the first time after
2468 ** creating the virtual machine.  This involves things such
2469 ** as allocating registers and initializing the program counter.
2470 ** After the VDBE has be prepped, it can be executed by one or more
2471 ** calls to sqlite3VdbeExec().
2472 **
2473 ** This function may be called exactly once on each virtual machine.
2474 ** After this routine is called the VM has been "packaged" and is ready
2475 ** to run.  After this routine is called, further calls to
2476 ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
2477 ** the Vdbe from the Parse object that helped generate it so that the
2478 ** the Vdbe becomes an independent entity and the Parse object can be
2479 ** destroyed.
2480 **
2481 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2482 ** to its initial state after it has been run.
2483 */
2484 void sqlite3VdbeMakeReady(
2485   Vdbe *p,                       /* The VDBE */
2486   Parse *pParse                  /* Parsing context */
2487 ){
2488   sqlite3 *db;                   /* The database connection */
2489   int nVar;                      /* Number of parameters */
2490   int nMem;                      /* Number of VM memory registers */
2491   int nCursor;                   /* Number of cursors required */
2492   int nArg;                      /* Number of arguments in subprograms */
2493   int n;                         /* Loop counter */
2494   struct ReusableSpace x;        /* Reusable bulk memory */
2495 
2496   assert( p!=0 );
2497   assert( p->nOp>0 );
2498   assert( pParse!=0 );
2499   assert( p->eVdbeState==VDBE_INIT_STATE );
2500   assert( pParse==p->pParse );
2501   p->pVList = pParse->pVList;
2502   pParse->pVList =  0;
2503   db = p->db;
2504   assert( db->mallocFailed==0 );
2505   nVar = pParse->nVar;
2506   nMem = pParse->nMem;
2507   nCursor = pParse->nTab;
2508   nArg = pParse->nMaxArg;
2509 
2510   /* Each cursor uses a memory cell.  The first cursor (cursor 0) can
2511   ** use aMem[0] which is not otherwise used by the VDBE program.  Allocate
2512   ** space at the end of aMem[] for cursors 1 and greater.
2513   ** See also: allocateCursor().
2514   */
2515   nMem += nCursor;
2516   if( nCursor==0 && nMem>0 ) nMem++;  /* Space for aMem[0] even if not used */
2517 
2518   /* Figure out how much reusable memory is available at the end of the
2519   ** opcode array.  This extra memory will be reallocated for other elements
2520   ** of the prepared statement.
2521   */
2522   n = ROUND8P(sizeof(Op)*p->nOp);             /* Bytes of opcode memory used */
2523   x.pSpace = &((u8*)p->aOp)[n];               /* Unused opcode memory */
2524   assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2525   x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */
2526   assert( x.nFree>=0 );
2527   assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2528 
2529   resolveP2Values(p, &nArg);
2530   p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2531   if( pParse->explain ){
2532     static const char * const azColName[] = {
2533        "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2534        "id", "parent", "notused", "detail"
2535     };
2536     int iFirst, mx, i;
2537     if( nMem<10 ) nMem = 10;
2538     p->explain = pParse->explain;
2539     if( pParse->explain==2 ){
2540       sqlite3VdbeSetNumCols(p, 4);
2541       iFirst = 8;
2542       mx = 12;
2543     }else{
2544       sqlite3VdbeSetNumCols(p, 8);
2545       iFirst = 0;
2546       mx = 8;
2547     }
2548     for(i=iFirst; i<mx; i++){
2549       sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
2550                             azColName[i], SQLITE_STATIC);
2551     }
2552   }
2553   p->expired = 0;
2554 
2555   /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2556   ** passes.  On the first pass, we try to reuse unused memory at the
2557   ** end of the opcode array.  If we are unable to satisfy all memory
2558   ** requirements by reusing the opcode array tail, then the second
2559   ** pass will fill in the remainder using a fresh memory allocation.
2560   **
2561   ** This two-pass approach that reuses as much memory as possible from
2562   ** the leftover memory at the end of the opcode array.  This can significantly
2563   ** reduce the amount of memory held by a prepared statement.
2564   */
2565   x.nNeeded = 0;
2566   p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2567   p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2568   p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2569   p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2570 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2571   p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64));
2572 #endif
2573   if( x.nNeeded ){
2574     x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2575     x.nFree = x.nNeeded;
2576     if( !db->mallocFailed ){
2577       p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2578       p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2579       p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2580       p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2581 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2582       p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2583 #endif
2584     }
2585   }
2586 
2587   if( db->mallocFailed ){
2588     p->nVar = 0;
2589     p->nCursor = 0;
2590     p->nMem = 0;
2591   }else{
2592     p->nCursor = nCursor;
2593     p->nVar = (ynVar)nVar;
2594     initMemArray(p->aVar, nVar, db, MEM_Null);
2595     p->nMem = nMem;
2596     initMemArray(p->aMem, nMem, db, MEM_Undefined);
2597     memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2598 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2599     memset(p->anExec, 0, p->nOp*sizeof(i64));
2600 #endif
2601   }
2602   sqlite3VdbeRewind(p);
2603 }
2604 
2605 /*
2606 ** Close a VDBE cursor and release all the resources that cursor
2607 ** happens to hold.
2608 */
2609 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2610   if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx);
2611 }
2612 void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){
2613   switch( pCx->eCurType ){
2614     case CURTYPE_SORTER: {
2615       sqlite3VdbeSorterClose(p->db, pCx);
2616       break;
2617     }
2618     case CURTYPE_BTREE: {
2619       assert( pCx->uc.pCursor!=0 );
2620       sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2621       break;
2622     }
2623 #ifndef SQLITE_OMIT_VIRTUALTABLE
2624     case CURTYPE_VTAB: {
2625       sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2626       const sqlite3_module *pModule = pVCur->pVtab->pModule;
2627       assert( pVCur->pVtab->nRef>0 );
2628       pVCur->pVtab->nRef--;
2629       pModule->xClose(pVCur);
2630       break;
2631     }
2632 #endif
2633   }
2634 }
2635 
2636 /*
2637 ** Close all cursors in the current frame.
2638 */
2639 static void closeCursorsInFrame(Vdbe *p){
2640   int i;
2641   for(i=0; i<p->nCursor; i++){
2642     VdbeCursor *pC = p->apCsr[i];
2643     if( pC ){
2644       sqlite3VdbeFreeCursorNN(p, pC);
2645       p->apCsr[i] = 0;
2646     }
2647   }
2648 }
2649 
2650 /*
2651 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2652 ** is used, for example, when a trigger sub-program is halted to restore
2653 ** control to the main program.
2654 */
2655 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2656   Vdbe *v = pFrame->v;
2657   closeCursorsInFrame(v);
2658 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2659   v->anExec = pFrame->anExec;
2660 #endif
2661   v->aOp = pFrame->aOp;
2662   v->nOp = pFrame->nOp;
2663   v->aMem = pFrame->aMem;
2664   v->nMem = pFrame->nMem;
2665   v->apCsr = pFrame->apCsr;
2666   v->nCursor = pFrame->nCursor;
2667   v->db->lastRowid = pFrame->lastRowid;
2668   v->nChange = pFrame->nChange;
2669   v->db->nChange = pFrame->nDbChange;
2670   sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2671   v->pAuxData = pFrame->pAuxData;
2672   pFrame->pAuxData = 0;
2673   return pFrame->pc;
2674 }
2675 
2676 /*
2677 ** Close all cursors.
2678 **
2679 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2680 ** cell array. This is necessary as the memory cell array may contain
2681 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2682 ** open cursors.
2683 */
2684 static void closeAllCursors(Vdbe *p){
2685   if( p->pFrame ){
2686     VdbeFrame *pFrame;
2687     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2688     sqlite3VdbeFrameRestore(pFrame);
2689     p->pFrame = 0;
2690     p->nFrame = 0;
2691   }
2692   assert( p->nFrame==0 );
2693   closeCursorsInFrame(p);
2694   releaseMemArray(p->aMem, p->nMem);
2695   while( p->pDelFrame ){
2696     VdbeFrame *pDel = p->pDelFrame;
2697     p->pDelFrame = pDel->pParent;
2698     sqlite3VdbeFrameDelete(pDel);
2699   }
2700 
2701   /* Delete any auxdata allocations made by the VM */
2702   if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2703   assert( p->pAuxData==0 );
2704 }
2705 
2706 /*
2707 ** Set the number of result columns that will be returned by this SQL
2708 ** statement. This is now set at compile time, rather than during
2709 ** execution of the vdbe program so that sqlite3_column_count() can
2710 ** be called on an SQL statement before sqlite3_step().
2711 */
2712 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2713   int n;
2714   sqlite3 *db = p->db;
2715 
2716   if( p->nResColumn ){
2717     releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2718     sqlite3DbFree(db, p->aColName);
2719   }
2720   n = nResColumn*COLNAME_N;
2721   p->nResColumn = (u16)nResColumn;
2722   p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2723   if( p->aColName==0 ) return;
2724   initMemArray(p->aColName, n, db, MEM_Null);
2725 }
2726 
2727 /*
2728 ** Set the name of the idx'th column to be returned by the SQL statement.
2729 ** zName must be a pointer to a nul terminated string.
2730 **
2731 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2732 **
2733 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2734 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2735 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2736 */
2737 int sqlite3VdbeSetColName(
2738   Vdbe *p,                         /* Vdbe being configured */
2739   int idx,                         /* Index of column zName applies to */
2740   int var,                         /* One of the COLNAME_* constants */
2741   const char *zName,               /* Pointer to buffer containing name */
2742   void (*xDel)(void*)              /* Memory management strategy for zName */
2743 ){
2744   int rc;
2745   Mem *pColName;
2746   assert( idx<p->nResColumn );
2747   assert( var<COLNAME_N );
2748   if( p->db->mallocFailed ){
2749     assert( !zName || xDel!=SQLITE_DYNAMIC );
2750     return SQLITE_NOMEM_BKPT;
2751   }
2752   assert( p->aColName!=0 );
2753   pColName = &(p->aColName[idx+var*p->nResColumn]);
2754   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2755   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2756   return rc;
2757 }
2758 
2759 /*
2760 ** A read or write transaction may or may not be active on database handle
2761 ** db. If a transaction is active, commit it. If there is a
2762 ** write-transaction spanning more than one database file, this routine
2763 ** takes care of the super-journal trickery.
2764 */
2765 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2766   int i;
2767   int nTrans = 0;  /* Number of databases with an active write-transaction
2768                    ** that are candidates for a two-phase commit using a
2769                    ** super-journal */
2770   int rc = SQLITE_OK;
2771   int needXcommit = 0;
2772 
2773 #ifdef SQLITE_OMIT_VIRTUALTABLE
2774   /* With this option, sqlite3VtabSync() is defined to be simply
2775   ** SQLITE_OK so p is not used.
2776   */
2777   UNUSED_PARAMETER(p);
2778 #endif
2779 
2780   /* Before doing anything else, call the xSync() callback for any
2781   ** virtual module tables written in this transaction. This has to
2782   ** be done before determining whether a super-journal file is
2783   ** required, as an xSync() callback may add an attached database
2784   ** to the transaction.
2785   */
2786   rc = sqlite3VtabSync(db, p);
2787 
2788   /* This loop determines (a) if the commit hook should be invoked and
2789   ** (b) how many database files have open write transactions, not
2790   ** including the temp database. (b) is important because if more than
2791   ** one database file has an open write transaction, a super-journal
2792   ** file is required for an atomic commit.
2793   */
2794   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2795     Btree *pBt = db->aDb[i].pBt;
2796     if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2797       /* Whether or not a database might need a super-journal depends upon
2798       ** its journal mode (among other things).  This matrix determines which
2799       ** journal modes use a super-journal and which do not */
2800       static const u8 aMJNeeded[] = {
2801         /* DELETE   */  1,
2802         /* PERSIST   */ 1,
2803         /* OFF       */ 0,
2804         /* TRUNCATE  */ 1,
2805         /* MEMORY    */ 0,
2806         /* WAL       */ 0
2807       };
2808       Pager *pPager;   /* Pager associated with pBt */
2809       needXcommit = 1;
2810       sqlite3BtreeEnter(pBt);
2811       pPager = sqlite3BtreePager(pBt);
2812       if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2813        && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2814        && sqlite3PagerIsMemdb(pPager)==0
2815       ){
2816         assert( i!=1 );
2817         nTrans++;
2818       }
2819       rc = sqlite3PagerExclusiveLock(pPager);
2820       sqlite3BtreeLeave(pBt);
2821     }
2822   }
2823   if( rc!=SQLITE_OK ){
2824     return rc;
2825   }
2826 
2827   /* If there are any write-transactions at all, invoke the commit hook */
2828   if( needXcommit && db->xCommitCallback ){
2829     rc = db->xCommitCallback(db->pCommitArg);
2830     if( rc ){
2831       return SQLITE_CONSTRAINT_COMMITHOOK;
2832     }
2833   }
2834 
2835   /* The simple case - no more than one database file (not counting the
2836   ** TEMP database) has a transaction active.   There is no need for the
2837   ** super-journal.
2838   **
2839   ** If the return value of sqlite3BtreeGetFilename() is a zero length
2840   ** string, it means the main database is :memory: or a temp file.  In
2841   ** that case we do not support atomic multi-file commits, so use the
2842   ** simple case then too.
2843   */
2844   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2845    || nTrans<=1
2846   ){
2847     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2848       Btree *pBt = db->aDb[i].pBt;
2849       if( pBt ){
2850         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2851       }
2852     }
2853 
2854     /* Do the commit only if all databases successfully complete phase 1.
2855     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2856     ** IO error while deleting or truncating a journal file. It is unlikely,
2857     ** but could happen. In this case abandon processing and return the error.
2858     */
2859     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2860       Btree *pBt = db->aDb[i].pBt;
2861       if( pBt ){
2862         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2863       }
2864     }
2865     if( rc==SQLITE_OK ){
2866       sqlite3VtabCommit(db);
2867     }
2868   }
2869 
2870   /* The complex case - There is a multi-file write-transaction active.
2871   ** This requires a super-journal file to ensure the transaction is
2872   ** committed atomically.
2873   */
2874 #ifndef SQLITE_OMIT_DISKIO
2875   else{
2876     sqlite3_vfs *pVfs = db->pVfs;
2877     char *zSuper = 0;   /* File-name for the super-journal */
2878     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2879     sqlite3_file *pSuperJrnl = 0;
2880     i64 offset = 0;
2881     int res;
2882     int retryCount = 0;
2883     int nMainFile;
2884 
2885     /* Select a super-journal file name */
2886     nMainFile = sqlite3Strlen30(zMainFile);
2887     zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
2888     if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
2889     zSuper += 4;
2890     do {
2891       u32 iRandom;
2892       if( retryCount ){
2893         if( retryCount>100 ){
2894           sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
2895           sqlite3OsDelete(pVfs, zSuper, 0);
2896           break;
2897         }else if( retryCount==1 ){
2898           sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
2899         }
2900       }
2901       retryCount++;
2902       sqlite3_randomness(sizeof(iRandom), &iRandom);
2903       sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
2904                                (iRandom>>8)&0xffffff, iRandom&0xff);
2905       /* The antipenultimate character of the super-journal name must
2906       ** be "9" to avoid name collisions when using 8+3 filenames. */
2907       assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
2908       sqlite3FileSuffix3(zMainFile, zSuper);
2909       rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
2910     }while( rc==SQLITE_OK && res );
2911     if( rc==SQLITE_OK ){
2912       /* Open the super-journal. */
2913       rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl,
2914           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2915           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
2916       );
2917     }
2918     if( rc!=SQLITE_OK ){
2919       sqlite3DbFree(db, zSuper-4);
2920       return rc;
2921     }
2922 
2923     /* Write the name of each database file in the transaction into the new
2924     ** super-journal file. If an error occurs at this point close
2925     ** and delete the super-journal file. All the individual journal files
2926     ** still have 'null' as the super-journal pointer, so they will roll
2927     ** back independently if a failure occurs.
2928     */
2929     for(i=0; i<db->nDb; i++){
2930       Btree *pBt = db->aDb[i].pBt;
2931       if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2932         char const *zFile = sqlite3BtreeGetJournalname(pBt);
2933         if( zFile==0 ){
2934           continue;  /* Ignore TEMP and :memory: databases */
2935         }
2936         assert( zFile[0]!=0 );
2937         rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
2938         offset += sqlite3Strlen30(zFile)+1;
2939         if( rc!=SQLITE_OK ){
2940           sqlite3OsCloseFree(pSuperJrnl);
2941           sqlite3OsDelete(pVfs, zSuper, 0);
2942           sqlite3DbFree(db, zSuper-4);
2943           return rc;
2944         }
2945       }
2946     }
2947 
2948     /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
2949     ** flag is set this is not required.
2950     */
2951     if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
2952      && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
2953     ){
2954       sqlite3OsCloseFree(pSuperJrnl);
2955       sqlite3OsDelete(pVfs, zSuper, 0);
2956       sqlite3DbFree(db, zSuper-4);
2957       return rc;
2958     }
2959 
2960     /* Sync all the db files involved in the transaction. The same call
2961     ** sets the super-journal pointer in each individual journal. If
2962     ** an error occurs here, do not delete the super-journal file.
2963     **
2964     ** If the error occurs during the first call to
2965     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2966     ** super-journal file will be orphaned. But we cannot delete it,
2967     ** in case the super-journal file name was written into the journal
2968     ** file before the failure occurred.
2969     */
2970     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2971       Btree *pBt = db->aDb[i].pBt;
2972       if( pBt ){
2973         rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
2974       }
2975     }
2976     sqlite3OsCloseFree(pSuperJrnl);
2977     assert( rc!=SQLITE_BUSY );
2978     if( rc!=SQLITE_OK ){
2979       sqlite3DbFree(db, zSuper-4);
2980       return rc;
2981     }
2982 
2983     /* Delete the super-journal file. This commits the transaction. After
2984     ** doing this the directory is synced again before any individual
2985     ** transaction files are deleted.
2986     */
2987     rc = sqlite3OsDelete(pVfs, zSuper, 1);
2988     sqlite3DbFree(db, zSuper-4);
2989     zSuper = 0;
2990     if( rc ){
2991       return rc;
2992     }
2993 
2994     /* All files and directories have already been synced, so the following
2995     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2996     ** deleting or truncating journals. If something goes wrong while
2997     ** this is happening we don't really care. The integrity of the
2998     ** transaction is already guaranteed, but some stray 'cold' journals
2999     ** may be lying around. Returning an error code won't help matters.
3000     */
3001     disable_simulated_io_errors();
3002     sqlite3BeginBenignMalloc();
3003     for(i=0; i<db->nDb; i++){
3004       Btree *pBt = db->aDb[i].pBt;
3005       if( pBt ){
3006         sqlite3BtreeCommitPhaseTwo(pBt, 1);
3007       }
3008     }
3009     sqlite3EndBenignMalloc();
3010     enable_simulated_io_errors();
3011 
3012     sqlite3VtabCommit(db);
3013   }
3014 #endif
3015 
3016   return rc;
3017 }
3018 
3019 /*
3020 ** This routine checks that the sqlite3.nVdbeActive count variable
3021 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
3022 ** currently active. An assertion fails if the two counts do not match.
3023 ** This is an internal self-check only - it is not an essential processing
3024 ** step.
3025 **
3026 ** This is a no-op if NDEBUG is defined.
3027 */
3028 #ifndef NDEBUG
3029 static void checkActiveVdbeCnt(sqlite3 *db){
3030   Vdbe *p;
3031   int cnt = 0;
3032   int nWrite = 0;
3033   int nRead = 0;
3034   p = db->pVdbe;
3035   while( p ){
3036     if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
3037       cnt++;
3038       if( p->readOnly==0 ) nWrite++;
3039       if( p->bIsReader ) nRead++;
3040     }
3041     p = p->pVNext;
3042   }
3043   assert( cnt==db->nVdbeActive );
3044   assert( nWrite==db->nVdbeWrite );
3045   assert( nRead==db->nVdbeRead );
3046 }
3047 #else
3048 #define checkActiveVdbeCnt(x)
3049 #endif
3050 
3051 /*
3052 ** If the Vdbe passed as the first argument opened a statement-transaction,
3053 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
3054 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
3055 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
3056 ** statement transaction is committed.
3057 **
3058 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
3059 ** Otherwise SQLITE_OK.
3060 */
3061 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
3062   sqlite3 *const db = p->db;
3063   int rc = SQLITE_OK;
3064   int i;
3065   const int iSavepoint = p->iStatement-1;
3066 
3067   assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
3068   assert( db->nStatement>0 );
3069   assert( p->iStatement==(db->nStatement+db->nSavepoint) );
3070 
3071   for(i=0; i<db->nDb; i++){
3072     int rc2 = SQLITE_OK;
3073     Btree *pBt = db->aDb[i].pBt;
3074     if( pBt ){
3075       if( eOp==SAVEPOINT_ROLLBACK ){
3076         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
3077       }
3078       if( rc2==SQLITE_OK ){
3079         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
3080       }
3081       if( rc==SQLITE_OK ){
3082         rc = rc2;
3083       }
3084     }
3085   }
3086   db->nStatement--;
3087   p->iStatement = 0;
3088 
3089   if( rc==SQLITE_OK ){
3090     if( eOp==SAVEPOINT_ROLLBACK ){
3091       rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
3092     }
3093     if( rc==SQLITE_OK ){
3094       rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
3095     }
3096   }
3097 
3098   /* If the statement transaction is being rolled back, also restore the
3099   ** database handles deferred constraint counter to the value it had when
3100   ** the statement transaction was opened.  */
3101   if( eOp==SAVEPOINT_ROLLBACK ){
3102     db->nDeferredCons = p->nStmtDefCons;
3103     db->nDeferredImmCons = p->nStmtDefImmCons;
3104   }
3105   return rc;
3106 }
3107 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
3108   if( p->db->nStatement && p->iStatement ){
3109     return vdbeCloseStatement(p, eOp);
3110   }
3111   return SQLITE_OK;
3112 }
3113 
3114 
3115 /*
3116 ** This function is called when a transaction opened by the database
3117 ** handle associated with the VM passed as an argument is about to be
3118 ** committed. If there are outstanding deferred foreign key constraint
3119 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
3120 **
3121 ** If there are outstanding FK violations and this function returns
3122 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
3123 ** and write an error message to it. Then return SQLITE_ERROR.
3124 */
3125 #ifndef SQLITE_OMIT_FOREIGN_KEY
3126 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
3127   sqlite3 *db = p->db;
3128   if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
3129    || (!deferred && p->nFkConstraint>0)
3130   ){
3131     p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3132     p->errorAction = OE_Abort;
3133     sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
3134     if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR;
3135     return SQLITE_CONSTRAINT_FOREIGNKEY;
3136   }
3137   return SQLITE_OK;
3138 }
3139 #endif
3140 
3141 /*
3142 ** This routine is called the when a VDBE tries to halt.  If the VDBE
3143 ** has made changes and is in autocommit mode, then commit those
3144 ** changes.  If a rollback is needed, then do the rollback.
3145 **
3146 ** This routine is the only way to move the sqlite3eOpenState of a VM from
3147 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT.  It is harmless to
3148 ** call this on a VM that is in the SQLITE_STATE_HALT state.
3149 **
3150 ** Return an error code.  If the commit could not complete because of
3151 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
3152 ** means the close did not happen and needs to be repeated.
3153 */
3154 int sqlite3VdbeHalt(Vdbe *p){
3155   int rc;                         /* Used to store transient return codes */
3156   sqlite3 *db = p->db;
3157 
3158   /* This function contains the logic that determines if a statement or
3159   ** transaction will be committed or rolled back as a result of the
3160   ** execution of this virtual machine.
3161   **
3162   ** If any of the following errors occur:
3163   **
3164   **     SQLITE_NOMEM
3165   **     SQLITE_IOERR
3166   **     SQLITE_FULL
3167   **     SQLITE_INTERRUPT
3168   **
3169   ** Then the internal cache might have been left in an inconsistent
3170   ** state.  We need to rollback the statement transaction, if there is
3171   ** one, or the complete transaction if there is no statement transaction.
3172   */
3173 
3174   assert( p->eVdbeState==VDBE_RUN_STATE );
3175   if( db->mallocFailed ){
3176     p->rc = SQLITE_NOMEM_BKPT;
3177   }
3178   closeAllCursors(p);
3179   checkActiveVdbeCnt(db);
3180 
3181   /* No commit or rollback needed if the program never started or if the
3182   ** SQL statement does not read or write a database file.  */
3183   if( p->bIsReader ){
3184     int mrc;   /* Primary error code from p->rc */
3185     int eStatementOp = 0;
3186     int isSpecialError;            /* Set to true if a 'special' error */
3187 
3188     /* Lock all btrees used by the statement */
3189     sqlite3VdbeEnter(p);
3190 
3191     /* Check for one of the special errors */
3192     if( p->rc ){
3193       mrc = p->rc & 0xff;
3194       isSpecialError = mrc==SQLITE_NOMEM
3195                     || mrc==SQLITE_IOERR
3196                     || mrc==SQLITE_INTERRUPT
3197                     || mrc==SQLITE_FULL;
3198     }else{
3199       mrc = isSpecialError = 0;
3200     }
3201     if( isSpecialError ){
3202       /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3203       ** no rollback is necessary. Otherwise, at least a savepoint
3204       ** transaction must be rolled back to restore the database to a
3205       ** consistent state.
3206       **
3207       ** Even if the statement is read-only, it is important to perform
3208       ** a statement or transaction rollback operation. If the error
3209       ** occurred while writing to the journal, sub-journal or database
3210       ** file as part of an effort to free up cache space (see function
3211       ** pagerStress() in pager.c), the rollback is required to restore
3212       ** the pager to a consistent state.
3213       */
3214       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3215         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3216           eStatementOp = SAVEPOINT_ROLLBACK;
3217         }else{
3218           /* We are forced to roll back the active transaction. Before doing
3219           ** so, abort any other statements this handle currently has active.
3220           */
3221           sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3222           sqlite3CloseSavepoints(db);
3223           db->autoCommit = 1;
3224           p->nChange = 0;
3225         }
3226       }
3227     }
3228 
3229     /* Check for immediate foreign key violations. */
3230     if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3231       sqlite3VdbeCheckFk(p, 0);
3232     }
3233 
3234     /* If the auto-commit flag is set and this is the only active writer
3235     ** VM, then we do either a commit or rollback of the current transaction.
3236     **
3237     ** Note: This block also runs if one of the special errors handled
3238     ** above has occurred.
3239     */
3240     if( !sqlite3VtabInSync(db)
3241      && db->autoCommit
3242      && db->nVdbeWrite==(p->readOnly==0)
3243     ){
3244       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3245         rc = sqlite3VdbeCheckFk(p, 1);
3246         if( rc!=SQLITE_OK ){
3247           if( NEVER(p->readOnly) ){
3248             sqlite3VdbeLeave(p);
3249             return SQLITE_ERROR;
3250           }
3251           rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3252         }else if( db->flags & SQLITE_CorruptRdOnly ){
3253           rc = SQLITE_CORRUPT;
3254           db->flags &= ~SQLITE_CorruptRdOnly;
3255         }else{
3256           /* The auto-commit flag is true, the vdbe program was successful
3257           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3258           ** key constraints to hold up the transaction. This means a commit
3259           ** is required. */
3260           rc = vdbeCommit(db, p);
3261         }
3262         if( rc==SQLITE_BUSY && p->readOnly ){
3263           sqlite3VdbeLeave(p);
3264           return SQLITE_BUSY;
3265         }else if( rc!=SQLITE_OK ){
3266           p->rc = rc;
3267           sqlite3RollbackAll(db, SQLITE_OK);
3268           p->nChange = 0;
3269         }else{
3270           db->nDeferredCons = 0;
3271           db->nDeferredImmCons = 0;
3272           db->flags &= ~(u64)SQLITE_DeferFKs;
3273           sqlite3CommitInternalChanges(db);
3274         }
3275       }else{
3276         sqlite3RollbackAll(db, SQLITE_OK);
3277         p->nChange = 0;
3278       }
3279       db->nStatement = 0;
3280     }else if( eStatementOp==0 ){
3281       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3282         eStatementOp = SAVEPOINT_RELEASE;
3283       }else if( p->errorAction==OE_Abort ){
3284         eStatementOp = SAVEPOINT_ROLLBACK;
3285       }else{
3286         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3287         sqlite3CloseSavepoints(db);
3288         db->autoCommit = 1;
3289         p->nChange = 0;
3290       }
3291     }
3292 
3293     /* If eStatementOp is non-zero, then a statement transaction needs to
3294     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3295     ** do so. If this operation returns an error, and the current statement
3296     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3297     ** current statement error code.
3298     */
3299     if( eStatementOp ){
3300       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3301       if( rc ){
3302         if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3303           p->rc = rc;
3304           sqlite3DbFree(db, p->zErrMsg);
3305           p->zErrMsg = 0;
3306         }
3307         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3308         sqlite3CloseSavepoints(db);
3309         db->autoCommit = 1;
3310         p->nChange = 0;
3311       }
3312     }
3313 
3314     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3315     ** has been rolled back, update the database connection change-counter.
3316     */
3317     if( p->changeCntOn ){
3318       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3319         sqlite3VdbeSetChanges(db, p->nChange);
3320       }else{
3321         sqlite3VdbeSetChanges(db, 0);
3322       }
3323       p->nChange = 0;
3324     }
3325 
3326     /* Release the locks */
3327     sqlite3VdbeLeave(p);
3328   }
3329 
3330   /* We have successfully halted and closed the VM.  Record this fact. */
3331   db->nVdbeActive--;
3332   if( !p->readOnly ) db->nVdbeWrite--;
3333   if( p->bIsReader ) db->nVdbeRead--;
3334   assert( db->nVdbeActive>=db->nVdbeRead );
3335   assert( db->nVdbeRead>=db->nVdbeWrite );
3336   assert( db->nVdbeWrite>=0 );
3337   p->eVdbeState = VDBE_HALT_STATE;
3338   checkActiveVdbeCnt(db);
3339   if( db->mallocFailed ){
3340     p->rc = SQLITE_NOMEM_BKPT;
3341   }
3342 
3343   /* If the auto-commit flag is set to true, then any locks that were held
3344   ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3345   ** to invoke any required unlock-notify callbacks.
3346   */
3347   if( db->autoCommit ){
3348     sqlite3ConnectionUnlocked(db);
3349   }
3350 
3351   assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3352   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3353 }
3354 
3355 
3356 /*
3357 ** Each VDBE holds the result of the most recent sqlite3_step() call
3358 ** in p->rc.  This routine sets that result back to SQLITE_OK.
3359 */
3360 void sqlite3VdbeResetStepResult(Vdbe *p){
3361   p->rc = SQLITE_OK;
3362 }
3363 
3364 /*
3365 ** Copy the error code and error message belonging to the VDBE passed
3366 ** as the first argument to its database handle (so that they will be
3367 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3368 **
3369 ** This function does not clear the VDBE error code or message, just
3370 ** copies them to the database handle.
3371 */
3372 int sqlite3VdbeTransferError(Vdbe *p){
3373   sqlite3 *db = p->db;
3374   int rc = p->rc;
3375   if( p->zErrMsg ){
3376     db->bBenignMalloc++;
3377     sqlite3BeginBenignMalloc();
3378     if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3379     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3380     sqlite3EndBenignMalloc();
3381     db->bBenignMalloc--;
3382   }else if( db->pErr ){
3383     sqlite3ValueSetNull(db->pErr);
3384   }
3385   db->errCode = rc;
3386   db->errByteOffset = -1;
3387   return rc;
3388 }
3389 
3390 #ifdef SQLITE_ENABLE_SQLLOG
3391 /*
3392 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3393 ** invoke it.
3394 */
3395 static void vdbeInvokeSqllog(Vdbe *v){
3396   if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3397     char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3398     assert( v->db->init.busy==0 );
3399     if( zExpanded ){
3400       sqlite3GlobalConfig.xSqllog(
3401           sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3402       );
3403       sqlite3DbFree(v->db, zExpanded);
3404     }
3405   }
3406 }
3407 #else
3408 # define vdbeInvokeSqllog(x)
3409 #endif
3410 
3411 /*
3412 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3413 ** Write any error messages into *pzErrMsg.  Return the result code.
3414 **
3415 ** After this routine is run, the VDBE should be ready to be executed
3416 ** again.
3417 **
3418 ** To look at it another way, this routine resets the state of the
3419 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to
3420 ** VDBE_READY_STATE.
3421 */
3422 int sqlite3VdbeReset(Vdbe *p){
3423 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3424   int i;
3425 #endif
3426 
3427   sqlite3 *db;
3428   db = p->db;
3429 
3430   /* If the VM did not run to completion or if it encountered an
3431   ** error, then it might not have been halted properly.  So halt
3432   ** it now.
3433   */
3434   if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
3435 
3436   /* If the VDBE has been run even partially, then transfer the error code
3437   ** and error message from the VDBE into the main database structure.  But
3438   ** if the VDBE has just been set to run but has not actually executed any
3439   ** instructions yet, leave the main database error information unchanged.
3440   */
3441   if( p->pc>=0 ){
3442     vdbeInvokeSqllog(p);
3443     if( db->pErr || p->zErrMsg ){
3444       sqlite3VdbeTransferError(p);
3445     }else{
3446       db->errCode = p->rc;
3447     }
3448   }
3449 
3450   /* Reset register contents and reclaim error message memory.
3451   */
3452 #ifdef SQLITE_DEBUG
3453   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3454   ** Vdbe.aMem[] arrays have already been cleaned up.  */
3455   if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3456   if( p->aMem ){
3457     for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3458   }
3459 #endif
3460   if( p->zErrMsg ){
3461     sqlite3DbFree(db, p->zErrMsg);
3462     p->zErrMsg = 0;
3463   }
3464   p->pResultSet = 0;
3465 #ifdef SQLITE_DEBUG
3466   p->nWrite = 0;
3467 #endif
3468 
3469   /* Save profiling information from this VDBE run.
3470   */
3471 #ifdef VDBE_PROFILE
3472   {
3473     FILE *out = fopen("vdbe_profile.out", "a");
3474     if( out ){
3475       fprintf(out, "---- ");
3476       for(i=0; i<p->nOp; i++){
3477         fprintf(out, "%02x", p->aOp[i].opcode);
3478       }
3479       fprintf(out, "\n");
3480       if( p->zSql ){
3481         char c, pc = 0;
3482         fprintf(out, "-- ");
3483         for(i=0; (c = p->zSql[i])!=0; i++){
3484           if( pc=='\n' ) fprintf(out, "-- ");
3485           putc(c, out);
3486           pc = c;
3487         }
3488         if( pc!='\n' ) fprintf(out, "\n");
3489       }
3490       for(i=0; i<p->nOp; i++){
3491         char zHdr[100];
3492         sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3493            p->aOp[i].cnt,
3494            p->aOp[i].cycles,
3495            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
3496         );
3497         fprintf(out, "%s", zHdr);
3498         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3499       }
3500       fclose(out);
3501     }
3502   }
3503 #endif
3504   return p->rc & db->errMask;
3505 }
3506 
3507 /*
3508 ** Clean up and delete a VDBE after execution.  Return an integer which is
3509 ** the result code.  Write any error message text into *pzErrMsg.
3510 */
3511 int sqlite3VdbeFinalize(Vdbe *p){
3512   int rc = SQLITE_OK;
3513   assert( VDBE_RUN_STATE>VDBE_READY_STATE );
3514   assert( VDBE_HALT_STATE>VDBE_READY_STATE );
3515   assert( VDBE_INIT_STATE<VDBE_READY_STATE );
3516   if( p->eVdbeState>=VDBE_READY_STATE ){
3517     rc = sqlite3VdbeReset(p);
3518     assert( (rc & p->db->errMask)==rc );
3519   }
3520   sqlite3VdbeDelete(p);
3521   return rc;
3522 }
3523 
3524 /*
3525 ** If parameter iOp is less than zero, then invoke the destructor for
3526 ** all auxiliary data pointers currently cached by the VM passed as
3527 ** the first argument.
3528 **
3529 ** Or, if iOp is greater than or equal to zero, then the destructor is
3530 ** only invoked for those auxiliary data pointers created by the user
3531 ** function invoked by the OP_Function opcode at instruction iOp of
3532 ** VM pVdbe, and only then if:
3533 **
3534 **    * the associated function parameter is the 32nd or later (counting
3535 **      from left to right), or
3536 **
3537 **    * the corresponding bit in argument mask is clear (where the first
3538 **      function parameter corresponds to bit 0 etc.).
3539 */
3540 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3541   while( *pp ){
3542     AuxData *pAux = *pp;
3543     if( (iOp<0)
3544      || (pAux->iAuxOp==iOp
3545           && pAux->iAuxArg>=0
3546           && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3547     ){
3548       testcase( pAux->iAuxArg==31 );
3549       if( pAux->xDeleteAux ){
3550         pAux->xDeleteAux(pAux->pAux);
3551       }
3552       *pp = pAux->pNextAux;
3553       sqlite3DbFree(db, pAux);
3554     }else{
3555       pp= &pAux->pNextAux;
3556     }
3557   }
3558 }
3559 
3560 /*
3561 ** Free all memory associated with the Vdbe passed as the second argument,
3562 ** except for object itself, which is preserved.
3563 **
3564 ** The difference between this function and sqlite3VdbeDelete() is that
3565 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3566 ** the database connection and frees the object itself.
3567 */
3568 static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3569   SubProgram *pSub, *pNext;
3570   assert( db!=0 );
3571   assert( p->db==0 || p->db==db );
3572   if( p->aColName ){
3573     releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3574     sqlite3DbNNFreeNN(db, p->aColName);
3575   }
3576   for(pSub=p->pProgram; pSub; pSub=pNext){
3577     pNext = pSub->pNext;
3578     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3579     sqlite3DbFree(db, pSub);
3580   }
3581   if( p->eVdbeState!=VDBE_INIT_STATE ){
3582     releaseMemArray(p->aVar, p->nVar);
3583     if( p->pVList ) sqlite3DbNNFreeNN(db, p->pVList);
3584     if( p->pFree ) sqlite3DbNNFreeNN(db, p->pFree);
3585   }
3586   vdbeFreeOpArray(db, p->aOp, p->nOp);
3587   if( p->zSql ) sqlite3DbNNFreeNN(db, p->zSql);
3588 #ifdef SQLITE_ENABLE_NORMALIZE
3589   sqlite3DbFree(db, p->zNormSql);
3590   {
3591     DblquoteStr *pThis, *pNext;
3592     for(pThis=p->pDblStr; pThis; pThis=pNext){
3593       pNext = pThis->pNextStr;
3594       sqlite3DbFree(db, pThis);
3595     }
3596   }
3597 #endif
3598 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3599   {
3600     int i;
3601     for(i=0; i<p->nScan; i++){
3602       sqlite3DbFree(db, p->aScan[i].zName);
3603     }
3604     sqlite3DbFree(db, p->aScan);
3605   }
3606 #endif
3607 }
3608 
3609 /*
3610 ** Delete an entire VDBE.
3611 */
3612 void sqlite3VdbeDelete(Vdbe *p){
3613   sqlite3 *db;
3614 
3615   assert( p!=0 );
3616   db = p->db;
3617   assert( db!=0 );
3618   assert( sqlite3_mutex_held(db->mutex) );
3619   sqlite3VdbeClearObject(db, p);
3620   if( db->pnBytesFreed==0 ){
3621     assert( p->ppVPrev!=0 );
3622     *p->ppVPrev = p->pVNext;
3623     if( p->pVNext ){
3624       p->pVNext->ppVPrev = p->ppVPrev;
3625     }
3626   }
3627   sqlite3DbNNFreeNN(db, p);
3628 }
3629 
3630 /*
3631 ** The cursor "p" has a pending seek operation that has not yet been
3632 ** carried out.  Seek the cursor now.  If an error occurs, return
3633 ** the appropriate error code.
3634 */
3635 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3636   int res, rc;
3637 #ifdef SQLITE_TEST
3638   extern int sqlite3_search_count;
3639 #endif
3640   assert( p->deferredMoveto );
3641   assert( p->isTable );
3642   assert( p->eCurType==CURTYPE_BTREE );
3643   rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res);
3644   if( rc ) return rc;
3645   if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3646 #ifdef SQLITE_TEST
3647   sqlite3_search_count++;
3648 #endif
3649   p->deferredMoveto = 0;
3650   p->cacheStatus = CACHE_STALE;
3651   return SQLITE_OK;
3652 }
3653 
3654 /*
3655 ** Something has moved cursor "p" out of place.  Maybe the row it was
3656 ** pointed to was deleted out from under it.  Or maybe the btree was
3657 ** rebalanced.  Whatever the cause, try to restore "p" to the place it
3658 ** is supposed to be pointing.  If the row was deleted out from under the
3659 ** cursor, set the cursor to point to a NULL row.
3660 */
3661 int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){
3662   int isDifferentRow, rc;
3663   assert( p->eCurType==CURTYPE_BTREE );
3664   assert( p->uc.pCursor!=0 );
3665   assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3666   rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3667   p->cacheStatus = CACHE_STALE;
3668   if( isDifferentRow ) p->nullRow = 1;
3669   return rc;
3670 }
3671 
3672 /*
3673 ** Check to ensure that the cursor is valid.  Restore the cursor
3674 ** if need be.  Return any I/O error from the restore operation.
3675 */
3676 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3677   assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) );
3678   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3679     return sqlite3VdbeHandleMovedCursor(p);
3680   }
3681   return SQLITE_OK;
3682 }
3683 
3684 /*
3685 ** The following functions:
3686 **
3687 ** sqlite3VdbeSerialType()
3688 ** sqlite3VdbeSerialTypeLen()
3689 ** sqlite3VdbeSerialLen()
3690 ** sqlite3VdbeSerialPut()  <--- in-lined into OP_MakeRecord as of 2022-04-02
3691 ** sqlite3VdbeSerialGet()
3692 **
3693 ** encapsulate the code that serializes values for storage in SQLite
3694 ** data and index records. Each serialized value consists of a
3695 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3696 ** integer, stored as a varint.
3697 **
3698 ** In an SQLite index record, the serial type is stored directly before
3699 ** the blob of data that it corresponds to. In a table record, all serial
3700 ** types are stored at the start of the record, and the blobs of data at
3701 ** the end. Hence these functions allow the caller to handle the
3702 ** serial-type and data blob separately.
3703 **
3704 ** The following table describes the various storage classes for data:
3705 **
3706 **   serial type        bytes of data      type
3707 **   --------------     ---------------    ---------------
3708 **      0                     0            NULL
3709 **      1                     1            signed integer
3710 **      2                     2            signed integer
3711 **      3                     3            signed integer
3712 **      4                     4            signed integer
3713 **      5                     6            signed integer
3714 **      6                     8            signed integer
3715 **      7                     8            IEEE float
3716 **      8                     0            Integer constant 0
3717 **      9                     0            Integer constant 1
3718 **     10,11                               reserved for expansion
3719 **    N>=12 and even       (N-12)/2        BLOB
3720 **    N>=13 and odd        (N-13)/2        text
3721 **
3722 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
3723 ** of SQLite will not understand those serial types.
3724 */
3725 
3726 #if 0 /* Inlined into the OP_MakeRecord opcode */
3727 /*
3728 ** Return the serial-type for the value stored in pMem.
3729 **
3730 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3731 **
3732 ** 2019-07-11:  The primary user of this subroutine was the OP_MakeRecord
3733 ** opcode in the byte-code engine.  But by moving this routine in-line, we
3734 ** can omit some redundant tests and make that opcode a lot faster.  So
3735 ** this routine is now only used by the STAT3 logic and STAT3 support has
3736 ** ended.  The code is kept here for historical reference only.
3737 */
3738 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3739   int flags = pMem->flags;
3740   u32 n;
3741 
3742   assert( pLen!=0 );
3743   if( flags&MEM_Null ){
3744     *pLen = 0;
3745     return 0;
3746   }
3747   if( flags&(MEM_Int|MEM_IntReal) ){
3748     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3749 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3750     i64 i = pMem->u.i;
3751     u64 u;
3752     testcase( flags & MEM_Int );
3753     testcase( flags & MEM_IntReal );
3754     if( i<0 ){
3755       u = ~i;
3756     }else{
3757       u = i;
3758     }
3759     if( u<=127 ){
3760       if( (i&1)==i && file_format>=4 ){
3761         *pLen = 0;
3762         return 8+(u32)u;
3763       }else{
3764         *pLen = 1;
3765         return 1;
3766       }
3767     }
3768     if( u<=32767 ){ *pLen = 2; return 2; }
3769     if( u<=8388607 ){ *pLen = 3; return 3; }
3770     if( u<=2147483647 ){ *pLen = 4; return 4; }
3771     if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3772     *pLen = 8;
3773     if( flags&MEM_IntReal ){
3774       /* If the value is IntReal and is going to take up 8 bytes to store
3775       ** as an integer, then we might as well make it an 8-byte floating
3776       ** point value */
3777       pMem->u.r = (double)pMem->u.i;
3778       pMem->flags &= ~MEM_IntReal;
3779       pMem->flags |= MEM_Real;
3780       return 7;
3781     }
3782     return 6;
3783   }
3784   if( flags&MEM_Real ){
3785     *pLen = 8;
3786     return 7;
3787   }
3788   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3789   assert( pMem->n>=0 );
3790   n = (u32)pMem->n;
3791   if( flags & MEM_Zero ){
3792     n += pMem->u.nZero;
3793   }
3794   *pLen = n;
3795   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3796 }
3797 #endif /* inlined into OP_MakeRecord */
3798 
3799 /*
3800 ** The sizes for serial types less than 128
3801 */
3802 const u8 sqlite3SmallTypeSizes[128] = {
3803         /*  0   1   2   3   4   5   6   7   8   9 */
3804 /*   0 */   0,  1,  2,  3,  4,  6,  8,  8,  0,  0,
3805 /*  10 */   0,  0,  0,  0,  1,  1,  2,  2,  3,  3,
3806 /*  20 */   4,  4,  5,  5,  6,  6,  7,  7,  8,  8,
3807 /*  30 */   9,  9, 10, 10, 11, 11, 12, 12, 13, 13,
3808 /*  40 */  14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3809 /*  50 */  19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3810 /*  60 */  24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3811 /*  70 */  29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3812 /*  80 */  34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3813 /*  90 */  39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3814 /* 100 */  44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3815 /* 110 */  49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3816 /* 120 */  54, 54, 55, 55, 56, 56, 57, 57
3817 };
3818 
3819 /*
3820 ** Return the length of the data corresponding to the supplied serial-type.
3821 */
3822 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3823   if( serial_type>=128 ){
3824     return (serial_type-12)/2;
3825   }else{
3826     assert( serial_type<12
3827             || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3828     return sqlite3SmallTypeSizes[serial_type];
3829   }
3830 }
3831 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3832   assert( serial_type<128 );
3833   return sqlite3SmallTypeSizes[serial_type];
3834 }
3835 
3836 /*
3837 ** If we are on an architecture with mixed-endian floating
3838 ** points (ex: ARM7) then swap the lower 4 bytes with the
3839 ** upper 4 bytes.  Return the result.
3840 **
3841 ** For most architectures, this is a no-op.
3842 **
3843 ** (later):  It is reported to me that the mixed-endian problem
3844 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
3845 ** that early versions of GCC stored the two words of a 64-bit
3846 ** float in the wrong order.  And that error has been propagated
3847 ** ever since.  The blame is not necessarily with GCC, though.
3848 ** GCC might have just copying the problem from a prior compiler.
3849 ** I am also told that newer versions of GCC that follow a different
3850 ** ABI get the byte order right.
3851 **
3852 ** Developers using SQLite on an ARM7 should compile and run their
3853 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
3854 ** enabled, some asserts below will ensure that the byte order of
3855 ** floating point values is correct.
3856 **
3857 ** (2007-08-30)  Frank van Vugt has studied this problem closely
3858 ** and has send his findings to the SQLite developers.  Frank
3859 ** writes that some Linux kernels offer floating point hardware
3860 ** emulation that uses only 32-bit mantissas instead of a full
3861 ** 48-bits as required by the IEEE standard.  (This is the
3862 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
3863 ** byte swapping becomes very complicated.  To avoid problems,
3864 ** the necessary byte swapping is carried out using a 64-bit integer
3865 ** rather than a 64-bit float.  Frank assures us that the code here
3866 ** works for him.  We, the developers, have no way to independently
3867 ** verify this, but Frank seems to know what he is talking about
3868 ** so we trust him.
3869 */
3870 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3871 u64 sqlite3FloatSwap(u64 in){
3872   union {
3873     u64 r;
3874     u32 i[2];
3875   } u;
3876   u32 t;
3877 
3878   u.r = in;
3879   t = u.i[0];
3880   u.i[0] = u.i[1];
3881   u.i[1] = t;
3882   return u.r;
3883 }
3884 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */
3885 
3886 
3887 /* Input "x" is a sequence of unsigned characters that represent a
3888 ** big-endian integer.  Return the equivalent native integer
3889 */
3890 #define ONE_BYTE_INT(x)    ((i8)(x)[0])
3891 #define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
3892 #define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3893 #define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3894 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3895 
3896 /*
3897 ** Deserialize the data blob pointed to by buf as serial type serial_type
3898 ** and store the result in pMem.
3899 **
3900 ** This function is implemented as two separate routines for performance.
3901 ** The few cases that require local variables are broken out into a separate
3902 ** routine so that in most cases the overhead of moving the stack pointer
3903 ** is avoided.
3904 */
3905 static void serialGet(
3906   const unsigned char *buf,     /* Buffer to deserialize from */
3907   u32 serial_type,              /* Serial type to deserialize */
3908   Mem *pMem                     /* Memory cell to write value into */
3909 ){
3910   u64 x = FOUR_BYTE_UINT(buf);
3911   u32 y = FOUR_BYTE_UINT(buf+4);
3912   x = (x<<32) + y;
3913   if( serial_type==6 ){
3914     /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3915     ** twos-complement integer. */
3916     pMem->u.i = *(i64*)&x;
3917     pMem->flags = MEM_Int;
3918     testcase( pMem->u.i<0 );
3919   }else{
3920     /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3921     ** floating point number. */
3922 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3923     /* Verify that integers and floating point values use the same
3924     ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3925     ** defined that 64-bit floating point values really are mixed
3926     ** endian.
3927     */
3928     static const u64 t1 = ((u64)0x3ff00000)<<32;
3929     static const double r1 = 1.0;
3930     u64 t2 = t1;
3931     swapMixedEndianFloat(t2);
3932     assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3933 #endif
3934     assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3935     swapMixedEndianFloat(x);
3936     memcpy(&pMem->u.r, &x, sizeof(x));
3937     pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
3938   }
3939 }
3940 void sqlite3VdbeSerialGet(
3941   const unsigned char *buf,     /* Buffer to deserialize from */
3942   u32 serial_type,              /* Serial type to deserialize */
3943   Mem *pMem                     /* Memory cell to write value into */
3944 ){
3945   switch( serial_type ){
3946     case 10: { /* Internal use only: NULL with virtual table
3947                ** UPDATE no-change flag set */
3948       pMem->flags = MEM_Null|MEM_Zero;
3949       pMem->n = 0;
3950       pMem->u.nZero = 0;
3951       return;
3952     }
3953     case 11:   /* Reserved for future use */
3954     case 0: {  /* Null */
3955       /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3956       pMem->flags = MEM_Null;
3957       return;
3958     }
3959     case 1: {
3960       /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3961       ** integer. */
3962       pMem->u.i = ONE_BYTE_INT(buf);
3963       pMem->flags = MEM_Int;
3964       testcase( pMem->u.i<0 );
3965       return;
3966     }
3967     case 2: { /* 2-byte signed integer */
3968       /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3969       ** twos-complement integer. */
3970       pMem->u.i = TWO_BYTE_INT(buf);
3971       pMem->flags = MEM_Int;
3972       testcase( pMem->u.i<0 );
3973       return;
3974     }
3975     case 3: { /* 3-byte signed integer */
3976       /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3977       ** twos-complement integer. */
3978       pMem->u.i = THREE_BYTE_INT(buf);
3979       pMem->flags = MEM_Int;
3980       testcase( pMem->u.i<0 );
3981       return;
3982     }
3983     case 4: { /* 4-byte signed integer */
3984       /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3985       ** twos-complement integer. */
3986       pMem->u.i = FOUR_BYTE_INT(buf);
3987 #ifdef __HP_cc
3988       /* Work around a sign-extension bug in the HP compiler for HP/UX */
3989       if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3990 #endif
3991       pMem->flags = MEM_Int;
3992       testcase( pMem->u.i<0 );
3993       return;
3994     }
3995     case 5: { /* 6-byte signed integer */
3996       /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3997       ** twos-complement integer. */
3998       pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3999       pMem->flags = MEM_Int;
4000       testcase( pMem->u.i<0 );
4001       return;
4002     }
4003     case 6:   /* 8-byte signed integer */
4004     case 7: { /* IEEE floating point */
4005       /* These use local variables, so do them in a separate routine
4006       ** to avoid having to move the frame pointer in the common case */
4007       serialGet(buf,serial_type,pMem);
4008       return;
4009     }
4010     case 8:    /* Integer 0 */
4011     case 9: {  /* Integer 1 */
4012       /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
4013       /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
4014       pMem->u.i = serial_type-8;
4015       pMem->flags = MEM_Int;
4016       return;
4017     }
4018     default: {
4019       /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
4020       ** length.
4021       ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
4022       ** (N-13)/2 bytes in length. */
4023       static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
4024       pMem->z = (char *)buf;
4025       pMem->n = (serial_type-12)/2;
4026       pMem->flags = aFlag[serial_type&1];
4027       return;
4028     }
4029   }
4030   return;
4031 }
4032 /*
4033 ** This routine is used to allocate sufficient space for an UnpackedRecord
4034 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
4035 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
4036 **
4037 ** The space is either allocated using sqlite3DbMallocRaw() or from within
4038 ** the unaligned buffer passed via the second and third arguments (presumably
4039 ** stack space). If the former, then *ppFree is set to a pointer that should
4040 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
4041 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
4042 ** before returning.
4043 **
4044 ** If an OOM error occurs, NULL is returned.
4045 */
4046 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
4047   KeyInfo *pKeyInfo               /* Description of the record */
4048 ){
4049   UnpackedRecord *p;              /* Unpacked record to return */
4050   int nByte;                      /* Number of bytes required for *p */
4051   nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
4052   p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
4053   if( !p ) return 0;
4054   p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))];
4055   assert( pKeyInfo->aSortFlags!=0 );
4056   p->pKeyInfo = pKeyInfo;
4057   p->nField = pKeyInfo->nKeyField + 1;
4058   return p;
4059 }
4060 
4061 /*
4062 ** Given the nKey-byte encoding of a record in pKey[], populate the
4063 ** UnpackedRecord structure indicated by the fourth argument with the
4064 ** contents of the decoded record.
4065 */
4066 void sqlite3VdbeRecordUnpack(
4067   KeyInfo *pKeyInfo,     /* Information about the record format */
4068   int nKey,              /* Size of the binary record */
4069   const void *pKey,      /* The binary record */
4070   UnpackedRecord *p      /* Populate this structure before returning. */
4071 ){
4072   const unsigned char *aKey = (const unsigned char *)pKey;
4073   u32 d;
4074   u32 idx;                        /* Offset in aKey[] to read from */
4075   u16 u;                          /* Unsigned loop counter */
4076   u32 szHdr;
4077   Mem *pMem = p->aMem;
4078 
4079   p->default_rc = 0;
4080   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
4081   idx = getVarint32(aKey, szHdr);
4082   d = szHdr;
4083   u = 0;
4084   while( idx<szHdr && d<=(u32)nKey ){
4085     u32 serial_type;
4086 
4087     idx += getVarint32(&aKey[idx], serial_type);
4088     pMem->enc = pKeyInfo->enc;
4089     pMem->db = pKeyInfo->db;
4090     /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4091     pMem->szMalloc = 0;
4092     pMem->z = 0;
4093     sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
4094     d += sqlite3VdbeSerialTypeLen(serial_type);
4095     pMem++;
4096     if( (++u)>=p->nField ) break;
4097   }
4098   if( d>(u32)nKey && u ){
4099     assert( CORRUPT_DB );
4100     /* In a corrupt record entry, the last pMem might have been set up using
4101     ** uninitialized memory. Overwrite its value with NULL, to prevent
4102     ** warnings from MSAN. */
4103     sqlite3VdbeMemSetNull(pMem-1);
4104   }
4105   assert( u<=pKeyInfo->nKeyField + 1 );
4106   p->nField = u;
4107 }
4108 
4109 #ifdef SQLITE_DEBUG
4110 /*
4111 ** This function compares two index or table record keys in the same way
4112 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4113 ** this function deserializes and compares values using the
4114 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4115 ** in assert() statements to ensure that the optimized code in
4116 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4117 **
4118 ** Return true if the result of comparison is equivalent to desiredResult.
4119 ** Return false if there is a disagreement.
4120 */
4121 static int vdbeRecordCompareDebug(
4122   int nKey1, const void *pKey1, /* Left key */
4123   const UnpackedRecord *pPKey2, /* Right key */
4124   int desiredResult             /* Correct answer */
4125 ){
4126   u32 d1;            /* Offset into aKey[] of next data element */
4127   u32 idx1;          /* Offset into aKey[] of next header element */
4128   u32 szHdr1;        /* Number of bytes in header */
4129   int i = 0;
4130   int rc = 0;
4131   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4132   KeyInfo *pKeyInfo;
4133   Mem mem1;
4134 
4135   pKeyInfo = pPKey2->pKeyInfo;
4136   if( pKeyInfo->db==0 ) return 1;
4137   mem1.enc = pKeyInfo->enc;
4138   mem1.db = pKeyInfo->db;
4139   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
4140   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4141 
4142   /* Compilers may complain that mem1.u.i is potentially uninitialized.
4143   ** We could initialize it, as shown here, to silence those complaints.
4144   ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4145   ** the unnecessary initialization has a measurable negative performance
4146   ** impact, since this routine is a very high runner.  And so, we choose
4147   ** to ignore the compiler warnings and leave this variable uninitialized.
4148   */
4149   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
4150 
4151   idx1 = getVarint32(aKey1, szHdr1);
4152   if( szHdr1>98307 ) return SQLITE_CORRUPT;
4153   d1 = szHdr1;
4154   assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4155   assert( pKeyInfo->aSortFlags!=0 );
4156   assert( pKeyInfo->nKeyField>0 );
4157   assert( idx1<=szHdr1 || CORRUPT_DB );
4158   do{
4159     u32 serial_type1;
4160 
4161     /* Read the serial types for the next element in each key. */
4162     idx1 += getVarint32( aKey1+idx1, serial_type1 );
4163 
4164     /* Verify that there is enough key space remaining to avoid
4165     ** a buffer overread.  The "d1+serial_type1+2" subexpression will
4166     ** always be greater than or equal to the amount of required key space.
4167     ** Use that approximation to avoid the more expensive call to
4168     ** sqlite3VdbeSerialTypeLen() in the common case.
4169     */
4170     if( d1+(u64)serial_type1+2>(u64)nKey1
4171      && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4172     ){
4173       break;
4174     }
4175 
4176     /* Extract the values to be compared.
4177     */
4178     sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4179     d1 += sqlite3VdbeSerialTypeLen(serial_type1);
4180 
4181     /* Do the comparison
4182     */
4183     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4184                            pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4185     if( rc!=0 ){
4186       assert( mem1.szMalloc==0 );  /* See comment below */
4187       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4188        && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4189       ){
4190         rc = -rc;
4191       }
4192       if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4193         rc = -rc;  /* Invert the result for DESC sort order. */
4194       }
4195       goto debugCompareEnd;
4196     }
4197     i++;
4198   }while( idx1<szHdr1 && i<pPKey2->nField );
4199 
4200   /* No memory allocation is ever used on mem1.  Prove this using
4201   ** the following assert().  If the assert() fails, it indicates a
4202   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4203   */
4204   assert( mem1.szMalloc==0 );
4205 
4206   /* rc==0 here means that one of the keys ran out of fields and
4207   ** all the fields up to that point were equal. Return the default_rc
4208   ** value.  */
4209   rc = pPKey2->default_rc;
4210 
4211 debugCompareEnd:
4212   if( desiredResult==0 && rc==0 ) return 1;
4213   if( desiredResult<0 && rc<0 ) return 1;
4214   if( desiredResult>0 && rc>0 ) return 1;
4215   if( CORRUPT_DB ) return 1;
4216   if( pKeyInfo->db->mallocFailed ) return 1;
4217   return 0;
4218 }
4219 #endif
4220 
4221 #ifdef SQLITE_DEBUG
4222 /*
4223 ** Count the number of fields (a.k.a. columns) in the record given by
4224 ** pKey,nKey.  The verify that this count is less than or equal to the
4225 ** limit given by pKeyInfo->nAllField.
4226 **
4227 ** If this constraint is not satisfied, it means that the high-speed
4228 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4229 ** not work correctly.  If this assert() ever fires, it probably means
4230 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4231 ** incorrectly.
4232 */
4233 static void vdbeAssertFieldCountWithinLimits(
4234   int nKey, const void *pKey,   /* The record to verify */
4235   const KeyInfo *pKeyInfo       /* Compare size with this KeyInfo */
4236 ){
4237   int nField = 0;
4238   u32 szHdr;
4239   u32 idx;
4240   u32 notUsed;
4241   const unsigned char *aKey = (const unsigned char*)pKey;
4242 
4243   if( CORRUPT_DB ) return;
4244   idx = getVarint32(aKey, szHdr);
4245   assert( nKey>=0 );
4246   assert( szHdr<=(u32)nKey );
4247   while( idx<szHdr ){
4248     idx += getVarint32(aKey+idx, notUsed);
4249     nField++;
4250   }
4251   assert( nField <= pKeyInfo->nAllField );
4252 }
4253 #else
4254 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4255 #endif
4256 
4257 /*
4258 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4259 ** using the collation sequence pColl. As usual, return a negative , zero
4260 ** or positive value if *pMem1 is less than, equal to or greater than
4261 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4262 */
4263 static int vdbeCompareMemString(
4264   const Mem *pMem1,
4265   const Mem *pMem2,
4266   const CollSeq *pColl,
4267   u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */
4268 ){
4269   if( pMem1->enc==pColl->enc ){
4270     /* The strings are already in the correct encoding.  Call the
4271      ** comparison function directly */
4272     return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4273   }else{
4274     int rc;
4275     const void *v1, *v2;
4276     Mem c1;
4277     Mem c2;
4278     sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4279     sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4280     sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4281     sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4282     v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4283     v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4284     if( (v1==0 || v2==0) ){
4285       if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4286       rc = 0;
4287     }else{
4288       rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4289     }
4290     sqlite3VdbeMemReleaseMalloc(&c1);
4291     sqlite3VdbeMemReleaseMalloc(&c2);
4292     return rc;
4293   }
4294 }
4295 
4296 /*
4297 ** The input pBlob is guaranteed to be a Blob that is not marked
4298 ** with MEM_Zero.  Return true if it could be a zero-blob.
4299 */
4300 static int isAllZero(const char *z, int n){
4301   int i;
4302   for(i=0; i<n; i++){
4303     if( z[i] ) return 0;
4304   }
4305   return 1;
4306 }
4307 
4308 /*
4309 ** Compare two blobs.  Return negative, zero, or positive if the first
4310 ** is less than, equal to, or greater than the second, respectively.
4311 ** If one blob is a prefix of the other, then the shorter is the lessor.
4312 */
4313 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4314   int c;
4315   int n1 = pB1->n;
4316   int n2 = pB2->n;
4317 
4318   /* It is possible to have a Blob value that has some non-zero content
4319   ** followed by zero content.  But that only comes up for Blobs formed
4320   ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4321   ** sqlite3MemCompare(). */
4322   assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4323   assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4324 
4325   if( (pB1->flags|pB2->flags) & MEM_Zero ){
4326     if( pB1->flags & pB2->flags & MEM_Zero ){
4327       return pB1->u.nZero - pB2->u.nZero;
4328     }else if( pB1->flags & MEM_Zero ){
4329       if( !isAllZero(pB2->z, pB2->n) ) return -1;
4330       return pB1->u.nZero - n2;
4331     }else{
4332       if( !isAllZero(pB1->z, pB1->n) ) return +1;
4333       return n1 - pB2->u.nZero;
4334     }
4335   }
4336   c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4337   if( c ) return c;
4338   return n1 - n2;
4339 }
4340 
4341 /*
4342 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4343 ** number.  Return negative, zero, or positive if the first (i64) is less than,
4344 ** equal to, or greater than the second (double).
4345 */
4346 int sqlite3IntFloatCompare(i64 i, double r){
4347   if( sizeof(LONGDOUBLE_TYPE)>8 ){
4348     LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4349     testcase( x<r );
4350     testcase( x>r );
4351     testcase( x==r );
4352     if( x<r ) return -1;
4353     if( x>r ) return +1;  /*NO_TEST*/ /* work around bugs in gcov */
4354     return 0;             /*NO_TEST*/ /* work around bugs in gcov */
4355   }else{
4356     i64 y;
4357     double s;
4358     if( r<-9223372036854775808.0 ) return +1;
4359     if( r>=9223372036854775808.0 ) return -1;
4360     y = (i64)r;
4361     if( i<y ) return -1;
4362     if( i>y ) return +1;
4363     s = (double)i;
4364     if( s<r ) return -1;
4365     if( s>r ) return +1;
4366     return 0;
4367   }
4368 }
4369 
4370 /*
4371 ** Compare the values contained by the two memory cells, returning
4372 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4373 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4374 ** and reals) sorted numerically, followed by text ordered by the collating
4375 ** sequence pColl and finally blob's ordered by memcmp().
4376 **
4377 ** Two NULL values are considered equal by this function.
4378 */
4379 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4380   int f1, f2;
4381   int combined_flags;
4382 
4383   f1 = pMem1->flags;
4384   f2 = pMem2->flags;
4385   combined_flags = f1|f2;
4386   assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4387 
4388   /* If one value is NULL, it is less than the other. If both values
4389   ** are NULL, return 0.
4390   */
4391   if( combined_flags&MEM_Null ){
4392     return (f2&MEM_Null) - (f1&MEM_Null);
4393   }
4394 
4395   /* At least one of the two values is a number
4396   */
4397   if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4398     testcase( combined_flags & MEM_Int );
4399     testcase( combined_flags & MEM_Real );
4400     testcase( combined_flags & MEM_IntReal );
4401     if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4402       testcase( f1 & f2 & MEM_Int );
4403       testcase( f1 & f2 & MEM_IntReal );
4404       if( pMem1->u.i < pMem2->u.i ) return -1;
4405       if( pMem1->u.i > pMem2->u.i ) return +1;
4406       return 0;
4407     }
4408     if( (f1 & f2 & MEM_Real)!=0 ){
4409       if( pMem1->u.r < pMem2->u.r ) return -1;
4410       if( pMem1->u.r > pMem2->u.r ) return +1;
4411       return 0;
4412     }
4413     if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4414       testcase( f1 & MEM_Int );
4415       testcase( f1 & MEM_IntReal );
4416       if( (f2&MEM_Real)!=0 ){
4417         return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4418       }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4419         if( pMem1->u.i < pMem2->u.i ) return -1;
4420         if( pMem1->u.i > pMem2->u.i ) return +1;
4421         return 0;
4422       }else{
4423         return -1;
4424       }
4425     }
4426     if( (f1&MEM_Real)!=0 ){
4427       if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4428         testcase( f2 & MEM_Int );
4429         testcase( f2 & MEM_IntReal );
4430         return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4431       }else{
4432         return -1;
4433       }
4434     }
4435     return +1;
4436   }
4437 
4438   /* If one value is a string and the other is a blob, the string is less.
4439   ** If both are strings, compare using the collating functions.
4440   */
4441   if( combined_flags&MEM_Str ){
4442     if( (f1 & MEM_Str)==0 ){
4443       return 1;
4444     }
4445     if( (f2 & MEM_Str)==0 ){
4446       return -1;
4447     }
4448 
4449     assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4450     assert( pMem1->enc==SQLITE_UTF8 ||
4451             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4452 
4453     /* The collation sequence must be defined at this point, even if
4454     ** the user deletes the collation sequence after the vdbe program is
4455     ** compiled (this was not always the case).
4456     */
4457     assert( !pColl || pColl->xCmp );
4458 
4459     if( pColl ){
4460       return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4461     }
4462     /* If a NULL pointer was passed as the collate function, fall through
4463     ** to the blob case and use memcmp().  */
4464   }
4465 
4466   /* Both values must be blobs.  Compare using memcmp().  */
4467   return sqlite3BlobCompare(pMem1, pMem2);
4468 }
4469 
4470 
4471 /*
4472 ** The first argument passed to this function is a serial-type that
4473 ** corresponds to an integer - all values between 1 and 9 inclusive
4474 ** except 7. The second points to a buffer containing an integer value
4475 ** serialized according to serial_type. This function deserializes
4476 ** and returns the value.
4477 */
4478 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4479   u32 y;
4480   assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4481   switch( serial_type ){
4482     case 0:
4483     case 1:
4484       testcase( aKey[0]&0x80 );
4485       return ONE_BYTE_INT(aKey);
4486     case 2:
4487       testcase( aKey[0]&0x80 );
4488       return TWO_BYTE_INT(aKey);
4489     case 3:
4490       testcase( aKey[0]&0x80 );
4491       return THREE_BYTE_INT(aKey);
4492     case 4: {
4493       testcase( aKey[0]&0x80 );
4494       y = FOUR_BYTE_UINT(aKey);
4495       return (i64)*(int*)&y;
4496     }
4497     case 5: {
4498       testcase( aKey[0]&0x80 );
4499       return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4500     }
4501     case 6: {
4502       u64 x = FOUR_BYTE_UINT(aKey);
4503       testcase( aKey[0]&0x80 );
4504       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4505       return (i64)*(i64*)&x;
4506     }
4507   }
4508 
4509   return (serial_type - 8);
4510 }
4511 
4512 /*
4513 ** This function compares the two table rows or index records
4514 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
4515 ** or positive integer if key1 is less than, equal to or
4516 ** greater than key2.  The {nKey1, pKey1} key must be a blob
4517 ** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2
4518 ** key must be a parsed key such as obtained from
4519 ** sqlite3VdbeParseRecord.
4520 **
4521 ** If argument bSkip is non-zero, it is assumed that the caller has already
4522 ** determined that the first fields of the keys are equal.
4523 **
4524 ** Key1 and Key2 do not have to contain the same number of fields. If all
4525 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4526 ** returned.
4527 **
4528 ** If database corruption is discovered, set pPKey2->errCode to
4529 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4530 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4531 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4532 */
4533 int sqlite3VdbeRecordCompareWithSkip(
4534   int nKey1, const void *pKey1,   /* Left key */
4535   UnpackedRecord *pPKey2,         /* Right key */
4536   int bSkip                       /* If true, skip the first field */
4537 ){
4538   u32 d1;                         /* Offset into aKey[] of next data element */
4539   int i;                          /* Index of next field to compare */
4540   u32 szHdr1;                     /* Size of record header in bytes */
4541   u32 idx1;                       /* Offset of first type in header */
4542   int rc = 0;                     /* Return value */
4543   Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
4544   KeyInfo *pKeyInfo;
4545   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4546   Mem mem1;
4547 
4548   /* If bSkip is true, then the caller has already determined that the first
4549   ** two elements in the keys are equal. Fix the various stack variables so
4550   ** that this routine begins comparing at the second field. */
4551   if( bSkip ){
4552     u32 s1 = aKey1[1];
4553     if( s1<0x80 ){
4554       idx1 = 2;
4555     }else{
4556       idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1);
4557     }
4558     szHdr1 = aKey1[0];
4559     d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4560     i = 1;
4561     pRhs++;
4562   }else{
4563     if( (szHdr1 = aKey1[0])<0x80 ){
4564       idx1 = 1;
4565     }else{
4566       idx1 = sqlite3GetVarint32(aKey1, &szHdr1);
4567     }
4568     d1 = szHdr1;
4569     i = 0;
4570   }
4571   if( d1>(unsigned)nKey1 ){
4572     pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4573     return 0;  /* Corruption */
4574   }
4575 
4576   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4577   assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4578        || CORRUPT_DB );
4579   assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4580   assert( pPKey2->pKeyInfo->nKeyField>0 );
4581   assert( idx1<=szHdr1 || CORRUPT_DB );
4582   do{
4583     u32 serial_type;
4584 
4585     /* RHS is an integer */
4586     if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4587       testcase( pRhs->flags & MEM_Int );
4588       testcase( pRhs->flags & MEM_IntReal );
4589       serial_type = aKey1[idx1];
4590       testcase( serial_type==12 );
4591       if( serial_type>=10 ){
4592         rc = +1;
4593       }else if( serial_type==0 ){
4594         rc = -1;
4595       }else if( serial_type==7 ){
4596         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4597         rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4598       }else{
4599         i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4600         i64 rhs = pRhs->u.i;
4601         if( lhs<rhs ){
4602           rc = -1;
4603         }else if( lhs>rhs ){
4604           rc = +1;
4605         }
4606       }
4607     }
4608 
4609     /* RHS is real */
4610     else if( pRhs->flags & MEM_Real ){
4611       serial_type = aKey1[idx1];
4612       if( serial_type>=10 ){
4613         /* Serial types 12 or greater are strings and blobs (greater than
4614         ** numbers). Types 10 and 11 are currently "reserved for future
4615         ** use", so it doesn't really matter what the results of comparing
4616         ** them to numberic values are.  */
4617         rc = +1;
4618       }else if( serial_type==0 ){
4619         rc = -1;
4620       }else{
4621         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4622         if( serial_type==7 ){
4623           if( mem1.u.r<pRhs->u.r ){
4624             rc = -1;
4625           }else if( mem1.u.r>pRhs->u.r ){
4626             rc = +1;
4627           }
4628         }else{
4629           rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4630         }
4631       }
4632     }
4633 
4634     /* RHS is a string */
4635     else if( pRhs->flags & MEM_Str ){
4636       getVarint32NR(&aKey1[idx1], serial_type);
4637       testcase( serial_type==12 );
4638       if( serial_type<12 ){
4639         rc = -1;
4640       }else if( !(serial_type & 0x01) ){
4641         rc = +1;
4642       }else{
4643         mem1.n = (serial_type - 12) / 2;
4644         testcase( (d1+mem1.n)==(unsigned)nKey1 );
4645         testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4646         if( (d1+mem1.n) > (unsigned)nKey1
4647          || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4648         ){
4649           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4650           return 0;                /* Corruption */
4651         }else if( pKeyInfo->aColl[i] ){
4652           mem1.enc = pKeyInfo->enc;
4653           mem1.db = pKeyInfo->db;
4654           mem1.flags = MEM_Str;
4655           mem1.z = (char*)&aKey1[d1];
4656           rc = vdbeCompareMemString(
4657               &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4658           );
4659         }else{
4660           int nCmp = MIN(mem1.n, pRhs->n);
4661           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4662           if( rc==0 ) rc = mem1.n - pRhs->n;
4663         }
4664       }
4665     }
4666 
4667     /* RHS is a blob */
4668     else if( pRhs->flags & MEM_Blob ){
4669       assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4670       getVarint32NR(&aKey1[idx1], serial_type);
4671       testcase( serial_type==12 );
4672       if( serial_type<12 || (serial_type & 0x01) ){
4673         rc = -1;
4674       }else{
4675         int nStr = (serial_type - 12) / 2;
4676         testcase( (d1+nStr)==(unsigned)nKey1 );
4677         testcase( (d1+nStr+1)==(unsigned)nKey1 );
4678         if( (d1+nStr) > (unsigned)nKey1 ){
4679           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4680           return 0;                /* Corruption */
4681         }else if( pRhs->flags & MEM_Zero ){
4682           if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4683             rc = 1;
4684           }else{
4685             rc = nStr - pRhs->u.nZero;
4686           }
4687         }else{
4688           int nCmp = MIN(nStr, pRhs->n);
4689           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4690           if( rc==0 ) rc = nStr - pRhs->n;
4691         }
4692       }
4693     }
4694 
4695     /* RHS is null */
4696     else{
4697       serial_type = aKey1[idx1];
4698       rc = (serial_type!=0);
4699     }
4700 
4701     if( rc!=0 ){
4702       int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4703       if( sortFlags ){
4704         if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4705          || ((sortFlags & KEYINFO_ORDER_DESC)
4706            !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4707         ){
4708           rc = -rc;
4709         }
4710       }
4711       assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4712       assert( mem1.szMalloc==0 );  /* See comment below */
4713       return rc;
4714     }
4715 
4716     i++;
4717     if( i==pPKey2->nField ) break;
4718     pRhs++;
4719     d1 += sqlite3VdbeSerialTypeLen(serial_type);
4720     idx1 += sqlite3VarintLen(serial_type);
4721   }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 );
4722 
4723   /* No memory allocation is ever used on mem1.  Prove this using
4724   ** the following assert().  If the assert() fails, it indicates a
4725   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
4726   assert( mem1.szMalloc==0 );
4727 
4728   /* rc==0 here means that one or both of the keys ran out of fields and
4729   ** all the fields up to that point were equal. Return the default_rc
4730   ** value.  */
4731   assert( CORRUPT_DB
4732        || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4733        || pPKey2->pKeyInfo->db->mallocFailed
4734   );
4735   pPKey2->eqSeen = 1;
4736   return pPKey2->default_rc;
4737 }
4738 int sqlite3VdbeRecordCompare(
4739   int nKey1, const void *pKey1,   /* Left key */
4740   UnpackedRecord *pPKey2          /* Right key */
4741 ){
4742   return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4743 }
4744 
4745 
4746 /*
4747 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4748 ** that (a) the first field of pPKey2 is an integer, and (b) the
4749 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4750 ** byte (i.e. is less than 128).
4751 **
4752 ** To avoid concerns about buffer overreads, this routine is only used
4753 ** on schemas where the maximum valid header size is 63 bytes or less.
4754 */
4755 static int vdbeRecordCompareInt(
4756   int nKey1, const void *pKey1, /* Left key */
4757   UnpackedRecord *pPKey2        /* Right key */
4758 ){
4759   const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4760   int serial_type = ((const u8*)pKey1)[1];
4761   int res;
4762   u32 y;
4763   u64 x;
4764   i64 v;
4765   i64 lhs;
4766 
4767   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4768   assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4769   switch( serial_type ){
4770     case 1: { /* 1-byte signed integer */
4771       lhs = ONE_BYTE_INT(aKey);
4772       testcase( lhs<0 );
4773       break;
4774     }
4775     case 2: { /* 2-byte signed integer */
4776       lhs = TWO_BYTE_INT(aKey);
4777       testcase( lhs<0 );
4778       break;
4779     }
4780     case 3: { /* 3-byte signed integer */
4781       lhs = THREE_BYTE_INT(aKey);
4782       testcase( lhs<0 );
4783       break;
4784     }
4785     case 4: { /* 4-byte signed integer */
4786       y = FOUR_BYTE_UINT(aKey);
4787       lhs = (i64)*(int*)&y;
4788       testcase( lhs<0 );
4789       break;
4790     }
4791     case 5: { /* 6-byte signed integer */
4792       lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4793       testcase( lhs<0 );
4794       break;
4795     }
4796     case 6: { /* 8-byte signed integer */
4797       x = FOUR_BYTE_UINT(aKey);
4798       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4799       lhs = *(i64*)&x;
4800       testcase( lhs<0 );
4801       break;
4802     }
4803     case 8:
4804       lhs = 0;
4805       break;
4806     case 9:
4807       lhs = 1;
4808       break;
4809 
4810     /* This case could be removed without changing the results of running
4811     ** this code. Including it causes gcc to generate a faster switch
4812     ** statement (since the range of switch targets now starts at zero and
4813     ** is contiguous) but does not cause any duplicate code to be generated
4814     ** (as gcc is clever enough to combine the two like cases). Other
4815     ** compilers might be similar.  */
4816     case 0: case 7:
4817       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4818 
4819     default:
4820       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4821   }
4822 
4823   assert( pPKey2->u.i == pPKey2->aMem[0].u.i );
4824   v = pPKey2->u.i;
4825   if( v>lhs ){
4826     res = pPKey2->r1;
4827   }else if( v<lhs ){
4828     res = pPKey2->r2;
4829   }else if( pPKey2->nField>1 ){
4830     /* The first fields of the two keys are equal. Compare the trailing
4831     ** fields.  */
4832     res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4833   }else{
4834     /* The first fields of the two keys are equal and there are no trailing
4835     ** fields. Return pPKey2->default_rc in this case. */
4836     res = pPKey2->default_rc;
4837     pPKey2->eqSeen = 1;
4838   }
4839 
4840   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4841   return res;
4842 }
4843 
4844 /*
4845 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4846 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4847 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4848 ** at the start of (pKey1/nKey1) fits in a single byte.
4849 */
4850 static int vdbeRecordCompareString(
4851   int nKey1, const void *pKey1, /* Left key */
4852   UnpackedRecord *pPKey2        /* Right key */
4853 ){
4854   const u8 *aKey1 = (const u8*)pKey1;
4855   int serial_type;
4856   int res;
4857 
4858   assert( pPKey2->aMem[0].flags & MEM_Str );
4859   assert( pPKey2->aMem[0].n == pPKey2->n );
4860   assert( pPKey2->aMem[0].z == pPKey2->u.z );
4861   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4862   serial_type = (signed char)(aKey1[1]);
4863 
4864 vrcs_restart:
4865   if( serial_type<12 ){
4866     if( serial_type<0 ){
4867       sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
4868       if( serial_type>=12 ) goto vrcs_restart;
4869       assert( CORRUPT_DB );
4870     }
4871     res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
4872   }else if( !(serial_type & 0x01) ){
4873     res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
4874   }else{
4875     int nCmp;
4876     int nStr;
4877     int szHdr = aKey1[0];
4878 
4879     nStr = (serial_type-12) / 2;
4880     if( (szHdr + nStr) > nKey1 ){
4881       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4882       return 0;    /* Corruption */
4883     }
4884     nCmp = MIN( pPKey2->n, nStr );
4885     res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp);
4886 
4887     if( res>0 ){
4888       res = pPKey2->r2;
4889     }else if( res<0 ){
4890       res = pPKey2->r1;
4891     }else{
4892       res = nStr - pPKey2->n;
4893       if( res==0 ){
4894         if( pPKey2->nField>1 ){
4895           res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4896         }else{
4897           res = pPKey2->default_rc;
4898           pPKey2->eqSeen = 1;
4899         }
4900       }else if( res>0 ){
4901         res = pPKey2->r2;
4902       }else{
4903         res = pPKey2->r1;
4904       }
4905     }
4906   }
4907 
4908   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4909        || CORRUPT_DB
4910        || pPKey2->pKeyInfo->db->mallocFailed
4911   );
4912   return res;
4913 }
4914 
4915 /*
4916 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4917 ** suitable for comparing serialized records to the unpacked record passed
4918 ** as the only argument.
4919 */
4920 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4921   /* varintRecordCompareInt() and varintRecordCompareString() both assume
4922   ** that the size-of-header varint that occurs at the start of each record
4923   ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4924   ** also assumes that it is safe to overread a buffer by at least the
4925   ** maximum possible legal header size plus 8 bytes. Because there is
4926   ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4927   ** buffer passed to varintRecordCompareInt() this makes it convenient to
4928   ** limit the size of the header to 64 bytes in cases where the first field
4929   ** is an integer.
4930   **
4931   ** The easiest way to enforce this limit is to consider only records with
4932   ** 13 fields or less. If the first field is an integer, the maximum legal
4933   ** header size is (12*5 + 1 + 1) bytes.  */
4934   if( p->pKeyInfo->nAllField<=13 ){
4935     int flags = p->aMem[0].flags;
4936     if( p->pKeyInfo->aSortFlags[0] ){
4937       if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
4938         return sqlite3VdbeRecordCompare;
4939       }
4940       p->r1 = 1;
4941       p->r2 = -1;
4942     }else{
4943       p->r1 = -1;
4944       p->r2 = 1;
4945     }
4946     if( (flags & MEM_Int) ){
4947       p->u.i = p->aMem[0].u.i;
4948       return vdbeRecordCompareInt;
4949     }
4950     testcase( flags & MEM_Real );
4951     testcase( flags & MEM_Null );
4952     testcase( flags & MEM_Blob );
4953     if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
4954      && p->pKeyInfo->aColl[0]==0
4955     ){
4956       assert( flags & MEM_Str );
4957       p->u.z = p->aMem[0].z;
4958       p->n = p->aMem[0].n;
4959       return vdbeRecordCompareString;
4960     }
4961   }
4962 
4963   return sqlite3VdbeRecordCompare;
4964 }
4965 
4966 /*
4967 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4968 ** Read the rowid (the last field in the record) and store it in *rowid.
4969 ** Return SQLITE_OK if everything works, or an error code otherwise.
4970 **
4971 ** pCur might be pointing to text obtained from a corrupt database file.
4972 ** So the content cannot be trusted.  Do appropriate checks on the content.
4973 */
4974 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4975   i64 nCellKey = 0;
4976   int rc;
4977   u32 szHdr;        /* Size of the header */
4978   u32 typeRowid;    /* Serial type of the rowid */
4979   u32 lenRowid;     /* Size of the rowid */
4980   Mem m, v;
4981 
4982   /* Get the size of the index entry.  Only indices entries of less
4983   ** than 2GiB are support - anything large must be database corruption.
4984   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4985   ** this code can safely assume that nCellKey is 32-bits
4986   */
4987   assert( sqlite3BtreeCursorIsValid(pCur) );
4988   nCellKey = sqlite3BtreePayloadSize(pCur);
4989   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4990 
4991   /* Read in the complete content of the index entry */
4992   sqlite3VdbeMemInit(&m, db, 0);
4993   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
4994   if( rc ){
4995     return rc;
4996   }
4997 
4998   /* The index entry must begin with a header size */
4999   getVarint32NR((u8*)m.z, szHdr);
5000   testcase( szHdr==3 );
5001   testcase( szHdr==(u32)m.n );
5002   testcase( szHdr>0x7fffffff );
5003   assert( m.n>=0 );
5004   if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
5005     goto idx_rowid_corruption;
5006   }
5007 
5008   /* The last field of the index should be an integer - the ROWID.
5009   ** Verify that the last entry really is an integer. */
5010   getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
5011   testcase( typeRowid==1 );
5012   testcase( typeRowid==2 );
5013   testcase( typeRowid==3 );
5014   testcase( typeRowid==4 );
5015   testcase( typeRowid==5 );
5016   testcase( typeRowid==6 );
5017   testcase( typeRowid==8 );
5018   testcase( typeRowid==9 );
5019   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
5020     goto idx_rowid_corruption;
5021   }
5022   lenRowid = sqlite3SmallTypeSizes[typeRowid];
5023   testcase( (u32)m.n==szHdr+lenRowid );
5024   if( unlikely((u32)m.n<szHdr+lenRowid) ){
5025     goto idx_rowid_corruption;
5026   }
5027 
5028   /* Fetch the integer off the end of the index record */
5029   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
5030   *rowid = v.u.i;
5031   sqlite3VdbeMemReleaseMalloc(&m);
5032   return SQLITE_OK;
5033 
5034   /* Jump here if database corruption is detected after m has been
5035   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
5036 idx_rowid_corruption:
5037   testcase( m.szMalloc!=0 );
5038   sqlite3VdbeMemReleaseMalloc(&m);
5039   return SQLITE_CORRUPT_BKPT;
5040 }
5041 
5042 /*
5043 ** Compare the key of the index entry that cursor pC is pointing to against
5044 ** the key string in pUnpacked.  Write into *pRes a number
5045 ** that is negative, zero, or positive if pC is less than, equal to,
5046 ** or greater than pUnpacked.  Return SQLITE_OK on success.
5047 **
5048 ** pUnpacked is either created without a rowid or is truncated so that it
5049 ** omits the rowid at the end.  The rowid at the end of the index entry
5050 ** is ignored as well.  Hence, this routine only compares the prefixes
5051 ** of the keys prior to the final rowid, not the entire key.
5052 */
5053 int sqlite3VdbeIdxKeyCompare(
5054   sqlite3 *db,                     /* Database connection */
5055   VdbeCursor *pC,                  /* The cursor to compare against */
5056   UnpackedRecord *pUnpacked,       /* Unpacked version of key */
5057   int *res                         /* Write the comparison result here */
5058 ){
5059   i64 nCellKey = 0;
5060   int rc;
5061   BtCursor *pCur;
5062   Mem m;
5063 
5064   assert( pC->eCurType==CURTYPE_BTREE );
5065   pCur = pC->uc.pCursor;
5066   assert( sqlite3BtreeCursorIsValid(pCur) );
5067   nCellKey = sqlite3BtreePayloadSize(pCur);
5068   /* nCellKey will always be between 0 and 0xffffffff because of the way
5069   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
5070   if( nCellKey<=0 || nCellKey>0x7fffffff ){
5071     *res = 0;
5072     return SQLITE_CORRUPT_BKPT;
5073   }
5074   sqlite3VdbeMemInit(&m, db, 0);
5075   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5076   if( rc ){
5077     return rc;
5078   }
5079   *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
5080   sqlite3VdbeMemReleaseMalloc(&m);
5081   return SQLITE_OK;
5082 }
5083 
5084 /*
5085 ** This routine sets the value to be returned by subsequent calls to
5086 ** sqlite3_changes() on the database handle 'db'.
5087 */
5088 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){
5089   assert( sqlite3_mutex_held(db->mutex) );
5090   db->nChange = nChange;
5091   db->nTotalChange += nChange;
5092 }
5093 
5094 /*
5095 ** Set a flag in the vdbe to update the change counter when it is finalised
5096 ** or reset.
5097 */
5098 void sqlite3VdbeCountChanges(Vdbe *v){
5099   v->changeCntOn = 1;
5100 }
5101 
5102 /*
5103 ** Mark every prepared statement associated with a database connection
5104 ** as expired.
5105 **
5106 ** An expired statement means that recompilation of the statement is
5107 ** recommend.  Statements expire when things happen that make their
5108 ** programs obsolete.  Removing user-defined functions or collating
5109 ** sequences, or changing an authorization function are the types of
5110 ** things that make prepared statements obsolete.
5111 **
5112 ** If iCode is 1, then expiration is advisory.  The statement should
5113 ** be reprepared before being restarted, but if it is already running
5114 ** it is allowed to run to completion.
5115 **
5116 ** Internally, this function just sets the Vdbe.expired flag on all
5117 ** prepared statements.  The flag is set to 1 for an immediate expiration
5118 ** and set to 2 for an advisory expiration.
5119 */
5120 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
5121   Vdbe *p;
5122   for(p = db->pVdbe; p; p=p->pVNext){
5123     p->expired = iCode+1;
5124   }
5125 }
5126 
5127 /*
5128 ** Return the database associated with the Vdbe.
5129 */
5130 sqlite3 *sqlite3VdbeDb(Vdbe *v){
5131   return v->db;
5132 }
5133 
5134 /*
5135 ** Return the SQLITE_PREPARE flags for a Vdbe.
5136 */
5137 u8 sqlite3VdbePrepareFlags(Vdbe *v){
5138   return v->prepFlags;
5139 }
5140 
5141 /*
5142 ** Return a pointer to an sqlite3_value structure containing the value bound
5143 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5144 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5145 ** constants) to the value before returning it.
5146 **
5147 ** The returned value must be freed by the caller using sqlite3ValueFree().
5148 */
5149 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5150   assert( iVar>0 );
5151   if( v ){
5152     Mem *pMem = &v->aVar[iVar-1];
5153     assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5154     if( 0==(pMem->flags & MEM_Null) ){
5155       sqlite3_value *pRet = sqlite3ValueNew(v->db);
5156       if( pRet ){
5157         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5158         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5159       }
5160       return pRet;
5161     }
5162   }
5163   return 0;
5164 }
5165 
5166 /*
5167 ** Configure SQL variable iVar so that binding a new value to it signals
5168 ** to sqlite3_reoptimize() that re-preparing the statement may result
5169 ** in a better query plan.
5170 */
5171 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5172   assert( iVar>0 );
5173   assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5174   if( iVar>=32 ){
5175     v->expmask |= 0x80000000;
5176   }else{
5177     v->expmask |= ((u32)1 << (iVar-1));
5178   }
5179 }
5180 
5181 /*
5182 ** Cause a function to throw an error if it was call from OP_PureFunc
5183 ** rather than OP_Function.
5184 **
5185 ** OP_PureFunc means that the function must be deterministic, and should
5186 ** throw an error if it is given inputs that would make it non-deterministic.
5187 ** This routine is invoked by date/time functions that use non-deterministic
5188 ** features such as 'now'.
5189 */
5190 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5191   const VdbeOp *pOp;
5192 #ifdef SQLITE_ENABLE_STAT4
5193   if( pCtx->pVdbe==0 ) return 1;
5194 #endif
5195   pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5196   if( pOp->opcode==OP_PureFunc ){
5197     const char *zContext;
5198     char *zMsg;
5199     if( pOp->p5 & NC_IsCheck ){
5200       zContext = "a CHECK constraint";
5201     }else if( pOp->p5 & NC_GenCol ){
5202       zContext = "a generated column";
5203     }else{
5204       zContext = "an index";
5205     }
5206     zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5207                            pCtx->pFunc->zName, zContext);
5208     sqlite3_result_error(pCtx, zMsg, -1);
5209     sqlite3_free(zMsg);
5210     return 0;
5211   }
5212   return 1;
5213 }
5214 
5215 #ifndef SQLITE_OMIT_VIRTUALTABLE
5216 /*
5217 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5218 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5219 ** in memory obtained from sqlite3DbMalloc).
5220 */
5221 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5222   if( pVtab->zErrMsg ){
5223     sqlite3 *db = p->db;
5224     sqlite3DbFree(db, p->zErrMsg);
5225     p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5226     sqlite3_free(pVtab->zErrMsg);
5227     pVtab->zErrMsg = 0;
5228   }
5229 }
5230 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5231 
5232 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5233 
5234 /*
5235 ** If the second argument is not NULL, release any allocations associated
5236 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5237 ** structure itself, using sqlite3DbFree().
5238 **
5239 ** This function is used to free UnpackedRecord structures allocated by
5240 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5241 */
5242 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5243   assert( db!=0 );
5244   if( p ){
5245     int i;
5246     for(i=0; i<nField; i++){
5247       Mem *pMem = &p->aMem[i];
5248       if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem);
5249     }
5250     sqlite3DbNNFreeNN(db, p);
5251   }
5252 }
5253 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5254 
5255 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5256 /*
5257 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5258 ** then cursor passed as the second argument should point to the row about
5259 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5260 ** the required value will be read from the row the cursor points to.
5261 */
5262 void sqlite3VdbePreUpdateHook(
5263   Vdbe *v,                        /* Vdbe pre-update hook is invoked by */
5264   VdbeCursor *pCsr,               /* Cursor to grab old.* values from */
5265   int op,                         /* SQLITE_INSERT, UPDATE or DELETE */
5266   const char *zDb,                /* Database name */
5267   Table *pTab,                    /* Modified table */
5268   i64 iKey1,                      /* Initial key value */
5269   int iReg,                       /* Register for new.* record */
5270   int iBlobWrite
5271 ){
5272   sqlite3 *db = v->db;
5273   i64 iKey2;
5274   PreUpdate preupdate;
5275   const char *zTbl = pTab->zName;
5276   static const u8 fakeSortOrder = 0;
5277 
5278   assert( db->pPreUpdate==0 );
5279   memset(&preupdate, 0, sizeof(PreUpdate));
5280   if( HasRowid(pTab)==0 ){
5281     iKey1 = iKey2 = 0;
5282     preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5283   }else{
5284     if( op==SQLITE_UPDATE ){
5285       iKey2 = v->aMem[iReg].u.i;
5286     }else{
5287       iKey2 = iKey1;
5288     }
5289   }
5290 
5291   assert( pCsr!=0 );
5292   assert( pCsr->eCurType==CURTYPE_BTREE );
5293   assert( pCsr->nField==pTab->nCol
5294        || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
5295   );
5296 
5297   preupdate.v = v;
5298   preupdate.pCsr = pCsr;
5299   preupdate.op = op;
5300   preupdate.iNewReg = iReg;
5301   preupdate.keyinfo.db = db;
5302   preupdate.keyinfo.enc = ENC(db);
5303   preupdate.keyinfo.nKeyField = pTab->nCol;
5304   preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5305   preupdate.iKey1 = iKey1;
5306   preupdate.iKey2 = iKey2;
5307   preupdate.pTab = pTab;
5308   preupdate.iBlobWrite = iBlobWrite;
5309 
5310   db->pPreUpdate = &preupdate;
5311   db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5312   db->pPreUpdate = 0;
5313   sqlite3DbFree(db, preupdate.aRecord);
5314   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5315   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5316   if( preupdate.aNew ){
5317     int i;
5318     for(i=0; i<pCsr->nField; i++){
5319       sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5320     }
5321     sqlite3DbNNFreeNN(db, preupdate.aNew);
5322   }
5323 }
5324 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5325