1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* Forward references */ 19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef); 20 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 21 22 /* 23 ** Create a new virtual database engine. 24 */ 25 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 26 sqlite3 *db = pParse->db; 27 Vdbe *p; 28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 29 if( p==0 ) return 0; 30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 31 p->db = db; 32 if( db->pVdbe ){ 33 db->pVdbe->pPrev = p; 34 } 35 p->pNext = db->pVdbe; 36 p->pPrev = 0; 37 db->pVdbe = p; 38 p->iVdbeMagic = VDBE_MAGIC_INIT; 39 p->pParse = pParse; 40 pParse->pVdbe = p; 41 assert( pParse->aLabel==0 ); 42 assert( pParse->nLabel==0 ); 43 assert( p->nOpAlloc==0 ); 44 assert( pParse->szOpAlloc==0 ); 45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1); 46 return p; 47 } 48 49 /* 50 ** Return the Parse object that owns a Vdbe object. 51 */ 52 Parse *sqlite3VdbeParser(Vdbe *p){ 53 return p->pParse; 54 } 55 56 /* 57 ** Change the error string stored in Vdbe.zErrMsg 58 */ 59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 60 va_list ap; 61 sqlite3DbFree(p->db, p->zErrMsg); 62 va_start(ap, zFormat); 63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 64 va_end(ap); 65 } 66 67 /* 68 ** Remember the SQL string for a prepared statement. 69 */ 70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 71 if( p==0 ) return; 72 p->prepFlags = prepFlags; 73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 74 p->expmask = 0; 75 } 76 assert( p->zSql==0 ); 77 p->zSql = sqlite3DbStrNDup(p->db, z, n); 78 } 79 80 #ifdef SQLITE_ENABLE_NORMALIZE 81 /* 82 ** Add a new element to the Vdbe->pDblStr list. 83 */ 84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ 85 if( p ){ 86 int n = sqlite3Strlen30(z); 87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db, 88 sizeof(*pStr)+n+1-sizeof(pStr->z)); 89 if( pStr ){ 90 pStr->pNextStr = p->pDblStr; 91 p->pDblStr = pStr; 92 memcpy(pStr->z, z, n+1); 93 } 94 } 95 } 96 #endif 97 98 #ifdef SQLITE_ENABLE_NORMALIZE 99 /* 100 ** zId of length nId is a double-quoted identifier. Check to see if 101 ** that identifier is really used as a string literal. 102 */ 103 int sqlite3VdbeUsesDoubleQuotedString( 104 Vdbe *pVdbe, /* The prepared statement */ 105 const char *zId /* The double-quoted identifier, already dequoted */ 106 ){ 107 DblquoteStr *pStr; 108 assert( zId!=0 ); 109 if( pVdbe->pDblStr==0 ) return 0; 110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ 111 if( strcmp(zId, pStr->z)==0 ) return 1; 112 } 113 return 0; 114 } 115 #endif 116 117 /* 118 ** Swap all content between two VDBE structures. 119 */ 120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 121 Vdbe tmp, *pTmp; 122 char *zTmp; 123 assert( pA->db==pB->db ); 124 tmp = *pA; 125 *pA = *pB; 126 *pB = tmp; 127 pTmp = pA->pNext; 128 pA->pNext = pB->pNext; 129 pB->pNext = pTmp; 130 pTmp = pA->pPrev; 131 pA->pPrev = pB->pPrev; 132 pB->pPrev = pTmp; 133 zTmp = pA->zSql; 134 pA->zSql = pB->zSql; 135 pB->zSql = zTmp; 136 #ifdef SQLITE_ENABLE_NORMALIZE 137 zTmp = pA->zNormSql; 138 pA->zNormSql = pB->zNormSql; 139 pB->zNormSql = zTmp; 140 #endif 141 pB->expmask = pA->expmask; 142 pB->prepFlags = pA->prepFlags; 143 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 144 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 145 } 146 147 /* 148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 149 ** than its current size. nOp is guaranteed to be less than or equal 150 ** to 1024/sizeof(Op). 151 ** 152 ** If an out-of-memory error occurs while resizing the array, return 153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain 154 ** unchanged (this is so that any opcodes already allocated can be 155 ** correctly deallocated along with the rest of the Vdbe). 156 */ 157 static int growOpArray(Vdbe *v, int nOp){ 158 VdbeOp *pNew; 159 Parse *p = v->pParse; 160 161 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 162 ** more frequent reallocs and hence provide more opportunities for 163 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 164 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 165 ** by the minimum* amount required until the size reaches 512. Normal 166 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 167 ** size of the op array or add 1KB of space, whichever is smaller. */ 168 #ifdef SQLITE_TEST_REALLOC_STRESS 169 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc 170 : (sqlite3_int64)v->nOpAlloc+nOp); 171 #else 172 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc 173 : (sqlite3_int64)(1024/sizeof(Op))); 174 UNUSED_PARAMETER(nOp); 175 #endif 176 177 /* Ensure that the size of a VDBE does not grow too large */ 178 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 179 sqlite3OomFault(p->db); 180 return SQLITE_NOMEM; 181 } 182 183 assert( nOp<=(1024/sizeof(Op)) ); 184 assert( nNew>=(v->nOpAlloc+nOp) ); 185 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 186 if( pNew ){ 187 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 188 v->nOpAlloc = p->szOpAlloc/sizeof(Op); 189 v->aOp = pNew; 190 } 191 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 192 } 193 194 #ifdef SQLITE_DEBUG 195 /* This routine is just a convenient place to set a breakpoint that will 196 ** fire after each opcode is inserted and displayed using 197 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and 198 ** pOp are available to make the breakpoint conditional. 199 ** 200 ** Other useful labels for breakpoints include: 201 ** test_trace_breakpoint(pc,pOp) 202 ** sqlite3CorruptError(lineno) 203 ** sqlite3MisuseError(lineno) 204 ** sqlite3CantopenError(lineno) 205 */ 206 static void test_addop_breakpoint(int pc, Op *pOp){ 207 static int n = 0; 208 n++; 209 } 210 #endif 211 212 /* 213 ** Add a new instruction to the list of instructions current in the 214 ** VDBE. Return the address of the new instruction. 215 ** 216 ** Parameters: 217 ** 218 ** p Pointer to the VDBE 219 ** 220 ** op The opcode for this instruction 221 ** 222 ** p1, p2, p3 Operands 223 ** 224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 225 ** the sqlite3VdbeChangeP4() function to change the value of the P4 226 ** operand. 227 */ 228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 229 assert( p->nOpAlloc<=p->nOp ); 230 if( growOpArray(p, 1) ) return 1; 231 assert( p->nOpAlloc>p->nOp ); 232 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 233 } 234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 235 int i; 236 VdbeOp *pOp; 237 238 i = p->nOp; 239 assert( p->iVdbeMagic==VDBE_MAGIC_INIT ); 240 assert( op>=0 && op<0xff ); 241 if( p->nOpAlloc<=i ){ 242 return growOp3(p, op, p1, p2, p3); 243 } 244 assert( p->aOp!=0 ); 245 p->nOp++; 246 pOp = &p->aOp[i]; 247 assert( pOp!=0 ); 248 pOp->opcode = (u8)op; 249 pOp->p5 = 0; 250 pOp->p1 = p1; 251 pOp->p2 = p2; 252 pOp->p3 = p3; 253 pOp->p4.p = 0; 254 pOp->p4type = P4_NOTUSED; 255 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 256 pOp->zComment = 0; 257 #endif 258 #ifdef SQLITE_DEBUG 259 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 260 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 261 test_addop_breakpoint(i, &p->aOp[i]); 262 } 263 #endif 264 #ifdef VDBE_PROFILE 265 pOp->cycles = 0; 266 pOp->cnt = 0; 267 #endif 268 #ifdef SQLITE_VDBE_COVERAGE 269 pOp->iSrcLine = 0; 270 #endif 271 return i; 272 } 273 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 274 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 275 } 276 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 277 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 278 } 279 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 280 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 281 } 282 283 /* Generate code for an unconditional jump to instruction iDest 284 */ 285 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 286 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 287 } 288 289 /* Generate code to cause the string zStr to be loaded into 290 ** register iDest 291 */ 292 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 293 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 294 } 295 296 /* 297 ** Generate code that initializes multiple registers to string or integer 298 ** constants. The registers begin with iDest and increase consecutively. 299 ** One register is initialized for each characgter in zTypes[]. For each 300 ** "s" character in zTypes[], the register is a string if the argument is 301 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 302 ** in zTypes[], the register is initialized to an integer. 303 ** 304 ** If the input string does not end with "X" then an OP_ResultRow instruction 305 ** is generated for the values inserted. 306 */ 307 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 308 va_list ap; 309 int i; 310 char c; 311 va_start(ap, zTypes); 312 for(i=0; (c = zTypes[i])!=0; i++){ 313 if( c=='s' ){ 314 const char *z = va_arg(ap, const char*); 315 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 316 }else if( c=='i' ){ 317 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 318 }else{ 319 goto skip_op_resultrow; 320 } 321 } 322 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 323 skip_op_resultrow: 324 va_end(ap); 325 } 326 327 /* 328 ** Add an opcode that includes the p4 value as a pointer. 329 */ 330 int sqlite3VdbeAddOp4( 331 Vdbe *p, /* Add the opcode to this VM */ 332 int op, /* The new opcode */ 333 int p1, /* The P1 operand */ 334 int p2, /* The P2 operand */ 335 int p3, /* The P3 operand */ 336 const char *zP4, /* The P4 operand */ 337 int p4type /* P4 operand type */ 338 ){ 339 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 340 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 341 return addr; 342 } 343 344 /* 345 ** Add an OP_Function or OP_PureFunc opcode. 346 ** 347 ** The eCallCtx argument is information (typically taken from Expr.op2) 348 ** that describes the calling context of the function. 0 means a general 349 ** function call. NC_IsCheck means called by a check constraint, 350 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx 351 ** means in the WHERE clause of a partial index. NC_GenCol means called 352 ** while computing a generated column value. 0 is the usual case. 353 */ 354 int sqlite3VdbeAddFunctionCall( 355 Parse *pParse, /* Parsing context */ 356 int p1, /* Constant argument mask */ 357 int p2, /* First argument register */ 358 int p3, /* Register into which results are written */ 359 int nArg, /* Number of argument */ 360 const FuncDef *pFunc, /* The function to be invoked */ 361 int eCallCtx /* Calling context */ 362 ){ 363 Vdbe *v = pParse->pVdbe; 364 int nByte; 365 int addr; 366 sqlite3_context *pCtx; 367 assert( v ); 368 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*); 369 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte); 370 if( pCtx==0 ){ 371 assert( pParse->db->mallocFailed ); 372 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc); 373 return 0; 374 } 375 pCtx->pOut = 0; 376 pCtx->pFunc = (FuncDef*)pFunc; 377 pCtx->pVdbe = 0; 378 pCtx->isError = 0; 379 pCtx->argc = nArg; 380 pCtx->iOp = sqlite3VdbeCurrentAddr(v); 381 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function, 382 p1, p2, p3, (char*)pCtx, P4_FUNCCTX); 383 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef); 384 return addr; 385 } 386 387 /* 388 ** Add an opcode that includes the p4 value with a P4_INT64 or 389 ** P4_REAL type. 390 */ 391 int sqlite3VdbeAddOp4Dup8( 392 Vdbe *p, /* Add the opcode to this VM */ 393 int op, /* The new opcode */ 394 int p1, /* The P1 operand */ 395 int p2, /* The P2 operand */ 396 int p3, /* The P3 operand */ 397 const u8 *zP4, /* The P4 operand */ 398 int p4type /* P4 operand type */ 399 ){ 400 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 401 if( p4copy ) memcpy(p4copy, zP4, 8); 402 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 403 } 404 405 #ifndef SQLITE_OMIT_EXPLAIN 406 /* 407 ** Return the address of the current EXPLAIN QUERY PLAN baseline. 408 ** 0 means "none". 409 */ 410 int sqlite3VdbeExplainParent(Parse *pParse){ 411 VdbeOp *pOp; 412 if( pParse->addrExplain==0 ) return 0; 413 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); 414 return pOp->p2; 415 } 416 417 /* 418 ** Set a debugger breakpoint on the following routine in order to 419 ** monitor the EXPLAIN QUERY PLAN code generation. 420 */ 421 #if defined(SQLITE_DEBUG) 422 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ 423 (void)z1; 424 (void)z2; 425 } 426 #endif 427 428 /* 429 ** Add a new OP_Explain opcode. 430 ** 431 ** If the bPush flag is true, then make this opcode the parent for 432 ** subsequent Explains until sqlite3VdbeExplainPop() is called. 433 */ 434 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ 435 #ifndef SQLITE_DEBUG 436 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined. 437 ** But omit them (for performance) during production builds */ 438 if( pParse->explain==2 ) 439 #endif 440 { 441 char *zMsg; 442 Vdbe *v; 443 va_list ap; 444 int iThis; 445 va_start(ap, zFmt); 446 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); 447 va_end(ap); 448 v = pParse->pVdbe; 449 iThis = v->nOp; 450 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, 451 zMsg, P4_DYNAMIC); 452 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z); 453 if( bPush){ 454 pParse->addrExplain = iThis; 455 } 456 } 457 } 458 459 /* 460 ** Pop the EXPLAIN QUERY PLAN stack one level. 461 */ 462 void sqlite3VdbeExplainPop(Parse *pParse){ 463 sqlite3ExplainBreakpoint("POP", 0); 464 pParse->addrExplain = sqlite3VdbeExplainParent(pParse); 465 } 466 #endif /* SQLITE_OMIT_EXPLAIN */ 467 468 /* 469 ** Add an OP_ParseSchema opcode. This routine is broken out from 470 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 471 ** as having been used. 472 ** 473 ** The zWhere string must have been obtained from sqlite3_malloc(). 474 ** This routine will take ownership of the allocated memory. 475 */ 476 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){ 477 int j; 478 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 479 sqlite3VdbeChangeP5(p, p5); 480 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 481 sqlite3MayAbort(p->pParse); 482 } 483 484 /* 485 ** Add an opcode that includes the p4 value as an integer. 486 */ 487 int sqlite3VdbeAddOp4Int( 488 Vdbe *p, /* Add the opcode to this VM */ 489 int op, /* The new opcode */ 490 int p1, /* The P1 operand */ 491 int p2, /* The P2 operand */ 492 int p3, /* The P3 operand */ 493 int p4 /* The P4 operand as an integer */ 494 ){ 495 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 496 if( p->db->mallocFailed==0 ){ 497 VdbeOp *pOp = &p->aOp[addr]; 498 pOp->p4type = P4_INT32; 499 pOp->p4.i = p4; 500 } 501 return addr; 502 } 503 504 /* Insert the end of a co-routine 505 */ 506 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 507 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 508 509 /* Clear the temporary register cache, thereby ensuring that each 510 ** co-routine has its own independent set of registers, because co-routines 511 ** might expect their registers to be preserved across an OP_Yield, and 512 ** that could cause problems if two or more co-routines are using the same 513 ** temporary register. 514 */ 515 v->pParse->nTempReg = 0; 516 v->pParse->nRangeReg = 0; 517 } 518 519 /* 520 ** Create a new symbolic label for an instruction that has yet to be 521 ** coded. The symbolic label is really just a negative number. The 522 ** label can be used as the P2 value of an operation. Later, when 523 ** the label is resolved to a specific address, the VDBE will scan 524 ** through its operation list and change all values of P2 which match 525 ** the label into the resolved address. 526 ** 527 ** The VDBE knows that a P2 value is a label because labels are 528 ** always negative and P2 values are suppose to be non-negative. 529 ** Hence, a negative P2 value is a label that has yet to be resolved. 530 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP 531 ** property. 532 ** 533 ** Variable usage notes: 534 ** 535 ** Parse.aLabel[x] Stores the address that the x-th label resolves 536 ** into. For testing (SQLITE_DEBUG), unresolved 537 ** labels stores -1, but that is not required. 538 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[] 539 ** Parse.nLabel The *negative* of the number of labels that have 540 ** been issued. The negative is stored because 541 ** that gives a performance improvement over storing 542 ** the equivalent positive value. 543 */ 544 int sqlite3VdbeMakeLabel(Parse *pParse){ 545 return --pParse->nLabel; 546 } 547 548 /* 549 ** Resolve label "x" to be the address of the next instruction to 550 ** be inserted. The parameter "x" must have been obtained from 551 ** a prior call to sqlite3VdbeMakeLabel(). 552 */ 553 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){ 554 int nNewSize = 10 - p->nLabel; 555 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 556 nNewSize*sizeof(p->aLabel[0])); 557 if( p->aLabel==0 ){ 558 p->nLabelAlloc = 0; 559 }else{ 560 #ifdef SQLITE_DEBUG 561 int i; 562 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1; 563 #endif 564 p->nLabelAlloc = nNewSize; 565 p->aLabel[j] = v->nOp; 566 } 567 } 568 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 569 Parse *p = v->pParse; 570 int j = ADDR(x); 571 assert( v->iVdbeMagic==VDBE_MAGIC_INIT ); 572 assert( j<-p->nLabel ); 573 assert( j>=0 ); 574 #ifdef SQLITE_DEBUG 575 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 576 printf("RESOLVE LABEL %d to %d\n", x, v->nOp); 577 } 578 #endif 579 if( p->nLabelAlloc + p->nLabel < 0 ){ 580 resizeResolveLabel(p,v,j); 581 }else{ 582 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ 583 p->aLabel[j] = v->nOp; 584 } 585 } 586 587 /* 588 ** Mark the VDBE as one that can only be run one time. 589 */ 590 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 591 p->runOnlyOnce = 1; 592 } 593 594 /* 595 ** Mark the VDBE as one that can only be run multiple times. 596 */ 597 void sqlite3VdbeReusable(Vdbe *p){ 598 p->runOnlyOnce = 0; 599 } 600 601 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 602 603 /* 604 ** The following type and function are used to iterate through all opcodes 605 ** in a Vdbe main program and each of the sub-programs (triggers) it may 606 ** invoke directly or indirectly. It should be used as follows: 607 ** 608 ** Op *pOp; 609 ** VdbeOpIter sIter; 610 ** 611 ** memset(&sIter, 0, sizeof(sIter)); 612 ** sIter.v = v; // v is of type Vdbe* 613 ** while( (pOp = opIterNext(&sIter)) ){ 614 ** // Do something with pOp 615 ** } 616 ** sqlite3DbFree(v->db, sIter.apSub); 617 ** 618 */ 619 typedef struct VdbeOpIter VdbeOpIter; 620 struct VdbeOpIter { 621 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 622 SubProgram **apSub; /* Array of subprograms */ 623 int nSub; /* Number of entries in apSub */ 624 int iAddr; /* Address of next instruction to return */ 625 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 626 }; 627 static Op *opIterNext(VdbeOpIter *p){ 628 Vdbe *v = p->v; 629 Op *pRet = 0; 630 Op *aOp; 631 int nOp; 632 633 if( p->iSub<=p->nSub ){ 634 635 if( p->iSub==0 ){ 636 aOp = v->aOp; 637 nOp = v->nOp; 638 }else{ 639 aOp = p->apSub[p->iSub-1]->aOp; 640 nOp = p->apSub[p->iSub-1]->nOp; 641 } 642 assert( p->iAddr<nOp ); 643 644 pRet = &aOp[p->iAddr]; 645 p->iAddr++; 646 if( p->iAddr==nOp ){ 647 p->iSub++; 648 p->iAddr = 0; 649 } 650 651 if( pRet->p4type==P4_SUBPROGRAM ){ 652 int nByte = (p->nSub+1)*sizeof(SubProgram*); 653 int j; 654 for(j=0; j<p->nSub; j++){ 655 if( p->apSub[j]==pRet->p4.pProgram ) break; 656 } 657 if( j==p->nSub ){ 658 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 659 if( !p->apSub ){ 660 pRet = 0; 661 }else{ 662 p->apSub[p->nSub++] = pRet->p4.pProgram; 663 } 664 } 665 } 666 } 667 668 return pRet; 669 } 670 671 /* 672 ** Check if the program stored in the VM associated with pParse may 673 ** throw an ABORT exception (causing the statement, but not entire transaction 674 ** to be rolled back). This condition is true if the main program or any 675 ** sub-programs contains any of the following: 676 ** 677 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 678 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 679 ** * OP_Destroy 680 ** * OP_VUpdate 681 ** * OP_VCreate 682 ** * OP_VRename 683 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 684 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 685 ** (for CREATE TABLE AS SELECT ...) 686 ** 687 ** Then check that the value of Parse.mayAbort is true if an 688 ** ABORT may be thrown, or false otherwise. Return true if it does 689 ** match, or false otherwise. This function is intended to be used as 690 ** part of an assert statement in the compiler. Similar to: 691 ** 692 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 693 */ 694 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 695 int hasAbort = 0; 696 int hasFkCounter = 0; 697 int hasCreateTable = 0; 698 int hasCreateIndex = 0; 699 int hasInitCoroutine = 0; 700 Op *pOp; 701 VdbeOpIter sIter; 702 memset(&sIter, 0, sizeof(sIter)); 703 sIter.v = v; 704 705 while( (pOp = opIterNext(&sIter))!=0 ){ 706 int opcode = pOp->opcode; 707 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 708 || opcode==OP_VDestroy 709 || opcode==OP_VCreate 710 || opcode==OP_ParseSchema 711 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 712 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort)) 713 ){ 714 hasAbort = 1; 715 break; 716 } 717 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; 718 if( mayAbort ){ 719 /* hasCreateIndex may also be set for some DELETE statements that use 720 ** OP_Clear. So this routine may end up returning true in the case 721 ** where a "DELETE FROM tbl" has a statement-journal but does not 722 ** require one. This is not so bad - it is an inefficiency, not a bug. */ 723 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1; 724 if( opcode==OP_Clear ) hasCreateIndex = 1; 725 } 726 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 727 #ifndef SQLITE_OMIT_FOREIGN_KEY 728 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 729 hasFkCounter = 1; 730 } 731 #endif 732 } 733 sqlite3DbFree(v->db, sIter.apSub); 734 735 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 736 ** If malloc failed, then the while() loop above may not have iterated 737 ** through all opcodes and hasAbort may be set incorrectly. Return 738 ** true for this case to prevent the assert() in the callers frame 739 ** from failing. */ 740 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 741 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex 742 ); 743 } 744 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 745 746 #ifdef SQLITE_DEBUG 747 /* 748 ** Increment the nWrite counter in the VDBE if the cursor is not an 749 ** ephemeral cursor, or if the cursor argument is NULL. 750 */ 751 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ 752 if( pC==0 753 || (pC->eCurType!=CURTYPE_SORTER 754 && pC->eCurType!=CURTYPE_PSEUDO 755 && !pC->isEphemeral) 756 ){ 757 p->nWrite++; 758 } 759 } 760 #endif 761 762 #ifdef SQLITE_DEBUG 763 /* 764 ** Assert if an Abort at this point in time might result in a corrupt 765 ** database. 766 */ 767 void sqlite3VdbeAssertAbortable(Vdbe *p){ 768 assert( p->nWrite==0 || p->usesStmtJournal ); 769 } 770 #endif 771 772 /* 773 ** This routine is called after all opcodes have been inserted. It loops 774 ** through all the opcodes and fixes up some details. 775 ** 776 ** (1) For each jump instruction with a negative P2 value (a label) 777 ** resolve the P2 value to an actual address. 778 ** 779 ** (2) Compute the maximum number of arguments used by any SQL function 780 ** and store that value in *pMaxFuncArgs. 781 ** 782 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 783 ** indicate what the prepared statement actually does. 784 ** 785 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 786 ** 787 ** (5) Reclaim the memory allocated for storing labels. 788 ** 789 ** This routine will only function correctly if the mkopcodeh.tcl generator 790 ** script numbers the opcodes correctly. Changes to this routine must be 791 ** coordinated with changes to mkopcodeh.tcl. 792 */ 793 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 794 int nMaxArgs = *pMaxFuncArgs; 795 Op *pOp; 796 Parse *pParse = p->pParse; 797 int *aLabel = pParse->aLabel; 798 p->readOnly = 1; 799 p->bIsReader = 0; 800 pOp = &p->aOp[p->nOp-1]; 801 while(1){ 802 803 /* Only JUMP opcodes and the short list of special opcodes in the switch 804 ** below need to be considered. The mkopcodeh.tcl generator script groups 805 ** all these opcodes together near the front of the opcode list. Skip 806 ** any opcode that does not need processing by virtual of the fact that 807 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 808 */ 809 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 810 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 811 ** cases from this switch! */ 812 switch( pOp->opcode ){ 813 case OP_Transaction: { 814 if( pOp->p2!=0 ) p->readOnly = 0; 815 /* no break */ deliberate_fall_through 816 } 817 case OP_AutoCommit: 818 case OP_Savepoint: { 819 p->bIsReader = 1; 820 break; 821 } 822 #ifndef SQLITE_OMIT_WAL 823 case OP_Checkpoint: 824 #endif 825 case OP_Vacuum: 826 case OP_JournalMode: { 827 p->readOnly = 0; 828 p->bIsReader = 1; 829 break; 830 } 831 case OP_Next: 832 case OP_SorterNext: { 833 pOp->p4.xAdvance = sqlite3BtreeNext; 834 pOp->p4type = P4_ADVANCE; 835 /* The code generator never codes any of these opcodes as a jump 836 ** to a label. They are always coded as a jump backwards to a 837 ** known address */ 838 assert( pOp->p2>=0 ); 839 break; 840 } 841 case OP_Prev: { 842 pOp->p4.xAdvance = sqlite3BtreePrevious; 843 pOp->p4type = P4_ADVANCE; 844 /* The code generator never codes any of these opcodes as a jump 845 ** to a label. They are always coded as a jump backwards to a 846 ** known address */ 847 assert( pOp->p2>=0 ); 848 break; 849 } 850 #ifndef SQLITE_OMIT_VIRTUALTABLE 851 case OP_VUpdate: { 852 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 853 break; 854 } 855 case OP_VFilter: { 856 int n; 857 assert( (pOp - p->aOp) >= 3 ); 858 assert( pOp[-1].opcode==OP_Integer ); 859 n = pOp[-1].p1; 860 if( n>nMaxArgs ) nMaxArgs = n; 861 /* Fall through into the default case */ 862 /* no break */ deliberate_fall_through 863 } 864 #endif 865 default: { 866 if( pOp->p2<0 ){ 867 /* The mkopcodeh.tcl script has so arranged things that the only 868 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 869 ** have non-negative values for P2. */ 870 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 871 assert( ADDR(pOp->p2)<-pParse->nLabel ); 872 pOp->p2 = aLabel[ADDR(pOp->p2)]; 873 } 874 break; 875 } 876 } 877 /* The mkopcodeh.tcl script has so arranged things that the only 878 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 879 ** have non-negative values for P2. */ 880 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 881 } 882 if( pOp==p->aOp ) break; 883 pOp--; 884 } 885 sqlite3DbFree(p->db, pParse->aLabel); 886 pParse->aLabel = 0; 887 pParse->nLabel = 0; 888 *pMaxFuncArgs = nMaxArgs; 889 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 890 } 891 892 /* 893 ** Return the address of the next instruction to be inserted. 894 */ 895 int sqlite3VdbeCurrentAddr(Vdbe *p){ 896 assert( p->iVdbeMagic==VDBE_MAGIC_INIT ); 897 return p->nOp; 898 } 899 900 /* 901 ** Verify that at least N opcode slots are available in p without 902 ** having to malloc for more space (except when compiled using 903 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 904 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 905 ** fail due to a OOM fault and hence that the return value from 906 ** sqlite3VdbeAddOpList() will always be non-NULL. 907 */ 908 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 909 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 910 assert( p->nOp + N <= p->nOpAlloc ); 911 } 912 #endif 913 914 /* 915 ** Verify that the VM passed as the only argument does not contain 916 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 917 ** by code in pragma.c to ensure that the implementation of certain 918 ** pragmas comports with the flags specified in the mkpragmatab.tcl 919 ** script. 920 */ 921 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 922 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 923 int i; 924 for(i=0; i<p->nOp; i++){ 925 assert( p->aOp[i].opcode!=OP_ResultRow ); 926 } 927 } 928 #endif 929 930 /* 931 ** Generate code (a single OP_Abortable opcode) that will 932 ** verify that the VDBE program can safely call Abort in the current 933 ** context. 934 */ 935 #if defined(SQLITE_DEBUG) 936 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ 937 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); 938 } 939 #endif 940 941 /* 942 ** This function returns a pointer to the array of opcodes associated with 943 ** the Vdbe passed as the first argument. It is the callers responsibility 944 ** to arrange for the returned array to be eventually freed using the 945 ** vdbeFreeOpArray() function. 946 ** 947 ** Before returning, *pnOp is set to the number of entries in the returned 948 ** array. Also, *pnMaxArg is set to the larger of its current value and 949 ** the number of entries in the Vdbe.apArg[] array required to execute the 950 ** returned program. 951 */ 952 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 953 VdbeOp *aOp = p->aOp; 954 assert( aOp && !p->db->mallocFailed ); 955 956 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 957 assert( DbMaskAllZero(p->btreeMask) ); 958 959 resolveP2Values(p, pnMaxArg); 960 *pnOp = p->nOp; 961 p->aOp = 0; 962 return aOp; 963 } 964 965 /* 966 ** Add a whole list of operations to the operation stack. Return a 967 ** pointer to the first operation inserted. 968 ** 969 ** Non-zero P2 arguments to jump instructions are automatically adjusted 970 ** so that the jump target is relative to the first operation inserted. 971 */ 972 VdbeOp *sqlite3VdbeAddOpList( 973 Vdbe *p, /* Add opcodes to the prepared statement */ 974 int nOp, /* Number of opcodes to add */ 975 VdbeOpList const *aOp, /* The opcodes to be added */ 976 int iLineno /* Source-file line number of first opcode */ 977 ){ 978 int i; 979 VdbeOp *pOut, *pFirst; 980 assert( nOp>0 ); 981 assert( p->iVdbeMagic==VDBE_MAGIC_INIT ); 982 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){ 983 return 0; 984 } 985 pFirst = pOut = &p->aOp[p->nOp]; 986 for(i=0; i<nOp; i++, aOp++, pOut++){ 987 pOut->opcode = aOp->opcode; 988 pOut->p1 = aOp->p1; 989 pOut->p2 = aOp->p2; 990 assert( aOp->p2>=0 ); 991 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 992 pOut->p2 += p->nOp; 993 } 994 pOut->p3 = aOp->p3; 995 pOut->p4type = P4_NOTUSED; 996 pOut->p4.p = 0; 997 pOut->p5 = 0; 998 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 999 pOut->zComment = 0; 1000 #endif 1001 #ifdef SQLITE_VDBE_COVERAGE 1002 pOut->iSrcLine = iLineno+i; 1003 #else 1004 (void)iLineno; 1005 #endif 1006 #ifdef SQLITE_DEBUG 1007 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 1008 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 1009 } 1010 #endif 1011 } 1012 p->nOp += nOp; 1013 return pFirst; 1014 } 1015 1016 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 1017 /* 1018 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 1019 */ 1020 void sqlite3VdbeScanStatus( 1021 Vdbe *p, /* VM to add scanstatus() to */ 1022 int addrExplain, /* Address of OP_Explain (or 0) */ 1023 int addrLoop, /* Address of loop counter */ 1024 int addrVisit, /* Address of rows visited counter */ 1025 LogEst nEst, /* Estimated number of output rows */ 1026 const char *zName /* Name of table or index being scanned */ 1027 ){ 1028 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus); 1029 ScanStatus *aNew; 1030 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 1031 if( aNew ){ 1032 ScanStatus *pNew = &aNew[p->nScan++]; 1033 pNew->addrExplain = addrExplain; 1034 pNew->addrLoop = addrLoop; 1035 pNew->addrVisit = addrVisit; 1036 pNew->nEst = nEst; 1037 pNew->zName = sqlite3DbStrDup(p->db, zName); 1038 p->aScan = aNew; 1039 } 1040 } 1041 #endif 1042 1043 1044 /* 1045 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 1046 ** for a specific instruction. 1047 */ 1048 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){ 1049 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 1050 } 1051 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ 1052 sqlite3VdbeGetOp(p,addr)->p1 = val; 1053 } 1054 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ 1055 sqlite3VdbeGetOp(p,addr)->p2 = val; 1056 } 1057 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ 1058 sqlite3VdbeGetOp(p,addr)->p3 = val; 1059 } 1060 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 1061 assert( p->nOp>0 || p->db->mallocFailed ); 1062 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 1063 } 1064 1065 /* 1066 ** Change the P2 operand of instruction addr so that it points to 1067 ** the address of the next instruction to be coded. 1068 */ 1069 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 1070 sqlite3VdbeChangeP2(p, addr, p->nOp); 1071 } 1072 1073 /* 1074 ** Change the P2 operand of the jump instruction at addr so that 1075 ** the jump lands on the next opcode. Or if the jump instruction was 1076 ** the previous opcode (and is thus a no-op) then simply back up 1077 ** the next instruction counter by one slot so that the jump is 1078 ** overwritten by the next inserted opcode. 1079 ** 1080 ** This routine is an optimization of sqlite3VdbeJumpHere() that 1081 ** strives to omit useless byte-code like this: 1082 ** 1083 ** 7 Once 0 8 0 1084 ** 8 ... 1085 */ 1086 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){ 1087 if( addr==p->nOp-1 ){ 1088 assert( p->aOp[addr].opcode==OP_Once 1089 || p->aOp[addr].opcode==OP_If 1090 || p->aOp[addr].opcode==OP_FkIfZero ); 1091 assert( p->aOp[addr].p4type==0 ); 1092 #ifdef SQLITE_VDBE_COVERAGE 1093 sqlite3VdbeGetOp(p,-1)->iSrcLine = 0; /* Erase VdbeCoverage() macros */ 1094 #endif 1095 p->nOp--; 1096 }else{ 1097 sqlite3VdbeChangeP2(p, addr, p->nOp); 1098 } 1099 } 1100 1101 1102 /* 1103 ** If the input FuncDef structure is ephemeral, then free it. If 1104 ** the FuncDef is not ephermal, then do nothing. 1105 */ 1106 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 1107 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 1108 sqlite3DbFreeNN(db, pDef); 1109 } 1110 } 1111 1112 /* 1113 ** Delete a P4 value if necessary. 1114 */ 1115 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 1116 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1117 sqlite3DbFreeNN(db, p); 1118 } 1119 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 1120 freeEphemeralFunction(db, p->pFunc); 1121 sqlite3DbFreeNN(db, p); 1122 } 1123 static void freeP4(sqlite3 *db, int p4type, void *p4){ 1124 assert( db ); 1125 switch( p4type ){ 1126 case P4_FUNCCTX: { 1127 freeP4FuncCtx(db, (sqlite3_context*)p4); 1128 break; 1129 } 1130 case P4_REAL: 1131 case P4_INT64: 1132 case P4_DYNAMIC: 1133 case P4_DYNBLOB: 1134 case P4_INTARRAY: { 1135 sqlite3DbFree(db, p4); 1136 break; 1137 } 1138 case P4_KEYINFO: { 1139 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 1140 break; 1141 } 1142 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1143 case P4_EXPR: { 1144 sqlite3ExprDelete(db, (Expr*)p4); 1145 break; 1146 } 1147 #endif 1148 case P4_FUNCDEF: { 1149 freeEphemeralFunction(db, (FuncDef*)p4); 1150 break; 1151 } 1152 case P4_MEM: { 1153 if( db->pnBytesFreed==0 ){ 1154 sqlite3ValueFree((sqlite3_value*)p4); 1155 }else{ 1156 freeP4Mem(db, (Mem*)p4); 1157 } 1158 break; 1159 } 1160 case P4_VTAB : { 1161 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 1162 break; 1163 } 1164 } 1165 } 1166 1167 /* 1168 ** Free the space allocated for aOp and any p4 values allocated for the 1169 ** opcodes contained within. If aOp is not NULL it is assumed to contain 1170 ** nOp entries. 1171 */ 1172 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 1173 if( aOp ){ 1174 Op *pOp; 1175 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){ 1176 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 1177 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1178 sqlite3DbFree(db, pOp->zComment); 1179 #endif 1180 } 1181 sqlite3DbFreeNN(db, aOp); 1182 } 1183 } 1184 1185 /* 1186 ** Link the SubProgram object passed as the second argument into the linked 1187 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 1188 ** objects when the VM is no longer required. 1189 */ 1190 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 1191 p->pNext = pVdbe->pProgram; 1192 pVdbe->pProgram = p; 1193 } 1194 1195 /* 1196 ** Return true if the given Vdbe has any SubPrograms. 1197 */ 1198 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){ 1199 return pVdbe->pProgram!=0; 1200 } 1201 1202 /* 1203 ** Change the opcode at addr into OP_Noop 1204 */ 1205 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 1206 VdbeOp *pOp; 1207 if( p->db->mallocFailed ) return 0; 1208 assert( addr>=0 && addr<p->nOp ); 1209 pOp = &p->aOp[addr]; 1210 freeP4(p->db, pOp->p4type, pOp->p4.p); 1211 pOp->p4type = P4_NOTUSED; 1212 pOp->p4.z = 0; 1213 pOp->opcode = OP_Noop; 1214 return 1; 1215 } 1216 1217 /* 1218 ** If the last opcode is "op" and it is not a jump destination, 1219 ** then remove it. Return true if and only if an opcode was removed. 1220 */ 1221 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 1222 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 1223 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 1224 }else{ 1225 return 0; 1226 } 1227 } 1228 1229 #ifdef SQLITE_DEBUG 1230 /* 1231 ** Generate an OP_ReleaseReg opcode to indicate that a range of 1232 ** registers, except any identified by mask, are no longer in use. 1233 */ 1234 void sqlite3VdbeReleaseRegisters( 1235 Parse *pParse, /* Parsing context */ 1236 int iFirst, /* Index of first register to be released */ 1237 int N, /* Number of registers to release */ 1238 u32 mask, /* Mask of registers to NOT release */ 1239 int bUndefine /* If true, mark registers as undefined */ 1240 ){ 1241 if( N==0 ) return; 1242 assert( pParse->pVdbe ); 1243 assert( iFirst>=1 ); 1244 assert( iFirst+N-1<=pParse->nMem ); 1245 if( N<=31 && mask!=0 ){ 1246 while( N>0 && (mask&1)!=0 ){ 1247 mask >>= 1; 1248 iFirst++; 1249 N--; 1250 } 1251 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){ 1252 mask &= ~MASKBIT32(N-1); 1253 N--; 1254 } 1255 } 1256 if( N>0 ){ 1257 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); 1258 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); 1259 } 1260 } 1261 #endif /* SQLITE_DEBUG */ 1262 1263 1264 /* 1265 ** Change the value of the P4 operand for a specific instruction. 1266 ** This routine is useful when a large program is loaded from a 1267 ** static array using sqlite3VdbeAddOpList but we want to make a 1268 ** few minor changes to the program. 1269 ** 1270 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 1271 ** the string is made into memory obtained from sqlite3_malloc(). 1272 ** A value of n==0 means copy bytes of zP4 up to and including the 1273 ** first null byte. If n>0 then copy n+1 bytes of zP4. 1274 ** 1275 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 1276 ** to a string or structure that is guaranteed to exist for the lifetime of 1277 ** the Vdbe. In these cases we can just copy the pointer. 1278 ** 1279 ** If addr<0 then change P4 on the most recently inserted instruction. 1280 */ 1281 static void SQLITE_NOINLINE vdbeChangeP4Full( 1282 Vdbe *p, 1283 Op *pOp, 1284 const char *zP4, 1285 int n 1286 ){ 1287 if( pOp->p4type ){ 1288 freeP4(p->db, pOp->p4type, pOp->p4.p); 1289 pOp->p4type = 0; 1290 pOp->p4.p = 0; 1291 } 1292 if( n<0 ){ 1293 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 1294 }else{ 1295 if( n==0 ) n = sqlite3Strlen30(zP4); 1296 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 1297 pOp->p4type = P4_DYNAMIC; 1298 } 1299 } 1300 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 1301 Op *pOp; 1302 sqlite3 *db; 1303 assert( p!=0 ); 1304 db = p->db; 1305 assert( p->iVdbeMagic==VDBE_MAGIC_INIT ); 1306 assert( p->aOp!=0 || db->mallocFailed ); 1307 if( db->mallocFailed ){ 1308 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 1309 return; 1310 } 1311 assert( p->nOp>0 ); 1312 assert( addr<p->nOp ); 1313 if( addr<0 ){ 1314 addr = p->nOp - 1; 1315 } 1316 pOp = &p->aOp[addr]; 1317 if( n>=0 || pOp->p4type ){ 1318 vdbeChangeP4Full(p, pOp, zP4, n); 1319 return; 1320 } 1321 if( n==P4_INT32 ){ 1322 /* Note: this cast is safe, because the origin data point was an int 1323 ** that was cast to a (const char *). */ 1324 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 1325 pOp->p4type = P4_INT32; 1326 }else if( zP4!=0 ){ 1327 assert( n<0 ); 1328 pOp->p4.p = (void*)zP4; 1329 pOp->p4type = (signed char)n; 1330 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 1331 } 1332 } 1333 1334 /* 1335 ** Change the P4 operand of the most recently coded instruction 1336 ** to the value defined by the arguments. This is a high-speed 1337 ** version of sqlite3VdbeChangeP4(). 1338 ** 1339 ** The P4 operand must not have been previously defined. And the new 1340 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 1341 ** those cases. 1342 */ 1343 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1344 VdbeOp *pOp; 1345 assert( n!=P4_INT32 && n!=P4_VTAB ); 1346 assert( n<=0 ); 1347 if( p->db->mallocFailed ){ 1348 freeP4(p->db, n, pP4); 1349 }else{ 1350 assert( pP4!=0 ); 1351 assert( p->nOp>0 ); 1352 pOp = &p->aOp[p->nOp-1]; 1353 assert( pOp->p4type==P4_NOTUSED ); 1354 pOp->p4type = n; 1355 pOp->p4.p = pP4; 1356 } 1357 } 1358 1359 /* 1360 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1361 ** index given. 1362 */ 1363 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1364 Vdbe *v = pParse->pVdbe; 1365 KeyInfo *pKeyInfo; 1366 assert( v!=0 ); 1367 assert( pIdx!=0 ); 1368 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1369 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1370 } 1371 1372 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1373 /* 1374 ** Change the comment on the most recently coded instruction. Or 1375 ** insert a No-op and add the comment to that new instruction. This 1376 ** makes the code easier to read during debugging. None of this happens 1377 ** in a production build. 1378 */ 1379 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1380 assert( p->nOp>0 || p->aOp==0 ); 1381 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed 1382 || p->pParse->nErr>0 ); 1383 if( p->nOp ){ 1384 assert( p->aOp ); 1385 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1386 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1387 } 1388 } 1389 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1390 va_list ap; 1391 if( p ){ 1392 va_start(ap, zFormat); 1393 vdbeVComment(p, zFormat, ap); 1394 va_end(ap); 1395 } 1396 } 1397 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1398 va_list ap; 1399 if( p ){ 1400 sqlite3VdbeAddOp0(p, OP_Noop); 1401 va_start(ap, zFormat); 1402 vdbeVComment(p, zFormat, ap); 1403 va_end(ap); 1404 } 1405 } 1406 #endif /* NDEBUG */ 1407 1408 #ifdef SQLITE_VDBE_COVERAGE 1409 /* 1410 ** Set the value if the iSrcLine field for the previously coded instruction. 1411 */ 1412 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1413 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1414 } 1415 #endif /* SQLITE_VDBE_COVERAGE */ 1416 1417 /* 1418 ** Return the opcode for a given address. If the address is -1, then 1419 ** return the most recently inserted opcode. 1420 ** 1421 ** If a memory allocation error has occurred prior to the calling of this 1422 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1423 ** is readable but not writable, though it is cast to a writable value. 1424 ** The return of a dummy opcode allows the call to continue functioning 1425 ** after an OOM fault without having to check to see if the return from 1426 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1427 ** dummy will never be written to. This is verified by code inspection and 1428 ** by running with Valgrind. 1429 */ 1430 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1431 /* C89 specifies that the constant "dummy" will be initialized to all 1432 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1433 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1434 assert( p->iVdbeMagic==VDBE_MAGIC_INIT ); 1435 if( addr<0 ){ 1436 addr = p->nOp - 1; 1437 } 1438 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1439 if( p->db->mallocFailed ){ 1440 return (VdbeOp*)&dummy; 1441 }else{ 1442 return &p->aOp[addr]; 1443 } 1444 } 1445 1446 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1447 /* 1448 ** Return an integer value for one of the parameters to the opcode pOp 1449 ** determined by character c. 1450 */ 1451 static int translateP(char c, const Op *pOp){ 1452 if( c=='1' ) return pOp->p1; 1453 if( c=='2' ) return pOp->p2; 1454 if( c=='3' ) return pOp->p3; 1455 if( c=='4' ) return pOp->p4.i; 1456 return pOp->p5; 1457 } 1458 1459 /* 1460 ** Compute a string for the "comment" field of a VDBE opcode listing. 1461 ** 1462 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1463 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1464 ** absence of other comments, this synopsis becomes the comment on the opcode. 1465 ** Some translation occurs: 1466 ** 1467 ** "PX" -> "r[X]" 1468 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1469 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1470 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1471 */ 1472 char *sqlite3VdbeDisplayComment( 1473 sqlite3 *db, /* Optional - Oom error reporting only */ 1474 const Op *pOp, /* The opcode to be commented */ 1475 const char *zP4 /* Previously obtained value for P4 */ 1476 ){ 1477 const char *zOpName; 1478 const char *zSynopsis; 1479 int nOpName; 1480 int ii; 1481 char zAlt[50]; 1482 StrAccum x; 1483 1484 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1485 zOpName = sqlite3OpcodeName(pOp->opcode); 1486 nOpName = sqlite3Strlen30(zOpName); 1487 if( zOpName[nOpName+1] ){ 1488 int seenCom = 0; 1489 char c; 1490 zSynopsis = zOpName + nOpName + 1; 1491 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1492 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1493 zSynopsis = zAlt; 1494 } 1495 for(ii=0; (c = zSynopsis[ii])!=0; ii++){ 1496 if( c=='P' ){ 1497 c = zSynopsis[++ii]; 1498 if( c=='4' ){ 1499 sqlite3_str_appendall(&x, zP4); 1500 }else if( c=='X' ){ 1501 sqlite3_str_appendall(&x, pOp->zComment); 1502 seenCom = 1; 1503 }else{ 1504 int v1 = translateP(c, pOp); 1505 int v2; 1506 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1507 ii += 3; 1508 v2 = translateP(zSynopsis[ii], pOp); 1509 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1510 ii += 2; 1511 v2++; 1512 } 1513 if( v2<2 ){ 1514 sqlite3_str_appendf(&x, "%d", v1); 1515 }else{ 1516 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1); 1517 } 1518 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){ 1519 sqlite3_context *pCtx = pOp->p4.pCtx; 1520 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){ 1521 sqlite3_str_appendf(&x, "%d", v1); 1522 }else if( pCtx->argc>1 ){ 1523 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1); 1524 }else if( x.accError==0 ){ 1525 assert( x.nChar>2 ); 1526 x.nChar -= 2; 1527 ii++; 1528 } 1529 ii += 3; 1530 }else{ 1531 sqlite3_str_appendf(&x, "%d", v1); 1532 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1533 ii += 4; 1534 } 1535 } 1536 } 1537 }else{ 1538 sqlite3_str_appendchar(&x, 1, c); 1539 } 1540 } 1541 if( !seenCom && pOp->zComment ){ 1542 sqlite3_str_appendf(&x, "; %s", pOp->zComment); 1543 } 1544 }else if( pOp->zComment ){ 1545 sqlite3_str_appendall(&x, pOp->zComment); 1546 } 1547 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){ 1548 sqlite3OomFault(db); 1549 } 1550 return sqlite3StrAccumFinish(&x); 1551 } 1552 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */ 1553 1554 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1555 /* 1556 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1557 ** that can be displayed in the P4 column of EXPLAIN output. 1558 */ 1559 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1560 const char *zOp = 0; 1561 switch( pExpr->op ){ 1562 case TK_STRING: 1563 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1564 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); 1565 break; 1566 case TK_INTEGER: 1567 sqlite3_str_appendf(p, "%d", pExpr->u.iValue); 1568 break; 1569 case TK_NULL: 1570 sqlite3_str_appendf(p, "NULL"); 1571 break; 1572 case TK_REGISTER: { 1573 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); 1574 break; 1575 } 1576 case TK_COLUMN: { 1577 if( pExpr->iColumn<0 ){ 1578 sqlite3_str_appendf(p, "rowid"); 1579 }else{ 1580 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); 1581 } 1582 break; 1583 } 1584 case TK_LT: zOp = "LT"; break; 1585 case TK_LE: zOp = "LE"; break; 1586 case TK_GT: zOp = "GT"; break; 1587 case TK_GE: zOp = "GE"; break; 1588 case TK_NE: zOp = "NE"; break; 1589 case TK_EQ: zOp = "EQ"; break; 1590 case TK_IS: zOp = "IS"; break; 1591 case TK_ISNOT: zOp = "ISNOT"; break; 1592 case TK_AND: zOp = "AND"; break; 1593 case TK_OR: zOp = "OR"; break; 1594 case TK_PLUS: zOp = "ADD"; break; 1595 case TK_STAR: zOp = "MUL"; break; 1596 case TK_MINUS: zOp = "SUB"; break; 1597 case TK_REM: zOp = "REM"; break; 1598 case TK_BITAND: zOp = "BITAND"; break; 1599 case TK_BITOR: zOp = "BITOR"; break; 1600 case TK_SLASH: zOp = "DIV"; break; 1601 case TK_LSHIFT: zOp = "LSHIFT"; break; 1602 case TK_RSHIFT: zOp = "RSHIFT"; break; 1603 case TK_CONCAT: zOp = "CONCAT"; break; 1604 case TK_UMINUS: zOp = "MINUS"; break; 1605 case TK_UPLUS: zOp = "PLUS"; break; 1606 case TK_BITNOT: zOp = "BITNOT"; break; 1607 case TK_NOT: zOp = "NOT"; break; 1608 case TK_ISNULL: zOp = "ISNULL"; break; 1609 case TK_NOTNULL: zOp = "NOTNULL"; break; 1610 1611 default: 1612 sqlite3_str_appendf(p, "%s", "expr"); 1613 break; 1614 } 1615 1616 if( zOp ){ 1617 sqlite3_str_appendf(p, "%s(", zOp); 1618 displayP4Expr(p, pExpr->pLeft); 1619 if( pExpr->pRight ){ 1620 sqlite3_str_append(p, ",", 1); 1621 displayP4Expr(p, pExpr->pRight); 1622 } 1623 sqlite3_str_append(p, ")", 1); 1624 } 1625 } 1626 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1627 1628 1629 #if VDBE_DISPLAY_P4 1630 /* 1631 ** Compute a string that describes the P4 parameter for an opcode. 1632 ** Use zTemp for any required temporary buffer space. 1633 */ 1634 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){ 1635 char *zP4 = 0; 1636 StrAccum x; 1637 1638 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1639 switch( pOp->p4type ){ 1640 case P4_KEYINFO: { 1641 int j; 1642 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1643 assert( pKeyInfo->aSortFlags!=0 ); 1644 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); 1645 for(j=0; j<pKeyInfo->nKeyField; j++){ 1646 CollSeq *pColl = pKeyInfo->aColl[j]; 1647 const char *zColl = pColl ? pColl->zName : ""; 1648 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1649 sqlite3_str_appendf(&x, ",%s%s%s", 1650 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "", 1651 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "", 1652 zColl); 1653 } 1654 sqlite3_str_append(&x, ")", 1); 1655 break; 1656 } 1657 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1658 case P4_EXPR: { 1659 displayP4Expr(&x, pOp->p4.pExpr); 1660 break; 1661 } 1662 #endif 1663 case P4_COLLSEQ: { 1664 static const char *const encnames[] = {"?", "8", "16LE", "16BE"}; 1665 CollSeq *pColl = pOp->p4.pColl; 1666 assert( pColl->enc<4 ); 1667 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName, 1668 encnames[pColl->enc]); 1669 break; 1670 } 1671 case P4_FUNCDEF: { 1672 FuncDef *pDef = pOp->p4.pFunc; 1673 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1674 break; 1675 } 1676 case P4_FUNCCTX: { 1677 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1678 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1679 break; 1680 } 1681 case P4_INT64: { 1682 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); 1683 break; 1684 } 1685 case P4_INT32: { 1686 sqlite3_str_appendf(&x, "%d", pOp->p4.i); 1687 break; 1688 } 1689 case P4_REAL: { 1690 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); 1691 break; 1692 } 1693 case P4_MEM: { 1694 Mem *pMem = pOp->p4.pMem; 1695 if( pMem->flags & MEM_Str ){ 1696 zP4 = pMem->z; 1697 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1698 sqlite3_str_appendf(&x, "%lld", pMem->u.i); 1699 }else if( pMem->flags & MEM_Real ){ 1700 sqlite3_str_appendf(&x, "%.16g", pMem->u.r); 1701 }else if( pMem->flags & MEM_Null ){ 1702 zP4 = "NULL"; 1703 }else{ 1704 assert( pMem->flags & MEM_Blob ); 1705 zP4 = "(blob)"; 1706 } 1707 break; 1708 } 1709 #ifndef SQLITE_OMIT_VIRTUALTABLE 1710 case P4_VTAB: { 1711 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1712 sqlite3_str_appendf(&x, "vtab:%p", pVtab); 1713 break; 1714 } 1715 #endif 1716 case P4_INTARRAY: { 1717 u32 i; 1718 u32 *ai = pOp->p4.ai; 1719 u32 n = ai[0]; /* The first element of an INTARRAY is always the 1720 ** count of the number of elements to follow */ 1721 for(i=1; i<=n; i++){ 1722 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]); 1723 } 1724 sqlite3_str_append(&x, "]", 1); 1725 break; 1726 } 1727 case P4_SUBPROGRAM: { 1728 zP4 = "program"; 1729 break; 1730 } 1731 case P4_DYNBLOB: 1732 case P4_ADVANCE: { 1733 break; 1734 } 1735 case P4_TABLE: { 1736 zP4 = pOp->p4.pTab->zName; 1737 break; 1738 } 1739 default: { 1740 zP4 = pOp->p4.z; 1741 } 1742 } 1743 if( zP4 ) sqlite3_str_appendall(&x, zP4); 1744 if( (x.accError & SQLITE_NOMEM)!=0 ){ 1745 sqlite3OomFault(db); 1746 } 1747 return sqlite3StrAccumFinish(&x); 1748 } 1749 #endif /* VDBE_DISPLAY_P4 */ 1750 1751 /* 1752 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1753 ** 1754 ** The prepared statements need to know in advance the complete set of 1755 ** attached databases that will be use. A mask of these databases 1756 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1757 ** p->btreeMask of databases that will require a lock. 1758 */ 1759 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1760 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1761 assert( i<(int)sizeof(p->btreeMask)*8 ); 1762 DbMaskSet(p->btreeMask, i); 1763 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1764 DbMaskSet(p->lockMask, i); 1765 } 1766 } 1767 1768 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1769 /* 1770 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1771 ** this routine obtains the mutex associated with each BtShared structure 1772 ** that may be accessed by the VM passed as an argument. In doing so it also 1773 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1774 ** that the correct busy-handler callback is invoked if required. 1775 ** 1776 ** If SQLite is not threadsafe but does support shared-cache mode, then 1777 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1778 ** of all of BtShared structures accessible via the database handle 1779 ** associated with the VM. 1780 ** 1781 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1782 ** function is a no-op. 1783 ** 1784 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1785 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1786 ** corresponding to btrees that use shared cache. Then the runtime of 1787 ** this routine is N*N. But as N is rarely more than 1, this should not 1788 ** be a problem. 1789 */ 1790 void sqlite3VdbeEnter(Vdbe *p){ 1791 int i; 1792 sqlite3 *db; 1793 Db *aDb; 1794 int nDb; 1795 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1796 db = p->db; 1797 aDb = db->aDb; 1798 nDb = db->nDb; 1799 for(i=0; i<nDb; i++){ 1800 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1801 sqlite3BtreeEnter(aDb[i].pBt); 1802 } 1803 } 1804 } 1805 #endif 1806 1807 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1808 /* 1809 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1810 */ 1811 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1812 int i; 1813 sqlite3 *db; 1814 Db *aDb; 1815 int nDb; 1816 db = p->db; 1817 aDb = db->aDb; 1818 nDb = db->nDb; 1819 for(i=0; i<nDb; i++){ 1820 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1821 sqlite3BtreeLeave(aDb[i].pBt); 1822 } 1823 } 1824 } 1825 void sqlite3VdbeLeave(Vdbe *p){ 1826 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1827 vdbeLeave(p); 1828 } 1829 #endif 1830 1831 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1832 /* 1833 ** Print a single opcode. This routine is used for debugging only. 1834 */ 1835 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ 1836 char *zP4; 1837 char *zCom; 1838 sqlite3 dummyDb; 1839 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1840 if( pOut==0 ) pOut = stdout; 1841 sqlite3BeginBenignMalloc(); 1842 dummyDb.mallocFailed = 1; 1843 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp); 1844 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1845 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4); 1846 #else 1847 zCom = 0; 1848 #endif 1849 /* NB: The sqlite3OpcodeName() function is implemented by code created 1850 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1851 ** information from the vdbe.c source text */ 1852 fprintf(pOut, zFormat1, pc, 1853 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, 1854 zP4 ? zP4 : "", pOp->p5, 1855 zCom ? zCom : "" 1856 ); 1857 fflush(pOut); 1858 sqlite3_free(zP4); 1859 sqlite3_free(zCom); 1860 sqlite3EndBenignMalloc(); 1861 } 1862 #endif 1863 1864 /* 1865 ** Initialize an array of N Mem element. 1866 */ 1867 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1868 while( (N--)>0 ){ 1869 p->db = db; 1870 p->flags = flags; 1871 p->szMalloc = 0; 1872 #ifdef SQLITE_DEBUG 1873 p->pScopyFrom = 0; 1874 #endif 1875 p++; 1876 } 1877 } 1878 1879 /* 1880 ** Release an array of N Mem elements 1881 */ 1882 static void releaseMemArray(Mem *p, int N){ 1883 if( p && N ){ 1884 Mem *pEnd = &p[N]; 1885 sqlite3 *db = p->db; 1886 if( db->pnBytesFreed ){ 1887 do{ 1888 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1889 }while( (++p)<pEnd ); 1890 return; 1891 } 1892 do{ 1893 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1894 assert( sqlite3VdbeCheckMemInvariants(p) ); 1895 1896 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1897 ** that takes advantage of the fact that the memory cell value is 1898 ** being set to NULL after releasing any dynamic resources. 1899 ** 1900 ** The justification for duplicating code is that according to 1901 ** callgrind, this causes a certain test case to hit the CPU 4.7 1902 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1903 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1904 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1905 ** with no indexes using a single prepared INSERT statement, bind() 1906 ** and reset(). Inserts are grouped into a transaction. 1907 */ 1908 testcase( p->flags & MEM_Agg ); 1909 testcase( p->flags & MEM_Dyn ); 1910 testcase( p->xDel==sqlite3VdbeFrameMemDel ); 1911 if( p->flags&(MEM_Agg|MEM_Dyn) ){ 1912 sqlite3VdbeMemRelease(p); 1913 }else if( p->szMalloc ){ 1914 sqlite3DbFreeNN(db, p->zMalloc); 1915 p->szMalloc = 0; 1916 } 1917 1918 p->flags = MEM_Undefined; 1919 }while( (++p)<pEnd ); 1920 } 1921 } 1922 1923 #ifdef SQLITE_DEBUG 1924 /* 1925 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is 1926 ** and false if something is wrong. 1927 ** 1928 ** This routine is intended for use inside of assert() statements only. 1929 */ 1930 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){ 1931 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; 1932 return 1; 1933 } 1934 #endif 1935 1936 1937 /* 1938 ** This is a destructor on a Mem object (which is really an sqlite3_value) 1939 ** that deletes the Frame object that is attached to it as a blob. 1940 ** 1941 ** This routine does not delete the Frame right away. It merely adds the 1942 ** frame to a list of frames to be deleted when the Vdbe halts. 1943 */ 1944 void sqlite3VdbeFrameMemDel(void *pArg){ 1945 VdbeFrame *pFrame = (VdbeFrame*)pArg; 1946 assert( sqlite3VdbeFrameIsValid(pFrame) ); 1947 pFrame->pParent = pFrame->v->pDelFrame; 1948 pFrame->v->pDelFrame = pFrame; 1949 } 1950 1951 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN) 1952 /* 1953 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN 1954 ** QUERY PLAN output. 1955 ** 1956 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no 1957 ** more opcodes to be displayed. 1958 */ 1959 int sqlite3VdbeNextOpcode( 1960 Vdbe *p, /* The statement being explained */ 1961 Mem *pSub, /* Storage for keeping track of subprogram nesting */ 1962 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */ 1963 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */ 1964 int *piAddr, /* OUT: Write index into (*paOp)[] here */ 1965 Op **paOp /* OUT: Write the opcode array here */ 1966 ){ 1967 int nRow; /* Stop when row count reaches this */ 1968 int nSub = 0; /* Number of sub-vdbes seen so far */ 1969 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1970 int i; /* Next instruction address */ 1971 int rc = SQLITE_OK; /* Result code */ 1972 Op *aOp = 0; /* Opcode array */ 1973 int iPc; /* Rowid. Copy of value in *piPc */ 1974 1975 /* When the number of output rows reaches nRow, that means the 1976 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1977 ** nRow is the sum of the number of rows in the main program, plus 1978 ** the sum of the number of rows in all trigger subprograms encountered 1979 ** so far. The nRow value will increase as new trigger subprograms are 1980 ** encountered, but p->pc will eventually catch up to nRow. 1981 */ 1982 nRow = p->nOp; 1983 if( pSub!=0 ){ 1984 if( pSub->flags&MEM_Blob ){ 1985 /* pSub is initiallly NULL. It is initialized to a BLOB by 1986 ** the P4_SUBPROGRAM processing logic below */ 1987 nSub = pSub->n/sizeof(Vdbe*); 1988 apSub = (SubProgram **)pSub->z; 1989 } 1990 for(i=0; i<nSub; i++){ 1991 nRow += apSub[i]->nOp; 1992 } 1993 } 1994 iPc = *piPc; 1995 while(1){ /* Loop exits via break */ 1996 i = iPc++; 1997 if( i>=nRow ){ 1998 p->rc = SQLITE_OK; 1999 rc = SQLITE_DONE; 2000 break; 2001 } 2002 if( i<p->nOp ){ 2003 /* The rowid is small enough that we are still in the 2004 ** main program. */ 2005 aOp = p->aOp; 2006 }else{ 2007 /* We are currently listing subprograms. Figure out which one and 2008 ** pick up the appropriate opcode. */ 2009 int j; 2010 i -= p->nOp; 2011 assert( apSub!=0 ); 2012 assert( nSub>0 ); 2013 for(j=0; i>=apSub[j]->nOp; j++){ 2014 i -= apSub[j]->nOp; 2015 assert( i<apSub[j]->nOp || j+1<nSub ); 2016 } 2017 aOp = apSub[j]->aOp; 2018 } 2019 2020 /* When an OP_Program opcode is encounter (the only opcode that has 2021 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 2022 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 2023 ** has not already been seen. 2024 */ 2025 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){ 2026 int nByte = (nSub+1)*sizeof(SubProgram*); 2027 int j; 2028 for(j=0; j<nSub; j++){ 2029 if( apSub[j]==aOp[i].p4.pProgram ) break; 2030 } 2031 if( j==nSub ){ 2032 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); 2033 if( p->rc!=SQLITE_OK ){ 2034 rc = SQLITE_ERROR; 2035 break; 2036 } 2037 apSub = (SubProgram **)pSub->z; 2038 apSub[nSub++] = aOp[i].p4.pProgram; 2039 MemSetTypeFlag(pSub, MEM_Blob); 2040 pSub->n = nSub*sizeof(SubProgram*); 2041 nRow += aOp[i].p4.pProgram->nOp; 2042 } 2043 } 2044 if( eMode==0 ) break; 2045 #ifdef SQLITE_ENABLE_BYTECODE_VTAB 2046 if( eMode==2 ){ 2047 Op *pOp = aOp + i; 2048 if( pOp->opcode==OP_OpenRead ) break; 2049 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break; 2050 if( pOp->opcode==OP_ReopenIdx ) break; 2051 }else 2052 #endif 2053 { 2054 assert( eMode==1 ); 2055 if( aOp[i].opcode==OP_Explain ) break; 2056 if( aOp[i].opcode==OP_Init && iPc>1 ) break; 2057 } 2058 } 2059 *piPc = iPc; 2060 *piAddr = i; 2061 *paOp = aOp; 2062 return rc; 2063 } 2064 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */ 2065 2066 2067 /* 2068 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 2069 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 2070 */ 2071 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 2072 int i; 2073 Mem *aMem = VdbeFrameMem(p); 2074 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 2075 assert( sqlite3VdbeFrameIsValid(p) ); 2076 for(i=0; i<p->nChildCsr; i++){ 2077 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 2078 } 2079 releaseMemArray(aMem, p->nChildMem); 2080 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 2081 sqlite3DbFree(p->v->db, p); 2082 } 2083 2084 #ifndef SQLITE_OMIT_EXPLAIN 2085 /* 2086 ** Give a listing of the program in the virtual machine. 2087 ** 2088 ** The interface is the same as sqlite3VdbeExec(). But instead of 2089 ** running the code, it invokes the callback once for each instruction. 2090 ** This feature is used to implement "EXPLAIN". 2091 ** 2092 ** When p->explain==1, each instruction is listed. When 2093 ** p->explain==2, only OP_Explain instructions are listed and these 2094 ** are shown in a different format. p->explain==2 is used to implement 2095 ** EXPLAIN QUERY PLAN. 2096 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers 2097 ** are also shown, so that the boundaries between the main program and 2098 ** each trigger are clear. 2099 ** 2100 ** When p->explain==1, first the main program is listed, then each of 2101 ** the trigger subprograms are listed one by one. 2102 */ 2103 int sqlite3VdbeList( 2104 Vdbe *p /* The VDBE */ 2105 ){ 2106 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 2107 sqlite3 *db = p->db; /* The database connection */ 2108 int i; /* Loop counter */ 2109 int rc = SQLITE_OK; /* Return code */ 2110 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 2111 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); 2112 Op *aOp; /* Array of opcodes */ 2113 Op *pOp; /* Current opcode */ 2114 2115 assert( p->explain ); 2116 assert( p->iVdbeMagic==VDBE_MAGIC_RUN ); 2117 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 2118 2119 /* Even though this opcode does not use dynamic strings for 2120 ** the result, result columns may become dynamic if the user calls 2121 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 2122 */ 2123 releaseMemArray(pMem, 8); 2124 p->pResultSet = 0; 2125 2126 if( p->rc==SQLITE_NOMEM ){ 2127 /* This happens if a malloc() inside a call to sqlite3_column_text() or 2128 ** sqlite3_column_text16() failed. */ 2129 sqlite3OomFault(db); 2130 return SQLITE_ERROR; 2131 } 2132 2133 if( bListSubprogs ){ 2134 /* The first 8 memory cells are used for the result set. So we will 2135 ** commandeer the 9th cell to use as storage for an array of pointers 2136 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 2137 ** cells. */ 2138 assert( p->nMem>9 ); 2139 pSub = &p->aMem[9]; 2140 }else{ 2141 pSub = 0; 2142 } 2143 2144 /* Figure out which opcode is next to display */ 2145 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp); 2146 2147 if( rc==SQLITE_OK ){ 2148 pOp = aOp + i; 2149 if( AtomicLoad(&db->u1.isInterrupted) ){ 2150 p->rc = SQLITE_INTERRUPT; 2151 rc = SQLITE_ERROR; 2152 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 2153 }else{ 2154 char *zP4 = sqlite3VdbeDisplayP4(db, pOp); 2155 if( p->explain==2 ){ 2156 sqlite3VdbeMemSetInt64(pMem, pOp->p1); 2157 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2); 2158 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3); 2159 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free); 2160 p->nResColumn = 4; 2161 }else{ 2162 sqlite3VdbeMemSetInt64(pMem+0, i); 2163 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode), 2164 -1, SQLITE_UTF8, SQLITE_STATIC); 2165 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1); 2166 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2); 2167 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3); 2168 /* pMem+5 for p4 is done last */ 2169 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5); 2170 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2171 { 2172 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4); 2173 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free); 2174 } 2175 #else 2176 sqlite3VdbeMemSetNull(pMem+7); 2177 #endif 2178 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free); 2179 p->nResColumn = 8; 2180 } 2181 p->pResultSet = pMem; 2182 if( db->mallocFailed ){ 2183 p->rc = SQLITE_NOMEM; 2184 rc = SQLITE_ERROR; 2185 }else{ 2186 p->rc = SQLITE_OK; 2187 rc = SQLITE_ROW; 2188 } 2189 } 2190 } 2191 return rc; 2192 } 2193 #endif /* SQLITE_OMIT_EXPLAIN */ 2194 2195 #ifdef SQLITE_DEBUG 2196 /* 2197 ** Print the SQL that was used to generate a VDBE program. 2198 */ 2199 void sqlite3VdbePrintSql(Vdbe *p){ 2200 const char *z = 0; 2201 if( p->zSql ){ 2202 z = p->zSql; 2203 }else if( p->nOp>=1 ){ 2204 const VdbeOp *pOp = &p->aOp[0]; 2205 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2206 z = pOp->p4.z; 2207 while( sqlite3Isspace(*z) ) z++; 2208 } 2209 } 2210 if( z ) printf("SQL: [%s]\n", z); 2211 } 2212 #endif 2213 2214 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 2215 /* 2216 ** Print an IOTRACE message showing SQL content. 2217 */ 2218 void sqlite3VdbeIOTraceSql(Vdbe *p){ 2219 int nOp = p->nOp; 2220 VdbeOp *pOp; 2221 if( sqlite3IoTrace==0 ) return; 2222 if( nOp<1 ) return; 2223 pOp = &p->aOp[0]; 2224 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2225 int i, j; 2226 char z[1000]; 2227 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 2228 for(i=0; sqlite3Isspace(z[i]); i++){} 2229 for(j=0; z[i]; i++){ 2230 if( sqlite3Isspace(z[i]) ){ 2231 if( z[i-1]!=' ' ){ 2232 z[j++] = ' '; 2233 } 2234 }else{ 2235 z[j++] = z[i]; 2236 } 2237 } 2238 z[j] = 0; 2239 sqlite3IoTrace("SQL %s\n", z); 2240 } 2241 } 2242 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 2243 2244 /* An instance of this object describes bulk memory available for use 2245 ** by subcomponents of a prepared statement. Space is allocated out 2246 ** of a ReusableSpace object by the allocSpace() routine below. 2247 */ 2248 struct ReusableSpace { 2249 u8 *pSpace; /* Available memory */ 2250 sqlite3_int64 nFree; /* Bytes of available memory */ 2251 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */ 2252 }; 2253 2254 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 2255 ** from the ReusableSpace object. Return a pointer to the allocated 2256 ** memory on success. If insufficient memory is available in the 2257 ** ReusableSpace object, increase the ReusableSpace.nNeeded 2258 ** value by the amount needed and return NULL. 2259 ** 2260 ** If pBuf is not initially NULL, that means that the memory has already 2261 ** been allocated by a prior call to this routine, so just return a copy 2262 ** of pBuf and leave ReusableSpace unchanged. 2263 ** 2264 ** This allocator is employed to repurpose unused slots at the end of the 2265 ** opcode array of prepared state for other memory needs of the prepared 2266 ** statement. 2267 */ 2268 static void *allocSpace( 2269 struct ReusableSpace *p, /* Bulk memory available for allocation */ 2270 void *pBuf, /* Pointer to a prior allocation */ 2271 sqlite3_int64 nByte /* Bytes of memory needed */ 2272 ){ 2273 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 2274 if( pBuf==0 ){ 2275 nByte = ROUND8(nByte); 2276 if( nByte <= p->nFree ){ 2277 p->nFree -= nByte; 2278 pBuf = &p->pSpace[p->nFree]; 2279 }else{ 2280 p->nNeeded += nByte; 2281 } 2282 } 2283 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 2284 return pBuf; 2285 } 2286 2287 /* 2288 ** Rewind the VDBE back to the beginning in preparation for 2289 ** running it. 2290 */ 2291 void sqlite3VdbeRewind(Vdbe *p){ 2292 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 2293 int i; 2294 #endif 2295 assert( p!=0 ); 2296 assert( p->iVdbeMagic==VDBE_MAGIC_INIT || p->iVdbeMagic==VDBE_MAGIC_RESET ); 2297 2298 /* There should be at least one opcode. 2299 */ 2300 assert( p->nOp>0 ); 2301 2302 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 2303 p->iVdbeMagic = VDBE_MAGIC_RUN; 2304 2305 #ifdef SQLITE_DEBUG 2306 for(i=0; i<p->nMem; i++){ 2307 assert( p->aMem[i].db==p->db ); 2308 } 2309 #endif 2310 p->pc = -1; 2311 p->rc = SQLITE_OK; 2312 p->errorAction = OE_Abort; 2313 p->nChange = 0; 2314 p->cacheCtr = 1; 2315 p->minWriteFileFormat = 255; 2316 p->iStatement = 0; 2317 p->nFkConstraint = 0; 2318 #ifdef VDBE_PROFILE 2319 for(i=0; i<p->nOp; i++){ 2320 p->aOp[i].cnt = 0; 2321 p->aOp[i].cycles = 0; 2322 } 2323 #endif 2324 } 2325 2326 /* 2327 ** Prepare a virtual machine for execution for the first time after 2328 ** creating the virtual machine. This involves things such 2329 ** as allocating registers and initializing the program counter. 2330 ** After the VDBE has be prepped, it can be executed by one or more 2331 ** calls to sqlite3VdbeExec(). 2332 ** 2333 ** This function may be called exactly once on each virtual machine. 2334 ** After this routine is called the VM has been "packaged" and is ready 2335 ** to run. After this routine is called, further calls to 2336 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 2337 ** the Vdbe from the Parse object that helped generate it so that the 2338 ** the Vdbe becomes an independent entity and the Parse object can be 2339 ** destroyed. 2340 ** 2341 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 2342 ** to its initial state after it has been run. 2343 */ 2344 void sqlite3VdbeMakeReady( 2345 Vdbe *p, /* The VDBE */ 2346 Parse *pParse /* Parsing context */ 2347 ){ 2348 sqlite3 *db; /* The database connection */ 2349 int nVar; /* Number of parameters */ 2350 int nMem; /* Number of VM memory registers */ 2351 int nCursor; /* Number of cursors required */ 2352 int nArg; /* Number of arguments in subprograms */ 2353 int n; /* Loop counter */ 2354 struct ReusableSpace x; /* Reusable bulk memory */ 2355 2356 assert( p!=0 ); 2357 assert( p->nOp>0 ); 2358 assert( pParse!=0 ); 2359 assert( p->iVdbeMagic==VDBE_MAGIC_INIT ); 2360 assert( pParse==p->pParse ); 2361 p->pVList = pParse->pVList; 2362 pParse->pVList = 0; 2363 db = p->db; 2364 assert( db->mallocFailed==0 ); 2365 nVar = pParse->nVar; 2366 nMem = pParse->nMem; 2367 nCursor = pParse->nTab; 2368 nArg = pParse->nMaxArg; 2369 2370 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 2371 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 2372 ** space at the end of aMem[] for cursors 1 and greater. 2373 ** See also: allocateCursor(). 2374 */ 2375 nMem += nCursor; 2376 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 2377 2378 /* Figure out how much reusable memory is available at the end of the 2379 ** opcode array. This extra memory will be reallocated for other elements 2380 ** of the prepared statement. 2381 */ 2382 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 2383 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 2384 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 2385 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 2386 assert( x.nFree>=0 ); 2387 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 2388 2389 resolveP2Values(p, &nArg); 2390 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 2391 if( pParse->explain ){ 2392 static const char * const azColName[] = { 2393 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", 2394 "id", "parent", "notused", "detail" 2395 }; 2396 int iFirst, mx, i; 2397 if( nMem<10 ) nMem = 10; 2398 p->explain = pParse->explain; 2399 if( pParse->explain==2 ){ 2400 sqlite3VdbeSetNumCols(p, 4); 2401 iFirst = 8; 2402 mx = 12; 2403 }else{ 2404 sqlite3VdbeSetNumCols(p, 8); 2405 iFirst = 0; 2406 mx = 8; 2407 } 2408 for(i=iFirst; i<mx; i++){ 2409 sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME, 2410 azColName[i], SQLITE_STATIC); 2411 } 2412 } 2413 p->expired = 0; 2414 2415 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 2416 ** passes. On the first pass, we try to reuse unused memory at the 2417 ** end of the opcode array. If we are unable to satisfy all memory 2418 ** requirements by reusing the opcode array tail, then the second 2419 ** pass will fill in the remainder using a fresh memory allocation. 2420 ** 2421 ** This two-pass approach that reuses as much memory as possible from 2422 ** the leftover memory at the end of the opcode array. This can significantly 2423 ** reduce the amount of memory held by a prepared statement. 2424 */ 2425 x.nNeeded = 0; 2426 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem)); 2427 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem)); 2428 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*)); 2429 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*)); 2430 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2431 p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64)); 2432 #endif 2433 if( x.nNeeded ){ 2434 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 2435 x.nFree = x.nNeeded; 2436 if( !db->mallocFailed ){ 2437 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 2438 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 2439 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 2440 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 2441 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2442 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 2443 #endif 2444 } 2445 } 2446 2447 if( db->mallocFailed ){ 2448 p->nVar = 0; 2449 p->nCursor = 0; 2450 p->nMem = 0; 2451 }else{ 2452 p->nCursor = nCursor; 2453 p->nVar = (ynVar)nVar; 2454 initMemArray(p->aVar, nVar, db, MEM_Null); 2455 p->nMem = nMem; 2456 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2457 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2458 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2459 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2460 #endif 2461 } 2462 sqlite3VdbeRewind(p); 2463 } 2464 2465 /* 2466 ** Close a VDBE cursor and release all the resources that cursor 2467 ** happens to hold. 2468 */ 2469 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2470 if( pCx==0 ){ 2471 return; 2472 } 2473 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE ); 2474 assert( pCx->pBtx==0 || pCx->isEphemeral ); 2475 switch( pCx->eCurType ){ 2476 case CURTYPE_SORTER: { 2477 sqlite3VdbeSorterClose(p->db, pCx); 2478 break; 2479 } 2480 case CURTYPE_BTREE: { 2481 assert( pCx->uc.pCursor!=0 ); 2482 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2483 break; 2484 } 2485 #ifndef SQLITE_OMIT_VIRTUALTABLE 2486 case CURTYPE_VTAB: { 2487 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2488 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2489 assert( pVCur->pVtab->nRef>0 ); 2490 pVCur->pVtab->nRef--; 2491 pModule->xClose(pVCur); 2492 break; 2493 } 2494 #endif 2495 } 2496 } 2497 2498 /* 2499 ** Close all cursors in the current frame. 2500 */ 2501 static void closeCursorsInFrame(Vdbe *p){ 2502 if( p->apCsr ){ 2503 int i; 2504 for(i=0; i<p->nCursor; i++){ 2505 VdbeCursor *pC = p->apCsr[i]; 2506 if( pC ){ 2507 sqlite3VdbeFreeCursor(p, pC); 2508 p->apCsr[i] = 0; 2509 } 2510 } 2511 } 2512 } 2513 2514 /* 2515 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2516 ** is used, for example, when a trigger sub-program is halted to restore 2517 ** control to the main program. 2518 */ 2519 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2520 Vdbe *v = pFrame->v; 2521 closeCursorsInFrame(v); 2522 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2523 v->anExec = pFrame->anExec; 2524 #endif 2525 v->aOp = pFrame->aOp; 2526 v->nOp = pFrame->nOp; 2527 v->aMem = pFrame->aMem; 2528 v->nMem = pFrame->nMem; 2529 v->apCsr = pFrame->apCsr; 2530 v->nCursor = pFrame->nCursor; 2531 v->db->lastRowid = pFrame->lastRowid; 2532 v->nChange = pFrame->nChange; 2533 v->db->nChange = pFrame->nDbChange; 2534 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2535 v->pAuxData = pFrame->pAuxData; 2536 pFrame->pAuxData = 0; 2537 return pFrame->pc; 2538 } 2539 2540 /* 2541 ** Close all cursors. 2542 ** 2543 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2544 ** cell array. This is necessary as the memory cell array may contain 2545 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2546 ** open cursors. 2547 */ 2548 static void closeAllCursors(Vdbe *p){ 2549 if( p->pFrame ){ 2550 VdbeFrame *pFrame; 2551 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2552 sqlite3VdbeFrameRestore(pFrame); 2553 p->pFrame = 0; 2554 p->nFrame = 0; 2555 } 2556 assert( p->nFrame==0 ); 2557 closeCursorsInFrame(p); 2558 if( p->aMem ){ 2559 releaseMemArray(p->aMem, p->nMem); 2560 } 2561 while( p->pDelFrame ){ 2562 VdbeFrame *pDel = p->pDelFrame; 2563 p->pDelFrame = pDel->pParent; 2564 sqlite3VdbeFrameDelete(pDel); 2565 } 2566 2567 /* Delete any auxdata allocations made by the VM */ 2568 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2569 assert( p->pAuxData==0 ); 2570 } 2571 2572 /* 2573 ** Set the number of result columns that will be returned by this SQL 2574 ** statement. This is now set at compile time, rather than during 2575 ** execution of the vdbe program so that sqlite3_column_count() can 2576 ** be called on an SQL statement before sqlite3_step(). 2577 */ 2578 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2579 int n; 2580 sqlite3 *db = p->db; 2581 2582 if( p->nResColumn ){ 2583 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2584 sqlite3DbFree(db, p->aColName); 2585 } 2586 n = nResColumn*COLNAME_N; 2587 p->nResColumn = (u16)nResColumn; 2588 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2589 if( p->aColName==0 ) return; 2590 initMemArray(p->aColName, n, db, MEM_Null); 2591 } 2592 2593 /* 2594 ** Set the name of the idx'th column to be returned by the SQL statement. 2595 ** zName must be a pointer to a nul terminated string. 2596 ** 2597 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2598 ** 2599 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2600 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2601 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2602 */ 2603 int sqlite3VdbeSetColName( 2604 Vdbe *p, /* Vdbe being configured */ 2605 int idx, /* Index of column zName applies to */ 2606 int var, /* One of the COLNAME_* constants */ 2607 const char *zName, /* Pointer to buffer containing name */ 2608 void (*xDel)(void*) /* Memory management strategy for zName */ 2609 ){ 2610 int rc; 2611 Mem *pColName; 2612 assert( idx<p->nResColumn ); 2613 assert( var<COLNAME_N ); 2614 if( p->db->mallocFailed ){ 2615 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2616 return SQLITE_NOMEM_BKPT; 2617 } 2618 assert( p->aColName!=0 ); 2619 pColName = &(p->aColName[idx+var*p->nResColumn]); 2620 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2621 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2622 return rc; 2623 } 2624 2625 /* 2626 ** A read or write transaction may or may not be active on database handle 2627 ** db. If a transaction is active, commit it. If there is a 2628 ** write-transaction spanning more than one database file, this routine 2629 ** takes care of the super-journal trickery. 2630 */ 2631 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2632 int i; 2633 int nTrans = 0; /* Number of databases with an active write-transaction 2634 ** that are candidates for a two-phase commit using a 2635 ** super-journal */ 2636 int rc = SQLITE_OK; 2637 int needXcommit = 0; 2638 2639 #ifdef SQLITE_OMIT_VIRTUALTABLE 2640 /* With this option, sqlite3VtabSync() is defined to be simply 2641 ** SQLITE_OK so p is not used. 2642 */ 2643 UNUSED_PARAMETER(p); 2644 #endif 2645 2646 /* Before doing anything else, call the xSync() callback for any 2647 ** virtual module tables written in this transaction. This has to 2648 ** be done before determining whether a super-journal file is 2649 ** required, as an xSync() callback may add an attached database 2650 ** to the transaction. 2651 */ 2652 rc = sqlite3VtabSync(db, p); 2653 2654 /* This loop determines (a) if the commit hook should be invoked and 2655 ** (b) how many database files have open write transactions, not 2656 ** including the temp database. (b) is important because if more than 2657 ** one database file has an open write transaction, a super-journal 2658 ** file is required for an atomic commit. 2659 */ 2660 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2661 Btree *pBt = db->aDb[i].pBt; 2662 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 2663 /* Whether or not a database might need a super-journal depends upon 2664 ** its journal mode (among other things). This matrix determines which 2665 ** journal modes use a super-journal and which do not */ 2666 static const u8 aMJNeeded[] = { 2667 /* DELETE */ 1, 2668 /* PERSIST */ 1, 2669 /* OFF */ 0, 2670 /* TRUNCATE */ 1, 2671 /* MEMORY */ 0, 2672 /* WAL */ 0 2673 }; 2674 Pager *pPager; /* Pager associated with pBt */ 2675 needXcommit = 1; 2676 sqlite3BtreeEnter(pBt); 2677 pPager = sqlite3BtreePager(pBt); 2678 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2679 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2680 && sqlite3PagerIsMemdb(pPager)==0 2681 ){ 2682 assert( i!=1 ); 2683 nTrans++; 2684 } 2685 rc = sqlite3PagerExclusiveLock(pPager); 2686 sqlite3BtreeLeave(pBt); 2687 } 2688 } 2689 if( rc!=SQLITE_OK ){ 2690 return rc; 2691 } 2692 2693 /* If there are any write-transactions at all, invoke the commit hook */ 2694 if( needXcommit && db->xCommitCallback ){ 2695 rc = db->xCommitCallback(db->pCommitArg); 2696 if( rc ){ 2697 return SQLITE_CONSTRAINT_COMMITHOOK; 2698 } 2699 } 2700 2701 /* The simple case - no more than one database file (not counting the 2702 ** TEMP database) has a transaction active. There is no need for the 2703 ** super-journal. 2704 ** 2705 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2706 ** string, it means the main database is :memory: or a temp file. In 2707 ** that case we do not support atomic multi-file commits, so use the 2708 ** simple case then too. 2709 */ 2710 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2711 || nTrans<=1 2712 ){ 2713 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2714 Btree *pBt = db->aDb[i].pBt; 2715 if( pBt ){ 2716 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2717 } 2718 } 2719 2720 /* Do the commit only if all databases successfully complete phase 1. 2721 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2722 ** IO error while deleting or truncating a journal file. It is unlikely, 2723 ** but could happen. In this case abandon processing and return the error. 2724 */ 2725 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2726 Btree *pBt = db->aDb[i].pBt; 2727 if( pBt ){ 2728 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2729 } 2730 } 2731 if( rc==SQLITE_OK ){ 2732 sqlite3VtabCommit(db); 2733 } 2734 } 2735 2736 /* The complex case - There is a multi-file write-transaction active. 2737 ** This requires a super-journal file to ensure the transaction is 2738 ** committed atomically. 2739 */ 2740 #ifndef SQLITE_OMIT_DISKIO 2741 else{ 2742 sqlite3_vfs *pVfs = db->pVfs; 2743 char *zSuper = 0; /* File-name for the super-journal */ 2744 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2745 sqlite3_file *pSuperJrnl = 0; 2746 i64 offset = 0; 2747 int res; 2748 int retryCount = 0; 2749 int nMainFile; 2750 2751 /* Select a super-journal file name */ 2752 nMainFile = sqlite3Strlen30(zMainFile); 2753 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0); 2754 if( zSuper==0 ) return SQLITE_NOMEM_BKPT; 2755 zSuper += 4; 2756 do { 2757 u32 iRandom; 2758 if( retryCount ){ 2759 if( retryCount>100 ){ 2760 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper); 2761 sqlite3OsDelete(pVfs, zSuper, 0); 2762 break; 2763 }else if( retryCount==1 ){ 2764 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper); 2765 } 2766 } 2767 retryCount++; 2768 sqlite3_randomness(sizeof(iRandom), &iRandom); 2769 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X", 2770 (iRandom>>8)&0xffffff, iRandom&0xff); 2771 /* The antipenultimate character of the super-journal name must 2772 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2773 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' ); 2774 sqlite3FileSuffix3(zMainFile, zSuper); 2775 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); 2776 }while( rc==SQLITE_OK && res ); 2777 if( rc==SQLITE_OK ){ 2778 /* Open the super-journal. */ 2779 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl, 2780 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2781 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0 2782 ); 2783 } 2784 if( rc!=SQLITE_OK ){ 2785 sqlite3DbFree(db, zSuper-4); 2786 return rc; 2787 } 2788 2789 /* Write the name of each database file in the transaction into the new 2790 ** super-journal file. If an error occurs at this point close 2791 ** and delete the super-journal file. All the individual journal files 2792 ** still have 'null' as the super-journal pointer, so they will roll 2793 ** back independently if a failure occurs. 2794 */ 2795 for(i=0; i<db->nDb; i++){ 2796 Btree *pBt = db->aDb[i].pBt; 2797 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 2798 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2799 if( zFile==0 ){ 2800 continue; /* Ignore TEMP and :memory: databases */ 2801 } 2802 assert( zFile[0]!=0 ); 2803 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset); 2804 offset += sqlite3Strlen30(zFile)+1; 2805 if( rc!=SQLITE_OK ){ 2806 sqlite3OsCloseFree(pSuperJrnl); 2807 sqlite3OsDelete(pVfs, zSuper, 0); 2808 sqlite3DbFree(db, zSuper-4); 2809 return rc; 2810 } 2811 } 2812 } 2813 2814 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device 2815 ** flag is set this is not required. 2816 */ 2817 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL) 2818 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL)) 2819 ){ 2820 sqlite3OsCloseFree(pSuperJrnl); 2821 sqlite3OsDelete(pVfs, zSuper, 0); 2822 sqlite3DbFree(db, zSuper-4); 2823 return rc; 2824 } 2825 2826 /* Sync all the db files involved in the transaction. The same call 2827 ** sets the super-journal pointer in each individual journal. If 2828 ** an error occurs here, do not delete the super-journal file. 2829 ** 2830 ** If the error occurs during the first call to 2831 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2832 ** super-journal file will be orphaned. But we cannot delete it, 2833 ** in case the super-journal file name was written into the journal 2834 ** file before the failure occurred. 2835 */ 2836 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2837 Btree *pBt = db->aDb[i].pBt; 2838 if( pBt ){ 2839 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper); 2840 } 2841 } 2842 sqlite3OsCloseFree(pSuperJrnl); 2843 assert( rc!=SQLITE_BUSY ); 2844 if( rc!=SQLITE_OK ){ 2845 sqlite3DbFree(db, zSuper-4); 2846 return rc; 2847 } 2848 2849 /* Delete the super-journal file. This commits the transaction. After 2850 ** doing this the directory is synced again before any individual 2851 ** transaction files are deleted. 2852 */ 2853 rc = sqlite3OsDelete(pVfs, zSuper, 1); 2854 sqlite3DbFree(db, zSuper-4); 2855 zSuper = 0; 2856 if( rc ){ 2857 return rc; 2858 } 2859 2860 /* All files and directories have already been synced, so the following 2861 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2862 ** deleting or truncating journals. If something goes wrong while 2863 ** this is happening we don't really care. The integrity of the 2864 ** transaction is already guaranteed, but some stray 'cold' journals 2865 ** may be lying around. Returning an error code won't help matters. 2866 */ 2867 disable_simulated_io_errors(); 2868 sqlite3BeginBenignMalloc(); 2869 for(i=0; i<db->nDb; i++){ 2870 Btree *pBt = db->aDb[i].pBt; 2871 if( pBt ){ 2872 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2873 } 2874 } 2875 sqlite3EndBenignMalloc(); 2876 enable_simulated_io_errors(); 2877 2878 sqlite3VtabCommit(db); 2879 } 2880 #endif 2881 2882 return rc; 2883 } 2884 2885 /* 2886 ** This routine checks that the sqlite3.nVdbeActive count variable 2887 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2888 ** currently active. An assertion fails if the two counts do not match. 2889 ** This is an internal self-check only - it is not an essential processing 2890 ** step. 2891 ** 2892 ** This is a no-op if NDEBUG is defined. 2893 */ 2894 #ifndef NDEBUG 2895 static void checkActiveVdbeCnt(sqlite3 *db){ 2896 Vdbe *p; 2897 int cnt = 0; 2898 int nWrite = 0; 2899 int nRead = 0; 2900 p = db->pVdbe; 2901 while( p ){ 2902 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2903 cnt++; 2904 if( p->readOnly==0 ) nWrite++; 2905 if( p->bIsReader ) nRead++; 2906 } 2907 p = p->pNext; 2908 } 2909 assert( cnt==db->nVdbeActive ); 2910 assert( nWrite==db->nVdbeWrite ); 2911 assert( nRead==db->nVdbeRead ); 2912 } 2913 #else 2914 #define checkActiveVdbeCnt(x) 2915 #endif 2916 2917 /* 2918 ** If the Vdbe passed as the first argument opened a statement-transaction, 2919 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2920 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2921 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2922 ** statement transaction is committed. 2923 ** 2924 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2925 ** Otherwise SQLITE_OK. 2926 */ 2927 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 2928 sqlite3 *const db = p->db; 2929 int rc = SQLITE_OK; 2930 int i; 2931 const int iSavepoint = p->iStatement-1; 2932 2933 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2934 assert( db->nStatement>0 ); 2935 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2936 2937 for(i=0; i<db->nDb; i++){ 2938 int rc2 = SQLITE_OK; 2939 Btree *pBt = db->aDb[i].pBt; 2940 if( pBt ){ 2941 if( eOp==SAVEPOINT_ROLLBACK ){ 2942 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2943 } 2944 if( rc2==SQLITE_OK ){ 2945 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2946 } 2947 if( rc==SQLITE_OK ){ 2948 rc = rc2; 2949 } 2950 } 2951 } 2952 db->nStatement--; 2953 p->iStatement = 0; 2954 2955 if( rc==SQLITE_OK ){ 2956 if( eOp==SAVEPOINT_ROLLBACK ){ 2957 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2958 } 2959 if( rc==SQLITE_OK ){ 2960 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2961 } 2962 } 2963 2964 /* If the statement transaction is being rolled back, also restore the 2965 ** database handles deferred constraint counter to the value it had when 2966 ** the statement transaction was opened. */ 2967 if( eOp==SAVEPOINT_ROLLBACK ){ 2968 db->nDeferredCons = p->nStmtDefCons; 2969 db->nDeferredImmCons = p->nStmtDefImmCons; 2970 } 2971 return rc; 2972 } 2973 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2974 if( p->db->nStatement && p->iStatement ){ 2975 return vdbeCloseStatement(p, eOp); 2976 } 2977 return SQLITE_OK; 2978 } 2979 2980 2981 /* 2982 ** This function is called when a transaction opened by the database 2983 ** handle associated with the VM passed as an argument is about to be 2984 ** committed. If there are outstanding deferred foreign key constraint 2985 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2986 ** 2987 ** If there are outstanding FK violations and this function returns 2988 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2989 ** and write an error message to it. Then return SQLITE_ERROR. 2990 */ 2991 #ifndef SQLITE_OMIT_FOREIGN_KEY 2992 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2993 sqlite3 *db = p->db; 2994 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2995 || (!deferred && p->nFkConstraint>0) 2996 ){ 2997 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2998 p->errorAction = OE_Abort; 2999 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 3000 return SQLITE_ERROR; 3001 } 3002 return SQLITE_OK; 3003 } 3004 #endif 3005 3006 /* 3007 ** This routine is called the when a VDBE tries to halt. If the VDBE 3008 ** has made changes and is in autocommit mode, then commit those 3009 ** changes. If a rollback is needed, then do the rollback. 3010 ** 3011 ** This routine is the only way to move the sqlite3eOpenState of a VM from 3012 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to 3013 ** call this on a VM that is in the SQLITE_STATE_HALT state. 3014 ** 3015 ** Return an error code. If the commit could not complete because of 3016 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 3017 ** means the close did not happen and needs to be repeated. 3018 */ 3019 int sqlite3VdbeHalt(Vdbe *p){ 3020 int rc; /* Used to store transient return codes */ 3021 sqlite3 *db = p->db; 3022 3023 /* This function contains the logic that determines if a statement or 3024 ** transaction will be committed or rolled back as a result of the 3025 ** execution of this virtual machine. 3026 ** 3027 ** If any of the following errors occur: 3028 ** 3029 ** SQLITE_NOMEM 3030 ** SQLITE_IOERR 3031 ** SQLITE_FULL 3032 ** SQLITE_INTERRUPT 3033 ** 3034 ** Then the internal cache might have been left in an inconsistent 3035 ** state. We need to rollback the statement transaction, if there is 3036 ** one, or the complete transaction if there is no statement transaction. 3037 */ 3038 3039 if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){ 3040 return SQLITE_OK; 3041 } 3042 if( db->mallocFailed ){ 3043 p->rc = SQLITE_NOMEM_BKPT; 3044 } 3045 closeAllCursors(p); 3046 checkActiveVdbeCnt(db); 3047 3048 /* No commit or rollback needed if the program never started or if the 3049 ** SQL statement does not read or write a database file. */ 3050 if( p->pc>=0 && p->bIsReader ){ 3051 int mrc; /* Primary error code from p->rc */ 3052 int eStatementOp = 0; 3053 int isSpecialError; /* Set to true if a 'special' error */ 3054 3055 /* Lock all btrees used by the statement */ 3056 sqlite3VdbeEnter(p); 3057 3058 /* Check for one of the special errors */ 3059 mrc = p->rc & 0xff; 3060 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 3061 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 3062 if( isSpecialError ){ 3063 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 3064 ** no rollback is necessary. Otherwise, at least a savepoint 3065 ** transaction must be rolled back to restore the database to a 3066 ** consistent state. 3067 ** 3068 ** Even if the statement is read-only, it is important to perform 3069 ** a statement or transaction rollback operation. If the error 3070 ** occurred while writing to the journal, sub-journal or database 3071 ** file as part of an effort to free up cache space (see function 3072 ** pagerStress() in pager.c), the rollback is required to restore 3073 ** the pager to a consistent state. 3074 */ 3075 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 3076 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 3077 eStatementOp = SAVEPOINT_ROLLBACK; 3078 }else{ 3079 /* We are forced to roll back the active transaction. Before doing 3080 ** so, abort any other statements this handle currently has active. 3081 */ 3082 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3083 sqlite3CloseSavepoints(db); 3084 db->autoCommit = 1; 3085 p->nChange = 0; 3086 } 3087 } 3088 } 3089 3090 /* Check for immediate foreign key violations. */ 3091 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3092 sqlite3VdbeCheckFk(p, 0); 3093 } 3094 3095 /* If the auto-commit flag is set and this is the only active writer 3096 ** VM, then we do either a commit or rollback of the current transaction. 3097 ** 3098 ** Note: This block also runs if one of the special errors handled 3099 ** above has occurred. 3100 */ 3101 if( !sqlite3VtabInSync(db) 3102 && db->autoCommit 3103 && db->nVdbeWrite==(p->readOnly==0) 3104 ){ 3105 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3106 rc = sqlite3VdbeCheckFk(p, 1); 3107 if( rc!=SQLITE_OK ){ 3108 if( NEVER(p->readOnly) ){ 3109 sqlite3VdbeLeave(p); 3110 return SQLITE_ERROR; 3111 } 3112 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 3113 }else{ 3114 /* The auto-commit flag is true, the vdbe program was successful 3115 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 3116 ** key constraints to hold up the transaction. This means a commit 3117 ** is required. */ 3118 rc = vdbeCommit(db, p); 3119 } 3120 if( rc==SQLITE_BUSY && p->readOnly ){ 3121 sqlite3VdbeLeave(p); 3122 return SQLITE_BUSY; 3123 }else if( rc!=SQLITE_OK ){ 3124 p->rc = rc; 3125 sqlite3RollbackAll(db, SQLITE_OK); 3126 p->nChange = 0; 3127 }else{ 3128 db->nDeferredCons = 0; 3129 db->nDeferredImmCons = 0; 3130 db->flags &= ~(u64)SQLITE_DeferFKs; 3131 sqlite3CommitInternalChanges(db); 3132 } 3133 }else{ 3134 sqlite3RollbackAll(db, SQLITE_OK); 3135 p->nChange = 0; 3136 } 3137 db->nStatement = 0; 3138 }else if( eStatementOp==0 ){ 3139 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 3140 eStatementOp = SAVEPOINT_RELEASE; 3141 }else if( p->errorAction==OE_Abort ){ 3142 eStatementOp = SAVEPOINT_ROLLBACK; 3143 }else{ 3144 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3145 sqlite3CloseSavepoints(db); 3146 db->autoCommit = 1; 3147 p->nChange = 0; 3148 } 3149 } 3150 3151 /* If eStatementOp is non-zero, then a statement transaction needs to 3152 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 3153 ** do so. If this operation returns an error, and the current statement 3154 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 3155 ** current statement error code. 3156 */ 3157 if( eStatementOp ){ 3158 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 3159 if( rc ){ 3160 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 3161 p->rc = rc; 3162 sqlite3DbFree(db, p->zErrMsg); 3163 p->zErrMsg = 0; 3164 } 3165 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3166 sqlite3CloseSavepoints(db); 3167 db->autoCommit = 1; 3168 p->nChange = 0; 3169 } 3170 } 3171 3172 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 3173 ** has been rolled back, update the database connection change-counter. 3174 */ 3175 if( p->changeCntOn ){ 3176 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 3177 sqlite3VdbeSetChanges(db, p->nChange); 3178 }else{ 3179 sqlite3VdbeSetChanges(db, 0); 3180 } 3181 p->nChange = 0; 3182 } 3183 3184 /* Release the locks */ 3185 sqlite3VdbeLeave(p); 3186 } 3187 3188 /* We have successfully halted and closed the VM. Record this fact. */ 3189 if( p->pc>=0 ){ 3190 db->nVdbeActive--; 3191 if( !p->readOnly ) db->nVdbeWrite--; 3192 if( p->bIsReader ) db->nVdbeRead--; 3193 assert( db->nVdbeActive>=db->nVdbeRead ); 3194 assert( db->nVdbeRead>=db->nVdbeWrite ); 3195 assert( db->nVdbeWrite>=0 ); 3196 } 3197 p->iVdbeMagic = VDBE_MAGIC_HALT; 3198 checkActiveVdbeCnt(db); 3199 if( db->mallocFailed ){ 3200 p->rc = SQLITE_NOMEM_BKPT; 3201 } 3202 3203 /* If the auto-commit flag is set to true, then any locks that were held 3204 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 3205 ** to invoke any required unlock-notify callbacks. 3206 */ 3207 if( db->autoCommit ){ 3208 sqlite3ConnectionUnlocked(db); 3209 } 3210 3211 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 3212 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 3213 } 3214 3215 3216 /* 3217 ** Each VDBE holds the result of the most recent sqlite3_step() call 3218 ** in p->rc. This routine sets that result back to SQLITE_OK. 3219 */ 3220 void sqlite3VdbeResetStepResult(Vdbe *p){ 3221 p->rc = SQLITE_OK; 3222 } 3223 3224 /* 3225 ** Copy the error code and error message belonging to the VDBE passed 3226 ** as the first argument to its database handle (so that they will be 3227 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 3228 ** 3229 ** This function does not clear the VDBE error code or message, just 3230 ** copies them to the database handle. 3231 */ 3232 int sqlite3VdbeTransferError(Vdbe *p){ 3233 sqlite3 *db = p->db; 3234 int rc = p->rc; 3235 if( p->zErrMsg ){ 3236 db->bBenignMalloc++; 3237 sqlite3BeginBenignMalloc(); 3238 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 3239 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 3240 sqlite3EndBenignMalloc(); 3241 db->bBenignMalloc--; 3242 }else if( db->pErr ){ 3243 sqlite3ValueSetNull(db->pErr); 3244 } 3245 db->errCode = rc; 3246 return rc; 3247 } 3248 3249 #ifdef SQLITE_ENABLE_SQLLOG 3250 /* 3251 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 3252 ** invoke it. 3253 */ 3254 static void vdbeInvokeSqllog(Vdbe *v){ 3255 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 3256 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 3257 assert( v->db->init.busy==0 ); 3258 if( zExpanded ){ 3259 sqlite3GlobalConfig.xSqllog( 3260 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 3261 ); 3262 sqlite3DbFree(v->db, zExpanded); 3263 } 3264 } 3265 } 3266 #else 3267 # define vdbeInvokeSqllog(x) 3268 #endif 3269 3270 /* 3271 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 3272 ** Write any error messages into *pzErrMsg. Return the result code. 3273 ** 3274 ** After this routine is run, the VDBE should be ready to be executed 3275 ** again. 3276 ** 3277 ** To look at it another way, this routine resets the state of the 3278 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 3279 ** VDBE_MAGIC_INIT. 3280 */ 3281 int sqlite3VdbeReset(Vdbe *p){ 3282 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 3283 int i; 3284 #endif 3285 3286 sqlite3 *db; 3287 db = p->db; 3288 3289 /* If the VM did not run to completion or if it encountered an 3290 ** error, then it might not have been halted properly. So halt 3291 ** it now. 3292 */ 3293 sqlite3VdbeHalt(p); 3294 3295 /* If the VDBE has been run even partially, then transfer the error code 3296 ** and error message from the VDBE into the main database structure. But 3297 ** if the VDBE has just been set to run but has not actually executed any 3298 ** instructions yet, leave the main database error information unchanged. 3299 */ 3300 if( p->pc>=0 ){ 3301 vdbeInvokeSqllog(p); 3302 if( db->pErr || p->zErrMsg ){ 3303 sqlite3VdbeTransferError(p); 3304 }else{ 3305 db->errCode = p->rc; 3306 } 3307 if( p->runOnlyOnce ) p->expired = 1; 3308 }else if( p->rc && p->expired ){ 3309 /* The expired flag was set on the VDBE before the first call 3310 ** to sqlite3_step(). For consistency (since sqlite3_step() was 3311 ** called), set the database error in this case as well. 3312 */ 3313 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 3314 } 3315 3316 /* Reset register contents and reclaim error message memory. 3317 */ 3318 #ifdef SQLITE_DEBUG 3319 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 3320 ** Vdbe.aMem[] arrays have already been cleaned up. */ 3321 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 3322 if( p->aMem ){ 3323 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 3324 } 3325 #endif 3326 if( p->zErrMsg ){ 3327 sqlite3DbFree(db, p->zErrMsg); 3328 p->zErrMsg = 0; 3329 } 3330 p->pResultSet = 0; 3331 #ifdef SQLITE_DEBUG 3332 p->nWrite = 0; 3333 #endif 3334 3335 /* Save profiling information from this VDBE run. 3336 */ 3337 #ifdef VDBE_PROFILE 3338 { 3339 FILE *out = fopen("vdbe_profile.out", "a"); 3340 if( out ){ 3341 fprintf(out, "---- "); 3342 for(i=0; i<p->nOp; i++){ 3343 fprintf(out, "%02x", p->aOp[i].opcode); 3344 } 3345 fprintf(out, "\n"); 3346 if( p->zSql ){ 3347 char c, pc = 0; 3348 fprintf(out, "-- "); 3349 for(i=0; (c = p->zSql[i])!=0; i++){ 3350 if( pc=='\n' ) fprintf(out, "-- "); 3351 putc(c, out); 3352 pc = c; 3353 } 3354 if( pc!='\n' ) fprintf(out, "\n"); 3355 } 3356 for(i=0; i<p->nOp; i++){ 3357 char zHdr[100]; 3358 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 3359 p->aOp[i].cnt, 3360 p->aOp[i].cycles, 3361 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 3362 ); 3363 fprintf(out, "%s", zHdr); 3364 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 3365 } 3366 fclose(out); 3367 } 3368 } 3369 #endif 3370 p->iVdbeMagic = VDBE_MAGIC_RESET; 3371 return p->rc & db->errMask; 3372 } 3373 3374 /* 3375 ** Clean up and delete a VDBE after execution. Return an integer which is 3376 ** the result code. Write any error message text into *pzErrMsg. 3377 */ 3378 int sqlite3VdbeFinalize(Vdbe *p){ 3379 int rc = SQLITE_OK; 3380 if( p->iVdbeMagic==VDBE_MAGIC_RUN || p->iVdbeMagic==VDBE_MAGIC_HALT ){ 3381 rc = sqlite3VdbeReset(p); 3382 assert( (rc & p->db->errMask)==rc ); 3383 } 3384 sqlite3VdbeDelete(p); 3385 return rc; 3386 } 3387 3388 /* 3389 ** If parameter iOp is less than zero, then invoke the destructor for 3390 ** all auxiliary data pointers currently cached by the VM passed as 3391 ** the first argument. 3392 ** 3393 ** Or, if iOp is greater than or equal to zero, then the destructor is 3394 ** only invoked for those auxiliary data pointers created by the user 3395 ** function invoked by the OP_Function opcode at instruction iOp of 3396 ** VM pVdbe, and only then if: 3397 ** 3398 ** * the associated function parameter is the 32nd or later (counting 3399 ** from left to right), or 3400 ** 3401 ** * the corresponding bit in argument mask is clear (where the first 3402 ** function parameter corresponds to bit 0 etc.). 3403 */ 3404 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 3405 while( *pp ){ 3406 AuxData *pAux = *pp; 3407 if( (iOp<0) 3408 || (pAux->iAuxOp==iOp 3409 && pAux->iAuxArg>=0 3410 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 3411 ){ 3412 testcase( pAux->iAuxArg==31 ); 3413 if( pAux->xDeleteAux ){ 3414 pAux->xDeleteAux(pAux->pAux); 3415 } 3416 *pp = pAux->pNextAux; 3417 sqlite3DbFree(db, pAux); 3418 }else{ 3419 pp= &pAux->pNextAux; 3420 } 3421 } 3422 } 3423 3424 /* 3425 ** Free all memory associated with the Vdbe passed as the second argument, 3426 ** except for object itself, which is preserved. 3427 ** 3428 ** The difference between this function and sqlite3VdbeDelete() is that 3429 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 3430 ** the database connection and frees the object itself. 3431 */ 3432 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 3433 SubProgram *pSub, *pNext; 3434 assert( p->db==0 || p->db==db ); 3435 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 3436 for(pSub=p->pProgram; pSub; pSub=pNext){ 3437 pNext = pSub->pNext; 3438 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 3439 sqlite3DbFree(db, pSub); 3440 } 3441 if( p->iVdbeMagic!=VDBE_MAGIC_INIT ){ 3442 releaseMemArray(p->aVar, p->nVar); 3443 sqlite3DbFree(db, p->pVList); 3444 sqlite3DbFree(db, p->pFree); 3445 } 3446 vdbeFreeOpArray(db, p->aOp, p->nOp); 3447 sqlite3DbFree(db, p->aColName); 3448 sqlite3DbFree(db, p->zSql); 3449 #ifdef SQLITE_ENABLE_NORMALIZE 3450 sqlite3DbFree(db, p->zNormSql); 3451 { 3452 DblquoteStr *pThis, *pNext; 3453 for(pThis=p->pDblStr; pThis; pThis=pNext){ 3454 pNext = pThis->pNextStr; 3455 sqlite3DbFree(db, pThis); 3456 } 3457 } 3458 #endif 3459 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3460 { 3461 int i; 3462 for(i=0; i<p->nScan; i++){ 3463 sqlite3DbFree(db, p->aScan[i].zName); 3464 } 3465 sqlite3DbFree(db, p->aScan); 3466 } 3467 #endif 3468 } 3469 3470 /* 3471 ** Delete an entire VDBE. 3472 */ 3473 void sqlite3VdbeDelete(Vdbe *p){ 3474 sqlite3 *db; 3475 3476 assert( p!=0 ); 3477 db = p->db; 3478 assert( sqlite3_mutex_held(db->mutex) ); 3479 sqlite3VdbeClearObject(db, p); 3480 if( p->pPrev ){ 3481 p->pPrev->pNext = p->pNext; 3482 }else{ 3483 assert( db->pVdbe==p ); 3484 db->pVdbe = p->pNext; 3485 } 3486 if( p->pNext ){ 3487 p->pNext->pPrev = p->pPrev; 3488 } 3489 p->iVdbeMagic = VDBE_MAGIC_DEAD; 3490 p->db = 0; 3491 sqlite3DbFreeNN(db, p); 3492 } 3493 3494 /* 3495 ** The cursor "p" has a pending seek operation that has not yet been 3496 ** carried out. Seek the cursor now. If an error occurs, return 3497 ** the appropriate error code. 3498 */ 3499 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){ 3500 int res, rc; 3501 #ifdef SQLITE_TEST 3502 extern int sqlite3_search_count; 3503 #endif 3504 assert( p->deferredMoveto ); 3505 assert( p->isTable ); 3506 assert( p->eCurType==CURTYPE_BTREE ); 3507 rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res); 3508 if( rc ) return rc; 3509 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3510 #ifdef SQLITE_TEST 3511 sqlite3_search_count++; 3512 #endif 3513 p->deferredMoveto = 0; 3514 p->cacheStatus = CACHE_STALE; 3515 return SQLITE_OK; 3516 } 3517 3518 /* 3519 ** Something has moved cursor "p" out of place. Maybe the row it was 3520 ** pointed to was deleted out from under it. Or maybe the btree was 3521 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3522 ** is supposed to be pointing. If the row was deleted out from under the 3523 ** cursor, set the cursor to point to a NULL row. 3524 */ 3525 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 3526 int isDifferentRow, rc; 3527 assert( p->eCurType==CURTYPE_BTREE ); 3528 assert( p->uc.pCursor!=0 ); 3529 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3530 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3531 p->cacheStatus = CACHE_STALE; 3532 if( isDifferentRow ) p->nullRow = 1; 3533 return rc; 3534 } 3535 3536 /* 3537 ** Check to ensure that the cursor is valid. Restore the cursor 3538 ** if need be. Return any I/O error from the restore operation. 3539 */ 3540 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3541 assert( p->eCurType==CURTYPE_BTREE ); 3542 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3543 return handleMovedCursor(p); 3544 } 3545 return SQLITE_OK; 3546 } 3547 3548 /* 3549 ** Make sure the cursor p is ready to read or write the row to which it 3550 ** was last positioned. Return an error code if an OOM fault or I/O error 3551 ** prevents us from positioning the cursor to its correct position. 3552 ** 3553 ** If a MoveTo operation is pending on the given cursor, then do that 3554 ** MoveTo now. If no move is pending, check to see if the row has been 3555 ** deleted out from under the cursor and if it has, mark the row as 3556 ** a NULL row. 3557 ** 3558 ** If the cursor is already pointing to the correct row and that row has 3559 ** not been deleted out from under the cursor, then this routine is a no-op. 3560 */ 3561 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, u32 *piCol){ 3562 VdbeCursor *p = *pp; 3563 assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO ); 3564 if( p->deferredMoveto ){ 3565 u32 iMap; 3566 assert( !p->isEphemeral ); 3567 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 && !p->nullRow ){ 3568 *pp = p->pAltCursor; 3569 *piCol = iMap - 1; 3570 return SQLITE_OK; 3571 } 3572 return sqlite3VdbeFinishMoveto(p); 3573 } 3574 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3575 return handleMovedCursor(p); 3576 } 3577 return SQLITE_OK; 3578 } 3579 3580 /* 3581 ** The following functions: 3582 ** 3583 ** sqlite3VdbeSerialType() 3584 ** sqlite3VdbeSerialTypeLen() 3585 ** sqlite3VdbeSerialLen() 3586 ** sqlite3VdbeSerialPut() 3587 ** sqlite3VdbeSerialGet() 3588 ** 3589 ** encapsulate the code that serializes values for storage in SQLite 3590 ** data and index records. Each serialized value consists of a 3591 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3592 ** integer, stored as a varint. 3593 ** 3594 ** In an SQLite index record, the serial type is stored directly before 3595 ** the blob of data that it corresponds to. In a table record, all serial 3596 ** types are stored at the start of the record, and the blobs of data at 3597 ** the end. Hence these functions allow the caller to handle the 3598 ** serial-type and data blob separately. 3599 ** 3600 ** The following table describes the various storage classes for data: 3601 ** 3602 ** serial type bytes of data type 3603 ** -------------- --------------- --------------- 3604 ** 0 0 NULL 3605 ** 1 1 signed integer 3606 ** 2 2 signed integer 3607 ** 3 3 signed integer 3608 ** 4 4 signed integer 3609 ** 5 6 signed integer 3610 ** 6 8 signed integer 3611 ** 7 8 IEEE float 3612 ** 8 0 Integer constant 0 3613 ** 9 0 Integer constant 1 3614 ** 10,11 reserved for expansion 3615 ** N>=12 and even (N-12)/2 BLOB 3616 ** N>=13 and odd (N-13)/2 text 3617 ** 3618 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3619 ** of SQLite will not understand those serial types. 3620 */ 3621 3622 #if 0 /* Inlined into the OP_MakeRecord opcode */ 3623 /* 3624 ** Return the serial-type for the value stored in pMem. 3625 ** 3626 ** This routine might convert a large MEM_IntReal value into MEM_Real. 3627 ** 3628 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord 3629 ** opcode in the byte-code engine. But by moving this routine in-line, we 3630 ** can omit some redundant tests and make that opcode a lot faster. So 3631 ** this routine is now only used by the STAT3 logic and STAT3 support has 3632 ** ended. The code is kept here for historical reference only. 3633 */ 3634 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3635 int flags = pMem->flags; 3636 u32 n; 3637 3638 assert( pLen!=0 ); 3639 if( flags&MEM_Null ){ 3640 *pLen = 0; 3641 return 0; 3642 } 3643 if( flags&(MEM_Int|MEM_IntReal) ){ 3644 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3645 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3646 i64 i = pMem->u.i; 3647 u64 u; 3648 testcase( flags & MEM_Int ); 3649 testcase( flags & MEM_IntReal ); 3650 if( i<0 ){ 3651 u = ~i; 3652 }else{ 3653 u = i; 3654 } 3655 if( u<=127 ){ 3656 if( (i&1)==i && file_format>=4 ){ 3657 *pLen = 0; 3658 return 8+(u32)u; 3659 }else{ 3660 *pLen = 1; 3661 return 1; 3662 } 3663 } 3664 if( u<=32767 ){ *pLen = 2; return 2; } 3665 if( u<=8388607 ){ *pLen = 3; return 3; } 3666 if( u<=2147483647 ){ *pLen = 4; return 4; } 3667 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3668 *pLen = 8; 3669 if( flags&MEM_IntReal ){ 3670 /* If the value is IntReal and is going to take up 8 bytes to store 3671 ** as an integer, then we might as well make it an 8-byte floating 3672 ** point value */ 3673 pMem->u.r = (double)pMem->u.i; 3674 pMem->flags &= ~MEM_IntReal; 3675 pMem->flags |= MEM_Real; 3676 return 7; 3677 } 3678 return 6; 3679 } 3680 if( flags&MEM_Real ){ 3681 *pLen = 8; 3682 return 7; 3683 } 3684 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3685 assert( pMem->n>=0 ); 3686 n = (u32)pMem->n; 3687 if( flags & MEM_Zero ){ 3688 n += pMem->u.nZero; 3689 } 3690 *pLen = n; 3691 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3692 } 3693 #endif /* inlined into OP_MakeRecord */ 3694 3695 /* 3696 ** The sizes for serial types less than 128 3697 */ 3698 static const u8 sqlite3SmallTypeSizes[] = { 3699 /* 0 1 2 3 4 5 6 7 8 9 */ 3700 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3701 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3702 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3703 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3704 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3705 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3706 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3707 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3708 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3709 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3710 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3711 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3712 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3713 }; 3714 3715 /* 3716 ** Return the length of the data corresponding to the supplied serial-type. 3717 */ 3718 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3719 if( serial_type>=128 ){ 3720 return (serial_type-12)/2; 3721 }else{ 3722 assert( serial_type<12 3723 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3724 return sqlite3SmallTypeSizes[serial_type]; 3725 } 3726 } 3727 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3728 assert( serial_type<128 ); 3729 return sqlite3SmallTypeSizes[serial_type]; 3730 } 3731 3732 /* 3733 ** If we are on an architecture with mixed-endian floating 3734 ** points (ex: ARM7) then swap the lower 4 bytes with the 3735 ** upper 4 bytes. Return the result. 3736 ** 3737 ** For most architectures, this is a no-op. 3738 ** 3739 ** (later): It is reported to me that the mixed-endian problem 3740 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3741 ** that early versions of GCC stored the two words of a 64-bit 3742 ** float in the wrong order. And that error has been propagated 3743 ** ever since. The blame is not necessarily with GCC, though. 3744 ** GCC might have just copying the problem from a prior compiler. 3745 ** I am also told that newer versions of GCC that follow a different 3746 ** ABI get the byte order right. 3747 ** 3748 ** Developers using SQLite on an ARM7 should compile and run their 3749 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3750 ** enabled, some asserts below will ensure that the byte order of 3751 ** floating point values is correct. 3752 ** 3753 ** (2007-08-30) Frank van Vugt has studied this problem closely 3754 ** and has send his findings to the SQLite developers. Frank 3755 ** writes that some Linux kernels offer floating point hardware 3756 ** emulation that uses only 32-bit mantissas instead of a full 3757 ** 48-bits as required by the IEEE standard. (This is the 3758 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3759 ** byte swapping becomes very complicated. To avoid problems, 3760 ** the necessary byte swapping is carried out using a 64-bit integer 3761 ** rather than a 64-bit float. Frank assures us that the code here 3762 ** works for him. We, the developers, have no way to independently 3763 ** verify this, but Frank seems to know what he is talking about 3764 ** so we trust him. 3765 */ 3766 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3767 static u64 floatSwap(u64 in){ 3768 union { 3769 u64 r; 3770 u32 i[2]; 3771 } u; 3772 u32 t; 3773 3774 u.r = in; 3775 t = u.i[0]; 3776 u.i[0] = u.i[1]; 3777 u.i[1] = t; 3778 return u.r; 3779 } 3780 # define swapMixedEndianFloat(X) X = floatSwap(X) 3781 #else 3782 # define swapMixedEndianFloat(X) 3783 #endif 3784 3785 /* 3786 ** Write the serialized data blob for the value stored in pMem into 3787 ** buf. It is assumed that the caller has allocated sufficient space. 3788 ** Return the number of bytes written. 3789 ** 3790 ** nBuf is the amount of space left in buf[]. The caller is responsible 3791 ** for allocating enough space to buf[] to hold the entire field, exclusive 3792 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3793 ** 3794 ** Return the number of bytes actually written into buf[]. The number 3795 ** of bytes in the zero-filled tail is included in the return value only 3796 ** if those bytes were zeroed in buf[]. 3797 */ 3798 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3799 u32 len; 3800 3801 /* Integer and Real */ 3802 if( serial_type<=7 && serial_type>0 ){ 3803 u64 v; 3804 u32 i; 3805 if( serial_type==7 ){ 3806 assert( sizeof(v)==sizeof(pMem->u.r) ); 3807 memcpy(&v, &pMem->u.r, sizeof(v)); 3808 swapMixedEndianFloat(v); 3809 }else{ 3810 v = pMem->u.i; 3811 } 3812 len = i = sqlite3SmallTypeSizes[serial_type]; 3813 assert( i>0 ); 3814 do{ 3815 buf[--i] = (u8)(v&0xFF); 3816 v >>= 8; 3817 }while( i ); 3818 return len; 3819 } 3820 3821 /* String or blob */ 3822 if( serial_type>=12 ){ 3823 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3824 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3825 len = pMem->n; 3826 if( len>0 ) memcpy(buf, pMem->z, len); 3827 return len; 3828 } 3829 3830 /* NULL or constants 0 or 1 */ 3831 return 0; 3832 } 3833 3834 /* Input "x" is a sequence of unsigned characters that represent a 3835 ** big-endian integer. Return the equivalent native integer 3836 */ 3837 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3838 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3839 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3840 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3841 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3842 3843 /* 3844 ** Deserialize the data blob pointed to by buf as serial type serial_type 3845 ** and store the result in pMem. Return the number of bytes read. 3846 ** 3847 ** This function is implemented as two separate routines for performance. 3848 ** The few cases that require local variables are broken out into a separate 3849 ** routine so that in most cases the overhead of moving the stack pointer 3850 ** is avoided. 3851 */ 3852 static u32 serialGet( 3853 const unsigned char *buf, /* Buffer to deserialize from */ 3854 u32 serial_type, /* Serial type to deserialize */ 3855 Mem *pMem /* Memory cell to write value into */ 3856 ){ 3857 u64 x = FOUR_BYTE_UINT(buf); 3858 u32 y = FOUR_BYTE_UINT(buf+4); 3859 x = (x<<32) + y; 3860 if( serial_type==6 ){ 3861 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3862 ** twos-complement integer. */ 3863 pMem->u.i = *(i64*)&x; 3864 pMem->flags = MEM_Int; 3865 testcase( pMem->u.i<0 ); 3866 }else{ 3867 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3868 ** floating point number. */ 3869 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3870 /* Verify that integers and floating point values use the same 3871 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3872 ** defined that 64-bit floating point values really are mixed 3873 ** endian. 3874 */ 3875 static const u64 t1 = ((u64)0x3ff00000)<<32; 3876 static const double r1 = 1.0; 3877 u64 t2 = t1; 3878 swapMixedEndianFloat(t2); 3879 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3880 #endif 3881 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3882 swapMixedEndianFloat(x); 3883 memcpy(&pMem->u.r, &x, sizeof(x)); 3884 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real; 3885 } 3886 return 8; 3887 } 3888 u32 sqlite3VdbeSerialGet( 3889 const unsigned char *buf, /* Buffer to deserialize from */ 3890 u32 serial_type, /* Serial type to deserialize */ 3891 Mem *pMem /* Memory cell to write value into */ 3892 ){ 3893 switch( serial_type ){ 3894 case 10: { /* Internal use only: NULL with virtual table 3895 ** UPDATE no-change flag set */ 3896 pMem->flags = MEM_Null|MEM_Zero; 3897 pMem->n = 0; 3898 pMem->u.nZero = 0; 3899 break; 3900 } 3901 case 11: /* Reserved for future use */ 3902 case 0: { /* Null */ 3903 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3904 pMem->flags = MEM_Null; 3905 break; 3906 } 3907 case 1: { 3908 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3909 ** integer. */ 3910 pMem->u.i = ONE_BYTE_INT(buf); 3911 pMem->flags = MEM_Int; 3912 testcase( pMem->u.i<0 ); 3913 return 1; 3914 } 3915 case 2: { /* 2-byte signed integer */ 3916 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3917 ** twos-complement integer. */ 3918 pMem->u.i = TWO_BYTE_INT(buf); 3919 pMem->flags = MEM_Int; 3920 testcase( pMem->u.i<0 ); 3921 return 2; 3922 } 3923 case 3: { /* 3-byte signed integer */ 3924 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3925 ** twos-complement integer. */ 3926 pMem->u.i = THREE_BYTE_INT(buf); 3927 pMem->flags = MEM_Int; 3928 testcase( pMem->u.i<0 ); 3929 return 3; 3930 } 3931 case 4: { /* 4-byte signed integer */ 3932 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3933 ** twos-complement integer. */ 3934 pMem->u.i = FOUR_BYTE_INT(buf); 3935 #ifdef __HP_cc 3936 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3937 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3938 #endif 3939 pMem->flags = MEM_Int; 3940 testcase( pMem->u.i<0 ); 3941 return 4; 3942 } 3943 case 5: { /* 6-byte signed integer */ 3944 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3945 ** twos-complement integer. */ 3946 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3947 pMem->flags = MEM_Int; 3948 testcase( pMem->u.i<0 ); 3949 return 6; 3950 } 3951 case 6: /* 8-byte signed integer */ 3952 case 7: { /* IEEE floating point */ 3953 /* These use local variables, so do them in a separate routine 3954 ** to avoid having to move the frame pointer in the common case */ 3955 return serialGet(buf,serial_type,pMem); 3956 } 3957 case 8: /* Integer 0 */ 3958 case 9: { /* Integer 1 */ 3959 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3960 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3961 pMem->u.i = serial_type-8; 3962 pMem->flags = MEM_Int; 3963 return 0; 3964 } 3965 default: { 3966 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3967 ** length. 3968 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3969 ** (N-13)/2 bytes in length. */ 3970 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3971 pMem->z = (char *)buf; 3972 pMem->n = (serial_type-12)/2; 3973 pMem->flags = aFlag[serial_type&1]; 3974 return pMem->n; 3975 } 3976 } 3977 return 0; 3978 } 3979 /* 3980 ** This routine is used to allocate sufficient space for an UnpackedRecord 3981 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3982 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3983 ** 3984 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3985 ** the unaligned buffer passed via the second and third arguments (presumably 3986 ** stack space). If the former, then *ppFree is set to a pointer that should 3987 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3988 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3989 ** before returning. 3990 ** 3991 ** If an OOM error occurs, NULL is returned. 3992 */ 3993 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3994 KeyInfo *pKeyInfo /* Description of the record */ 3995 ){ 3996 UnpackedRecord *p; /* Unpacked record to return */ 3997 int nByte; /* Number of bytes required for *p */ 3998 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 3999 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 4000 if( !p ) return 0; 4001 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 4002 assert( pKeyInfo->aSortFlags!=0 ); 4003 p->pKeyInfo = pKeyInfo; 4004 p->nField = pKeyInfo->nKeyField + 1; 4005 return p; 4006 } 4007 4008 /* 4009 ** Given the nKey-byte encoding of a record in pKey[], populate the 4010 ** UnpackedRecord structure indicated by the fourth argument with the 4011 ** contents of the decoded record. 4012 */ 4013 void sqlite3VdbeRecordUnpack( 4014 KeyInfo *pKeyInfo, /* Information about the record format */ 4015 int nKey, /* Size of the binary record */ 4016 const void *pKey, /* The binary record */ 4017 UnpackedRecord *p /* Populate this structure before returning. */ 4018 ){ 4019 const unsigned char *aKey = (const unsigned char *)pKey; 4020 u32 d; 4021 u32 idx; /* Offset in aKey[] to read from */ 4022 u16 u; /* Unsigned loop counter */ 4023 u32 szHdr; 4024 Mem *pMem = p->aMem; 4025 4026 p->default_rc = 0; 4027 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 4028 idx = getVarint32(aKey, szHdr); 4029 d = szHdr; 4030 u = 0; 4031 while( idx<szHdr && d<=(u32)nKey ){ 4032 u32 serial_type; 4033 4034 idx += getVarint32(&aKey[idx], serial_type); 4035 pMem->enc = pKeyInfo->enc; 4036 pMem->db = pKeyInfo->db; 4037 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 4038 pMem->szMalloc = 0; 4039 pMem->z = 0; 4040 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 4041 pMem++; 4042 if( (++u)>=p->nField ) break; 4043 } 4044 if( d>(u32)nKey && u ){ 4045 assert( CORRUPT_DB ); 4046 /* In a corrupt record entry, the last pMem might have been set up using 4047 ** uninitialized memory. Overwrite its value with NULL, to prevent 4048 ** warnings from MSAN. */ 4049 sqlite3VdbeMemSetNull(pMem-1); 4050 } 4051 assert( u<=pKeyInfo->nKeyField + 1 ); 4052 p->nField = u; 4053 } 4054 4055 #ifdef SQLITE_DEBUG 4056 /* 4057 ** This function compares two index or table record keys in the same way 4058 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 4059 ** this function deserializes and compares values using the 4060 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 4061 ** in assert() statements to ensure that the optimized code in 4062 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 4063 ** 4064 ** Return true if the result of comparison is equivalent to desiredResult. 4065 ** Return false if there is a disagreement. 4066 */ 4067 static int vdbeRecordCompareDebug( 4068 int nKey1, const void *pKey1, /* Left key */ 4069 const UnpackedRecord *pPKey2, /* Right key */ 4070 int desiredResult /* Correct answer */ 4071 ){ 4072 u32 d1; /* Offset into aKey[] of next data element */ 4073 u32 idx1; /* Offset into aKey[] of next header element */ 4074 u32 szHdr1; /* Number of bytes in header */ 4075 int i = 0; 4076 int rc = 0; 4077 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4078 KeyInfo *pKeyInfo; 4079 Mem mem1; 4080 4081 pKeyInfo = pPKey2->pKeyInfo; 4082 if( pKeyInfo->db==0 ) return 1; 4083 mem1.enc = pKeyInfo->enc; 4084 mem1.db = pKeyInfo->db; 4085 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 4086 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4087 4088 /* Compilers may complain that mem1.u.i is potentially uninitialized. 4089 ** We could initialize it, as shown here, to silence those complaints. 4090 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 4091 ** the unnecessary initialization has a measurable negative performance 4092 ** impact, since this routine is a very high runner. And so, we choose 4093 ** to ignore the compiler warnings and leave this variable uninitialized. 4094 */ 4095 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 4096 4097 idx1 = getVarint32(aKey1, szHdr1); 4098 if( szHdr1>98307 ) return SQLITE_CORRUPT; 4099 d1 = szHdr1; 4100 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 4101 assert( pKeyInfo->aSortFlags!=0 ); 4102 assert( pKeyInfo->nKeyField>0 ); 4103 assert( idx1<=szHdr1 || CORRUPT_DB ); 4104 do{ 4105 u32 serial_type1; 4106 4107 /* Read the serial types for the next element in each key. */ 4108 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 4109 4110 /* Verify that there is enough key space remaining to avoid 4111 ** a buffer overread. The "d1+serial_type1+2" subexpression will 4112 ** always be greater than or equal to the amount of required key space. 4113 ** Use that approximation to avoid the more expensive call to 4114 ** sqlite3VdbeSerialTypeLen() in the common case. 4115 */ 4116 if( d1+(u64)serial_type1+2>(u64)nKey1 4117 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 4118 ){ 4119 break; 4120 } 4121 4122 /* Extract the values to be compared. 4123 */ 4124 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 4125 4126 /* Do the comparison 4127 */ 4128 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], 4129 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0); 4130 if( rc!=0 ){ 4131 assert( mem1.szMalloc==0 ); /* See comment below */ 4132 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 4133 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null)) 4134 ){ 4135 rc = -rc; 4136 } 4137 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){ 4138 rc = -rc; /* Invert the result for DESC sort order. */ 4139 } 4140 goto debugCompareEnd; 4141 } 4142 i++; 4143 }while( idx1<szHdr1 && i<pPKey2->nField ); 4144 4145 /* No memory allocation is ever used on mem1. Prove this using 4146 ** the following assert(). If the assert() fails, it indicates a 4147 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 4148 */ 4149 assert( mem1.szMalloc==0 ); 4150 4151 /* rc==0 here means that one of the keys ran out of fields and 4152 ** all the fields up to that point were equal. Return the default_rc 4153 ** value. */ 4154 rc = pPKey2->default_rc; 4155 4156 debugCompareEnd: 4157 if( desiredResult==0 && rc==0 ) return 1; 4158 if( desiredResult<0 && rc<0 ) return 1; 4159 if( desiredResult>0 && rc>0 ) return 1; 4160 if( CORRUPT_DB ) return 1; 4161 if( pKeyInfo->db->mallocFailed ) return 1; 4162 return 0; 4163 } 4164 #endif 4165 4166 #ifdef SQLITE_DEBUG 4167 /* 4168 ** Count the number of fields (a.k.a. columns) in the record given by 4169 ** pKey,nKey. The verify that this count is less than or equal to the 4170 ** limit given by pKeyInfo->nAllField. 4171 ** 4172 ** If this constraint is not satisfied, it means that the high-speed 4173 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 4174 ** not work correctly. If this assert() ever fires, it probably means 4175 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 4176 ** incorrectly. 4177 */ 4178 static void vdbeAssertFieldCountWithinLimits( 4179 int nKey, const void *pKey, /* The record to verify */ 4180 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 4181 ){ 4182 int nField = 0; 4183 u32 szHdr; 4184 u32 idx; 4185 u32 notUsed; 4186 const unsigned char *aKey = (const unsigned char*)pKey; 4187 4188 if( CORRUPT_DB ) return; 4189 idx = getVarint32(aKey, szHdr); 4190 assert( nKey>=0 ); 4191 assert( szHdr<=(u32)nKey ); 4192 while( idx<szHdr ){ 4193 idx += getVarint32(aKey+idx, notUsed); 4194 nField++; 4195 } 4196 assert( nField <= pKeyInfo->nAllField ); 4197 } 4198 #else 4199 # define vdbeAssertFieldCountWithinLimits(A,B,C) 4200 #endif 4201 4202 /* 4203 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 4204 ** using the collation sequence pColl. As usual, return a negative , zero 4205 ** or positive value if *pMem1 is less than, equal to or greater than 4206 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 4207 */ 4208 static int vdbeCompareMemString( 4209 const Mem *pMem1, 4210 const Mem *pMem2, 4211 const CollSeq *pColl, 4212 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 4213 ){ 4214 if( pMem1->enc==pColl->enc ){ 4215 /* The strings are already in the correct encoding. Call the 4216 ** comparison function directly */ 4217 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 4218 }else{ 4219 int rc; 4220 const void *v1, *v2; 4221 Mem c1; 4222 Mem c2; 4223 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 4224 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 4225 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 4226 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 4227 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 4228 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 4229 if( (v1==0 || v2==0) ){ 4230 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 4231 rc = 0; 4232 }else{ 4233 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 4234 } 4235 sqlite3VdbeMemRelease(&c1); 4236 sqlite3VdbeMemRelease(&c2); 4237 return rc; 4238 } 4239 } 4240 4241 /* 4242 ** The input pBlob is guaranteed to be a Blob that is not marked 4243 ** with MEM_Zero. Return true if it could be a zero-blob. 4244 */ 4245 static int isAllZero(const char *z, int n){ 4246 int i; 4247 for(i=0; i<n; i++){ 4248 if( z[i] ) return 0; 4249 } 4250 return 1; 4251 } 4252 4253 /* 4254 ** Compare two blobs. Return negative, zero, or positive if the first 4255 ** is less than, equal to, or greater than the second, respectively. 4256 ** If one blob is a prefix of the other, then the shorter is the lessor. 4257 */ 4258 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 4259 int c; 4260 int n1 = pB1->n; 4261 int n2 = pB2->n; 4262 4263 /* It is possible to have a Blob value that has some non-zero content 4264 ** followed by zero content. But that only comes up for Blobs formed 4265 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 4266 ** sqlite3MemCompare(). */ 4267 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 4268 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 4269 4270 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 4271 if( pB1->flags & pB2->flags & MEM_Zero ){ 4272 return pB1->u.nZero - pB2->u.nZero; 4273 }else if( pB1->flags & MEM_Zero ){ 4274 if( !isAllZero(pB2->z, pB2->n) ) return -1; 4275 return pB1->u.nZero - n2; 4276 }else{ 4277 if( !isAllZero(pB1->z, pB1->n) ) return +1; 4278 return n1 - pB2->u.nZero; 4279 } 4280 } 4281 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 4282 if( c ) return c; 4283 return n1 - n2; 4284 } 4285 4286 /* 4287 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 4288 ** number. Return negative, zero, or positive if the first (i64) is less than, 4289 ** equal to, or greater than the second (double). 4290 */ 4291 int sqlite3IntFloatCompare(i64 i, double r){ 4292 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 4293 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 4294 testcase( x<r ); 4295 testcase( x>r ); 4296 testcase( x==r ); 4297 if( x<r ) return -1; 4298 if( x>r ) return +1; /*NO_TEST*/ /* work around bugs in gcov */ 4299 return 0; /*NO_TEST*/ /* work around bugs in gcov */ 4300 }else{ 4301 i64 y; 4302 double s; 4303 if( r<-9223372036854775808.0 ) return +1; 4304 if( r>=9223372036854775808.0 ) return -1; 4305 y = (i64)r; 4306 if( i<y ) return -1; 4307 if( i>y ) return +1; 4308 s = (double)i; 4309 if( s<r ) return -1; 4310 if( s>r ) return +1; 4311 return 0; 4312 } 4313 } 4314 4315 /* 4316 ** Compare the values contained by the two memory cells, returning 4317 ** negative, zero or positive if pMem1 is less than, equal to, or greater 4318 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 4319 ** and reals) sorted numerically, followed by text ordered by the collating 4320 ** sequence pColl and finally blob's ordered by memcmp(). 4321 ** 4322 ** Two NULL values are considered equal by this function. 4323 */ 4324 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 4325 int f1, f2; 4326 int combined_flags; 4327 4328 f1 = pMem1->flags; 4329 f2 = pMem2->flags; 4330 combined_flags = f1|f2; 4331 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); 4332 4333 /* If one value is NULL, it is less than the other. If both values 4334 ** are NULL, return 0. 4335 */ 4336 if( combined_flags&MEM_Null ){ 4337 return (f2&MEM_Null) - (f1&MEM_Null); 4338 } 4339 4340 /* At least one of the two values is a number 4341 */ 4342 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ 4343 testcase( combined_flags & MEM_Int ); 4344 testcase( combined_flags & MEM_Real ); 4345 testcase( combined_flags & MEM_IntReal ); 4346 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ 4347 testcase( f1 & f2 & MEM_Int ); 4348 testcase( f1 & f2 & MEM_IntReal ); 4349 if( pMem1->u.i < pMem2->u.i ) return -1; 4350 if( pMem1->u.i > pMem2->u.i ) return +1; 4351 return 0; 4352 } 4353 if( (f1 & f2 & MEM_Real)!=0 ){ 4354 if( pMem1->u.r < pMem2->u.r ) return -1; 4355 if( pMem1->u.r > pMem2->u.r ) return +1; 4356 return 0; 4357 } 4358 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ 4359 testcase( f1 & MEM_Int ); 4360 testcase( f1 & MEM_IntReal ); 4361 if( (f2&MEM_Real)!=0 ){ 4362 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 4363 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4364 if( pMem1->u.i < pMem2->u.i ) return -1; 4365 if( pMem1->u.i > pMem2->u.i ) return +1; 4366 return 0; 4367 }else{ 4368 return -1; 4369 } 4370 } 4371 if( (f1&MEM_Real)!=0 ){ 4372 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4373 testcase( f2 & MEM_Int ); 4374 testcase( f2 & MEM_IntReal ); 4375 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 4376 }else{ 4377 return -1; 4378 } 4379 } 4380 return +1; 4381 } 4382 4383 /* If one value is a string and the other is a blob, the string is less. 4384 ** If both are strings, compare using the collating functions. 4385 */ 4386 if( combined_flags&MEM_Str ){ 4387 if( (f1 & MEM_Str)==0 ){ 4388 return 1; 4389 } 4390 if( (f2 & MEM_Str)==0 ){ 4391 return -1; 4392 } 4393 4394 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 4395 assert( pMem1->enc==SQLITE_UTF8 || 4396 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 4397 4398 /* The collation sequence must be defined at this point, even if 4399 ** the user deletes the collation sequence after the vdbe program is 4400 ** compiled (this was not always the case). 4401 */ 4402 assert( !pColl || pColl->xCmp ); 4403 4404 if( pColl ){ 4405 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 4406 } 4407 /* If a NULL pointer was passed as the collate function, fall through 4408 ** to the blob case and use memcmp(). */ 4409 } 4410 4411 /* Both values must be blobs. Compare using memcmp(). */ 4412 return sqlite3BlobCompare(pMem1, pMem2); 4413 } 4414 4415 4416 /* 4417 ** The first argument passed to this function is a serial-type that 4418 ** corresponds to an integer - all values between 1 and 9 inclusive 4419 ** except 7. The second points to a buffer containing an integer value 4420 ** serialized according to serial_type. This function deserializes 4421 ** and returns the value. 4422 */ 4423 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 4424 u32 y; 4425 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 4426 switch( serial_type ){ 4427 case 0: 4428 case 1: 4429 testcase( aKey[0]&0x80 ); 4430 return ONE_BYTE_INT(aKey); 4431 case 2: 4432 testcase( aKey[0]&0x80 ); 4433 return TWO_BYTE_INT(aKey); 4434 case 3: 4435 testcase( aKey[0]&0x80 ); 4436 return THREE_BYTE_INT(aKey); 4437 case 4: { 4438 testcase( aKey[0]&0x80 ); 4439 y = FOUR_BYTE_UINT(aKey); 4440 return (i64)*(int*)&y; 4441 } 4442 case 5: { 4443 testcase( aKey[0]&0x80 ); 4444 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4445 } 4446 case 6: { 4447 u64 x = FOUR_BYTE_UINT(aKey); 4448 testcase( aKey[0]&0x80 ); 4449 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4450 return (i64)*(i64*)&x; 4451 } 4452 } 4453 4454 return (serial_type - 8); 4455 } 4456 4457 /* 4458 ** This function compares the two table rows or index records 4459 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 4460 ** or positive integer if key1 is less than, equal to or 4461 ** greater than key2. The {nKey1, pKey1} key must be a blob 4462 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 4463 ** key must be a parsed key such as obtained from 4464 ** sqlite3VdbeParseRecord. 4465 ** 4466 ** If argument bSkip is non-zero, it is assumed that the caller has already 4467 ** determined that the first fields of the keys are equal. 4468 ** 4469 ** Key1 and Key2 do not have to contain the same number of fields. If all 4470 ** fields that appear in both keys are equal, then pPKey2->default_rc is 4471 ** returned. 4472 ** 4473 ** If database corruption is discovered, set pPKey2->errCode to 4474 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 4475 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 4476 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 4477 */ 4478 int sqlite3VdbeRecordCompareWithSkip( 4479 int nKey1, const void *pKey1, /* Left key */ 4480 UnpackedRecord *pPKey2, /* Right key */ 4481 int bSkip /* If true, skip the first field */ 4482 ){ 4483 u32 d1; /* Offset into aKey[] of next data element */ 4484 int i; /* Index of next field to compare */ 4485 u32 szHdr1; /* Size of record header in bytes */ 4486 u32 idx1; /* Offset of first type in header */ 4487 int rc = 0; /* Return value */ 4488 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 4489 KeyInfo *pKeyInfo; 4490 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4491 Mem mem1; 4492 4493 /* If bSkip is true, then the caller has already determined that the first 4494 ** two elements in the keys are equal. Fix the various stack variables so 4495 ** that this routine begins comparing at the second field. */ 4496 if( bSkip ){ 4497 u32 s1; 4498 idx1 = 1 + getVarint32(&aKey1[1], s1); 4499 szHdr1 = aKey1[0]; 4500 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 4501 i = 1; 4502 pRhs++; 4503 }else{ 4504 idx1 = getVarint32(aKey1, szHdr1); 4505 d1 = szHdr1; 4506 i = 0; 4507 } 4508 if( d1>(unsigned)nKey1 ){ 4509 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4510 return 0; /* Corruption */ 4511 } 4512 4513 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4514 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 4515 || CORRUPT_DB ); 4516 assert( pPKey2->pKeyInfo->aSortFlags!=0 ); 4517 assert( pPKey2->pKeyInfo->nKeyField>0 ); 4518 assert( idx1<=szHdr1 || CORRUPT_DB ); 4519 do{ 4520 u32 serial_type; 4521 4522 /* RHS is an integer */ 4523 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ 4524 testcase( pRhs->flags & MEM_Int ); 4525 testcase( pRhs->flags & MEM_IntReal ); 4526 serial_type = aKey1[idx1]; 4527 testcase( serial_type==12 ); 4528 if( serial_type>=10 ){ 4529 rc = +1; 4530 }else if( serial_type==0 ){ 4531 rc = -1; 4532 }else if( serial_type==7 ){ 4533 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4534 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4535 }else{ 4536 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4537 i64 rhs = pRhs->u.i; 4538 if( lhs<rhs ){ 4539 rc = -1; 4540 }else if( lhs>rhs ){ 4541 rc = +1; 4542 } 4543 } 4544 } 4545 4546 /* RHS is real */ 4547 else if( pRhs->flags & MEM_Real ){ 4548 serial_type = aKey1[idx1]; 4549 if( serial_type>=10 ){ 4550 /* Serial types 12 or greater are strings and blobs (greater than 4551 ** numbers). Types 10 and 11 are currently "reserved for future 4552 ** use", so it doesn't really matter what the results of comparing 4553 ** them to numberic values are. */ 4554 rc = +1; 4555 }else if( serial_type==0 ){ 4556 rc = -1; 4557 }else{ 4558 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4559 if( serial_type==7 ){ 4560 if( mem1.u.r<pRhs->u.r ){ 4561 rc = -1; 4562 }else if( mem1.u.r>pRhs->u.r ){ 4563 rc = +1; 4564 } 4565 }else{ 4566 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4567 } 4568 } 4569 } 4570 4571 /* RHS is a string */ 4572 else if( pRhs->flags & MEM_Str ){ 4573 getVarint32NR(&aKey1[idx1], serial_type); 4574 testcase( serial_type==12 ); 4575 if( serial_type<12 ){ 4576 rc = -1; 4577 }else if( !(serial_type & 0x01) ){ 4578 rc = +1; 4579 }else{ 4580 mem1.n = (serial_type - 12) / 2; 4581 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4582 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4583 if( (d1+mem1.n) > (unsigned)nKey1 4584 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i 4585 ){ 4586 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4587 return 0; /* Corruption */ 4588 }else if( pKeyInfo->aColl[i] ){ 4589 mem1.enc = pKeyInfo->enc; 4590 mem1.db = pKeyInfo->db; 4591 mem1.flags = MEM_Str; 4592 mem1.z = (char*)&aKey1[d1]; 4593 rc = vdbeCompareMemString( 4594 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4595 ); 4596 }else{ 4597 int nCmp = MIN(mem1.n, pRhs->n); 4598 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4599 if( rc==0 ) rc = mem1.n - pRhs->n; 4600 } 4601 } 4602 } 4603 4604 /* RHS is a blob */ 4605 else if( pRhs->flags & MEM_Blob ){ 4606 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4607 getVarint32NR(&aKey1[idx1], serial_type); 4608 testcase( serial_type==12 ); 4609 if( serial_type<12 || (serial_type & 0x01) ){ 4610 rc = -1; 4611 }else{ 4612 int nStr = (serial_type - 12) / 2; 4613 testcase( (d1+nStr)==(unsigned)nKey1 ); 4614 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4615 if( (d1+nStr) > (unsigned)nKey1 ){ 4616 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4617 return 0; /* Corruption */ 4618 }else if( pRhs->flags & MEM_Zero ){ 4619 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4620 rc = 1; 4621 }else{ 4622 rc = nStr - pRhs->u.nZero; 4623 } 4624 }else{ 4625 int nCmp = MIN(nStr, pRhs->n); 4626 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4627 if( rc==0 ) rc = nStr - pRhs->n; 4628 } 4629 } 4630 } 4631 4632 /* RHS is null */ 4633 else{ 4634 serial_type = aKey1[idx1]; 4635 rc = (serial_type!=0); 4636 } 4637 4638 if( rc!=0 ){ 4639 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i]; 4640 if( sortFlags ){ 4641 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0 4642 || ((sortFlags & KEYINFO_ORDER_DESC) 4643 !=(serial_type==0 || (pRhs->flags&MEM_Null))) 4644 ){ 4645 rc = -rc; 4646 } 4647 } 4648 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4649 assert( mem1.szMalloc==0 ); /* See comment below */ 4650 return rc; 4651 } 4652 4653 i++; 4654 if( i==pPKey2->nField ) break; 4655 pRhs++; 4656 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4657 idx1 += sqlite3VarintLen(serial_type); 4658 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 ); 4659 4660 /* No memory allocation is ever used on mem1. Prove this using 4661 ** the following assert(). If the assert() fails, it indicates a 4662 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4663 assert( mem1.szMalloc==0 ); 4664 4665 /* rc==0 here means that one or both of the keys ran out of fields and 4666 ** all the fields up to that point were equal. Return the default_rc 4667 ** value. */ 4668 assert( CORRUPT_DB 4669 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4670 || pPKey2->pKeyInfo->db->mallocFailed 4671 ); 4672 pPKey2->eqSeen = 1; 4673 return pPKey2->default_rc; 4674 } 4675 int sqlite3VdbeRecordCompare( 4676 int nKey1, const void *pKey1, /* Left key */ 4677 UnpackedRecord *pPKey2 /* Right key */ 4678 ){ 4679 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4680 } 4681 4682 4683 /* 4684 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4685 ** that (a) the first field of pPKey2 is an integer, and (b) the 4686 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4687 ** byte (i.e. is less than 128). 4688 ** 4689 ** To avoid concerns about buffer overreads, this routine is only used 4690 ** on schemas where the maximum valid header size is 63 bytes or less. 4691 */ 4692 static int vdbeRecordCompareInt( 4693 int nKey1, const void *pKey1, /* Left key */ 4694 UnpackedRecord *pPKey2 /* Right key */ 4695 ){ 4696 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4697 int serial_type = ((const u8*)pKey1)[1]; 4698 int res; 4699 u32 y; 4700 u64 x; 4701 i64 v; 4702 i64 lhs; 4703 4704 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4705 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4706 switch( serial_type ){ 4707 case 1: { /* 1-byte signed integer */ 4708 lhs = ONE_BYTE_INT(aKey); 4709 testcase( lhs<0 ); 4710 break; 4711 } 4712 case 2: { /* 2-byte signed integer */ 4713 lhs = TWO_BYTE_INT(aKey); 4714 testcase( lhs<0 ); 4715 break; 4716 } 4717 case 3: { /* 3-byte signed integer */ 4718 lhs = THREE_BYTE_INT(aKey); 4719 testcase( lhs<0 ); 4720 break; 4721 } 4722 case 4: { /* 4-byte signed integer */ 4723 y = FOUR_BYTE_UINT(aKey); 4724 lhs = (i64)*(int*)&y; 4725 testcase( lhs<0 ); 4726 break; 4727 } 4728 case 5: { /* 6-byte signed integer */ 4729 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4730 testcase( lhs<0 ); 4731 break; 4732 } 4733 case 6: { /* 8-byte signed integer */ 4734 x = FOUR_BYTE_UINT(aKey); 4735 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4736 lhs = *(i64*)&x; 4737 testcase( lhs<0 ); 4738 break; 4739 } 4740 case 8: 4741 lhs = 0; 4742 break; 4743 case 9: 4744 lhs = 1; 4745 break; 4746 4747 /* This case could be removed without changing the results of running 4748 ** this code. Including it causes gcc to generate a faster switch 4749 ** statement (since the range of switch targets now starts at zero and 4750 ** is contiguous) but does not cause any duplicate code to be generated 4751 ** (as gcc is clever enough to combine the two like cases). Other 4752 ** compilers might be similar. */ 4753 case 0: case 7: 4754 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4755 4756 default: 4757 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4758 } 4759 4760 v = pPKey2->aMem[0].u.i; 4761 if( v>lhs ){ 4762 res = pPKey2->r1; 4763 }else if( v<lhs ){ 4764 res = pPKey2->r2; 4765 }else if( pPKey2->nField>1 ){ 4766 /* The first fields of the two keys are equal. Compare the trailing 4767 ** fields. */ 4768 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4769 }else{ 4770 /* The first fields of the two keys are equal and there are no trailing 4771 ** fields. Return pPKey2->default_rc in this case. */ 4772 res = pPKey2->default_rc; 4773 pPKey2->eqSeen = 1; 4774 } 4775 4776 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4777 return res; 4778 } 4779 4780 /* 4781 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4782 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4783 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4784 ** at the start of (pKey1/nKey1) fits in a single byte. 4785 */ 4786 static int vdbeRecordCompareString( 4787 int nKey1, const void *pKey1, /* Left key */ 4788 UnpackedRecord *pPKey2 /* Right key */ 4789 ){ 4790 const u8 *aKey1 = (const u8*)pKey1; 4791 int serial_type; 4792 int res; 4793 4794 assert( pPKey2->aMem[0].flags & MEM_Str ); 4795 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4796 serial_type = (u8)(aKey1[1]); 4797 if( serial_type >= 0x80 ){ 4798 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type); 4799 } 4800 if( serial_type<12 ){ 4801 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4802 }else if( !(serial_type & 0x01) ){ 4803 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4804 }else{ 4805 int nCmp; 4806 int nStr; 4807 int szHdr = aKey1[0]; 4808 4809 nStr = (serial_type-12) / 2; 4810 if( (szHdr + nStr) > nKey1 ){ 4811 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4812 return 0; /* Corruption */ 4813 } 4814 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4815 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4816 4817 if( res>0 ){ 4818 res = pPKey2->r2; 4819 }else if( res<0 ){ 4820 res = pPKey2->r1; 4821 }else{ 4822 res = nStr - pPKey2->aMem[0].n; 4823 if( res==0 ){ 4824 if( pPKey2->nField>1 ){ 4825 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4826 }else{ 4827 res = pPKey2->default_rc; 4828 pPKey2->eqSeen = 1; 4829 } 4830 }else if( res>0 ){ 4831 res = pPKey2->r2; 4832 }else{ 4833 res = pPKey2->r1; 4834 } 4835 } 4836 } 4837 4838 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4839 || CORRUPT_DB 4840 || pPKey2->pKeyInfo->db->mallocFailed 4841 ); 4842 return res; 4843 } 4844 4845 /* 4846 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4847 ** suitable for comparing serialized records to the unpacked record passed 4848 ** as the only argument. 4849 */ 4850 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4851 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4852 ** that the size-of-header varint that occurs at the start of each record 4853 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4854 ** also assumes that it is safe to overread a buffer by at least the 4855 ** maximum possible legal header size plus 8 bytes. Because there is 4856 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4857 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4858 ** limit the size of the header to 64 bytes in cases where the first field 4859 ** is an integer. 4860 ** 4861 ** The easiest way to enforce this limit is to consider only records with 4862 ** 13 fields or less. If the first field is an integer, the maximum legal 4863 ** header size is (12*5 + 1 + 1) bytes. */ 4864 if( p->pKeyInfo->nAllField<=13 ){ 4865 int flags = p->aMem[0].flags; 4866 if( p->pKeyInfo->aSortFlags[0] ){ 4867 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){ 4868 return sqlite3VdbeRecordCompare; 4869 } 4870 p->r1 = 1; 4871 p->r2 = -1; 4872 }else{ 4873 p->r1 = -1; 4874 p->r2 = 1; 4875 } 4876 if( (flags & MEM_Int) ){ 4877 return vdbeRecordCompareInt; 4878 } 4879 testcase( flags & MEM_Real ); 4880 testcase( flags & MEM_Null ); 4881 testcase( flags & MEM_Blob ); 4882 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 4883 && p->pKeyInfo->aColl[0]==0 4884 ){ 4885 assert( flags & MEM_Str ); 4886 return vdbeRecordCompareString; 4887 } 4888 } 4889 4890 return sqlite3VdbeRecordCompare; 4891 } 4892 4893 /* 4894 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4895 ** Read the rowid (the last field in the record) and store it in *rowid. 4896 ** Return SQLITE_OK if everything works, or an error code otherwise. 4897 ** 4898 ** pCur might be pointing to text obtained from a corrupt database file. 4899 ** So the content cannot be trusted. Do appropriate checks on the content. 4900 */ 4901 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4902 i64 nCellKey = 0; 4903 int rc; 4904 u32 szHdr; /* Size of the header */ 4905 u32 typeRowid; /* Serial type of the rowid */ 4906 u32 lenRowid; /* Size of the rowid */ 4907 Mem m, v; 4908 4909 /* Get the size of the index entry. Only indices entries of less 4910 ** than 2GiB are support - anything large must be database corruption. 4911 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4912 ** this code can safely assume that nCellKey is 32-bits 4913 */ 4914 assert( sqlite3BtreeCursorIsValid(pCur) ); 4915 nCellKey = sqlite3BtreePayloadSize(pCur); 4916 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4917 4918 /* Read in the complete content of the index entry */ 4919 sqlite3VdbeMemInit(&m, db, 0); 4920 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 4921 if( rc ){ 4922 return rc; 4923 } 4924 4925 /* The index entry must begin with a header size */ 4926 getVarint32NR((u8*)m.z, szHdr); 4927 testcase( szHdr==3 ); 4928 testcase( szHdr==m.n ); 4929 testcase( szHdr>0x7fffffff ); 4930 assert( m.n>=0 ); 4931 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ 4932 goto idx_rowid_corruption; 4933 } 4934 4935 /* The last field of the index should be an integer - the ROWID. 4936 ** Verify that the last entry really is an integer. */ 4937 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid); 4938 testcase( typeRowid==1 ); 4939 testcase( typeRowid==2 ); 4940 testcase( typeRowid==3 ); 4941 testcase( typeRowid==4 ); 4942 testcase( typeRowid==5 ); 4943 testcase( typeRowid==6 ); 4944 testcase( typeRowid==8 ); 4945 testcase( typeRowid==9 ); 4946 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4947 goto idx_rowid_corruption; 4948 } 4949 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4950 testcase( (u32)m.n==szHdr+lenRowid ); 4951 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4952 goto idx_rowid_corruption; 4953 } 4954 4955 /* Fetch the integer off the end of the index record */ 4956 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4957 *rowid = v.u.i; 4958 sqlite3VdbeMemRelease(&m); 4959 return SQLITE_OK; 4960 4961 /* Jump here if database corruption is detected after m has been 4962 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4963 idx_rowid_corruption: 4964 testcase( m.szMalloc!=0 ); 4965 sqlite3VdbeMemRelease(&m); 4966 return SQLITE_CORRUPT_BKPT; 4967 } 4968 4969 /* 4970 ** Compare the key of the index entry that cursor pC is pointing to against 4971 ** the key string in pUnpacked. Write into *pRes a number 4972 ** that is negative, zero, or positive if pC is less than, equal to, 4973 ** or greater than pUnpacked. Return SQLITE_OK on success. 4974 ** 4975 ** pUnpacked is either created without a rowid or is truncated so that it 4976 ** omits the rowid at the end. The rowid at the end of the index entry 4977 ** is ignored as well. Hence, this routine only compares the prefixes 4978 ** of the keys prior to the final rowid, not the entire key. 4979 */ 4980 int sqlite3VdbeIdxKeyCompare( 4981 sqlite3 *db, /* Database connection */ 4982 VdbeCursor *pC, /* The cursor to compare against */ 4983 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4984 int *res /* Write the comparison result here */ 4985 ){ 4986 i64 nCellKey = 0; 4987 int rc; 4988 BtCursor *pCur; 4989 Mem m; 4990 4991 assert( pC->eCurType==CURTYPE_BTREE ); 4992 pCur = pC->uc.pCursor; 4993 assert( sqlite3BtreeCursorIsValid(pCur) ); 4994 nCellKey = sqlite3BtreePayloadSize(pCur); 4995 /* nCellKey will always be between 0 and 0xffffffff because of the way 4996 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4997 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4998 *res = 0; 4999 return SQLITE_CORRUPT_BKPT; 5000 } 5001 sqlite3VdbeMemInit(&m, db, 0); 5002 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 5003 if( rc ){ 5004 return rc; 5005 } 5006 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); 5007 sqlite3VdbeMemRelease(&m); 5008 return SQLITE_OK; 5009 } 5010 5011 /* 5012 ** This routine sets the value to be returned by subsequent calls to 5013 ** sqlite3_changes() on the database handle 'db'. 5014 */ 5015 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){ 5016 assert( sqlite3_mutex_held(db->mutex) ); 5017 db->nChange = nChange; 5018 db->nTotalChange += nChange; 5019 } 5020 5021 /* 5022 ** Set a flag in the vdbe to update the change counter when it is finalised 5023 ** or reset. 5024 */ 5025 void sqlite3VdbeCountChanges(Vdbe *v){ 5026 v->changeCntOn = 1; 5027 } 5028 5029 /* 5030 ** Mark every prepared statement associated with a database connection 5031 ** as expired. 5032 ** 5033 ** An expired statement means that recompilation of the statement is 5034 ** recommend. Statements expire when things happen that make their 5035 ** programs obsolete. Removing user-defined functions or collating 5036 ** sequences, or changing an authorization function are the types of 5037 ** things that make prepared statements obsolete. 5038 ** 5039 ** If iCode is 1, then expiration is advisory. The statement should 5040 ** be reprepared before being restarted, but if it is already running 5041 ** it is allowed to run to completion. 5042 ** 5043 ** Internally, this function just sets the Vdbe.expired flag on all 5044 ** prepared statements. The flag is set to 1 for an immediate expiration 5045 ** and set to 2 for an advisory expiration. 5046 */ 5047 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ 5048 Vdbe *p; 5049 for(p = db->pVdbe; p; p=p->pNext){ 5050 p->expired = iCode+1; 5051 } 5052 } 5053 5054 /* 5055 ** Return the database associated with the Vdbe. 5056 */ 5057 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 5058 return v->db; 5059 } 5060 5061 /* 5062 ** Return the SQLITE_PREPARE flags for a Vdbe. 5063 */ 5064 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 5065 return v->prepFlags; 5066 } 5067 5068 /* 5069 ** Return a pointer to an sqlite3_value structure containing the value bound 5070 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 5071 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 5072 ** constants) to the value before returning it. 5073 ** 5074 ** The returned value must be freed by the caller using sqlite3ValueFree(). 5075 */ 5076 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 5077 assert( iVar>0 ); 5078 if( v ){ 5079 Mem *pMem = &v->aVar[iVar-1]; 5080 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5081 if( 0==(pMem->flags & MEM_Null) ){ 5082 sqlite3_value *pRet = sqlite3ValueNew(v->db); 5083 if( pRet ){ 5084 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 5085 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 5086 } 5087 return pRet; 5088 } 5089 } 5090 return 0; 5091 } 5092 5093 /* 5094 ** Configure SQL variable iVar so that binding a new value to it signals 5095 ** to sqlite3_reoptimize() that re-preparing the statement may result 5096 ** in a better query plan. 5097 */ 5098 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 5099 assert( iVar>0 ); 5100 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5101 if( iVar>=32 ){ 5102 v->expmask |= 0x80000000; 5103 }else{ 5104 v->expmask |= ((u32)1 << (iVar-1)); 5105 } 5106 } 5107 5108 /* 5109 ** Cause a function to throw an error if it was call from OP_PureFunc 5110 ** rather than OP_Function. 5111 ** 5112 ** OP_PureFunc means that the function must be deterministic, and should 5113 ** throw an error if it is given inputs that would make it non-deterministic. 5114 ** This routine is invoked by date/time functions that use non-deterministic 5115 ** features such as 'now'. 5116 */ 5117 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 5118 const VdbeOp *pOp; 5119 #ifdef SQLITE_ENABLE_STAT4 5120 if( pCtx->pVdbe==0 ) return 1; 5121 #endif 5122 pOp = pCtx->pVdbe->aOp + pCtx->iOp; 5123 if( pOp->opcode==OP_PureFunc ){ 5124 const char *zContext; 5125 char *zMsg; 5126 if( pOp->p5 & NC_IsCheck ){ 5127 zContext = "a CHECK constraint"; 5128 }else if( pOp->p5 & NC_GenCol ){ 5129 zContext = "a generated column"; 5130 }else{ 5131 zContext = "an index"; 5132 } 5133 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s", 5134 pCtx->pFunc->zName, zContext); 5135 sqlite3_result_error(pCtx, zMsg, -1); 5136 sqlite3_free(zMsg); 5137 return 0; 5138 } 5139 return 1; 5140 } 5141 5142 #ifndef SQLITE_OMIT_VIRTUALTABLE 5143 /* 5144 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 5145 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 5146 ** in memory obtained from sqlite3DbMalloc). 5147 */ 5148 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 5149 if( pVtab->zErrMsg ){ 5150 sqlite3 *db = p->db; 5151 sqlite3DbFree(db, p->zErrMsg); 5152 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 5153 sqlite3_free(pVtab->zErrMsg); 5154 pVtab->zErrMsg = 0; 5155 } 5156 } 5157 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5158 5159 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5160 5161 /* 5162 ** If the second argument is not NULL, release any allocations associated 5163 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 5164 ** structure itself, using sqlite3DbFree(). 5165 ** 5166 ** This function is used to free UnpackedRecord structures allocated by 5167 ** the vdbeUnpackRecord() function found in vdbeapi.c. 5168 */ 5169 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 5170 if( p ){ 5171 int i; 5172 for(i=0; i<nField; i++){ 5173 Mem *pMem = &p->aMem[i]; 5174 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem); 5175 } 5176 sqlite3DbFreeNN(db, p); 5177 } 5178 } 5179 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5180 5181 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5182 /* 5183 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 5184 ** then cursor passed as the second argument should point to the row about 5185 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 5186 ** the required value will be read from the row the cursor points to. 5187 */ 5188 void sqlite3VdbePreUpdateHook( 5189 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 5190 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 5191 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 5192 const char *zDb, /* Database name */ 5193 Table *pTab, /* Modified table */ 5194 i64 iKey1, /* Initial key value */ 5195 int iReg, /* Register for new.* record */ 5196 int iBlobWrite 5197 ){ 5198 sqlite3 *db = v->db; 5199 i64 iKey2; 5200 PreUpdate preupdate; 5201 const char *zTbl = pTab->zName; 5202 static const u8 fakeSortOrder = 0; 5203 5204 assert( db->pPreUpdate==0 ); 5205 memset(&preupdate, 0, sizeof(PreUpdate)); 5206 if( HasRowid(pTab)==0 ){ 5207 iKey1 = iKey2 = 0; 5208 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 5209 }else{ 5210 if( op==SQLITE_UPDATE ){ 5211 iKey2 = v->aMem[iReg].u.i; 5212 }else{ 5213 iKey2 = iKey1; 5214 } 5215 } 5216 5217 assert( pCsr->nField==pTab->nCol 5218 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 5219 ); 5220 5221 preupdate.v = v; 5222 preupdate.pCsr = pCsr; 5223 preupdate.op = op; 5224 preupdate.iNewReg = iReg; 5225 preupdate.keyinfo.db = db; 5226 preupdate.keyinfo.enc = ENC(db); 5227 preupdate.keyinfo.nKeyField = pTab->nCol; 5228 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder; 5229 preupdate.iKey1 = iKey1; 5230 preupdate.iKey2 = iKey2; 5231 preupdate.pTab = pTab; 5232 preupdate.iBlobWrite = iBlobWrite; 5233 5234 db->pPreUpdate = &preupdate; 5235 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 5236 db->pPreUpdate = 0; 5237 sqlite3DbFree(db, preupdate.aRecord); 5238 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 5239 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 5240 if( preupdate.aNew ){ 5241 int i; 5242 for(i=0; i<pCsr->nField; i++){ 5243 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 5244 } 5245 sqlite3DbFreeNN(db, preupdate.aNew); 5246 } 5247 } 5248 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5249