1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* 19 ** Create a new virtual database engine. 20 */ 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 22 sqlite3 *db = pParse->db; 23 Vdbe *p; 24 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 25 if( p==0 ) return 0; 26 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 27 p->db = db; 28 if( db->pVdbe ){ 29 db->pVdbe->pPrev = p; 30 } 31 p->pNext = db->pVdbe; 32 p->pPrev = 0; 33 db->pVdbe = p; 34 p->magic = VDBE_MAGIC_INIT; 35 p->pParse = pParse; 36 assert( pParse->aLabel==0 ); 37 assert( pParse->nLabel==0 ); 38 assert( pParse->nOpAlloc==0 ); 39 assert( pParse->szOpAlloc==0 ); 40 return p; 41 } 42 43 /* 44 ** Change the error string stored in Vdbe.zErrMsg 45 */ 46 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 47 va_list ap; 48 sqlite3DbFree(p->db, p->zErrMsg); 49 va_start(ap, zFormat); 50 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 51 va_end(ap); 52 } 53 54 /* 55 ** Remember the SQL string for a prepared statement. 56 */ 57 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ 58 assert( isPrepareV2==1 || isPrepareV2==0 ); 59 if( p==0 ) return; 60 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG) 61 if( !isPrepareV2 ) return; 62 #endif 63 assert( p->zSql==0 ); 64 p->zSql = sqlite3DbStrNDup(p->db, z, n); 65 p->isPrepareV2 = (u8)isPrepareV2; 66 } 67 68 /* 69 ** Swap all content between two VDBE structures. 70 */ 71 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 72 Vdbe tmp, *pTmp; 73 char *zTmp; 74 assert( pA->db==pB->db ); 75 tmp = *pA; 76 *pA = *pB; 77 *pB = tmp; 78 pTmp = pA->pNext; 79 pA->pNext = pB->pNext; 80 pB->pNext = pTmp; 81 pTmp = pA->pPrev; 82 pA->pPrev = pB->pPrev; 83 pB->pPrev = pTmp; 84 zTmp = pA->zSql; 85 pA->zSql = pB->zSql; 86 pB->zSql = zTmp; 87 pB->isPrepareV2 = pA->isPrepareV2; 88 } 89 90 /* 91 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 92 ** than its current size. nOp is guaranteed to be less than or equal 93 ** to 1024/sizeof(Op). 94 ** 95 ** If an out-of-memory error occurs while resizing the array, return 96 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain 97 ** unchanged (this is so that any opcodes already allocated can be 98 ** correctly deallocated along with the rest of the Vdbe). 99 */ 100 static int growOpArray(Vdbe *v, int nOp){ 101 VdbeOp *pNew; 102 Parse *p = v->pParse; 103 104 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 105 ** more frequent reallocs and hence provide more opportunities for 106 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 107 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 108 ** by the minimum* amount required until the size reaches 512. Normal 109 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 110 ** size of the op array or add 1KB of space, whichever is smaller. */ 111 #ifdef SQLITE_TEST_REALLOC_STRESS 112 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); 113 #else 114 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 115 UNUSED_PARAMETER(nOp); 116 #endif 117 118 assert( nOp<=(1024/sizeof(Op)) ); 119 assert( nNew>=(p->nOpAlloc+nOp) ); 120 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 121 if( pNew ){ 122 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 123 p->nOpAlloc = p->szOpAlloc/sizeof(Op); 124 v->aOp = pNew; 125 } 126 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 127 } 128 129 #ifdef SQLITE_DEBUG 130 /* This routine is just a convenient place to set a breakpoint that will 131 ** fire after each opcode is inserted and displayed using 132 ** "PRAGMA vdbe_addoptrace=on". 133 */ 134 static void test_addop_breakpoint(void){ 135 static int n = 0; 136 n++; 137 } 138 #endif 139 140 /* 141 ** Add a new instruction to the list of instructions current in the 142 ** VDBE. Return the address of the new instruction. 143 ** 144 ** Parameters: 145 ** 146 ** p Pointer to the VDBE 147 ** 148 ** op The opcode for this instruction 149 ** 150 ** p1, p2, p3 Operands 151 ** 152 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 153 ** the sqlite3VdbeChangeP4() function to change the value of the P4 154 ** operand. 155 */ 156 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 157 assert( p->pParse->nOpAlloc<=p->nOp ); 158 if( growOpArray(p, 1) ) return 1; 159 assert( p->pParse->nOpAlloc>p->nOp ); 160 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 161 } 162 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 163 int i; 164 VdbeOp *pOp; 165 166 i = p->nOp; 167 assert( p->magic==VDBE_MAGIC_INIT ); 168 assert( op>=0 && op<0xff ); 169 if( p->pParse->nOpAlloc<=i ){ 170 return growOp3(p, op, p1, p2, p3); 171 } 172 p->nOp++; 173 pOp = &p->aOp[i]; 174 pOp->opcode = (u8)op; 175 pOp->p5 = 0; 176 pOp->p1 = p1; 177 pOp->p2 = p2; 178 pOp->p3 = p3; 179 pOp->p4.p = 0; 180 pOp->p4type = P4_NOTUSED; 181 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 182 pOp->zComment = 0; 183 #endif 184 #ifdef SQLITE_DEBUG 185 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 186 int jj, kk; 187 Parse *pParse = p->pParse; 188 for(jj=kk=0; jj<pParse->nColCache; jj++){ 189 struct yColCache *x = pParse->aColCache + jj; 190 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); 191 kk++; 192 } 193 if( kk ) printf("\n"); 194 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 195 test_addop_breakpoint(); 196 } 197 #endif 198 #ifdef VDBE_PROFILE 199 pOp->cycles = 0; 200 pOp->cnt = 0; 201 #endif 202 #ifdef SQLITE_VDBE_COVERAGE 203 pOp->iSrcLine = 0; 204 #endif 205 return i; 206 } 207 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 208 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 209 } 210 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 211 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 212 } 213 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 214 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 215 } 216 217 /* Generate code for an unconditional jump to instruction iDest 218 */ 219 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 220 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 221 } 222 223 /* Generate code to cause the string zStr to be loaded into 224 ** register iDest 225 */ 226 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 227 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 228 } 229 230 /* 231 ** Generate code that initializes multiple registers to string or integer 232 ** constants. The registers begin with iDest and increase consecutively. 233 ** One register is initialized for each characgter in zTypes[]. For each 234 ** "s" character in zTypes[], the register is a string if the argument is 235 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 236 ** in zTypes[], the register is initialized to an integer. 237 */ 238 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 239 va_list ap; 240 int i; 241 char c; 242 va_start(ap, zTypes); 243 for(i=0; (c = zTypes[i])!=0; i++){ 244 if( c=='s' ){ 245 const char *z = va_arg(ap, const char*); 246 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0); 247 }else{ 248 assert( c=='i' ); 249 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++); 250 } 251 } 252 va_end(ap); 253 } 254 255 /* 256 ** Add an opcode that includes the p4 value as a pointer. 257 */ 258 int sqlite3VdbeAddOp4( 259 Vdbe *p, /* Add the opcode to this VM */ 260 int op, /* The new opcode */ 261 int p1, /* The P1 operand */ 262 int p2, /* The P2 operand */ 263 int p3, /* The P3 operand */ 264 const char *zP4, /* The P4 operand */ 265 int p4type /* P4 operand type */ 266 ){ 267 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 268 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 269 return addr; 270 } 271 272 /* 273 ** Add an opcode that includes the p4 value with a P4_INT64 or 274 ** P4_REAL type. 275 */ 276 int sqlite3VdbeAddOp4Dup8( 277 Vdbe *p, /* Add the opcode to this VM */ 278 int op, /* The new opcode */ 279 int p1, /* The P1 operand */ 280 int p2, /* The P2 operand */ 281 int p3, /* The P3 operand */ 282 const u8 *zP4, /* The P4 operand */ 283 int p4type /* P4 operand type */ 284 ){ 285 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 286 if( p4copy ) memcpy(p4copy, zP4, 8); 287 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 288 } 289 290 /* 291 ** Add an OP_ParseSchema opcode. This routine is broken out from 292 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 293 ** as having been used. 294 ** 295 ** The zWhere string must have been obtained from sqlite3_malloc(). 296 ** This routine will take ownership of the allocated memory. 297 */ 298 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 299 int j; 300 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 301 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 302 } 303 304 /* 305 ** Add an opcode that includes the p4 value as an integer. 306 */ 307 int sqlite3VdbeAddOp4Int( 308 Vdbe *p, /* Add the opcode to this VM */ 309 int op, /* The new opcode */ 310 int p1, /* The P1 operand */ 311 int p2, /* The P2 operand */ 312 int p3, /* The P3 operand */ 313 int p4 /* The P4 operand as an integer */ 314 ){ 315 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 316 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32); 317 return addr; 318 } 319 320 /* Insert the end of a co-routine 321 */ 322 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 323 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 324 325 /* Clear the temporary register cache, thereby ensuring that each 326 ** co-routine has its own independent set of registers, because co-routines 327 ** might expect their registers to be preserved across an OP_Yield, and 328 ** that could cause problems if two or more co-routines are using the same 329 ** temporary register. 330 */ 331 v->pParse->nTempReg = 0; 332 v->pParse->nRangeReg = 0; 333 } 334 335 /* 336 ** Create a new symbolic label for an instruction that has yet to be 337 ** coded. The symbolic label is really just a negative number. The 338 ** label can be used as the P2 value of an operation. Later, when 339 ** the label is resolved to a specific address, the VDBE will scan 340 ** through its operation list and change all values of P2 which match 341 ** the label into the resolved address. 342 ** 343 ** The VDBE knows that a P2 value is a label because labels are 344 ** always negative and P2 values are suppose to be non-negative. 345 ** Hence, a negative P2 value is a label that has yet to be resolved. 346 ** 347 ** Zero is returned if a malloc() fails. 348 */ 349 int sqlite3VdbeMakeLabel(Vdbe *v){ 350 Parse *p = v->pParse; 351 int i = p->nLabel++; 352 assert( v->magic==VDBE_MAGIC_INIT ); 353 if( (i & (i-1))==0 ){ 354 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 355 (i*2+1)*sizeof(p->aLabel[0])); 356 } 357 if( p->aLabel ){ 358 p->aLabel[i] = -1; 359 } 360 return ADDR(i); 361 } 362 363 /* 364 ** Resolve label "x" to be the address of the next instruction to 365 ** be inserted. The parameter "x" must have been obtained from 366 ** a prior call to sqlite3VdbeMakeLabel(). 367 */ 368 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 369 Parse *p = v->pParse; 370 int j = ADDR(x); 371 assert( v->magic==VDBE_MAGIC_INIT ); 372 assert( j<p->nLabel ); 373 assert( j>=0 ); 374 if( p->aLabel ){ 375 p->aLabel[j] = v->nOp; 376 } 377 } 378 379 /* 380 ** Mark the VDBE as one that can only be run one time. 381 */ 382 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 383 p->runOnlyOnce = 1; 384 } 385 386 /* 387 ** Mark the VDBE as one that can only be run multiple times. 388 */ 389 void sqlite3VdbeReusable(Vdbe *p){ 390 p->runOnlyOnce = 0; 391 } 392 393 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 394 395 /* 396 ** The following type and function are used to iterate through all opcodes 397 ** in a Vdbe main program and each of the sub-programs (triggers) it may 398 ** invoke directly or indirectly. It should be used as follows: 399 ** 400 ** Op *pOp; 401 ** VdbeOpIter sIter; 402 ** 403 ** memset(&sIter, 0, sizeof(sIter)); 404 ** sIter.v = v; // v is of type Vdbe* 405 ** while( (pOp = opIterNext(&sIter)) ){ 406 ** // Do something with pOp 407 ** } 408 ** sqlite3DbFree(v->db, sIter.apSub); 409 ** 410 */ 411 typedef struct VdbeOpIter VdbeOpIter; 412 struct VdbeOpIter { 413 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 414 SubProgram **apSub; /* Array of subprograms */ 415 int nSub; /* Number of entries in apSub */ 416 int iAddr; /* Address of next instruction to return */ 417 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 418 }; 419 static Op *opIterNext(VdbeOpIter *p){ 420 Vdbe *v = p->v; 421 Op *pRet = 0; 422 Op *aOp; 423 int nOp; 424 425 if( p->iSub<=p->nSub ){ 426 427 if( p->iSub==0 ){ 428 aOp = v->aOp; 429 nOp = v->nOp; 430 }else{ 431 aOp = p->apSub[p->iSub-1]->aOp; 432 nOp = p->apSub[p->iSub-1]->nOp; 433 } 434 assert( p->iAddr<nOp ); 435 436 pRet = &aOp[p->iAddr]; 437 p->iAddr++; 438 if( p->iAddr==nOp ){ 439 p->iSub++; 440 p->iAddr = 0; 441 } 442 443 if( pRet->p4type==P4_SUBPROGRAM ){ 444 int nByte = (p->nSub+1)*sizeof(SubProgram*); 445 int j; 446 for(j=0; j<p->nSub; j++){ 447 if( p->apSub[j]==pRet->p4.pProgram ) break; 448 } 449 if( j==p->nSub ){ 450 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 451 if( !p->apSub ){ 452 pRet = 0; 453 }else{ 454 p->apSub[p->nSub++] = pRet->p4.pProgram; 455 } 456 } 457 } 458 } 459 460 return pRet; 461 } 462 463 /* 464 ** Check if the program stored in the VM associated with pParse may 465 ** throw an ABORT exception (causing the statement, but not entire transaction 466 ** to be rolled back). This condition is true if the main program or any 467 ** sub-programs contains any of the following: 468 ** 469 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 470 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 471 ** * OP_Destroy 472 ** * OP_VUpdate 473 ** * OP_VRename 474 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 475 ** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...) 476 ** 477 ** Then check that the value of Parse.mayAbort is true if an 478 ** ABORT may be thrown, or false otherwise. Return true if it does 479 ** match, or false otherwise. This function is intended to be used as 480 ** part of an assert statement in the compiler. Similar to: 481 ** 482 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 483 */ 484 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 485 int hasAbort = 0; 486 int hasFkCounter = 0; 487 int hasCreateTable = 0; 488 int hasInitCoroutine = 0; 489 Op *pOp; 490 VdbeOpIter sIter; 491 memset(&sIter, 0, sizeof(sIter)); 492 sIter.v = v; 493 494 while( (pOp = opIterNext(&sIter))!=0 ){ 495 int opcode = pOp->opcode; 496 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 497 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 498 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 499 ){ 500 hasAbort = 1; 501 break; 502 } 503 if( opcode==OP_CreateTable ) hasCreateTable = 1; 504 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 505 #ifndef SQLITE_OMIT_FOREIGN_KEY 506 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 507 hasFkCounter = 1; 508 } 509 #endif 510 } 511 sqlite3DbFree(v->db, sIter.apSub); 512 513 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 514 ** If malloc failed, then the while() loop above may not have iterated 515 ** through all opcodes and hasAbort may be set incorrectly. Return 516 ** true for this case to prevent the assert() in the callers frame 517 ** from failing. */ 518 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 519 || (hasCreateTable && hasInitCoroutine) ); 520 } 521 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 522 523 /* 524 ** This routine is called after all opcodes have been inserted. It loops 525 ** through all the opcodes and fixes up some details. 526 ** 527 ** (1) For each jump instruction with a negative P2 value (a label) 528 ** resolve the P2 value to an actual address. 529 ** 530 ** (2) Compute the maximum number of arguments used by any SQL function 531 ** and store that value in *pMaxFuncArgs. 532 ** 533 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 534 ** indicate what the prepared statement actually does. 535 ** 536 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 537 ** 538 ** (5) Reclaim the memory allocated for storing labels. 539 ** 540 ** This routine will only function correctly if the mkopcodeh.tcl generator 541 ** script numbers the opcodes correctly. Changes to this routine must be 542 ** coordinated with changes to mkopcodeh.tcl. 543 */ 544 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 545 int nMaxArgs = *pMaxFuncArgs; 546 Op *pOp; 547 Parse *pParse = p->pParse; 548 int *aLabel = pParse->aLabel; 549 p->readOnly = 1; 550 p->bIsReader = 0; 551 pOp = &p->aOp[p->nOp-1]; 552 while(1){ 553 554 /* Only JUMP opcodes and the short list of special opcodes in the switch 555 ** below need to be considered. The mkopcodeh.tcl generator script groups 556 ** all these opcodes together near the front of the opcode list. Skip 557 ** any opcode that does not need processing by virtual of the fact that 558 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 559 */ 560 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 561 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 562 ** cases from this switch! */ 563 switch( pOp->opcode ){ 564 case OP_Transaction: { 565 if( pOp->p2!=0 ) p->readOnly = 0; 566 /* fall thru */ 567 } 568 case OP_AutoCommit: 569 case OP_Savepoint: { 570 p->bIsReader = 1; 571 break; 572 } 573 #ifndef SQLITE_OMIT_WAL 574 case OP_Checkpoint: 575 #endif 576 case OP_Vacuum: 577 case OP_JournalMode: { 578 p->readOnly = 0; 579 p->bIsReader = 1; 580 break; 581 } 582 #ifndef SQLITE_OMIT_VIRTUALTABLE 583 case OP_VUpdate: { 584 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 585 break; 586 } 587 case OP_VFilter: { 588 int n; 589 assert( (pOp - p->aOp) >= 3 ); 590 assert( pOp[-1].opcode==OP_Integer ); 591 n = pOp[-1].p1; 592 if( n>nMaxArgs ) nMaxArgs = n; 593 break; 594 } 595 #endif 596 case OP_Next: 597 case OP_NextIfOpen: 598 case OP_SorterNext: { 599 pOp->p4.xAdvance = sqlite3BtreeNext; 600 pOp->p4type = P4_ADVANCE; 601 break; 602 } 603 case OP_Prev: 604 case OP_PrevIfOpen: { 605 pOp->p4.xAdvance = sqlite3BtreePrevious; 606 pOp->p4type = P4_ADVANCE; 607 break; 608 } 609 } 610 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 && pOp->p2<0 ){ 611 assert( ADDR(pOp->p2)<pParse->nLabel ); 612 pOp->p2 = aLabel[ADDR(pOp->p2)]; 613 } 614 } 615 if( pOp==p->aOp ) break; 616 pOp--; 617 } 618 sqlite3DbFree(p->db, pParse->aLabel); 619 pParse->aLabel = 0; 620 pParse->nLabel = 0; 621 *pMaxFuncArgs = nMaxArgs; 622 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 623 } 624 625 /* 626 ** Return the address of the next instruction to be inserted. 627 */ 628 int sqlite3VdbeCurrentAddr(Vdbe *p){ 629 assert( p->magic==VDBE_MAGIC_INIT ); 630 return p->nOp; 631 } 632 633 /* 634 ** Verify that at least N opcode slots are available in p without 635 ** having to malloc for more space (except when compiled using 636 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 637 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 638 ** fail due to a OOM fault and hence that the return value from 639 ** sqlite3VdbeAddOpList() will always be non-NULL. 640 */ 641 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 642 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 643 assert( p->nOp + N <= p->pParse->nOpAlloc ); 644 } 645 #endif 646 647 /* 648 ** This function returns a pointer to the array of opcodes associated with 649 ** the Vdbe passed as the first argument. It is the callers responsibility 650 ** to arrange for the returned array to be eventually freed using the 651 ** vdbeFreeOpArray() function. 652 ** 653 ** Before returning, *pnOp is set to the number of entries in the returned 654 ** array. Also, *pnMaxArg is set to the larger of its current value and 655 ** the number of entries in the Vdbe.apArg[] array required to execute the 656 ** returned program. 657 */ 658 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 659 VdbeOp *aOp = p->aOp; 660 assert( aOp && !p->db->mallocFailed ); 661 662 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 663 assert( DbMaskAllZero(p->btreeMask) ); 664 665 resolveP2Values(p, pnMaxArg); 666 *pnOp = p->nOp; 667 p->aOp = 0; 668 return aOp; 669 } 670 671 /* 672 ** Add a whole list of operations to the operation stack. Return a 673 ** pointer to the first operation inserted. 674 ** 675 ** Non-zero P2 arguments to jump instructions are automatically adjusted 676 ** so that the jump target is relative to the first operation inserted. 677 */ 678 VdbeOp *sqlite3VdbeAddOpList( 679 Vdbe *p, /* Add opcodes to the prepared statement */ 680 int nOp, /* Number of opcodes to add */ 681 VdbeOpList const *aOp, /* The opcodes to be added */ 682 int iLineno /* Source-file line number of first opcode */ 683 ){ 684 int i; 685 VdbeOp *pOut, *pFirst; 686 assert( nOp>0 ); 687 assert( p->magic==VDBE_MAGIC_INIT ); 688 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ 689 return 0; 690 } 691 pFirst = pOut = &p->aOp[p->nOp]; 692 for(i=0; i<nOp; i++, aOp++, pOut++){ 693 pOut->opcode = aOp->opcode; 694 pOut->p1 = aOp->p1; 695 pOut->p2 = aOp->p2; 696 assert( aOp->p2>=0 ); 697 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 698 pOut->p2 += p->nOp; 699 } 700 pOut->p3 = aOp->p3; 701 pOut->p4type = P4_NOTUSED; 702 pOut->p4.p = 0; 703 pOut->p5 = 0; 704 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 705 pOut->zComment = 0; 706 #endif 707 #ifdef SQLITE_VDBE_COVERAGE 708 pOut->iSrcLine = iLineno+i; 709 #else 710 (void)iLineno; 711 #endif 712 #ifdef SQLITE_DEBUG 713 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 714 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 715 } 716 #endif 717 } 718 p->nOp += nOp; 719 return pFirst; 720 } 721 722 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 723 /* 724 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 725 */ 726 void sqlite3VdbeScanStatus( 727 Vdbe *p, /* VM to add scanstatus() to */ 728 int addrExplain, /* Address of OP_Explain (or 0) */ 729 int addrLoop, /* Address of loop counter */ 730 int addrVisit, /* Address of rows visited counter */ 731 LogEst nEst, /* Estimated number of output rows */ 732 const char *zName /* Name of table or index being scanned */ 733 ){ 734 int nByte = (p->nScan+1) * sizeof(ScanStatus); 735 ScanStatus *aNew; 736 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 737 if( aNew ){ 738 ScanStatus *pNew = &aNew[p->nScan++]; 739 pNew->addrExplain = addrExplain; 740 pNew->addrLoop = addrLoop; 741 pNew->addrVisit = addrVisit; 742 pNew->nEst = nEst; 743 pNew->zName = sqlite3DbStrDup(p->db, zName); 744 p->aScan = aNew; 745 } 746 } 747 #endif 748 749 750 /* 751 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 752 ** for a specific instruction. 753 */ 754 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){ 755 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 756 } 757 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ 758 sqlite3VdbeGetOp(p,addr)->p1 = val; 759 } 760 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ 761 sqlite3VdbeGetOp(p,addr)->p2 = val; 762 } 763 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ 764 sqlite3VdbeGetOp(p,addr)->p3 = val; 765 } 766 void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){ 767 assert( p->nOp>0 || p->db->mallocFailed ); 768 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 769 } 770 771 /* 772 ** Change the P2 operand of instruction addr so that it points to 773 ** the address of the next instruction to be coded. 774 */ 775 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 776 sqlite3VdbeChangeP2(p, addr, p->nOp); 777 } 778 779 780 /* 781 ** If the input FuncDef structure is ephemeral, then free it. If 782 ** the FuncDef is not ephermal, then do nothing. 783 */ 784 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 785 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 786 sqlite3DbFree(db, pDef); 787 } 788 } 789 790 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 791 792 /* 793 ** Delete a P4 value if necessary. 794 */ 795 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 796 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 797 sqlite3DbFree(db, p); 798 } 799 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 800 freeEphemeralFunction(db, p->pFunc); 801 sqlite3DbFree(db, p); 802 } 803 static void freeP4(sqlite3 *db, int p4type, void *p4){ 804 assert( db ); 805 switch( p4type ){ 806 case P4_FUNCCTX: { 807 freeP4FuncCtx(db, (sqlite3_context*)p4); 808 break; 809 } 810 case P4_REAL: 811 case P4_INT64: 812 case P4_DYNAMIC: 813 case P4_INTARRAY: { 814 sqlite3DbFree(db, p4); 815 break; 816 } 817 case P4_KEYINFO: { 818 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 819 break; 820 } 821 #ifdef SQLITE_ENABLE_CURSOR_HINTS 822 case P4_EXPR: { 823 sqlite3ExprDelete(db, (Expr*)p4); 824 break; 825 } 826 #endif 827 case P4_MPRINTF: { 828 if( db->pnBytesFreed==0 ) sqlite3_free(p4); 829 break; 830 } 831 case P4_FUNCDEF: { 832 freeEphemeralFunction(db, (FuncDef*)p4); 833 break; 834 } 835 case P4_MEM: { 836 if( db->pnBytesFreed==0 ){ 837 sqlite3ValueFree((sqlite3_value*)p4); 838 }else{ 839 freeP4Mem(db, (Mem*)p4); 840 } 841 break; 842 } 843 case P4_VTAB : { 844 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 845 break; 846 } 847 } 848 } 849 850 /* 851 ** Free the space allocated for aOp and any p4 values allocated for the 852 ** opcodes contained within. If aOp is not NULL it is assumed to contain 853 ** nOp entries. 854 */ 855 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 856 if( aOp ){ 857 Op *pOp; 858 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ 859 if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p); 860 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 861 sqlite3DbFree(db, pOp->zComment); 862 #endif 863 } 864 } 865 sqlite3DbFree(db, aOp); 866 } 867 868 /* 869 ** Link the SubProgram object passed as the second argument into the linked 870 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 871 ** objects when the VM is no longer required. 872 */ 873 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 874 p->pNext = pVdbe->pProgram; 875 pVdbe->pProgram = p; 876 } 877 878 /* 879 ** Change the opcode at addr into OP_Noop 880 */ 881 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 882 VdbeOp *pOp; 883 if( p->db->mallocFailed ) return 0; 884 assert( addr>=0 && addr<p->nOp ); 885 pOp = &p->aOp[addr]; 886 freeP4(p->db, pOp->p4type, pOp->p4.p); 887 pOp->p4type = P4_NOTUSED; 888 pOp->p4.z = 0; 889 pOp->opcode = OP_Noop; 890 return 1; 891 } 892 893 /* 894 ** If the last opcode is "op" and it is not a jump destination, 895 ** then remove it. Return true if and only if an opcode was removed. 896 */ 897 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 898 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 899 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 900 }else{ 901 return 0; 902 } 903 } 904 905 /* 906 ** Change the value of the P4 operand for a specific instruction. 907 ** This routine is useful when a large program is loaded from a 908 ** static array using sqlite3VdbeAddOpList but we want to make a 909 ** few minor changes to the program. 910 ** 911 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 912 ** the string is made into memory obtained from sqlite3_malloc(). 913 ** A value of n==0 means copy bytes of zP4 up to and including the 914 ** first null byte. If n>0 then copy n+1 bytes of zP4. 915 ** 916 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 917 ** to a string or structure that is guaranteed to exist for the lifetime of 918 ** the Vdbe. In these cases we can just copy the pointer. 919 ** 920 ** If addr<0 then change P4 on the most recently inserted instruction. 921 */ 922 static void SQLITE_NOINLINE vdbeChangeP4Full( 923 Vdbe *p, 924 Op *pOp, 925 const char *zP4, 926 int n 927 ){ 928 if( pOp->p4type ){ 929 freeP4(p->db, pOp->p4type, pOp->p4.p); 930 pOp->p4type = 0; 931 pOp->p4.p = 0; 932 } 933 if( n<0 ){ 934 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 935 }else{ 936 if( n==0 ) n = sqlite3Strlen30(zP4); 937 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 938 pOp->p4type = P4_DYNAMIC; 939 } 940 } 941 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 942 Op *pOp; 943 sqlite3 *db; 944 assert( p!=0 ); 945 db = p->db; 946 assert( p->magic==VDBE_MAGIC_INIT ); 947 assert( p->aOp!=0 || db->mallocFailed ); 948 if( db->mallocFailed ){ 949 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 950 return; 951 } 952 assert( p->nOp>0 ); 953 assert( addr<p->nOp ); 954 if( addr<0 ){ 955 addr = p->nOp - 1; 956 } 957 pOp = &p->aOp[addr]; 958 if( n>=0 || pOp->p4type ){ 959 vdbeChangeP4Full(p, pOp, zP4, n); 960 return; 961 } 962 if( n==P4_INT32 ){ 963 /* Note: this cast is safe, because the origin data point was an int 964 ** that was cast to a (const char *). */ 965 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 966 pOp->p4type = P4_INT32; 967 }else if( zP4!=0 ){ 968 assert( n<0 ); 969 pOp->p4.p = (void*)zP4; 970 pOp->p4type = (signed char)n; 971 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 972 } 973 } 974 975 /* 976 ** Set the P4 on the most recently added opcode to the KeyInfo for the 977 ** index given. 978 */ 979 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 980 Vdbe *v = pParse->pVdbe; 981 assert( v!=0 ); 982 assert( pIdx!=0 ); 983 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx), 984 P4_KEYINFO); 985 } 986 987 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 988 /* 989 ** Change the comment on the most recently coded instruction. Or 990 ** insert a No-op and add the comment to that new instruction. This 991 ** makes the code easier to read during debugging. None of this happens 992 ** in a production build. 993 */ 994 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 995 assert( p->nOp>0 || p->aOp==0 ); 996 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 997 if( p->nOp ){ 998 assert( p->aOp ); 999 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1000 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1001 } 1002 } 1003 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1004 va_list ap; 1005 if( p ){ 1006 va_start(ap, zFormat); 1007 vdbeVComment(p, zFormat, ap); 1008 va_end(ap); 1009 } 1010 } 1011 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1012 va_list ap; 1013 if( p ){ 1014 sqlite3VdbeAddOp0(p, OP_Noop); 1015 va_start(ap, zFormat); 1016 vdbeVComment(p, zFormat, ap); 1017 va_end(ap); 1018 } 1019 } 1020 #endif /* NDEBUG */ 1021 1022 #ifdef SQLITE_VDBE_COVERAGE 1023 /* 1024 ** Set the value if the iSrcLine field for the previously coded instruction. 1025 */ 1026 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1027 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1028 } 1029 #endif /* SQLITE_VDBE_COVERAGE */ 1030 1031 /* 1032 ** Return the opcode for a given address. If the address is -1, then 1033 ** return the most recently inserted opcode. 1034 ** 1035 ** If a memory allocation error has occurred prior to the calling of this 1036 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1037 ** is readable but not writable, though it is cast to a writable value. 1038 ** The return of a dummy opcode allows the call to continue functioning 1039 ** after an OOM fault without having to check to see if the return from 1040 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1041 ** dummy will never be written to. This is verified by code inspection and 1042 ** by running with Valgrind. 1043 */ 1044 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1045 /* C89 specifies that the constant "dummy" will be initialized to all 1046 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1047 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1048 assert( p->magic==VDBE_MAGIC_INIT ); 1049 if( addr<0 ){ 1050 addr = p->nOp - 1; 1051 } 1052 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1053 if( p->db->mallocFailed ){ 1054 return (VdbeOp*)&dummy; 1055 }else{ 1056 return &p->aOp[addr]; 1057 } 1058 } 1059 1060 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1061 /* 1062 ** Return an integer value for one of the parameters to the opcode pOp 1063 ** determined by character c. 1064 */ 1065 static int translateP(char c, const Op *pOp){ 1066 if( c=='1' ) return pOp->p1; 1067 if( c=='2' ) return pOp->p2; 1068 if( c=='3' ) return pOp->p3; 1069 if( c=='4' ) return pOp->p4.i; 1070 return pOp->p5; 1071 } 1072 1073 /* 1074 ** Compute a string for the "comment" field of a VDBE opcode listing. 1075 ** 1076 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1077 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1078 ** absence of other comments, this synopsis becomes the comment on the opcode. 1079 ** Some translation occurs: 1080 ** 1081 ** "PX" -> "r[X]" 1082 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1083 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1084 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1085 */ 1086 static int displayComment( 1087 const Op *pOp, /* The opcode to be commented */ 1088 const char *zP4, /* Previously obtained value for P4 */ 1089 char *zTemp, /* Write result here */ 1090 int nTemp /* Space available in zTemp[] */ 1091 ){ 1092 const char *zOpName; 1093 const char *zSynopsis; 1094 int nOpName; 1095 int ii, jj; 1096 char zAlt[50]; 1097 zOpName = sqlite3OpcodeName(pOp->opcode); 1098 nOpName = sqlite3Strlen30(zOpName); 1099 if( zOpName[nOpName+1] ){ 1100 int seenCom = 0; 1101 char c; 1102 zSynopsis = zOpName += nOpName + 1; 1103 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1104 if( pOp->p5 & SQLITE_STOREP2 ){ 1105 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3); 1106 }else{ 1107 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1108 } 1109 zSynopsis = zAlt; 1110 } 1111 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 1112 if( c=='P' ){ 1113 c = zSynopsis[++ii]; 1114 if( c=='4' ){ 1115 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 1116 }else if( c=='X' ){ 1117 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 1118 seenCom = 1; 1119 }else{ 1120 int v1 = translateP(c, pOp); 1121 int v2; 1122 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 1123 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1124 ii += 3; 1125 jj += sqlite3Strlen30(zTemp+jj); 1126 v2 = translateP(zSynopsis[ii], pOp); 1127 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1128 ii += 2; 1129 v2++; 1130 } 1131 if( v2>1 ){ 1132 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 1133 } 1134 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1135 ii += 4; 1136 } 1137 } 1138 jj += sqlite3Strlen30(zTemp+jj); 1139 }else{ 1140 zTemp[jj++] = c; 1141 } 1142 } 1143 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 1144 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 1145 jj += sqlite3Strlen30(zTemp+jj); 1146 } 1147 if( jj<nTemp ) zTemp[jj] = 0; 1148 }else if( pOp->zComment ){ 1149 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 1150 jj = sqlite3Strlen30(zTemp); 1151 }else{ 1152 zTemp[0] = 0; 1153 jj = 0; 1154 } 1155 return jj; 1156 } 1157 #endif /* SQLITE_DEBUG */ 1158 1159 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1160 /* 1161 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1162 ** that can be displayed in the P4 column of EXPLAIN output. 1163 */ 1164 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1165 const char *zOp = 0; 1166 switch( pExpr->op ){ 1167 case TK_STRING: 1168 sqlite3XPrintf(p, "%Q", pExpr->u.zToken); 1169 break; 1170 case TK_INTEGER: 1171 sqlite3XPrintf(p, "%d", pExpr->u.iValue); 1172 break; 1173 case TK_NULL: 1174 sqlite3XPrintf(p, "NULL"); 1175 break; 1176 case TK_REGISTER: { 1177 sqlite3XPrintf(p, "r[%d]", pExpr->iTable); 1178 break; 1179 } 1180 case TK_COLUMN: { 1181 if( pExpr->iColumn<0 ){ 1182 sqlite3XPrintf(p, "rowid"); 1183 }else{ 1184 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn); 1185 } 1186 break; 1187 } 1188 case TK_LT: zOp = "LT"; break; 1189 case TK_LE: zOp = "LE"; break; 1190 case TK_GT: zOp = "GT"; break; 1191 case TK_GE: zOp = "GE"; break; 1192 case TK_NE: zOp = "NE"; break; 1193 case TK_EQ: zOp = "EQ"; break; 1194 case TK_IS: zOp = "IS"; break; 1195 case TK_ISNOT: zOp = "ISNOT"; break; 1196 case TK_AND: zOp = "AND"; break; 1197 case TK_OR: zOp = "OR"; break; 1198 case TK_PLUS: zOp = "ADD"; break; 1199 case TK_STAR: zOp = "MUL"; break; 1200 case TK_MINUS: zOp = "SUB"; break; 1201 case TK_REM: zOp = "REM"; break; 1202 case TK_BITAND: zOp = "BITAND"; break; 1203 case TK_BITOR: zOp = "BITOR"; break; 1204 case TK_SLASH: zOp = "DIV"; break; 1205 case TK_LSHIFT: zOp = "LSHIFT"; break; 1206 case TK_RSHIFT: zOp = "RSHIFT"; break; 1207 case TK_CONCAT: zOp = "CONCAT"; break; 1208 case TK_UMINUS: zOp = "MINUS"; break; 1209 case TK_UPLUS: zOp = "PLUS"; break; 1210 case TK_BITNOT: zOp = "BITNOT"; break; 1211 case TK_NOT: zOp = "NOT"; break; 1212 case TK_ISNULL: zOp = "ISNULL"; break; 1213 case TK_NOTNULL: zOp = "NOTNULL"; break; 1214 1215 default: 1216 sqlite3XPrintf(p, "%s", "expr"); 1217 break; 1218 } 1219 1220 if( zOp ){ 1221 sqlite3XPrintf(p, "%s(", zOp); 1222 displayP4Expr(p, pExpr->pLeft); 1223 if( pExpr->pRight ){ 1224 sqlite3StrAccumAppend(p, ",", 1); 1225 displayP4Expr(p, pExpr->pRight); 1226 } 1227 sqlite3StrAccumAppend(p, ")", 1); 1228 } 1229 } 1230 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1231 1232 1233 #if VDBE_DISPLAY_P4 1234 /* 1235 ** Compute a string that describes the P4 parameter for an opcode. 1236 ** Use zTemp for any required temporary buffer space. 1237 */ 1238 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 1239 char *zP4 = zTemp; 1240 StrAccum x; 1241 assert( nTemp>=20 ); 1242 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0); 1243 switch( pOp->p4type ){ 1244 case P4_KEYINFO: { 1245 int j; 1246 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1247 assert( pKeyInfo->aSortOrder!=0 ); 1248 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nField); 1249 for(j=0; j<pKeyInfo->nField; j++){ 1250 CollSeq *pColl = pKeyInfo->aColl[j]; 1251 const char *zColl = pColl ? pColl->zName : ""; 1252 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1253 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl); 1254 } 1255 sqlite3StrAccumAppend(&x, ")", 1); 1256 break; 1257 } 1258 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1259 case P4_EXPR: { 1260 displayP4Expr(&x, pOp->p4.pExpr); 1261 break; 1262 } 1263 #endif 1264 case P4_COLLSEQ: { 1265 CollSeq *pColl = pOp->p4.pColl; 1266 sqlite3XPrintf(&x, "(%.20s)", pColl->zName); 1267 break; 1268 } 1269 case P4_FUNCDEF: { 1270 FuncDef *pDef = pOp->p4.pFunc; 1271 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1272 break; 1273 } 1274 #ifdef SQLITE_DEBUG 1275 case P4_FUNCCTX: { 1276 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1277 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1278 break; 1279 } 1280 #endif 1281 case P4_INT64: { 1282 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64); 1283 break; 1284 } 1285 case P4_INT32: { 1286 sqlite3XPrintf(&x, "%d", pOp->p4.i); 1287 break; 1288 } 1289 case P4_REAL: { 1290 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal); 1291 break; 1292 } 1293 case P4_MEM: { 1294 Mem *pMem = pOp->p4.pMem; 1295 if( pMem->flags & MEM_Str ){ 1296 zP4 = pMem->z; 1297 }else if( pMem->flags & MEM_Int ){ 1298 sqlite3XPrintf(&x, "%lld", pMem->u.i); 1299 }else if( pMem->flags & MEM_Real ){ 1300 sqlite3XPrintf(&x, "%.16g", pMem->u.r); 1301 }else if( pMem->flags & MEM_Null ){ 1302 zP4 = "NULL"; 1303 }else{ 1304 assert( pMem->flags & MEM_Blob ); 1305 zP4 = "(blob)"; 1306 } 1307 break; 1308 } 1309 #ifndef SQLITE_OMIT_VIRTUALTABLE 1310 case P4_VTAB: { 1311 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1312 sqlite3XPrintf(&x, "vtab:%p", pVtab); 1313 break; 1314 } 1315 #endif 1316 case P4_INTARRAY: { 1317 int i; 1318 int *ai = pOp->p4.ai; 1319 int n = ai[0]; /* The first element of an INTARRAY is always the 1320 ** count of the number of elements to follow */ 1321 for(i=1; i<n; i++){ 1322 sqlite3XPrintf(&x, ",%d", ai[i]); 1323 } 1324 zTemp[0] = '['; 1325 sqlite3StrAccumAppend(&x, "]", 1); 1326 break; 1327 } 1328 case P4_SUBPROGRAM: { 1329 sqlite3XPrintf(&x, "program"); 1330 break; 1331 } 1332 case P4_ADVANCE: { 1333 zTemp[0] = 0; 1334 break; 1335 } 1336 case P4_TABLE: { 1337 sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName); 1338 break; 1339 } 1340 default: { 1341 zP4 = pOp->p4.z; 1342 if( zP4==0 ){ 1343 zP4 = zTemp; 1344 zTemp[0] = 0; 1345 } 1346 } 1347 } 1348 sqlite3StrAccumFinish(&x); 1349 assert( zP4!=0 ); 1350 return zP4; 1351 } 1352 #endif /* VDBE_DISPLAY_P4 */ 1353 1354 /* 1355 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1356 ** 1357 ** The prepared statements need to know in advance the complete set of 1358 ** attached databases that will be use. A mask of these databases 1359 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1360 ** p->btreeMask of databases that will require a lock. 1361 */ 1362 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1363 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1364 assert( i<(int)sizeof(p->btreeMask)*8 ); 1365 DbMaskSet(p->btreeMask, i); 1366 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1367 DbMaskSet(p->lockMask, i); 1368 } 1369 } 1370 1371 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1372 /* 1373 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1374 ** this routine obtains the mutex associated with each BtShared structure 1375 ** that may be accessed by the VM passed as an argument. In doing so it also 1376 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1377 ** that the correct busy-handler callback is invoked if required. 1378 ** 1379 ** If SQLite is not threadsafe but does support shared-cache mode, then 1380 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1381 ** of all of BtShared structures accessible via the database handle 1382 ** associated with the VM. 1383 ** 1384 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1385 ** function is a no-op. 1386 ** 1387 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1388 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1389 ** corresponding to btrees that use shared cache. Then the runtime of 1390 ** this routine is N*N. But as N is rarely more than 1, this should not 1391 ** be a problem. 1392 */ 1393 void sqlite3VdbeEnter(Vdbe *p){ 1394 int i; 1395 sqlite3 *db; 1396 Db *aDb; 1397 int nDb; 1398 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1399 db = p->db; 1400 aDb = db->aDb; 1401 nDb = db->nDb; 1402 for(i=0; i<nDb; i++){ 1403 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1404 sqlite3BtreeEnter(aDb[i].pBt); 1405 } 1406 } 1407 } 1408 #endif 1409 1410 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1411 /* 1412 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1413 */ 1414 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1415 int i; 1416 sqlite3 *db; 1417 Db *aDb; 1418 int nDb; 1419 db = p->db; 1420 aDb = db->aDb; 1421 nDb = db->nDb; 1422 for(i=0; i<nDb; i++){ 1423 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1424 sqlite3BtreeLeave(aDb[i].pBt); 1425 } 1426 } 1427 } 1428 void sqlite3VdbeLeave(Vdbe *p){ 1429 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1430 vdbeLeave(p); 1431 } 1432 #endif 1433 1434 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1435 /* 1436 ** Print a single opcode. This routine is used for debugging only. 1437 */ 1438 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ 1439 char *zP4; 1440 char zPtr[50]; 1441 char zCom[100]; 1442 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1443 if( pOut==0 ) pOut = stdout; 1444 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1445 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1446 displayComment(pOp, zP4, zCom, sizeof(zCom)); 1447 #else 1448 zCom[0] = 0; 1449 #endif 1450 /* NB: The sqlite3OpcodeName() function is implemented by code created 1451 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1452 ** information from the vdbe.c source text */ 1453 fprintf(pOut, zFormat1, pc, 1454 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1455 zCom 1456 ); 1457 fflush(pOut); 1458 } 1459 #endif 1460 1461 /* 1462 ** Initialize an array of N Mem element. 1463 */ 1464 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1465 while( (N--)>0 ){ 1466 p->db = db; 1467 p->flags = flags; 1468 p->szMalloc = 0; 1469 #ifdef SQLITE_DEBUG 1470 p->pScopyFrom = 0; 1471 #endif 1472 p++; 1473 } 1474 } 1475 1476 /* 1477 ** Release an array of N Mem elements 1478 */ 1479 static void releaseMemArray(Mem *p, int N){ 1480 if( p && N ){ 1481 Mem *pEnd = &p[N]; 1482 sqlite3 *db = p->db; 1483 if( db->pnBytesFreed ){ 1484 do{ 1485 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1486 }while( (++p)<pEnd ); 1487 return; 1488 } 1489 do{ 1490 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1491 assert( sqlite3VdbeCheckMemInvariants(p) ); 1492 1493 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1494 ** that takes advantage of the fact that the memory cell value is 1495 ** being set to NULL after releasing any dynamic resources. 1496 ** 1497 ** The justification for duplicating code is that according to 1498 ** callgrind, this causes a certain test case to hit the CPU 4.7 1499 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1500 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1501 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1502 ** with no indexes using a single prepared INSERT statement, bind() 1503 ** and reset(). Inserts are grouped into a transaction. 1504 */ 1505 testcase( p->flags & MEM_Agg ); 1506 testcase( p->flags & MEM_Dyn ); 1507 testcase( p->flags & MEM_Frame ); 1508 testcase( p->flags & MEM_RowSet ); 1509 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ 1510 sqlite3VdbeMemRelease(p); 1511 }else if( p->szMalloc ){ 1512 sqlite3DbFree(db, p->zMalloc); 1513 p->szMalloc = 0; 1514 } 1515 1516 p->flags = MEM_Undefined; 1517 }while( (++p)<pEnd ); 1518 } 1519 } 1520 1521 /* 1522 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1523 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1524 */ 1525 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1526 int i; 1527 Mem *aMem = VdbeFrameMem(p); 1528 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1529 for(i=0; i<p->nChildCsr; i++){ 1530 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1531 } 1532 releaseMemArray(aMem, p->nChildMem); 1533 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 1534 sqlite3DbFree(p->v->db, p); 1535 } 1536 1537 #ifndef SQLITE_OMIT_EXPLAIN 1538 /* 1539 ** Give a listing of the program in the virtual machine. 1540 ** 1541 ** The interface is the same as sqlite3VdbeExec(). But instead of 1542 ** running the code, it invokes the callback once for each instruction. 1543 ** This feature is used to implement "EXPLAIN". 1544 ** 1545 ** When p->explain==1, each instruction is listed. When 1546 ** p->explain==2, only OP_Explain instructions are listed and these 1547 ** are shown in a different format. p->explain==2 is used to implement 1548 ** EXPLAIN QUERY PLAN. 1549 ** 1550 ** When p->explain==1, first the main program is listed, then each of 1551 ** the trigger subprograms are listed one by one. 1552 */ 1553 int sqlite3VdbeList( 1554 Vdbe *p /* The VDBE */ 1555 ){ 1556 int nRow; /* Stop when row count reaches this */ 1557 int nSub = 0; /* Number of sub-vdbes seen so far */ 1558 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1559 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1560 sqlite3 *db = p->db; /* The database connection */ 1561 int i; /* Loop counter */ 1562 int rc = SQLITE_OK; /* Return code */ 1563 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 1564 1565 assert( p->explain ); 1566 assert( p->magic==VDBE_MAGIC_RUN ); 1567 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1568 1569 /* Even though this opcode does not use dynamic strings for 1570 ** the result, result columns may become dynamic if the user calls 1571 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1572 */ 1573 releaseMemArray(pMem, 8); 1574 p->pResultSet = 0; 1575 1576 if( p->rc==SQLITE_NOMEM_BKPT ){ 1577 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1578 ** sqlite3_column_text16() failed. */ 1579 sqlite3OomFault(db); 1580 return SQLITE_ERROR; 1581 } 1582 1583 /* When the number of output rows reaches nRow, that means the 1584 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1585 ** nRow is the sum of the number of rows in the main program, plus 1586 ** the sum of the number of rows in all trigger subprograms encountered 1587 ** so far. The nRow value will increase as new trigger subprograms are 1588 ** encountered, but p->pc will eventually catch up to nRow. 1589 */ 1590 nRow = p->nOp; 1591 if( p->explain==1 ){ 1592 /* The first 8 memory cells are used for the result set. So we will 1593 ** commandeer the 9th cell to use as storage for an array of pointers 1594 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1595 ** cells. */ 1596 assert( p->nMem>9 ); 1597 pSub = &p->aMem[9]; 1598 if( pSub->flags&MEM_Blob ){ 1599 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1600 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1601 nSub = pSub->n/sizeof(Vdbe*); 1602 apSub = (SubProgram **)pSub->z; 1603 } 1604 for(i=0; i<nSub; i++){ 1605 nRow += apSub[i]->nOp; 1606 } 1607 } 1608 1609 do{ 1610 i = p->pc++; 1611 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); 1612 if( i>=nRow ){ 1613 p->rc = SQLITE_OK; 1614 rc = SQLITE_DONE; 1615 }else if( db->u1.isInterrupted ){ 1616 p->rc = SQLITE_INTERRUPT; 1617 rc = SQLITE_ERROR; 1618 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 1619 }else{ 1620 char *zP4; 1621 Op *pOp; 1622 if( i<p->nOp ){ 1623 /* The output line number is small enough that we are still in the 1624 ** main program. */ 1625 pOp = &p->aOp[i]; 1626 }else{ 1627 /* We are currently listing subprograms. Figure out which one and 1628 ** pick up the appropriate opcode. */ 1629 int j; 1630 i -= p->nOp; 1631 for(j=0; i>=apSub[j]->nOp; j++){ 1632 i -= apSub[j]->nOp; 1633 } 1634 pOp = &apSub[j]->aOp[i]; 1635 } 1636 if( p->explain==1 ){ 1637 pMem->flags = MEM_Int; 1638 pMem->u.i = i; /* Program counter */ 1639 pMem++; 1640 1641 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1642 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1643 assert( pMem->z!=0 ); 1644 pMem->n = sqlite3Strlen30(pMem->z); 1645 pMem->enc = SQLITE_UTF8; 1646 pMem++; 1647 1648 /* When an OP_Program opcode is encounter (the only opcode that has 1649 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1650 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1651 ** has not already been seen. 1652 */ 1653 if( pOp->p4type==P4_SUBPROGRAM ){ 1654 int nByte = (nSub+1)*sizeof(SubProgram*); 1655 int j; 1656 for(j=0; j<nSub; j++){ 1657 if( apSub[j]==pOp->p4.pProgram ) break; 1658 } 1659 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){ 1660 apSub = (SubProgram **)pSub->z; 1661 apSub[nSub++] = pOp->p4.pProgram; 1662 pSub->flags |= MEM_Blob; 1663 pSub->n = nSub*sizeof(SubProgram*); 1664 } 1665 } 1666 } 1667 1668 pMem->flags = MEM_Int; 1669 pMem->u.i = pOp->p1; /* P1 */ 1670 pMem++; 1671 1672 pMem->flags = MEM_Int; 1673 pMem->u.i = pOp->p2; /* P2 */ 1674 pMem++; 1675 1676 pMem->flags = MEM_Int; 1677 pMem->u.i = pOp->p3; /* P3 */ 1678 pMem++; 1679 1680 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */ 1681 assert( p->db->mallocFailed ); 1682 return SQLITE_ERROR; 1683 } 1684 pMem->flags = MEM_Str|MEM_Term; 1685 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc); 1686 if( zP4!=pMem->z ){ 1687 pMem->n = 0; 1688 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 1689 }else{ 1690 assert( pMem->z!=0 ); 1691 pMem->n = sqlite3Strlen30(pMem->z); 1692 pMem->enc = SQLITE_UTF8; 1693 } 1694 pMem++; 1695 1696 if( p->explain==1 ){ 1697 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ 1698 assert( p->db->mallocFailed ); 1699 return SQLITE_ERROR; 1700 } 1701 pMem->flags = MEM_Str|MEM_Term; 1702 pMem->n = 2; 1703 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1704 pMem->enc = SQLITE_UTF8; 1705 pMem++; 1706 1707 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1708 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ 1709 assert( p->db->mallocFailed ); 1710 return SQLITE_ERROR; 1711 } 1712 pMem->flags = MEM_Str|MEM_Term; 1713 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 1714 pMem->enc = SQLITE_UTF8; 1715 #else 1716 pMem->flags = MEM_Null; /* Comment */ 1717 #endif 1718 } 1719 1720 p->nResColumn = 8 - 4*(p->explain-1); 1721 p->pResultSet = &p->aMem[1]; 1722 p->rc = SQLITE_OK; 1723 rc = SQLITE_ROW; 1724 } 1725 return rc; 1726 } 1727 #endif /* SQLITE_OMIT_EXPLAIN */ 1728 1729 #ifdef SQLITE_DEBUG 1730 /* 1731 ** Print the SQL that was used to generate a VDBE program. 1732 */ 1733 void sqlite3VdbePrintSql(Vdbe *p){ 1734 const char *z = 0; 1735 if( p->zSql ){ 1736 z = p->zSql; 1737 }else if( p->nOp>=1 ){ 1738 const VdbeOp *pOp = &p->aOp[0]; 1739 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1740 z = pOp->p4.z; 1741 while( sqlite3Isspace(*z) ) z++; 1742 } 1743 } 1744 if( z ) printf("SQL: [%s]\n", z); 1745 } 1746 #endif 1747 1748 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 1749 /* 1750 ** Print an IOTRACE message showing SQL content. 1751 */ 1752 void sqlite3VdbeIOTraceSql(Vdbe *p){ 1753 int nOp = p->nOp; 1754 VdbeOp *pOp; 1755 if( sqlite3IoTrace==0 ) return; 1756 if( nOp<1 ) return; 1757 pOp = &p->aOp[0]; 1758 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1759 int i, j; 1760 char z[1000]; 1761 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 1762 for(i=0; sqlite3Isspace(z[i]); i++){} 1763 for(j=0; z[i]; i++){ 1764 if( sqlite3Isspace(z[i]) ){ 1765 if( z[i-1]!=' ' ){ 1766 z[j++] = ' '; 1767 } 1768 }else{ 1769 z[j++] = z[i]; 1770 } 1771 } 1772 z[j] = 0; 1773 sqlite3IoTrace("SQL %s\n", z); 1774 } 1775 } 1776 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 1777 1778 /* An instance of this object describes bulk memory available for use 1779 ** by subcomponents of a prepared statement. Space is allocated out 1780 ** of a ReusableSpace object by the allocSpace() routine below. 1781 */ 1782 struct ReusableSpace { 1783 u8 *pSpace; /* Available memory */ 1784 int nFree; /* Bytes of available memory */ 1785 int nNeeded; /* Total bytes that could not be allocated */ 1786 }; 1787 1788 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 1789 ** from the ReusableSpace object. Return a pointer to the allocated 1790 ** memory on success. If insufficient memory is available in the 1791 ** ReusableSpace object, increase the ReusableSpace.nNeeded 1792 ** value by the amount needed and return NULL. 1793 ** 1794 ** If pBuf is not initially NULL, that means that the memory has already 1795 ** been allocated by a prior call to this routine, so just return a copy 1796 ** of pBuf and leave ReusableSpace unchanged. 1797 ** 1798 ** This allocator is employed to repurpose unused slots at the end of the 1799 ** opcode array of prepared state for other memory needs of the prepared 1800 ** statement. 1801 */ 1802 static void *allocSpace( 1803 struct ReusableSpace *p, /* Bulk memory available for allocation */ 1804 void *pBuf, /* Pointer to a prior allocation */ 1805 int nByte /* Bytes of memory needed */ 1806 ){ 1807 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 1808 if( pBuf==0 ){ 1809 nByte = ROUND8(nByte); 1810 if( nByte <= p->nFree ){ 1811 p->nFree -= nByte; 1812 pBuf = &p->pSpace[p->nFree]; 1813 }else{ 1814 p->nNeeded += nByte; 1815 } 1816 } 1817 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 1818 return pBuf; 1819 } 1820 1821 /* 1822 ** Rewind the VDBE back to the beginning in preparation for 1823 ** running it. 1824 */ 1825 void sqlite3VdbeRewind(Vdbe *p){ 1826 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1827 int i; 1828 #endif 1829 assert( p!=0 ); 1830 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET ); 1831 1832 /* There should be at least one opcode. 1833 */ 1834 assert( p->nOp>0 ); 1835 1836 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 1837 p->magic = VDBE_MAGIC_RUN; 1838 1839 #ifdef SQLITE_DEBUG 1840 for(i=0; i<p->nMem; i++){ 1841 assert( p->aMem[i].db==p->db ); 1842 } 1843 #endif 1844 p->pc = -1; 1845 p->rc = SQLITE_OK; 1846 p->errorAction = OE_Abort; 1847 p->nChange = 0; 1848 p->cacheCtr = 1; 1849 p->minWriteFileFormat = 255; 1850 p->iStatement = 0; 1851 p->nFkConstraint = 0; 1852 #ifdef VDBE_PROFILE 1853 for(i=0; i<p->nOp; i++){ 1854 p->aOp[i].cnt = 0; 1855 p->aOp[i].cycles = 0; 1856 } 1857 #endif 1858 } 1859 1860 /* 1861 ** Prepare a virtual machine for execution for the first time after 1862 ** creating the virtual machine. This involves things such 1863 ** as allocating registers and initializing the program counter. 1864 ** After the VDBE has be prepped, it can be executed by one or more 1865 ** calls to sqlite3VdbeExec(). 1866 ** 1867 ** This function may be called exactly once on each virtual machine. 1868 ** After this routine is called the VM has been "packaged" and is ready 1869 ** to run. After this routine is called, further calls to 1870 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 1871 ** the Vdbe from the Parse object that helped generate it so that the 1872 ** the Vdbe becomes an independent entity and the Parse object can be 1873 ** destroyed. 1874 ** 1875 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 1876 ** to its initial state after it has been run. 1877 */ 1878 void sqlite3VdbeMakeReady( 1879 Vdbe *p, /* The VDBE */ 1880 Parse *pParse /* Parsing context */ 1881 ){ 1882 sqlite3 *db; /* The database connection */ 1883 int nVar; /* Number of parameters */ 1884 int nMem; /* Number of VM memory registers */ 1885 int nCursor; /* Number of cursors required */ 1886 int nArg; /* Number of arguments in subprograms */ 1887 int n; /* Loop counter */ 1888 struct ReusableSpace x; /* Reusable bulk memory */ 1889 1890 assert( p!=0 ); 1891 assert( p->nOp>0 ); 1892 assert( pParse!=0 ); 1893 assert( p->magic==VDBE_MAGIC_INIT ); 1894 assert( pParse==p->pParse ); 1895 db = p->db; 1896 assert( db->mallocFailed==0 ); 1897 nVar = pParse->nVar; 1898 nMem = pParse->nMem; 1899 nCursor = pParse->nTab; 1900 nArg = pParse->nMaxArg; 1901 1902 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 1903 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 1904 ** space at the end of aMem[] for cursors 1 and greater. 1905 ** See also: allocateCursor(). 1906 */ 1907 nMem += nCursor; 1908 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 1909 1910 /* Figure out how much reusable memory is available at the end of the 1911 ** opcode array. This extra memory will be reallocated for other elements 1912 ** of the prepared statement. 1913 */ 1914 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 1915 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 1916 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 1917 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 1918 assert( x.nFree>=0 ); 1919 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 1920 1921 resolveP2Values(p, &nArg); 1922 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 1923 if( pParse->explain && nMem<10 ){ 1924 nMem = 10; 1925 } 1926 p->expired = 0; 1927 1928 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 1929 ** passes. On the first pass, we try to reuse unused memory at the 1930 ** end of the opcode array. If we are unable to satisfy all memory 1931 ** requirements by reusing the opcode array tail, then the second 1932 ** pass will fill in the remainder using a fresh memory allocation. 1933 ** 1934 ** This two-pass approach that reuses as much memory as possible from 1935 ** the leftover memory at the end of the opcode array. This can significantly 1936 ** reduce the amount of memory held by a prepared statement. 1937 */ 1938 do { 1939 x.nNeeded = 0; 1940 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 1941 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 1942 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 1943 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 1944 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1945 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 1946 #endif 1947 if( x.nNeeded==0 ) break; 1948 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 1949 x.nFree = x.nNeeded; 1950 }while( !db->mallocFailed ); 1951 1952 p->nzVar = pParse->nzVar; 1953 p->azVar = pParse->azVar; 1954 pParse->nzVar = 0; 1955 pParse->azVar = 0; 1956 p->explain = pParse->explain; 1957 if( db->mallocFailed ){ 1958 p->nVar = 0; 1959 p->nCursor = 0; 1960 p->nMem = 0; 1961 }else{ 1962 p->nCursor = nCursor; 1963 p->nVar = (ynVar)nVar; 1964 initMemArray(p->aVar, nVar, db, MEM_Null); 1965 p->nMem = nMem; 1966 initMemArray(p->aMem, nMem, db, MEM_Undefined); 1967 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 1968 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1969 memset(p->anExec, 0, p->nOp*sizeof(i64)); 1970 #endif 1971 } 1972 sqlite3VdbeRewind(p); 1973 } 1974 1975 /* 1976 ** Close a VDBE cursor and release all the resources that cursor 1977 ** happens to hold. 1978 */ 1979 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 1980 if( pCx==0 ){ 1981 return; 1982 } 1983 assert( pCx->pBt==0 || pCx->eCurType==CURTYPE_BTREE ); 1984 switch( pCx->eCurType ){ 1985 case CURTYPE_SORTER: { 1986 sqlite3VdbeSorterClose(p->db, pCx); 1987 break; 1988 } 1989 case CURTYPE_BTREE: { 1990 if( pCx->pBt ){ 1991 sqlite3BtreeClose(pCx->pBt); 1992 /* The pCx->pCursor will be close automatically, if it exists, by 1993 ** the call above. */ 1994 }else{ 1995 assert( pCx->uc.pCursor!=0 ); 1996 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 1997 } 1998 break; 1999 } 2000 #ifndef SQLITE_OMIT_VIRTUALTABLE 2001 case CURTYPE_VTAB: { 2002 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2003 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2004 assert( pVCur->pVtab->nRef>0 ); 2005 pVCur->pVtab->nRef--; 2006 pModule->xClose(pVCur); 2007 break; 2008 } 2009 #endif 2010 } 2011 } 2012 2013 /* 2014 ** Close all cursors in the current frame. 2015 */ 2016 static void closeCursorsInFrame(Vdbe *p){ 2017 if( p->apCsr ){ 2018 int i; 2019 for(i=0; i<p->nCursor; i++){ 2020 VdbeCursor *pC = p->apCsr[i]; 2021 if( pC ){ 2022 sqlite3VdbeFreeCursor(p, pC); 2023 p->apCsr[i] = 0; 2024 } 2025 } 2026 } 2027 } 2028 2029 /* 2030 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2031 ** is used, for example, when a trigger sub-program is halted to restore 2032 ** control to the main program. 2033 */ 2034 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2035 Vdbe *v = pFrame->v; 2036 closeCursorsInFrame(v); 2037 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2038 v->anExec = pFrame->anExec; 2039 #endif 2040 v->aOp = pFrame->aOp; 2041 v->nOp = pFrame->nOp; 2042 v->aMem = pFrame->aMem; 2043 v->nMem = pFrame->nMem; 2044 v->apCsr = pFrame->apCsr; 2045 v->nCursor = pFrame->nCursor; 2046 v->db->lastRowid = pFrame->lastRowid; 2047 v->nChange = pFrame->nChange; 2048 v->db->nChange = pFrame->nDbChange; 2049 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2050 v->pAuxData = pFrame->pAuxData; 2051 pFrame->pAuxData = 0; 2052 return pFrame->pc; 2053 } 2054 2055 /* 2056 ** Close all cursors. 2057 ** 2058 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2059 ** cell array. This is necessary as the memory cell array may contain 2060 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2061 ** open cursors. 2062 */ 2063 static void closeAllCursors(Vdbe *p){ 2064 if( p->pFrame ){ 2065 VdbeFrame *pFrame; 2066 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2067 sqlite3VdbeFrameRestore(pFrame); 2068 p->pFrame = 0; 2069 p->nFrame = 0; 2070 } 2071 assert( p->nFrame==0 ); 2072 closeCursorsInFrame(p); 2073 if( p->aMem ){ 2074 releaseMemArray(p->aMem, p->nMem); 2075 } 2076 while( p->pDelFrame ){ 2077 VdbeFrame *pDel = p->pDelFrame; 2078 p->pDelFrame = pDel->pParent; 2079 sqlite3VdbeFrameDelete(pDel); 2080 } 2081 2082 /* Delete any auxdata allocations made by the VM */ 2083 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2084 assert( p->pAuxData==0 ); 2085 } 2086 2087 /* 2088 ** Clean up the VM after a single run. 2089 */ 2090 static void Cleanup(Vdbe *p){ 2091 sqlite3 *db = p->db; 2092 2093 #ifdef SQLITE_DEBUG 2094 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 2095 ** Vdbe.aMem[] arrays have already been cleaned up. */ 2096 int i; 2097 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 2098 if( p->aMem ){ 2099 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 2100 } 2101 #endif 2102 2103 sqlite3DbFree(db, p->zErrMsg); 2104 p->zErrMsg = 0; 2105 p->pResultSet = 0; 2106 } 2107 2108 /* 2109 ** Set the number of result columns that will be returned by this SQL 2110 ** statement. This is now set at compile time, rather than during 2111 ** execution of the vdbe program so that sqlite3_column_count() can 2112 ** be called on an SQL statement before sqlite3_step(). 2113 */ 2114 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2115 Mem *pColName; 2116 int n; 2117 sqlite3 *db = p->db; 2118 2119 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2120 sqlite3DbFree(db, p->aColName); 2121 n = nResColumn*COLNAME_N; 2122 p->nResColumn = (u16)nResColumn; 2123 p->aColName = pColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2124 if( p->aColName==0 ) return; 2125 initMemArray(p->aColName, n, p->db, MEM_Null); 2126 } 2127 2128 /* 2129 ** Set the name of the idx'th column to be returned by the SQL statement. 2130 ** zName must be a pointer to a nul terminated string. 2131 ** 2132 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2133 ** 2134 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2135 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2136 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2137 */ 2138 int sqlite3VdbeSetColName( 2139 Vdbe *p, /* Vdbe being configured */ 2140 int idx, /* Index of column zName applies to */ 2141 int var, /* One of the COLNAME_* constants */ 2142 const char *zName, /* Pointer to buffer containing name */ 2143 void (*xDel)(void*) /* Memory management strategy for zName */ 2144 ){ 2145 int rc; 2146 Mem *pColName; 2147 assert( idx<p->nResColumn ); 2148 assert( var<COLNAME_N ); 2149 if( p->db->mallocFailed ){ 2150 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2151 return SQLITE_NOMEM_BKPT; 2152 } 2153 assert( p->aColName!=0 ); 2154 pColName = &(p->aColName[idx+var*p->nResColumn]); 2155 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2156 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2157 return rc; 2158 } 2159 2160 /* 2161 ** A read or write transaction may or may not be active on database handle 2162 ** db. If a transaction is active, commit it. If there is a 2163 ** write-transaction spanning more than one database file, this routine 2164 ** takes care of the master journal trickery. 2165 */ 2166 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2167 int i; 2168 int nTrans = 0; /* Number of databases with an active write-transaction 2169 ** that are candidates for a two-phase commit using a 2170 ** master-journal */ 2171 int rc = SQLITE_OK; 2172 int needXcommit = 0; 2173 2174 #ifdef SQLITE_OMIT_VIRTUALTABLE 2175 /* With this option, sqlite3VtabSync() is defined to be simply 2176 ** SQLITE_OK so p is not used. 2177 */ 2178 UNUSED_PARAMETER(p); 2179 #endif 2180 2181 /* Before doing anything else, call the xSync() callback for any 2182 ** virtual module tables written in this transaction. This has to 2183 ** be done before determining whether a master journal file is 2184 ** required, as an xSync() callback may add an attached database 2185 ** to the transaction. 2186 */ 2187 rc = sqlite3VtabSync(db, p); 2188 2189 /* This loop determines (a) if the commit hook should be invoked and 2190 ** (b) how many database files have open write transactions, not 2191 ** including the temp database. (b) is important because if more than 2192 ** one database file has an open write transaction, a master journal 2193 ** file is required for an atomic commit. 2194 */ 2195 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2196 Btree *pBt = db->aDb[i].pBt; 2197 if( sqlite3BtreeIsInTrans(pBt) ){ 2198 /* Whether or not a database might need a master journal depends upon 2199 ** its journal mode (among other things). This matrix determines which 2200 ** journal modes use a master journal and which do not */ 2201 static const u8 aMJNeeded[] = { 2202 /* DELETE */ 1, 2203 /* PERSIST */ 1, 2204 /* OFF */ 0, 2205 /* TRUNCATE */ 1, 2206 /* MEMORY */ 0, 2207 /* WAL */ 0 2208 }; 2209 Pager *pPager; /* Pager associated with pBt */ 2210 needXcommit = 1; 2211 sqlite3BtreeEnter(pBt); 2212 pPager = sqlite3BtreePager(pBt); 2213 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2214 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2215 ){ 2216 assert( i!=1 ); 2217 nTrans++; 2218 } 2219 rc = sqlite3PagerExclusiveLock(pPager); 2220 sqlite3BtreeLeave(pBt); 2221 } 2222 } 2223 if( rc!=SQLITE_OK ){ 2224 return rc; 2225 } 2226 2227 /* If there are any write-transactions at all, invoke the commit hook */ 2228 if( needXcommit && db->xCommitCallback ){ 2229 rc = db->xCommitCallback(db->pCommitArg); 2230 if( rc ){ 2231 return SQLITE_CONSTRAINT_COMMITHOOK; 2232 } 2233 } 2234 2235 /* The simple case - no more than one database file (not counting the 2236 ** TEMP database) has a transaction active. There is no need for the 2237 ** master-journal. 2238 ** 2239 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2240 ** string, it means the main database is :memory: or a temp file. In 2241 ** that case we do not support atomic multi-file commits, so use the 2242 ** simple case then too. 2243 */ 2244 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2245 || nTrans<=1 2246 ){ 2247 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2248 Btree *pBt = db->aDb[i].pBt; 2249 if( pBt ){ 2250 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2251 } 2252 } 2253 2254 /* Do the commit only if all databases successfully complete phase 1. 2255 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2256 ** IO error while deleting or truncating a journal file. It is unlikely, 2257 ** but could happen. In this case abandon processing and return the error. 2258 */ 2259 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2260 Btree *pBt = db->aDb[i].pBt; 2261 if( pBt ){ 2262 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2263 } 2264 } 2265 if( rc==SQLITE_OK ){ 2266 sqlite3VtabCommit(db); 2267 } 2268 } 2269 2270 /* The complex case - There is a multi-file write-transaction active. 2271 ** This requires a master journal file to ensure the transaction is 2272 ** committed atomically. 2273 */ 2274 #ifndef SQLITE_OMIT_DISKIO 2275 else{ 2276 sqlite3_vfs *pVfs = db->pVfs; 2277 char *zMaster = 0; /* File-name for the master journal */ 2278 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2279 sqlite3_file *pMaster = 0; 2280 i64 offset = 0; 2281 int res; 2282 int retryCount = 0; 2283 int nMainFile; 2284 2285 /* Select a master journal file name */ 2286 nMainFile = sqlite3Strlen30(zMainFile); 2287 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); 2288 if( zMaster==0 ) return SQLITE_NOMEM_BKPT; 2289 do { 2290 u32 iRandom; 2291 if( retryCount ){ 2292 if( retryCount>100 ){ 2293 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 2294 sqlite3OsDelete(pVfs, zMaster, 0); 2295 break; 2296 }else if( retryCount==1 ){ 2297 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2298 } 2299 } 2300 retryCount++; 2301 sqlite3_randomness(sizeof(iRandom), &iRandom); 2302 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2303 (iRandom>>8)&0xffffff, iRandom&0xff); 2304 /* The antipenultimate character of the master journal name must 2305 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2306 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2307 sqlite3FileSuffix3(zMainFile, zMaster); 2308 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2309 }while( rc==SQLITE_OK && res ); 2310 if( rc==SQLITE_OK ){ 2311 /* Open the master journal. */ 2312 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2313 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2314 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2315 ); 2316 } 2317 if( rc!=SQLITE_OK ){ 2318 sqlite3DbFree(db, zMaster); 2319 return rc; 2320 } 2321 2322 /* Write the name of each database file in the transaction into the new 2323 ** master journal file. If an error occurs at this point close 2324 ** and delete the master journal file. All the individual journal files 2325 ** still have 'null' as the master journal pointer, so they will roll 2326 ** back independently if a failure occurs. 2327 */ 2328 for(i=0; i<db->nDb; i++){ 2329 Btree *pBt = db->aDb[i].pBt; 2330 if( sqlite3BtreeIsInTrans(pBt) ){ 2331 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2332 if( zFile==0 ){ 2333 continue; /* Ignore TEMP and :memory: databases */ 2334 } 2335 assert( zFile[0]!=0 ); 2336 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2337 offset += sqlite3Strlen30(zFile)+1; 2338 if( rc!=SQLITE_OK ){ 2339 sqlite3OsCloseFree(pMaster); 2340 sqlite3OsDelete(pVfs, zMaster, 0); 2341 sqlite3DbFree(db, zMaster); 2342 return rc; 2343 } 2344 } 2345 } 2346 2347 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2348 ** flag is set this is not required. 2349 */ 2350 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2351 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2352 ){ 2353 sqlite3OsCloseFree(pMaster); 2354 sqlite3OsDelete(pVfs, zMaster, 0); 2355 sqlite3DbFree(db, zMaster); 2356 return rc; 2357 } 2358 2359 /* Sync all the db files involved in the transaction. The same call 2360 ** sets the master journal pointer in each individual journal. If 2361 ** an error occurs here, do not delete the master journal file. 2362 ** 2363 ** If the error occurs during the first call to 2364 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2365 ** master journal file will be orphaned. But we cannot delete it, 2366 ** in case the master journal file name was written into the journal 2367 ** file before the failure occurred. 2368 */ 2369 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2370 Btree *pBt = db->aDb[i].pBt; 2371 if( pBt ){ 2372 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2373 } 2374 } 2375 sqlite3OsCloseFree(pMaster); 2376 assert( rc!=SQLITE_BUSY ); 2377 if( rc!=SQLITE_OK ){ 2378 sqlite3DbFree(db, zMaster); 2379 return rc; 2380 } 2381 2382 /* Delete the master journal file. This commits the transaction. After 2383 ** doing this the directory is synced again before any individual 2384 ** transaction files are deleted. 2385 */ 2386 rc = sqlite3OsDelete(pVfs, zMaster, 1); 2387 sqlite3DbFree(db, zMaster); 2388 zMaster = 0; 2389 if( rc ){ 2390 return rc; 2391 } 2392 2393 /* All files and directories have already been synced, so the following 2394 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2395 ** deleting or truncating journals. If something goes wrong while 2396 ** this is happening we don't really care. The integrity of the 2397 ** transaction is already guaranteed, but some stray 'cold' journals 2398 ** may be lying around. Returning an error code won't help matters. 2399 */ 2400 disable_simulated_io_errors(); 2401 sqlite3BeginBenignMalloc(); 2402 for(i=0; i<db->nDb; i++){ 2403 Btree *pBt = db->aDb[i].pBt; 2404 if( pBt ){ 2405 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2406 } 2407 } 2408 sqlite3EndBenignMalloc(); 2409 enable_simulated_io_errors(); 2410 2411 sqlite3VtabCommit(db); 2412 } 2413 #endif 2414 2415 return rc; 2416 } 2417 2418 /* 2419 ** This routine checks that the sqlite3.nVdbeActive count variable 2420 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2421 ** currently active. An assertion fails if the two counts do not match. 2422 ** This is an internal self-check only - it is not an essential processing 2423 ** step. 2424 ** 2425 ** This is a no-op if NDEBUG is defined. 2426 */ 2427 #ifndef NDEBUG 2428 static void checkActiveVdbeCnt(sqlite3 *db){ 2429 Vdbe *p; 2430 int cnt = 0; 2431 int nWrite = 0; 2432 int nRead = 0; 2433 p = db->pVdbe; 2434 while( p ){ 2435 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2436 cnt++; 2437 if( p->readOnly==0 ) nWrite++; 2438 if( p->bIsReader ) nRead++; 2439 } 2440 p = p->pNext; 2441 } 2442 assert( cnt==db->nVdbeActive ); 2443 assert( nWrite==db->nVdbeWrite ); 2444 assert( nRead==db->nVdbeRead ); 2445 } 2446 #else 2447 #define checkActiveVdbeCnt(x) 2448 #endif 2449 2450 /* 2451 ** If the Vdbe passed as the first argument opened a statement-transaction, 2452 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2453 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2454 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2455 ** statement transaction is committed. 2456 ** 2457 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2458 ** Otherwise SQLITE_OK. 2459 */ 2460 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2461 sqlite3 *const db = p->db; 2462 int rc = SQLITE_OK; 2463 2464 /* If p->iStatement is greater than zero, then this Vdbe opened a 2465 ** statement transaction that should be closed here. The only exception 2466 ** is that an IO error may have occurred, causing an emergency rollback. 2467 ** In this case (db->nStatement==0), and there is nothing to do. 2468 */ 2469 if( db->nStatement && p->iStatement ){ 2470 int i; 2471 const int iSavepoint = p->iStatement-1; 2472 2473 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2474 assert( db->nStatement>0 ); 2475 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2476 2477 for(i=0; i<db->nDb; i++){ 2478 int rc2 = SQLITE_OK; 2479 Btree *pBt = db->aDb[i].pBt; 2480 if( pBt ){ 2481 if( eOp==SAVEPOINT_ROLLBACK ){ 2482 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2483 } 2484 if( rc2==SQLITE_OK ){ 2485 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2486 } 2487 if( rc==SQLITE_OK ){ 2488 rc = rc2; 2489 } 2490 } 2491 } 2492 db->nStatement--; 2493 p->iStatement = 0; 2494 2495 if( rc==SQLITE_OK ){ 2496 if( eOp==SAVEPOINT_ROLLBACK ){ 2497 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2498 } 2499 if( rc==SQLITE_OK ){ 2500 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2501 } 2502 } 2503 2504 /* If the statement transaction is being rolled back, also restore the 2505 ** database handles deferred constraint counter to the value it had when 2506 ** the statement transaction was opened. */ 2507 if( eOp==SAVEPOINT_ROLLBACK ){ 2508 db->nDeferredCons = p->nStmtDefCons; 2509 db->nDeferredImmCons = p->nStmtDefImmCons; 2510 } 2511 } 2512 return rc; 2513 } 2514 2515 /* 2516 ** This function is called when a transaction opened by the database 2517 ** handle associated with the VM passed as an argument is about to be 2518 ** committed. If there are outstanding deferred foreign key constraint 2519 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2520 ** 2521 ** If there are outstanding FK violations and this function returns 2522 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2523 ** and write an error message to it. Then return SQLITE_ERROR. 2524 */ 2525 #ifndef SQLITE_OMIT_FOREIGN_KEY 2526 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2527 sqlite3 *db = p->db; 2528 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2529 || (!deferred && p->nFkConstraint>0) 2530 ){ 2531 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2532 p->errorAction = OE_Abort; 2533 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2534 return SQLITE_ERROR; 2535 } 2536 return SQLITE_OK; 2537 } 2538 #endif 2539 2540 /* 2541 ** This routine is called the when a VDBE tries to halt. If the VDBE 2542 ** has made changes and is in autocommit mode, then commit those 2543 ** changes. If a rollback is needed, then do the rollback. 2544 ** 2545 ** This routine is the only way to move the state of a VM from 2546 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2547 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2548 ** 2549 ** Return an error code. If the commit could not complete because of 2550 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2551 ** means the close did not happen and needs to be repeated. 2552 */ 2553 int sqlite3VdbeHalt(Vdbe *p){ 2554 int rc; /* Used to store transient return codes */ 2555 sqlite3 *db = p->db; 2556 2557 /* This function contains the logic that determines if a statement or 2558 ** transaction will be committed or rolled back as a result of the 2559 ** execution of this virtual machine. 2560 ** 2561 ** If any of the following errors occur: 2562 ** 2563 ** SQLITE_NOMEM 2564 ** SQLITE_IOERR 2565 ** SQLITE_FULL 2566 ** SQLITE_INTERRUPT 2567 ** 2568 ** Then the internal cache might have been left in an inconsistent 2569 ** state. We need to rollback the statement transaction, if there is 2570 ** one, or the complete transaction if there is no statement transaction. 2571 */ 2572 2573 if( db->mallocFailed ){ 2574 p->rc = SQLITE_NOMEM_BKPT; 2575 } 2576 closeAllCursors(p); 2577 if( p->magic!=VDBE_MAGIC_RUN ){ 2578 return SQLITE_OK; 2579 } 2580 checkActiveVdbeCnt(db); 2581 2582 /* No commit or rollback needed if the program never started or if the 2583 ** SQL statement does not read or write a database file. */ 2584 if( p->pc>=0 && p->bIsReader ){ 2585 int mrc; /* Primary error code from p->rc */ 2586 int eStatementOp = 0; 2587 int isSpecialError; /* Set to true if a 'special' error */ 2588 2589 /* Lock all btrees used by the statement */ 2590 sqlite3VdbeEnter(p); 2591 2592 /* Check for one of the special errors */ 2593 mrc = p->rc & 0xff; 2594 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2595 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2596 if( isSpecialError ){ 2597 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2598 ** no rollback is necessary. Otherwise, at least a savepoint 2599 ** transaction must be rolled back to restore the database to a 2600 ** consistent state. 2601 ** 2602 ** Even if the statement is read-only, it is important to perform 2603 ** a statement or transaction rollback operation. If the error 2604 ** occurred while writing to the journal, sub-journal or database 2605 ** file as part of an effort to free up cache space (see function 2606 ** pagerStress() in pager.c), the rollback is required to restore 2607 ** the pager to a consistent state. 2608 */ 2609 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2610 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2611 eStatementOp = SAVEPOINT_ROLLBACK; 2612 }else{ 2613 /* We are forced to roll back the active transaction. Before doing 2614 ** so, abort any other statements this handle currently has active. 2615 */ 2616 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2617 sqlite3CloseSavepoints(db); 2618 db->autoCommit = 1; 2619 p->nChange = 0; 2620 } 2621 } 2622 } 2623 2624 /* Check for immediate foreign key violations. */ 2625 if( p->rc==SQLITE_OK ){ 2626 sqlite3VdbeCheckFk(p, 0); 2627 } 2628 2629 /* If the auto-commit flag is set and this is the only active writer 2630 ** VM, then we do either a commit or rollback of the current transaction. 2631 ** 2632 ** Note: This block also runs if one of the special errors handled 2633 ** above has occurred. 2634 */ 2635 if( !sqlite3VtabInSync(db) 2636 && db->autoCommit 2637 && db->nVdbeWrite==(p->readOnly==0) 2638 ){ 2639 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2640 rc = sqlite3VdbeCheckFk(p, 1); 2641 if( rc!=SQLITE_OK ){ 2642 if( NEVER(p->readOnly) ){ 2643 sqlite3VdbeLeave(p); 2644 return SQLITE_ERROR; 2645 } 2646 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2647 }else{ 2648 /* The auto-commit flag is true, the vdbe program was successful 2649 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2650 ** key constraints to hold up the transaction. This means a commit 2651 ** is required. */ 2652 rc = vdbeCommit(db, p); 2653 } 2654 if( rc==SQLITE_BUSY && p->readOnly ){ 2655 sqlite3VdbeLeave(p); 2656 return SQLITE_BUSY; 2657 }else if( rc!=SQLITE_OK ){ 2658 p->rc = rc; 2659 sqlite3RollbackAll(db, SQLITE_OK); 2660 p->nChange = 0; 2661 }else{ 2662 db->nDeferredCons = 0; 2663 db->nDeferredImmCons = 0; 2664 db->flags &= ~SQLITE_DeferFKs; 2665 sqlite3CommitInternalChanges(db); 2666 } 2667 }else{ 2668 sqlite3RollbackAll(db, SQLITE_OK); 2669 p->nChange = 0; 2670 } 2671 db->nStatement = 0; 2672 }else if( eStatementOp==0 ){ 2673 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2674 eStatementOp = SAVEPOINT_RELEASE; 2675 }else if( p->errorAction==OE_Abort ){ 2676 eStatementOp = SAVEPOINT_ROLLBACK; 2677 }else{ 2678 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2679 sqlite3CloseSavepoints(db); 2680 db->autoCommit = 1; 2681 p->nChange = 0; 2682 } 2683 } 2684 2685 /* If eStatementOp is non-zero, then a statement transaction needs to 2686 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2687 ** do so. If this operation returns an error, and the current statement 2688 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2689 ** current statement error code. 2690 */ 2691 if( eStatementOp ){ 2692 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2693 if( rc ){ 2694 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 2695 p->rc = rc; 2696 sqlite3DbFree(db, p->zErrMsg); 2697 p->zErrMsg = 0; 2698 } 2699 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2700 sqlite3CloseSavepoints(db); 2701 db->autoCommit = 1; 2702 p->nChange = 0; 2703 } 2704 } 2705 2706 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2707 ** has been rolled back, update the database connection change-counter. 2708 */ 2709 if( p->changeCntOn ){ 2710 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2711 sqlite3VdbeSetChanges(db, p->nChange); 2712 }else{ 2713 sqlite3VdbeSetChanges(db, 0); 2714 } 2715 p->nChange = 0; 2716 } 2717 2718 /* Release the locks */ 2719 sqlite3VdbeLeave(p); 2720 } 2721 2722 /* We have successfully halted and closed the VM. Record this fact. */ 2723 if( p->pc>=0 ){ 2724 db->nVdbeActive--; 2725 if( !p->readOnly ) db->nVdbeWrite--; 2726 if( p->bIsReader ) db->nVdbeRead--; 2727 assert( db->nVdbeActive>=db->nVdbeRead ); 2728 assert( db->nVdbeRead>=db->nVdbeWrite ); 2729 assert( db->nVdbeWrite>=0 ); 2730 } 2731 p->magic = VDBE_MAGIC_HALT; 2732 checkActiveVdbeCnt(db); 2733 if( db->mallocFailed ){ 2734 p->rc = SQLITE_NOMEM_BKPT; 2735 } 2736 2737 /* If the auto-commit flag is set to true, then any locks that were held 2738 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2739 ** to invoke any required unlock-notify callbacks. 2740 */ 2741 if( db->autoCommit ){ 2742 sqlite3ConnectionUnlocked(db); 2743 } 2744 2745 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 2746 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 2747 } 2748 2749 2750 /* 2751 ** Each VDBE holds the result of the most recent sqlite3_step() call 2752 ** in p->rc. This routine sets that result back to SQLITE_OK. 2753 */ 2754 void sqlite3VdbeResetStepResult(Vdbe *p){ 2755 p->rc = SQLITE_OK; 2756 } 2757 2758 /* 2759 ** Copy the error code and error message belonging to the VDBE passed 2760 ** as the first argument to its database handle (so that they will be 2761 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 2762 ** 2763 ** This function does not clear the VDBE error code or message, just 2764 ** copies them to the database handle. 2765 */ 2766 int sqlite3VdbeTransferError(Vdbe *p){ 2767 sqlite3 *db = p->db; 2768 int rc = p->rc; 2769 if( p->zErrMsg ){ 2770 db->bBenignMalloc++; 2771 sqlite3BeginBenignMalloc(); 2772 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 2773 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 2774 sqlite3EndBenignMalloc(); 2775 db->bBenignMalloc--; 2776 db->errCode = rc; 2777 }else{ 2778 sqlite3Error(db, rc); 2779 } 2780 return rc; 2781 } 2782 2783 #ifdef SQLITE_ENABLE_SQLLOG 2784 /* 2785 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 2786 ** invoke it. 2787 */ 2788 static void vdbeInvokeSqllog(Vdbe *v){ 2789 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 2790 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 2791 assert( v->db->init.busy==0 ); 2792 if( zExpanded ){ 2793 sqlite3GlobalConfig.xSqllog( 2794 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 2795 ); 2796 sqlite3DbFree(v->db, zExpanded); 2797 } 2798 } 2799 } 2800 #else 2801 # define vdbeInvokeSqllog(x) 2802 #endif 2803 2804 /* 2805 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 2806 ** Write any error messages into *pzErrMsg. Return the result code. 2807 ** 2808 ** After this routine is run, the VDBE should be ready to be executed 2809 ** again. 2810 ** 2811 ** To look at it another way, this routine resets the state of the 2812 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 2813 ** VDBE_MAGIC_INIT. 2814 */ 2815 int sqlite3VdbeReset(Vdbe *p){ 2816 sqlite3 *db; 2817 db = p->db; 2818 2819 /* If the VM did not run to completion or if it encountered an 2820 ** error, then it might not have been halted properly. So halt 2821 ** it now. 2822 */ 2823 sqlite3VdbeHalt(p); 2824 2825 /* If the VDBE has be run even partially, then transfer the error code 2826 ** and error message from the VDBE into the main database structure. But 2827 ** if the VDBE has just been set to run but has not actually executed any 2828 ** instructions yet, leave the main database error information unchanged. 2829 */ 2830 if( p->pc>=0 ){ 2831 vdbeInvokeSqllog(p); 2832 sqlite3VdbeTransferError(p); 2833 sqlite3DbFree(db, p->zErrMsg); 2834 p->zErrMsg = 0; 2835 if( p->runOnlyOnce ) p->expired = 1; 2836 }else if( p->rc && p->expired ){ 2837 /* The expired flag was set on the VDBE before the first call 2838 ** to sqlite3_step(). For consistency (since sqlite3_step() was 2839 ** called), set the database error in this case as well. 2840 */ 2841 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 2842 sqlite3DbFree(db, p->zErrMsg); 2843 p->zErrMsg = 0; 2844 } 2845 2846 /* Reclaim all memory used by the VDBE 2847 */ 2848 Cleanup(p); 2849 2850 /* Save profiling information from this VDBE run. 2851 */ 2852 #ifdef VDBE_PROFILE 2853 { 2854 FILE *out = fopen("vdbe_profile.out", "a"); 2855 if( out ){ 2856 int i; 2857 fprintf(out, "---- "); 2858 for(i=0; i<p->nOp; i++){ 2859 fprintf(out, "%02x", p->aOp[i].opcode); 2860 } 2861 fprintf(out, "\n"); 2862 if( p->zSql ){ 2863 char c, pc = 0; 2864 fprintf(out, "-- "); 2865 for(i=0; (c = p->zSql[i])!=0; i++){ 2866 if( pc=='\n' ) fprintf(out, "-- "); 2867 putc(c, out); 2868 pc = c; 2869 } 2870 if( pc!='\n' ) fprintf(out, "\n"); 2871 } 2872 for(i=0; i<p->nOp; i++){ 2873 char zHdr[100]; 2874 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 2875 p->aOp[i].cnt, 2876 p->aOp[i].cycles, 2877 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 2878 ); 2879 fprintf(out, "%s", zHdr); 2880 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 2881 } 2882 fclose(out); 2883 } 2884 } 2885 #endif 2886 p->iCurrentTime = 0; 2887 p->magic = VDBE_MAGIC_RESET; 2888 return p->rc & db->errMask; 2889 } 2890 2891 /* 2892 ** Clean up and delete a VDBE after execution. Return an integer which is 2893 ** the result code. Write any error message text into *pzErrMsg. 2894 */ 2895 int sqlite3VdbeFinalize(Vdbe *p){ 2896 int rc = SQLITE_OK; 2897 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 2898 rc = sqlite3VdbeReset(p); 2899 assert( (rc & p->db->errMask)==rc ); 2900 } 2901 sqlite3VdbeDelete(p); 2902 return rc; 2903 } 2904 2905 /* 2906 ** If parameter iOp is less than zero, then invoke the destructor for 2907 ** all auxiliary data pointers currently cached by the VM passed as 2908 ** the first argument. 2909 ** 2910 ** Or, if iOp is greater than or equal to zero, then the destructor is 2911 ** only invoked for those auxiliary data pointers created by the user 2912 ** function invoked by the OP_Function opcode at instruction iOp of 2913 ** VM pVdbe, and only then if: 2914 ** 2915 ** * the associated function parameter is the 32nd or later (counting 2916 ** from left to right), or 2917 ** 2918 ** * the corresponding bit in argument mask is clear (where the first 2919 ** function parameter corresponds to bit 0 etc.). 2920 */ 2921 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 2922 while( *pp ){ 2923 AuxData *pAux = *pp; 2924 if( (iOp<0) 2925 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg)))) 2926 ){ 2927 testcase( pAux->iArg==31 ); 2928 if( pAux->xDelete ){ 2929 pAux->xDelete(pAux->pAux); 2930 } 2931 *pp = pAux->pNext; 2932 sqlite3DbFree(db, pAux); 2933 }else{ 2934 pp= &pAux->pNext; 2935 } 2936 } 2937 } 2938 2939 /* 2940 ** Free all memory associated with the Vdbe passed as the second argument, 2941 ** except for object itself, which is preserved. 2942 ** 2943 ** The difference between this function and sqlite3VdbeDelete() is that 2944 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 2945 ** the database connection and frees the object itself. 2946 */ 2947 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 2948 SubProgram *pSub, *pNext; 2949 int i; 2950 assert( p->db==0 || p->db==db ); 2951 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2952 for(pSub=p->pProgram; pSub; pSub=pNext){ 2953 pNext = pSub->pNext; 2954 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 2955 sqlite3DbFree(db, pSub); 2956 } 2957 if( p->magic!=VDBE_MAGIC_INIT ){ 2958 releaseMemArray(p->aVar, p->nVar); 2959 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); 2960 sqlite3DbFree(db, p->azVar); 2961 sqlite3DbFree(db, p->pFree); 2962 } 2963 vdbeFreeOpArray(db, p->aOp, p->nOp); 2964 sqlite3DbFree(db, p->aColName); 2965 sqlite3DbFree(db, p->zSql); 2966 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2967 for(i=0; i<p->nScan; i++){ 2968 sqlite3DbFree(db, p->aScan[i].zName); 2969 } 2970 sqlite3DbFree(db, p->aScan); 2971 #endif 2972 } 2973 2974 /* 2975 ** Delete an entire VDBE. 2976 */ 2977 void sqlite3VdbeDelete(Vdbe *p){ 2978 sqlite3 *db; 2979 2980 if( NEVER(p==0) ) return; 2981 db = p->db; 2982 assert( sqlite3_mutex_held(db->mutex) ); 2983 sqlite3VdbeClearObject(db, p); 2984 if( p->pPrev ){ 2985 p->pPrev->pNext = p->pNext; 2986 }else{ 2987 assert( db->pVdbe==p ); 2988 db->pVdbe = p->pNext; 2989 } 2990 if( p->pNext ){ 2991 p->pNext->pPrev = p->pPrev; 2992 } 2993 p->magic = VDBE_MAGIC_DEAD; 2994 p->db = 0; 2995 sqlite3DbFree(db, p); 2996 } 2997 2998 /* 2999 ** The cursor "p" has a pending seek operation that has not yet been 3000 ** carried out. Seek the cursor now. If an error occurs, return 3001 ** the appropriate error code. 3002 */ 3003 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ 3004 int res, rc; 3005 #ifdef SQLITE_TEST 3006 extern int sqlite3_search_count; 3007 #endif 3008 assert( p->deferredMoveto ); 3009 assert( p->isTable ); 3010 assert( p->eCurType==CURTYPE_BTREE ); 3011 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); 3012 if( rc ) return rc; 3013 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3014 #ifdef SQLITE_TEST 3015 sqlite3_search_count++; 3016 #endif 3017 p->deferredMoveto = 0; 3018 p->cacheStatus = CACHE_STALE; 3019 return SQLITE_OK; 3020 } 3021 3022 /* 3023 ** Something has moved cursor "p" out of place. Maybe the row it was 3024 ** pointed to was deleted out from under it. Or maybe the btree was 3025 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3026 ** is supposed to be pointing. If the row was deleted out from under the 3027 ** cursor, set the cursor to point to a NULL row. 3028 */ 3029 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 3030 int isDifferentRow, rc; 3031 assert( p->eCurType==CURTYPE_BTREE ); 3032 assert( p->uc.pCursor!=0 ); 3033 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3034 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3035 p->cacheStatus = CACHE_STALE; 3036 if( isDifferentRow ) p->nullRow = 1; 3037 return rc; 3038 } 3039 3040 /* 3041 ** Check to ensure that the cursor is valid. Restore the cursor 3042 ** if need be. Return any I/O error from the restore operation. 3043 */ 3044 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3045 assert( p->eCurType==CURTYPE_BTREE ); 3046 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3047 return handleMovedCursor(p); 3048 } 3049 return SQLITE_OK; 3050 } 3051 3052 /* 3053 ** Make sure the cursor p is ready to read or write the row to which it 3054 ** was last positioned. Return an error code if an OOM fault or I/O error 3055 ** prevents us from positioning the cursor to its correct position. 3056 ** 3057 ** If a MoveTo operation is pending on the given cursor, then do that 3058 ** MoveTo now. If no move is pending, check to see if the row has been 3059 ** deleted out from under the cursor and if it has, mark the row as 3060 ** a NULL row. 3061 ** 3062 ** If the cursor is already pointing to the correct row and that row has 3063 ** not been deleted out from under the cursor, then this routine is a no-op. 3064 */ 3065 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){ 3066 VdbeCursor *p = *pp; 3067 if( p->eCurType==CURTYPE_BTREE ){ 3068 if( p->deferredMoveto ){ 3069 int iMap; 3070 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){ 3071 *pp = p->pAltCursor; 3072 *piCol = iMap - 1; 3073 return SQLITE_OK; 3074 } 3075 return handleDeferredMoveto(p); 3076 } 3077 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3078 return handleMovedCursor(p); 3079 } 3080 } 3081 return SQLITE_OK; 3082 } 3083 3084 /* 3085 ** The following functions: 3086 ** 3087 ** sqlite3VdbeSerialType() 3088 ** sqlite3VdbeSerialTypeLen() 3089 ** sqlite3VdbeSerialLen() 3090 ** sqlite3VdbeSerialPut() 3091 ** sqlite3VdbeSerialGet() 3092 ** 3093 ** encapsulate the code that serializes values for storage in SQLite 3094 ** data and index records. Each serialized value consists of a 3095 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3096 ** integer, stored as a varint. 3097 ** 3098 ** In an SQLite index record, the serial type is stored directly before 3099 ** the blob of data that it corresponds to. In a table record, all serial 3100 ** types are stored at the start of the record, and the blobs of data at 3101 ** the end. Hence these functions allow the caller to handle the 3102 ** serial-type and data blob separately. 3103 ** 3104 ** The following table describes the various storage classes for data: 3105 ** 3106 ** serial type bytes of data type 3107 ** -------------- --------------- --------------- 3108 ** 0 0 NULL 3109 ** 1 1 signed integer 3110 ** 2 2 signed integer 3111 ** 3 3 signed integer 3112 ** 4 4 signed integer 3113 ** 5 6 signed integer 3114 ** 6 8 signed integer 3115 ** 7 8 IEEE float 3116 ** 8 0 Integer constant 0 3117 ** 9 0 Integer constant 1 3118 ** 10,11 reserved for expansion 3119 ** N>=12 and even (N-12)/2 BLOB 3120 ** N>=13 and odd (N-13)/2 text 3121 ** 3122 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3123 ** of SQLite will not understand those serial types. 3124 */ 3125 3126 /* 3127 ** Return the serial-type for the value stored in pMem. 3128 */ 3129 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3130 int flags = pMem->flags; 3131 u32 n; 3132 3133 assert( pLen!=0 ); 3134 if( flags&MEM_Null ){ 3135 *pLen = 0; 3136 return 0; 3137 } 3138 if( flags&MEM_Int ){ 3139 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3140 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3141 i64 i = pMem->u.i; 3142 u64 u; 3143 if( i<0 ){ 3144 u = ~i; 3145 }else{ 3146 u = i; 3147 } 3148 if( u<=127 ){ 3149 if( (i&1)==i && file_format>=4 ){ 3150 *pLen = 0; 3151 return 8+(u32)u; 3152 }else{ 3153 *pLen = 1; 3154 return 1; 3155 } 3156 } 3157 if( u<=32767 ){ *pLen = 2; return 2; } 3158 if( u<=8388607 ){ *pLen = 3; return 3; } 3159 if( u<=2147483647 ){ *pLen = 4; return 4; } 3160 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3161 *pLen = 8; 3162 return 6; 3163 } 3164 if( flags&MEM_Real ){ 3165 *pLen = 8; 3166 return 7; 3167 } 3168 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3169 assert( pMem->n>=0 ); 3170 n = (u32)pMem->n; 3171 if( flags & MEM_Zero ){ 3172 n += pMem->u.nZero; 3173 } 3174 *pLen = n; 3175 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3176 } 3177 3178 /* 3179 ** The sizes for serial types less than 128 3180 */ 3181 static const u8 sqlite3SmallTypeSizes[] = { 3182 /* 0 1 2 3 4 5 6 7 8 9 */ 3183 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3184 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3185 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3186 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3187 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3188 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3189 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3190 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3191 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3192 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3193 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3194 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3195 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3196 }; 3197 3198 /* 3199 ** Return the length of the data corresponding to the supplied serial-type. 3200 */ 3201 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3202 if( serial_type>=128 ){ 3203 return (serial_type-12)/2; 3204 }else{ 3205 assert( serial_type<12 3206 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3207 return sqlite3SmallTypeSizes[serial_type]; 3208 } 3209 } 3210 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3211 assert( serial_type<128 ); 3212 return sqlite3SmallTypeSizes[serial_type]; 3213 } 3214 3215 /* 3216 ** If we are on an architecture with mixed-endian floating 3217 ** points (ex: ARM7) then swap the lower 4 bytes with the 3218 ** upper 4 bytes. Return the result. 3219 ** 3220 ** For most architectures, this is a no-op. 3221 ** 3222 ** (later): It is reported to me that the mixed-endian problem 3223 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3224 ** that early versions of GCC stored the two words of a 64-bit 3225 ** float in the wrong order. And that error has been propagated 3226 ** ever since. The blame is not necessarily with GCC, though. 3227 ** GCC might have just copying the problem from a prior compiler. 3228 ** I am also told that newer versions of GCC that follow a different 3229 ** ABI get the byte order right. 3230 ** 3231 ** Developers using SQLite on an ARM7 should compile and run their 3232 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3233 ** enabled, some asserts below will ensure that the byte order of 3234 ** floating point values is correct. 3235 ** 3236 ** (2007-08-30) Frank van Vugt has studied this problem closely 3237 ** and has send his findings to the SQLite developers. Frank 3238 ** writes that some Linux kernels offer floating point hardware 3239 ** emulation that uses only 32-bit mantissas instead of a full 3240 ** 48-bits as required by the IEEE standard. (This is the 3241 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3242 ** byte swapping becomes very complicated. To avoid problems, 3243 ** the necessary byte swapping is carried out using a 64-bit integer 3244 ** rather than a 64-bit float. Frank assures us that the code here 3245 ** works for him. We, the developers, have no way to independently 3246 ** verify this, but Frank seems to know what he is talking about 3247 ** so we trust him. 3248 */ 3249 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3250 static u64 floatSwap(u64 in){ 3251 union { 3252 u64 r; 3253 u32 i[2]; 3254 } u; 3255 u32 t; 3256 3257 u.r = in; 3258 t = u.i[0]; 3259 u.i[0] = u.i[1]; 3260 u.i[1] = t; 3261 return u.r; 3262 } 3263 # define swapMixedEndianFloat(X) X = floatSwap(X) 3264 #else 3265 # define swapMixedEndianFloat(X) 3266 #endif 3267 3268 /* 3269 ** Write the serialized data blob for the value stored in pMem into 3270 ** buf. It is assumed that the caller has allocated sufficient space. 3271 ** Return the number of bytes written. 3272 ** 3273 ** nBuf is the amount of space left in buf[]. The caller is responsible 3274 ** for allocating enough space to buf[] to hold the entire field, exclusive 3275 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3276 ** 3277 ** Return the number of bytes actually written into buf[]. The number 3278 ** of bytes in the zero-filled tail is included in the return value only 3279 ** if those bytes were zeroed in buf[]. 3280 */ 3281 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3282 u32 len; 3283 3284 /* Integer and Real */ 3285 if( serial_type<=7 && serial_type>0 ){ 3286 u64 v; 3287 u32 i; 3288 if( serial_type==7 ){ 3289 assert( sizeof(v)==sizeof(pMem->u.r) ); 3290 memcpy(&v, &pMem->u.r, sizeof(v)); 3291 swapMixedEndianFloat(v); 3292 }else{ 3293 v = pMem->u.i; 3294 } 3295 len = i = sqlite3SmallTypeSizes[serial_type]; 3296 assert( i>0 ); 3297 do{ 3298 buf[--i] = (u8)(v&0xFF); 3299 v >>= 8; 3300 }while( i ); 3301 return len; 3302 } 3303 3304 /* String or blob */ 3305 if( serial_type>=12 ){ 3306 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3307 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3308 len = pMem->n; 3309 if( len>0 ) memcpy(buf, pMem->z, len); 3310 return len; 3311 } 3312 3313 /* NULL or constants 0 or 1 */ 3314 return 0; 3315 } 3316 3317 /* Input "x" is a sequence of unsigned characters that represent a 3318 ** big-endian integer. Return the equivalent native integer 3319 */ 3320 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3321 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3322 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3323 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3324 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3325 3326 /* 3327 ** Deserialize the data blob pointed to by buf as serial type serial_type 3328 ** and store the result in pMem. Return the number of bytes read. 3329 ** 3330 ** This function is implemented as two separate routines for performance. 3331 ** The few cases that require local variables are broken out into a separate 3332 ** routine so that in most cases the overhead of moving the stack pointer 3333 ** is avoided. 3334 */ 3335 static u32 SQLITE_NOINLINE serialGet( 3336 const unsigned char *buf, /* Buffer to deserialize from */ 3337 u32 serial_type, /* Serial type to deserialize */ 3338 Mem *pMem /* Memory cell to write value into */ 3339 ){ 3340 u64 x = FOUR_BYTE_UINT(buf); 3341 u32 y = FOUR_BYTE_UINT(buf+4); 3342 x = (x<<32) + y; 3343 if( serial_type==6 ){ 3344 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3345 ** twos-complement integer. */ 3346 pMem->u.i = *(i64*)&x; 3347 pMem->flags = MEM_Int; 3348 testcase( pMem->u.i<0 ); 3349 }else{ 3350 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3351 ** floating point number. */ 3352 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3353 /* Verify that integers and floating point values use the same 3354 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3355 ** defined that 64-bit floating point values really are mixed 3356 ** endian. 3357 */ 3358 static const u64 t1 = ((u64)0x3ff00000)<<32; 3359 static const double r1 = 1.0; 3360 u64 t2 = t1; 3361 swapMixedEndianFloat(t2); 3362 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3363 #endif 3364 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3365 swapMixedEndianFloat(x); 3366 memcpy(&pMem->u.r, &x, sizeof(x)); 3367 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; 3368 } 3369 return 8; 3370 } 3371 u32 sqlite3VdbeSerialGet( 3372 const unsigned char *buf, /* Buffer to deserialize from */ 3373 u32 serial_type, /* Serial type to deserialize */ 3374 Mem *pMem /* Memory cell to write value into */ 3375 ){ 3376 switch( serial_type ){ 3377 case 10: /* Reserved for future use */ 3378 case 11: /* Reserved for future use */ 3379 case 0: { /* Null */ 3380 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3381 pMem->flags = MEM_Null; 3382 break; 3383 } 3384 case 1: { 3385 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3386 ** integer. */ 3387 pMem->u.i = ONE_BYTE_INT(buf); 3388 pMem->flags = MEM_Int; 3389 testcase( pMem->u.i<0 ); 3390 return 1; 3391 } 3392 case 2: { /* 2-byte signed integer */ 3393 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3394 ** twos-complement integer. */ 3395 pMem->u.i = TWO_BYTE_INT(buf); 3396 pMem->flags = MEM_Int; 3397 testcase( pMem->u.i<0 ); 3398 return 2; 3399 } 3400 case 3: { /* 3-byte signed integer */ 3401 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3402 ** twos-complement integer. */ 3403 pMem->u.i = THREE_BYTE_INT(buf); 3404 pMem->flags = MEM_Int; 3405 testcase( pMem->u.i<0 ); 3406 return 3; 3407 } 3408 case 4: { /* 4-byte signed integer */ 3409 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3410 ** twos-complement integer. */ 3411 pMem->u.i = FOUR_BYTE_INT(buf); 3412 #ifdef __HP_cc 3413 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3414 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3415 #endif 3416 pMem->flags = MEM_Int; 3417 testcase( pMem->u.i<0 ); 3418 return 4; 3419 } 3420 case 5: { /* 6-byte signed integer */ 3421 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3422 ** twos-complement integer. */ 3423 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3424 pMem->flags = MEM_Int; 3425 testcase( pMem->u.i<0 ); 3426 return 6; 3427 } 3428 case 6: /* 8-byte signed integer */ 3429 case 7: { /* IEEE floating point */ 3430 /* These use local variables, so do them in a separate routine 3431 ** to avoid having to move the frame pointer in the common case */ 3432 return serialGet(buf,serial_type,pMem); 3433 } 3434 case 8: /* Integer 0 */ 3435 case 9: { /* Integer 1 */ 3436 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3437 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3438 pMem->u.i = serial_type-8; 3439 pMem->flags = MEM_Int; 3440 return 0; 3441 } 3442 default: { 3443 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3444 ** length. 3445 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3446 ** (N-13)/2 bytes in length. */ 3447 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3448 pMem->z = (char *)buf; 3449 pMem->n = (serial_type-12)/2; 3450 pMem->flags = aFlag[serial_type&1]; 3451 return pMem->n; 3452 } 3453 } 3454 return 0; 3455 } 3456 /* 3457 ** This routine is used to allocate sufficient space for an UnpackedRecord 3458 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3459 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3460 ** 3461 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3462 ** the unaligned buffer passed via the second and third arguments (presumably 3463 ** stack space). If the former, then *ppFree is set to a pointer that should 3464 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3465 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3466 ** before returning. 3467 ** 3468 ** If an OOM error occurs, NULL is returned. 3469 */ 3470 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3471 KeyInfo *pKeyInfo, /* Description of the record */ 3472 char *pSpace, /* Unaligned space available */ 3473 int szSpace, /* Size of pSpace[] in bytes */ 3474 char **ppFree /* OUT: Caller should free this pointer */ 3475 ){ 3476 UnpackedRecord *p; /* Unpacked record to return */ 3477 int nOff; /* Increment pSpace by nOff to align it */ 3478 int nByte; /* Number of bytes required for *p */ 3479 3480 /* We want to shift the pointer pSpace up such that it is 8-byte aligned. 3481 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift 3482 ** it by. If pSpace is already 8-byte aligned, nOff should be zero. 3483 */ 3484 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7; 3485 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); 3486 if( nByte>szSpace+nOff ){ 3487 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3488 *ppFree = (char *)p; 3489 if( !p ) return 0; 3490 }else{ 3491 p = (UnpackedRecord*)&pSpace[nOff]; 3492 *ppFree = 0; 3493 } 3494 3495 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3496 assert( pKeyInfo->aSortOrder!=0 ); 3497 p->pKeyInfo = pKeyInfo; 3498 p->nField = pKeyInfo->nField + 1; 3499 return p; 3500 } 3501 3502 /* 3503 ** Given the nKey-byte encoding of a record in pKey[], populate the 3504 ** UnpackedRecord structure indicated by the fourth argument with the 3505 ** contents of the decoded record. 3506 */ 3507 void sqlite3VdbeRecordUnpack( 3508 KeyInfo *pKeyInfo, /* Information about the record format */ 3509 int nKey, /* Size of the binary record */ 3510 const void *pKey, /* The binary record */ 3511 UnpackedRecord *p /* Populate this structure before returning. */ 3512 ){ 3513 const unsigned char *aKey = (const unsigned char *)pKey; 3514 int d; 3515 u32 idx; /* Offset in aKey[] to read from */ 3516 u16 u; /* Unsigned loop counter */ 3517 u32 szHdr; 3518 Mem *pMem = p->aMem; 3519 3520 p->default_rc = 0; 3521 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3522 idx = getVarint32(aKey, szHdr); 3523 d = szHdr; 3524 u = 0; 3525 while( idx<szHdr && d<=nKey ){ 3526 u32 serial_type; 3527 3528 idx += getVarint32(&aKey[idx], serial_type); 3529 pMem->enc = pKeyInfo->enc; 3530 pMem->db = pKeyInfo->db; 3531 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 3532 pMem->szMalloc = 0; 3533 pMem->z = 0; 3534 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3535 pMem++; 3536 if( (++u)>=p->nField ) break; 3537 } 3538 assert( u<=pKeyInfo->nField + 1 ); 3539 p->nField = u; 3540 } 3541 3542 #if SQLITE_DEBUG 3543 /* 3544 ** This function compares two index or table record keys in the same way 3545 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 3546 ** this function deserializes and compares values using the 3547 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 3548 ** in assert() statements to ensure that the optimized code in 3549 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 3550 ** 3551 ** Return true if the result of comparison is equivalent to desiredResult. 3552 ** Return false if there is a disagreement. 3553 */ 3554 static int vdbeRecordCompareDebug( 3555 int nKey1, const void *pKey1, /* Left key */ 3556 const UnpackedRecord *pPKey2, /* Right key */ 3557 int desiredResult /* Correct answer */ 3558 ){ 3559 u32 d1; /* Offset into aKey[] of next data element */ 3560 u32 idx1; /* Offset into aKey[] of next header element */ 3561 u32 szHdr1; /* Number of bytes in header */ 3562 int i = 0; 3563 int rc = 0; 3564 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3565 KeyInfo *pKeyInfo; 3566 Mem mem1; 3567 3568 pKeyInfo = pPKey2->pKeyInfo; 3569 if( pKeyInfo->db==0 ) return 1; 3570 mem1.enc = pKeyInfo->enc; 3571 mem1.db = pKeyInfo->db; 3572 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 3573 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3574 3575 /* Compilers may complain that mem1.u.i is potentially uninitialized. 3576 ** We could initialize it, as shown here, to silence those complaints. 3577 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 3578 ** the unnecessary initialization has a measurable negative performance 3579 ** impact, since this routine is a very high runner. And so, we choose 3580 ** to ignore the compiler warnings and leave this variable uninitialized. 3581 */ 3582 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 3583 3584 idx1 = getVarint32(aKey1, szHdr1); 3585 if( szHdr1>98307 ) return SQLITE_CORRUPT; 3586 d1 = szHdr1; 3587 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB ); 3588 assert( pKeyInfo->aSortOrder!=0 ); 3589 assert( pKeyInfo->nField>0 ); 3590 assert( idx1<=szHdr1 || CORRUPT_DB ); 3591 do{ 3592 u32 serial_type1; 3593 3594 /* Read the serial types for the next element in each key. */ 3595 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 3596 3597 /* Verify that there is enough key space remaining to avoid 3598 ** a buffer overread. The "d1+serial_type1+2" subexpression will 3599 ** always be greater than or equal to the amount of required key space. 3600 ** Use that approximation to avoid the more expensive call to 3601 ** sqlite3VdbeSerialTypeLen() in the common case. 3602 */ 3603 if( d1+serial_type1+2>(u32)nKey1 3604 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 3605 ){ 3606 break; 3607 } 3608 3609 /* Extract the values to be compared. 3610 */ 3611 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 3612 3613 /* Do the comparison 3614 */ 3615 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); 3616 if( rc!=0 ){ 3617 assert( mem1.szMalloc==0 ); /* See comment below */ 3618 if( pKeyInfo->aSortOrder[i] ){ 3619 rc = -rc; /* Invert the result for DESC sort order. */ 3620 } 3621 goto debugCompareEnd; 3622 } 3623 i++; 3624 }while( idx1<szHdr1 && i<pPKey2->nField ); 3625 3626 /* No memory allocation is ever used on mem1. Prove this using 3627 ** the following assert(). If the assert() fails, it indicates a 3628 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 3629 */ 3630 assert( mem1.szMalloc==0 ); 3631 3632 /* rc==0 here means that one of the keys ran out of fields and 3633 ** all the fields up to that point were equal. Return the default_rc 3634 ** value. */ 3635 rc = pPKey2->default_rc; 3636 3637 debugCompareEnd: 3638 if( desiredResult==0 && rc==0 ) return 1; 3639 if( desiredResult<0 && rc<0 ) return 1; 3640 if( desiredResult>0 && rc>0 ) return 1; 3641 if( CORRUPT_DB ) return 1; 3642 if( pKeyInfo->db->mallocFailed ) return 1; 3643 return 0; 3644 } 3645 #endif 3646 3647 #if SQLITE_DEBUG 3648 /* 3649 ** Count the number of fields (a.k.a. columns) in the record given by 3650 ** pKey,nKey. The verify that this count is less than or equal to the 3651 ** limit given by pKeyInfo->nField + pKeyInfo->nXField. 3652 ** 3653 ** If this constraint is not satisfied, it means that the high-speed 3654 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 3655 ** not work correctly. If this assert() ever fires, it probably means 3656 ** that the KeyInfo.nField or KeyInfo.nXField values were computed 3657 ** incorrectly. 3658 */ 3659 static void vdbeAssertFieldCountWithinLimits( 3660 int nKey, const void *pKey, /* The record to verify */ 3661 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 3662 ){ 3663 int nField = 0; 3664 u32 szHdr; 3665 u32 idx; 3666 u32 notUsed; 3667 const unsigned char *aKey = (const unsigned char*)pKey; 3668 3669 if( CORRUPT_DB ) return; 3670 idx = getVarint32(aKey, szHdr); 3671 assert( nKey>=0 ); 3672 assert( szHdr<=(u32)nKey ); 3673 while( idx<szHdr ){ 3674 idx += getVarint32(aKey+idx, notUsed); 3675 nField++; 3676 } 3677 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField ); 3678 } 3679 #else 3680 # define vdbeAssertFieldCountWithinLimits(A,B,C) 3681 #endif 3682 3683 /* 3684 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 3685 ** using the collation sequence pColl. As usual, return a negative , zero 3686 ** or positive value if *pMem1 is less than, equal to or greater than 3687 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 3688 */ 3689 static int vdbeCompareMemString( 3690 const Mem *pMem1, 3691 const Mem *pMem2, 3692 const CollSeq *pColl, 3693 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 3694 ){ 3695 if( pMem1->enc==pColl->enc ){ 3696 /* The strings are already in the correct encoding. Call the 3697 ** comparison function directly */ 3698 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 3699 }else{ 3700 int rc; 3701 const void *v1, *v2; 3702 int n1, n2; 3703 Mem c1; 3704 Mem c2; 3705 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 3706 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 3707 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 3708 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 3709 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 3710 n1 = v1==0 ? 0 : c1.n; 3711 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 3712 n2 = v2==0 ? 0 : c2.n; 3713 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); 3714 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 3715 sqlite3VdbeMemRelease(&c1); 3716 sqlite3VdbeMemRelease(&c2); 3717 return rc; 3718 } 3719 } 3720 3721 /* 3722 ** The input pBlob is guaranteed to be a Blob that is not marked 3723 ** with MEM_Zero. Return true if it could be a zero-blob. 3724 */ 3725 static int isAllZero(const char *z, int n){ 3726 int i; 3727 for(i=0; i<n; i++){ 3728 if( z[i] ) return 0; 3729 } 3730 return 1; 3731 } 3732 3733 /* 3734 ** Compare two blobs. Return negative, zero, or positive if the first 3735 ** is less than, equal to, or greater than the second, respectively. 3736 ** If one blob is a prefix of the other, then the shorter is the lessor. 3737 */ 3738 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 3739 int c; 3740 int n1 = pB1->n; 3741 int n2 = pB2->n; 3742 3743 /* It is possible to have a Blob value that has some non-zero content 3744 ** followed by zero content. But that only comes up for Blobs formed 3745 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 3746 ** sqlite3MemCompare(). */ 3747 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 3748 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 3749 3750 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 3751 if( pB1->flags & pB2->flags & MEM_Zero ){ 3752 return pB1->u.nZero - pB2->u.nZero; 3753 }else if( pB1->flags & MEM_Zero ){ 3754 if( !isAllZero(pB2->z, pB2->n) ) return -1; 3755 return pB1->u.nZero - n2; 3756 }else{ 3757 if( !isAllZero(pB1->z, pB1->n) ) return +1; 3758 return n1 - pB2->u.nZero; 3759 } 3760 } 3761 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 3762 if( c ) return c; 3763 return n1 - n2; 3764 } 3765 3766 /* 3767 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 3768 ** number. Return negative, zero, or positive if the first (i64) is less than, 3769 ** equal to, or greater than the second (double). 3770 */ 3771 static int sqlite3IntFloatCompare(i64 i, double r){ 3772 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 3773 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 3774 if( x<r ) return -1; 3775 if( x>r ) return +1; 3776 return 0; 3777 }else{ 3778 i64 y; 3779 double s; 3780 if( r<-9223372036854775808.0 ) return +1; 3781 if( r>9223372036854775807.0 ) return -1; 3782 y = (i64)r; 3783 if( i<y ) return -1; 3784 if( i>y ){ 3785 if( y==SMALLEST_INT64 && r>0.0 ) return -1; 3786 return +1; 3787 } 3788 s = (double)i; 3789 if( s<r ) return -1; 3790 if( s>r ) return +1; 3791 return 0; 3792 } 3793 } 3794 3795 /* 3796 ** Compare the values contained by the two memory cells, returning 3797 ** negative, zero or positive if pMem1 is less than, equal to, or greater 3798 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 3799 ** and reals) sorted numerically, followed by text ordered by the collating 3800 ** sequence pColl and finally blob's ordered by memcmp(). 3801 ** 3802 ** Two NULL values are considered equal by this function. 3803 */ 3804 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 3805 int f1, f2; 3806 int combined_flags; 3807 3808 f1 = pMem1->flags; 3809 f2 = pMem2->flags; 3810 combined_flags = f1|f2; 3811 assert( (combined_flags & MEM_RowSet)==0 ); 3812 3813 /* If one value is NULL, it is less than the other. If both values 3814 ** are NULL, return 0. 3815 */ 3816 if( combined_flags&MEM_Null ){ 3817 return (f2&MEM_Null) - (f1&MEM_Null); 3818 } 3819 3820 /* At least one of the two values is a number 3821 */ 3822 if( combined_flags&(MEM_Int|MEM_Real) ){ 3823 if( (f1 & f2 & MEM_Int)!=0 ){ 3824 if( pMem1->u.i < pMem2->u.i ) return -1; 3825 if( pMem1->u.i > pMem2->u.i ) return +1; 3826 return 0; 3827 } 3828 if( (f1 & f2 & MEM_Real)!=0 ){ 3829 if( pMem1->u.r < pMem2->u.r ) return -1; 3830 if( pMem1->u.r > pMem2->u.r ) return +1; 3831 return 0; 3832 } 3833 if( (f1&MEM_Int)!=0 ){ 3834 if( (f2&MEM_Real)!=0 ){ 3835 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 3836 }else{ 3837 return -1; 3838 } 3839 } 3840 if( (f1&MEM_Real)!=0 ){ 3841 if( (f2&MEM_Int)!=0 ){ 3842 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 3843 }else{ 3844 return -1; 3845 } 3846 } 3847 return +1; 3848 } 3849 3850 /* If one value is a string and the other is a blob, the string is less. 3851 ** If both are strings, compare using the collating functions. 3852 */ 3853 if( combined_flags&MEM_Str ){ 3854 if( (f1 & MEM_Str)==0 ){ 3855 return 1; 3856 } 3857 if( (f2 & MEM_Str)==0 ){ 3858 return -1; 3859 } 3860 3861 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 3862 assert( pMem1->enc==SQLITE_UTF8 || 3863 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 3864 3865 /* The collation sequence must be defined at this point, even if 3866 ** the user deletes the collation sequence after the vdbe program is 3867 ** compiled (this was not always the case). 3868 */ 3869 assert( !pColl || pColl->xCmp ); 3870 3871 if( pColl ){ 3872 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 3873 } 3874 /* If a NULL pointer was passed as the collate function, fall through 3875 ** to the blob case and use memcmp(). */ 3876 } 3877 3878 /* Both values must be blobs. Compare using memcmp(). */ 3879 return sqlite3BlobCompare(pMem1, pMem2); 3880 } 3881 3882 3883 /* 3884 ** The first argument passed to this function is a serial-type that 3885 ** corresponds to an integer - all values between 1 and 9 inclusive 3886 ** except 7. The second points to a buffer containing an integer value 3887 ** serialized according to serial_type. This function deserializes 3888 ** and returns the value. 3889 */ 3890 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 3891 u32 y; 3892 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 3893 switch( serial_type ){ 3894 case 0: 3895 case 1: 3896 testcase( aKey[0]&0x80 ); 3897 return ONE_BYTE_INT(aKey); 3898 case 2: 3899 testcase( aKey[0]&0x80 ); 3900 return TWO_BYTE_INT(aKey); 3901 case 3: 3902 testcase( aKey[0]&0x80 ); 3903 return THREE_BYTE_INT(aKey); 3904 case 4: { 3905 testcase( aKey[0]&0x80 ); 3906 y = FOUR_BYTE_UINT(aKey); 3907 return (i64)*(int*)&y; 3908 } 3909 case 5: { 3910 testcase( aKey[0]&0x80 ); 3911 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 3912 } 3913 case 6: { 3914 u64 x = FOUR_BYTE_UINT(aKey); 3915 testcase( aKey[0]&0x80 ); 3916 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 3917 return (i64)*(i64*)&x; 3918 } 3919 } 3920 3921 return (serial_type - 8); 3922 } 3923 3924 /* 3925 ** This function compares the two table rows or index records 3926 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 3927 ** or positive integer if key1 is less than, equal to or 3928 ** greater than key2. The {nKey1, pKey1} key must be a blob 3929 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 3930 ** key must be a parsed key such as obtained from 3931 ** sqlite3VdbeParseRecord. 3932 ** 3933 ** If argument bSkip is non-zero, it is assumed that the caller has already 3934 ** determined that the first fields of the keys are equal. 3935 ** 3936 ** Key1 and Key2 do not have to contain the same number of fields. If all 3937 ** fields that appear in both keys are equal, then pPKey2->default_rc is 3938 ** returned. 3939 ** 3940 ** If database corruption is discovered, set pPKey2->errCode to 3941 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 3942 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 3943 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 3944 */ 3945 int sqlite3VdbeRecordCompareWithSkip( 3946 int nKey1, const void *pKey1, /* Left key */ 3947 UnpackedRecord *pPKey2, /* Right key */ 3948 int bSkip /* If true, skip the first field */ 3949 ){ 3950 u32 d1; /* Offset into aKey[] of next data element */ 3951 int i; /* Index of next field to compare */ 3952 u32 szHdr1; /* Size of record header in bytes */ 3953 u32 idx1; /* Offset of first type in header */ 3954 int rc = 0; /* Return value */ 3955 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 3956 KeyInfo *pKeyInfo = pPKey2->pKeyInfo; 3957 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3958 Mem mem1; 3959 3960 /* If bSkip is true, then the caller has already determined that the first 3961 ** two elements in the keys are equal. Fix the various stack variables so 3962 ** that this routine begins comparing at the second field. */ 3963 if( bSkip ){ 3964 u32 s1; 3965 idx1 = 1 + getVarint32(&aKey1[1], s1); 3966 szHdr1 = aKey1[0]; 3967 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 3968 i = 1; 3969 pRhs++; 3970 }else{ 3971 idx1 = getVarint32(aKey1, szHdr1); 3972 d1 = szHdr1; 3973 if( d1>(unsigned)nKey1 ){ 3974 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3975 return 0; /* Corruption */ 3976 } 3977 i = 0; 3978 } 3979 3980 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3981 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 3982 || CORRUPT_DB ); 3983 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); 3984 assert( pPKey2->pKeyInfo->nField>0 ); 3985 assert( idx1<=szHdr1 || CORRUPT_DB ); 3986 do{ 3987 u32 serial_type; 3988 3989 /* RHS is an integer */ 3990 if( pRhs->flags & MEM_Int ){ 3991 serial_type = aKey1[idx1]; 3992 testcase( serial_type==12 ); 3993 if( serial_type>=10 ){ 3994 rc = +1; 3995 }else if( serial_type==0 ){ 3996 rc = -1; 3997 }else if( serial_type==7 ){ 3998 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 3999 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4000 }else{ 4001 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4002 i64 rhs = pRhs->u.i; 4003 if( lhs<rhs ){ 4004 rc = -1; 4005 }else if( lhs>rhs ){ 4006 rc = +1; 4007 } 4008 } 4009 } 4010 4011 /* RHS is real */ 4012 else if( pRhs->flags & MEM_Real ){ 4013 serial_type = aKey1[idx1]; 4014 if( serial_type>=10 ){ 4015 /* Serial types 12 or greater are strings and blobs (greater than 4016 ** numbers). Types 10 and 11 are currently "reserved for future 4017 ** use", so it doesn't really matter what the results of comparing 4018 ** them to numberic values are. */ 4019 rc = +1; 4020 }else if( serial_type==0 ){ 4021 rc = -1; 4022 }else{ 4023 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4024 if( serial_type==7 ){ 4025 if( mem1.u.r<pRhs->u.r ){ 4026 rc = -1; 4027 }else if( mem1.u.r>pRhs->u.r ){ 4028 rc = +1; 4029 } 4030 }else{ 4031 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4032 } 4033 } 4034 } 4035 4036 /* RHS is a string */ 4037 else if( pRhs->flags & MEM_Str ){ 4038 getVarint32(&aKey1[idx1], serial_type); 4039 testcase( serial_type==12 ); 4040 if( serial_type<12 ){ 4041 rc = -1; 4042 }else if( !(serial_type & 0x01) ){ 4043 rc = +1; 4044 }else{ 4045 mem1.n = (serial_type - 12) / 2; 4046 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4047 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4048 if( (d1+mem1.n) > (unsigned)nKey1 ){ 4049 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4050 return 0; /* Corruption */ 4051 }else if( pKeyInfo->aColl[i] ){ 4052 mem1.enc = pKeyInfo->enc; 4053 mem1.db = pKeyInfo->db; 4054 mem1.flags = MEM_Str; 4055 mem1.z = (char*)&aKey1[d1]; 4056 rc = vdbeCompareMemString( 4057 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4058 ); 4059 }else{ 4060 int nCmp = MIN(mem1.n, pRhs->n); 4061 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4062 if( rc==0 ) rc = mem1.n - pRhs->n; 4063 } 4064 } 4065 } 4066 4067 /* RHS is a blob */ 4068 else if( pRhs->flags & MEM_Blob ){ 4069 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4070 getVarint32(&aKey1[idx1], serial_type); 4071 testcase( serial_type==12 ); 4072 if( serial_type<12 || (serial_type & 0x01) ){ 4073 rc = -1; 4074 }else{ 4075 int nStr = (serial_type - 12) / 2; 4076 testcase( (d1+nStr)==(unsigned)nKey1 ); 4077 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4078 if( (d1+nStr) > (unsigned)nKey1 ){ 4079 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4080 return 0; /* Corruption */ 4081 }else if( pRhs->flags & MEM_Zero ){ 4082 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4083 rc = 1; 4084 }else{ 4085 rc = nStr - pRhs->u.nZero; 4086 } 4087 }else{ 4088 int nCmp = MIN(nStr, pRhs->n); 4089 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4090 if( rc==0 ) rc = nStr - pRhs->n; 4091 } 4092 } 4093 } 4094 4095 /* RHS is null */ 4096 else{ 4097 serial_type = aKey1[idx1]; 4098 rc = (serial_type!=0); 4099 } 4100 4101 if( rc!=0 ){ 4102 if( pKeyInfo->aSortOrder[i] ){ 4103 rc = -rc; 4104 } 4105 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4106 assert( mem1.szMalloc==0 ); /* See comment below */ 4107 return rc; 4108 } 4109 4110 i++; 4111 pRhs++; 4112 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4113 idx1 += sqlite3VarintLen(serial_type); 4114 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); 4115 4116 /* No memory allocation is ever used on mem1. Prove this using 4117 ** the following assert(). If the assert() fails, it indicates a 4118 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4119 assert( mem1.szMalloc==0 ); 4120 4121 /* rc==0 here means that one or both of the keys ran out of fields and 4122 ** all the fields up to that point were equal. Return the default_rc 4123 ** value. */ 4124 assert( CORRUPT_DB 4125 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4126 || pKeyInfo->db->mallocFailed 4127 ); 4128 pPKey2->eqSeen = 1; 4129 return pPKey2->default_rc; 4130 } 4131 int sqlite3VdbeRecordCompare( 4132 int nKey1, const void *pKey1, /* Left key */ 4133 UnpackedRecord *pPKey2 /* Right key */ 4134 ){ 4135 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4136 } 4137 4138 4139 /* 4140 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4141 ** that (a) the first field of pPKey2 is an integer, and (b) the 4142 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4143 ** byte (i.e. is less than 128). 4144 ** 4145 ** To avoid concerns about buffer overreads, this routine is only used 4146 ** on schemas where the maximum valid header size is 63 bytes or less. 4147 */ 4148 static int vdbeRecordCompareInt( 4149 int nKey1, const void *pKey1, /* Left key */ 4150 UnpackedRecord *pPKey2 /* Right key */ 4151 ){ 4152 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4153 int serial_type = ((const u8*)pKey1)[1]; 4154 int res; 4155 u32 y; 4156 u64 x; 4157 i64 v; 4158 i64 lhs; 4159 4160 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4161 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4162 switch( serial_type ){ 4163 case 1: { /* 1-byte signed integer */ 4164 lhs = ONE_BYTE_INT(aKey); 4165 testcase( lhs<0 ); 4166 break; 4167 } 4168 case 2: { /* 2-byte signed integer */ 4169 lhs = TWO_BYTE_INT(aKey); 4170 testcase( lhs<0 ); 4171 break; 4172 } 4173 case 3: { /* 3-byte signed integer */ 4174 lhs = THREE_BYTE_INT(aKey); 4175 testcase( lhs<0 ); 4176 break; 4177 } 4178 case 4: { /* 4-byte signed integer */ 4179 y = FOUR_BYTE_UINT(aKey); 4180 lhs = (i64)*(int*)&y; 4181 testcase( lhs<0 ); 4182 break; 4183 } 4184 case 5: { /* 6-byte signed integer */ 4185 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4186 testcase( lhs<0 ); 4187 break; 4188 } 4189 case 6: { /* 8-byte signed integer */ 4190 x = FOUR_BYTE_UINT(aKey); 4191 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4192 lhs = *(i64*)&x; 4193 testcase( lhs<0 ); 4194 break; 4195 } 4196 case 8: 4197 lhs = 0; 4198 break; 4199 case 9: 4200 lhs = 1; 4201 break; 4202 4203 /* This case could be removed without changing the results of running 4204 ** this code. Including it causes gcc to generate a faster switch 4205 ** statement (since the range of switch targets now starts at zero and 4206 ** is contiguous) but does not cause any duplicate code to be generated 4207 ** (as gcc is clever enough to combine the two like cases). Other 4208 ** compilers might be similar. */ 4209 case 0: case 7: 4210 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4211 4212 default: 4213 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4214 } 4215 4216 v = pPKey2->aMem[0].u.i; 4217 if( v>lhs ){ 4218 res = pPKey2->r1; 4219 }else if( v<lhs ){ 4220 res = pPKey2->r2; 4221 }else if( pPKey2->nField>1 ){ 4222 /* The first fields of the two keys are equal. Compare the trailing 4223 ** fields. */ 4224 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4225 }else{ 4226 /* The first fields of the two keys are equal and there are no trailing 4227 ** fields. Return pPKey2->default_rc in this case. */ 4228 res = pPKey2->default_rc; 4229 pPKey2->eqSeen = 1; 4230 } 4231 4232 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4233 return res; 4234 } 4235 4236 /* 4237 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4238 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4239 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4240 ** at the start of (pKey1/nKey1) fits in a single byte. 4241 */ 4242 static int vdbeRecordCompareString( 4243 int nKey1, const void *pKey1, /* Left key */ 4244 UnpackedRecord *pPKey2 /* Right key */ 4245 ){ 4246 const u8 *aKey1 = (const u8*)pKey1; 4247 int serial_type; 4248 int res; 4249 4250 assert( pPKey2->aMem[0].flags & MEM_Str ); 4251 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4252 getVarint32(&aKey1[1], serial_type); 4253 if( serial_type<12 ){ 4254 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4255 }else if( !(serial_type & 0x01) ){ 4256 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4257 }else{ 4258 int nCmp; 4259 int nStr; 4260 int szHdr = aKey1[0]; 4261 4262 nStr = (serial_type-12) / 2; 4263 if( (szHdr + nStr) > nKey1 ){ 4264 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4265 return 0; /* Corruption */ 4266 } 4267 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4268 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4269 4270 if( res==0 ){ 4271 res = nStr - pPKey2->aMem[0].n; 4272 if( res==0 ){ 4273 if( pPKey2->nField>1 ){ 4274 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4275 }else{ 4276 res = pPKey2->default_rc; 4277 pPKey2->eqSeen = 1; 4278 } 4279 }else if( res>0 ){ 4280 res = pPKey2->r2; 4281 }else{ 4282 res = pPKey2->r1; 4283 } 4284 }else if( res>0 ){ 4285 res = pPKey2->r2; 4286 }else{ 4287 res = pPKey2->r1; 4288 } 4289 } 4290 4291 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4292 || CORRUPT_DB 4293 || pPKey2->pKeyInfo->db->mallocFailed 4294 ); 4295 return res; 4296 } 4297 4298 /* 4299 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4300 ** suitable for comparing serialized records to the unpacked record passed 4301 ** as the only argument. 4302 */ 4303 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4304 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4305 ** that the size-of-header varint that occurs at the start of each record 4306 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4307 ** also assumes that it is safe to overread a buffer by at least the 4308 ** maximum possible legal header size plus 8 bytes. Because there is 4309 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4310 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4311 ** limit the size of the header to 64 bytes in cases where the first field 4312 ** is an integer. 4313 ** 4314 ** The easiest way to enforce this limit is to consider only records with 4315 ** 13 fields or less. If the first field is an integer, the maximum legal 4316 ** header size is (12*5 + 1 + 1) bytes. */ 4317 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){ 4318 int flags = p->aMem[0].flags; 4319 if( p->pKeyInfo->aSortOrder[0] ){ 4320 p->r1 = 1; 4321 p->r2 = -1; 4322 }else{ 4323 p->r1 = -1; 4324 p->r2 = 1; 4325 } 4326 if( (flags & MEM_Int) ){ 4327 return vdbeRecordCompareInt; 4328 } 4329 testcase( flags & MEM_Real ); 4330 testcase( flags & MEM_Null ); 4331 testcase( flags & MEM_Blob ); 4332 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ 4333 assert( flags & MEM_Str ); 4334 return vdbeRecordCompareString; 4335 } 4336 } 4337 4338 return sqlite3VdbeRecordCompare; 4339 } 4340 4341 /* 4342 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4343 ** Read the rowid (the last field in the record) and store it in *rowid. 4344 ** Return SQLITE_OK if everything works, or an error code otherwise. 4345 ** 4346 ** pCur might be pointing to text obtained from a corrupt database file. 4347 ** So the content cannot be trusted. Do appropriate checks on the content. 4348 */ 4349 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4350 i64 nCellKey = 0; 4351 int rc; 4352 u32 szHdr; /* Size of the header */ 4353 u32 typeRowid; /* Serial type of the rowid */ 4354 u32 lenRowid; /* Size of the rowid */ 4355 Mem m, v; 4356 4357 /* Get the size of the index entry. Only indices entries of less 4358 ** than 2GiB are support - anything large must be database corruption. 4359 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4360 ** this code can safely assume that nCellKey is 32-bits 4361 */ 4362 assert( sqlite3BtreeCursorIsValid(pCur) ); 4363 nCellKey = sqlite3BtreePayloadSize(pCur); 4364 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4365 4366 /* Read in the complete content of the index entry */ 4367 sqlite3VdbeMemInit(&m, db, 0); 4368 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m); 4369 if( rc ){ 4370 return rc; 4371 } 4372 4373 /* The index entry must begin with a header size */ 4374 (void)getVarint32((u8*)m.z, szHdr); 4375 testcase( szHdr==3 ); 4376 testcase( szHdr==m.n ); 4377 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ 4378 goto idx_rowid_corruption; 4379 } 4380 4381 /* The last field of the index should be an integer - the ROWID. 4382 ** Verify that the last entry really is an integer. */ 4383 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 4384 testcase( typeRowid==1 ); 4385 testcase( typeRowid==2 ); 4386 testcase( typeRowid==3 ); 4387 testcase( typeRowid==4 ); 4388 testcase( typeRowid==5 ); 4389 testcase( typeRowid==6 ); 4390 testcase( typeRowid==8 ); 4391 testcase( typeRowid==9 ); 4392 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4393 goto idx_rowid_corruption; 4394 } 4395 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4396 testcase( (u32)m.n==szHdr+lenRowid ); 4397 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4398 goto idx_rowid_corruption; 4399 } 4400 4401 /* Fetch the integer off the end of the index record */ 4402 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4403 *rowid = v.u.i; 4404 sqlite3VdbeMemRelease(&m); 4405 return SQLITE_OK; 4406 4407 /* Jump here if database corruption is detected after m has been 4408 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4409 idx_rowid_corruption: 4410 testcase( m.szMalloc!=0 ); 4411 sqlite3VdbeMemRelease(&m); 4412 return SQLITE_CORRUPT_BKPT; 4413 } 4414 4415 /* 4416 ** Compare the key of the index entry that cursor pC is pointing to against 4417 ** the key string in pUnpacked. Write into *pRes a number 4418 ** that is negative, zero, or positive if pC is less than, equal to, 4419 ** or greater than pUnpacked. Return SQLITE_OK on success. 4420 ** 4421 ** pUnpacked is either created without a rowid or is truncated so that it 4422 ** omits the rowid at the end. The rowid at the end of the index entry 4423 ** is ignored as well. Hence, this routine only compares the prefixes 4424 ** of the keys prior to the final rowid, not the entire key. 4425 */ 4426 int sqlite3VdbeIdxKeyCompare( 4427 sqlite3 *db, /* Database connection */ 4428 VdbeCursor *pC, /* The cursor to compare against */ 4429 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4430 int *res /* Write the comparison result here */ 4431 ){ 4432 i64 nCellKey = 0; 4433 int rc; 4434 BtCursor *pCur; 4435 Mem m; 4436 4437 assert( pC->eCurType==CURTYPE_BTREE ); 4438 pCur = pC->uc.pCursor; 4439 assert( sqlite3BtreeCursorIsValid(pCur) ); 4440 nCellKey = sqlite3BtreePayloadSize(pCur); 4441 /* nCellKey will always be between 0 and 0xffffffff because of the way 4442 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4443 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4444 *res = 0; 4445 return SQLITE_CORRUPT_BKPT; 4446 } 4447 sqlite3VdbeMemInit(&m, db, 0); 4448 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m); 4449 if( rc ){ 4450 return rc; 4451 } 4452 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); 4453 sqlite3VdbeMemRelease(&m); 4454 return SQLITE_OK; 4455 } 4456 4457 /* 4458 ** This routine sets the value to be returned by subsequent calls to 4459 ** sqlite3_changes() on the database handle 'db'. 4460 */ 4461 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 4462 assert( sqlite3_mutex_held(db->mutex) ); 4463 db->nChange = nChange; 4464 db->nTotalChange += nChange; 4465 } 4466 4467 /* 4468 ** Set a flag in the vdbe to update the change counter when it is finalised 4469 ** or reset. 4470 */ 4471 void sqlite3VdbeCountChanges(Vdbe *v){ 4472 v->changeCntOn = 1; 4473 } 4474 4475 /* 4476 ** Mark every prepared statement associated with a database connection 4477 ** as expired. 4478 ** 4479 ** An expired statement means that recompilation of the statement is 4480 ** recommend. Statements expire when things happen that make their 4481 ** programs obsolete. Removing user-defined functions or collating 4482 ** sequences, or changing an authorization function are the types of 4483 ** things that make prepared statements obsolete. 4484 */ 4485 void sqlite3ExpirePreparedStatements(sqlite3 *db){ 4486 Vdbe *p; 4487 for(p = db->pVdbe; p; p=p->pNext){ 4488 p->expired = 1; 4489 } 4490 } 4491 4492 /* 4493 ** Return the database associated with the Vdbe. 4494 */ 4495 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 4496 return v->db; 4497 } 4498 4499 /* 4500 ** Return a pointer to an sqlite3_value structure containing the value bound 4501 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 4502 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 4503 ** constants) to the value before returning it. 4504 ** 4505 ** The returned value must be freed by the caller using sqlite3ValueFree(). 4506 */ 4507 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 4508 assert( iVar>0 ); 4509 if( v ){ 4510 Mem *pMem = &v->aVar[iVar-1]; 4511 if( 0==(pMem->flags & MEM_Null) ){ 4512 sqlite3_value *pRet = sqlite3ValueNew(v->db); 4513 if( pRet ){ 4514 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 4515 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 4516 } 4517 return pRet; 4518 } 4519 } 4520 return 0; 4521 } 4522 4523 /* 4524 ** Configure SQL variable iVar so that binding a new value to it signals 4525 ** to sqlite3_reoptimize() that re-preparing the statement may result 4526 ** in a better query plan. 4527 */ 4528 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 4529 assert( iVar>0 ); 4530 if( iVar>32 ){ 4531 v->expmask = 0xffffffff; 4532 }else{ 4533 v->expmask |= ((u32)1 << (iVar-1)); 4534 } 4535 } 4536 4537 #ifndef SQLITE_OMIT_VIRTUALTABLE 4538 /* 4539 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 4540 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 4541 ** in memory obtained from sqlite3DbMalloc). 4542 */ 4543 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 4544 if( pVtab->zErrMsg ){ 4545 sqlite3 *db = p->db; 4546 sqlite3DbFree(db, p->zErrMsg); 4547 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 4548 sqlite3_free(pVtab->zErrMsg); 4549 pVtab->zErrMsg = 0; 4550 } 4551 } 4552 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4553 4554 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4555 4556 /* 4557 ** If the second argument is not NULL, release any allocations associated 4558 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 4559 ** structure itself, using sqlite3DbFree(). 4560 ** 4561 ** This function is used to free UnpackedRecord structures allocated by 4562 ** the vdbeUnpackRecord() function found in vdbeapi.c. 4563 */ 4564 static void vdbeFreeUnpacked(sqlite3 *db, UnpackedRecord *p){ 4565 if( p ){ 4566 int i; 4567 for(i=0; i<p->nField; i++){ 4568 Mem *pMem = &p->aMem[i]; 4569 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem); 4570 } 4571 sqlite3DbFree(db, p); 4572 } 4573 } 4574 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4575 4576 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4577 /* 4578 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 4579 ** then cursor passed as the second argument should point to the row about 4580 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 4581 ** the required value will be read from the row the cursor points to. 4582 */ 4583 void sqlite3VdbePreUpdateHook( 4584 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 4585 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 4586 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 4587 const char *zDb, /* Database name */ 4588 Table *pTab, /* Modified table */ 4589 i64 iKey1, /* Initial key value */ 4590 int iReg /* Register for new.* record */ 4591 ){ 4592 sqlite3 *db = v->db; 4593 i64 iKey2; 4594 PreUpdate preupdate; 4595 const char *zTbl = pTab->zName; 4596 static const u8 fakeSortOrder = 0; 4597 4598 assert( db->pPreUpdate==0 ); 4599 memset(&preupdate, 0, sizeof(PreUpdate)); 4600 if( op==SQLITE_UPDATE ){ 4601 iKey2 = v->aMem[iReg].u.i; 4602 }else{ 4603 iKey2 = iKey1; 4604 } 4605 4606 assert( pCsr->nField==pTab->nCol 4607 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 4608 ); 4609 4610 preupdate.v = v; 4611 preupdate.pCsr = pCsr; 4612 preupdate.op = op; 4613 preupdate.iNewReg = iReg; 4614 preupdate.keyinfo.db = db; 4615 preupdate.keyinfo.enc = ENC(db); 4616 preupdate.keyinfo.nField = pTab->nCol; 4617 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder; 4618 preupdate.iKey1 = iKey1; 4619 preupdate.iKey2 = iKey2; 4620 preupdate.iPKey = pTab->iPKey; 4621 4622 db->pPreUpdate = &preupdate; 4623 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 4624 db->pPreUpdate = 0; 4625 sqlite3DbFree(db, preupdate.aRecord); 4626 vdbeFreeUnpacked(db, preupdate.pUnpacked); 4627 vdbeFreeUnpacked(db, preupdate.pNewUnpacked); 4628 if( preupdate.aNew ){ 4629 int i; 4630 for(i=0; i<pCsr->nField; i++){ 4631 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 4632 } 4633 sqlite3DbFree(db, preupdate.aNew); 4634 } 4635 } 4636 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4637