1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* 19 ** Create a new virtual database engine. 20 */ 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 22 sqlite3 *db = pParse->db; 23 Vdbe *p; 24 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 25 if( p==0 ) return 0; 26 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 27 p->db = db; 28 if( db->pVdbe ){ 29 db->pVdbe->pPrev = p; 30 } 31 p->pNext = db->pVdbe; 32 p->pPrev = 0; 33 db->pVdbe = p; 34 p->magic = VDBE_MAGIC_INIT; 35 p->pParse = pParse; 36 pParse->pVdbe = p; 37 assert( pParse->aLabel==0 ); 38 assert( pParse->nLabel==0 ); 39 assert( pParse->nOpAlloc==0 ); 40 assert( pParse->szOpAlloc==0 ); 41 sqlite3VdbeAddOp2(p, OP_Init, 0, 1); 42 return p; 43 } 44 45 /* 46 ** Change the error string stored in Vdbe.zErrMsg 47 */ 48 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 49 va_list ap; 50 sqlite3DbFree(p->db, p->zErrMsg); 51 va_start(ap, zFormat); 52 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 53 va_end(ap); 54 } 55 56 /* 57 ** Remember the SQL string for a prepared statement. 58 */ 59 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 60 if( p==0 ) return; 61 p->prepFlags = prepFlags; 62 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 63 p->expmask = 0; 64 } 65 assert( p->zSql==0 ); 66 p->zSql = sqlite3DbStrNDup(p->db, z, n); 67 #ifdef SQLITE_ENABLE_NORMALIZE 68 assert( p->zNormSql==0 ); 69 if( p->zSql && (prepFlags & SQLITE_PREPARE_NORMALIZE)!=0 ){ 70 sqlite3Normalize(p, p->zSql, n, prepFlags); 71 assert( p->zNormSql!=0 || p->db->mallocFailed ); 72 } 73 #endif 74 } 75 76 /* 77 ** Swap all content between two VDBE structures. 78 */ 79 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 80 Vdbe tmp, *pTmp; 81 char *zTmp; 82 assert( pA->db==pB->db ); 83 tmp = *pA; 84 *pA = *pB; 85 *pB = tmp; 86 pTmp = pA->pNext; 87 pA->pNext = pB->pNext; 88 pB->pNext = pTmp; 89 pTmp = pA->pPrev; 90 pA->pPrev = pB->pPrev; 91 pB->pPrev = pTmp; 92 zTmp = pA->zSql; 93 pA->zSql = pB->zSql; 94 pB->zSql = zTmp; 95 #ifdef SQLITE_ENABLE_NORMALIZE 96 zTmp = pA->zNormSql; 97 pA->zNormSql = pB->zNormSql; 98 pB->zNormSql = zTmp; 99 #endif 100 pB->expmask = pA->expmask; 101 pB->prepFlags = pA->prepFlags; 102 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 103 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 104 } 105 106 /* 107 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 108 ** than its current size. nOp is guaranteed to be less than or equal 109 ** to 1024/sizeof(Op). 110 ** 111 ** If an out-of-memory error occurs while resizing the array, return 112 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain 113 ** unchanged (this is so that any opcodes already allocated can be 114 ** correctly deallocated along with the rest of the Vdbe). 115 */ 116 static int growOpArray(Vdbe *v, int nOp){ 117 VdbeOp *pNew; 118 Parse *p = v->pParse; 119 120 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 121 ** more frequent reallocs and hence provide more opportunities for 122 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 123 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 124 ** by the minimum* amount required until the size reaches 512. Normal 125 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 126 ** size of the op array or add 1KB of space, whichever is smaller. */ 127 #ifdef SQLITE_TEST_REALLOC_STRESS 128 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); 129 #else 130 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 131 UNUSED_PARAMETER(nOp); 132 #endif 133 134 /* Ensure that the size of a VDBE does not grow too large */ 135 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 136 sqlite3OomFault(p->db); 137 return SQLITE_NOMEM; 138 } 139 140 assert( nOp<=(1024/sizeof(Op)) ); 141 assert( nNew>=(p->nOpAlloc+nOp) ); 142 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 143 if( pNew ){ 144 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 145 p->nOpAlloc = p->szOpAlloc/sizeof(Op); 146 v->aOp = pNew; 147 } 148 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 149 } 150 151 #ifdef SQLITE_DEBUG 152 /* This routine is just a convenient place to set a breakpoint that will 153 ** fire after each opcode is inserted and displayed using 154 ** "PRAGMA vdbe_addoptrace=on". 155 */ 156 static void test_addop_breakpoint(void){ 157 static int n = 0; 158 n++; 159 } 160 #endif 161 162 /* 163 ** Add a new instruction to the list of instructions current in the 164 ** VDBE. Return the address of the new instruction. 165 ** 166 ** Parameters: 167 ** 168 ** p Pointer to the VDBE 169 ** 170 ** op The opcode for this instruction 171 ** 172 ** p1, p2, p3 Operands 173 ** 174 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 175 ** the sqlite3VdbeChangeP4() function to change the value of the P4 176 ** operand. 177 */ 178 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 179 assert( p->pParse->nOpAlloc<=p->nOp ); 180 if( growOpArray(p, 1) ) return 1; 181 assert( p->pParse->nOpAlloc>p->nOp ); 182 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 183 } 184 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 185 int i; 186 VdbeOp *pOp; 187 188 i = p->nOp; 189 assert( p->magic==VDBE_MAGIC_INIT ); 190 assert( op>=0 && op<0xff ); 191 if( p->pParse->nOpAlloc<=i ){ 192 return growOp3(p, op, p1, p2, p3); 193 } 194 p->nOp++; 195 pOp = &p->aOp[i]; 196 pOp->opcode = (u8)op; 197 pOp->p5 = 0; 198 pOp->p1 = p1; 199 pOp->p2 = p2; 200 pOp->p3 = p3; 201 pOp->p4.p = 0; 202 pOp->p4type = P4_NOTUSED; 203 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 204 pOp->zComment = 0; 205 #endif 206 #ifdef SQLITE_DEBUG 207 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 208 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 209 test_addop_breakpoint(); 210 } 211 #endif 212 #ifdef VDBE_PROFILE 213 pOp->cycles = 0; 214 pOp->cnt = 0; 215 #endif 216 #ifdef SQLITE_VDBE_COVERAGE 217 pOp->iSrcLine = 0; 218 #endif 219 return i; 220 } 221 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 222 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 223 } 224 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 225 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 226 } 227 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 228 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 229 } 230 231 /* Generate code for an unconditional jump to instruction iDest 232 */ 233 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 234 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 235 } 236 237 /* Generate code to cause the string zStr to be loaded into 238 ** register iDest 239 */ 240 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 241 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 242 } 243 244 /* 245 ** Generate code that initializes multiple registers to string or integer 246 ** constants. The registers begin with iDest and increase consecutively. 247 ** One register is initialized for each characgter in zTypes[]. For each 248 ** "s" character in zTypes[], the register is a string if the argument is 249 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 250 ** in zTypes[], the register is initialized to an integer. 251 ** 252 ** If the input string does not end with "X" then an OP_ResultRow instruction 253 ** is generated for the values inserted. 254 */ 255 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 256 va_list ap; 257 int i; 258 char c; 259 va_start(ap, zTypes); 260 for(i=0; (c = zTypes[i])!=0; i++){ 261 if( c=='s' ){ 262 const char *z = va_arg(ap, const char*); 263 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 264 }else if( c=='i' ){ 265 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 266 }else{ 267 goto skip_op_resultrow; 268 } 269 } 270 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 271 skip_op_resultrow: 272 va_end(ap); 273 } 274 275 /* 276 ** Add an opcode that includes the p4 value as a pointer. 277 */ 278 int sqlite3VdbeAddOp4( 279 Vdbe *p, /* Add the opcode to this VM */ 280 int op, /* The new opcode */ 281 int p1, /* The P1 operand */ 282 int p2, /* The P2 operand */ 283 int p3, /* The P3 operand */ 284 const char *zP4, /* The P4 operand */ 285 int p4type /* P4 operand type */ 286 ){ 287 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 288 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 289 return addr; 290 } 291 292 /* 293 ** Add an opcode that includes the p4 value with a P4_INT64 or 294 ** P4_REAL type. 295 */ 296 int sqlite3VdbeAddOp4Dup8( 297 Vdbe *p, /* Add the opcode to this VM */ 298 int op, /* The new opcode */ 299 int p1, /* The P1 operand */ 300 int p2, /* The P2 operand */ 301 int p3, /* The P3 operand */ 302 const u8 *zP4, /* The P4 operand */ 303 int p4type /* P4 operand type */ 304 ){ 305 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 306 if( p4copy ) memcpy(p4copy, zP4, 8); 307 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 308 } 309 310 #ifndef SQLITE_OMIT_EXPLAIN 311 /* 312 ** Return the address of the current EXPLAIN QUERY PLAN baseline. 313 ** 0 means "none". 314 */ 315 int sqlite3VdbeExplainParent(Parse *pParse){ 316 VdbeOp *pOp; 317 if( pParse->addrExplain==0 ) return 0; 318 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); 319 return pOp->p2; 320 } 321 322 /* 323 ** Add a new OP_Explain opcode. 324 ** 325 ** If the bPush flag is true, then make this opcode the parent for 326 ** subsequent Explains until sqlite3VdbeExplainPop() is called. 327 */ 328 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ 329 if( pParse->explain==2 ){ 330 char *zMsg; 331 Vdbe *v; 332 va_list ap; 333 int iThis; 334 va_start(ap, zFmt); 335 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); 336 va_end(ap); 337 v = pParse->pVdbe; 338 iThis = v->nOp; 339 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, 340 zMsg, P4_DYNAMIC); 341 if( bPush) pParse->addrExplain = iThis; 342 } 343 } 344 345 /* 346 ** Pop the EXPLAIN QUERY PLAN stack one level. 347 */ 348 void sqlite3VdbeExplainPop(Parse *pParse){ 349 pParse->addrExplain = sqlite3VdbeExplainParent(pParse); 350 } 351 #endif /* SQLITE_OMIT_EXPLAIN */ 352 353 /* 354 ** Add an OP_ParseSchema opcode. This routine is broken out from 355 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 356 ** as having been used. 357 ** 358 ** The zWhere string must have been obtained from sqlite3_malloc(). 359 ** This routine will take ownership of the allocated memory. 360 */ 361 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 362 int j; 363 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 364 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 365 } 366 367 /* 368 ** Add an opcode that includes the p4 value as an integer. 369 */ 370 int sqlite3VdbeAddOp4Int( 371 Vdbe *p, /* Add the opcode to this VM */ 372 int op, /* The new opcode */ 373 int p1, /* The P1 operand */ 374 int p2, /* The P2 operand */ 375 int p3, /* The P3 operand */ 376 int p4 /* The P4 operand as an integer */ 377 ){ 378 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 379 if( p->db->mallocFailed==0 ){ 380 VdbeOp *pOp = &p->aOp[addr]; 381 pOp->p4type = P4_INT32; 382 pOp->p4.i = p4; 383 } 384 return addr; 385 } 386 387 /* Insert the end of a co-routine 388 */ 389 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 390 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 391 392 /* Clear the temporary register cache, thereby ensuring that each 393 ** co-routine has its own independent set of registers, because co-routines 394 ** might expect their registers to be preserved across an OP_Yield, and 395 ** that could cause problems if two or more co-routines are using the same 396 ** temporary register. 397 */ 398 v->pParse->nTempReg = 0; 399 v->pParse->nRangeReg = 0; 400 } 401 402 /* 403 ** Create a new symbolic label for an instruction that has yet to be 404 ** coded. The symbolic label is really just a negative number. The 405 ** label can be used as the P2 value of an operation. Later, when 406 ** the label is resolved to a specific address, the VDBE will scan 407 ** through its operation list and change all values of P2 which match 408 ** the label into the resolved address. 409 ** 410 ** The VDBE knows that a P2 value is a label because labels are 411 ** always negative and P2 values are suppose to be non-negative. 412 ** Hence, a negative P2 value is a label that has yet to be resolved. 413 ** 414 ** Zero is returned if a malloc() fails. 415 */ 416 int sqlite3VdbeMakeLabel(Vdbe *v){ 417 Parse *p = v->pParse; 418 int i = p->nLabel++; 419 assert( v->magic==VDBE_MAGIC_INIT ); 420 if( (i & (i-1))==0 ){ 421 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 422 (i*2+1)*sizeof(p->aLabel[0])); 423 } 424 if( p->aLabel ){ 425 p->aLabel[i] = -1; 426 } 427 return ADDR(i); 428 } 429 430 /* 431 ** Resolve label "x" to be the address of the next instruction to 432 ** be inserted. The parameter "x" must have been obtained from 433 ** a prior call to sqlite3VdbeMakeLabel(). 434 */ 435 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 436 Parse *p = v->pParse; 437 int j = ADDR(x); 438 assert( v->magic==VDBE_MAGIC_INIT ); 439 assert( j<p->nLabel ); 440 assert( j>=0 ); 441 if( p->aLabel ){ 442 #ifdef SQLITE_DEBUG 443 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 444 printf("RESOLVE LABEL %d to %d\n", x, v->nOp); 445 } 446 #endif 447 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ 448 p->aLabel[j] = v->nOp; 449 } 450 } 451 452 /* 453 ** Mark the VDBE as one that can only be run one time. 454 */ 455 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 456 p->runOnlyOnce = 1; 457 } 458 459 /* 460 ** Mark the VDBE as one that can only be run multiple times. 461 */ 462 void sqlite3VdbeReusable(Vdbe *p){ 463 p->runOnlyOnce = 0; 464 } 465 466 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 467 468 /* 469 ** The following type and function are used to iterate through all opcodes 470 ** in a Vdbe main program and each of the sub-programs (triggers) it may 471 ** invoke directly or indirectly. It should be used as follows: 472 ** 473 ** Op *pOp; 474 ** VdbeOpIter sIter; 475 ** 476 ** memset(&sIter, 0, sizeof(sIter)); 477 ** sIter.v = v; // v is of type Vdbe* 478 ** while( (pOp = opIterNext(&sIter)) ){ 479 ** // Do something with pOp 480 ** } 481 ** sqlite3DbFree(v->db, sIter.apSub); 482 ** 483 */ 484 typedef struct VdbeOpIter VdbeOpIter; 485 struct VdbeOpIter { 486 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 487 SubProgram **apSub; /* Array of subprograms */ 488 int nSub; /* Number of entries in apSub */ 489 int iAddr; /* Address of next instruction to return */ 490 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 491 }; 492 static Op *opIterNext(VdbeOpIter *p){ 493 Vdbe *v = p->v; 494 Op *pRet = 0; 495 Op *aOp; 496 int nOp; 497 498 if( p->iSub<=p->nSub ){ 499 500 if( p->iSub==0 ){ 501 aOp = v->aOp; 502 nOp = v->nOp; 503 }else{ 504 aOp = p->apSub[p->iSub-1]->aOp; 505 nOp = p->apSub[p->iSub-1]->nOp; 506 } 507 assert( p->iAddr<nOp ); 508 509 pRet = &aOp[p->iAddr]; 510 p->iAddr++; 511 if( p->iAddr==nOp ){ 512 p->iSub++; 513 p->iAddr = 0; 514 } 515 516 if( pRet->p4type==P4_SUBPROGRAM ){ 517 int nByte = (p->nSub+1)*sizeof(SubProgram*); 518 int j; 519 for(j=0; j<p->nSub; j++){ 520 if( p->apSub[j]==pRet->p4.pProgram ) break; 521 } 522 if( j==p->nSub ){ 523 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 524 if( !p->apSub ){ 525 pRet = 0; 526 }else{ 527 p->apSub[p->nSub++] = pRet->p4.pProgram; 528 } 529 } 530 } 531 } 532 533 return pRet; 534 } 535 536 /* 537 ** Check if the program stored in the VM associated with pParse may 538 ** throw an ABORT exception (causing the statement, but not entire transaction 539 ** to be rolled back). This condition is true if the main program or any 540 ** sub-programs contains any of the following: 541 ** 542 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 543 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 544 ** * OP_Destroy 545 ** * OP_VUpdate 546 ** * OP_VRename 547 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 548 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 549 ** (for CREATE TABLE AS SELECT ...) 550 ** 551 ** Then check that the value of Parse.mayAbort is true if an 552 ** ABORT may be thrown, or false otherwise. Return true if it does 553 ** match, or false otherwise. This function is intended to be used as 554 ** part of an assert statement in the compiler. Similar to: 555 ** 556 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 557 */ 558 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 559 int hasAbort = 0; 560 int hasFkCounter = 0; 561 int hasCreateTable = 0; 562 int hasInitCoroutine = 0; 563 Op *pOp; 564 VdbeOpIter sIter; 565 memset(&sIter, 0, sizeof(sIter)); 566 sIter.v = v; 567 568 while( (pOp = opIterNext(&sIter))!=0 ){ 569 int opcode = pOp->opcode; 570 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 571 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 572 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 573 ){ 574 hasAbort = 1; 575 break; 576 } 577 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; 578 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 579 #ifndef SQLITE_OMIT_FOREIGN_KEY 580 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 581 hasFkCounter = 1; 582 } 583 #endif 584 } 585 sqlite3DbFree(v->db, sIter.apSub); 586 587 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 588 ** If malloc failed, then the while() loop above may not have iterated 589 ** through all opcodes and hasAbort may be set incorrectly. Return 590 ** true for this case to prevent the assert() in the callers frame 591 ** from failing. */ 592 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 593 || (hasCreateTable && hasInitCoroutine) ); 594 } 595 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 596 597 #ifdef SQLITE_DEBUG 598 /* 599 ** Increment the nWrite counter in the VDBE if the cursor is not an 600 ** ephemeral cursor, or if the cursor argument is NULL. 601 */ 602 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ 603 if( pC==0 604 || (pC->eCurType!=CURTYPE_SORTER 605 && pC->eCurType!=CURTYPE_PSEUDO 606 && !pC->isEphemeral) 607 ){ 608 p->nWrite++; 609 } 610 } 611 #endif 612 613 #ifdef SQLITE_DEBUG 614 /* 615 ** Assert if an Abort at this point in time might result in a corrupt 616 ** database. 617 */ 618 void sqlite3VdbeAssertAbortable(Vdbe *p){ 619 assert( p->nWrite==0 || p->usesStmtJournal ); 620 } 621 #endif 622 623 /* 624 ** This routine is called after all opcodes have been inserted. It loops 625 ** through all the opcodes and fixes up some details. 626 ** 627 ** (1) For each jump instruction with a negative P2 value (a label) 628 ** resolve the P2 value to an actual address. 629 ** 630 ** (2) Compute the maximum number of arguments used by any SQL function 631 ** and store that value in *pMaxFuncArgs. 632 ** 633 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 634 ** indicate what the prepared statement actually does. 635 ** 636 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 637 ** 638 ** (5) Reclaim the memory allocated for storing labels. 639 ** 640 ** This routine will only function correctly if the mkopcodeh.tcl generator 641 ** script numbers the opcodes correctly. Changes to this routine must be 642 ** coordinated with changes to mkopcodeh.tcl. 643 */ 644 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 645 int nMaxArgs = *pMaxFuncArgs; 646 Op *pOp; 647 Parse *pParse = p->pParse; 648 int *aLabel = pParse->aLabel; 649 p->readOnly = 1; 650 p->bIsReader = 0; 651 pOp = &p->aOp[p->nOp-1]; 652 while(1){ 653 654 /* Only JUMP opcodes and the short list of special opcodes in the switch 655 ** below need to be considered. The mkopcodeh.tcl generator script groups 656 ** all these opcodes together near the front of the opcode list. Skip 657 ** any opcode that does not need processing by virtual of the fact that 658 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 659 */ 660 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 661 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 662 ** cases from this switch! */ 663 switch( pOp->opcode ){ 664 case OP_Transaction: { 665 if( pOp->p2!=0 ) p->readOnly = 0; 666 /* fall thru */ 667 } 668 case OP_AutoCommit: 669 case OP_Savepoint: { 670 p->bIsReader = 1; 671 break; 672 } 673 #ifndef SQLITE_OMIT_WAL 674 case OP_Checkpoint: 675 #endif 676 case OP_Vacuum: 677 case OP_JournalMode: { 678 p->readOnly = 0; 679 p->bIsReader = 1; 680 break; 681 } 682 case OP_Next: 683 case OP_SorterNext: { 684 pOp->p4.xAdvance = sqlite3BtreeNext; 685 pOp->p4type = P4_ADVANCE; 686 /* The code generator never codes any of these opcodes as a jump 687 ** to a label. They are always coded as a jump backwards to a 688 ** known address */ 689 assert( pOp->p2>=0 ); 690 break; 691 } 692 case OP_Prev: { 693 pOp->p4.xAdvance = sqlite3BtreePrevious; 694 pOp->p4type = P4_ADVANCE; 695 /* The code generator never codes any of these opcodes as a jump 696 ** to a label. They are always coded as a jump backwards to a 697 ** known address */ 698 assert( pOp->p2>=0 ); 699 break; 700 } 701 #ifndef SQLITE_OMIT_VIRTUALTABLE 702 case OP_VUpdate: { 703 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 704 break; 705 } 706 case OP_VFilter: { 707 int n; 708 assert( (pOp - p->aOp) >= 3 ); 709 assert( pOp[-1].opcode==OP_Integer ); 710 n = pOp[-1].p1; 711 if( n>nMaxArgs ) nMaxArgs = n; 712 /* Fall through into the default case */ 713 } 714 #endif 715 default: { 716 if( pOp->p2<0 ){ 717 /* The mkopcodeh.tcl script has so arranged things that the only 718 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 719 ** have non-negative values for P2. */ 720 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 721 assert( ADDR(pOp->p2)<pParse->nLabel ); 722 pOp->p2 = aLabel[ADDR(pOp->p2)]; 723 } 724 break; 725 } 726 } 727 /* The mkopcodeh.tcl script has so arranged things that the only 728 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 729 ** have non-negative values for P2. */ 730 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 731 } 732 if( pOp==p->aOp ) break; 733 pOp--; 734 } 735 sqlite3DbFree(p->db, pParse->aLabel); 736 pParse->aLabel = 0; 737 pParse->nLabel = 0; 738 *pMaxFuncArgs = nMaxArgs; 739 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 740 } 741 742 /* 743 ** Return the address of the next instruction to be inserted. 744 */ 745 int sqlite3VdbeCurrentAddr(Vdbe *p){ 746 assert( p->magic==VDBE_MAGIC_INIT ); 747 return p->nOp; 748 } 749 750 /* 751 ** Verify that at least N opcode slots are available in p without 752 ** having to malloc for more space (except when compiled using 753 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 754 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 755 ** fail due to a OOM fault and hence that the return value from 756 ** sqlite3VdbeAddOpList() will always be non-NULL. 757 */ 758 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 759 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 760 assert( p->nOp + N <= p->pParse->nOpAlloc ); 761 } 762 #endif 763 764 /* 765 ** Verify that the VM passed as the only argument does not contain 766 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 767 ** by code in pragma.c to ensure that the implementation of certain 768 ** pragmas comports with the flags specified in the mkpragmatab.tcl 769 ** script. 770 */ 771 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 772 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 773 int i; 774 for(i=0; i<p->nOp; i++){ 775 assert( p->aOp[i].opcode!=OP_ResultRow ); 776 } 777 } 778 #endif 779 780 /* 781 ** Generate code (a single OP_Abortable opcode) that will 782 ** verify that the VDBE program can safely call Abort in the current 783 ** context. 784 */ 785 #if defined(SQLITE_DEBUG) 786 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ 787 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); 788 } 789 #endif 790 791 /* 792 ** This function returns a pointer to the array of opcodes associated with 793 ** the Vdbe passed as the first argument. It is the callers responsibility 794 ** to arrange for the returned array to be eventually freed using the 795 ** vdbeFreeOpArray() function. 796 ** 797 ** Before returning, *pnOp is set to the number of entries in the returned 798 ** array. Also, *pnMaxArg is set to the larger of its current value and 799 ** the number of entries in the Vdbe.apArg[] array required to execute the 800 ** returned program. 801 */ 802 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 803 VdbeOp *aOp = p->aOp; 804 assert( aOp && !p->db->mallocFailed ); 805 806 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 807 assert( DbMaskAllZero(p->btreeMask) ); 808 809 resolveP2Values(p, pnMaxArg); 810 *pnOp = p->nOp; 811 p->aOp = 0; 812 return aOp; 813 } 814 815 /* 816 ** Add a whole list of operations to the operation stack. Return a 817 ** pointer to the first operation inserted. 818 ** 819 ** Non-zero P2 arguments to jump instructions are automatically adjusted 820 ** so that the jump target is relative to the first operation inserted. 821 */ 822 VdbeOp *sqlite3VdbeAddOpList( 823 Vdbe *p, /* Add opcodes to the prepared statement */ 824 int nOp, /* Number of opcodes to add */ 825 VdbeOpList const *aOp, /* The opcodes to be added */ 826 int iLineno /* Source-file line number of first opcode */ 827 ){ 828 int i; 829 VdbeOp *pOut, *pFirst; 830 assert( nOp>0 ); 831 assert( p->magic==VDBE_MAGIC_INIT ); 832 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ 833 return 0; 834 } 835 pFirst = pOut = &p->aOp[p->nOp]; 836 for(i=0; i<nOp; i++, aOp++, pOut++){ 837 pOut->opcode = aOp->opcode; 838 pOut->p1 = aOp->p1; 839 pOut->p2 = aOp->p2; 840 assert( aOp->p2>=0 ); 841 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 842 pOut->p2 += p->nOp; 843 } 844 pOut->p3 = aOp->p3; 845 pOut->p4type = P4_NOTUSED; 846 pOut->p4.p = 0; 847 pOut->p5 = 0; 848 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 849 pOut->zComment = 0; 850 #endif 851 #ifdef SQLITE_VDBE_COVERAGE 852 pOut->iSrcLine = iLineno+i; 853 #else 854 (void)iLineno; 855 #endif 856 #ifdef SQLITE_DEBUG 857 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 858 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 859 } 860 #endif 861 } 862 p->nOp += nOp; 863 return pFirst; 864 } 865 866 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 867 /* 868 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 869 */ 870 void sqlite3VdbeScanStatus( 871 Vdbe *p, /* VM to add scanstatus() to */ 872 int addrExplain, /* Address of OP_Explain (or 0) */ 873 int addrLoop, /* Address of loop counter */ 874 int addrVisit, /* Address of rows visited counter */ 875 LogEst nEst, /* Estimated number of output rows */ 876 const char *zName /* Name of table or index being scanned */ 877 ){ 878 int nByte = (p->nScan+1) * sizeof(ScanStatus); 879 ScanStatus *aNew; 880 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 881 if( aNew ){ 882 ScanStatus *pNew = &aNew[p->nScan++]; 883 pNew->addrExplain = addrExplain; 884 pNew->addrLoop = addrLoop; 885 pNew->addrVisit = addrVisit; 886 pNew->nEst = nEst; 887 pNew->zName = sqlite3DbStrDup(p->db, zName); 888 p->aScan = aNew; 889 } 890 } 891 #endif 892 893 894 /* 895 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 896 ** for a specific instruction. 897 */ 898 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){ 899 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 900 } 901 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ 902 sqlite3VdbeGetOp(p,addr)->p1 = val; 903 } 904 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ 905 sqlite3VdbeGetOp(p,addr)->p2 = val; 906 } 907 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ 908 sqlite3VdbeGetOp(p,addr)->p3 = val; 909 } 910 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 911 assert( p->nOp>0 || p->db->mallocFailed ); 912 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 913 } 914 915 /* 916 ** Change the P2 operand of instruction addr so that it points to 917 ** the address of the next instruction to be coded. 918 */ 919 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 920 sqlite3VdbeChangeP2(p, addr, p->nOp); 921 } 922 923 924 /* 925 ** If the input FuncDef structure is ephemeral, then free it. If 926 ** the FuncDef is not ephermal, then do nothing. 927 */ 928 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 929 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 930 sqlite3DbFreeNN(db, pDef); 931 } 932 } 933 934 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 935 936 /* 937 ** Delete a P4 value if necessary. 938 */ 939 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 940 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 941 sqlite3DbFreeNN(db, p); 942 } 943 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 944 freeEphemeralFunction(db, p->pFunc); 945 sqlite3DbFreeNN(db, p); 946 } 947 static void freeP4(sqlite3 *db, int p4type, void *p4){ 948 assert( db ); 949 switch( p4type ){ 950 case P4_FUNCCTX: { 951 freeP4FuncCtx(db, (sqlite3_context*)p4); 952 break; 953 } 954 case P4_REAL: 955 case P4_INT64: 956 case P4_DYNAMIC: 957 case P4_DYNBLOB: 958 case P4_INTARRAY: { 959 sqlite3DbFree(db, p4); 960 break; 961 } 962 case P4_KEYINFO: { 963 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 964 break; 965 } 966 #ifdef SQLITE_ENABLE_CURSOR_HINTS 967 case P4_EXPR: { 968 sqlite3ExprDelete(db, (Expr*)p4); 969 break; 970 } 971 #endif 972 case P4_FUNCDEF: { 973 freeEphemeralFunction(db, (FuncDef*)p4); 974 break; 975 } 976 case P4_MEM: { 977 if( db->pnBytesFreed==0 ){ 978 sqlite3ValueFree((sqlite3_value*)p4); 979 }else{ 980 freeP4Mem(db, (Mem*)p4); 981 } 982 break; 983 } 984 case P4_VTAB : { 985 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 986 break; 987 } 988 } 989 } 990 991 /* 992 ** Free the space allocated for aOp and any p4 values allocated for the 993 ** opcodes contained within. If aOp is not NULL it is assumed to contain 994 ** nOp entries. 995 */ 996 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 997 if( aOp ){ 998 Op *pOp; 999 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){ 1000 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 1001 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1002 sqlite3DbFree(db, pOp->zComment); 1003 #endif 1004 } 1005 sqlite3DbFreeNN(db, aOp); 1006 } 1007 } 1008 1009 /* 1010 ** Link the SubProgram object passed as the second argument into the linked 1011 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 1012 ** objects when the VM is no longer required. 1013 */ 1014 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 1015 p->pNext = pVdbe->pProgram; 1016 pVdbe->pProgram = p; 1017 } 1018 1019 /* 1020 ** Change the opcode at addr into OP_Noop 1021 */ 1022 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 1023 VdbeOp *pOp; 1024 if( p->db->mallocFailed ) return 0; 1025 assert( addr>=0 && addr<p->nOp ); 1026 pOp = &p->aOp[addr]; 1027 freeP4(p->db, pOp->p4type, pOp->p4.p); 1028 pOp->p4type = P4_NOTUSED; 1029 pOp->p4.z = 0; 1030 pOp->opcode = OP_Noop; 1031 return 1; 1032 } 1033 1034 /* 1035 ** If the last opcode is "op" and it is not a jump destination, 1036 ** then remove it. Return true if and only if an opcode was removed. 1037 */ 1038 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 1039 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 1040 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 1041 }else{ 1042 return 0; 1043 } 1044 } 1045 1046 /* 1047 ** Change the value of the P4 operand for a specific instruction. 1048 ** This routine is useful when a large program is loaded from a 1049 ** static array using sqlite3VdbeAddOpList but we want to make a 1050 ** few minor changes to the program. 1051 ** 1052 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 1053 ** the string is made into memory obtained from sqlite3_malloc(). 1054 ** A value of n==0 means copy bytes of zP4 up to and including the 1055 ** first null byte. If n>0 then copy n+1 bytes of zP4. 1056 ** 1057 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 1058 ** to a string or structure that is guaranteed to exist for the lifetime of 1059 ** the Vdbe. In these cases we can just copy the pointer. 1060 ** 1061 ** If addr<0 then change P4 on the most recently inserted instruction. 1062 */ 1063 static void SQLITE_NOINLINE vdbeChangeP4Full( 1064 Vdbe *p, 1065 Op *pOp, 1066 const char *zP4, 1067 int n 1068 ){ 1069 if( pOp->p4type ){ 1070 freeP4(p->db, pOp->p4type, pOp->p4.p); 1071 pOp->p4type = 0; 1072 pOp->p4.p = 0; 1073 } 1074 if( n<0 ){ 1075 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 1076 }else{ 1077 if( n==0 ) n = sqlite3Strlen30(zP4); 1078 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 1079 pOp->p4type = P4_DYNAMIC; 1080 } 1081 } 1082 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 1083 Op *pOp; 1084 sqlite3 *db; 1085 assert( p!=0 ); 1086 db = p->db; 1087 assert( p->magic==VDBE_MAGIC_INIT ); 1088 assert( p->aOp!=0 || db->mallocFailed ); 1089 if( db->mallocFailed ){ 1090 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 1091 return; 1092 } 1093 assert( p->nOp>0 ); 1094 assert( addr<p->nOp ); 1095 if( addr<0 ){ 1096 addr = p->nOp - 1; 1097 } 1098 pOp = &p->aOp[addr]; 1099 if( n>=0 || pOp->p4type ){ 1100 vdbeChangeP4Full(p, pOp, zP4, n); 1101 return; 1102 } 1103 if( n==P4_INT32 ){ 1104 /* Note: this cast is safe, because the origin data point was an int 1105 ** that was cast to a (const char *). */ 1106 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 1107 pOp->p4type = P4_INT32; 1108 }else if( zP4!=0 ){ 1109 assert( n<0 ); 1110 pOp->p4.p = (void*)zP4; 1111 pOp->p4type = (signed char)n; 1112 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 1113 } 1114 } 1115 1116 /* 1117 ** Change the P4 operand of the most recently coded instruction 1118 ** to the value defined by the arguments. This is a high-speed 1119 ** version of sqlite3VdbeChangeP4(). 1120 ** 1121 ** The P4 operand must not have been previously defined. And the new 1122 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 1123 ** those cases. 1124 */ 1125 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1126 VdbeOp *pOp; 1127 assert( n!=P4_INT32 && n!=P4_VTAB ); 1128 assert( n<=0 ); 1129 if( p->db->mallocFailed ){ 1130 freeP4(p->db, n, pP4); 1131 }else{ 1132 assert( pP4!=0 ); 1133 assert( p->nOp>0 ); 1134 pOp = &p->aOp[p->nOp-1]; 1135 assert( pOp->p4type==P4_NOTUSED ); 1136 pOp->p4type = n; 1137 pOp->p4.p = pP4; 1138 } 1139 } 1140 1141 /* 1142 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1143 ** index given. 1144 */ 1145 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1146 Vdbe *v = pParse->pVdbe; 1147 KeyInfo *pKeyInfo; 1148 assert( v!=0 ); 1149 assert( pIdx!=0 ); 1150 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1151 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1152 } 1153 1154 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1155 /* 1156 ** Change the comment on the most recently coded instruction. Or 1157 ** insert a No-op and add the comment to that new instruction. This 1158 ** makes the code easier to read during debugging. None of this happens 1159 ** in a production build. 1160 */ 1161 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1162 assert( p->nOp>0 || p->aOp==0 ); 1163 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 1164 if( p->nOp ){ 1165 assert( p->aOp ); 1166 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1167 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1168 } 1169 } 1170 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1171 va_list ap; 1172 if( p ){ 1173 va_start(ap, zFormat); 1174 vdbeVComment(p, zFormat, ap); 1175 va_end(ap); 1176 } 1177 } 1178 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1179 va_list ap; 1180 if( p ){ 1181 sqlite3VdbeAddOp0(p, OP_Noop); 1182 va_start(ap, zFormat); 1183 vdbeVComment(p, zFormat, ap); 1184 va_end(ap); 1185 } 1186 } 1187 #endif /* NDEBUG */ 1188 1189 #ifdef SQLITE_VDBE_COVERAGE 1190 /* 1191 ** Set the value if the iSrcLine field for the previously coded instruction. 1192 */ 1193 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1194 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1195 } 1196 #endif /* SQLITE_VDBE_COVERAGE */ 1197 1198 /* 1199 ** Return the opcode for a given address. If the address is -1, then 1200 ** return the most recently inserted opcode. 1201 ** 1202 ** If a memory allocation error has occurred prior to the calling of this 1203 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1204 ** is readable but not writable, though it is cast to a writable value. 1205 ** The return of a dummy opcode allows the call to continue functioning 1206 ** after an OOM fault without having to check to see if the return from 1207 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1208 ** dummy will never be written to. This is verified by code inspection and 1209 ** by running with Valgrind. 1210 */ 1211 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1212 /* C89 specifies that the constant "dummy" will be initialized to all 1213 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1214 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1215 assert( p->magic==VDBE_MAGIC_INIT ); 1216 if( addr<0 ){ 1217 addr = p->nOp - 1; 1218 } 1219 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1220 if( p->db->mallocFailed ){ 1221 return (VdbeOp*)&dummy; 1222 }else{ 1223 return &p->aOp[addr]; 1224 } 1225 } 1226 1227 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1228 /* 1229 ** Return an integer value for one of the parameters to the opcode pOp 1230 ** determined by character c. 1231 */ 1232 static int translateP(char c, const Op *pOp){ 1233 if( c=='1' ) return pOp->p1; 1234 if( c=='2' ) return pOp->p2; 1235 if( c=='3' ) return pOp->p3; 1236 if( c=='4' ) return pOp->p4.i; 1237 return pOp->p5; 1238 } 1239 1240 /* 1241 ** Compute a string for the "comment" field of a VDBE opcode listing. 1242 ** 1243 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1244 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1245 ** absence of other comments, this synopsis becomes the comment on the opcode. 1246 ** Some translation occurs: 1247 ** 1248 ** "PX" -> "r[X]" 1249 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1250 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1251 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1252 */ 1253 static int displayComment( 1254 const Op *pOp, /* The opcode to be commented */ 1255 const char *zP4, /* Previously obtained value for P4 */ 1256 char *zTemp, /* Write result here */ 1257 int nTemp /* Space available in zTemp[] */ 1258 ){ 1259 const char *zOpName; 1260 const char *zSynopsis; 1261 int nOpName; 1262 int ii, jj; 1263 char zAlt[50]; 1264 zOpName = sqlite3OpcodeName(pOp->opcode); 1265 nOpName = sqlite3Strlen30(zOpName); 1266 if( zOpName[nOpName+1] ){ 1267 int seenCom = 0; 1268 char c; 1269 zSynopsis = zOpName += nOpName + 1; 1270 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1271 if( pOp->p5 & SQLITE_STOREP2 ){ 1272 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3); 1273 }else{ 1274 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1275 } 1276 zSynopsis = zAlt; 1277 } 1278 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 1279 if( c=='P' ){ 1280 c = zSynopsis[++ii]; 1281 if( c=='4' ){ 1282 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 1283 }else if( c=='X' ){ 1284 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 1285 seenCom = 1; 1286 }else{ 1287 int v1 = translateP(c, pOp); 1288 int v2; 1289 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 1290 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1291 ii += 3; 1292 jj += sqlite3Strlen30(zTemp+jj); 1293 v2 = translateP(zSynopsis[ii], pOp); 1294 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1295 ii += 2; 1296 v2++; 1297 } 1298 if( v2>1 ){ 1299 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 1300 } 1301 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1302 ii += 4; 1303 } 1304 } 1305 jj += sqlite3Strlen30(zTemp+jj); 1306 }else{ 1307 zTemp[jj++] = c; 1308 } 1309 } 1310 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 1311 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 1312 jj += sqlite3Strlen30(zTemp+jj); 1313 } 1314 if( jj<nTemp ) zTemp[jj] = 0; 1315 }else if( pOp->zComment ){ 1316 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 1317 jj = sqlite3Strlen30(zTemp); 1318 }else{ 1319 zTemp[0] = 0; 1320 jj = 0; 1321 } 1322 return jj; 1323 } 1324 #endif /* SQLITE_DEBUG */ 1325 1326 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1327 /* 1328 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1329 ** that can be displayed in the P4 column of EXPLAIN output. 1330 */ 1331 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1332 const char *zOp = 0; 1333 switch( pExpr->op ){ 1334 case TK_STRING: 1335 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); 1336 break; 1337 case TK_INTEGER: 1338 sqlite3_str_appendf(p, "%d", pExpr->u.iValue); 1339 break; 1340 case TK_NULL: 1341 sqlite3_str_appendf(p, "NULL"); 1342 break; 1343 case TK_REGISTER: { 1344 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); 1345 break; 1346 } 1347 case TK_COLUMN: { 1348 if( pExpr->iColumn<0 ){ 1349 sqlite3_str_appendf(p, "rowid"); 1350 }else{ 1351 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); 1352 } 1353 break; 1354 } 1355 case TK_LT: zOp = "LT"; break; 1356 case TK_LE: zOp = "LE"; break; 1357 case TK_GT: zOp = "GT"; break; 1358 case TK_GE: zOp = "GE"; break; 1359 case TK_NE: zOp = "NE"; break; 1360 case TK_EQ: zOp = "EQ"; break; 1361 case TK_IS: zOp = "IS"; break; 1362 case TK_ISNOT: zOp = "ISNOT"; break; 1363 case TK_AND: zOp = "AND"; break; 1364 case TK_OR: zOp = "OR"; break; 1365 case TK_PLUS: zOp = "ADD"; break; 1366 case TK_STAR: zOp = "MUL"; break; 1367 case TK_MINUS: zOp = "SUB"; break; 1368 case TK_REM: zOp = "REM"; break; 1369 case TK_BITAND: zOp = "BITAND"; break; 1370 case TK_BITOR: zOp = "BITOR"; break; 1371 case TK_SLASH: zOp = "DIV"; break; 1372 case TK_LSHIFT: zOp = "LSHIFT"; break; 1373 case TK_RSHIFT: zOp = "RSHIFT"; break; 1374 case TK_CONCAT: zOp = "CONCAT"; break; 1375 case TK_UMINUS: zOp = "MINUS"; break; 1376 case TK_UPLUS: zOp = "PLUS"; break; 1377 case TK_BITNOT: zOp = "BITNOT"; break; 1378 case TK_NOT: zOp = "NOT"; break; 1379 case TK_ISNULL: zOp = "ISNULL"; break; 1380 case TK_NOTNULL: zOp = "NOTNULL"; break; 1381 1382 default: 1383 sqlite3_str_appendf(p, "%s", "expr"); 1384 break; 1385 } 1386 1387 if( zOp ){ 1388 sqlite3_str_appendf(p, "%s(", zOp); 1389 displayP4Expr(p, pExpr->pLeft); 1390 if( pExpr->pRight ){ 1391 sqlite3_str_append(p, ",", 1); 1392 displayP4Expr(p, pExpr->pRight); 1393 } 1394 sqlite3_str_append(p, ")", 1); 1395 } 1396 } 1397 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1398 1399 1400 #if VDBE_DISPLAY_P4 1401 /* 1402 ** Compute a string that describes the P4 parameter for an opcode. 1403 ** Use zTemp for any required temporary buffer space. 1404 */ 1405 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 1406 char *zP4 = zTemp; 1407 StrAccum x; 1408 assert( nTemp>=20 ); 1409 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0); 1410 switch( pOp->p4type ){ 1411 case P4_KEYINFO: { 1412 int j; 1413 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1414 assert( pKeyInfo->aSortOrder!=0 ); 1415 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); 1416 for(j=0; j<pKeyInfo->nKeyField; j++){ 1417 CollSeq *pColl = pKeyInfo->aColl[j]; 1418 const char *zColl = pColl ? pColl->zName : ""; 1419 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1420 sqlite3_str_appendf(&x, ",%s%s", 1421 pKeyInfo->aSortOrder[j] ? "-" : "", zColl); 1422 } 1423 sqlite3_str_append(&x, ")", 1); 1424 break; 1425 } 1426 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1427 case P4_EXPR: { 1428 displayP4Expr(&x, pOp->p4.pExpr); 1429 break; 1430 } 1431 #endif 1432 case P4_COLLSEQ: { 1433 CollSeq *pColl = pOp->p4.pColl; 1434 sqlite3_str_appendf(&x, "(%.20s)", pColl->zName); 1435 break; 1436 } 1437 case P4_FUNCDEF: { 1438 FuncDef *pDef = pOp->p4.pFunc; 1439 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1440 break; 1441 } 1442 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1443 case P4_FUNCCTX: { 1444 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1445 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1446 break; 1447 } 1448 #endif 1449 case P4_INT64: { 1450 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); 1451 break; 1452 } 1453 case P4_INT32: { 1454 sqlite3_str_appendf(&x, "%d", pOp->p4.i); 1455 break; 1456 } 1457 case P4_REAL: { 1458 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); 1459 break; 1460 } 1461 case P4_MEM: { 1462 Mem *pMem = pOp->p4.pMem; 1463 if( pMem->flags & MEM_Str ){ 1464 zP4 = pMem->z; 1465 }else if( pMem->flags & MEM_Int ){ 1466 sqlite3_str_appendf(&x, "%lld", pMem->u.i); 1467 }else if( pMem->flags & MEM_Real ){ 1468 sqlite3_str_appendf(&x, "%.16g", pMem->u.r); 1469 }else if( pMem->flags & MEM_Null ){ 1470 zP4 = "NULL"; 1471 }else{ 1472 assert( pMem->flags & MEM_Blob ); 1473 zP4 = "(blob)"; 1474 } 1475 break; 1476 } 1477 #ifndef SQLITE_OMIT_VIRTUALTABLE 1478 case P4_VTAB: { 1479 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1480 sqlite3_str_appendf(&x, "vtab:%p", pVtab); 1481 break; 1482 } 1483 #endif 1484 case P4_INTARRAY: { 1485 int i; 1486 int *ai = pOp->p4.ai; 1487 int n = ai[0]; /* The first element of an INTARRAY is always the 1488 ** count of the number of elements to follow */ 1489 for(i=1; i<=n; i++){ 1490 sqlite3_str_appendf(&x, ",%d", ai[i]); 1491 } 1492 zTemp[0] = '['; 1493 sqlite3_str_append(&x, "]", 1); 1494 break; 1495 } 1496 case P4_SUBPROGRAM: { 1497 sqlite3_str_appendf(&x, "program"); 1498 break; 1499 } 1500 case P4_DYNBLOB: 1501 case P4_ADVANCE: { 1502 zTemp[0] = 0; 1503 break; 1504 } 1505 case P4_TABLE: { 1506 sqlite3_str_appendf(&x, "%s", pOp->p4.pTab->zName); 1507 break; 1508 } 1509 default: { 1510 zP4 = pOp->p4.z; 1511 if( zP4==0 ){ 1512 zP4 = zTemp; 1513 zTemp[0] = 0; 1514 } 1515 } 1516 } 1517 sqlite3StrAccumFinish(&x); 1518 assert( zP4!=0 ); 1519 return zP4; 1520 } 1521 #endif /* VDBE_DISPLAY_P4 */ 1522 1523 /* 1524 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1525 ** 1526 ** The prepared statements need to know in advance the complete set of 1527 ** attached databases that will be use. A mask of these databases 1528 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1529 ** p->btreeMask of databases that will require a lock. 1530 */ 1531 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1532 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1533 assert( i<(int)sizeof(p->btreeMask)*8 ); 1534 DbMaskSet(p->btreeMask, i); 1535 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1536 DbMaskSet(p->lockMask, i); 1537 } 1538 } 1539 1540 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1541 /* 1542 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1543 ** this routine obtains the mutex associated with each BtShared structure 1544 ** that may be accessed by the VM passed as an argument. In doing so it also 1545 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1546 ** that the correct busy-handler callback is invoked if required. 1547 ** 1548 ** If SQLite is not threadsafe but does support shared-cache mode, then 1549 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1550 ** of all of BtShared structures accessible via the database handle 1551 ** associated with the VM. 1552 ** 1553 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1554 ** function is a no-op. 1555 ** 1556 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1557 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1558 ** corresponding to btrees that use shared cache. Then the runtime of 1559 ** this routine is N*N. But as N is rarely more than 1, this should not 1560 ** be a problem. 1561 */ 1562 void sqlite3VdbeEnter(Vdbe *p){ 1563 int i; 1564 sqlite3 *db; 1565 Db *aDb; 1566 int nDb; 1567 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1568 db = p->db; 1569 aDb = db->aDb; 1570 nDb = db->nDb; 1571 for(i=0; i<nDb; i++){ 1572 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1573 sqlite3BtreeEnter(aDb[i].pBt); 1574 } 1575 } 1576 } 1577 #endif 1578 1579 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1580 /* 1581 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1582 */ 1583 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1584 int i; 1585 sqlite3 *db; 1586 Db *aDb; 1587 int nDb; 1588 db = p->db; 1589 aDb = db->aDb; 1590 nDb = db->nDb; 1591 for(i=0; i<nDb; i++){ 1592 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1593 sqlite3BtreeLeave(aDb[i].pBt); 1594 } 1595 } 1596 } 1597 void sqlite3VdbeLeave(Vdbe *p){ 1598 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1599 vdbeLeave(p); 1600 } 1601 #endif 1602 1603 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1604 /* 1605 ** Print a single opcode. This routine is used for debugging only. 1606 */ 1607 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ 1608 char *zP4; 1609 char zPtr[50]; 1610 char zCom[100]; 1611 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1612 if( pOut==0 ) pOut = stdout; 1613 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1614 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1615 displayComment(pOp, zP4, zCom, sizeof(zCom)); 1616 #else 1617 zCom[0] = 0; 1618 #endif 1619 /* NB: The sqlite3OpcodeName() function is implemented by code created 1620 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1621 ** information from the vdbe.c source text */ 1622 fprintf(pOut, zFormat1, pc, 1623 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1624 zCom 1625 ); 1626 fflush(pOut); 1627 } 1628 #endif 1629 1630 /* 1631 ** Initialize an array of N Mem element. 1632 */ 1633 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1634 while( (N--)>0 ){ 1635 p->db = db; 1636 p->flags = flags; 1637 p->szMalloc = 0; 1638 #ifdef SQLITE_DEBUG 1639 p->pScopyFrom = 0; 1640 #endif 1641 p++; 1642 } 1643 } 1644 1645 /* 1646 ** Release an array of N Mem elements 1647 */ 1648 static void releaseMemArray(Mem *p, int N){ 1649 if( p && N ){ 1650 Mem *pEnd = &p[N]; 1651 sqlite3 *db = p->db; 1652 if( db->pnBytesFreed ){ 1653 do{ 1654 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1655 }while( (++p)<pEnd ); 1656 return; 1657 } 1658 do{ 1659 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1660 assert( sqlite3VdbeCheckMemInvariants(p) ); 1661 1662 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1663 ** that takes advantage of the fact that the memory cell value is 1664 ** being set to NULL after releasing any dynamic resources. 1665 ** 1666 ** The justification for duplicating code is that according to 1667 ** callgrind, this causes a certain test case to hit the CPU 4.7 1668 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1669 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1670 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1671 ** with no indexes using a single prepared INSERT statement, bind() 1672 ** and reset(). Inserts are grouped into a transaction. 1673 */ 1674 testcase( p->flags & MEM_Agg ); 1675 testcase( p->flags & MEM_Dyn ); 1676 testcase( p->xDel==sqlite3VdbeFrameMemDel ); 1677 if( p->flags&(MEM_Agg|MEM_Dyn) ){ 1678 sqlite3VdbeMemRelease(p); 1679 }else if( p->szMalloc ){ 1680 sqlite3DbFreeNN(db, p->zMalloc); 1681 p->szMalloc = 0; 1682 } 1683 1684 p->flags = MEM_Undefined; 1685 }while( (++p)<pEnd ); 1686 } 1687 } 1688 1689 #ifdef SQLITE_DEBUG 1690 /* 1691 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is 1692 ** and false if something is wrong. 1693 ** 1694 ** This routine is intended for use inside of assert() statements only. 1695 */ 1696 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){ 1697 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; 1698 return 1; 1699 } 1700 #endif 1701 1702 1703 /* 1704 ** This is a destructor on a Mem object (which is really an sqlite3_value) 1705 ** that deletes the Frame object that is attached to it as a blob. 1706 ** 1707 ** This routine does not delete the Frame right away. It merely adds the 1708 ** frame to a list of frames to be deleted when the Vdbe halts. 1709 */ 1710 void sqlite3VdbeFrameMemDel(void *pArg){ 1711 VdbeFrame *pFrame = (VdbeFrame*)pArg; 1712 assert( sqlite3VdbeFrameIsValid(pFrame) ); 1713 pFrame->pParent = pFrame->v->pDelFrame; 1714 pFrame->v->pDelFrame = pFrame; 1715 } 1716 1717 1718 /* 1719 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1720 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1721 */ 1722 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1723 int i; 1724 Mem *aMem = VdbeFrameMem(p); 1725 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1726 assert( sqlite3VdbeFrameIsValid(p) ); 1727 for(i=0; i<p->nChildCsr; i++){ 1728 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1729 } 1730 releaseMemArray(aMem, p->nChildMem); 1731 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 1732 sqlite3DbFree(p->v->db, p); 1733 } 1734 1735 #ifndef SQLITE_OMIT_EXPLAIN 1736 /* 1737 ** Give a listing of the program in the virtual machine. 1738 ** 1739 ** The interface is the same as sqlite3VdbeExec(). But instead of 1740 ** running the code, it invokes the callback once for each instruction. 1741 ** This feature is used to implement "EXPLAIN". 1742 ** 1743 ** When p->explain==1, each instruction is listed. When 1744 ** p->explain==2, only OP_Explain instructions are listed and these 1745 ** are shown in a different format. p->explain==2 is used to implement 1746 ** EXPLAIN QUERY PLAN. 1747 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers 1748 ** are also shown, so that the boundaries between the main program and 1749 ** each trigger are clear. 1750 ** 1751 ** When p->explain==1, first the main program is listed, then each of 1752 ** the trigger subprograms are listed one by one. 1753 */ 1754 int sqlite3VdbeList( 1755 Vdbe *p /* The VDBE */ 1756 ){ 1757 int nRow; /* Stop when row count reaches this */ 1758 int nSub = 0; /* Number of sub-vdbes seen so far */ 1759 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1760 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1761 sqlite3 *db = p->db; /* The database connection */ 1762 int i; /* Loop counter */ 1763 int rc = SQLITE_OK; /* Return code */ 1764 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 1765 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); 1766 Op *pOp = 0; 1767 1768 assert( p->explain ); 1769 assert( p->magic==VDBE_MAGIC_RUN ); 1770 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1771 1772 /* Even though this opcode does not use dynamic strings for 1773 ** the result, result columns may become dynamic if the user calls 1774 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1775 */ 1776 releaseMemArray(pMem, 8); 1777 p->pResultSet = 0; 1778 1779 if( p->rc==SQLITE_NOMEM ){ 1780 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1781 ** sqlite3_column_text16() failed. */ 1782 sqlite3OomFault(db); 1783 return SQLITE_ERROR; 1784 } 1785 1786 /* When the number of output rows reaches nRow, that means the 1787 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1788 ** nRow is the sum of the number of rows in the main program, plus 1789 ** the sum of the number of rows in all trigger subprograms encountered 1790 ** so far. The nRow value will increase as new trigger subprograms are 1791 ** encountered, but p->pc will eventually catch up to nRow. 1792 */ 1793 nRow = p->nOp; 1794 if( bListSubprogs ){ 1795 /* The first 8 memory cells are used for the result set. So we will 1796 ** commandeer the 9th cell to use as storage for an array of pointers 1797 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1798 ** cells. */ 1799 assert( p->nMem>9 ); 1800 pSub = &p->aMem[9]; 1801 if( pSub->flags&MEM_Blob ){ 1802 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1803 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1804 nSub = pSub->n/sizeof(Vdbe*); 1805 apSub = (SubProgram **)pSub->z; 1806 } 1807 for(i=0; i<nSub; i++){ 1808 nRow += apSub[i]->nOp; 1809 } 1810 } 1811 1812 while(1){ /* Loop exits via break */ 1813 i = p->pc++; 1814 if( i>=nRow ){ 1815 p->rc = SQLITE_OK; 1816 rc = SQLITE_DONE; 1817 break; 1818 } 1819 if( i<p->nOp ){ 1820 /* The output line number is small enough that we are still in the 1821 ** main program. */ 1822 pOp = &p->aOp[i]; 1823 }else{ 1824 /* We are currently listing subprograms. Figure out which one and 1825 ** pick up the appropriate opcode. */ 1826 int j; 1827 i -= p->nOp; 1828 for(j=0; i>=apSub[j]->nOp; j++){ 1829 i -= apSub[j]->nOp; 1830 } 1831 pOp = &apSub[j]->aOp[i]; 1832 } 1833 1834 /* When an OP_Program opcode is encounter (the only opcode that has 1835 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1836 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1837 ** has not already been seen. 1838 */ 1839 if( bListSubprogs && pOp->p4type==P4_SUBPROGRAM ){ 1840 int nByte = (nSub+1)*sizeof(SubProgram*); 1841 int j; 1842 for(j=0; j<nSub; j++){ 1843 if( apSub[j]==pOp->p4.pProgram ) break; 1844 } 1845 if( j==nSub ){ 1846 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); 1847 if( p->rc!=SQLITE_OK ){ 1848 rc = SQLITE_ERROR; 1849 break; 1850 } 1851 apSub = (SubProgram **)pSub->z; 1852 apSub[nSub++] = pOp->p4.pProgram; 1853 pSub->flags |= MEM_Blob; 1854 pSub->n = nSub*sizeof(SubProgram*); 1855 nRow += pOp->p4.pProgram->nOp; 1856 } 1857 } 1858 if( p->explain<2 ) break; 1859 if( pOp->opcode==OP_Explain ) break; 1860 if( pOp->opcode==OP_Init && p->pc>1 ) break; 1861 } 1862 1863 if( rc==SQLITE_OK ){ 1864 if( db->u1.isInterrupted ){ 1865 p->rc = SQLITE_INTERRUPT; 1866 rc = SQLITE_ERROR; 1867 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 1868 }else{ 1869 char *zP4; 1870 if( p->explain==1 ){ 1871 pMem->flags = MEM_Int; 1872 pMem->u.i = i; /* Program counter */ 1873 pMem++; 1874 1875 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1876 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1877 assert( pMem->z!=0 ); 1878 pMem->n = sqlite3Strlen30(pMem->z); 1879 pMem->enc = SQLITE_UTF8; 1880 pMem++; 1881 } 1882 1883 pMem->flags = MEM_Int; 1884 pMem->u.i = pOp->p1; /* P1 */ 1885 pMem++; 1886 1887 pMem->flags = MEM_Int; 1888 pMem->u.i = pOp->p2; /* P2 */ 1889 pMem++; 1890 1891 pMem->flags = MEM_Int; 1892 pMem->u.i = pOp->p3; /* P3 */ 1893 pMem++; 1894 1895 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */ 1896 assert( p->db->mallocFailed ); 1897 return SQLITE_ERROR; 1898 } 1899 pMem->flags = MEM_Str|MEM_Term; 1900 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc); 1901 if( zP4!=pMem->z ){ 1902 pMem->n = 0; 1903 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 1904 }else{ 1905 assert( pMem->z!=0 ); 1906 pMem->n = sqlite3Strlen30(pMem->z); 1907 pMem->enc = SQLITE_UTF8; 1908 } 1909 pMem++; 1910 1911 if( p->explain==1 ){ 1912 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ 1913 assert( p->db->mallocFailed ); 1914 return SQLITE_ERROR; 1915 } 1916 pMem->flags = MEM_Str|MEM_Term; 1917 pMem->n = 2; 1918 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1919 pMem->enc = SQLITE_UTF8; 1920 pMem++; 1921 1922 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1923 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ 1924 assert( p->db->mallocFailed ); 1925 return SQLITE_ERROR; 1926 } 1927 pMem->flags = MEM_Str|MEM_Term; 1928 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 1929 pMem->enc = SQLITE_UTF8; 1930 #else 1931 pMem->flags = MEM_Null; /* Comment */ 1932 #endif 1933 } 1934 1935 p->nResColumn = 8 - 4*(p->explain-1); 1936 p->pResultSet = &p->aMem[1]; 1937 p->rc = SQLITE_OK; 1938 rc = SQLITE_ROW; 1939 } 1940 } 1941 return rc; 1942 } 1943 #endif /* SQLITE_OMIT_EXPLAIN */ 1944 1945 #ifdef SQLITE_DEBUG 1946 /* 1947 ** Print the SQL that was used to generate a VDBE program. 1948 */ 1949 void sqlite3VdbePrintSql(Vdbe *p){ 1950 const char *z = 0; 1951 if( p->zSql ){ 1952 z = p->zSql; 1953 }else if( p->nOp>=1 ){ 1954 const VdbeOp *pOp = &p->aOp[0]; 1955 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1956 z = pOp->p4.z; 1957 while( sqlite3Isspace(*z) ) z++; 1958 } 1959 } 1960 if( z ) printf("SQL: [%s]\n", z); 1961 } 1962 #endif 1963 1964 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 1965 /* 1966 ** Print an IOTRACE message showing SQL content. 1967 */ 1968 void sqlite3VdbeIOTraceSql(Vdbe *p){ 1969 int nOp = p->nOp; 1970 VdbeOp *pOp; 1971 if( sqlite3IoTrace==0 ) return; 1972 if( nOp<1 ) return; 1973 pOp = &p->aOp[0]; 1974 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1975 int i, j; 1976 char z[1000]; 1977 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 1978 for(i=0; sqlite3Isspace(z[i]); i++){} 1979 for(j=0; z[i]; i++){ 1980 if( sqlite3Isspace(z[i]) ){ 1981 if( z[i-1]!=' ' ){ 1982 z[j++] = ' '; 1983 } 1984 }else{ 1985 z[j++] = z[i]; 1986 } 1987 } 1988 z[j] = 0; 1989 sqlite3IoTrace("SQL %s\n", z); 1990 } 1991 } 1992 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 1993 1994 /* An instance of this object describes bulk memory available for use 1995 ** by subcomponents of a prepared statement. Space is allocated out 1996 ** of a ReusableSpace object by the allocSpace() routine below. 1997 */ 1998 struct ReusableSpace { 1999 u8 *pSpace; /* Available memory */ 2000 int nFree; /* Bytes of available memory */ 2001 int nNeeded; /* Total bytes that could not be allocated */ 2002 }; 2003 2004 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 2005 ** from the ReusableSpace object. Return a pointer to the allocated 2006 ** memory on success. If insufficient memory is available in the 2007 ** ReusableSpace object, increase the ReusableSpace.nNeeded 2008 ** value by the amount needed and return NULL. 2009 ** 2010 ** If pBuf is not initially NULL, that means that the memory has already 2011 ** been allocated by a prior call to this routine, so just return a copy 2012 ** of pBuf and leave ReusableSpace unchanged. 2013 ** 2014 ** This allocator is employed to repurpose unused slots at the end of the 2015 ** opcode array of prepared state for other memory needs of the prepared 2016 ** statement. 2017 */ 2018 static void *allocSpace( 2019 struct ReusableSpace *p, /* Bulk memory available for allocation */ 2020 void *pBuf, /* Pointer to a prior allocation */ 2021 int nByte /* Bytes of memory needed */ 2022 ){ 2023 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 2024 if( pBuf==0 ){ 2025 nByte = ROUND8(nByte); 2026 if( nByte <= p->nFree ){ 2027 p->nFree -= nByte; 2028 pBuf = &p->pSpace[p->nFree]; 2029 }else{ 2030 p->nNeeded += nByte; 2031 } 2032 } 2033 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 2034 return pBuf; 2035 } 2036 2037 /* 2038 ** Rewind the VDBE back to the beginning in preparation for 2039 ** running it. 2040 */ 2041 void sqlite3VdbeRewind(Vdbe *p){ 2042 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 2043 int i; 2044 #endif 2045 assert( p!=0 ); 2046 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET ); 2047 2048 /* There should be at least one opcode. 2049 */ 2050 assert( p->nOp>0 ); 2051 2052 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 2053 p->magic = VDBE_MAGIC_RUN; 2054 2055 #ifdef SQLITE_DEBUG 2056 for(i=0; i<p->nMem; i++){ 2057 assert( p->aMem[i].db==p->db ); 2058 } 2059 #endif 2060 p->pc = -1; 2061 p->rc = SQLITE_OK; 2062 p->errorAction = OE_Abort; 2063 p->nChange = 0; 2064 p->cacheCtr = 1; 2065 p->minWriteFileFormat = 255; 2066 p->iStatement = 0; 2067 p->nFkConstraint = 0; 2068 #ifdef VDBE_PROFILE 2069 for(i=0; i<p->nOp; i++){ 2070 p->aOp[i].cnt = 0; 2071 p->aOp[i].cycles = 0; 2072 } 2073 #endif 2074 } 2075 2076 /* 2077 ** Prepare a virtual machine for execution for the first time after 2078 ** creating the virtual machine. This involves things such 2079 ** as allocating registers and initializing the program counter. 2080 ** After the VDBE has be prepped, it can be executed by one or more 2081 ** calls to sqlite3VdbeExec(). 2082 ** 2083 ** This function may be called exactly once on each virtual machine. 2084 ** After this routine is called the VM has been "packaged" and is ready 2085 ** to run. After this routine is called, further calls to 2086 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 2087 ** the Vdbe from the Parse object that helped generate it so that the 2088 ** the Vdbe becomes an independent entity and the Parse object can be 2089 ** destroyed. 2090 ** 2091 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 2092 ** to its initial state after it has been run. 2093 */ 2094 void sqlite3VdbeMakeReady( 2095 Vdbe *p, /* The VDBE */ 2096 Parse *pParse /* Parsing context */ 2097 ){ 2098 sqlite3 *db; /* The database connection */ 2099 int nVar; /* Number of parameters */ 2100 int nMem; /* Number of VM memory registers */ 2101 int nCursor; /* Number of cursors required */ 2102 int nArg; /* Number of arguments in subprograms */ 2103 int n; /* Loop counter */ 2104 struct ReusableSpace x; /* Reusable bulk memory */ 2105 2106 assert( p!=0 ); 2107 assert( p->nOp>0 ); 2108 assert( pParse!=0 ); 2109 assert( p->magic==VDBE_MAGIC_INIT ); 2110 assert( pParse==p->pParse ); 2111 db = p->db; 2112 assert( db->mallocFailed==0 ); 2113 nVar = pParse->nVar; 2114 nMem = pParse->nMem; 2115 nCursor = pParse->nTab; 2116 nArg = pParse->nMaxArg; 2117 2118 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 2119 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 2120 ** space at the end of aMem[] for cursors 1 and greater. 2121 ** See also: allocateCursor(). 2122 */ 2123 nMem += nCursor; 2124 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 2125 2126 /* Figure out how much reusable memory is available at the end of the 2127 ** opcode array. This extra memory will be reallocated for other elements 2128 ** of the prepared statement. 2129 */ 2130 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 2131 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 2132 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 2133 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 2134 assert( x.nFree>=0 ); 2135 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 2136 2137 resolveP2Values(p, &nArg); 2138 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 2139 if( pParse->explain && nMem<10 ){ 2140 nMem = 10; 2141 } 2142 p->expired = 0; 2143 2144 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 2145 ** passes. On the first pass, we try to reuse unused memory at the 2146 ** end of the opcode array. If we are unable to satisfy all memory 2147 ** requirements by reusing the opcode array tail, then the second 2148 ** pass will fill in the remainder using a fresh memory allocation. 2149 ** 2150 ** This two-pass approach that reuses as much memory as possible from 2151 ** the leftover memory at the end of the opcode array. This can significantly 2152 ** reduce the amount of memory held by a prepared statement. 2153 */ 2154 do { 2155 x.nNeeded = 0; 2156 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 2157 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 2158 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 2159 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 2160 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2161 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 2162 #endif 2163 if( x.nNeeded==0 ) break; 2164 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 2165 x.nFree = x.nNeeded; 2166 }while( !db->mallocFailed ); 2167 2168 p->pVList = pParse->pVList; 2169 pParse->pVList = 0; 2170 p->explain = pParse->explain; 2171 if( db->mallocFailed ){ 2172 p->nVar = 0; 2173 p->nCursor = 0; 2174 p->nMem = 0; 2175 }else{ 2176 p->nCursor = nCursor; 2177 p->nVar = (ynVar)nVar; 2178 initMemArray(p->aVar, nVar, db, MEM_Null); 2179 p->nMem = nMem; 2180 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2181 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2182 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2183 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2184 #endif 2185 } 2186 sqlite3VdbeRewind(p); 2187 } 2188 2189 /* 2190 ** Close a VDBE cursor and release all the resources that cursor 2191 ** happens to hold. 2192 */ 2193 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2194 if( pCx==0 ){ 2195 return; 2196 } 2197 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE ); 2198 switch( pCx->eCurType ){ 2199 case CURTYPE_SORTER: { 2200 sqlite3VdbeSorterClose(p->db, pCx); 2201 break; 2202 } 2203 case CURTYPE_BTREE: { 2204 if( pCx->isEphemeral ){ 2205 if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx); 2206 /* The pCx->pCursor will be close automatically, if it exists, by 2207 ** the call above. */ 2208 }else{ 2209 assert( pCx->uc.pCursor!=0 ); 2210 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2211 } 2212 break; 2213 } 2214 #ifndef SQLITE_OMIT_VIRTUALTABLE 2215 case CURTYPE_VTAB: { 2216 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2217 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2218 assert( pVCur->pVtab->nRef>0 ); 2219 pVCur->pVtab->nRef--; 2220 pModule->xClose(pVCur); 2221 break; 2222 } 2223 #endif 2224 } 2225 } 2226 2227 /* 2228 ** Close all cursors in the current frame. 2229 */ 2230 static void closeCursorsInFrame(Vdbe *p){ 2231 if( p->apCsr ){ 2232 int i; 2233 for(i=0; i<p->nCursor; i++){ 2234 VdbeCursor *pC = p->apCsr[i]; 2235 if( pC ){ 2236 sqlite3VdbeFreeCursor(p, pC); 2237 p->apCsr[i] = 0; 2238 } 2239 } 2240 } 2241 } 2242 2243 /* 2244 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2245 ** is used, for example, when a trigger sub-program is halted to restore 2246 ** control to the main program. 2247 */ 2248 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2249 Vdbe *v = pFrame->v; 2250 closeCursorsInFrame(v); 2251 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2252 v->anExec = pFrame->anExec; 2253 #endif 2254 v->aOp = pFrame->aOp; 2255 v->nOp = pFrame->nOp; 2256 v->aMem = pFrame->aMem; 2257 v->nMem = pFrame->nMem; 2258 v->apCsr = pFrame->apCsr; 2259 v->nCursor = pFrame->nCursor; 2260 v->db->lastRowid = pFrame->lastRowid; 2261 v->nChange = pFrame->nChange; 2262 v->db->nChange = pFrame->nDbChange; 2263 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2264 v->pAuxData = pFrame->pAuxData; 2265 pFrame->pAuxData = 0; 2266 return pFrame->pc; 2267 } 2268 2269 /* 2270 ** Close all cursors. 2271 ** 2272 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2273 ** cell array. This is necessary as the memory cell array may contain 2274 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2275 ** open cursors. 2276 */ 2277 static void closeAllCursors(Vdbe *p){ 2278 if( p->pFrame ){ 2279 VdbeFrame *pFrame; 2280 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2281 sqlite3VdbeFrameRestore(pFrame); 2282 p->pFrame = 0; 2283 p->nFrame = 0; 2284 } 2285 assert( p->nFrame==0 ); 2286 closeCursorsInFrame(p); 2287 if( p->aMem ){ 2288 releaseMemArray(p->aMem, p->nMem); 2289 } 2290 while( p->pDelFrame ){ 2291 VdbeFrame *pDel = p->pDelFrame; 2292 p->pDelFrame = pDel->pParent; 2293 sqlite3VdbeFrameDelete(pDel); 2294 } 2295 2296 /* Delete any auxdata allocations made by the VM */ 2297 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2298 assert( p->pAuxData==0 ); 2299 } 2300 2301 /* 2302 ** Set the number of result columns that will be returned by this SQL 2303 ** statement. This is now set at compile time, rather than during 2304 ** execution of the vdbe program so that sqlite3_column_count() can 2305 ** be called on an SQL statement before sqlite3_step(). 2306 */ 2307 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2308 int n; 2309 sqlite3 *db = p->db; 2310 2311 if( p->nResColumn ){ 2312 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2313 sqlite3DbFree(db, p->aColName); 2314 } 2315 n = nResColumn*COLNAME_N; 2316 p->nResColumn = (u16)nResColumn; 2317 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2318 if( p->aColName==0 ) return; 2319 initMemArray(p->aColName, n, db, MEM_Null); 2320 } 2321 2322 /* 2323 ** Set the name of the idx'th column to be returned by the SQL statement. 2324 ** zName must be a pointer to a nul terminated string. 2325 ** 2326 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2327 ** 2328 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2329 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2330 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2331 */ 2332 int sqlite3VdbeSetColName( 2333 Vdbe *p, /* Vdbe being configured */ 2334 int idx, /* Index of column zName applies to */ 2335 int var, /* One of the COLNAME_* constants */ 2336 const char *zName, /* Pointer to buffer containing name */ 2337 void (*xDel)(void*) /* Memory management strategy for zName */ 2338 ){ 2339 int rc; 2340 Mem *pColName; 2341 assert( idx<p->nResColumn ); 2342 assert( var<COLNAME_N ); 2343 if( p->db->mallocFailed ){ 2344 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2345 return SQLITE_NOMEM_BKPT; 2346 } 2347 assert( p->aColName!=0 ); 2348 pColName = &(p->aColName[idx+var*p->nResColumn]); 2349 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2350 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2351 return rc; 2352 } 2353 2354 /* 2355 ** A read or write transaction may or may not be active on database handle 2356 ** db. If a transaction is active, commit it. If there is a 2357 ** write-transaction spanning more than one database file, this routine 2358 ** takes care of the master journal trickery. 2359 */ 2360 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2361 int i; 2362 int nTrans = 0; /* Number of databases with an active write-transaction 2363 ** that are candidates for a two-phase commit using a 2364 ** master-journal */ 2365 int rc = SQLITE_OK; 2366 int needXcommit = 0; 2367 2368 #ifdef SQLITE_OMIT_VIRTUALTABLE 2369 /* With this option, sqlite3VtabSync() is defined to be simply 2370 ** SQLITE_OK so p is not used. 2371 */ 2372 UNUSED_PARAMETER(p); 2373 #endif 2374 2375 /* Before doing anything else, call the xSync() callback for any 2376 ** virtual module tables written in this transaction. This has to 2377 ** be done before determining whether a master journal file is 2378 ** required, as an xSync() callback may add an attached database 2379 ** to the transaction. 2380 */ 2381 rc = sqlite3VtabSync(db, p); 2382 2383 /* This loop determines (a) if the commit hook should be invoked and 2384 ** (b) how many database files have open write transactions, not 2385 ** including the temp database. (b) is important because if more than 2386 ** one database file has an open write transaction, a master journal 2387 ** file is required for an atomic commit. 2388 */ 2389 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2390 Btree *pBt = db->aDb[i].pBt; 2391 if( sqlite3BtreeIsInTrans(pBt) ){ 2392 /* Whether or not a database might need a master journal depends upon 2393 ** its journal mode (among other things). This matrix determines which 2394 ** journal modes use a master journal and which do not */ 2395 static const u8 aMJNeeded[] = { 2396 /* DELETE */ 1, 2397 /* PERSIST */ 1, 2398 /* OFF */ 0, 2399 /* TRUNCATE */ 1, 2400 /* MEMORY */ 0, 2401 /* WAL */ 0 2402 }; 2403 Pager *pPager; /* Pager associated with pBt */ 2404 needXcommit = 1; 2405 sqlite3BtreeEnter(pBt); 2406 pPager = sqlite3BtreePager(pBt); 2407 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2408 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2409 && sqlite3PagerIsMemdb(pPager)==0 2410 ){ 2411 assert( i!=1 ); 2412 nTrans++; 2413 } 2414 rc = sqlite3PagerExclusiveLock(pPager); 2415 sqlite3BtreeLeave(pBt); 2416 } 2417 } 2418 if( rc!=SQLITE_OK ){ 2419 return rc; 2420 } 2421 2422 /* If there are any write-transactions at all, invoke the commit hook */ 2423 if( needXcommit && db->xCommitCallback ){ 2424 rc = db->xCommitCallback(db->pCommitArg); 2425 if( rc ){ 2426 return SQLITE_CONSTRAINT_COMMITHOOK; 2427 } 2428 } 2429 2430 /* The simple case - no more than one database file (not counting the 2431 ** TEMP database) has a transaction active. There is no need for the 2432 ** master-journal. 2433 ** 2434 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2435 ** string, it means the main database is :memory: or a temp file. In 2436 ** that case we do not support atomic multi-file commits, so use the 2437 ** simple case then too. 2438 */ 2439 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2440 || nTrans<=1 2441 ){ 2442 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2443 Btree *pBt = db->aDb[i].pBt; 2444 if( pBt ){ 2445 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2446 } 2447 } 2448 2449 /* Do the commit only if all databases successfully complete phase 1. 2450 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2451 ** IO error while deleting or truncating a journal file. It is unlikely, 2452 ** but could happen. In this case abandon processing and return the error. 2453 */ 2454 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2455 Btree *pBt = db->aDb[i].pBt; 2456 if( pBt ){ 2457 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2458 } 2459 } 2460 if( rc==SQLITE_OK ){ 2461 sqlite3VtabCommit(db); 2462 } 2463 } 2464 2465 /* The complex case - There is a multi-file write-transaction active. 2466 ** This requires a master journal file to ensure the transaction is 2467 ** committed atomically. 2468 */ 2469 #ifndef SQLITE_OMIT_DISKIO 2470 else{ 2471 sqlite3_vfs *pVfs = db->pVfs; 2472 char *zMaster = 0; /* File-name for the master journal */ 2473 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2474 sqlite3_file *pMaster = 0; 2475 i64 offset = 0; 2476 int res; 2477 int retryCount = 0; 2478 int nMainFile; 2479 2480 /* Select a master journal file name */ 2481 nMainFile = sqlite3Strlen30(zMainFile); 2482 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); 2483 if( zMaster==0 ) return SQLITE_NOMEM_BKPT; 2484 do { 2485 u32 iRandom; 2486 if( retryCount ){ 2487 if( retryCount>100 ){ 2488 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 2489 sqlite3OsDelete(pVfs, zMaster, 0); 2490 break; 2491 }else if( retryCount==1 ){ 2492 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2493 } 2494 } 2495 retryCount++; 2496 sqlite3_randomness(sizeof(iRandom), &iRandom); 2497 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2498 (iRandom>>8)&0xffffff, iRandom&0xff); 2499 /* The antipenultimate character of the master journal name must 2500 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2501 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2502 sqlite3FileSuffix3(zMainFile, zMaster); 2503 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2504 }while( rc==SQLITE_OK && res ); 2505 if( rc==SQLITE_OK ){ 2506 /* Open the master journal. */ 2507 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2508 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2509 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2510 ); 2511 } 2512 if( rc!=SQLITE_OK ){ 2513 sqlite3DbFree(db, zMaster); 2514 return rc; 2515 } 2516 2517 /* Write the name of each database file in the transaction into the new 2518 ** master journal file. If an error occurs at this point close 2519 ** and delete the master journal file. All the individual journal files 2520 ** still have 'null' as the master journal pointer, so they will roll 2521 ** back independently if a failure occurs. 2522 */ 2523 for(i=0; i<db->nDb; i++){ 2524 Btree *pBt = db->aDb[i].pBt; 2525 if( sqlite3BtreeIsInTrans(pBt) ){ 2526 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2527 if( zFile==0 ){ 2528 continue; /* Ignore TEMP and :memory: databases */ 2529 } 2530 assert( zFile[0]!=0 ); 2531 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2532 offset += sqlite3Strlen30(zFile)+1; 2533 if( rc!=SQLITE_OK ){ 2534 sqlite3OsCloseFree(pMaster); 2535 sqlite3OsDelete(pVfs, zMaster, 0); 2536 sqlite3DbFree(db, zMaster); 2537 return rc; 2538 } 2539 } 2540 } 2541 2542 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2543 ** flag is set this is not required. 2544 */ 2545 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2546 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2547 ){ 2548 sqlite3OsCloseFree(pMaster); 2549 sqlite3OsDelete(pVfs, zMaster, 0); 2550 sqlite3DbFree(db, zMaster); 2551 return rc; 2552 } 2553 2554 /* Sync all the db files involved in the transaction. The same call 2555 ** sets the master journal pointer in each individual journal. If 2556 ** an error occurs here, do not delete the master journal file. 2557 ** 2558 ** If the error occurs during the first call to 2559 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2560 ** master journal file will be orphaned. But we cannot delete it, 2561 ** in case the master journal file name was written into the journal 2562 ** file before the failure occurred. 2563 */ 2564 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2565 Btree *pBt = db->aDb[i].pBt; 2566 if( pBt ){ 2567 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2568 } 2569 } 2570 sqlite3OsCloseFree(pMaster); 2571 assert( rc!=SQLITE_BUSY ); 2572 if( rc!=SQLITE_OK ){ 2573 sqlite3DbFree(db, zMaster); 2574 return rc; 2575 } 2576 2577 /* Delete the master journal file. This commits the transaction. After 2578 ** doing this the directory is synced again before any individual 2579 ** transaction files are deleted. 2580 */ 2581 rc = sqlite3OsDelete(pVfs, zMaster, 1); 2582 sqlite3DbFree(db, zMaster); 2583 zMaster = 0; 2584 if( rc ){ 2585 return rc; 2586 } 2587 2588 /* All files and directories have already been synced, so the following 2589 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2590 ** deleting or truncating journals. If something goes wrong while 2591 ** this is happening we don't really care. The integrity of the 2592 ** transaction is already guaranteed, but some stray 'cold' journals 2593 ** may be lying around. Returning an error code won't help matters. 2594 */ 2595 disable_simulated_io_errors(); 2596 sqlite3BeginBenignMalloc(); 2597 for(i=0; i<db->nDb; i++){ 2598 Btree *pBt = db->aDb[i].pBt; 2599 if( pBt ){ 2600 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2601 } 2602 } 2603 sqlite3EndBenignMalloc(); 2604 enable_simulated_io_errors(); 2605 2606 sqlite3VtabCommit(db); 2607 } 2608 #endif 2609 2610 return rc; 2611 } 2612 2613 /* 2614 ** This routine checks that the sqlite3.nVdbeActive count variable 2615 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2616 ** currently active. An assertion fails if the two counts do not match. 2617 ** This is an internal self-check only - it is not an essential processing 2618 ** step. 2619 ** 2620 ** This is a no-op if NDEBUG is defined. 2621 */ 2622 #ifndef NDEBUG 2623 static void checkActiveVdbeCnt(sqlite3 *db){ 2624 Vdbe *p; 2625 int cnt = 0; 2626 int nWrite = 0; 2627 int nRead = 0; 2628 p = db->pVdbe; 2629 while( p ){ 2630 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2631 cnt++; 2632 if( p->readOnly==0 ) nWrite++; 2633 if( p->bIsReader ) nRead++; 2634 } 2635 p = p->pNext; 2636 } 2637 assert( cnt==db->nVdbeActive ); 2638 assert( nWrite==db->nVdbeWrite ); 2639 assert( nRead==db->nVdbeRead ); 2640 } 2641 #else 2642 #define checkActiveVdbeCnt(x) 2643 #endif 2644 2645 /* 2646 ** If the Vdbe passed as the first argument opened a statement-transaction, 2647 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2648 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2649 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2650 ** statement transaction is committed. 2651 ** 2652 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2653 ** Otherwise SQLITE_OK. 2654 */ 2655 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 2656 sqlite3 *const db = p->db; 2657 int rc = SQLITE_OK; 2658 int i; 2659 const int iSavepoint = p->iStatement-1; 2660 2661 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2662 assert( db->nStatement>0 ); 2663 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2664 2665 for(i=0; i<db->nDb; i++){ 2666 int rc2 = SQLITE_OK; 2667 Btree *pBt = db->aDb[i].pBt; 2668 if( pBt ){ 2669 if( eOp==SAVEPOINT_ROLLBACK ){ 2670 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2671 } 2672 if( rc2==SQLITE_OK ){ 2673 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2674 } 2675 if( rc==SQLITE_OK ){ 2676 rc = rc2; 2677 } 2678 } 2679 } 2680 db->nStatement--; 2681 p->iStatement = 0; 2682 2683 if( rc==SQLITE_OK ){ 2684 if( eOp==SAVEPOINT_ROLLBACK ){ 2685 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2686 } 2687 if( rc==SQLITE_OK ){ 2688 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2689 } 2690 } 2691 2692 /* If the statement transaction is being rolled back, also restore the 2693 ** database handles deferred constraint counter to the value it had when 2694 ** the statement transaction was opened. */ 2695 if( eOp==SAVEPOINT_ROLLBACK ){ 2696 db->nDeferredCons = p->nStmtDefCons; 2697 db->nDeferredImmCons = p->nStmtDefImmCons; 2698 } 2699 return rc; 2700 } 2701 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2702 if( p->db->nStatement && p->iStatement ){ 2703 return vdbeCloseStatement(p, eOp); 2704 } 2705 return SQLITE_OK; 2706 } 2707 2708 2709 /* 2710 ** This function is called when a transaction opened by the database 2711 ** handle associated with the VM passed as an argument is about to be 2712 ** committed. If there are outstanding deferred foreign key constraint 2713 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2714 ** 2715 ** If there are outstanding FK violations and this function returns 2716 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2717 ** and write an error message to it. Then return SQLITE_ERROR. 2718 */ 2719 #ifndef SQLITE_OMIT_FOREIGN_KEY 2720 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2721 sqlite3 *db = p->db; 2722 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2723 || (!deferred && p->nFkConstraint>0) 2724 ){ 2725 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2726 p->errorAction = OE_Abort; 2727 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2728 return SQLITE_ERROR; 2729 } 2730 return SQLITE_OK; 2731 } 2732 #endif 2733 2734 /* 2735 ** This routine is called the when a VDBE tries to halt. If the VDBE 2736 ** has made changes and is in autocommit mode, then commit those 2737 ** changes. If a rollback is needed, then do the rollback. 2738 ** 2739 ** This routine is the only way to move the state of a VM from 2740 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2741 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2742 ** 2743 ** Return an error code. If the commit could not complete because of 2744 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2745 ** means the close did not happen and needs to be repeated. 2746 */ 2747 int sqlite3VdbeHalt(Vdbe *p){ 2748 int rc; /* Used to store transient return codes */ 2749 sqlite3 *db = p->db; 2750 2751 /* This function contains the logic that determines if a statement or 2752 ** transaction will be committed or rolled back as a result of the 2753 ** execution of this virtual machine. 2754 ** 2755 ** If any of the following errors occur: 2756 ** 2757 ** SQLITE_NOMEM 2758 ** SQLITE_IOERR 2759 ** SQLITE_FULL 2760 ** SQLITE_INTERRUPT 2761 ** 2762 ** Then the internal cache might have been left in an inconsistent 2763 ** state. We need to rollback the statement transaction, if there is 2764 ** one, or the complete transaction if there is no statement transaction. 2765 */ 2766 2767 if( p->magic!=VDBE_MAGIC_RUN ){ 2768 return SQLITE_OK; 2769 } 2770 if( db->mallocFailed ){ 2771 p->rc = SQLITE_NOMEM_BKPT; 2772 } 2773 closeAllCursors(p); 2774 checkActiveVdbeCnt(db); 2775 2776 /* No commit or rollback needed if the program never started or if the 2777 ** SQL statement does not read or write a database file. */ 2778 if( p->pc>=0 && p->bIsReader ){ 2779 int mrc; /* Primary error code from p->rc */ 2780 int eStatementOp = 0; 2781 int isSpecialError; /* Set to true if a 'special' error */ 2782 2783 /* Lock all btrees used by the statement */ 2784 sqlite3VdbeEnter(p); 2785 2786 /* Check for one of the special errors */ 2787 mrc = p->rc & 0xff; 2788 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2789 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2790 if( isSpecialError ){ 2791 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2792 ** no rollback is necessary. Otherwise, at least a savepoint 2793 ** transaction must be rolled back to restore the database to a 2794 ** consistent state. 2795 ** 2796 ** Even if the statement is read-only, it is important to perform 2797 ** a statement or transaction rollback operation. If the error 2798 ** occurred while writing to the journal, sub-journal or database 2799 ** file as part of an effort to free up cache space (see function 2800 ** pagerStress() in pager.c), the rollback is required to restore 2801 ** the pager to a consistent state. 2802 */ 2803 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2804 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2805 eStatementOp = SAVEPOINT_ROLLBACK; 2806 }else{ 2807 /* We are forced to roll back the active transaction. Before doing 2808 ** so, abort any other statements this handle currently has active. 2809 */ 2810 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2811 sqlite3CloseSavepoints(db); 2812 db->autoCommit = 1; 2813 p->nChange = 0; 2814 } 2815 } 2816 } 2817 2818 /* Check for immediate foreign key violations. */ 2819 if( p->rc==SQLITE_OK ){ 2820 sqlite3VdbeCheckFk(p, 0); 2821 } 2822 2823 /* If the auto-commit flag is set and this is the only active writer 2824 ** VM, then we do either a commit or rollback of the current transaction. 2825 ** 2826 ** Note: This block also runs if one of the special errors handled 2827 ** above has occurred. 2828 */ 2829 if( !sqlite3VtabInSync(db) 2830 && db->autoCommit 2831 && db->nVdbeWrite==(p->readOnly==0) 2832 ){ 2833 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2834 rc = sqlite3VdbeCheckFk(p, 1); 2835 if( rc!=SQLITE_OK ){ 2836 if( NEVER(p->readOnly) ){ 2837 sqlite3VdbeLeave(p); 2838 return SQLITE_ERROR; 2839 } 2840 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2841 }else{ 2842 /* The auto-commit flag is true, the vdbe program was successful 2843 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2844 ** key constraints to hold up the transaction. This means a commit 2845 ** is required. */ 2846 rc = vdbeCommit(db, p); 2847 } 2848 if( rc==SQLITE_BUSY && p->readOnly ){ 2849 sqlite3VdbeLeave(p); 2850 return SQLITE_BUSY; 2851 }else if( rc!=SQLITE_OK ){ 2852 p->rc = rc; 2853 sqlite3RollbackAll(db, SQLITE_OK); 2854 p->nChange = 0; 2855 }else{ 2856 db->nDeferredCons = 0; 2857 db->nDeferredImmCons = 0; 2858 db->flags &= ~SQLITE_DeferFKs; 2859 sqlite3CommitInternalChanges(db); 2860 } 2861 }else{ 2862 sqlite3RollbackAll(db, SQLITE_OK); 2863 p->nChange = 0; 2864 } 2865 db->nStatement = 0; 2866 }else if( eStatementOp==0 ){ 2867 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2868 eStatementOp = SAVEPOINT_RELEASE; 2869 }else if( p->errorAction==OE_Abort ){ 2870 eStatementOp = SAVEPOINT_ROLLBACK; 2871 }else{ 2872 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2873 sqlite3CloseSavepoints(db); 2874 db->autoCommit = 1; 2875 p->nChange = 0; 2876 } 2877 } 2878 2879 /* If eStatementOp is non-zero, then a statement transaction needs to 2880 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2881 ** do so. If this operation returns an error, and the current statement 2882 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2883 ** current statement error code. 2884 */ 2885 if( eStatementOp ){ 2886 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2887 if( rc ){ 2888 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 2889 p->rc = rc; 2890 sqlite3DbFree(db, p->zErrMsg); 2891 p->zErrMsg = 0; 2892 } 2893 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2894 sqlite3CloseSavepoints(db); 2895 db->autoCommit = 1; 2896 p->nChange = 0; 2897 } 2898 } 2899 2900 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2901 ** has been rolled back, update the database connection change-counter. 2902 */ 2903 if( p->changeCntOn ){ 2904 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2905 sqlite3VdbeSetChanges(db, p->nChange); 2906 }else{ 2907 sqlite3VdbeSetChanges(db, 0); 2908 } 2909 p->nChange = 0; 2910 } 2911 2912 /* Release the locks */ 2913 sqlite3VdbeLeave(p); 2914 } 2915 2916 /* We have successfully halted and closed the VM. Record this fact. */ 2917 if( p->pc>=0 ){ 2918 db->nVdbeActive--; 2919 if( !p->readOnly ) db->nVdbeWrite--; 2920 if( p->bIsReader ) db->nVdbeRead--; 2921 assert( db->nVdbeActive>=db->nVdbeRead ); 2922 assert( db->nVdbeRead>=db->nVdbeWrite ); 2923 assert( db->nVdbeWrite>=0 ); 2924 } 2925 p->magic = VDBE_MAGIC_HALT; 2926 checkActiveVdbeCnt(db); 2927 if( db->mallocFailed ){ 2928 p->rc = SQLITE_NOMEM_BKPT; 2929 } 2930 2931 /* If the auto-commit flag is set to true, then any locks that were held 2932 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2933 ** to invoke any required unlock-notify callbacks. 2934 */ 2935 if( db->autoCommit ){ 2936 sqlite3ConnectionUnlocked(db); 2937 } 2938 2939 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 2940 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 2941 } 2942 2943 2944 /* 2945 ** Each VDBE holds the result of the most recent sqlite3_step() call 2946 ** in p->rc. This routine sets that result back to SQLITE_OK. 2947 */ 2948 void sqlite3VdbeResetStepResult(Vdbe *p){ 2949 p->rc = SQLITE_OK; 2950 } 2951 2952 /* 2953 ** Copy the error code and error message belonging to the VDBE passed 2954 ** as the first argument to its database handle (so that they will be 2955 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 2956 ** 2957 ** This function does not clear the VDBE error code or message, just 2958 ** copies them to the database handle. 2959 */ 2960 int sqlite3VdbeTransferError(Vdbe *p){ 2961 sqlite3 *db = p->db; 2962 int rc = p->rc; 2963 if( p->zErrMsg ){ 2964 db->bBenignMalloc++; 2965 sqlite3BeginBenignMalloc(); 2966 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 2967 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 2968 sqlite3EndBenignMalloc(); 2969 db->bBenignMalloc--; 2970 }else if( db->pErr ){ 2971 sqlite3ValueSetNull(db->pErr); 2972 } 2973 db->errCode = rc; 2974 return rc; 2975 } 2976 2977 #ifdef SQLITE_ENABLE_SQLLOG 2978 /* 2979 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 2980 ** invoke it. 2981 */ 2982 static void vdbeInvokeSqllog(Vdbe *v){ 2983 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 2984 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 2985 assert( v->db->init.busy==0 ); 2986 if( zExpanded ){ 2987 sqlite3GlobalConfig.xSqllog( 2988 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 2989 ); 2990 sqlite3DbFree(v->db, zExpanded); 2991 } 2992 } 2993 } 2994 #else 2995 # define vdbeInvokeSqllog(x) 2996 #endif 2997 2998 /* 2999 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 3000 ** Write any error messages into *pzErrMsg. Return the result code. 3001 ** 3002 ** After this routine is run, the VDBE should be ready to be executed 3003 ** again. 3004 ** 3005 ** To look at it another way, this routine resets the state of the 3006 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 3007 ** VDBE_MAGIC_INIT. 3008 */ 3009 int sqlite3VdbeReset(Vdbe *p){ 3010 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 3011 int i; 3012 #endif 3013 3014 sqlite3 *db; 3015 db = p->db; 3016 3017 /* If the VM did not run to completion or if it encountered an 3018 ** error, then it might not have been halted properly. So halt 3019 ** it now. 3020 */ 3021 sqlite3VdbeHalt(p); 3022 3023 /* If the VDBE has been run even partially, then transfer the error code 3024 ** and error message from the VDBE into the main database structure. But 3025 ** if the VDBE has just been set to run but has not actually executed any 3026 ** instructions yet, leave the main database error information unchanged. 3027 */ 3028 if( p->pc>=0 ){ 3029 vdbeInvokeSqllog(p); 3030 sqlite3VdbeTransferError(p); 3031 if( p->runOnlyOnce ) p->expired = 1; 3032 }else if( p->rc && p->expired ){ 3033 /* The expired flag was set on the VDBE before the first call 3034 ** to sqlite3_step(). For consistency (since sqlite3_step() was 3035 ** called), set the database error in this case as well. 3036 */ 3037 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 3038 } 3039 3040 /* Reset register contents and reclaim error message memory. 3041 */ 3042 #ifdef SQLITE_DEBUG 3043 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 3044 ** Vdbe.aMem[] arrays have already been cleaned up. */ 3045 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 3046 if( p->aMem ){ 3047 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 3048 } 3049 #endif 3050 sqlite3DbFree(db, p->zErrMsg); 3051 p->zErrMsg = 0; 3052 p->pResultSet = 0; 3053 #ifdef SQLITE_DEBUG 3054 p->nWrite = 0; 3055 #endif 3056 3057 /* Save profiling information from this VDBE run. 3058 */ 3059 #ifdef VDBE_PROFILE 3060 { 3061 FILE *out = fopen("vdbe_profile.out", "a"); 3062 if( out ){ 3063 fprintf(out, "---- "); 3064 for(i=0; i<p->nOp; i++){ 3065 fprintf(out, "%02x", p->aOp[i].opcode); 3066 } 3067 fprintf(out, "\n"); 3068 if( p->zSql ){ 3069 char c, pc = 0; 3070 fprintf(out, "-- "); 3071 for(i=0; (c = p->zSql[i])!=0; i++){ 3072 if( pc=='\n' ) fprintf(out, "-- "); 3073 putc(c, out); 3074 pc = c; 3075 } 3076 if( pc!='\n' ) fprintf(out, "\n"); 3077 } 3078 for(i=0; i<p->nOp; i++){ 3079 char zHdr[100]; 3080 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 3081 p->aOp[i].cnt, 3082 p->aOp[i].cycles, 3083 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 3084 ); 3085 fprintf(out, "%s", zHdr); 3086 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 3087 } 3088 fclose(out); 3089 } 3090 } 3091 #endif 3092 p->magic = VDBE_MAGIC_RESET; 3093 return p->rc & db->errMask; 3094 } 3095 3096 /* 3097 ** Clean up and delete a VDBE after execution. Return an integer which is 3098 ** the result code. Write any error message text into *pzErrMsg. 3099 */ 3100 int sqlite3VdbeFinalize(Vdbe *p){ 3101 int rc = SQLITE_OK; 3102 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 3103 rc = sqlite3VdbeReset(p); 3104 assert( (rc & p->db->errMask)==rc ); 3105 } 3106 sqlite3VdbeDelete(p); 3107 return rc; 3108 } 3109 3110 /* 3111 ** If parameter iOp is less than zero, then invoke the destructor for 3112 ** all auxiliary data pointers currently cached by the VM passed as 3113 ** the first argument. 3114 ** 3115 ** Or, if iOp is greater than or equal to zero, then the destructor is 3116 ** only invoked for those auxiliary data pointers created by the user 3117 ** function invoked by the OP_Function opcode at instruction iOp of 3118 ** VM pVdbe, and only then if: 3119 ** 3120 ** * the associated function parameter is the 32nd or later (counting 3121 ** from left to right), or 3122 ** 3123 ** * the corresponding bit in argument mask is clear (where the first 3124 ** function parameter corresponds to bit 0 etc.). 3125 */ 3126 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 3127 while( *pp ){ 3128 AuxData *pAux = *pp; 3129 if( (iOp<0) 3130 || (pAux->iAuxOp==iOp 3131 && pAux->iAuxArg>=0 3132 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 3133 ){ 3134 testcase( pAux->iAuxArg==31 ); 3135 if( pAux->xDeleteAux ){ 3136 pAux->xDeleteAux(pAux->pAux); 3137 } 3138 *pp = pAux->pNextAux; 3139 sqlite3DbFree(db, pAux); 3140 }else{ 3141 pp= &pAux->pNextAux; 3142 } 3143 } 3144 } 3145 3146 /* 3147 ** Free all memory associated with the Vdbe passed as the second argument, 3148 ** except for object itself, which is preserved. 3149 ** 3150 ** The difference between this function and sqlite3VdbeDelete() is that 3151 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 3152 ** the database connection and frees the object itself. 3153 */ 3154 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 3155 SubProgram *pSub, *pNext; 3156 assert( p->db==0 || p->db==db ); 3157 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 3158 for(pSub=p->pProgram; pSub; pSub=pNext){ 3159 pNext = pSub->pNext; 3160 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 3161 sqlite3DbFree(db, pSub); 3162 } 3163 if( p->magic!=VDBE_MAGIC_INIT ){ 3164 releaseMemArray(p->aVar, p->nVar); 3165 sqlite3DbFree(db, p->pVList); 3166 sqlite3DbFree(db, p->pFree); 3167 } 3168 vdbeFreeOpArray(db, p->aOp, p->nOp); 3169 sqlite3DbFree(db, p->aColName); 3170 sqlite3DbFree(db, p->zSql); 3171 #ifdef SQLITE_ENABLE_NORMALIZE 3172 sqlite3DbFree(db, p->zNormSql); 3173 #endif 3174 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3175 { 3176 int i; 3177 for(i=0; i<p->nScan; i++){ 3178 sqlite3DbFree(db, p->aScan[i].zName); 3179 } 3180 sqlite3DbFree(db, p->aScan); 3181 } 3182 #endif 3183 } 3184 3185 /* 3186 ** Delete an entire VDBE. 3187 */ 3188 void sqlite3VdbeDelete(Vdbe *p){ 3189 sqlite3 *db; 3190 3191 assert( p!=0 ); 3192 db = p->db; 3193 assert( sqlite3_mutex_held(db->mutex) ); 3194 sqlite3VdbeClearObject(db, p); 3195 if( p->pPrev ){ 3196 p->pPrev->pNext = p->pNext; 3197 }else{ 3198 assert( db->pVdbe==p ); 3199 db->pVdbe = p->pNext; 3200 } 3201 if( p->pNext ){ 3202 p->pNext->pPrev = p->pPrev; 3203 } 3204 p->magic = VDBE_MAGIC_DEAD; 3205 p->db = 0; 3206 sqlite3DbFreeNN(db, p); 3207 } 3208 3209 /* 3210 ** The cursor "p" has a pending seek operation that has not yet been 3211 ** carried out. Seek the cursor now. If an error occurs, return 3212 ** the appropriate error code. 3213 */ 3214 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ 3215 int res, rc; 3216 #ifdef SQLITE_TEST 3217 extern int sqlite3_search_count; 3218 #endif 3219 assert( p->deferredMoveto ); 3220 assert( p->isTable ); 3221 assert( p->eCurType==CURTYPE_BTREE ); 3222 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); 3223 if( rc ) return rc; 3224 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3225 #ifdef SQLITE_TEST 3226 sqlite3_search_count++; 3227 #endif 3228 p->deferredMoveto = 0; 3229 p->cacheStatus = CACHE_STALE; 3230 return SQLITE_OK; 3231 } 3232 3233 /* 3234 ** Something has moved cursor "p" out of place. Maybe the row it was 3235 ** pointed to was deleted out from under it. Or maybe the btree was 3236 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3237 ** is supposed to be pointing. If the row was deleted out from under the 3238 ** cursor, set the cursor to point to a NULL row. 3239 */ 3240 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 3241 int isDifferentRow, rc; 3242 assert( p->eCurType==CURTYPE_BTREE ); 3243 assert( p->uc.pCursor!=0 ); 3244 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3245 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3246 p->cacheStatus = CACHE_STALE; 3247 if( isDifferentRow ) p->nullRow = 1; 3248 return rc; 3249 } 3250 3251 /* 3252 ** Check to ensure that the cursor is valid. Restore the cursor 3253 ** if need be. Return any I/O error from the restore operation. 3254 */ 3255 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3256 assert( p->eCurType==CURTYPE_BTREE ); 3257 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3258 return handleMovedCursor(p); 3259 } 3260 return SQLITE_OK; 3261 } 3262 3263 /* 3264 ** Make sure the cursor p is ready to read or write the row to which it 3265 ** was last positioned. Return an error code if an OOM fault or I/O error 3266 ** prevents us from positioning the cursor to its correct position. 3267 ** 3268 ** If a MoveTo operation is pending on the given cursor, then do that 3269 ** MoveTo now. If no move is pending, check to see if the row has been 3270 ** deleted out from under the cursor and if it has, mark the row as 3271 ** a NULL row. 3272 ** 3273 ** If the cursor is already pointing to the correct row and that row has 3274 ** not been deleted out from under the cursor, then this routine is a no-op. 3275 */ 3276 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){ 3277 VdbeCursor *p = *pp; 3278 assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO ); 3279 if( p->deferredMoveto ){ 3280 int iMap; 3281 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){ 3282 *pp = p->pAltCursor; 3283 *piCol = iMap - 1; 3284 return SQLITE_OK; 3285 } 3286 return handleDeferredMoveto(p); 3287 } 3288 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3289 return handleMovedCursor(p); 3290 } 3291 return SQLITE_OK; 3292 } 3293 3294 /* 3295 ** The following functions: 3296 ** 3297 ** sqlite3VdbeSerialType() 3298 ** sqlite3VdbeSerialTypeLen() 3299 ** sqlite3VdbeSerialLen() 3300 ** sqlite3VdbeSerialPut() 3301 ** sqlite3VdbeSerialGet() 3302 ** 3303 ** encapsulate the code that serializes values for storage in SQLite 3304 ** data and index records. Each serialized value consists of a 3305 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3306 ** integer, stored as a varint. 3307 ** 3308 ** In an SQLite index record, the serial type is stored directly before 3309 ** the blob of data that it corresponds to. In a table record, all serial 3310 ** types are stored at the start of the record, and the blobs of data at 3311 ** the end. Hence these functions allow the caller to handle the 3312 ** serial-type and data blob separately. 3313 ** 3314 ** The following table describes the various storage classes for data: 3315 ** 3316 ** serial type bytes of data type 3317 ** -------------- --------------- --------------- 3318 ** 0 0 NULL 3319 ** 1 1 signed integer 3320 ** 2 2 signed integer 3321 ** 3 3 signed integer 3322 ** 4 4 signed integer 3323 ** 5 6 signed integer 3324 ** 6 8 signed integer 3325 ** 7 8 IEEE float 3326 ** 8 0 Integer constant 0 3327 ** 9 0 Integer constant 1 3328 ** 10,11 reserved for expansion 3329 ** N>=12 and even (N-12)/2 BLOB 3330 ** N>=13 and odd (N-13)/2 text 3331 ** 3332 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3333 ** of SQLite will not understand those serial types. 3334 */ 3335 3336 /* 3337 ** Return the serial-type for the value stored in pMem. 3338 */ 3339 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3340 int flags = pMem->flags; 3341 u32 n; 3342 3343 assert( pLen!=0 ); 3344 if( flags&MEM_Null ){ 3345 *pLen = 0; 3346 return 0; 3347 } 3348 if( flags&MEM_Int ){ 3349 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3350 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3351 i64 i = pMem->u.i; 3352 u64 u; 3353 if( i<0 ){ 3354 u = ~i; 3355 }else{ 3356 u = i; 3357 } 3358 if( u<=127 ){ 3359 if( (i&1)==i && file_format>=4 ){ 3360 *pLen = 0; 3361 return 8+(u32)u; 3362 }else{ 3363 *pLen = 1; 3364 return 1; 3365 } 3366 } 3367 if( u<=32767 ){ *pLen = 2; return 2; } 3368 if( u<=8388607 ){ *pLen = 3; return 3; } 3369 if( u<=2147483647 ){ *pLen = 4; return 4; } 3370 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3371 *pLen = 8; 3372 return 6; 3373 } 3374 if( flags&MEM_Real ){ 3375 *pLen = 8; 3376 return 7; 3377 } 3378 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3379 assert( pMem->n>=0 ); 3380 n = (u32)pMem->n; 3381 if( flags & MEM_Zero ){ 3382 n += pMem->u.nZero; 3383 } 3384 *pLen = n; 3385 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3386 } 3387 3388 /* 3389 ** The sizes for serial types less than 128 3390 */ 3391 static const u8 sqlite3SmallTypeSizes[] = { 3392 /* 0 1 2 3 4 5 6 7 8 9 */ 3393 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3394 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3395 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3396 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3397 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3398 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3399 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3400 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3401 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3402 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3403 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3404 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3405 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3406 }; 3407 3408 /* 3409 ** Return the length of the data corresponding to the supplied serial-type. 3410 */ 3411 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3412 if( serial_type>=128 ){ 3413 return (serial_type-12)/2; 3414 }else{ 3415 assert( serial_type<12 3416 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3417 return sqlite3SmallTypeSizes[serial_type]; 3418 } 3419 } 3420 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3421 assert( serial_type<128 ); 3422 return sqlite3SmallTypeSizes[serial_type]; 3423 } 3424 3425 /* 3426 ** If we are on an architecture with mixed-endian floating 3427 ** points (ex: ARM7) then swap the lower 4 bytes with the 3428 ** upper 4 bytes. Return the result. 3429 ** 3430 ** For most architectures, this is a no-op. 3431 ** 3432 ** (later): It is reported to me that the mixed-endian problem 3433 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3434 ** that early versions of GCC stored the two words of a 64-bit 3435 ** float in the wrong order. And that error has been propagated 3436 ** ever since. The blame is not necessarily with GCC, though. 3437 ** GCC might have just copying the problem from a prior compiler. 3438 ** I am also told that newer versions of GCC that follow a different 3439 ** ABI get the byte order right. 3440 ** 3441 ** Developers using SQLite on an ARM7 should compile and run their 3442 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3443 ** enabled, some asserts below will ensure that the byte order of 3444 ** floating point values is correct. 3445 ** 3446 ** (2007-08-30) Frank van Vugt has studied this problem closely 3447 ** and has send his findings to the SQLite developers. Frank 3448 ** writes that some Linux kernels offer floating point hardware 3449 ** emulation that uses only 32-bit mantissas instead of a full 3450 ** 48-bits as required by the IEEE standard. (This is the 3451 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3452 ** byte swapping becomes very complicated. To avoid problems, 3453 ** the necessary byte swapping is carried out using a 64-bit integer 3454 ** rather than a 64-bit float. Frank assures us that the code here 3455 ** works for him. We, the developers, have no way to independently 3456 ** verify this, but Frank seems to know what he is talking about 3457 ** so we trust him. 3458 */ 3459 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3460 static u64 floatSwap(u64 in){ 3461 union { 3462 u64 r; 3463 u32 i[2]; 3464 } u; 3465 u32 t; 3466 3467 u.r = in; 3468 t = u.i[0]; 3469 u.i[0] = u.i[1]; 3470 u.i[1] = t; 3471 return u.r; 3472 } 3473 # define swapMixedEndianFloat(X) X = floatSwap(X) 3474 #else 3475 # define swapMixedEndianFloat(X) 3476 #endif 3477 3478 /* 3479 ** Write the serialized data blob for the value stored in pMem into 3480 ** buf. It is assumed that the caller has allocated sufficient space. 3481 ** Return the number of bytes written. 3482 ** 3483 ** nBuf is the amount of space left in buf[]. The caller is responsible 3484 ** for allocating enough space to buf[] to hold the entire field, exclusive 3485 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3486 ** 3487 ** Return the number of bytes actually written into buf[]. The number 3488 ** of bytes in the zero-filled tail is included in the return value only 3489 ** if those bytes were zeroed in buf[]. 3490 */ 3491 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3492 u32 len; 3493 3494 /* Integer and Real */ 3495 if( serial_type<=7 && serial_type>0 ){ 3496 u64 v; 3497 u32 i; 3498 if( serial_type==7 ){ 3499 assert( sizeof(v)==sizeof(pMem->u.r) ); 3500 memcpy(&v, &pMem->u.r, sizeof(v)); 3501 swapMixedEndianFloat(v); 3502 }else{ 3503 v = pMem->u.i; 3504 } 3505 len = i = sqlite3SmallTypeSizes[serial_type]; 3506 assert( i>0 ); 3507 do{ 3508 buf[--i] = (u8)(v&0xFF); 3509 v >>= 8; 3510 }while( i ); 3511 return len; 3512 } 3513 3514 /* String or blob */ 3515 if( serial_type>=12 ){ 3516 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3517 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3518 len = pMem->n; 3519 if( len>0 ) memcpy(buf, pMem->z, len); 3520 return len; 3521 } 3522 3523 /* NULL or constants 0 or 1 */ 3524 return 0; 3525 } 3526 3527 /* Input "x" is a sequence of unsigned characters that represent a 3528 ** big-endian integer. Return the equivalent native integer 3529 */ 3530 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3531 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3532 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3533 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3534 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3535 3536 /* 3537 ** Deserialize the data blob pointed to by buf as serial type serial_type 3538 ** and store the result in pMem. Return the number of bytes read. 3539 ** 3540 ** This function is implemented as two separate routines for performance. 3541 ** The few cases that require local variables are broken out into a separate 3542 ** routine so that in most cases the overhead of moving the stack pointer 3543 ** is avoided. 3544 */ 3545 static u32 SQLITE_NOINLINE serialGet( 3546 const unsigned char *buf, /* Buffer to deserialize from */ 3547 u32 serial_type, /* Serial type to deserialize */ 3548 Mem *pMem /* Memory cell to write value into */ 3549 ){ 3550 u64 x = FOUR_BYTE_UINT(buf); 3551 u32 y = FOUR_BYTE_UINT(buf+4); 3552 x = (x<<32) + y; 3553 if( serial_type==6 ){ 3554 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3555 ** twos-complement integer. */ 3556 pMem->u.i = *(i64*)&x; 3557 pMem->flags = MEM_Int; 3558 testcase( pMem->u.i<0 ); 3559 }else{ 3560 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3561 ** floating point number. */ 3562 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3563 /* Verify that integers and floating point values use the same 3564 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3565 ** defined that 64-bit floating point values really are mixed 3566 ** endian. 3567 */ 3568 static const u64 t1 = ((u64)0x3ff00000)<<32; 3569 static const double r1 = 1.0; 3570 u64 t2 = t1; 3571 swapMixedEndianFloat(t2); 3572 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3573 #endif 3574 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3575 swapMixedEndianFloat(x); 3576 memcpy(&pMem->u.r, &x, sizeof(x)); 3577 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; 3578 } 3579 return 8; 3580 } 3581 u32 sqlite3VdbeSerialGet( 3582 const unsigned char *buf, /* Buffer to deserialize from */ 3583 u32 serial_type, /* Serial type to deserialize */ 3584 Mem *pMem /* Memory cell to write value into */ 3585 ){ 3586 switch( serial_type ){ 3587 case 10: { /* Internal use only: NULL with virtual table 3588 ** UPDATE no-change flag set */ 3589 pMem->flags = MEM_Null|MEM_Zero; 3590 pMem->n = 0; 3591 pMem->u.nZero = 0; 3592 break; 3593 } 3594 case 11: /* Reserved for future use */ 3595 case 0: { /* Null */ 3596 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3597 pMem->flags = MEM_Null; 3598 break; 3599 } 3600 case 1: { 3601 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3602 ** integer. */ 3603 pMem->u.i = ONE_BYTE_INT(buf); 3604 pMem->flags = MEM_Int; 3605 testcase( pMem->u.i<0 ); 3606 return 1; 3607 } 3608 case 2: { /* 2-byte signed integer */ 3609 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3610 ** twos-complement integer. */ 3611 pMem->u.i = TWO_BYTE_INT(buf); 3612 pMem->flags = MEM_Int; 3613 testcase( pMem->u.i<0 ); 3614 return 2; 3615 } 3616 case 3: { /* 3-byte signed integer */ 3617 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3618 ** twos-complement integer. */ 3619 pMem->u.i = THREE_BYTE_INT(buf); 3620 pMem->flags = MEM_Int; 3621 testcase( pMem->u.i<0 ); 3622 return 3; 3623 } 3624 case 4: { /* 4-byte signed integer */ 3625 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3626 ** twos-complement integer. */ 3627 pMem->u.i = FOUR_BYTE_INT(buf); 3628 #ifdef __HP_cc 3629 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3630 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3631 #endif 3632 pMem->flags = MEM_Int; 3633 testcase( pMem->u.i<0 ); 3634 return 4; 3635 } 3636 case 5: { /* 6-byte signed integer */ 3637 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3638 ** twos-complement integer. */ 3639 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3640 pMem->flags = MEM_Int; 3641 testcase( pMem->u.i<0 ); 3642 return 6; 3643 } 3644 case 6: /* 8-byte signed integer */ 3645 case 7: { /* IEEE floating point */ 3646 /* These use local variables, so do them in a separate routine 3647 ** to avoid having to move the frame pointer in the common case */ 3648 return serialGet(buf,serial_type,pMem); 3649 } 3650 case 8: /* Integer 0 */ 3651 case 9: { /* Integer 1 */ 3652 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3653 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3654 pMem->u.i = serial_type-8; 3655 pMem->flags = MEM_Int; 3656 return 0; 3657 } 3658 default: { 3659 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3660 ** length. 3661 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3662 ** (N-13)/2 bytes in length. */ 3663 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3664 pMem->z = (char *)buf; 3665 pMem->n = (serial_type-12)/2; 3666 pMem->flags = aFlag[serial_type&1]; 3667 return pMem->n; 3668 } 3669 } 3670 return 0; 3671 } 3672 /* 3673 ** This routine is used to allocate sufficient space for an UnpackedRecord 3674 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3675 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3676 ** 3677 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3678 ** the unaligned buffer passed via the second and third arguments (presumably 3679 ** stack space). If the former, then *ppFree is set to a pointer that should 3680 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3681 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3682 ** before returning. 3683 ** 3684 ** If an OOM error occurs, NULL is returned. 3685 */ 3686 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3687 KeyInfo *pKeyInfo /* Description of the record */ 3688 ){ 3689 UnpackedRecord *p; /* Unpacked record to return */ 3690 int nByte; /* Number of bytes required for *p */ 3691 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 3692 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3693 if( !p ) return 0; 3694 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3695 assert( pKeyInfo->aSortOrder!=0 ); 3696 p->pKeyInfo = pKeyInfo; 3697 p->nField = pKeyInfo->nKeyField + 1; 3698 return p; 3699 } 3700 3701 /* 3702 ** Given the nKey-byte encoding of a record in pKey[], populate the 3703 ** UnpackedRecord structure indicated by the fourth argument with the 3704 ** contents of the decoded record. 3705 */ 3706 void sqlite3VdbeRecordUnpack( 3707 KeyInfo *pKeyInfo, /* Information about the record format */ 3708 int nKey, /* Size of the binary record */ 3709 const void *pKey, /* The binary record */ 3710 UnpackedRecord *p /* Populate this structure before returning. */ 3711 ){ 3712 const unsigned char *aKey = (const unsigned char *)pKey; 3713 int d; 3714 u32 idx; /* Offset in aKey[] to read from */ 3715 u16 u; /* Unsigned loop counter */ 3716 u32 szHdr; 3717 Mem *pMem = p->aMem; 3718 3719 p->default_rc = 0; 3720 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3721 idx = getVarint32(aKey, szHdr); 3722 d = szHdr; 3723 u = 0; 3724 while( idx<szHdr && d<=nKey ){ 3725 u32 serial_type; 3726 3727 idx += getVarint32(&aKey[idx], serial_type); 3728 pMem->enc = pKeyInfo->enc; 3729 pMem->db = pKeyInfo->db; 3730 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 3731 pMem->szMalloc = 0; 3732 pMem->z = 0; 3733 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3734 pMem++; 3735 if( (++u)>=p->nField ) break; 3736 } 3737 assert( u<=pKeyInfo->nKeyField + 1 ); 3738 p->nField = u; 3739 } 3740 3741 #ifdef SQLITE_DEBUG 3742 /* 3743 ** This function compares two index or table record keys in the same way 3744 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 3745 ** this function deserializes and compares values using the 3746 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 3747 ** in assert() statements to ensure that the optimized code in 3748 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 3749 ** 3750 ** Return true if the result of comparison is equivalent to desiredResult. 3751 ** Return false if there is a disagreement. 3752 */ 3753 static int vdbeRecordCompareDebug( 3754 int nKey1, const void *pKey1, /* Left key */ 3755 const UnpackedRecord *pPKey2, /* Right key */ 3756 int desiredResult /* Correct answer */ 3757 ){ 3758 u32 d1; /* Offset into aKey[] of next data element */ 3759 u32 idx1; /* Offset into aKey[] of next header element */ 3760 u32 szHdr1; /* Number of bytes in header */ 3761 int i = 0; 3762 int rc = 0; 3763 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3764 KeyInfo *pKeyInfo; 3765 Mem mem1; 3766 3767 pKeyInfo = pPKey2->pKeyInfo; 3768 if( pKeyInfo->db==0 ) return 1; 3769 mem1.enc = pKeyInfo->enc; 3770 mem1.db = pKeyInfo->db; 3771 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 3772 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3773 3774 /* Compilers may complain that mem1.u.i is potentially uninitialized. 3775 ** We could initialize it, as shown here, to silence those complaints. 3776 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 3777 ** the unnecessary initialization has a measurable negative performance 3778 ** impact, since this routine is a very high runner. And so, we choose 3779 ** to ignore the compiler warnings and leave this variable uninitialized. 3780 */ 3781 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 3782 3783 idx1 = getVarint32(aKey1, szHdr1); 3784 if( szHdr1>98307 ) return SQLITE_CORRUPT; 3785 d1 = szHdr1; 3786 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 3787 assert( pKeyInfo->aSortOrder!=0 ); 3788 assert( pKeyInfo->nKeyField>0 ); 3789 assert( idx1<=szHdr1 || CORRUPT_DB ); 3790 do{ 3791 u32 serial_type1; 3792 3793 /* Read the serial types for the next element in each key. */ 3794 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 3795 3796 /* Verify that there is enough key space remaining to avoid 3797 ** a buffer overread. The "d1+serial_type1+2" subexpression will 3798 ** always be greater than or equal to the amount of required key space. 3799 ** Use that approximation to avoid the more expensive call to 3800 ** sqlite3VdbeSerialTypeLen() in the common case. 3801 */ 3802 if( d1+serial_type1+2>(u32)nKey1 3803 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 3804 ){ 3805 break; 3806 } 3807 3808 /* Extract the values to be compared. 3809 */ 3810 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 3811 3812 /* Do the comparison 3813 */ 3814 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); 3815 if( rc!=0 ){ 3816 assert( mem1.szMalloc==0 ); /* See comment below */ 3817 if( pKeyInfo->aSortOrder[i] ){ 3818 rc = -rc; /* Invert the result for DESC sort order. */ 3819 } 3820 goto debugCompareEnd; 3821 } 3822 i++; 3823 }while( idx1<szHdr1 && i<pPKey2->nField ); 3824 3825 /* No memory allocation is ever used on mem1. Prove this using 3826 ** the following assert(). If the assert() fails, it indicates a 3827 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 3828 */ 3829 assert( mem1.szMalloc==0 ); 3830 3831 /* rc==0 here means that one of the keys ran out of fields and 3832 ** all the fields up to that point were equal. Return the default_rc 3833 ** value. */ 3834 rc = pPKey2->default_rc; 3835 3836 debugCompareEnd: 3837 if( desiredResult==0 && rc==0 ) return 1; 3838 if( desiredResult<0 && rc<0 ) return 1; 3839 if( desiredResult>0 && rc>0 ) return 1; 3840 if( CORRUPT_DB ) return 1; 3841 if( pKeyInfo->db->mallocFailed ) return 1; 3842 return 0; 3843 } 3844 #endif 3845 3846 #ifdef SQLITE_DEBUG 3847 /* 3848 ** Count the number of fields (a.k.a. columns) in the record given by 3849 ** pKey,nKey. The verify that this count is less than or equal to the 3850 ** limit given by pKeyInfo->nAllField. 3851 ** 3852 ** If this constraint is not satisfied, it means that the high-speed 3853 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 3854 ** not work correctly. If this assert() ever fires, it probably means 3855 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 3856 ** incorrectly. 3857 */ 3858 static void vdbeAssertFieldCountWithinLimits( 3859 int nKey, const void *pKey, /* The record to verify */ 3860 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 3861 ){ 3862 int nField = 0; 3863 u32 szHdr; 3864 u32 idx; 3865 u32 notUsed; 3866 const unsigned char *aKey = (const unsigned char*)pKey; 3867 3868 if( CORRUPT_DB ) return; 3869 idx = getVarint32(aKey, szHdr); 3870 assert( nKey>=0 ); 3871 assert( szHdr<=(u32)nKey ); 3872 while( idx<szHdr ){ 3873 idx += getVarint32(aKey+idx, notUsed); 3874 nField++; 3875 } 3876 assert( nField <= pKeyInfo->nAllField ); 3877 } 3878 #else 3879 # define vdbeAssertFieldCountWithinLimits(A,B,C) 3880 #endif 3881 3882 /* 3883 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 3884 ** using the collation sequence pColl. As usual, return a negative , zero 3885 ** or positive value if *pMem1 is less than, equal to or greater than 3886 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 3887 */ 3888 static int vdbeCompareMemString( 3889 const Mem *pMem1, 3890 const Mem *pMem2, 3891 const CollSeq *pColl, 3892 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 3893 ){ 3894 if( pMem1->enc==pColl->enc ){ 3895 /* The strings are already in the correct encoding. Call the 3896 ** comparison function directly */ 3897 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 3898 }else{ 3899 int rc; 3900 const void *v1, *v2; 3901 Mem c1; 3902 Mem c2; 3903 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 3904 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 3905 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 3906 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 3907 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 3908 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 3909 if( (v1==0 || v2==0) ){ 3910 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 3911 rc = 0; 3912 }else{ 3913 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 3914 } 3915 sqlite3VdbeMemRelease(&c1); 3916 sqlite3VdbeMemRelease(&c2); 3917 return rc; 3918 } 3919 } 3920 3921 /* 3922 ** The input pBlob is guaranteed to be a Blob that is not marked 3923 ** with MEM_Zero. Return true if it could be a zero-blob. 3924 */ 3925 static int isAllZero(const char *z, int n){ 3926 int i; 3927 for(i=0; i<n; i++){ 3928 if( z[i] ) return 0; 3929 } 3930 return 1; 3931 } 3932 3933 /* 3934 ** Compare two blobs. Return negative, zero, or positive if the first 3935 ** is less than, equal to, or greater than the second, respectively. 3936 ** If one blob is a prefix of the other, then the shorter is the lessor. 3937 */ 3938 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 3939 int c; 3940 int n1 = pB1->n; 3941 int n2 = pB2->n; 3942 3943 /* It is possible to have a Blob value that has some non-zero content 3944 ** followed by zero content. But that only comes up for Blobs formed 3945 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 3946 ** sqlite3MemCompare(). */ 3947 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 3948 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 3949 3950 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 3951 if( pB1->flags & pB2->flags & MEM_Zero ){ 3952 return pB1->u.nZero - pB2->u.nZero; 3953 }else if( pB1->flags & MEM_Zero ){ 3954 if( !isAllZero(pB2->z, pB2->n) ) return -1; 3955 return pB1->u.nZero - n2; 3956 }else{ 3957 if( !isAllZero(pB1->z, pB1->n) ) return +1; 3958 return n1 - pB2->u.nZero; 3959 } 3960 } 3961 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 3962 if( c ) return c; 3963 return n1 - n2; 3964 } 3965 3966 /* 3967 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 3968 ** number. Return negative, zero, or positive if the first (i64) is less than, 3969 ** equal to, or greater than the second (double). 3970 */ 3971 static int sqlite3IntFloatCompare(i64 i, double r){ 3972 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 3973 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 3974 if( x<r ) return -1; 3975 if( x>r ) return +1; 3976 return 0; 3977 }else{ 3978 i64 y; 3979 double s; 3980 if( r<-9223372036854775808.0 ) return +1; 3981 if( r>=9223372036854775808.0 ) return -1; 3982 y = (i64)r; 3983 if( i<y ) return -1; 3984 if( i>y ) return +1; 3985 s = (double)i; 3986 if( s<r ) return -1; 3987 if( s>r ) return +1; 3988 return 0; 3989 } 3990 } 3991 3992 /* 3993 ** Compare the values contained by the two memory cells, returning 3994 ** negative, zero or positive if pMem1 is less than, equal to, or greater 3995 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 3996 ** and reals) sorted numerically, followed by text ordered by the collating 3997 ** sequence pColl and finally blob's ordered by memcmp(). 3998 ** 3999 ** Two NULL values are considered equal by this function. 4000 */ 4001 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 4002 int f1, f2; 4003 int combined_flags; 4004 4005 f1 = pMem1->flags; 4006 f2 = pMem2->flags; 4007 combined_flags = f1|f2; 4008 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); 4009 4010 /* If one value is NULL, it is less than the other. If both values 4011 ** are NULL, return 0. 4012 */ 4013 if( combined_flags&MEM_Null ){ 4014 return (f2&MEM_Null) - (f1&MEM_Null); 4015 } 4016 4017 /* At least one of the two values is a number 4018 */ 4019 if( combined_flags&(MEM_Int|MEM_Real) ){ 4020 if( (f1 & f2 & MEM_Int)!=0 ){ 4021 if( pMem1->u.i < pMem2->u.i ) return -1; 4022 if( pMem1->u.i > pMem2->u.i ) return +1; 4023 return 0; 4024 } 4025 if( (f1 & f2 & MEM_Real)!=0 ){ 4026 if( pMem1->u.r < pMem2->u.r ) return -1; 4027 if( pMem1->u.r > pMem2->u.r ) return +1; 4028 return 0; 4029 } 4030 if( (f1&MEM_Int)!=0 ){ 4031 if( (f2&MEM_Real)!=0 ){ 4032 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 4033 }else{ 4034 return -1; 4035 } 4036 } 4037 if( (f1&MEM_Real)!=0 ){ 4038 if( (f2&MEM_Int)!=0 ){ 4039 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 4040 }else{ 4041 return -1; 4042 } 4043 } 4044 return +1; 4045 } 4046 4047 /* If one value is a string and the other is a blob, the string is less. 4048 ** If both are strings, compare using the collating functions. 4049 */ 4050 if( combined_flags&MEM_Str ){ 4051 if( (f1 & MEM_Str)==0 ){ 4052 return 1; 4053 } 4054 if( (f2 & MEM_Str)==0 ){ 4055 return -1; 4056 } 4057 4058 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 4059 assert( pMem1->enc==SQLITE_UTF8 || 4060 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 4061 4062 /* The collation sequence must be defined at this point, even if 4063 ** the user deletes the collation sequence after the vdbe program is 4064 ** compiled (this was not always the case). 4065 */ 4066 assert( !pColl || pColl->xCmp ); 4067 4068 if( pColl ){ 4069 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 4070 } 4071 /* If a NULL pointer was passed as the collate function, fall through 4072 ** to the blob case and use memcmp(). */ 4073 } 4074 4075 /* Both values must be blobs. Compare using memcmp(). */ 4076 return sqlite3BlobCompare(pMem1, pMem2); 4077 } 4078 4079 4080 /* 4081 ** The first argument passed to this function is a serial-type that 4082 ** corresponds to an integer - all values between 1 and 9 inclusive 4083 ** except 7. The second points to a buffer containing an integer value 4084 ** serialized according to serial_type. This function deserializes 4085 ** and returns the value. 4086 */ 4087 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 4088 u32 y; 4089 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 4090 switch( serial_type ){ 4091 case 0: 4092 case 1: 4093 testcase( aKey[0]&0x80 ); 4094 return ONE_BYTE_INT(aKey); 4095 case 2: 4096 testcase( aKey[0]&0x80 ); 4097 return TWO_BYTE_INT(aKey); 4098 case 3: 4099 testcase( aKey[0]&0x80 ); 4100 return THREE_BYTE_INT(aKey); 4101 case 4: { 4102 testcase( aKey[0]&0x80 ); 4103 y = FOUR_BYTE_UINT(aKey); 4104 return (i64)*(int*)&y; 4105 } 4106 case 5: { 4107 testcase( aKey[0]&0x80 ); 4108 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4109 } 4110 case 6: { 4111 u64 x = FOUR_BYTE_UINT(aKey); 4112 testcase( aKey[0]&0x80 ); 4113 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4114 return (i64)*(i64*)&x; 4115 } 4116 } 4117 4118 return (serial_type - 8); 4119 } 4120 4121 /* 4122 ** This function compares the two table rows or index records 4123 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 4124 ** or positive integer if key1 is less than, equal to or 4125 ** greater than key2. The {nKey1, pKey1} key must be a blob 4126 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 4127 ** key must be a parsed key such as obtained from 4128 ** sqlite3VdbeParseRecord. 4129 ** 4130 ** If argument bSkip is non-zero, it is assumed that the caller has already 4131 ** determined that the first fields of the keys are equal. 4132 ** 4133 ** Key1 and Key2 do not have to contain the same number of fields. If all 4134 ** fields that appear in both keys are equal, then pPKey2->default_rc is 4135 ** returned. 4136 ** 4137 ** If database corruption is discovered, set pPKey2->errCode to 4138 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 4139 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 4140 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 4141 */ 4142 int sqlite3VdbeRecordCompareWithSkip( 4143 int nKey1, const void *pKey1, /* Left key */ 4144 UnpackedRecord *pPKey2, /* Right key */ 4145 int bSkip /* If true, skip the first field */ 4146 ){ 4147 u32 d1; /* Offset into aKey[] of next data element */ 4148 int i; /* Index of next field to compare */ 4149 u32 szHdr1; /* Size of record header in bytes */ 4150 u32 idx1; /* Offset of first type in header */ 4151 int rc = 0; /* Return value */ 4152 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 4153 KeyInfo *pKeyInfo; 4154 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4155 Mem mem1; 4156 4157 /* If bSkip is true, then the caller has already determined that the first 4158 ** two elements in the keys are equal. Fix the various stack variables so 4159 ** that this routine begins comparing at the second field. */ 4160 if( bSkip ){ 4161 u32 s1; 4162 idx1 = 1 + getVarint32(&aKey1[1], s1); 4163 szHdr1 = aKey1[0]; 4164 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 4165 i = 1; 4166 pRhs++; 4167 }else{ 4168 idx1 = getVarint32(aKey1, szHdr1); 4169 d1 = szHdr1; 4170 if( d1>(unsigned)nKey1 ){ 4171 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4172 return 0; /* Corruption */ 4173 } 4174 i = 0; 4175 } 4176 4177 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4178 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 4179 || CORRUPT_DB ); 4180 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); 4181 assert( pPKey2->pKeyInfo->nKeyField>0 ); 4182 assert( idx1<=szHdr1 || CORRUPT_DB ); 4183 do{ 4184 u32 serial_type; 4185 4186 /* RHS is an integer */ 4187 if( pRhs->flags & MEM_Int ){ 4188 serial_type = aKey1[idx1]; 4189 testcase( serial_type==12 ); 4190 if( serial_type>=10 ){ 4191 rc = +1; 4192 }else if( serial_type==0 ){ 4193 rc = -1; 4194 }else if( serial_type==7 ){ 4195 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4196 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4197 }else{ 4198 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4199 i64 rhs = pRhs->u.i; 4200 if( lhs<rhs ){ 4201 rc = -1; 4202 }else if( lhs>rhs ){ 4203 rc = +1; 4204 } 4205 } 4206 } 4207 4208 /* RHS is real */ 4209 else if( pRhs->flags & MEM_Real ){ 4210 serial_type = aKey1[idx1]; 4211 if( serial_type>=10 ){ 4212 /* Serial types 12 or greater are strings and blobs (greater than 4213 ** numbers). Types 10 and 11 are currently "reserved for future 4214 ** use", so it doesn't really matter what the results of comparing 4215 ** them to numberic values are. */ 4216 rc = +1; 4217 }else if( serial_type==0 ){ 4218 rc = -1; 4219 }else{ 4220 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4221 if( serial_type==7 ){ 4222 if( mem1.u.r<pRhs->u.r ){ 4223 rc = -1; 4224 }else if( mem1.u.r>pRhs->u.r ){ 4225 rc = +1; 4226 } 4227 }else{ 4228 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4229 } 4230 } 4231 } 4232 4233 /* RHS is a string */ 4234 else if( pRhs->flags & MEM_Str ){ 4235 getVarint32(&aKey1[idx1], serial_type); 4236 testcase( serial_type==12 ); 4237 if( serial_type<12 ){ 4238 rc = -1; 4239 }else if( !(serial_type & 0x01) ){ 4240 rc = +1; 4241 }else{ 4242 mem1.n = (serial_type - 12) / 2; 4243 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4244 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4245 if( (d1+mem1.n) > (unsigned)nKey1 ){ 4246 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4247 return 0; /* Corruption */ 4248 }else if( (pKeyInfo = pPKey2->pKeyInfo)->aColl[i] ){ 4249 mem1.enc = pKeyInfo->enc; 4250 mem1.db = pKeyInfo->db; 4251 mem1.flags = MEM_Str; 4252 mem1.z = (char*)&aKey1[d1]; 4253 rc = vdbeCompareMemString( 4254 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4255 ); 4256 }else{ 4257 int nCmp = MIN(mem1.n, pRhs->n); 4258 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4259 if( rc==0 ) rc = mem1.n - pRhs->n; 4260 } 4261 } 4262 } 4263 4264 /* RHS is a blob */ 4265 else if( pRhs->flags & MEM_Blob ){ 4266 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4267 getVarint32(&aKey1[idx1], serial_type); 4268 testcase( serial_type==12 ); 4269 if( serial_type<12 || (serial_type & 0x01) ){ 4270 rc = -1; 4271 }else{ 4272 int nStr = (serial_type - 12) / 2; 4273 testcase( (d1+nStr)==(unsigned)nKey1 ); 4274 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4275 if( (d1+nStr) > (unsigned)nKey1 ){ 4276 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4277 return 0; /* Corruption */ 4278 }else if( pRhs->flags & MEM_Zero ){ 4279 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4280 rc = 1; 4281 }else{ 4282 rc = nStr - pRhs->u.nZero; 4283 } 4284 }else{ 4285 int nCmp = MIN(nStr, pRhs->n); 4286 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4287 if( rc==0 ) rc = nStr - pRhs->n; 4288 } 4289 } 4290 } 4291 4292 /* RHS is null */ 4293 else{ 4294 serial_type = aKey1[idx1]; 4295 rc = (serial_type!=0); 4296 } 4297 4298 if( rc!=0 ){ 4299 if( pPKey2->pKeyInfo->aSortOrder[i] ){ 4300 rc = -rc; 4301 } 4302 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4303 assert( mem1.szMalloc==0 ); /* See comment below */ 4304 return rc; 4305 } 4306 4307 i++; 4308 if( i==pPKey2->nField ) break; 4309 pRhs++; 4310 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4311 idx1 += sqlite3VarintLen(serial_type); 4312 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 ); 4313 4314 /* No memory allocation is ever used on mem1. Prove this using 4315 ** the following assert(). If the assert() fails, it indicates a 4316 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4317 assert( mem1.szMalloc==0 ); 4318 4319 /* rc==0 here means that one or both of the keys ran out of fields and 4320 ** all the fields up to that point were equal. Return the default_rc 4321 ** value. */ 4322 assert( CORRUPT_DB 4323 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4324 || pPKey2->pKeyInfo->db->mallocFailed 4325 ); 4326 pPKey2->eqSeen = 1; 4327 return pPKey2->default_rc; 4328 } 4329 int sqlite3VdbeRecordCompare( 4330 int nKey1, const void *pKey1, /* Left key */ 4331 UnpackedRecord *pPKey2 /* Right key */ 4332 ){ 4333 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4334 } 4335 4336 4337 /* 4338 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4339 ** that (a) the first field of pPKey2 is an integer, and (b) the 4340 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4341 ** byte (i.e. is less than 128). 4342 ** 4343 ** To avoid concerns about buffer overreads, this routine is only used 4344 ** on schemas where the maximum valid header size is 63 bytes or less. 4345 */ 4346 static int vdbeRecordCompareInt( 4347 int nKey1, const void *pKey1, /* Left key */ 4348 UnpackedRecord *pPKey2 /* Right key */ 4349 ){ 4350 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4351 int serial_type = ((const u8*)pKey1)[1]; 4352 int res; 4353 u32 y; 4354 u64 x; 4355 i64 v; 4356 i64 lhs; 4357 4358 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4359 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4360 switch( serial_type ){ 4361 case 1: { /* 1-byte signed integer */ 4362 lhs = ONE_BYTE_INT(aKey); 4363 testcase( lhs<0 ); 4364 break; 4365 } 4366 case 2: { /* 2-byte signed integer */ 4367 lhs = TWO_BYTE_INT(aKey); 4368 testcase( lhs<0 ); 4369 break; 4370 } 4371 case 3: { /* 3-byte signed integer */ 4372 lhs = THREE_BYTE_INT(aKey); 4373 testcase( lhs<0 ); 4374 break; 4375 } 4376 case 4: { /* 4-byte signed integer */ 4377 y = FOUR_BYTE_UINT(aKey); 4378 lhs = (i64)*(int*)&y; 4379 testcase( lhs<0 ); 4380 break; 4381 } 4382 case 5: { /* 6-byte signed integer */ 4383 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4384 testcase( lhs<0 ); 4385 break; 4386 } 4387 case 6: { /* 8-byte signed integer */ 4388 x = FOUR_BYTE_UINT(aKey); 4389 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4390 lhs = *(i64*)&x; 4391 testcase( lhs<0 ); 4392 break; 4393 } 4394 case 8: 4395 lhs = 0; 4396 break; 4397 case 9: 4398 lhs = 1; 4399 break; 4400 4401 /* This case could be removed without changing the results of running 4402 ** this code. Including it causes gcc to generate a faster switch 4403 ** statement (since the range of switch targets now starts at zero and 4404 ** is contiguous) but does not cause any duplicate code to be generated 4405 ** (as gcc is clever enough to combine the two like cases). Other 4406 ** compilers might be similar. */ 4407 case 0: case 7: 4408 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4409 4410 default: 4411 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4412 } 4413 4414 v = pPKey2->aMem[0].u.i; 4415 if( v>lhs ){ 4416 res = pPKey2->r1; 4417 }else if( v<lhs ){ 4418 res = pPKey2->r2; 4419 }else if( pPKey2->nField>1 ){ 4420 /* The first fields of the two keys are equal. Compare the trailing 4421 ** fields. */ 4422 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4423 }else{ 4424 /* The first fields of the two keys are equal and there are no trailing 4425 ** fields. Return pPKey2->default_rc in this case. */ 4426 res = pPKey2->default_rc; 4427 pPKey2->eqSeen = 1; 4428 } 4429 4430 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4431 return res; 4432 } 4433 4434 /* 4435 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4436 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4437 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4438 ** at the start of (pKey1/nKey1) fits in a single byte. 4439 */ 4440 static int vdbeRecordCompareString( 4441 int nKey1, const void *pKey1, /* Left key */ 4442 UnpackedRecord *pPKey2 /* Right key */ 4443 ){ 4444 const u8 *aKey1 = (const u8*)pKey1; 4445 int serial_type; 4446 int res; 4447 4448 assert( pPKey2->aMem[0].flags & MEM_Str ); 4449 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4450 getVarint32(&aKey1[1], serial_type); 4451 if( serial_type<12 ){ 4452 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4453 }else if( !(serial_type & 0x01) ){ 4454 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4455 }else{ 4456 int nCmp; 4457 int nStr; 4458 int szHdr = aKey1[0]; 4459 4460 nStr = (serial_type-12) / 2; 4461 if( (szHdr + nStr) > nKey1 ){ 4462 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4463 return 0; /* Corruption */ 4464 } 4465 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4466 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4467 4468 if( res==0 ){ 4469 res = nStr - pPKey2->aMem[0].n; 4470 if( res==0 ){ 4471 if( pPKey2->nField>1 ){ 4472 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4473 }else{ 4474 res = pPKey2->default_rc; 4475 pPKey2->eqSeen = 1; 4476 } 4477 }else if( res>0 ){ 4478 res = pPKey2->r2; 4479 }else{ 4480 res = pPKey2->r1; 4481 } 4482 }else if( res>0 ){ 4483 res = pPKey2->r2; 4484 }else{ 4485 res = pPKey2->r1; 4486 } 4487 } 4488 4489 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4490 || CORRUPT_DB 4491 || pPKey2->pKeyInfo->db->mallocFailed 4492 ); 4493 return res; 4494 } 4495 4496 /* 4497 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4498 ** suitable for comparing serialized records to the unpacked record passed 4499 ** as the only argument. 4500 */ 4501 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4502 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4503 ** that the size-of-header varint that occurs at the start of each record 4504 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4505 ** also assumes that it is safe to overread a buffer by at least the 4506 ** maximum possible legal header size plus 8 bytes. Because there is 4507 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4508 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4509 ** limit the size of the header to 64 bytes in cases where the first field 4510 ** is an integer. 4511 ** 4512 ** The easiest way to enforce this limit is to consider only records with 4513 ** 13 fields or less. If the first field is an integer, the maximum legal 4514 ** header size is (12*5 + 1 + 1) bytes. */ 4515 if( p->pKeyInfo->nAllField<=13 ){ 4516 int flags = p->aMem[0].flags; 4517 if( p->pKeyInfo->aSortOrder[0] ){ 4518 p->r1 = 1; 4519 p->r2 = -1; 4520 }else{ 4521 p->r1 = -1; 4522 p->r2 = 1; 4523 } 4524 if( (flags & MEM_Int) ){ 4525 return vdbeRecordCompareInt; 4526 } 4527 testcase( flags & MEM_Real ); 4528 testcase( flags & MEM_Null ); 4529 testcase( flags & MEM_Blob ); 4530 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ 4531 assert( flags & MEM_Str ); 4532 return vdbeRecordCompareString; 4533 } 4534 } 4535 4536 return sqlite3VdbeRecordCompare; 4537 } 4538 4539 /* 4540 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4541 ** Read the rowid (the last field in the record) and store it in *rowid. 4542 ** Return SQLITE_OK if everything works, or an error code otherwise. 4543 ** 4544 ** pCur might be pointing to text obtained from a corrupt database file. 4545 ** So the content cannot be trusted. Do appropriate checks on the content. 4546 */ 4547 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4548 i64 nCellKey = 0; 4549 int rc; 4550 u32 szHdr; /* Size of the header */ 4551 u32 typeRowid; /* Serial type of the rowid */ 4552 u32 lenRowid; /* Size of the rowid */ 4553 Mem m, v; 4554 4555 /* Get the size of the index entry. Only indices entries of less 4556 ** than 2GiB are support - anything large must be database corruption. 4557 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4558 ** this code can safely assume that nCellKey is 32-bits 4559 */ 4560 assert( sqlite3BtreeCursorIsValid(pCur) ); 4561 nCellKey = sqlite3BtreePayloadSize(pCur); 4562 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4563 4564 /* Read in the complete content of the index entry */ 4565 sqlite3VdbeMemInit(&m, db, 0); 4566 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4567 if( rc ){ 4568 return rc; 4569 } 4570 4571 /* The index entry must begin with a header size */ 4572 (void)getVarint32((u8*)m.z, szHdr); 4573 testcase( szHdr==3 ); 4574 testcase( szHdr==m.n ); 4575 testcase( szHdr>0x7fffffff ); 4576 assert( m.n>=0 ); 4577 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ 4578 goto idx_rowid_corruption; 4579 } 4580 4581 /* The last field of the index should be an integer - the ROWID. 4582 ** Verify that the last entry really is an integer. */ 4583 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 4584 testcase( typeRowid==1 ); 4585 testcase( typeRowid==2 ); 4586 testcase( typeRowid==3 ); 4587 testcase( typeRowid==4 ); 4588 testcase( typeRowid==5 ); 4589 testcase( typeRowid==6 ); 4590 testcase( typeRowid==8 ); 4591 testcase( typeRowid==9 ); 4592 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4593 goto idx_rowid_corruption; 4594 } 4595 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4596 testcase( (u32)m.n==szHdr+lenRowid ); 4597 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4598 goto idx_rowid_corruption; 4599 } 4600 4601 /* Fetch the integer off the end of the index record */ 4602 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4603 *rowid = v.u.i; 4604 sqlite3VdbeMemRelease(&m); 4605 return SQLITE_OK; 4606 4607 /* Jump here if database corruption is detected after m has been 4608 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4609 idx_rowid_corruption: 4610 testcase( m.szMalloc!=0 ); 4611 sqlite3VdbeMemRelease(&m); 4612 return SQLITE_CORRUPT_BKPT; 4613 } 4614 4615 /* 4616 ** Compare the key of the index entry that cursor pC is pointing to against 4617 ** the key string in pUnpacked. Write into *pRes a number 4618 ** that is negative, zero, or positive if pC is less than, equal to, 4619 ** or greater than pUnpacked. Return SQLITE_OK on success. 4620 ** 4621 ** pUnpacked is either created without a rowid or is truncated so that it 4622 ** omits the rowid at the end. The rowid at the end of the index entry 4623 ** is ignored as well. Hence, this routine only compares the prefixes 4624 ** of the keys prior to the final rowid, not the entire key. 4625 */ 4626 int sqlite3VdbeIdxKeyCompare( 4627 sqlite3 *db, /* Database connection */ 4628 VdbeCursor *pC, /* The cursor to compare against */ 4629 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4630 int *res /* Write the comparison result here */ 4631 ){ 4632 i64 nCellKey = 0; 4633 int rc; 4634 BtCursor *pCur; 4635 Mem m; 4636 4637 assert( pC->eCurType==CURTYPE_BTREE ); 4638 pCur = pC->uc.pCursor; 4639 assert( sqlite3BtreeCursorIsValid(pCur) ); 4640 nCellKey = sqlite3BtreePayloadSize(pCur); 4641 /* nCellKey will always be between 0 and 0xffffffff because of the way 4642 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4643 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4644 *res = 0; 4645 return SQLITE_CORRUPT_BKPT; 4646 } 4647 sqlite3VdbeMemInit(&m, db, 0); 4648 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4649 if( rc ){ 4650 return rc; 4651 } 4652 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); 4653 sqlite3VdbeMemRelease(&m); 4654 return SQLITE_OK; 4655 } 4656 4657 /* 4658 ** This routine sets the value to be returned by subsequent calls to 4659 ** sqlite3_changes() on the database handle 'db'. 4660 */ 4661 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 4662 assert( sqlite3_mutex_held(db->mutex) ); 4663 db->nChange = nChange; 4664 db->nTotalChange += nChange; 4665 } 4666 4667 /* 4668 ** Set a flag in the vdbe to update the change counter when it is finalised 4669 ** or reset. 4670 */ 4671 void sqlite3VdbeCountChanges(Vdbe *v){ 4672 v->changeCntOn = 1; 4673 } 4674 4675 /* 4676 ** Mark every prepared statement associated with a database connection 4677 ** as expired. 4678 ** 4679 ** An expired statement means that recompilation of the statement is 4680 ** recommend. Statements expire when things happen that make their 4681 ** programs obsolete. Removing user-defined functions or collating 4682 ** sequences, or changing an authorization function are the types of 4683 ** things that make prepared statements obsolete. 4684 ** 4685 ** If iCode is 1, then expiration is advisory. The statement should 4686 ** be reprepared before being restarted, but if it is already running 4687 ** it is allowed to run to completion. 4688 ** 4689 ** Internally, this function just sets the Vdbe.expired flag on all 4690 ** prepared statements. The flag is set to 1 for an immediate expiration 4691 ** and set to 2 for an advisory expiration. 4692 */ 4693 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ 4694 Vdbe *p; 4695 for(p = db->pVdbe; p; p=p->pNext){ 4696 p->expired = iCode+1; 4697 } 4698 } 4699 4700 /* 4701 ** Return the database associated with the Vdbe. 4702 */ 4703 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 4704 return v->db; 4705 } 4706 4707 /* 4708 ** Return the SQLITE_PREPARE flags for a Vdbe. 4709 */ 4710 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 4711 return v->prepFlags; 4712 } 4713 4714 /* 4715 ** Return a pointer to an sqlite3_value structure containing the value bound 4716 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 4717 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 4718 ** constants) to the value before returning it. 4719 ** 4720 ** The returned value must be freed by the caller using sqlite3ValueFree(). 4721 */ 4722 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 4723 assert( iVar>0 ); 4724 if( v ){ 4725 Mem *pMem = &v->aVar[iVar-1]; 4726 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 4727 if( 0==(pMem->flags & MEM_Null) ){ 4728 sqlite3_value *pRet = sqlite3ValueNew(v->db); 4729 if( pRet ){ 4730 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 4731 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 4732 } 4733 return pRet; 4734 } 4735 } 4736 return 0; 4737 } 4738 4739 /* 4740 ** Configure SQL variable iVar so that binding a new value to it signals 4741 ** to sqlite3_reoptimize() that re-preparing the statement may result 4742 ** in a better query plan. 4743 */ 4744 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 4745 assert( iVar>0 ); 4746 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 4747 if( iVar>=32 ){ 4748 v->expmask |= 0x80000000; 4749 }else{ 4750 v->expmask |= ((u32)1 << (iVar-1)); 4751 } 4752 } 4753 4754 /* 4755 ** Cause a function to throw an error if it was call from OP_PureFunc 4756 ** rather than OP_Function. 4757 ** 4758 ** OP_PureFunc means that the function must be deterministic, and should 4759 ** throw an error if it is given inputs that would make it non-deterministic. 4760 ** This routine is invoked by date/time functions that use non-deterministic 4761 ** features such as 'now'. 4762 */ 4763 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 4764 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 4765 if( pCtx->pVdbe==0 ) return 1; 4766 #endif 4767 if( pCtx->pVdbe->aOp[pCtx->iOp].opcode==OP_PureFunc ){ 4768 sqlite3_result_error(pCtx, 4769 "non-deterministic function in index expression or CHECK constraint", 4770 -1); 4771 return 0; 4772 } 4773 return 1; 4774 } 4775 4776 #ifndef SQLITE_OMIT_VIRTUALTABLE 4777 /* 4778 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 4779 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 4780 ** in memory obtained from sqlite3DbMalloc). 4781 */ 4782 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 4783 if( pVtab->zErrMsg ){ 4784 sqlite3 *db = p->db; 4785 sqlite3DbFree(db, p->zErrMsg); 4786 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 4787 sqlite3_free(pVtab->zErrMsg); 4788 pVtab->zErrMsg = 0; 4789 } 4790 } 4791 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4792 4793 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4794 4795 /* 4796 ** If the second argument is not NULL, release any allocations associated 4797 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 4798 ** structure itself, using sqlite3DbFree(). 4799 ** 4800 ** This function is used to free UnpackedRecord structures allocated by 4801 ** the vdbeUnpackRecord() function found in vdbeapi.c. 4802 */ 4803 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 4804 if( p ){ 4805 int i; 4806 for(i=0; i<nField; i++){ 4807 Mem *pMem = &p->aMem[i]; 4808 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem); 4809 } 4810 sqlite3DbFreeNN(db, p); 4811 } 4812 } 4813 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4814 4815 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4816 /* 4817 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 4818 ** then cursor passed as the second argument should point to the row about 4819 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 4820 ** the required value will be read from the row the cursor points to. 4821 */ 4822 void sqlite3VdbePreUpdateHook( 4823 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 4824 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 4825 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 4826 const char *zDb, /* Database name */ 4827 Table *pTab, /* Modified table */ 4828 i64 iKey1, /* Initial key value */ 4829 int iReg /* Register for new.* record */ 4830 ){ 4831 sqlite3 *db = v->db; 4832 i64 iKey2; 4833 PreUpdate preupdate; 4834 const char *zTbl = pTab->zName; 4835 static const u8 fakeSortOrder = 0; 4836 4837 assert( db->pPreUpdate==0 ); 4838 memset(&preupdate, 0, sizeof(PreUpdate)); 4839 if( HasRowid(pTab)==0 ){ 4840 iKey1 = iKey2 = 0; 4841 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 4842 }else{ 4843 if( op==SQLITE_UPDATE ){ 4844 iKey2 = v->aMem[iReg].u.i; 4845 }else{ 4846 iKey2 = iKey1; 4847 } 4848 } 4849 4850 assert( pCsr->nField==pTab->nCol 4851 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 4852 ); 4853 4854 preupdate.v = v; 4855 preupdate.pCsr = pCsr; 4856 preupdate.op = op; 4857 preupdate.iNewReg = iReg; 4858 preupdate.keyinfo.db = db; 4859 preupdate.keyinfo.enc = ENC(db); 4860 preupdate.keyinfo.nKeyField = pTab->nCol; 4861 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder; 4862 preupdate.iKey1 = iKey1; 4863 preupdate.iKey2 = iKey2; 4864 preupdate.pTab = pTab; 4865 4866 db->pPreUpdate = &preupdate; 4867 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 4868 db->pPreUpdate = 0; 4869 sqlite3DbFree(db, preupdate.aRecord); 4870 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 4871 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 4872 if( preupdate.aNew ){ 4873 int i; 4874 for(i=0; i<pCsr->nField; i++){ 4875 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 4876 } 4877 sqlite3DbFreeNN(db, preupdate.aNew); 4878 } 4879 } 4880 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4881