xref: /sqlite-3.40.0/src/vdbeaux.c (revision dee0359d)
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
14 */
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
17 
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
21 
22 /*
23 ** Create a new virtual database engine.
24 */
25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26   sqlite3 *db = pParse->db;
27   Vdbe *p;
28   p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29   if( p==0 ) return 0;
30   memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31   p->db = db;
32   if( db->pVdbe ){
33     db->pVdbe->pPrev = p;
34   }
35   p->pNext = db->pVdbe;
36   p->pPrev = 0;
37   db->pVdbe = p;
38   p->iVdbeMagic = VDBE_MAGIC_INIT;
39   p->pParse = pParse;
40   pParse->pVdbe = p;
41   assert( pParse->aLabel==0 );
42   assert( pParse->nLabel==0 );
43   assert( p->nOpAlloc==0 );
44   assert( pParse->szOpAlloc==0 );
45   sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46   return p;
47 }
48 
49 /*
50 ** Return the Parse object that owns a Vdbe object.
51 */
52 Parse *sqlite3VdbeParser(Vdbe *p){
53   return p->pParse;
54 }
55 
56 /*
57 ** Change the error string stored in Vdbe.zErrMsg
58 */
59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60   va_list ap;
61   sqlite3DbFree(p->db, p->zErrMsg);
62   va_start(ap, zFormat);
63   p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64   va_end(ap);
65 }
66 
67 /*
68 ** Remember the SQL string for a prepared statement.
69 */
70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71   if( p==0 ) return;
72   p->prepFlags = prepFlags;
73   if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74     p->expmask = 0;
75   }
76   assert( p->zSql==0 );
77   p->zSql = sqlite3DbStrNDup(p->db, z, n);
78 }
79 
80 #ifdef SQLITE_ENABLE_NORMALIZE
81 /*
82 ** Add a new element to the Vdbe->pDblStr list.
83 */
84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85   if( p ){
86     int n = sqlite3Strlen30(z);
87     DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88                             sizeof(*pStr)+n+1-sizeof(pStr->z));
89     if( pStr ){
90       pStr->pNextStr = p->pDblStr;
91       p->pDblStr = pStr;
92       memcpy(pStr->z, z, n+1);
93     }
94   }
95 }
96 #endif
97 
98 #ifdef SQLITE_ENABLE_NORMALIZE
99 /*
100 ** zId of length nId is a double-quoted identifier.  Check to see if
101 ** that identifier is really used as a string literal.
102 */
103 int sqlite3VdbeUsesDoubleQuotedString(
104   Vdbe *pVdbe,            /* The prepared statement */
105   const char *zId         /* The double-quoted identifier, already dequoted */
106 ){
107   DblquoteStr *pStr;
108   assert( zId!=0 );
109   if( pVdbe->pDblStr==0 ) return 0;
110   for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111     if( strcmp(zId, pStr->z)==0 ) return 1;
112   }
113   return 0;
114 }
115 #endif
116 
117 /*
118 ** Swap all content between two VDBE structures.
119 */
120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
121   Vdbe tmp, *pTmp;
122   char *zTmp;
123   assert( pA->db==pB->db );
124   tmp = *pA;
125   *pA = *pB;
126   *pB = tmp;
127   pTmp = pA->pNext;
128   pA->pNext = pB->pNext;
129   pB->pNext = pTmp;
130   pTmp = pA->pPrev;
131   pA->pPrev = pB->pPrev;
132   pB->pPrev = pTmp;
133   zTmp = pA->zSql;
134   pA->zSql = pB->zSql;
135   pB->zSql = zTmp;
136 #ifdef SQLITE_ENABLE_NORMALIZE
137   zTmp = pA->zNormSql;
138   pA->zNormSql = pB->zNormSql;
139   pB->zNormSql = zTmp;
140 #endif
141   pB->expmask = pA->expmask;
142   pB->prepFlags = pA->prepFlags;
143   memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
144   pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
145 }
146 
147 /*
148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
149 ** than its current size. nOp is guaranteed to be less than or equal
150 ** to 1024/sizeof(Op).
151 **
152 ** If an out-of-memory error occurs while resizing the array, return
153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
154 ** unchanged (this is so that any opcodes already allocated can be
155 ** correctly deallocated along with the rest of the Vdbe).
156 */
157 static int growOpArray(Vdbe *v, int nOp){
158   VdbeOp *pNew;
159   Parse *p = v->pParse;
160 
161   /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
162   ** more frequent reallocs and hence provide more opportunities for
163   ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used
164   ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array
165   ** by the minimum* amount required until the size reaches 512.  Normal
166   ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
167   ** size of the op array or add 1KB of space, whichever is smaller. */
168 #ifdef SQLITE_TEST_REALLOC_STRESS
169   sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
170                         : (sqlite3_int64)v->nOpAlloc+nOp);
171 #else
172   sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
173                         : (sqlite3_int64)(1024/sizeof(Op)));
174   UNUSED_PARAMETER(nOp);
175 #endif
176 
177   /* Ensure that the size of a VDBE does not grow too large */
178   if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
179     sqlite3OomFault(p->db);
180     return SQLITE_NOMEM;
181   }
182 
183   assert( nOp<=(1024/sizeof(Op)) );
184   assert( nNew>=(v->nOpAlloc+nOp) );
185   pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
186   if( pNew ){
187     p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
188     v->nOpAlloc = p->szOpAlloc/sizeof(Op);
189     v->aOp = pNew;
190   }
191   return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
192 }
193 
194 #ifdef SQLITE_DEBUG
195 /* This routine is just a convenient place to set a breakpoint that will
196 ** fire after each opcode is inserted and displayed using
197 ** "PRAGMA vdbe_addoptrace=on".  Parameters "pc" (program counter) and
198 ** pOp are available to make the breakpoint conditional.
199 **
200 ** Other useful labels for breakpoints include:
201 **   test_trace_breakpoint(pc,pOp)
202 **   sqlite3CorruptError(lineno)
203 **   sqlite3MisuseError(lineno)
204 **   sqlite3CantopenError(lineno)
205 */
206 static void test_addop_breakpoint(int pc, Op *pOp){
207   static int n = 0;
208   n++;
209 }
210 #endif
211 
212 /*
213 ** Add a new instruction to the list of instructions current in the
214 ** VDBE.  Return the address of the new instruction.
215 **
216 ** Parameters:
217 **
218 **    p               Pointer to the VDBE
219 **
220 **    op              The opcode for this instruction
221 **
222 **    p1, p2, p3      Operands
223 **
224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
225 ** the sqlite3VdbeChangeP4() function to change the value of the P4
226 ** operand.
227 */
228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
229   assert( p->nOpAlloc<=p->nOp );
230   if( growOpArray(p, 1) ) return 1;
231   assert( p->nOpAlloc>p->nOp );
232   return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
233 }
234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
235   int i;
236   VdbeOp *pOp;
237 
238   i = p->nOp;
239   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
240   assert( op>=0 && op<0xff );
241   if( p->nOpAlloc<=i ){
242     return growOp3(p, op, p1, p2, p3);
243   }
244   assert( p->aOp!=0 );
245   p->nOp++;
246   pOp = &p->aOp[i];
247   assert( pOp!=0 );
248   pOp->opcode = (u8)op;
249   pOp->p5 = 0;
250   pOp->p1 = p1;
251   pOp->p2 = p2;
252   pOp->p3 = p3;
253   pOp->p4.p = 0;
254   pOp->p4type = P4_NOTUSED;
255 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
256   pOp->zComment = 0;
257 #endif
258 #ifdef SQLITE_DEBUG
259   if( p->db->flags & SQLITE_VdbeAddopTrace ){
260     sqlite3VdbePrintOp(0, i, &p->aOp[i]);
261     test_addop_breakpoint(i, &p->aOp[i]);
262   }
263 #endif
264 #ifdef VDBE_PROFILE
265   pOp->cycles = 0;
266   pOp->cnt = 0;
267 #endif
268 #ifdef SQLITE_VDBE_COVERAGE
269   pOp->iSrcLine = 0;
270 #endif
271   return i;
272 }
273 int sqlite3VdbeAddOp0(Vdbe *p, int op){
274   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
275 }
276 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
277   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
278 }
279 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
280   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
281 }
282 
283 /* Generate code for an unconditional jump to instruction iDest
284 */
285 int sqlite3VdbeGoto(Vdbe *p, int iDest){
286   return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
287 }
288 
289 /* Generate code to cause the string zStr to be loaded into
290 ** register iDest
291 */
292 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
293   return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
294 }
295 
296 /*
297 ** Generate code that initializes multiple registers to string or integer
298 ** constants.  The registers begin with iDest and increase consecutively.
299 ** One register is initialized for each characgter in zTypes[].  For each
300 ** "s" character in zTypes[], the register is a string if the argument is
301 ** not NULL, or OP_Null if the value is a null pointer.  For each "i" character
302 ** in zTypes[], the register is initialized to an integer.
303 **
304 ** If the input string does not end with "X" then an OP_ResultRow instruction
305 ** is generated for the values inserted.
306 */
307 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
308   va_list ap;
309   int i;
310   char c;
311   va_start(ap, zTypes);
312   for(i=0; (c = zTypes[i])!=0; i++){
313     if( c=='s' ){
314       const char *z = va_arg(ap, const char*);
315       sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
316     }else if( c=='i' ){
317       sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
318     }else{
319       goto skip_op_resultrow;
320     }
321   }
322   sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
323 skip_op_resultrow:
324   va_end(ap);
325 }
326 
327 /*
328 ** Add an opcode that includes the p4 value as a pointer.
329 */
330 int sqlite3VdbeAddOp4(
331   Vdbe *p,            /* Add the opcode to this VM */
332   int op,             /* The new opcode */
333   int p1,             /* The P1 operand */
334   int p2,             /* The P2 operand */
335   int p3,             /* The P3 operand */
336   const char *zP4,    /* The P4 operand */
337   int p4type          /* P4 operand type */
338 ){
339   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
340   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
341   return addr;
342 }
343 
344 /*
345 ** Add an OP_Function or OP_PureFunc opcode.
346 **
347 ** The eCallCtx argument is information (typically taken from Expr.op2)
348 ** that describes the calling context of the function.  0 means a general
349 ** function call.  NC_IsCheck means called by a check constraint,
350 ** NC_IdxExpr means called as part of an index expression.  NC_PartIdx
351 ** means in the WHERE clause of a partial index.  NC_GenCol means called
352 ** while computing a generated column value.  0 is the usual case.
353 */
354 int sqlite3VdbeAddFunctionCall(
355   Parse *pParse,        /* Parsing context */
356   int p1,               /* Constant argument mask */
357   int p2,               /* First argument register */
358   int p3,               /* Register into which results are written */
359   int nArg,             /* Number of argument */
360   const FuncDef *pFunc, /* The function to be invoked */
361   int eCallCtx          /* Calling context */
362 ){
363   Vdbe *v = pParse->pVdbe;
364   int nByte;
365   int addr;
366   sqlite3_context *pCtx;
367   assert( v );
368   nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
369   pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
370   if( pCtx==0 ){
371     assert( pParse->db->mallocFailed );
372     freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
373     return 0;
374   }
375   pCtx->pOut = 0;
376   pCtx->pFunc = (FuncDef*)pFunc;
377   pCtx->pVdbe = 0;
378   pCtx->isError = 0;
379   pCtx->argc = nArg;
380   pCtx->iOp = sqlite3VdbeCurrentAddr(v);
381   addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
382                            p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
383   sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
384   return addr;
385 }
386 
387 /*
388 ** Add an opcode that includes the p4 value with a P4_INT64 or
389 ** P4_REAL type.
390 */
391 int sqlite3VdbeAddOp4Dup8(
392   Vdbe *p,            /* Add the opcode to this VM */
393   int op,             /* The new opcode */
394   int p1,             /* The P1 operand */
395   int p2,             /* The P2 operand */
396   int p3,             /* The P3 operand */
397   const u8 *zP4,      /* The P4 operand */
398   int p4type          /* P4 operand type */
399 ){
400   char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
401   if( p4copy ) memcpy(p4copy, zP4, 8);
402   return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
403 }
404 
405 #ifndef SQLITE_OMIT_EXPLAIN
406 /*
407 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
408 ** 0 means "none".
409 */
410 int sqlite3VdbeExplainParent(Parse *pParse){
411   VdbeOp *pOp;
412   if( pParse->addrExplain==0 ) return 0;
413   pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
414   return pOp->p2;
415 }
416 
417 /*
418 ** Set a debugger breakpoint on the following routine in order to
419 ** monitor the EXPLAIN QUERY PLAN code generation.
420 */
421 #if defined(SQLITE_DEBUG)
422 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
423   (void)z1;
424   (void)z2;
425 }
426 #endif
427 
428 /*
429 ** Add a new OP_Explain opcode.
430 **
431 ** If the bPush flag is true, then make this opcode the parent for
432 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
433 */
434 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
435 #ifndef SQLITE_DEBUG
436   /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
437   ** But omit them (for performance) during production builds */
438   if( pParse->explain==2 )
439 #endif
440   {
441     char *zMsg;
442     Vdbe *v;
443     va_list ap;
444     int iThis;
445     va_start(ap, zFmt);
446     zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
447     va_end(ap);
448     v = pParse->pVdbe;
449     iThis = v->nOp;
450     sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
451                       zMsg, P4_DYNAMIC);
452     sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z);
453     if( bPush){
454       pParse->addrExplain = iThis;
455     }
456   }
457 }
458 
459 /*
460 ** Pop the EXPLAIN QUERY PLAN stack one level.
461 */
462 void sqlite3VdbeExplainPop(Parse *pParse){
463   sqlite3ExplainBreakpoint("POP", 0);
464   pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
465 }
466 #endif /* SQLITE_OMIT_EXPLAIN */
467 
468 /*
469 ** Add an OP_ParseSchema opcode.  This routine is broken out from
470 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
471 ** as having been used.
472 **
473 ** The zWhere string must have been obtained from sqlite3_malloc().
474 ** This routine will take ownership of the allocated memory.
475 */
476 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){
477   int j;
478   sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
479   sqlite3VdbeChangeP5(p, p5);
480   for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
481   sqlite3MayAbort(p->pParse);
482 }
483 
484 /*
485 ** Add an opcode that includes the p4 value as an integer.
486 */
487 int sqlite3VdbeAddOp4Int(
488   Vdbe *p,            /* Add the opcode to this VM */
489   int op,             /* The new opcode */
490   int p1,             /* The P1 operand */
491   int p2,             /* The P2 operand */
492   int p3,             /* The P3 operand */
493   int p4              /* The P4 operand as an integer */
494 ){
495   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
496   if( p->db->mallocFailed==0 ){
497     VdbeOp *pOp = &p->aOp[addr];
498     pOp->p4type = P4_INT32;
499     pOp->p4.i = p4;
500   }
501   return addr;
502 }
503 
504 /* Insert the end of a co-routine
505 */
506 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
507   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
508 
509   /* Clear the temporary register cache, thereby ensuring that each
510   ** co-routine has its own independent set of registers, because co-routines
511   ** might expect their registers to be preserved across an OP_Yield, and
512   ** that could cause problems if two or more co-routines are using the same
513   ** temporary register.
514   */
515   v->pParse->nTempReg = 0;
516   v->pParse->nRangeReg = 0;
517 }
518 
519 /*
520 ** Create a new symbolic label for an instruction that has yet to be
521 ** coded.  The symbolic label is really just a negative number.  The
522 ** label can be used as the P2 value of an operation.  Later, when
523 ** the label is resolved to a specific address, the VDBE will scan
524 ** through its operation list and change all values of P2 which match
525 ** the label into the resolved address.
526 **
527 ** The VDBE knows that a P2 value is a label because labels are
528 ** always negative and P2 values are suppose to be non-negative.
529 ** Hence, a negative P2 value is a label that has yet to be resolved.
530 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
531 ** property.
532 **
533 ** Variable usage notes:
534 **
535 **     Parse.aLabel[x]     Stores the address that the x-th label resolves
536 **                         into.  For testing (SQLITE_DEBUG), unresolved
537 **                         labels stores -1, but that is not required.
538 **     Parse.nLabelAlloc   Number of slots allocated to Parse.aLabel[]
539 **     Parse.nLabel        The *negative* of the number of labels that have
540 **                         been issued.  The negative is stored because
541 **                         that gives a performance improvement over storing
542 **                         the equivalent positive value.
543 */
544 int sqlite3VdbeMakeLabel(Parse *pParse){
545   return --pParse->nLabel;
546 }
547 
548 /*
549 ** Resolve label "x" to be the address of the next instruction to
550 ** be inserted.  The parameter "x" must have been obtained from
551 ** a prior call to sqlite3VdbeMakeLabel().
552 */
553 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
554   int nNewSize = 10 - p->nLabel;
555   p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
556                      nNewSize*sizeof(p->aLabel[0]));
557   if( p->aLabel==0 ){
558     p->nLabelAlloc = 0;
559   }else{
560 #ifdef SQLITE_DEBUG
561     int i;
562     for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
563 #endif
564     p->nLabelAlloc = nNewSize;
565     p->aLabel[j] = v->nOp;
566   }
567 }
568 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
569   Parse *p = v->pParse;
570   int j = ADDR(x);
571   assert( v->iVdbeMagic==VDBE_MAGIC_INIT );
572   assert( j<-p->nLabel );
573   assert( j>=0 );
574 #ifdef SQLITE_DEBUG
575   if( p->db->flags & SQLITE_VdbeAddopTrace ){
576     printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
577   }
578 #endif
579   if( p->nLabelAlloc + p->nLabel < 0 ){
580     resizeResolveLabel(p,v,j);
581   }else{
582     assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
583     p->aLabel[j] = v->nOp;
584   }
585 }
586 
587 /*
588 ** Mark the VDBE as one that can only be run one time.
589 */
590 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
591   p->runOnlyOnce = 1;
592 }
593 
594 /*
595 ** Mark the VDBE as one that can only be run multiple times.
596 */
597 void sqlite3VdbeReusable(Vdbe *p){
598   p->runOnlyOnce = 0;
599 }
600 
601 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
602 
603 /*
604 ** The following type and function are used to iterate through all opcodes
605 ** in a Vdbe main program and each of the sub-programs (triggers) it may
606 ** invoke directly or indirectly. It should be used as follows:
607 **
608 **   Op *pOp;
609 **   VdbeOpIter sIter;
610 **
611 **   memset(&sIter, 0, sizeof(sIter));
612 **   sIter.v = v;                            // v is of type Vdbe*
613 **   while( (pOp = opIterNext(&sIter)) ){
614 **     // Do something with pOp
615 **   }
616 **   sqlite3DbFree(v->db, sIter.apSub);
617 **
618 */
619 typedef struct VdbeOpIter VdbeOpIter;
620 struct VdbeOpIter {
621   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
622   SubProgram **apSub;        /* Array of subprograms */
623   int nSub;                  /* Number of entries in apSub */
624   int iAddr;                 /* Address of next instruction to return */
625   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
626 };
627 static Op *opIterNext(VdbeOpIter *p){
628   Vdbe *v = p->v;
629   Op *pRet = 0;
630   Op *aOp;
631   int nOp;
632 
633   if( p->iSub<=p->nSub ){
634 
635     if( p->iSub==0 ){
636       aOp = v->aOp;
637       nOp = v->nOp;
638     }else{
639       aOp = p->apSub[p->iSub-1]->aOp;
640       nOp = p->apSub[p->iSub-1]->nOp;
641     }
642     assert( p->iAddr<nOp );
643 
644     pRet = &aOp[p->iAddr];
645     p->iAddr++;
646     if( p->iAddr==nOp ){
647       p->iSub++;
648       p->iAddr = 0;
649     }
650 
651     if( pRet->p4type==P4_SUBPROGRAM ){
652       int nByte = (p->nSub+1)*sizeof(SubProgram*);
653       int j;
654       for(j=0; j<p->nSub; j++){
655         if( p->apSub[j]==pRet->p4.pProgram ) break;
656       }
657       if( j==p->nSub ){
658         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
659         if( !p->apSub ){
660           pRet = 0;
661         }else{
662           p->apSub[p->nSub++] = pRet->p4.pProgram;
663         }
664       }
665     }
666   }
667 
668   return pRet;
669 }
670 
671 /*
672 ** Check if the program stored in the VM associated with pParse may
673 ** throw an ABORT exception (causing the statement, but not entire transaction
674 ** to be rolled back). This condition is true if the main program or any
675 ** sub-programs contains any of the following:
676 **
677 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
678 **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
679 **   *  OP_Destroy
680 **   *  OP_VUpdate
681 **   *  OP_VCreate
682 **   *  OP_VRename
683 **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
684 **   *  OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
685 **      (for CREATE TABLE AS SELECT ...)
686 **
687 ** Then check that the value of Parse.mayAbort is true if an
688 ** ABORT may be thrown, or false otherwise. Return true if it does
689 ** match, or false otherwise. This function is intended to be used as
690 ** part of an assert statement in the compiler. Similar to:
691 **
692 **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
693 */
694 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
695   int hasAbort = 0;
696   int hasFkCounter = 0;
697   int hasCreateTable = 0;
698   int hasCreateIndex = 0;
699   int hasInitCoroutine = 0;
700   Op *pOp;
701   VdbeOpIter sIter;
702   memset(&sIter, 0, sizeof(sIter));
703   sIter.v = v;
704 
705   while( (pOp = opIterNext(&sIter))!=0 ){
706     int opcode = pOp->opcode;
707     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
708      || opcode==OP_VDestroy
709      || opcode==OP_VCreate
710      || opcode==OP_ParseSchema
711      || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
712       && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
713     ){
714       hasAbort = 1;
715       break;
716     }
717     if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
718     if( mayAbort ){
719       /* hasCreateIndex may also be set for some DELETE statements that use
720       ** OP_Clear. So this routine may end up returning true in the case
721       ** where a "DELETE FROM tbl" has a statement-journal but does not
722       ** require one. This is not so bad - it is an inefficiency, not a bug. */
723       if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
724       if( opcode==OP_Clear ) hasCreateIndex = 1;
725     }
726     if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
727 #ifndef SQLITE_OMIT_FOREIGN_KEY
728     if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
729       hasFkCounter = 1;
730     }
731 #endif
732   }
733   sqlite3DbFree(v->db, sIter.apSub);
734 
735   /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
736   ** If malloc failed, then the while() loop above may not have iterated
737   ** through all opcodes and hasAbort may be set incorrectly. Return
738   ** true for this case to prevent the assert() in the callers frame
739   ** from failing.  */
740   return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
741         || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
742   );
743 }
744 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
745 
746 #ifdef SQLITE_DEBUG
747 /*
748 ** Increment the nWrite counter in the VDBE if the cursor is not an
749 ** ephemeral cursor, or if the cursor argument is NULL.
750 */
751 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
752   if( pC==0
753    || (pC->eCurType!=CURTYPE_SORTER
754        && pC->eCurType!=CURTYPE_PSEUDO
755        && !pC->isEphemeral)
756   ){
757     p->nWrite++;
758   }
759 }
760 #endif
761 
762 #ifdef SQLITE_DEBUG
763 /*
764 ** Assert if an Abort at this point in time might result in a corrupt
765 ** database.
766 */
767 void sqlite3VdbeAssertAbortable(Vdbe *p){
768   assert( p->nWrite==0 || p->usesStmtJournal );
769 }
770 #endif
771 
772 /*
773 ** This routine is called after all opcodes have been inserted.  It loops
774 ** through all the opcodes and fixes up some details.
775 **
776 ** (1) For each jump instruction with a negative P2 value (a label)
777 **     resolve the P2 value to an actual address.
778 **
779 ** (2) Compute the maximum number of arguments used by any SQL function
780 **     and store that value in *pMaxFuncArgs.
781 **
782 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
783 **     indicate what the prepared statement actually does.
784 **
785 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
786 **
787 ** (5) Reclaim the memory allocated for storing labels.
788 **
789 ** This routine will only function correctly if the mkopcodeh.tcl generator
790 ** script numbers the opcodes correctly.  Changes to this routine must be
791 ** coordinated with changes to mkopcodeh.tcl.
792 */
793 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
794   int nMaxArgs = *pMaxFuncArgs;
795   Op *pOp;
796   Parse *pParse = p->pParse;
797   int *aLabel = pParse->aLabel;
798   p->readOnly = 1;
799   p->bIsReader = 0;
800   pOp = &p->aOp[p->nOp-1];
801   while(1){
802 
803     /* Only JUMP opcodes and the short list of special opcodes in the switch
804     ** below need to be considered.  The mkopcodeh.tcl generator script groups
805     ** all these opcodes together near the front of the opcode list.  Skip
806     ** any opcode that does not need processing by virtual of the fact that
807     ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
808     */
809     if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
810       /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
811       ** cases from this switch! */
812       switch( pOp->opcode ){
813         case OP_Transaction: {
814           if( pOp->p2!=0 ) p->readOnly = 0;
815           /* no break */ deliberate_fall_through
816         }
817         case OP_AutoCommit:
818         case OP_Savepoint: {
819           p->bIsReader = 1;
820           break;
821         }
822 #ifndef SQLITE_OMIT_WAL
823         case OP_Checkpoint:
824 #endif
825         case OP_Vacuum:
826         case OP_JournalMode: {
827           p->readOnly = 0;
828           p->bIsReader = 1;
829           break;
830         }
831         case OP_Next:
832         case OP_SorterNext: {
833           pOp->p4.xAdvance = sqlite3BtreeNext;
834           pOp->p4type = P4_ADVANCE;
835           /* The code generator never codes any of these opcodes as a jump
836           ** to a label.  They are always coded as a jump backwards to a
837           ** known address */
838           assert( pOp->p2>=0 );
839           break;
840         }
841         case OP_Prev: {
842           pOp->p4.xAdvance = sqlite3BtreePrevious;
843           pOp->p4type = P4_ADVANCE;
844           /* The code generator never codes any of these opcodes as a jump
845           ** to a label.  They are always coded as a jump backwards to a
846           ** known address */
847           assert( pOp->p2>=0 );
848           break;
849         }
850 #ifndef SQLITE_OMIT_VIRTUALTABLE
851         case OP_VUpdate: {
852           if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
853           break;
854         }
855         case OP_VFilter: {
856           int n;
857           assert( (pOp - p->aOp) >= 3 );
858           assert( pOp[-1].opcode==OP_Integer );
859           n = pOp[-1].p1;
860           if( n>nMaxArgs ) nMaxArgs = n;
861           /* Fall through into the default case */
862           /* no break */ deliberate_fall_through
863         }
864 #endif
865         default: {
866           if( pOp->p2<0 ){
867             /* The mkopcodeh.tcl script has so arranged things that the only
868             ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
869             ** have non-negative values for P2. */
870             assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
871             assert( ADDR(pOp->p2)<-pParse->nLabel );
872             pOp->p2 = aLabel[ADDR(pOp->p2)];
873           }
874           break;
875         }
876       }
877       /* The mkopcodeh.tcl script has so arranged things that the only
878       ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
879       ** have non-negative values for P2. */
880       assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
881     }
882     if( pOp==p->aOp ) break;
883     pOp--;
884   }
885   sqlite3DbFree(p->db, pParse->aLabel);
886   pParse->aLabel = 0;
887   pParse->nLabel = 0;
888   *pMaxFuncArgs = nMaxArgs;
889   assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
890 }
891 
892 /*
893 ** Return the address of the next instruction to be inserted.
894 */
895 int sqlite3VdbeCurrentAddr(Vdbe *p){
896   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
897   return p->nOp;
898 }
899 
900 /*
901 ** Verify that at least N opcode slots are available in p without
902 ** having to malloc for more space (except when compiled using
903 ** SQLITE_TEST_REALLOC_STRESS).  This interface is used during testing
904 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
905 ** fail due to a OOM fault and hence that the return value from
906 ** sqlite3VdbeAddOpList() will always be non-NULL.
907 */
908 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
909 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
910   assert( p->nOp + N <= p->nOpAlloc );
911 }
912 #endif
913 
914 /*
915 ** Verify that the VM passed as the only argument does not contain
916 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
917 ** by code in pragma.c to ensure that the implementation of certain
918 ** pragmas comports with the flags specified in the mkpragmatab.tcl
919 ** script.
920 */
921 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
922 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
923   int i;
924   for(i=0; i<p->nOp; i++){
925     assert( p->aOp[i].opcode!=OP_ResultRow );
926   }
927 }
928 #endif
929 
930 /*
931 ** Generate code (a single OP_Abortable opcode) that will
932 ** verify that the VDBE program can safely call Abort in the current
933 ** context.
934 */
935 #if defined(SQLITE_DEBUG)
936 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
937   if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
938 }
939 #endif
940 
941 /*
942 ** This function returns a pointer to the array of opcodes associated with
943 ** the Vdbe passed as the first argument. It is the callers responsibility
944 ** to arrange for the returned array to be eventually freed using the
945 ** vdbeFreeOpArray() function.
946 **
947 ** Before returning, *pnOp is set to the number of entries in the returned
948 ** array. Also, *pnMaxArg is set to the larger of its current value and
949 ** the number of entries in the Vdbe.apArg[] array required to execute the
950 ** returned program.
951 */
952 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
953   VdbeOp *aOp = p->aOp;
954   assert( aOp && !p->db->mallocFailed );
955 
956   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
957   assert( DbMaskAllZero(p->btreeMask) );
958 
959   resolveP2Values(p, pnMaxArg);
960   *pnOp = p->nOp;
961   p->aOp = 0;
962   return aOp;
963 }
964 
965 /*
966 ** Add a whole list of operations to the operation stack.  Return a
967 ** pointer to the first operation inserted.
968 **
969 ** Non-zero P2 arguments to jump instructions are automatically adjusted
970 ** so that the jump target is relative to the first operation inserted.
971 */
972 VdbeOp *sqlite3VdbeAddOpList(
973   Vdbe *p,                     /* Add opcodes to the prepared statement */
974   int nOp,                     /* Number of opcodes to add */
975   VdbeOpList const *aOp,       /* The opcodes to be added */
976   int iLineno                  /* Source-file line number of first opcode */
977 ){
978   int i;
979   VdbeOp *pOut, *pFirst;
980   assert( nOp>0 );
981   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
982   if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
983     return 0;
984   }
985   pFirst = pOut = &p->aOp[p->nOp];
986   for(i=0; i<nOp; i++, aOp++, pOut++){
987     pOut->opcode = aOp->opcode;
988     pOut->p1 = aOp->p1;
989     pOut->p2 = aOp->p2;
990     assert( aOp->p2>=0 );
991     if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
992       pOut->p2 += p->nOp;
993     }
994     pOut->p3 = aOp->p3;
995     pOut->p4type = P4_NOTUSED;
996     pOut->p4.p = 0;
997     pOut->p5 = 0;
998 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
999     pOut->zComment = 0;
1000 #endif
1001 #ifdef SQLITE_VDBE_COVERAGE
1002     pOut->iSrcLine = iLineno+i;
1003 #else
1004     (void)iLineno;
1005 #endif
1006 #ifdef SQLITE_DEBUG
1007     if( p->db->flags & SQLITE_VdbeAddopTrace ){
1008       sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1009     }
1010 #endif
1011   }
1012   p->nOp += nOp;
1013   return pFirst;
1014 }
1015 
1016 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1017 /*
1018 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1019 */
1020 void sqlite3VdbeScanStatus(
1021   Vdbe *p,                        /* VM to add scanstatus() to */
1022   int addrExplain,                /* Address of OP_Explain (or 0) */
1023   int addrLoop,                   /* Address of loop counter */
1024   int addrVisit,                  /* Address of rows visited counter */
1025   LogEst nEst,                    /* Estimated number of output rows */
1026   const char *zName               /* Name of table or index being scanned */
1027 ){
1028   sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1029   ScanStatus *aNew;
1030   aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1031   if( aNew ){
1032     ScanStatus *pNew = &aNew[p->nScan++];
1033     pNew->addrExplain = addrExplain;
1034     pNew->addrLoop = addrLoop;
1035     pNew->addrVisit = addrVisit;
1036     pNew->nEst = nEst;
1037     pNew->zName = sqlite3DbStrDup(p->db, zName);
1038     p->aScan = aNew;
1039   }
1040 }
1041 #endif
1042 
1043 
1044 /*
1045 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1046 ** for a specific instruction.
1047 */
1048 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1049   sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1050 }
1051 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1052   sqlite3VdbeGetOp(p,addr)->p1 = val;
1053 }
1054 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1055   sqlite3VdbeGetOp(p,addr)->p2 = val;
1056 }
1057 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1058   sqlite3VdbeGetOp(p,addr)->p3 = val;
1059 }
1060 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1061   assert( p->nOp>0 || p->db->mallocFailed );
1062   if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1063 }
1064 
1065 /*
1066 ** Change the P2 operand of instruction addr so that it points to
1067 ** the address of the next instruction to be coded.
1068 */
1069 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1070   sqlite3VdbeChangeP2(p, addr, p->nOp);
1071 }
1072 
1073 /*
1074 ** Change the P2 operand of the jump instruction at addr so that
1075 ** the jump lands on the next opcode.  Or if the jump instruction was
1076 ** the previous opcode (and is thus a no-op) then simply back up
1077 ** the next instruction counter by one slot so that the jump is
1078 ** overwritten by the next inserted opcode.
1079 **
1080 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1081 ** strives to omit useless byte-code like this:
1082 **
1083 **        7   Once 0 8 0
1084 **        8   ...
1085 */
1086 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
1087   if( addr==p->nOp-1 ){
1088     assert( p->aOp[addr].opcode==OP_Once
1089          || p->aOp[addr].opcode==OP_If
1090          || p->aOp[addr].opcode==OP_FkIfZero );
1091     assert( p->aOp[addr].p4type==0 );
1092 #ifdef SQLITE_VDBE_COVERAGE
1093     sqlite3VdbeGetOp(p,-1)->iSrcLine = 0;  /* Erase VdbeCoverage() macros */
1094 #endif
1095     p->nOp--;
1096   }else{
1097     sqlite3VdbeChangeP2(p, addr, p->nOp);
1098   }
1099 }
1100 
1101 
1102 /*
1103 ** If the input FuncDef structure is ephemeral, then free it.  If
1104 ** the FuncDef is not ephermal, then do nothing.
1105 */
1106 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1107   if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1108     sqlite3DbFreeNN(db, pDef);
1109   }
1110 }
1111 
1112 /*
1113 ** Delete a P4 value if necessary.
1114 */
1115 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1116   if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1117   sqlite3DbFreeNN(db, p);
1118 }
1119 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1120   freeEphemeralFunction(db, p->pFunc);
1121   sqlite3DbFreeNN(db, p);
1122 }
1123 static void freeP4(sqlite3 *db, int p4type, void *p4){
1124   assert( db );
1125   switch( p4type ){
1126     case P4_FUNCCTX: {
1127       freeP4FuncCtx(db, (sqlite3_context*)p4);
1128       break;
1129     }
1130     case P4_REAL:
1131     case P4_INT64:
1132     case P4_DYNAMIC:
1133     case P4_DYNBLOB:
1134     case P4_INTARRAY: {
1135       sqlite3DbFree(db, p4);
1136       break;
1137     }
1138     case P4_KEYINFO: {
1139       if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1140       break;
1141     }
1142 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1143     case P4_EXPR: {
1144       sqlite3ExprDelete(db, (Expr*)p4);
1145       break;
1146     }
1147 #endif
1148     case P4_FUNCDEF: {
1149       freeEphemeralFunction(db, (FuncDef*)p4);
1150       break;
1151     }
1152     case P4_MEM: {
1153       if( db->pnBytesFreed==0 ){
1154         sqlite3ValueFree((sqlite3_value*)p4);
1155       }else{
1156         freeP4Mem(db, (Mem*)p4);
1157       }
1158       break;
1159     }
1160     case P4_VTAB : {
1161       if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1162       break;
1163     }
1164   }
1165 }
1166 
1167 /*
1168 ** Free the space allocated for aOp and any p4 values allocated for the
1169 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1170 ** nOp entries.
1171 */
1172 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1173   if( aOp ){
1174     Op *pOp;
1175     for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
1176       if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1177 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1178       sqlite3DbFree(db, pOp->zComment);
1179 #endif
1180     }
1181     sqlite3DbFreeNN(db, aOp);
1182   }
1183 }
1184 
1185 /*
1186 ** Link the SubProgram object passed as the second argument into the linked
1187 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1188 ** objects when the VM is no longer required.
1189 */
1190 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1191   p->pNext = pVdbe->pProgram;
1192   pVdbe->pProgram = p;
1193 }
1194 
1195 /*
1196 ** Return true if the given Vdbe has any SubPrograms.
1197 */
1198 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1199   return pVdbe->pProgram!=0;
1200 }
1201 
1202 /*
1203 ** Change the opcode at addr into OP_Noop
1204 */
1205 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1206   VdbeOp *pOp;
1207   if( p->db->mallocFailed ) return 0;
1208   assert( addr>=0 && addr<p->nOp );
1209   pOp = &p->aOp[addr];
1210   freeP4(p->db, pOp->p4type, pOp->p4.p);
1211   pOp->p4type = P4_NOTUSED;
1212   pOp->p4.z = 0;
1213   pOp->opcode = OP_Noop;
1214   return 1;
1215 }
1216 
1217 /*
1218 ** If the last opcode is "op" and it is not a jump destination,
1219 ** then remove it.  Return true if and only if an opcode was removed.
1220 */
1221 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1222   if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1223     return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1224   }else{
1225     return 0;
1226   }
1227 }
1228 
1229 #ifdef SQLITE_DEBUG
1230 /*
1231 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1232 ** registers, except any identified by mask, are no longer in use.
1233 */
1234 void sqlite3VdbeReleaseRegisters(
1235   Parse *pParse,       /* Parsing context */
1236   int iFirst,          /* Index of first register to be released */
1237   int N,               /* Number of registers to release */
1238   u32 mask,            /* Mask of registers to NOT release */
1239   int bUndefine        /* If true, mark registers as undefined */
1240 ){
1241   if( N==0 ) return;
1242   assert( pParse->pVdbe );
1243   assert( iFirst>=1 );
1244   assert( iFirst+N-1<=pParse->nMem );
1245   if( N<=31 && mask!=0 ){
1246     while( N>0 && (mask&1)!=0 ){
1247       mask >>= 1;
1248       iFirst++;
1249       N--;
1250     }
1251     while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1252       mask &= ~MASKBIT32(N-1);
1253       N--;
1254     }
1255   }
1256   if( N>0 ){
1257     sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1258     if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1259   }
1260 }
1261 #endif /* SQLITE_DEBUG */
1262 
1263 
1264 /*
1265 ** Change the value of the P4 operand for a specific instruction.
1266 ** This routine is useful when a large program is loaded from a
1267 ** static array using sqlite3VdbeAddOpList but we want to make a
1268 ** few minor changes to the program.
1269 **
1270 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1271 ** the string is made into memory obtained from sqlite3_malloc().
1272 ** A value of n==0 means copy bytes of zP4 up to and including the
1273 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
1274 **
1275 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1276 ** to a string or structure that is guaranteed to exist for the lifetime of
1277 ** the Vdbe. In these cases we can just copy the pointer.
1278 **
1279 ** If addr<0 then change P4 on the most recently inserted instruction.
1280 */
1281 static void SQLITE_NOINLINE vdbeChangeP4Full(
1282   Vdbe *p,
1283   Op *pOp,
1284   const char *zP4,
1285   int n
1286 ){
1287   if( pOp->p4type ){
1288     freeP4(p->db, pOp->p4type, pOp->p4.p);
1289     pOp->p4type = 0;
1290     pOp->p4.p = 0;
1291   }
1292   if( n<0 ){
1293     sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1294   }else{
1295     if( n==0 ) n = sqlite3Strlen30(zP4);
1296     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1297     pOp->p4type = P4_DYNAMIC;
1298   }
1299 }
1300 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1301   Op *pOp;
1302   sqlite3 *db;
1303   assert( p!=0 );
1304   db = p->db;
1305   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
1306   assert( p->aOp!=0 || db->mallocFailed );
1307   if( db->mallocFailed ){
1308     if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1309     return;
1310   }
1311   assert( p->nOp>0 );
1312   assert( addr<p->nOp );
1313   if( addr<0 ){
1314     addr = p->nOp - 1;
1315   }
1316   pOp = &p->aOp[addr];
1317   if( n>=0 || pOp->p4type ){
1318     vdbeChangeP4Full(p, pOp, zP4, n);
1319     return;
1320   }
1321   if( n==P4_INT32 ){
1322     /* Note: this cast is safe, because the origin data point was an int
1323     ** that was cast to a (const char *). */
1324     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1325     pOp->p4type = P4_INT32;
1326   }else if( zP4!=0 ){
1327     assert( n<0 );
1328     pOp->p4.p = (void*)zP4;
1329     pOp->p4type = (signed char)n;
1330     if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1331   }
1332 }
1333 
1334 /*
1335 ** Change the P4 operand of the most recently coded instruction
1336 ** to the value defined by the arguments.  This is a high-speed
1337 ** version of sqlite3VdbeChangeP4().
1338 **
1339 ** The P4 operand must not have been previously defined.  And the new
1340 ** P4 must not be P4_INT32.  Use sqlite3VdbeChangeP4() in either of
1341 ** those cases.
1342 */
1343 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1344   VdbeOp *pOp;
1345   assert( n!=P4_INT32 && n!=P4_VTAB );
1346   assert( n<=0 );
1347   if( p->db->mallocFailed ){
1348     freeP4(p->db, n, pP4);
1349   }else{
1350     assert( pP4!=0 );
1351     assert( p->nOp>0 );
1352     pOp = &p->aOp[p->nOp-1];
1353     assert( pOp->p4type==P4_NOTUSED );
1354     pOp->p4type = n;
1355     pOp->p4.p = pP4;
1356   }
1357 }
1358 
1359 /*
1360 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1361 ** index given.
1362 */
1363 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1364   Vdbe *v = pParse->pVdbe;
1365   KeyInfo *pKeyInfo;
1366   assert( v!=0 );
1367   assert( pIdx!=0 );
1368   pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1369   if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1370 }
1371 
1372 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1373 /*
1374 ** Change the comment on the most recently coded instruction.  Or
1375 ** insert a No-op and add the comment to that new instruction.  This
1376 ** makes the code easier to read during debugging.  None of this happens
1377 ** in a production build.
1378 */
1379 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1380   assert( p->nOp>0 || p->aOp==0 );
1381   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed
1382           || p->pParse->nErr>0 );
1383   if( p->nOp ){
1384     assert( p->aOp );
1385     sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1386     p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1387   }
1388 }
1389 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1390   va_list ap;
1391   if( p ){
1392     va_start(ap, zFormat);
1393     vdbeVComment(p, zFormat, ap);
1394     va_end(ap);
1395   }
1396 }
1397 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1398   va_list ap;
1399   if( p ){
1400     sqlite3VdbeAddOp0(p, OP_Noop);
1401     va_start(ap, zFormat);
1402     vdbeVComment(p, zFormat, ap);
1403     va_end(ap);
1404   }
1405 }
1406 #endif  /* NDEBUG */
1407 
1408 #ifdef SQLITE_VDBE_COVERAGE
1409 /*
1410 ** Set the value if the iSrcLine field for the previously coded instruction.
1411 */
1412 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1413   sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1414 }
1415 #endif /* SQLITE_VDBE_COVERAGE */
1416 
1417 /*
1418 ** Return the opcode for a given address.  If the address is -1, then
1419 ** return the most recently inserted opcode.
1420 **
1421 ** If a memory allocation error has occurred prior to the calling of this
1422 ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
1423 ** is readable but not writable, though it is cast to a writable value.
1424 ** The return of a dummy opcode allows the call to continue functioning
1425 ** after an OOM fault without having to check to see if the return from
1426 ** this routine is a valid pointer.  But because the dummy.opcode is 0,
1427 ** dummy will never be written to.  This is verified by code inspection and
1428 ** by running with Valgrind.
1429 */
1430 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1431   /* C89 specifies that the constant "dummy" will be initialized to all
1432   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
1433   static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
1434   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
1435   if( addr<0 ){
1436     addr = p->nOp - 1;
1437   }
1438   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1439   if( p->db->mallocFailed ){
1440     return (VdbeOp*)&dummy;
1441   }else{
1442     return &p->aOp[addr];
1443   }
1444 }
1445 
1446 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1447 /*
1448 ** Return an integer value for one of the parameters to the opcode pOp
1449 ** determined by character c.
1450 */
1451 static int translateP(char c, const Op *pOp){
1452   if( c=='1' ) return pOp->p1;
1453   if( c=='2' ) return pOp->p2;
1454   if( c=='3' ) return pOp->p3;
1455   if( c=='4' ) return pOp->p4.i;
1456   return pOp->p5;
1457 }
1458 
1459 /*
1460 ** Compute a string for the "comment" field of a VDBE opcode listing.
1461 **
1462 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1463 ** to an extra string that is appended to the sqlite3OpcodeName().  In the
1464 ** absence of other comments, this synopsis becomes the comment on the opcode.
1465 ** Some translation occurs:
1466 **
1467 **       "PX"      ->  "r[X]"
1468 **       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1
1469 **       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0
1470 **       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x
1471 */
1472 char *sqlite3VdbeDisplayComment(
1473   sqlite3 *db,       /* Optional - Oom error reporting only */
1474   const Op *pOp,     /* The opcode to be commented */
1475   const char *zP4    /* Previously obtained value for P4 */
1476 ){
1477   const char *zOpName;
1478   const char *zSynopsis;
1479   int nOpName;
1480   int ii;
1481   char zAlt[50];
1482   StrAccum x;
1483 
1484   sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1485   zOpName = sqlite3OpcodeName(pOp->opcode);
1486   nOpName = sqlite3Strlen30(zOpName);
1487   if( zOpName[nOpName+1] ){
1488     int seenCom = 0;
1489     char c;
1490     zSynopsis = zOpName + nOpName + 1;
1491     if( strncmp(zSynopsis,"IF ",3)==0 ){
1492       sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1493       zSynopsis = zAlt;
1494     }
1495     for(ii=0; (c = zSynopsis[ii])!=0; ii++){
1496       if( c=='P' ){
1497         c = zSynopsis[++ii];
1498         if( c=='4' ){
1499           sqlite3_str_appendall(&x, zP4);
1500         }else if( c=='X' ){
1501           sqlite3_str_appendall(&x, pOp->zComment);
1502           seenCom = 1;
1503         }else{
1504           int v1 = translateP(c, pOp);
1505           int v2;
1506           if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1507             ii += 3;
1508             v2 = translateP(zSynopsis[ii], pOp);
1509             if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1510               ii += 2;
1511               v2++;
1512             }
1513             if( v2<2 ){
1514               sqlite3_str_appendf(&x, "%d", v1);
1515             }else{
1516               sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
1517             }
1518           }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
1519             sqlite3_context *pCtx = pOp->p4.pCtx;
1520             if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
1521               sqlite3_str_appendf(&x, "%d", v1);
1522             }else if( pCtx->argc>1 ){
1523               sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
1524             }else if( x.accError==0 ){
1525               assert( x.nChar>2 );
1526               x.nChar -= 2;
1527               ii++;
1528             }
1529             ii += 3;
1530           }else{
1531             sqlite3_str_appendf(&x, "%d", v1);
1532             if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1533               ii += 4;
1534             }
1535           }
1536         }
1537       }else{
1538         sqlite3_str_appendchar(&x, 1, c);
1539       }
1540     }
1541     if( !seenCom && pOp->zComment ){
1542       sqlite3_str_appendf(&x, "; %s", pOp->zComment);
1543     }
1544   }else if( pOp->zComment ){
1545     sqlite3_str_appendall(&x, pOp->zComment);
1546   }
1547   if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
1548     sqlite3OomFault(db);
1549   }
1550   return sqlite3StrAccumFinish(&x);
1551 }
1552 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1553 
1554 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1555 /*
1556 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1557 ** that can be displayed in the P4 column of EXPLAIN output.
1558 */
1559 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1560   const char *zOp = 0;
1561   switch( pExpr->op ){
1562     case TK_STRING:
1563       assert( !ExprHasProperty(pExpr, EP_IntValue) );
1564       sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1565       break;
1566     case TK_INTEGER:
1567       sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1568       break;
1569     case TK_NULL:
1570       sqlite3_str_appendf(p, "NULL");
1571       break;
1572     case TK_REGISTER: {
1573       sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1574       break;
1575     }
1576     case TK_COLUMN: {
1577       if( pExpr->iColumn<0 ){
1578         sqlite3_str_appendf(p, "rowid");
1579       }else{
1580         sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1581       }
1582       break;
1583     }
1584     case TK_LT:      zOp = "LT";      break;
1585     case TK_LE:      zOp = "LE";      break;
1586     case TK_GT:      zOp = "GT";      break;
1587     case TK_GE:      zOp = "GE";      break;
1588     case TK_NE:      zOp = "NE";      break;
1589     case TK_EQ:      zOp = "EQ";      break;
1590     case TK_IS:      zOp = "IS";      break;
1591     case TK_ISNOT:   zOp = "ISNOT";   break;
1592     case TK_AND:     zOp = "AND";     break;
1593     case TK_OR:      zOp = "OR";      break;
1594     case TK_PLUS:    zOp = "ADD";     break;
1595     case TK_STAR:    zOp = "MUL";     break;
1596     case TK_MINUS:   zOp = "SUB";     break;
1597     case TK_REM:     zOp = "REM";     break;
1598     case TK_BITAND:  zOp = "BITAND";  break;
1599     case TK_BITOR:   zOp = "BITOR";   break;
1600     case TK_SLASH:   zOp = "DIV";     break;
1601     case TK_LSHIFT:  zOp = "LSHIFT";  break;
1602     case TK_RSHIFT:  zOp = "RSHIFT";  break;
1603     case TK_CONCAT:  zOp = "CONCAT";  break;
1604     case TK_UMINUS:  zOp = "MINUS";   break;
1605     case TK_UPLUS:   zOp = "PLUS";    break;
1606     case TK_BITNOT:  zOp = "BITNOT";  break;
1607     case TK_NOT:     zOp = "NOT";     break;
1608     case TK_ISNULL:  zOp = "ISNULL";  break;
1609     case TK_NOTNULL: zOp = "NOTNULL"; break;
1610 
1611     default:
1612       sqlite3_str_appendf(p, "%s", "expr");
1613       break;
1614   }
1615 
1616   if( zOp ){
1617     sqlite3_str_appendf(p, "%s(", zOp);
1618     displayP4Expr(p, pExpr->pLeft);
1619     if( pExpr->pRight ){
1620       sqlite3_str_append(p, ",", 1);
1621       displayP4Expr(p, pExpr->pRight);
1622     }
1623     sqlite3_str_append(p, ")", 1);
1624   }
1625 }
1626 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1627 
1628 
1629 #if VDBE_DISPLAY_P4
1630 /*
1631 ** Compute a string that describes the P4 parameter for an opcode.
1632 ** Use zTemp for any required temporary buffer space.
1633 */
1634 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
1635   char *zP4 = 0;
1636   StrAccum x;
1637 
1638   sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1639   switch( pOp->p4type ){
1640     case P4_KEYINFO: {
1641       int j;
1642       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1643       assert( pKeyInfo->aSortFlags!=0 );
1644       sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1645       for(j=0; j<pKeyInfo->nKeyField; j++){
1646         CollSeq *pColl = pKeyInfo->aColl[j];
1647         const char *zColl = pColl ? pColl->zName : "";
1648         if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1649         sqlite3_str_appendf(&x, ",%s%s%s",
1650                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1651                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1652                zColl);
1653       }
1654       sqlite3_str_append(&x, ")", 1);
1655       break;
1656     }
1657 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1658     case P4_EXPR: {
1659       displayP4Expr(&x, pOp->p4.pExpr);
1660       break;
1661     }
1662 #endif
1663     case P4_COLLSEQ: {
1664       static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
1665       CollSeq *pColl = pOp->p4.pColl;
1666       assert( pColl->enc<4 );
1667       sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
1668                           encnames[pColl->enc]);
1669       break;
1670     }
1671     case P4_FUNCDEF: {
1672       FuncDef *pDef = pOp->p4.pFunc;
1673       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1674       break;
1675     }
1676     case P4_FUNCCTX: {
1677       FuncDef *pDef = pOp->p4.pCtx->pFunc;
1678       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1679       break;
1680     }
1681     case P4_INT64: {
1682       sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1683       break;
1684     }
1685     case P4_INT32: {
1686       sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1687       break;
1688     }
1689     case P4_REAL: {
1690       sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1691       break;
1692     }
1693     case P4_MEM: {
1694       Mem *pMem = pOp->p4.pMem;
1695       if( pMem->flags & MEM_Str ){
1696         zP4 = pMem->z;
1697       }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1698         sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1699       }else if( pMem->flags & MEM_Real ){
1700         sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1701       }else if( pMem->flags & MEM_Null ){
1702         zP4 = "NULL";
1703       }else{
1704         assert( pMem->flags & MEM_Blob );
1705         zP4 = "(blob)";
1706       }
1707       break;
1708     }
1709 #ifndef SQLITE_OMIT_VIRTUALTABLE
1710     case P4_VTAB: {
1711       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1712       sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1713       break;
1714     }
1715 #endif
1716     case P4_INTARRAY: {
1717       u32 i;
1718       u32 *ai = pOp->p4.ai;
1719       u32 n = ai[0];   /* The first element of an INTARRAY is always the
1720                        ** count of the number of elements to follow */
1721       for(i=1; i<=n; i++){
1722         sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
1723       }
1724       sqlite3_str_append(&x, "]", 1);
1725       break;
1726     }
1727     case P4_SUBPROGRAM: {
1728       zP4 = "program";
1729       break;
1730     }
1731     case P4_DYNBLOB:
1732     case P4_ADVANCE: {
1733       break;
1734     }
1735     case P4_TABLE: {
1736       zP4 = pOp->p4.pTab->zName;
1737       break;
1738     }
1739     default: {
1740       zP4 = pOp->p4.z;
1741     }
1742   }
1743   if( zP4 ) sqlite3_str_appendall(&x, zP4);
1744   if( (x.accError & SQLITE_NOMEM)!=0 ){
1745     sqlite3OomFault(db);
1746   }
1747   return sqlite3StrAccumFinish(&x);
1748 }
1749 #endif /* VDBE_DISPLAY_P4 */
1750 
1751 /*
1752 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1753 **
1754 ** The prepared statements need to know in advance the complete set of
1755 ** attached databases that will be use.  A mask of these databases
1756 ** is maintained in p->btreeMask.  The p->lockMask value is the subset of
1757 ** p->btreeMask of databases that will require a lock.
1758 */
1759 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1760   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1761   assert( i<(int)sizeof(p->btreeMask)*8 );
1762   DbMaskSet(p->btreeMask, i);
1763   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1764     DbMaskSet(p->lockMask, i);
1765   }
1766 }
1767 
1768 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1769 /*
1770 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1771 ** this routine obtains the mutex associated with each BtShared structure
1772 ** that may be accessed by the VM passed as an argument. In doing so it also
1773 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1774 ** that the correct busy-handler callback is invoked if required.
1775 **
1776 ** If SQLite is not threadsafe but does support shared-cache mode, then
1777 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1778 ** of all of BtShared structures accessible via the database handle
1779 ** associated with the VM.
1780 **
1781 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1782 ** function is a no-op.
1783 **
1784 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1785 ** statement p will ever use.  Let N be the number of bits in p->btreeMask
1786 ** corresponding to btrees that use shared cache.  Then the runtime of
1787 ** this routine is N*N.  But as N is rarely more than 1, this should not
1788 ** be a problem.
1789 */
1790 void sqlite3VdbeEnter(Vdbe *p){
1791   int i;
1792   sqlite3 *db;
1793   Db *aDb;
1794   int nDb;
1795   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1796   db = p->db;
1797   aDb = db->aDb;
1798   nDb = db->nDb;
1799   for(i=0; i<nDb; i++){
1800     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1801       sqlite3BtreeEnter(aDb[i].pBt);
1802     }
1803   }
1804 }
1805 #endif
1806 
1807 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1808 /*
1809 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1810 */
1811 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1812   int i;
1813   sqlite3 *db;
1814   Db *aDb;
1815   int nDb;
1816   db = p->db;
1817   aDb = db->aDb;
1818   nDb = db->nDb;
1819   for(i=0; i<nDb; i++){
1820     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1821       sqlite3BtreeLeave(aDb[i].pBt);
1822     }
1823   }
1824 }
1825 void sqlite3VdbeLeave(Vdbe *p){
1826   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1827   vdbeLeave(p);
1828 }
1829 #endif
1830 
1831 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1832 /*
1833 ** Print a single opcode.  This routine is used for debugging only.
1834 */
1835 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
1836   char *zP4;
1837   char *zCom;
1838   sqlite3 dummyDb;
1839   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1840   if( pOut==0 ) pOut = stdout;
1841   sqlite3BeginBenignMalloc();
1842   dummyDb.mallocFailed = 1;
1843   zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
1844 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1845   zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
1846 #else
1847   zCom = 0;
1848 #endif
1849   /* NB:  The sqlite3OpcodeName() function is implemented by code created
1850   ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1851   ** information from the vdbe.c source text */
1852   fprintf(pOut, zFormat1, pc,
1853       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
1854       zP4 ? zP4 : "", pOp->p5,
1855       zCom ? zCom : ""
1856   );
1857   fflush(pOut);
1858   sqlite3_free(zP4);
1859   sqlite3_free(zCom);
1860   sqlite3EndBenignMalloc();
1861 }
1862 #endif
1863 
1864 /*
1865 ** Initialize an array of N Mem element.
1866 */
1867 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1868   while( (N--)>0 ){
1869     p->db = db;
1870     p->flags = flags;
1871     p->szMalloc = 0;
1872 #ifdef SQLITE_DEBUG
1873     p->pScopyFrom = 0;
1874 #endif
1875     p++;
1876   }
1877 }
1878 
1879 /*
1880 ** Release an array of N Mem elements
1881 */
1882 static void releaseMemArray(Mem *p, int N){
1883   if( p && N ){
1884     Mem *pEnd = &p[N];
1885     sqlite3 *db = p->db;
1886     if( db->pnBytesFreed ){
1887       do{
1888         if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1889       }while( (++p)<pEnd );
1890       return;
1891     }
1892     do{
1893       assert( (&p[1])==pEnd || p[0].db==p[1].db );
1894       assert( sqlite3VdbeCheckMemInvariants(p) );
1895 
1896       /* This block is really an inlined version of sqlite3VdbeMemRelease()
1897       ** that takes advantage of the fact that the memory cell value is
1898       ** being set to NULL after releasing any dynamic resources.
1899       **
1900       ** The justification for duplicating code is that according to
1901       ** callgrind, this causes a certain test case to hit the CPU 4.7
1902       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1903       ** sqlite3MemRelease() were called from here. With -O2, this jumps
1904       ** to 6.6 percent. The test case is inserting 1000 rows into a table
1905       ** with no indexes using a single prepared INSERT statement, bind()
1906       ** and reset(). Inserts are grouped into a transaction.
1907       */
1908       testcase( p->flags & MEM_Agg );
1909       testcase( p->flags & MEM_Dyn );
1910       testcase( p->xDel==sqlite3VdbeFrameMemDel );
1911       if( p->flags&(MEM_Agg|MEM_Dyn) ){
1912         sqlite3VdbeMemRelease(p);
1913       }else if( p->szMalloc ){
1914         sqlite3DbFreeNN(db, p->zMalloc);
1915         p->szMalloc = 0;
1916       }
1917 
1918       p->flags = MEM_Undefined;
1919     }while( (++p)<pEnd );
1920   }
1921 }
1922 
1923 #ifdef SQLITE_DEBUG
1924 /*
1925 ** Verify that pFrame is a valid VdbeFrame pointer.  Return true if it is
1926 ** and false if something is wrong.
1927 **
1928 ** This routine is intended for use inside of assert() statements only.
1929 */
1930 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
1931   if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
1932   return 1;
1933 }
1934 #endif
1935 
1936 
1937 /*
1938 ** This is a destructor on a Mem object (which is really an sqlite3_value)
1939 ** that deletes the Frame object that is attached to it as a blob.
1940 **
1941 ** This routine does not delete the Frame right away.  It merely adds the
1942 ** frame to a list of frames to be deleted when the Vdbe halts.
1943 */
1944 void sqlite3VdbeFrameMemDel(void *pArg){
1945   VdbeFrame *pFrame = (VdbeFrame*)pArg;
1946   assert( sqlite3VdbeFrameIsValid(pFrame) );
1947   pFrame->pParent = pFrame->v->pDelFrame;
1948   pFrame->v->pDelFrame = pFrame;
1949 }
1950 
1951 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
1952 /*
1953 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
1954 ** QUERY PLAN output.
1955 **
1956 ** Return SQLITE_ROW on success.  Return SQLITE_DONE if there are no
1957 ** more opcodes to be displayed.
1958 */
1959 int sqlite3VdbeNextOpcode(
1960   Vdbe *p,         /* The statement being explained */
1961   Mem *pSub,       /* Storage for keeping track of subprogram nesting */
1962   int eMode,       /* 0: normal.  1: EQP.  2:  TablesUsed */
1963   int *piPc,       /* IN/OUT: Current rowid.  Overwritten with next rowid */
1964   int *piAddr,     /* OUT: Write index into (*paOp)[] here */
1965   Op **paOp        /* OUT: Write the opcode array here */
1966 ){
1967   int nRow;                            /* Stop when row count reaches this */
1968   int nSub = 0;                        /* Number of sub-vdbes seen so far */
1969   SubProgram **apSub = 0;              /* Array of sub-vdbes */
1970   int i;                               /* Next instruction address */
1971   int rc = SQLITE_OK;                  /* Result code */
1972   Op *aOp = 0;                         /* Opcode array */
1973   int iPc;                             /* Rowid.  Copy of value in *piPc */
1974 
1975   /* When the number of output rows reaches nRow, that means the
1976   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1977   ** nRow is the sum of the number of rows in the main program, plus
1978   ** the sum of the number of rows in all trigger subprograms encountered
1979   ** so far.  The nRow value will increase as new trigger subprograms are
1980   ** encountered, but p->pc will eventually catch up to nRow.
1981   */
1982   nRow = p->nOp;
1983   if( pSub!=0 ){
1984     if( pSub->flags&MEM_Blob ){
1985       /* pSub is initiallly NULL.  It is initialized to a BLOB by
1986       ** the P4_SUBPROGRAM processing logic below */
1987       nSub = pSub->n/sizeof(Vdbe*);
1988       apSub = (SubProgram **)pSub->z;
1989     }
1990     for(i=0; i<nSub; i++){
1991       nRow += apSub[i]->nOp;
1992     }
1993   }
1994   iPc = *piPc;
1995   while(1){  /* Loop exits via break */
1996     i = iPc++;
1997     if( i>=nRow ){
1998       p->rc = SQLITE_OK;
1999       rc = SQLITE_DONE;
2000       break;
2001     }
2002     if( i<p->nOp ){
2003       /* The rowid is small enough that we are still in the
2004       ** main program. */
2005       aOp = p->aOp;
2006     }else{
2007       /* We are currently listing subprograms.  Figure out which one and
2008       ** pick up the appropriate opcode. */
2009       int j;
2010       i -= p->nOp;
2011       assert( apSub!=0 );
2012       assert( nSub>0 );
2013       for(j=0; i>=apSub[j]->nOp; j++){
2014         i -= apSub[j]->nOp;
2015         assert( i<apSub[j]->nOp || j+1<nSub );
2016       }
2017       aOp = apSub[j]->aOp;
2018     }
2019 
2020     /* When an OP_Program opcode is encounter (the only opcode that has
2021     ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2022     ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2023     ** has not already been seen.
2024     */
2025     if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
2026       int nByte = (nSub+1)*sizeof(SubProgram*);
2027       int j;
2028       for(j=0; j<nSub; j++){
2029         if( apSub[j]==aOp[i].p4.pProgram ) break;
2030       }
2031       if( j==nSub ){
2032         p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2033         if( p->rc!=SQLITE_OK ){
2034           rc = SQLITE_ERROR;
2035           break;
2036         }
2037         apSub = (SubProgram **)pSub->z;
2038         apSub[nSub++] = aOp[i].p4.pProgram;
2039         MemSetTypeFlag(pSub, MEM_Blob);
2040         pSub->n = nSub*sizeof(SubProgram*);
2041         nRow += aOp[i].p4.pProgram->nOp;
2042       }
2043     }
2044     if( eMode==0 ) break;
2045 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2046     if( eMode==2 ){
2047       Op *pOp = aOp + i;
2048       if( pOp->opcode==OP_OpenRead ) break;
2049       if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
2050       if( pOp->opcode==OP_ReopenIdx ) break;
2051     }else
2052 #endif
2053     {
2054       assert( eMode==1 );
2055       if( aOp[i].opcode==OP_Explain ) break;
2056       if( aOp[i].opcode==OP_Init && iPc>1 ) break;
2057     }
2058   }
2059   *piPc = iPc;
2060   *piAddr = i;
2061   *paOp = aOp;
2062   return rc;
2063 }
2064 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2065 
2066 
2067 /*
2068 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2069 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2070 */
2071 void sqlite3VdbeFrameDelete(VdbeFrame *p){
2072   int i;
2073   Mem *aMem = VdbeFrameMem(p);
2074   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
2075   assert( sqlite3VdbeFrameIsValid(p) );
2076   for(i=0; i<p->nChildCsr; i++){
2077     sqlite3VdbeFreeCursor(p->v, apCsr[i]);
2078   }
2079   releaseMemArray(aMem, p->nChildMem);
2080   sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
2081   sqlite3DbFree(p->v->db, p);
2082 }
2083 
2084 #ifndef SQLITE_OMIT_EXPLAIN
2085 /*
2086 ** Give a listing of the program in the virtual machine.
2087 **
2088 ** The interface is the same as sqlite3VdbeExec().  But instead of
2089 ** running the code, it invokes the callback once for each instruction.
2090 ** This feature is used to implement "EXPLAIN".
2091 **
2092 ** When p->explain==1, each instruction is listed.  When
2093 ** p->explain==2, only OP_Explain instructions are listed and these
2094 ** are shown in a different format.  p->explain==2 is used to implement
2095 ** EXPLAIN QUERY PLAN.
2096 ** 2018-04-24:  In p->explain==2 mode, the OP_Init opcodes of triggers
2097 ** are also shown, so that the boundaries between the main program and
2098 ** each trigger are clear.
2099 **
2100 ** When p->explain==1, first the main program is listed, then each of
2101 ** the trigger subprograms are listed one by one.
2102 */
2103 int sqlite3VdbeList(
2104   Vdbe *p                   /* The VDBE */
2105 ){
2106   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
2107   sqlite3 *db = p->db;                 /* The database connection */
2108   int i;                               /* Loop counter */
2109   int rc = SQLITE_OK;                  /* Return code */
2110   Mem *pMem = &p->aMem[1];             /* First Mem of result set */
2111   int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
2112   Op *aOp;                             /* Array of opcodes */
2113   Op *pOp;                             /* Current opcode */
2114 
2115   assert( p->explain );
2116   assert( p->iVdbeMagic==VDBE_MAGIC_RUN );
2117   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
2118 
2119   /* Even though this opcode does not use dynamic strings for
2120   ** the result, result columns may become dynamic if the user calls
2121   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2122   */
2123   releaseMemArray(pMem, 8);
2124   p->pResultSet = 0;
2125 
2126   if( p->rc==SQLITE_NOMEM ){
2127     /* This happens if a malloc() inside a call to sqlite3_column_text() or
2128     ** sqlite3_column_text16() failed.  */
2129     sqlite3OomFault(db);
2130     return SQLITE_ERROR;
2131   }
2132 
2133   if( bListSubprogs ){
2134     /* The first 8 memory cells are used for the result set.  So we will
2135     ** commandeer the 9th cell to use as storage for an array of pointers
2136     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
2137     ** cells.  */
2138     assert( p->nMem>9 );
2139     pSub = &p->aMem[9];
2140   }else{
2141     pSub = 0;
2142   }
2143 
2144   /* Figure out which opcode is next to display */
2145   rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
2146 
2147   if( rc==SQLITE_OK ){
2148     pOp = aOp + i;
2149     if( AtomicLoad(&db->u1.isInterrupted) ){
2150       p->rc = SQLITE_INTERRUPT;
2151       rc = SQLITE_ERROR;
2152       sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2153     }else{
2154       char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
2155       if( p->explain==2 ){
2156         sqlite3VdbeMemSetInt64(pMem, pOp->p1);
2157         sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
2158         sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
2159         sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
2160         p->nResColumn = 4;
2161       }else{
2162         sqlite3VdbeMemSetInt64(pMem+0, i);
2163         sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
2164                              -1, SQLITE_UTF8, SQLITE_STATIC);
2165         sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
2166         sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
2167         sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
2168         /* pMem+5 for p4 is done last */
2169         sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
2170 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2171         {
2172           char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
2173           sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
2174         }
2175 #else
2176         sqlite3VdbeMemSetNull(pMem+7);
2177 #endif
2178         sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
2179         p->nResColumn = 8;
2180       }
2181       p->pResultSet = pMem;
2182       if( db->mallocFailed ){
2183         p->rc = SQLITE_NOMEM;
2184         rc = SQLITE_ERROR;
2185       }else{
2186         p->rc = SQLITE_OK;
2187         rc = SQLITE_ROW;
2188       }
2189     }
2190   }
2191   return rc;
2192 }
2193 #endif /* SQLITE_OMIT_EXPLAIN */
2194 
2195 #ifdef SQLITE_DEBUG
2196 /*
2197 ** Print the SQL that was used to generate a VDBE program.
2198 */
2199 void sqlite3VdbePrintSql(Vdbe *p){
2200   const char *z = 0;
2201   if( p->zSql ){
2202     z = p->zSql;
2203   }else if( p->nOp>=1 ){
2204     const VdbeOp *pOp = &p->aOp[0];
2205     if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2206       z = pOp->p4.z;
2207       while( sqlite3Isspace(*z) ) z++;
2208     }
2209   }
2210   if( z ) printf("SQL: [%s]\n", z);
2211 }
2212 #endif
2213 
2214 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2215 /*
2216 ** Print an IOTRACE message showing SQL content.
2217 */
2218 void sqlite3VdbeIOTraceSql(Vdbe *p){
2219   int nOp = p->nOp;
2220   VdbeOp *pOp;
2221   if( sqlite3IoTrace==0 ) return;
2222   if( nOp<1 ) return;
2223   pOp = &p->aOp[0];
2224   if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2225     int i, j;
2226     char z[1000];
2227     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2228     for(i=0; sqlite3Isspace(z[i]); i++){}
2229     for(j=0; z[i]; i++){
2230       if( sqlite3Isspace(z[i]) ){
2231         if( z[i-1]!=' ' ){
2232           z[j++] = ' ';
2233         }
2234       }else{
2235         z[j++] = z[i];
2236       }
2237     }
2238     z[j] = 0;
2239     sqlite3IoTrace("SQL %s\n", z);
2240   }
2241 }
2242 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2243 
2244 /* An instance of this object describes bulk memory available for use
2245 ** by subcomponents of a prepared statement.  Space is allocated out
2246 ** of a ReusableSpace object by the allocSpace() routine below.
2247 */
2248 struct ReusableSpace {
2249   u8 *pSpace;            /* Available memory */
2250   sqlite3_int64 nFree;   /* Bytes of available memory */
2251   sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2252 };
2253 
2254 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2255 ** from the ReusableSpace object.  Return a pointer to the allocated
2256 ** memory on success.  If insufficient memory is available in the
2257 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2258 ** value by the amount needed and return NULL.
2259 **
2260 ** If pBuf is not initially NULL, that means that the memory has already
2261 ** been allocated by a prior call to this routine, so just return a copy
2262 ** of pBuf and leave ReusableSpace unchanged.
2263 **
2264 ** This allocator is employed to repurpose unused slots at the end of the
2265 ** opcode array of prepared state for other memory needs of the prepared
2266 ** statement.
2267 */
2268 static void *allocSpace(
2269   struct ReusableSpace *p,  /* Bulk memory available for allocation */
2270   void *pBuf,               /* Pointer to a prior allocation */
2271   sqlite3_int64 nByte       /* Bytes of memory needed */
2272 ){
2273   assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2274   if( pBuf==0 ){
2275     nByte = ROUND8(nByte);
2276     if( nByte <= p->nFree ){
2277       p->nFree -= nByte;
2278       pBuf = &p->pSpace[p->nFree];
2279     }else{
2280       p->nNeeded += nByte;
2281     }
2282   }
2283   assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2284   return pBuf;
2285 }
2286 
2287 /*
2288 ** Rewind the VDBE back to the beginning in preparation for
2289 ** running it.
2290 */
2291 void sqlite3VdbeRewind(Vdbe *p){
2292 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2293   int i;
2294 #endif
2295   assert( p!=0 );
2296   assert( p->iVdbeMagic==VDBE_MAGIC_INIT || p->iVdbeMagic==VDBE_MAGIC_RESET );
2297 
2298   /* There should be at least one opcode.
2299   */
2300   assert( p->nOp>0 );
2301 
2302   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
2303   p->iVdbeMagic = VDBE_MAGIC_RUN;
2304 
2305 #ifdef SQLITE_DEBUG
2306   for(i=0; i<p->nMem; i++){
2307     assert( p->aMem[i].db==p->db );
2308   }
2309 #endif
2310   p->pc = -1;
2311   p->rc = SQLITE_OK;
2312   p->errorAction = OE_Abort;
2313   p->nChange = 0;
2314   p->cacheCtr = 1;
2315   p->minWriteFileFormat = 255;
2316   p->iStatement = 0;
2317   p->nFkConstraint = 0;
2318 #ifdef VDBE_PROFILE
2319   for(i=0; i<p->nOp; i++){
2320     p->aOp[i].cnt = 0;
2321     p->aOp[i].cycles = 0;
2322   }
2323 #endif
2324 }
2325 
2326 /*
2327 ** Prepare a virtual machine for execution for the first time after
2328 ** creating the virtual machine.  This involves things such
2329 ** as allocating registers and initializing the program counter.
2330 ** After the VDBE has be prepped, it can be executed by one or more
2331 ** calls to sqlite3VdbeExec().
2332 **
2333 ** This function may be called exactly once on each virtual machine.
2334 ** After this routine is called the VM has been "packaged" and is ready
2335 ** to run.  After this routine is called, further calls to
2336 ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
2337 ** the Vdbe from the Parse object that helped generate it so that the
2338 ** the Vdbe becomes an independent entity and the Parse object can be
2339 ** destroyed.
2340 **
2341 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2342 ** to its initial state after it has been run.
2343 */
2344 void sqlite3VdbeMakeReady(
2345   Vdbe *p,                       /* The VDBE */
2346   Parse *pParse                  /* Parsing context */
2347 ){
2348   sqlite3 *db;                   /* The database connection */
2349   int nVar;                      /* Number of parameters */
2350   int nMem;                      /* Number of VM memory registers */
2351   int nCursor;                   /* Number of cursors required */
2352   int nArg;                      /* Number of arguments in subprograms */
2353   int n;                         /* Loop counter */
2354   struct ReusableSpace x;        /* Reusable bulk memory */
2355 
2356   assert( p!=0 );
2357   assert( p->nOp>0 );
2358   assert( pParse!=0 );
2359   assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
2360   assert( pParse==p->pParse );
2361   p->pVList = pParse->pVList;
2362   pParse->pVList =  0;
2363   db = p->db;
2364   assert( db->mallocFailed==0 );
2365   nVar = pParse->nVar;
2366   nMem = pParse->nMem;
2367   nCursor = pParse->nTab;
2368   nArg = pParse->nMaxArg;
2369 
2370   /* Each cursor uses a memory cell.  The first cursor (cursor 0) can
2371   ** use aMem[0] which is not otherwise used by the VDBE program.  Allocate
2372   ** space at the end of aMem[] for cursors 1 and greater.
2373   ** See also: allocateCursor().
2374   */
2375   nMem += nCursor;
2376   if( nCursor==0 && nMem>0 ) nMem++;  /* Space for aMem[0] even if not used */
2377 
2378   /* Figure out how much reusable memory is available at the end of the
2379   ** opcode array.  This extra memory will be reallocated for other elements
2380   ** of the prepared statement.
2381   */
2382   n = ROUND8(sizeof(Op)*p->nOp);              /* Bytes of opcode memory used */
2383   x.pSpace = &((u8*)p->aOp)[n];               /* Unused opcode memory */
2384   assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2385   x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */
2386   assert( x.nFree>=0 );
2387   assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2388 
2389   resolveP2Values(p, &nArg);
2390   p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2391   if( pParse->explain ){
2392     static const char * const azColName[] = {
2393        "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2394        "id", "parent", "notused", "detail"
2395     };
2396     int iFirst, mx, i;
2397     if( nMem<10 ) nMem = 10;
2398     p->explain = pParse->explain;
2399     if( pParse->explain==2 ){
2400       sqlite3VdbeSetNumCols(p, 4);
2401       iFirst = 8;
2402       mx = 12;
2403     }else{
2404       sqlite3VdbeSetNumCols(p, 8);
2405       iFirst = 0;
2406       mx = 8;
2407     }
2408     for(i=iFirst; i<mx; i++){
2409       sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
2410                             azColName[i], SQLITE_STATIC);
2411     }
2412   }
2413   p->expired = 0;
2414 
2415   /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2416   ** passes.  On the first pass, we try to reuse unused memory at the
2417   ** end of the opcode array.  If we are unable to satisfy all memory
2418   ** requirements by reusing the opcode array tail, then the second
2419   ** pass will fill in the remainder using a fresh memory allocation.
2420   **
2421   ** This two-pass approach that reuses as much memory as possible from
2422   ** the leftover memory at the end of the opcode array.  This can significantly
2423   ** reduce the amount of memory held by a prepared statement.
2424   */
2425   x.nNeeded = 0;
2426   p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2427   p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2428   p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2429   p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2430 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2431   p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64));
2432 #endif
2433   if( x.nNeeded ){
2434     x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2435     x.nFree = x.nNeeded;
2436     if( !db->mallocFailed ){
2437       p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2438       p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2439       p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2440       p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2441 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2442       p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2443 #endif
2444     }
2445   }
2446 
2447   if( db->mallocFailed ){
2448     p->nVar = 0;
2449     p->nCursor = 0;
2450     p->nMem = 0;
2451   }else{
2452     p->nCursor = nCursor;
2453     p->nVar = (ynVar)nVar;
2454     initMemArray(p->aVar, nVar, db, MEM_Null);
2455     p->nMem = nMem;
2456     initMemArray(p->aMem, nMem, db, MEM_Undefined);
2457     memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2458 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2459     memset(p->anExec, 0, p->nOp*sizeof(i64));
2460 #endif
2461   }
2462   sqlite3VdbeRewind(p);
2463 }
2464 
2465 /*
2466 ** Close a VDBE cursor and release all the resources that cursor
2467 ** happens to hold.
2468 */
2469 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2470   if( pCx==0 ){
2471     return;
2472   }
2473   assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2474   assert( pCx->pBtx==0 || pCx->isEphemeral );
2475   switch( pCx->eCurType ){
2476     case CURTYPE_SORTER: {
2477       sqlite3VdbeSorterClose(p->db, pCx);
2478       break;
2479     }
2480     case CURTYPE_BTREE: {
2481       assert( pCx->uc.pCursor!=0 );
2482       sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2483       break;
2484     }
2485 #ifndef SQLITE_OMIT_VIRTUALTABLE
2486     case CURTYPE_VTAB: {
2487       sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2488       const sqlite3_module *pModule = pVCur->pVtab->pModule;
2489       assert( pVCur->pVtab->nRef>0 );
2490       pVCur->pVtab->nRef--;
2491       pModule->xClose(pVCur);
2492       break;
2493     }
2494 #endif
2495   }
2496 }
2497 
2498 /*
2499 ** Close all cursors in the current frame.
2500 */
2501 static void closeCursorsInFrame(Vdbe *p){
2502   if( p->apCsr ){
2503     int i;
2504     for(i=0; i<p->nCursor; i++){
2505       VdbeCursor *pC = p->apCsr[i];
2506       if( pC ){
2507         sqlite3VdbeFreeCursor(p, pC);
2508         p->apCsr[i] = 0;
2509       }
2510     }
2511   }
2512 }
2513 
2514 /*
2515 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2516 ** is used, for example, when a trigger sub-program is halted to restore
2517 ** control to the main program.
2518 */
2519 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2520   Vdbe *v = pFrame->v;
2521   closeCursorsInFrame(v);
2522 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2523   v->anExec = pFrame->anExec;
2524 #endif
2525   v->aOp = pFrame->aOp;
2526   v->nOp = pFrame->nOp;
2527   v->aMem = pFrame->aMem;
2528   v->nMem = pFrame->nMem;
2529   v->apCsr = pFrame->apCsr;
2530   v->nCursor = pFrame->nCursor;
2531   v->db->lastRowid = pFrame->lastRowid;
2532   v->nChange = pFrame->nChange;
2533   v->db->nChange = pFrame->nDbChange;
2534   sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2535   v->pAuxData = pFrame->pAuxData;
2536   pFrame->pAuxData = 0;
2537   return pFrame->pc;
2538 }
2539 
2540 /*
2541 ** Close all cursors.
2542 **
2543 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2544 ** cell array. This is necessary as the memory cell array may contain
2545 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2546 ** open cursors.
2547 */
2548 static void closeAllCursors(Vdbe *p){
2549   if( p->pFrame ){
2550     VdbeFrame *pFrame;
2551     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2552     sqlite3VdbeFrameRestore(pFrame);
2553     p->pFrame = 0;
2554     p->nFrame = 0;
2555   }
2556   assert( p->nFrame==0 );
2557   closeCursorsInFrame(p);
2558   if( p->aMem ){
2559     releaseMemArray(p->aMem, p->nMem);
2560   }
2561   while( p->pDelFrame ){
2562     VdbeFrame *pDel = p->pDelFrame;
2563     p->pDelFrame = pDel->pParent;
2564     sqlite3VdbeFrameDelete(pDel);
2565   }
2566 
2567   /* Delete any auxdata allocations made by the VM */
2568   if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2569   assert( p->pAuxData==0 );
2570 }
2571 
2572 /*
2573 ** Set the number of result columns that will be returned by this SQL
2574 ** statement. This is now set at compile time, rather than during
2575 ** execution of the vdbe program so that sqlite3_column_count() can
2576 ** be called on an SQL statement before sqlite3_step().
2577 */
2578 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2579   int n;
2580   sqlite3 *db = p->db;
2581 
2582   if( p->nResColumn ){
2583     releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2584     sqlite3DbFree(db, p->aColName);
2585   }
2586   n = nResColumn*COLNAME_N;
2587   p->nResColumn = (u16)nResColumn;
2588   p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2589   if( p->aColName==0 ) return;
2590   initMemArray(p->aColName, n, db, MEM_Null);
2591 }
2592 
2593 /*
2594 ** Set the name of the idx'th column to be returned by the SQL statement.
2595 ** zName must be a pointer to a nul terminated string.
2596 **
2597 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2598 **
2599 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2600 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2601 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2602 */
2603 int sqlite3VdbeSetColName(
2604   Vdbe *p,                         /* Vdbe being configured */
2605   int idx,                         /* Index of column zName applies to */
2606   int var,                         /* One of the COLNAME_* constants */
2607   const char *zName,               /* Pointer to buffer containing name */
2608   void (*xDel)(void*)              /* Memory management strategy for zName */
2609 ){
2610   int rc;
2611   Mem *pColName;
2612   assert( idx<p->nResColumn );
2613   assert( var<COLNAME_N );
2614   if( p->db->mallocFailed ){
2615     assert( !zName || xDel!=SQLITE_DYNAMIC );
2616     return SQLITE_NOMEM_BKPT;
2617   }
2618   assert( p->aColName!=0 );
2619   pColName = &(p->aColName[idx+var*p->nResColumn]);
2620   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2621   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2622   return rc;
2623 }
2624 
2625 /*
2626 ** A read or write transaction may or may not be active on database handle
2627 ** db. If a transaction is active, commit it. If there is a
2628 ** write-transaction spanning more than one database file, this routine
2629 ** takes care of the super-journal trickery.
2630 */
2631 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2632   int i;
2633   int nTrans = 0;  /* Number of databases with an active write-transaction
2634                    ** that are candidates for a two-phase commit using a
2635                    ** super-journal */
2636   int rc = SQLITE_OK;
2637   int needXcommit = 0;
2638 
2639 #ifdef SQLITE_OMIT_VIRTUALTABLE
2640   /* With this option, sqlite3VtabSync() is defined to be simply
2641   ** SQLITE_OK so p is not used.
2642   */
2643   UNUSED_PARAMETER(p);
2644 #endif
2645 
2646   /* Before doing anything else, call the xSync() callback for any
2647   ** virtual module tables written in this transaction. This has to
2648   ** be done before determining whether a super-journal file is
2649   ** required, as an xSync() callback may add an attached database
2650   ** to the transaction.
2651   */
2652   rc = sqlite3VtabSync(db, p);
2653 
2654   /* This loop determines (a) if the commit hook should be invoked and
2655   ** (b) how many database files have open write transactions, not
2656   ** including the temp database. (b) is important because if more than
2657   ** one database file has an open write transaction, a super-journal
2658   ** file is required for an atomic commit.
2659   */
2660   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2661     Btree *pBt = db->aDb[i].pBt;
2662     if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2663       /* Whether or not a database might need a super-journal depends upon
2664       ** its journal mode (among other things).  This matrix determines which
2665       ** journal modes use a super-journal and which do not */
2666       static const u8 aMJNeeded[] = {
2667         /* DELETE   */  1,
2668         /* PERSIST   */ 1,
2669         /* OFF       */ 0,
2670         /* TRUNCATE  */ 1,
2671         /* MEMORY    */ 0,
2672         /* WAL       */ 0
2673       };
2674       Pager *pPager;   /* Pager associated with pBt */
2675       needXcommit = 1;
2676       sqlite3BtreeEnter(pBt);
2677       pPager = sqlite3BtreePager(pBt);
2678       if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2679        && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2680        && sqlite3PagerIsMemdb(pPager)==0
2681       ){
2682         assert( i!=1 );
2683         nTrans++;
2684       }
2685       rc = sqlite3PagerExclusiveLock(pPager);
2686       sqlite3BtreeLeave(pBt);
2687     }
2688   }
2689   if( rc!=SQLITE_OK ){
2690     return rc;
2691   }
2692 
2693   /* If there are any write-transactions at all, invoke the commit hook */
2694   if( needXcommit && db->xCommitCallback ){
2695     rc = db->xCommitCallback(db->pCommitArg);
2696     if( rc ){
2697       return SQLITE_CONSTRAINT_COMMITHOOK;
2698     }
2699   }
2700 
2701   /* The simple case - no more than one database file (not counting the
2702   ** TEMP database) has a transaction active.   There is no need for the
2703   ** super-journal.
2704   **
2705   ** If the return value of sqlite3BtreeGetFilename() is a zero length
2706   ** string, it means the main database is :memory: or a temp file.  In
2707   ** that case we do not support atomic multi-file commits, so use the
2708   ** simple case then too.
2709   */
2710   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2711    || nTrans<=1
2712   ){
2713     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2714       Btree *pBt = db->aDb[i].pBt;
2715       if( pBt ){
2716         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2717       }
2718     }
2719 
2720     /* Do the commit only if all databases successfully complete phase 1.
2721     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2722     ** IO error while deleting or truncating a journal file. It is unlikely,
2723     ** but could happen. In this case abandon processing and return the error.
2724     */
2725     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2726       Btree *pBt = db->aDb[i].pBt;
2727       if( pBt ){
2728         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2729       }
2730     }
2731     if( rc==SQLITE_OK ){
2732       sqlite3VtabCommit(db);
2733     }
2734   }
2735 
2736   /* The complex case - There is a multi-file write-transaction active.
2737   ** This requires a super-journal file to ensure the transaction is
2738   ** committed atomically.
2739   */
2740 #ifndef SQLITE_OMIT_DISKIO
2741   else{
2742     sqlite3_vfs *pVfs = db->pVfs;
2743     char *zSuper = 0;   /* File-name for the super-journal */
2744     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2745     sqlite3_file *pSuperJrnl = 0;
2746     i64 offset = 0;
2747     int res;
2748     int retryCount = 0;
2749     int nMainFile;
2750 
2751     /* Select a super-journal file name */
2752     nMainFile = sqlite3Strlen30(zMainFile);
2753     zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
2754     if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
2755     zSuper += 4;
2756     do {
2757       u32 iRandom;
2758       if( retryCount ){
2759         if( retryCount>100 ){
2760           sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
2761           sqlite3OsDelete(pVfs, zSuper, 0);
2762           break;
2763         }else if( retryCount==1 ){
2764           sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
2765         }
2766       }
2767       retryCount++;
2768       sqlite3_randomness(sizeof(iRandom), &iRandom);
2769       sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
2770                                (iRandom>>8)&0xffffff, iRandom&0xff);
2771       /* The antipenultimate character of the super-journal name must
2772       ** be "9" to avoid name collisions when using 8+3 filenames. */
2773       assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
2774       sqlite3FileSuffix3(zMainFile, zSuper);
2775       rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
2776     }while( rc==SQLITE_OK && res );
2777     if( rc==SQLITE_OK ){
2778       /* Open the super-journal. */
2779       rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl,
2780           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2781           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
2782       );
2783     }
2784     if( rc!=SQLITE_OK ){
2785       sqlite3DbFree(db, zSuper-4);
2786       return rc;
2787     }
2788 
2789     /* Write the name of each database file in the transaction into the new
2790     ** super-journal file. If an error occurs at this point close
2791     ** and delete the super-journal file. All the individual journal files
2792     ** still have 'null' as the super-journal pointer, so they will roll
2793     ** back independently if a failure occurs.
2794     */
2795     for(i=0; i<db->nDb; i++){
2796       Btree *pBt = db->aDb[i].pBt;
2797       if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2798         char const *zFile = sqlite3BtreeGetJournalname(pBt);
2799         if( zFile==0 ){
2800           continue;  /* Ignore TEMP and :memory: databases */
2801         }
2802         assert( zFile[0]!=0 );
2803         rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
2804         offset += sqlite3Strlen30(zFile)+1;
2805         if( rc!=SQLITE_OK ){
2806           sqlite3OsCloseFree(pSuperJrnl);
2807           sqlite3OsDelete(pVfs, zSuper, 0);
2808           sqlite3DbFree(db, zSuper-4);
2809           return rc;
2810         }
2811       }
2812     }
2813 
2814     /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
2815     ** flag is set this is not required.
2816     */
2817     if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
2818      && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
2819     ){
2820       sqlite3OsCloseFree(pSuperJrnl);
2821       sqlite3OsDelete(pVfs, zSuper, 0);
2822       sqlite3DbFree(db, zSuper-4);
2823       return rc;
2824     }
2825 
2826     /* Sync all the db files involved in the transaction. The same call
2827     ** sets the super-journal pointer in each individual journal. If
2828     ** an error occurs here, do not delete the super-journal file.
2829     **
2830     ** If the error occurs during the first call to
2831     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2832     ** super-journal file will be orphaned. But we cannot delete it,
2833     ** in case the super-journal file name was written into the journal
2834     ** file before the failure occurred.
2835     */
2836     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2837       Btree *pBt = db->aDb[i].pBt;
2838       if( pBt ){
2839         rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
2840       }
2841     }
2842     sqlite3OsCloseFree(pSuperJrnl);
2843     assert( rc!=SQLITE_BUSY );
2844     if( rc!=SQLITE_OK ){
2845       sqlite3DbFree(db, zSuper-4);
2846       return rc;
2847     }
2848 
2849     /* Delete the super-journal file. This commits the transaction. After
2850     ** doing this the directory is synced again before any individual
2851     ** transaction files are deleted.
2852     */
2853     rc = sqlite3OsDelete(pVfs, zSuper, 1);
2854     sqlite3DbFree(db, zSuper-4);
2855     zSuper = 0;
2856     if( rc ){
2857       return rc;
2858     }
2859 
2860     /* All files and directories have already been synced, so the following
2861     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2862     ** deleting or truncating journals. If something goes wrong while
2863     ** this is happening we don't really care. The integrity of the
2864     ** transaction is already guaranteed, but some stray 'cold' journals
2865     ** may be lying around. Returning an error code won't help matters.
2866     */
2867     disable_simulated_io_errors();
2868     sqlite3BeginBenignMalloc();
2869     for(i=0; i<db->nDb; i++){
2870       Btree *pBt = db->aDb[i].pBt;
2871       if( pBt ){
2872         sqlite3BtreeCommitPhaseTwo(pBt, 1);
2873       }
2874     }
2875     sqlite3EndBenignMalloc();
2876     enable_simulated_io_errors();
2877 
2878     sqlite3VtabCommit(db);
2879   }
2880 #endif
2881 
2882   return rc;
2883 }
2884 
2885 /*
2886 ** This routine checks that the sqlite3.nVdbeActive count variable
2887 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2888 ** currently active. An assertion fails if the two counts do not match.
2889 ** This is an internal self-check only - it is not an essential processing
2890 ** step.
2891 **
2892 ** This is a no-op if NDEBUG is defined.
2893 */
2894 #ifndef NDEBUG
2895 static void checkActiveVdbeCnt(sqlite3 *db){
2896   Vdbe *p;
2897   int cnt = 0;
2898   int nWrite = 0;
2899   int nRead = 0;
2900   p = db->pVdbe;
2901   while( p ){
2902     if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2903       cnt++;
2904       if( p->readOnly==0 ) nWrite++;
2905       if( p->bIsReader ) nRead++;
2906     }
2907     p = p->pNext;
2908   }
2909   assert( cnt==db->nVdbeActive );
2910   assert( nWrite==db->nVdbeWrite );
2911   assert( nRead==db->nVdbeRead );
2912 }
2913 #else
2914 #define checkActiveVdbeCnt(x)
2915 #endif
2916 
2917 /*
2918 ** If the Vdbe passed as the first argument opened a statement-transaction,
2919 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2920 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2921 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2922 ** statement transaction is committed.
2923 **
2924 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2925 ** Otherwise SQLITE_OK.
2926 */
2927 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2928   sqlite3 *const db = p->db;
2929   int rc = SQLITE_OK;
2930   int i;
2931   const int iSavepoint = p->iStatement-1;
2932 
2933   assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2934   assert( db->nStatement>0 );
2935   assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2936 
2937   for(i=0; i<db->nDb; i++){
2938     int rc2 = SQLITE_OK;
2939     Btree *pBt = db->aDb[i].pBt;
2940     if( pBt ){
2941       if( eOp==SAVEPOINT_ROLLBACK ){
2942         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2943       }
2944       if( rc2==SQLITE_OK ){
2945         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2946       }
2947       if( rc==SQLITE_OK ){
2948         rc = rc2;
2949       }
2950     }
2951   }
2952   db->nStatement--;
2953   p->iStatement = 0;
2954 
2955   if( rc==SQLITE_OK ){
2956     if( eOp==SAVEPOINT_ROLLBACK ){
2957       rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2958     }
2959     if( rc==SQLITE_OK ){
2960       rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2961     }
2962   }
2963 
2964   /* If the statement transaction is being rolled back, also restore the
2965   ** database handles deferred constraint counter to the value it had when
2966   ** the statement transaction was opened.  */
2967   if( eOp==SAVEPOINT_ROLLBACK ){
2968     db->nDeferredCons = p->nStmtDefCons;
2969     db->nDeferredImmCons = p->nStmtDefImmCons;
2970   }
2971   return rc;
2972 }
2973 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2974   if( p->db->nStatement && p->iStatement ){
2975     return vdbeCloseStatement(p, eOp);
2976   }
2977   return SQLITE_OK;
2978 }
2979 
2980 
2981 /*
2982 ** This function is called when a transaction opened by the database
2983 ** handle associated with the VM passed as an argument is about to be
2984 ** committed. If there are outstanding deferred foreign key constraint
2985 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2986 **
2987 ** If there are outstanding FK violations and this function returns
2988 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2989 ** and write an error message to it. Then return SQLITE_ERROR.
2990 */
2991 #ifndef SQLITE_OMIT_FOREIGN_KEY
2992 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2993   sqlite3 *db = p->db;
2994   if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2995    || (!deferred && p->nFkConstraint>0)
2996   ){
2997     p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2998     p->errorAction = OE_Abort;
2999     sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
3000     return SQLITE_ERROR;
3001   }
3002   return SQLITE_OK;
3003 }
3004 #endif
3005 
3006 /*
3007 ** This routine is called the when a VDBE tries to halt.  If the VDBE
3008 ** has made changes and is in autocommit mode, then commit those
3009 ** changes.  If a rollback is needed, then do the rollback.
3010 **
3011 ** This routine is the only way to move the sqlite3eOpenState of a VM from
3012 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT.  It is harmless to
3013 ** call this on a VM that is in the SQLITE_STATE_HALT state.
3014 **
3015 ** Return an error code.  If the commit could not complete because of
3016 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
3017 ** means the close did not happen and needs to be repeated.
3018 */
3019 int sqlite3VdbeHalt(Vdbe *p){
3020   int rc;                         /* Used to store transient return codes */
3021   sqlite3 *db = p->db;
3022 
3023   /* This function contains the logic that determines if a statement or
3024   ** transaction will be committed or rolled back as a result of the
3025   ** execution of this virtual machine.
3026   **
3027   ** If any of the following errors occur:
3028   **
3029   **     SQLITE_NOMEM
3030   **     SQLITE_IOERR
3031   **     SQLITE_FULL
3032   **     SQLITE_INTERRUPT
3033   **
3034   ** Then the internal cache might have been left in an inconsistent
3035   ** state.  We need to rollback the statement transaction, if there is
3036   ** one, or the complete transaction if there is no statement transaction.
3037   */
3038 
3039   if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){
3040     return SQLITE_OK;
3041   }
3042   if( db->mallocFailed ){
3043     p->rc = SQLITE_NOMEM_BKPT;
3044   }
3045   closeAllCursors(p);
3046   checkActiveVdbeCnt(db);
3047 
3048   /* No commit or rollback needed if the program never started or if the
3049   ** SQL statement does not read or write a database file.  */
3050   if( p->pc>=0 && p->bIsReader ){
3051     int mrc;   /* Primary error code from p->rc */
3052     int eStatementOp = 0;
3053     int isSpecialError;            /* Set to true if a 'special' error */
3054 
3055     /* Lock all btrees used by the statement */
3056     sqlite3VdbeEnter(p);
3057 
3058     /* Check for one of the special errors */
3059     mrc = p->rc & 0xff;
3060     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
3061                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
3062     if( isSpecialError ){
3063       /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3064       ** no rollback is necessary. Otherwise, at least a savepoint
3065       ** transaction must be rolled back to restore the database to a
3066       ** consistent state.
3067       **
3068       ** Even if the statement is read-only, it is important to perform
3069       ** a statement or transaction rollback operation. If the error
3070       ** occurred while writing to the journal, sub-journal or database
3071       ** file as part of an effort to free up cache space (see function
3072       ** pagerStress() in pager.c), the rollback is required to restore
3073       ** the pager to a consistent state.
3074       */
3075       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3076         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3077           eStatementOp = SAVEPOINT_ROLLBACK;
3078         }else{
3079           /* We are forced to roll back the active transaction. Before doing
3080           ** so, abort any other statements this handle currently has active.
3081           */
3082           sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3083           sqlite3CloseSavepoints(db);
3084           db->autoCommit = 1;
3085           p->nChange = 0;
3086         }
3087       }
3088     }
3089 
3090     /* Check for immediate foreign key violations. */
3091     if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3092       sqlite3VdbeCheckFk(p, 0);
3093     }
3094 
3095     /* If the auto-commit flag is set and this is the only active writer
3096     ** VM, then we do either a commit or rollback of the current transaction.
3097     **
3098     ** Note: This block also runs if one of the special errors handled
3099     ** above has occurred.
3100     */
3101     if( !sqlite3VtabInSync(db)
3102      && db->autoCommit
3103      && db->nVdbeWrite==(p->readOnly==0)
3104     ){
3105       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3106         rc = sqlite3VdbeCheckFk(p, 1);
3107         if( rc!=SQLITE_OK ){
3108           if( NEVER(p->readOnly) ){
3109             sqlite3VdbeLeave(p);
3110             return SQLITE_ERROR;
3111           }
3112           rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3113         }else{
3114           /* The auto-commit flag is true, the vdbe program was successful
3115           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3116           ** key constraints to hold up the transaction. This means a commit
3117           ** is required. */
3118           rc = vdbeCommit(db, p);
3119         }
3120         if( rc==SQLITE_BUSY && p->readOnly ){
3121           sqlite3VdbeLeave(p);
3122           return SQLITE_BUSY;
3123         }else if( rc!=SQLITE_OK ){
3124           p->rc = rc;
3125           sqlite3RollbackAll(db, SQLITE_OK);
3126           p->nChange = 0;
3127         }else{
3128           db->nDeferredCons = 0;
3129           db->nDeferredImmCons = 0;
3130           db->flags &= ~(u64)SQLITE_DeferFKs;
3131           sqlite3CommitInternalChanges(db);
3132         }
3133       }else{
3134         sqlite3RollbackAll(db, SQLITE_OK);
3135         p->nChange = 0;
3136       }
3137       db->nStatement = 0;
3138     }else if( eStatementOp==0 ){
3139       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3140         eStatementOp = SAVEPOINT_RELEASE;
3141       }else if( p->errorAction==OE_Abort ){
3142         eStatementOp = SAVEPOINT_ROLLBACK;
3143       }else{
3144         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3145         sqlite3CloseSavepoints(db);
3146         db->autoCommit = 1;
3147         p->nChange = 0;
3148       }
3149     }
3150 
3151     /* If eStatementOp is non-zero, then a statement transaction needs to
3152     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3153     ** do so. If this operation returns an error, and the current statement
3154     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3155     ** current statement error code.
3156     */
3157     if( eStatementOp ){
3158       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3159       if( rc ){
3160         if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3161           p->rc = rc;
3162           sqlite3DbFree(db, p->zErrMsg);
3163           p->zErrMsg = 0;
3164         }
3165         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3166         sqlite3CloseSavepoints(db);
3167         db->autoCommit = 1;
3168         p->nChange = 0;
3169       }
3170     }
3171 
3172     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3173     ** has been rolled back, update the database connection change-counter.
3174     */
3175     if( p->changeCntOn ){
3176       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3177         sqlite3VdbeSetChanges(db, p->nChange);
3178       }else{
3179         sqlite3VdbeSetChanges(db, 0);
3180       }
3181       p->nChange = 0;
3182     }
3183 
3184     /* Release the locks */
3185     sqlite3VdbeLeave(p);
3186   }
3187 
3188   /* We have successfully halted and closed the VM.  Record this fact. */
3189   if( p->pc>=0 ){
3190     db->nVdbeActive--;
3191     if( !p->readOnly ) db->nVdbeWrite--;
3192     if( p->bIsReader ) db->nVdbeRead--;
3193     assert( db->nVdbeActive>=db->nVdbeRead );
3194     assert( db->nVdbeRead>=db->nVdbeWrite );
3195     assert( db->nVdbeWrite>=0 );
3196   }
3197   p->iVdbeMagic = VDBE_MAGIC_HALT;
3198   checkActiveVdbeCnt(db);
3199   if( db->mallocFailed ){
3200     p->rc = SQLITE_NOMEM_BKPT;
3201   }
3202 
3203   /* If the auto-commit flag is set to true, then any locks that were held
3204   ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3205   ** to invoke any required unlock-notify callbacks.
3206   */
3207   if( db->autoCommit ){
3208     sqlite3ConnectionUnlocked(db);
3209   }
3210 
3211   assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3212   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3213 }
3214 
3215 
3216 /*
3217 ** Each VDBE holds the result of the most recent sqlite3_step() call
3218 ** in p->rc.  This routine sets that result back to SQLITE_OK.
3219 */
3220 void sqlite3VdbeResetStepResult(Vdbe *p){
3221   p->rc = SQLITE_OK;
3222 }
3223 
3224 /*
3225 ** Copy the error code and error message belonging to the VDBE passed
3226 ** as the first argument to its database handle (so that they will be
3227 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3228 **
3229 ** This function does not clear the VDBE error code or message, just
3230 ** copies them to the database handle.
3231 */
3232 int sqlite3VdbeTransferError(Vdbe *p){
3233   sqlite3 *db = p->db;
3234   int rc = p->rc;
3235   if( p->zErrMsg ){
3236     db->bBenignMalloc++;
3237     sqlite3BeginBenignMalloc();
3238     if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3239     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3240     sqlite3EndBenignMalloc();
3241     db->bBenignMalloc--;
3242   }else if( db->pErr ){
3243     sqlite3ValueSetNull(db->pErr);
3244   }
3245   db->errCode = rc;
3246   return rc;
3247 }
3248 
3249 #ifdef SQLITE_ENABLE_SQLLOG
3250 /*
3251 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3252 ** invoke it.
3253 */
3254 static void vdbeInvokeSqllog(Vdbe *v){
3255   if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3256     char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3257     assert( v->db->init.busy==0 );
3258     if( zExpanded ){
3259       sqlite3GlobalConfig.xSqllog(
3260           sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3261       );
3262       sqlite3DbFree(v->db, zExpanded);
3263     }
3264   }
3265 }
3266 #else
3267 # define vdbeInvokeSqllog(x)
3268 #endif
3269 
3270 /*
3271 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3272 ** Write any error messages into *pzErrMsg.  Return the result code.
3273 **
3274 ** After this routine is run, the VDBE should be ready to be executed
3275 ** again.
3276 **
3277 ** To look at it another way, this routine resets the state of the
3278 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
3279 ** VDBE_MAGIC_INIT.
3280 */
3281 int sqlite3VdbeReset(Vdbe *p){
3282 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3283   int i;
3284 #endif
3285 
3286   sqlite3 *db;
3287   db = p->db;
3288 
3289   /* If the VM did not run to completion or if it encountered an
3290   ** error, then it might not have been halted properly.  So halt
3291   ** it now.
3292   */
3293   sqlite3VdbeHalt(p);
3294 
3295   /* If the VDBE has been run even partially, then transfer the error code
3296   ** and error message from the VDBE into the main database structure.  But
3297   ** if the VDBE has just been set to run but has not actually executed any
3298   ** instructions yet, leave the main database error information unchanged.
3299   */
3300   if( p->pc>=0 ){
3301     vdbeInvokeSqllog(p);
3302     if( db->pErr || p->zErrMsg ){
3303       sqlite3VdbeTransferError(p);
3304     }else{
3305       db->errCode = p->rc;
3306     }
3307     if( p->runOnlyOnce ) p->expired = 1;
3308   }else if( p->rc && p->expired ){
3309     /* The expired flag was set on the VDBE before the first call
3310     ** to sqlite3_step(). For consistency (since sqlite3_step() was
3311     ** called), set the database error in this case as well.
3312     */
3313     sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
3314   }
3315 
3316   /* Reset register contents and reclaim error message memory.
3317   */
3318 #ifdef SQLITE_DEBUG
3319   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3320   ** Vdbe.aMem[] arrays have already been cleaned up.  */
3321   if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3322   if( p->aMem ){
3323     for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3324   }
3325 #endif
3326   if( p->zErrMsg ){
3327     sqlite3DbFree(db, p->zErrMsg);
3328     p->zErrMsg = 0;
3329   }
3330   p->pResultSet = 0;
3331 #ifdef SQLITE_DEBUG
3332   p->nWrite = 0;
3333 #endif
3334 
3335   /* Save profiling information from this VDBE run.
3336   */
3337 #ifdef VDBE_PROFILE
3338   {
3339     FILE *out = fopen("vdbe_profile.out", "a");
3340     if( out ){
3341       fprintf(out, "---- ");
3342       for(i=0; i<p->nOp; i++){
3343         fprintf(out, "%02x", p->aOp[i].opcode);
3344       }
3345       fprintf(out, "\n");
3346       if( p->zSql ){
3347         char c, pc = 0;
3348         fprintf(out, "-- ");
3349         for(i=0; (c = p->zSql[i])!=0; i++){
3350           if( pc=='\n' ) fprintf(out, "-- ");
3351           putc(c, out);
3352           pc = c;
3353         }
3354         if( pc!='\n' ) fprintf(out, "\n");
3355       }
3356       for(i=0; i<p->nOp; i++){
3357         char zHdr[100];
3358         sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3359            p->aOp[i].cnt,
3360            p->aOp[i].cycles,
3361            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
3362         );
3363         fprintf(out, "%s", zHdr);
3364         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3365       }
3366       fclose(out);
3367     }
3368   }
3369 #endif
3370   p->iVdbeMagic = VDBE_MAGIC_RESET;
3371   return p->rc & db->errMask;
3372 }
3373 
3374 /*
3375 ** Clean up and delete a VDBE after execution.  Return an integer which is
3376 ** the result code.  Write any error message text into *pzErrMsg.
3377 */
3378 int sqlite3VdbeFinalize(Vdbe *p){
3379   int rc = SQLITE_OK;
3380   if( p->iVdbeMagic==VDBE_MAGIC_RUN || p->iVdbeMagic==VDBE_MAGIC_HALT ){
3381     rc = sqlite3VdbeReset(p);
3382     assert( (rc & p->db->errMask)==rc );
3383   }
3384   sqlite3VdbeDelete(p);
3385   return rc;
3386 }
3387 
3388 /*
3389 ** If parameter iOp is less than zero, then invoke the destructor for
3390 ** all auxiliary data pointers currently cached by the VM passed as
3391 ** the first argument.
3392 **
3393 ** Or, if iOp is greater than or equal to zero, then the destructor is
3394 ** only invoked for those auxiliary data pointers created by the user
3395 ** function invoked by the OP_Function opcode at instruction iOp of
3396 ** VM pVdbe, and only then if:
3397 **
3398 **    * the associated function parameter is the 32nd or later (counting
3399 **      from left to right), or
3400 **
3401 **    * the corresponding bit in argument mask is clear (where the first
3402 **      function parameter corresponds to bit 0 etc.).
3403 */
3404 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3405   while( *pp ){
3406     AuxData *pAux = *pp;
3407     if( (iOp<0)
3408      || (pAux->iAuxOp==iOp
3409           && pAux->iAuxArg>=0
3410           && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3411     ){
3412       testcase( pAux->iAuxArg==31 );
3413       if( pAux->xDeleteAux ){
3414         pAux->xDeleteAux(pAux->pAux);
3415       }
3416       *pp = pAux->pNextAux;
3417       sqlite3DbFree(db, pAux);
3418     }else{
3419       pp= &pAux->pNextAux;
3420     }
3421   }
3422 }
3423 
3424 /*
3425 ** Free all memory associated with the Vdbe passed as the second argument,
3426 ** except for object itself, which is preserved.
3427 **
3428 ** The difference between this function and sqlite3VdbeDelete() is that
3429 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3430 ** the database connection and frees the object itself.
3431 */
3432 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3433   SubProgram *pSub, *pNext;
3434   assert( p->db==0 || p->db==db );
3435   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3436   for(pSub=p->pProgram; pSub; pSub=pNext){
3437     pNext = pSub->pNext;
3438     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3439     sqlite3DbFree(db, pSub);
3440   }
3441   if( p->iVdbeMagic!=VDBE_MAGIC_INIT ){
3442     releaseMemArray(p->aVar, p->nVar);
3443     sqlite3DbFree(db, p->pVList);
3444     sqlite3DbFree(db, p->pFree);
3445   }
3446   vdbeFreeOpArray(db, p->aOp, p->nOp);
3447   sqlite3DbFree(db, p->aColName);
3448   sqlite3DbFree(db, p->zSql);
3449 #ifdef SQLITE_ENABLE_NORMALIZE
3450   sqlite3DbFree(db, p->zNormSql);
3451   {
3452     DblquoteStr *pThis, *pNext;
3453     for(pThis=p->pDblStr; pThis; pThis=pNext){
3454       pNext = pThis->pNextStr;
3455       sqlite3DbFree(db, pThis);
3456     }
3457   }
3458 #endif
3459 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3460   {
3461     int i;
3462     for(i=0; i<p->nScan; i++){
3463       sqlite3DbFree(db, p->aScan[i].zName);
3464     }
3465     sqlite3DbFree(db, p->aScan);
3466   }
3467 #endif
3468 }
3469 
3470 /*
3471 ** Delete an entire VDBE.
3472 */
3473 void sqlite3VdbeDelete(Vdbe *p){
3474   sqlite3 *db;
3475 
3476   assert( p!=0 );
3477   db = p->db;
3478   assert( sqlite3_mutex_held(db->mutex) );
3479   sqlite3VdbeClearObject(db, p);
3480   if( p->pPrev ){
3481     p->pPrev->pNext = p->pNext;
3482   }else{
3483     assert( db->pVdbe==p );
3484     db->pVdbe = p->pNext;
3485   }
3486   if( p->pNext ){
3487     p->pNext->pPrev = p->pPrev;
3488   }
3489   p->iVdbeMagic = VDBE_MAGIC_DEAD;
3490   p->db = 0;
3491   sqlite3DbFreeNN(db, p);
3492 }
3493 
3494 /*
3495 ** The cursor "p" has a pending seek operation that has not yet been
3496 ** carried out.  Seek the cursor now.  If an error occurs, return
3497 ** the appropriate error code.
3498 */
3499 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3500   int res, rc;
3501 #ifdef SQLITE_TEST
3502   extern int sqlite3_search_count;
3503 #endif
3504   assert( p->deferredMoveto );
3505   assert( p->isTable );
3506   assert( p->eCurType==CURTYPE_BTREE );
3507   rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res);
3508   if( rc ) return rc;
3509   if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3510 #ifdef SQLITE_TEST
3511   sqlite3_search_count++;
3512 #endif
3513   p->deferredMoveto = 0;
3514   p->cacheStatus = CACHE_STALE;
3515   return SQLITE_OK;
3516 }
3517 
3518 /*
3519 ** Something has moved cursor "p" out of place.  Maybe the row it was
3520 ** pointed to was deleted out from under it.  Or maybe the btree was
3521 ** rebalanced.  Whatever the cause, try to restore "p" to the place it
3522 ** is supposed to be pointing.  If the row was deleted out from under the
3523 ** cursor, set the cursor to point to a NULL row.
3524 */
3525 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3526   int isDifferentRow, rc;
3527   assert( p->eCurType==CURTYPE_BTREE );
3528   assert( p->uc.pCursor!=0 );
3529   assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3530   rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3531   p->cacheStatus = CACHE_STALE;
3532   if( isDifferentRow ) p->nullRow = 1;
3533   return rc;
3534 }
3535 
3536 /*
3537 ** Check to ensure that the cursor is valid.  Restore the cursor
3538 ** if need be.  Return any I/O error from the restore operation.
3539 */
3540 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3541   assert( p->eCurType==CURTYPE_BTREE );
3542   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3543     return handleMovedCursor(p);
3544   }
3545   return SQLITE_OK;
3546 }
3547 
3548 /*
3549 ** Make sure the cursor p is ready to read or write the row to which it
3550 ** was last positioned.  Return an error code if an OOM fault or I/O error
3551 ** prevents us from positioning the cursor to its correct position.
3552 **
3553 ** If a MoveTo operation is pending on the given cursor, then do that
3554 ** MoveTo now.  If no move is pending, check to see if the row has been
3555 ** deleted out from under the cursor and if it has, mark the row as
3556 ** a NULL row.
3557 **
3558 ** If the cursor is already pointing to the correct row and that row has
3559 ** not been deleted out from under the cursor, then this routine is a no-op.
3560 */
3561 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, u32 *piCol){
3562   VdbeCursor *p = *pp;
3563   assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
3564   if( p->deferredMoveto ){
3565     u32 iMap;
3566     assert( !p->isEphemeral );
3567     if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 && !p->nullRow ){
3568       *pp = p->pAltCursor;
3569       *piCol = iMap - 1;
3570       return SQLITE_OK;
3571     }
3572     return sqlite3VdbeFinishMoveto(p);
3573   }
3574   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3575     return handleMovedCursor(p);
3576   }
3577   return SQLITE_OK;
3578 }
3579 
3580 /*
3581 ** The following functions:
3582 **
3583 ** sqlite3VdbeSerialType()
3584 ** sqlite3VdbeSerialTypeLen()
3585 ** sqlite3VdbeSerialLen()
3586 ** sqlite3VdbeSerialPut()
3587 ** sqlite3VdbeSerialGet()
3588 **
3589 ** encapsulate the code that serializes values for storage in SQLite
3590 ** data and index records. Each serialized value consists of a
3591 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3592 ** integer, stored as a varint.
3593 **
3594 ** In an SQLite index record, the serial type is stored directly before
3595 ** the blob of data that it corresponds to. In a table record, all serial
3596 ** types are stored at the start of the record, and the blobs of data at
3597 ** the end. Hence these functions allow the caller to handle the
3598 ** serial-type and data blob separately.
3599 **
3600 ** The following table describes the various storage classes for data:
3601 **
3602 **   serial type        bytes of data      type
3603 **   --------------     ---------------    ---------------
3604 **      0                     0            NULL
3605 **      1                     1            signed integer
3606 **      2                     2            signed integer
3607 **      3                     3            signed integer
3608 **      4                     4            signed integer
3609 **      5                     6            signed integer
3610 **      6                     8            signed integer
3611 **      7                     8            IEEE float
3612 **      8                     0            Integer constant 0
3613 **      9                     0            Integer constant 1
3614 **     10,11                               reserved for expansion
3615 **    N>=12 and even       (N-12)/2        BLOB
3616 **    N>=13 and odd        (N-13)/2        text
3617 **
3618 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
3619 ** of SQLite will not understand those serial types.
3620 */
3621 
3622 #if 0 /* Inlined into the OP_MakeRecord opcode */
3623 /*
3624 ** Return the serial-type for the value stored in pMem.
3625 **
3626 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3627 **
3628 ** 2019-07-11:  The primary user of this subroutine was the OP_MakeRecord
3629 ** opcode in the byte-code engine.  But by moving this routine in-line, we
3630 ** can omit some redundant tests and make that opcode a lot faster.  So
3631 ** this routine is now only used by the STAT3 logic and STAT3 support has
3632 ** ended.  The code is kept here for historical reference only.
3633 */
3634 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3635   int flags = pMem->flags;
3636   u32 n;
3637 
3638   assert( pLen!=0 );
3639   if( flags&MEM_Null ){
3640     *pLen = 0;
3641     return 0;
3642   }
3643   if( flags&(MEM_Int|MEM_IntReal) ){
3644     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3645 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3646     i64 i = pMem->u.i;
3647     u64 u;
3648     testcase( flags & MEM_Int );
3649     testcase( flags & MEM_IntReal );
3650     if( i<0 ){
3651       u = ~i;
3652     }else{
3653       u = i;
3654     }
3655     if( u<=127 ){
3656       if( (i&1)==i && file_format>=4 ){
3657         *pLen = 0;
3658         return 8+(u32)u;
3659       }else{
3660         *pLen = 1;
3661         return 1;
3662       }
3663     }
3664     if( u<=32767 ){ *pLen = 2; return 2; }
3665     if( u<=8388607 ){ *pLen = 3; return 3; }
3666     if( u<=2147483647 ){ *pLen = 4; return 4; }
3667     if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3668     *pLen = 8;
3669     if( flags&MEM_IntReal ){
3670       /* If the value is IntReal and is going to take up 8 bytes to store
3671       ** as an integer, then we might as well make it an 8-byte floating
3672       ** point value */
3673       pMem->u.r = (double)pMem->u.i;
3674       pMem->flags &= ~MEM_IntReal;
3675       pMem->flags |= MEM_Real;
3676       return 7;
3677     }
3678     return 6;
3679   }
3680   if( flags&MEM_Real ){
3681     *pLen = 8;
3682     return 7;
3683   }
3684   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3685   assert( pMem->n>=0 );
3686   n = (u32)pMem->n;
3687   if( flags & MEM_Zero ){
3688     n += pMem->u.nZero;
3689   }
3690   *pLen = n;
3691   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3692 }
3693 #endif /* inlined into OP_MakeRecord */
3694 
3695 /*
3696 ** The sizes for serial types less than 128
3697 */
3698 static const u8 sqlite3SmallTypeSizes[] = {
3699         /*  0   1   2   3   4   5   6   7   8   9 */
3700 /*   0 */   0,  1,  2,  3,  4,  6,  8,  8,  0,  0,
3701 /*  10 */   0,  0,  0,  0,  1,  1,  2,  2,  3,  3,
3702 /*  20 */   4,  4,  5,  5,  6,  6,  7,  7,  8,  8,
3703 /*  30 */   9,  9, 10, 10, 11, 11, 12, 12, 13, 13,
3704 /*  40 */  14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3705 /*  50 */  19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3706 /*  60 */  24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3707 /*  70 */  29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3708 /*  80 */  34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3709 /*  90 */  39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3710 /* 100 */  44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3711 /* 110 */  49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3712 /* 120 */  54, 54, 55, 55, 56, 56, 57, 57
3713 };
3714 
3715 /*
3716 ** Return the length of the data corresponding to the supplied serial-type.
3717 */
3718 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3719   if( serial_type>=128 ){
3720     return (serial_type-12)/2;
3721   }else{
3722     assert( serial_type<12
3723             || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3724     return sqlite3SmallTypeSizes[serial_type];
3725   }
3726 }
3727 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3728   assert( serial_type<128 );
3729   return sqlite3SmallTypeSizes[serial_type];
3730 }
3731 
3732 /*
3733 ** If we are on an architecture with mixed-endian floating
3734 ** points (ex: ARM7) then swap the lower 4 bytes with the
3735 ** upper 4 bytes.  Return the result.
3736 **
3737 ** For most architectures, this is a no-op.
3738 **
3739 ** (later):  It is reported to me that the mixed-endian problem
3740 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
3741 ** that early versions of GCC stored the two words of a 64-bit
3742 ** float in the wrong order.  And that error has been propagated
3743 ** ever since.  The blame is not necessarily with GCC, though.
3744 ** GCC might have just copying the problem from a prior compiler.
3745 ** I am also told that newer versions of GCC that follow a different
3746 ** ABI get the byte order right.
3747 **
3748 ** Developers using SQLite on an ARM7 should compile and run their
3749 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
3750 ** enabled, some asserts below will ensure that the byte order of
3751 ** floating point values is correct.
3752 **
3753 ** (2007-08-30)  Frank van Vugt has studied this problem closely
3754 ** and has send his findings to the SQLite developers.  Frank
3755 ** writes that some Linux kernels offer floating point hardware
3756 ** emulation that uses only 32-bit mantissas instead of a full
3757 ** 48-bits as required by the IEEE standard.  (This is the
3758 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
3759 ** byte swapping becomes very complicated.  To avoid problems,
3760 ** the necessary byte swapping is carried out using a 64-bit integer
3761 ** rather than a 64-bit float.  Frank assures us that the code here
3762 ** works for him.  We, the developers, have no way to independently
3763 ** verify this, but Frank seems to know what he is talking about
3764 ** so we trust him.
3765 */
3766 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3767 static u64 floatSwap(u64 in){
3768   union {
3769     u64 r;
3770     u32 i[2];
3771   } u;
3772   u32 t;
3773 
3774   u.r = in;
3775   t = u.i[0];
3776   u.i[0] = u.i[1];
3777   u.i[1] = t;
3778   return u.r;
3779 }
3780 # define swapMixedEndianFloat(X)  X = floatSwap(X)
3781 #else
3782 # define swapMixedEndianFloat(X)
3783 #endif
3784 
3785 /*
3786 ** Write the serialized data blob for the value stored in pMem into
3787 ** buf. It is assumed that the caller has allocated sufficient space.
3788 ** Return the number of bytes written.
3789 **
3790 ** nBuf is the amount of space left in buf[].  The caller is responsible
3791 ** for allocating enough space to buf[] to hold the entire field, exclusive
3792 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3793 **
3794 ** Return the number of bytes actually written into buf[].  The number
3795 ** of bytes in the zero-filled tail is included in the return value only
3796 ** if those bytes were zeroed in buf[].
3797 */
3798 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3799   u32 len;
3800 
3801   /* Integer and Real */
3802   if( serial_type<=7 && serial_type>0 ){
3803     u64 v;
3804     u32 i;
3805     if( serial_type==7 ){
3806       assert( sizeof(v)==sizeof(pMem->u.r) );
3807       memcpy(&v, &pMem->u.r, sizeof(v));
3808       swapMixedEndianFloat(v);
3809     }else{
3810       v = pMem->u.i;
3811     }
3812     len = i = sqlite3SmallTypeSizes[serial_type];
3813     assert( i>0 );
3814     do{
3815       buf[--i] = (u8)(v&0xFF);
3816       v >>= 8;
3817     }while( i );
3818     return len;
3819   }
3820 
3821   /* String or blob */
3822   if( serial_type>=12 ){
3823     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3824              == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3825     len = pMem->n;
3826     if( len>0 ) memcpy(buf, pMem->z, len);
3827     return len;
3828   }
3829 
3830   /* NULL or constants 0 or 1 */
3831   return 0;
3832 }
3833 
3834 /* Input "x" is a sequence of unsigned characters that represent a
3835 ** big-endian integer.  Return the equivalent native integer
3836 */
3837 #define ONE_BYTE_INT(x)    ((i8)(x)[0])
3838 #define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
3839 #define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3840 #define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3841 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3842 
3843 /*
3844 ** Deserialize the data blob pointed to by buf as serial type serial_type
3845 ** and store the result in pMem.  Return the number of bytes read.
3846 **
3847 ** This function is implemented as two separate routines for performance.
3848 ** The few cases that require local variables are broken out into a separate
3849 ** routine so that in most cases the overhead of moving the stack pointer
3850 ** is avoided.
3851 */
3852 static u32 serialGet(
3853   const unsigned char *buf,     /* Buffer to deserialize from */
3854   u32 serial_type,              /* Serial type to deserialize */
3855   Mem *pMem                     /* Memory cell to write value into */
3856 ){
3857   u64 x = FOUR_BYTE_UINT(buf);
3858   u32 y = FOUR_BYTE_UINT(buf+4);
3859   x = (x<<32) + y;
3860   if( serial_type==6 ){
3861     /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3862     ** twos-complement integer. */
3863     pMem->u.i = *(i64*)&x;
3864     pMem->flags = MEM_Int;
3865     testcase( pMem->u.i<0 );
3866   }else{
3867     /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3868     ** floating point number. */
3869 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3870     /* Verify that integers and floating point values use the same
3871     ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3872     ** defined that 64-bit floating point values really are mixed
3873     ** endian.
3874     */
3875     static const u64 t1 = ((u64)0x3ff00000)<<32;
3876     static const double r1 = 1.0;
3877     u64 t2 = t1;
3878     swapMixedEndianFloat(t2);
3879     assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3880 #endif
3881     assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3882     swapMixedEndianFloat(x);
3883     memcpy(&pMem->u.r, &x, sizeof(x));
3884     pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
3885   }
3886   return 8;
3887 }
3888 u32 sqlite3VdbeSerialGet(
3889   const unsigned char *buf,     /* Buffer to deserialize from */
3890   u32 serial_type,              /* Serial type to deserialize */
3891   Mem *pMem                     /* Memory cell to write value into */
3892 ){
3893   switch( serial_type ){
3894     case 10: { /* Internal use only: NULL with virtual table
3895                ** UPDATE no-change flag set */
3896       pMem->flags = MEM_Null|MEM_Zero;
3897       pMem->n = 0;
3898       pMem->u.nZero = 0;
3899       break;
3900     }
3901     case 11:   /* Reserved for future use */
3902     case 0: {  /* Null */
3903       /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3904       pMem->flags = MEM_Null;
3905       break;
3906     }
3907     case 1: {
3908       /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3909       ** integer. */
3910       pMem->u.i = ONE_BYTE_INT(buf);
3911       pMem->flags = MEM_Int;
3912       testcase( pMem->u.i<0 );
3913       return 1;
3914     }
3915     case 2: { /* 2-byte signed integer */
3916       /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3917       ** twos-complement integer. */
3918       pMem->u.i = TWO_BYTE_INT(buf);
3919       pMem->flags = MEM_Int;
3920       testcase( pMem->u.i<0 );
3921       return 2;
3922     }
3923     case 3: { /* 3-byte signed integer */
3924       /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3925       ** twos-complement integer. */
3926       pMem->u.i = THREE_BYTE_INT(buf);
3927       pMem->flags = MEM_Int;
3928       testcase( pMem->u.i<0 );
3929       return 3;
3930     }
3931     case 4: { /* 4-byte signed integer */
3932       /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3933       ** twos-complement integer. */
3934       pMem->u.i = FOUR_BYTE_INT(buf);
3935 #ifdef __HP_cc
3936       /* Work around a sign-extension bug in the HP compiler for HP/UX */
3937       if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3938 #endif
3939       pMem->flags = MEM_Int;
3940       testcase( pMem->u.i<0 );
3941       return 4;
3942     }
3943     case 5: { /* 6-byte signed integer */
3944       /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3945       ** twos-complement integer. */
3946       pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3947       pMem->flags = MEM_Int;
3948       testcase( pMem->u.i<0 );
3949       return 6;
3950     }
3951     case 6:   /* 8-byte signed integer */
3952     case 7: { /* IEEE floating point */
3953       /* These use local variables, so do them in a separate routine
3954       ** to avoid having to move the frame pointer in the common case */
3955       return serialGet(buf,serial_type,pMem);
3956     }
3957     case 8:    /* Integer 0 */
3958     case 9: {  /* Integer 1 */
3959       /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3960       /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3961       pMem->u.i = serial_type-8;
3962       pMem->flags = MEM_Int;
3963       return 0;
3964     }
3965     default: {
3966       /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3967       ** length.
3968       ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3969       ** (N-13)/2 bytes in length. */
3970       static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3971       pMem->z = (char *)buf;
3972       pMem->n = (serial_type-12)/2;
3973       pMem->flags = aFlag[serial_type&1];
3974       return pMem->n;
3975     }
3976   }
3977   return 0;
3978 }
3979 /*
3980 ** This routine is used to allocate sufficient space for an UnpackedRecord
3981 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3982 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3983 **
3984 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3985 ** the unaligned buffer passed via the second and third arguments (presumably
3986 ** stack space). If the former, then *ppFree is set to a pointer that should
3987 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3988 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3989 ** before returning.
3990 **
3991 ** If an OOM error occurs, NULL is returned.
3992 */
3993 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3994   KeyInfo *pKeyInfo               /* Description of the record */
3995 ){
3996   UnpackedRecord *p;              /* Unpacked record to return */
3997   int nByte;                      /* Number of bytes required for *p */
3998   nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
3999   p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
4000   if( !p ) return 0;
4001   p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
4002   assert( pKeyInfo->aSortFlags!=0 );
4003   p->pKeyInfo = pKeyInfo;
4004   p->nField = pKeyInfo->nKeyField + 1;
4005   return p;
4006 }
4007 
4008 /*
4009 ** Given the nKey-byte encoding of a record in pKey[], populate the
4010 ** UnpackedRecord structure indicated by the fourth argument with the
4011 ** contents of the decoded record.
4012 */
4013 void sqlite3VdbeRecordUnpack(
4014   KeyInfo *pKeyInfo,     /* Information about the record format */
4015   int nKey,              /* Size of the binary record */
4016   const void *pKey,      /* The binary record */
4017   UnpackedRecord *p      /* Populate this structure before returning. */
4018 ){
4019   const unsigned char *aKey = (const unsigned char *)pKey;
4020   u32 d;
4021   u32 idx;                        /* Offset in aKey[] to read from */
4022   u16 u;                          /* Unsigned loop counter */
4023   u32 szHdr;
4024   Mem *pMem = p->aMem;
4025 
4026   p->default_rc = 0;
4027   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
4028   idx = getVarint32(aKey, szHdr);
4029   d = szHdr;
4030   u = 0;
4031   while( idx<szHdr && d<=(u32)nKey ){
4032     u32 serial_type;
4033 
4034     idx += getVarint32(&aKey[idx], serial_type);
4035     pMem->enc = pKeyInfo->enc;
4036     pMem->db = pKeyInfo->db;
4037     /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4038     pMem->szMalloc = 0;
4039     pMem->z = 0;
4040     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
4041     pMem++;
4042     if( (++u)>=p->nField ) break;
4043   }
4044   if( d>(u32)nKey && u ){
4045     assert( CORRUPT_DB );
4046     /* In a corrupt record entry, the last pMem might have been set up using
4047     ** uninitialized memory. Overwrite its value with NULL, to prevent
4048     ** warnings from MSAN. */
4049     sqlite3VdbeMemSetNull(pMem-1);
4050   }
4051   assert( u<=pKeyInfo->nKeyField + 1 );
4052   p->nField = u;
4053 }
4054 
4055 #ifdef SQLITE_DEBUG
4056 /*
4057 ** This function compares two index or table record keys in the same way
4058 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4059 ** this function deserializes and compares values using the
4060 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4061 ** in assert() statements to ensure that the optimized code in
4062 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4063 **
4064 ** Return true if the result of comparison is equivalent to desiredResult.
4065 ** Return false if there is a disagreement.
4066 */
4067 static int vdbeRecordCompareDebug(
4068   int nKey1, const void *pKey1, /* Left key */
4069   const UnpackedRecord *pPKey2, /* Right key */
4070   int desiredResult             /* Correct answer */
4071 ){
4072   u32 d1;            /* Offset into aKey[] of next data element */
4073   u32 idx1;          /* Offset into aKey[] of next header element */
4074   u32 szHdr1;        /* Number of bytes in header */
4075   int i = 0;
4076   int rc = 0;
4077   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4078   KeyInfo *pKeyInfo;
4079   Mem mem1;
4080 
4081   pKeyInfo = pPKey2->pKeyInfo;
4082   if( pKeyInfo->db==0 ) return 1;
4083   mem1.enc = pKeyInfo->enc;
4084   mem1.db = pKeyInfo->db;
4085   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
4086   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4087 
4088   /* Compilers may complain that mem1.u.i is potentially uninitialized.
4089   ** We could initialize it, as shown here, to silence those complaints.
4090   ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4091   ** the unnecessary initialization has a measurable negative performance
4092   ** impact, since this routine is a very high runner.  And so, we choose
4093   ** to ignore the compiler warnings and leave this variable uninitialized.
4094   */
4095   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
4096 
4097   idx1 = getVarint32(aKey1, szHdr1);
4098   if( szHdr1>98307 ) return SQLITE_CORRUPT;
4099   d1 = szHdr1;
4100   assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4101   assert( pKeyInfo->aSortFlags!=0 );
4102   assert( pKeyInfo->nKeyField>0 );
4103   assert( idx1<=szHdr1 || CORRUPT_DB );
4104   do{
4105     u32 serial_type1;
4106 
4107     /* Read the serial types for the next element in each key. */
4108     idx1 += getVarint32( aKey1+idx1, serial_type1 );
4109 
4110     /* Verify that there is enough key space remaining to avoid
4111     ** a buffer overread.  The "d1+serial_type1+2" subexpression will
4112     ** always be greater than or equal to the amount of required key space.
4113     ** Use that approximation to avoid the more expensive call to
4114     ** sqlite3VdbeSerialTypeLen() in the common case.
4115     */
4116     if( d1+(u64)serial_type1+2>(u64)nKey1
4117      && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4118     ){
4119       break;
4120     }
4121 
4122     /* Extract the values to be compared.
4123     */
4124     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4125 
4126     /* Do the comparison
4127     */
4128     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4129                            pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4130     if( rc!=0 ){
4131       assert( mem1.szMalloc==0 );  /* See comment below */
4132       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4133        && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4134       ){
4135         rc = -rc;
4136       }
4137       if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4138         rc = -rc;  /* Invert the result for DESC sort order. */
4139       }
4140       goto debugCompareEnd;
4141     }
4142     i++;
4143   }while( idx1<szHdr1 && i<pPKey2->nField );
4144 
4145   /* No memory allocation is ever used on mem1.  Prove this using
4146   ** the following assert().  If the assert() fails, it indicates a
4147   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4148   */
4149   assert( mem1.szMalloc==0 );
4150 
4151   /* rc==0 here means that one of the keys ran out of fields and
4152   ** all the fields up to that point were equal. Return the default_rc
4153   ** value.  */
4154   rc = pPKey2->default_rc;
4155 
4156 debugCompareEnd:
4157   if( desiredResult==0 && rc==0 ) return 1;
4158   if( desiredResult<0 && rc<0 ) return 1;
4159   if( desiredResult>0 && rc>0 ) return 1;
4160   if( CORRUPT_DB ) return 1;
4161   if( pKeyInfo->db->mallocFailed ) return 1;
4162   return 0;
4163 }
4164 #endif
4165 
4166 #ifdef SQLITE_DEBUG
4167 /*
4168 ** Count the number of fields (a.k.a. columns) in the record given by
4169 ** pKey,nKey.  The verify that this count is less than or equal to the
4170 ** limit given by pKeyInfo->nAllField.
4171 **
4172 ** If this constraint is not satisfied, it means that the high-speed
4173 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4174 ** not work correctly.  If this assert() ever fires, it probably means
4175 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4176 ** incorrectly.
4177 */
4178 static void vdbeAssertFieldCountWithinLimits(
4179   int nKey, const void *pKey,   /* The record to verify */
4180   const KeyInfo *pKeyInfo       /* Compare size with this KeyInfo */
4181 ){
4182   int nField = 0;
4183   u32 szHdr;
4184   u32 idx;
4185   u32 notUsed;
4186   const unsigned char *aKey = (const unsigned char*)pKey;
4187 
4188   if( CORRUPT_DB ) return;
4189   idx = getVarint32(aKey, szHdr);
4190   assert( nKey>=0 );
4191   assert( szHdr<=(u32)nKey );
4192   while( idx<szHdr ){
4193     idx += getVarint32(aKey+idx, notUsed);
4194     nField++;
4195   }
4196   assert( nField <= pKeyInfo->nAllField );
4197 }
4198 #else
4199 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4200 #endif
4201 
4202 /*
4203 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4204 ** using the collation sequence pColl. As usual, return a negative , zero
4205 ** or positive value if *pMem1 is less than, equal to or greater than
4206 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4207 */
4208 static int vdbeCompareMemString(
4209   const Mem *pMem1,
4210   const Mem *pMem2,
4211   const CollSeq *pColl,
4212   u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */
4213 ){
4214   if( pMem1->enc==pColl->enc ){
4215     /* The strings are already in the correct encoding.  Call the
4216      ** comparison function directly */
4217     return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4218   }else{
4219     int rc;
4220     const void *v1, *v2;
4221     Mem c1;
4222     Mem c2;
4223     sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4224     sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4225     sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4226     sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4227     v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4228     v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4229     if( (v1==0 || v2==0) ){
4230       if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4231       rc = 0;
4232     }else{
4233       rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4234     }
4235     sqlite3VdbeMemRelease(&c1);
4236     sqlite3VdbeMemRelease(&c2);
4237     return rc;
4238   }
4239 }
4240 
4241 /*
4242 ** The input pBlob is guaranteed to be a Blob that is not marked
4243 ** with MEM_Zero.  Return true if it could be a zero-blob.
4244 */
4245 static int isAllZero(const char *z, int n){
4246   int i;
4247   for(i=0; i<n; i++){
4248     if( z[i] ) return 0;
4249   }
4250   return 1;
4251 }
4252 
4253 /*
4254 ** Compare two blobs.  Return negative, zero, or positive if the first
4255 ** is less than, equal to, or greater than the second, respectively.
4256 ** If one blob is a prefix of the other, then the shorter is the lessor.
4257 */
4258 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4259   int c;
4260   int n1 = pB1->n;
4261   int n2 = pB2->n;
4262 
4263   /* It is possible to have a Blob value that has some non-zero content
4264   ** followed by zero content.  But that only comes up for Blobs formed
4265   ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4266   ** sqlite3MemCompare(). */
4267   assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4268   assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4269 
4270   if( (pB1->flags|pB2->flags) & MEM_Zero ){
4271     if( pB1->flags & pB2->flags & MEM_Zero ){
4272       return pB1->u.nZero - pB2->u.nZero;
4273     }else if( pB1->flags & MEM_Zero ){
4274       if( !isAllZero(pB2->z, pB2->n) ) return -1;
4275       return pB1->u.nZero - n2;
4276     }else{
4277       if( !isAllZero(pB1->z, pB1->n) ) return +1;
4278       return n1 - pB2->u.nZero;
4279     }
4280   }
4281   c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4282   if( c ) return c;
4283   return n1 - n2;
4284 }
4285 
4286 /*
4287 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4288 ** number.  Return negative, zero, or positive if the first (i64) is less than,
4289 ** equal to, or greater than the second (double).
4290 */
4291 int sqlite3IntFloatCompare(i64 i, double r){
4292   if( sizeof(LONGDOUBLE_TYPE)>8 ){
4293     LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4294     testcase( x<r );
4295     testcase( x>r );
4296     testcase( x==r );
4297     if( x<r ) return -1;
4298     if( x>r ) return +1;  /*NO_TEST*/ /* work around bugs in gcov */
4299     return 0;             /*NO_TEST*/ /* work around bugs in gcov */
4300   }else{
4301     i64 y;
4302     double s;
4303     if( r<-9223372036854775808.0 ) return +1;
4304     if( r>=9223372036854775808.0 ) return -1;
4305     y = (i64)r;
4306     if( i<y ) return -1;
4307     if( i>y ) return +1;
4308     s = (double)i;
4309     if( s<r ) return -1;
4310     if( s>r ) return +1;
4311     return 0;
4312   }
4313 }
4314 
4315 /*
4316 ** Compare the values contained by the two memory cells, returning
4317 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4318 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4319 ** and reals) sorted numerically, followed by text ordered by the collating
4320 ** sequence pColl and finally blob's ordered by memcmp().
4321 **
4322 ** Two NULL values are considered equal by this function.
4323 */
4324 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4325   int f1, f2;
4326   int combined_flags;
4327 
4328   f1 = pMem1->flags;
4329   f2 = pMem2->flags;
4330   combined_flags = f1|f2;
4331   assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4332 
4333   /* If one value is NULL, it is less than the other. If both values
4334   ** are NULL, return 0.
4335   */
4336   if( combined_flags&MEM_Null ){
4337     return (f2&MEM_Null) - (f1&MEM_Null);
4338   }
4339 
4340   /* At least one of the two values is a number
4341   */
4342   if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4343     testcase( combined_flags & MEM_Int );
4344     testcase( combined_flags & MEM_Real );
4345     testcase( combined_flags & MEM_IntReal );
4346     if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4347       testcase( f1 & f2 & MEM_Int );
4348       testcase( f1 & f2 & MEM_IntReal );
4349       if( pMem1->u.i < pMem2->u.i ) return -1;
4350       if( pMem1->u.i > pMem2->u.i ) return +1;
4351       return 0;
4352     }
4353     if( (f1 & f2 & MEM_Real)!=0 ){
4354       if( pMem1->u.r < pMem2->u.r ) return -1;
4355       if( pMem1->u.r > pMem2->u.r ) return +1;
4356       return 0;
4357     }
4358     if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4359       testcase( f1 & MEM_Int );
4360       testcase( f1 & MEM_IntReal );
4361       if( (f2&MEM_Real)!=0 ){
4362         return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4363       }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4364         if( pMem1->u.i < pMem2->u.i ) return -1;
4365         if( pMem1->u.i > pMem2->u.i ) return +1;
4366         return 0;
4367       }else{
4368         return -1;
4369       }
4370     }
4371     if( (f1&MEM_Real)!=0 ){
4372       if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4373         testcase( f2 & MEM_Int );
4374         testcase( f2 & MEM_IntReal );
4375         return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4376       }else{
4377         return -1;
4378       }
4379     }
4380     return +1;
4381   }
4382 
4383   /* If one value is a string and the other is a blob, the string is less.
4384   ** If both are strings, compare using the collating functions.
4385   */
4386   if( combined_flags&MEM_Str ){
4387     if( (f1 & MEM_Str)==0 ){
4388       return 1;
4389     }
4390     if( (f2 & MEM_Str)==0 ){
4391       return -1;
4392     }
4393 
4394     assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4395     assert( pMem1->enc==SQLITE_UTF8 ||
4396             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4397 
4398     /* The collation sequence must be defined at this point, even if
4399     ** the user deletes the collation sequence after the vdbe program is
4400     ** compiled (this was not always the case).
4401     */
4402     assert( !pColl || pColl->xCmp );
4403 
4404     if( pColl ){
4405       return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4406     }
4407     /* If a NULL pointer was passed as the collate function, fall through
4408     ** to the blob case and use memcmp().  */
4409   }
4410 
4411   /* Both values must be blobs.  Compare using memcmp().  */
4412   return sqlite3BlobCompare(pMem1, pMem2);
4413 }
4414 
4415 
4416 /*
4417 ** The first argument passed to this function is a serial-type that
4418 ** corresponds to an integer - all values between 1 and 9 inclusive
4419 ** except 7. The second points to a buffer containing an integer value
4420 ** serialized according to serial_type. This function deserializes
4421 ** and returns the value.
4422 */
4423 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4424   u32 y;
4425   assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4426   switch( serial_type ){
4427     case 0:
4428     case 1:
4429       testcase( aKey[0]&0x80 );
4430       return ONE_BYTE_INT(aKey);
4431     case 2:
4432       testcase( aKey[0]&0x80 );
4433       return TWO_BYTE_INT(aKey);
4434     case 3:
4435       testcase( aKey[0]&0x80 );
4436       return THREE_BYTE_INT(aKey);
4437     case 4: {
4438       testcase( aKey[0]&0x80 );
4439       y = FOUR_BYTE_UINT(aKey);
4440       return (i64)*(int*)&y;
4441     }
4442     case 5: {
4443       testcase( aKey[0]&0x80 );
4444       return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4445     }
4446     case 6: {
4447       u64 x = FOUR_BYTE_UINT(aKey);
4448       testcase( aKey[0]&0x80 );
4449       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4450       return (i64)*(i64*)&x;
4451     }
4452   }
4453 
4454   return (serial_type - 8);
4455 }
4456 
4457 /*
4458 ** This function compares the two table rows or index records
4459 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
4460 ** or positive integer if key1 is less than, equal to or
4461 ** greater than key2.  The {nKey1, pKey1} key must be a blob
4462 ** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2
4463 ** key must be a parsed key such as obtained from
4464 ** sqlite3VdbeParseRecord.
4465 **
4466 ** If argument bSkip is non-zero, it is assumed that the caller has already
4467 ** determined that the first fields of the keys are equal.
4468 **
4469 ** Key1 and Key2 do not have to contain the same number of fields. If all
4470 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4471 ** returned.
4472 **
4473 ** If database corruption is discovered, set pPKey2->errCode to
4474 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4475 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4476 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4477 */
4478 int sqlite3VdbeRecordCompareWithSkip(
4479   int nKey1, const void *pKey1,   /* Left key */
4480   UnpackedRecord *pPKey2,         /* Right key */
4481   int bSkip                       /* If true, skip the first field */
4482 ){
4483   u32 d1;                         /* Offset into aKey[] of next data element */
4484   int i;                          /* Index of next field to compare */
4485   u32 szHdr1;                     /* Size of record header in bytes */
4486   u32 idx1;                       /* Offset of first type in header */
4487   int rc = 0;                     /* Return value */
4488   Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
4489   KeyInfo *pKeyInfo;
4490   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4491   Mem mem1;
4492 
4493   /* If bSkip is true, then the caller has already determined that the first
4494   ** two elements in the keys are equal. Fix the various stack variables so
4495   ** that this routine begins comparing at the second field. */
4496   if( bSkip ){
4497     u32 s1;
4498     idx1 = 1 + getVarint32(&aKey1[1], s1);
4499     szHdr1 = aKey1[0];
4500     d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4501     i = 1;
4502     pRhs++;
4503   }else{
4504     idx1 = getVarint32(aKey1, szHdr1);
4505     d1 = szHdr1;
4506     i = 0;
4507   }
4508   if( d1>(unsigned)nKey1 ){
4509     pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4510     return 0;  /* Corruption */
4511   }
4512 
4513   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4514   assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4515        || CORRUPT_DB );
4516   assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4517   assert( pPKey2->pKeyInfo->nKeyField>0 );
4518   assert( idx1<=szHdr1 || CORRUPT_DB );
4519   do{
4520     u32 serial_type;
4521 
4522     /* RHS is an integer */
4523     if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4524       testcase( pRhs->flags & MEM_Int );
4525       testcase( pRhs->flags & MEM_IntReal );
4526       serial_type = aKey1[idx1];
4527       testcase( serial_type==12 );
4528       if( serial_type>=10 ){
4529         rc = +1;
4530       }else if( serial_type==0 ){
4531         rc = -1;
4532       }else if( serial_type==7 ){
4533         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4534         rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4535       }else{
4536         i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4537         i64 rhs = pRhs->u.i;
4538         if( lhs<rhs ){
4539           rc = -1;
4540         }else if( lhs>rhs ){
4541           rc = +1;
4542         }
4543       }
4544     }
4545 
4546     /* RHS is real */
4547     else if( pRhs->flags & MEM_Real ){
4548       serial_type = aKey1[idx1];
4549       if( serial_type>=10 ){
4550         /* Serial types 12 or greater are strings and blobs (greater than
4551         ** numbers). Types 10 and 11 are currently "reserved for future
4552         ** use", so it doesn't really matter what the results of comparing
4553         ** them to numberic values are.  */
4554         rc = +1;
4555       }else if( serial_type==0 ){
4556         rc = -1;
4557       }else{
4558         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4559         if( serial_type==7 ){
4560           if( mem1.u.r<pRhs->u.r ){
4561             rc = -1;
4562           }else if( mem1.u.r>pRhs->u.r ){
4563             rc = +1;
4564           }
4565         }else{
4566           rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4567         }
4568       }
4569     }
4570 
4571     /* RHS is a string */
4572     else if( pRhs->flags & MEM_Str ){
4573       getVarint32NR(&aKey1[idx1], serial_type);
4574       testcase( serial_type==12 );
4575       if( serial_type<12 ){
4576         rc = -1;
4577       }else if( !(serial_type & 0x01) ){
4578         rc = +1;
4579       }else{
4580         mem1.n = (serial_type - 12) / 2;
4581         testcase( (d1+mem1.n)==(unsigned)nKey1 );
4582         testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4583         if( (d1+mem1.n) > (unsigned)nKey1
4584          || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4585         ){
4586           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4587           return 0;                /* Corruption */
4588         }else if( pKeyInfo->aColl[i] ){
4589           mem1.enc = pKeyInfo->enc;
4590           mem1.db = pKeyInfo->db;
4591           mem1.flags = MEM_Str;
4592           mem1.z = (char*)&aKey1[d1];
4593           rc = vdbeCompareMemString(
4594               &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4595           );
4596         }else{
4597           int nCmp = MIN(mem1.n, pRhs->n);
4598           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4599           if( rc==0 ) rc = mem1.n - pRhs->n;
4600         }
4601       }
4602     }
4603 
4604     /* RHS is a blob */
4605     else if( pRhs->flags & MEM_Blob ){
4606       assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4607       getVarint32NR(&aKey1[idx1], serial_type);
4608       testcase( serial_type==12 );
4609       if( serial_type<12 || (serial_type & 0x01) ){
4610         rc = -1;
4611       }else{
4612         int nStr = (serial_type - 12) / 2;
4613         testcase( (d1+nStr)==(unsigned)nKey1 );
4614         testcase( (d1+nStr+1)==(unsigned)nKey1 );
4615         if( (d1+nStr) > (unsigned)nKey1 ){
4616           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4617           return 0;                /* Corruption */
4618         }else if( pRhs->flags & MEM_Zero ){
4619           if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4620             rc = 1;
4621           }else{
4622             rc = nStr - pRhs->u.nZero;
4623           }
4624         }else{
4625           int nCmp = MIN(nStr, pRhs->n);
4626           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4627           if( rc==0 ) rc = nStr - pRhs->n;
4628         }
4629       }
4630     }
4631 
4632     /* RHS is null */
4633     else{
4634       serial_type = aKey1[idx1];
4635       rc = (serial_type!=0);
4636     }
4637 
4638     if( rc!=0 ){
4639       int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4640       if( sortFlags ){
4641         if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4642          || ((sortFlags & KEYINFO_ORDER_DESC)
4643            !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4644         ){
4645           rc = -rc;
4646         }
4647       }
4648       assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4649       assert( mem1.szMalloc==0 );  /* See comment below */
4650       return rc;
4651     }
4652 
4653     i++;
4654     if( i==pPKey2->nField ) break;
4655     pRhs++;
4656     d1 += sqlite3VdbeSerialTypeLen(serial_type);
4657     idx1 += sqlite3VarintLen(serial_type);
4658   }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 );
4659 
4660   /* No memory allocation is ever used on mem1.  Prove this using
4661   ** the following assert().  If the assert() fails, it indicates a
4662   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
4663   assert( mem1.szMalloc==0 );
4664 
4665   /* rc==0 here means that one or both of the keys ran out of fields and
4666   ** all the fields up to that point were equal. Return the default_rc
4667   ** value.  */
4668   assert( CORRUPT_DB
4669        || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4670        || pPKey2->pKeyInfo->db->mallocFailed
4671   );
4672   pPKey2->eqSeen = 1;
4673   return pPKey2->default_rc;
4674 }
4675 int sqlite3VdbeRecordCompare(
4676   int nKey1, const void *pKey1,   /* Left key */
4677   UnpackedRecord *pPKey2          /* Right key */
4678 ){
4679   return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4680 }
4681 
4682 
4683 /*
4684 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4685 ** that (a) the first field of pPKey2 is an integer, and (b) the
4686 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4687 ** byte (i.e. is less than 128).
4688 **
4689 ** To avoid concerns about buffer overreads, this routine is only used
4690 ** on schemas where the maximum valid header size is 63 bytes or less.
4691 */
4692 static int vdbeRecordCompareInt(
4693   int nKey1, const void *pKey1, /* Left key */
4694   UnpackedRecord *pPKey2        /* Right key */
4695 ){
4696   const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4697   int serial_type = ((const u8*)pKey1)[1];
4698   int res;
4699   u32 y;
4700   u64 x;
4701   i64 v;
4702   i64 lhs;
4703 
4704   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4705   assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4706   switch( serial_type ){
4707     case 1: { /* 1-byte signed integer */
4708       lhs = ONE_BYTE_INT(aKey);
4709       testcase( lhs<0 );
4710       break;
4711     }
4712     case 2: { /* 2-byte signed integer */
4713       lhs = TWO_BYTE_INT(aKey);
4714       testcase( lhs<0 );
4715       break;
4716     }
4717     case 3: { /* 3-byte signed integer */
4718       lhs = THREE_BYTE_INT(aKey);
4719       testcase( lhs<0 );
4720       break;
4721     }
4722     case 4: { /* 4-byte signed integer */
4723       y = FOUR_BYTE_UINT(aKey);
4724       lhs = (i64)*(int*)&y;
4725       testcase( lhs<0 );
4726       break;
4727     }
4728     case 5: { /* 6-byte signed integer */
4729       lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4730       testcase( lhs<0 );
4731       break;
4732     }
4733     case 6: { /* 8-byte signed integer */
4734       x = FOUR_BYTE_UINT(aKey);
4735       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4736       lhs = *(i64*)&x;
4737       testcase( lhs<0 );
4738       break;
4739     }
4740     case 8:
4741       lhs = 0;
4742       break;
4743     case 9:
4744       lhs = 1;
4745       break;
4746 
4747     /* This case could be removed without changing the results of running
4748     ** this code. Including it causes gcc to generate a faster switch
4749     ** statement (since the range of switch targets now starts at zero and
4750     ** is contiguous) but does not cause any duplicate code to be generated
4751     ** (as gcc is clever enough to combine the two like cases). Other
4752     ** compilers might be similar.  */
4753     case 0: case 7:
4754       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4755 
4756     default:
4757       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4758   }
4759 
4760   v = pPKey2->aMem[0].u.i;
4761   if( v>lhs ){
4762     res = pPKey2->r1;
4763   }else if( v<lhs ){
4764     res = pPKey2->r2;
4765   }else if( pPKey2->nField>1 ){
4766     /* The first fields of the two keys are equal. Compare the trailing
4767     ** fields.  */
4768     res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4769   }else{
4770     /* The first fields of the two keys are equal and there are no trailing
4771     ** fields. Return pPKey2->default_rc in this case. */
4772     res = pPKey2->default_rc;
4773     pPKey2->eqSeen = 1;
4774   }
4775 
4776   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4777   return res;
4778 }
4779 
4780 /*
4781 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4782 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4783 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4784 ** at the start of (pKey1/nKey1) fits in a single byte.
4785 */
4786 static int vdbeRecordCompareString(
4787   int nKey1, const void *pKey1, /* Left key */
4788   UnpackedRecord *pPKey2        /* Right key */
4789 ){
4790   const u8 *aKey1 = (const u8*)pKey1;
4791   int serial_type;
4792   int res;
4793 
4794   assert( pPKey2->aMem[0].flags & MEM_Str );
4795   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4796   serial_type = (u8)(aKey1[1]);
4797   if( serial_type >= 0x80 ){
4798     sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
4799   }
4800   if( serial_type<12 ){
4801     res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
4802   }else if( !(serial_type & 0x01) ){
4803     res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
4804   }else{
4805     int nCmp;
4806     int nStr;
4807     int szHdr = aKey1[0];
4808 
4809     nStr = (serial_type-12) / 2;
4810     if( (szHdr + nStr) > nKey1 ){
4811       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4812       return 0;    /* Corruption */
4813     }
4814     nCmp = MIN( pPKey2->aMem[0].n, nStr );
4815     res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4816 
4817     if( res>0 ){
4818       res = pPKey2->r2;
4819     }else if( res<0 ){
4820       res = pPKey2->r1;
4821     }else{
4822       res = nStr - pPKey2->aMem[0].n;
4823       if( res==0 ){
4824         if( pPKey2->nField>1 ){
4825           res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4826         }else{
4827           res = pPKey2->default_rc;
4828           pPKey2->eqSeen = 1;
4829         }
4830       }else if( res>0 ){
4831         res = pPKey2->r2;
4832       }else{
4833         res = pPKey2->r1;
4834       }
4835     }
4836   }
4837 
4838   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4839        || CORRUPT_DB
4840        || pPKey2->pKeyInfo->db->mallocFailed
4841   );
4842   return res;
4843 }
4844 
4845 /*
4846 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4847 ** suitable for comparing serialized records to the unpacked record passed
4848 ** as the only argument.
4849 */
4850 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4851   /* varintRecordCompareInt() and varintRecordCompareString() both assume
4852   ** that the size-of-header varint that occurs at the start of each record
4853   ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4854   ** also assumes that it is safe to overread a buffer by at least the
4855   ** maximum possible legal header size plus 8 bytes. Because there is
4856   ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4857   ** buffer passed to varintRecordCompareInt() this makes it convenient to
4858   ** limit the size of the header to 64 bytes in cases where the first field
4859   ** is an integer.
4860   **
4861   ** The easiest way to enforce this limit is to consider only records with
4862   ** 13 fields or less. If the first field is an integer, the maximum legal
4863   ** header size is (12*5 + 1 + 1) bytes.  */
4864   if( p->pKeyInfo->nAllField<=13 ){
4865     int flags = p->aMem[0].flags;
4866     if( p->pKeyInfo->aSortFlags[0] ){
4867       if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
4868         return sqlite3VdbeRecordCompare;
4869       }
4870       p->r1 = 1;
4871       p->r2 = -1;
4872     }else{
4873       p->r1 = -1;
4874       p->r2 = 1;
4875     }
4876     if( (flags & MEM_Int) ){
4877       return vdbeRecordCompareInt;
4878     }
4879     testcase( flags & MEM_Real );
4880     testcase( flags & MEM_Null );
4881     testcase( flags & MEM_Blob );
4882     if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
4883      && p->pKeyInfo->aColl[0]==0
4884     ){
4885       assert( flags & MEM_Str );
4886       return vdbeRecordCompareString;
4887     }
4888   }
4889 
4890   return sqlite3VdbeRecordCompare;
4891 }
4892 
4893 /*
4894 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4895 ** Read the rowid (the last field in the record) and store it in *rowid.
4896 ** Return SQLITE_OK if everything works, or an error code otherwise.
4897 **
4898 ** pCur might be pointing to text obtained from a corrupt database file.
4899 ** So the content cannot be trusted.  Do appropriate checks on the content.
4900 */
4901 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4902   i64 nCellKey = 0;
4903   int rc;
4904   u32 szHdr;        /* Size of the header */
4905   u32 typeRowid;    /* Serial type of the rowid */
4906   u32 lenRowid;     /* Size of the rowid */
4907   Mem m, v;
4908 
4909   /* Get the size of the index entry.  Only indices entries of less
4910   ** than 2GiB are support - anything large must be database corruption.
4911   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4912   ** this code can safely assume that nCellKey is 32-bits
4913   */
4914   assert( sqlite3BtreeCursorIsValid(pCur) );
4915   nCellKey = sqlite3BtreePayloadSize(pCur);
4916   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4917 
4918   /* Read in the complete content of the index entry */
4919   sqlite3VdbeMemInit(&m, db, 0);
4920   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
4921   if( rc ){
4922     return rc;
4923   }
4924 
4925   /* The index entry must begin with a header size */
4926   getVarint32NR((u8*)m.z, szHdr);
4927   testcase( szHdr==3 );
4928   testcase( szHdr==m.n );
4929   testcase( szHdr>0x7fffffff );
4930   assert( m.n>=0 );
4931   if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
4932     goto idx_rowid_corruption;
4933   }
4934 
4935   /* The last field of the index should be an integer - the ROWID.
4936   ** Verify that the last entry really is an integer. */
4937   getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
4938   testcase( typeRowid==1 );
4939   testcase( typeRowid==2 );
4940   testcase( typeRowid==3 );
4941   testcase( typeRowid==4 );
4942   testcase( typeRowid==5 );
4943   testcase( typeRowid==6 );
4944   testcase( typeRowid==8 );
4945   testcase( typeRowid==9 );
4946   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4947     goto idx_rowid_corruption;
4948   }
4949   lenRowid = sqlite3SmallTypeSizes[typeRowid];
4950   testcase( (u32)m.n==szHdr+lenRowid );
4951   if( unlikely((u32)m.n<szHdr+lenRowid) ){
4952     goto idx_rowid_corruption;
4953   }
4954 
4955   /* Fetch the integer off the end of the index record */
4956   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4957   *rowid = v.u.i;
4958   sqlite3VdbeMemRelease(&m);
4959   return SQLITE_OK;
4960 
4961   /* Jump here if database corruption is detected after m has been
4962   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
4963 idx_rowid_corruption:
4964   testcase( m.szMalloc!=0 );
4965   sqlite3VdbeMemRelease(&m);
4966   return SQLITE_CORRUPT_BKPT;
4967 }
4968 
4969 /*
4970 ** Compare the key of the index entry that cursor pC is pointing to against
4971 ** the key string in pUnpacked.  Write into *pRes a number
4972 ** that is negative, zero, or positive if pC is less than, equal to,
4973 ** or greater than pUnpacked.  Return SQLITE_OK on success.
4974 **
4975 ** pUnpacked is either created without a rowid or is truncated so that it
4976 ** omits the rowid at the end.  The rowid at the end of the index entry
4977 ** is ignored as well.  Hence, this routine only compares the prefixes
4978 ** of the keys prior to the final rowid, not the entire key.
4979 */
4980 int sqlite3VdbeIdxKeyCompare(
4981   sqlite3 *db,                     /* Database connection */
4982   VdbeCursor *pC,                  /* The cursor to compare against */
4983   UnpackedRecord *pUnpacked,       /* Unpacked version of key */
4984   int *res                         /* Write the comparison result here */
4985 ){
4986   i64 nCellKey = 0;
4987   int rc;
4988   BtCursor *pCur;
4989   Mem m;
4990 
4991   assert( pC->eCurType==CURTYPE_BTREE );
4992   pCur = pC->uc.pCursor;
4993   assert( sqlite3BtreeCursorIsValid(pCur) );
4994   nCellKey = sqlite3BtreePayloadSize(pCur);
4995   /* nCellKey will always be between 0 and 0xffffffff because of the way
4996   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4997   if( nCellKey<=0 || nCellKey>0x7fffffff ){
4998     *res = 0;
4999     return SQLITE_CORRUPT_BKPT;
5000   }
5001   sqlite3VdbeMemInit(&m, db, 0);
5002   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5003   if( rc ){
5004     return rc;
5005   }
5006   *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
5007   sqlite3VdbeMemRelease(&m);
5008   return SQLITE_OK;
5009 }
5010 
5011 /*
5012 ** This routine sets the value to be returned by subsequent calls to
5013 ** sqlite3_changes() on the database handle 'db'.
5014 */
5015 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){
5016   assert( sqlite3_mutex_held(db->mutex) );
5017   db->nChange = nChange;
5018   db->nTotalChange += nChange;
5019 }
5020 
5021 /*
5022 ** Set a flag in the vdbe to update the change counter when it is finalised
5023 ** or reset.
5024 */
5025 void sqlite3VdbeCountChanges(Vdbe *v){
5026   v->changeCntOn = 1;
5027 }
5028 
5029 /*
5030 ** Mark every prepared statement associated with a database connection
5031 ** as expired.
5032 **
5033 ** An expired statement means that recompilation of the statement is
5034 ** recommend.  Statements expire when things happen that make their
5035 ** programs obsolete.  Removing user-defined functions or collating
5036 ** sequences, or changing an authorization function are the types of
5037 ** things that make prepared statements obsolete.
5038 **
5039 ** If iCode is 1, then expiration is advisory.  The statement should
5040 ** be reprepared before being restarted, but if it is already running
5041 ** it is allowed to run to completion.
5042 **
5043 ** Internally, this function just sets the Vdbe.expired flag on all
5044 ** prepared statements.  The flag is set to 1 for an immediate expiration
5045 ** and set to 2 for an advisory expiration.
5046 */
5047 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
5048   Vdbe *p;
5049   for(p = db->pVdbe; p; p=p->pNext){
5050     p->expired = iCode+1;
5051   }
5052 }
5053 
5054 /*
5055 ** Return the database associated with the Vdbe.
5056 */
5057 sqlite3 *sqlite3VdbeDb(Vdbe *v){
5058   return v->db;
5059 }
5060 
5061 /*
5062 ** Return the SQLITE_PREPARE flags for a Vdbe.
5063 */
5064 u8 sqlite3VdbePrepareFlags(Vdbe *v){
5065   return v->prepFlags;
5066 }
5067 
5068 /*
5069 ** Return a pointer to an sqlite3_value structure containing the value bound
5070 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5071 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5072 ** constants) to the value before returning it.
5073 **
5074 ** The returned value must be freed by the caller using sqlite3ValueFree().
5075 */
5076 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5077   assert( iVar>0 );
5078   if( v ){
5079     Mem *pMem = &v->aVar[iVar-1];
5080     assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5081     if( 0==(pMem->flags & MEM_Null) ){
5082       sqlite3_value *pRet = sqlite3ValueNew(v->db);
5083       if( pRet ){
5084         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5085         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5086       }
5087       return pRet;
5088     }
5089   }
5090   return 0;
5091 }
5092 
5093 /*
5094 ** Configure SQL variable iVar so that binding a new value to it signals
5095 ** to sqlite3_reoptimize() that re-preparing the statement may result
5096 ** in a better query plan.
5097 */
5098 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5099   assert( iVar>0 );
5100   assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5101   if( iVar>=32 ){
5102     v->expmask |= 0x80000000;
5103   }else{
5104     v->expmask |= ((u32)1 << (iVar-1));
5105   }
5106 }
5107 
5108 /*
5109 ** Cause a function to throw an error if it was call from OP_PureFunc
5110 ** rather than OP_Function.
5111 **
5112 ** OP_PureFunc means that the function must be deterministic, and should
5113 ** throw an error if it is given inputs that would make it non-deterministic.
5114 ** This routine is invoked by date/time functions that use non-deterministic
5115 ** features such as 'now'.
5116 */
5117 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5118   const VdbeOp *pOp;
5119 #ifdef SQLITE_ENABLE_STAT4
5120   if( pCtx->pVdbe==0 ) return 1;
5121 #endif
5122   pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5123   if( pOp->opcode==OP_PureFunc ){
5124     const char *zContext;
5125     char *zMsg;
5126     if( pOp->p5 & NC_IsCheck ){
5127       zContext = "a CHECK constraint";
5128     }else if( pOp->p5 & NC_GenCol ){
5129       zContext = "a generated column";
5130     }else{
5131       zContext = "an index";
5132     }
5133     zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5134                            pCtx->pFunc->zName, zContext);
5135     sqlite3_result_error(pCtx, zMsg, -1);
5136     sqlite3_free(zMsg);
5137     return 0;
5138   }
5139   return 1;
5140 }
5141 
5142 #ifndef SQLITE_OMIT_VIRTUALTABLE
5143 /*
5144 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5145 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5146 ** in memory obtained from sqlite3DbMalloc).
5147 */
5148 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5149   if( pVtab->zErrMsg ){
5150     sqlite3 *db = p->db;
5151     sqlite3DbFree(db, p->zErrMsg);
5152     p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5153     sqlite3_free(pVtab->zErrMsg);
5154     pVtab->zErrMsg = 0;
5155   }
5156 }
5157 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5158 
5159 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5160 
5161 /*
5162 ** If the second argument is not NULL, release any allocations associated
5163 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5164 ** structure itself, using sqlite3DbFree().
5165 **
5166 ** This function is used to free UnpackedRecord structures allocated by
5167 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5168 */
5169 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5170   if( p ){
5171     int i;
5172     for(i=0; i<nField; i++){
5173       Mem *pMem = &p->aMem[i];
5174       if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
5175     }
5176     sqlite3DbFreeNN(db, p);
5177   }
5178 }
5179 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5180 
5181 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5182 /*
5183 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5184 ** then cursor passed as the second argument should point to the row about
5185 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5186 ** the required value will be read from the row the cursor points to.
5187 */
5188 void sqlite3VdbePreUpdateHook(
5189   Vdbe *v,                        /* Vdbe pre-update hook is invoked by */
5190   VdbeCursor *pCsr,               /* Cursor to grab old.* values from */
5191   int op,                         /* SQLITE_INSERT, UPDATE or DELETE */
5192   const char *zDb,                /* Database name */
5193   Table *pTab,                    /* Modified table */
5194   i64 iKey1,                      /* Initial key value */
5195   int iReg,                       /* Register for new.* record */
5196   int iBlobWrite
5197 ){
5198   sqlite3 *db = v->db;
5199   i64 iKey2;
5200   PreUpdate preupdate;
5201   const char *zTbl = pTab->zName;
5202   static const u8 fakeSortOrder = 0;
5203 
5204   assert( db->pPreUpdate==0 );
5205   memset(&preupdate, 0, sizeof(PreUpdate));
5206   if( HasRowid(pTab)==0 ){
5207     iKey1 = iKey2 = 0;
5208     preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5209   }else{
5210     if( op==SQLITE_UPDATE ){
5211       iKey2 = v->aMem[iReg].u.i;
5212     }else{
5213       iKey2 = iKey1;
5214     }
5215   }
5216 
5217   assert( pCsr->nField==pTab->nCol
5218        || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
5219   );
5220 
5221   preupdate.v = v;
5222   preupdate.pCsr = pCsr;
5223   preupdate.op = op;
5224   preupdate.iNewReg = iReg;
5225   preupdate.keyinfo.db = db;
5226   preupdate.keyinfo.enc = ENC(db);
5227   preupdate.keyinfo.nKeyField = pTab->nCol;
5228   preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5229   preupdate.iKey1 = iKey1;
5230   preupdate.iKey2 = iKey2;
5231   preupdate.pTab = pTab;
5232   preupdate.iBlobWrite = iBlobWrite;
5233 
5234   db->pPreUpdate = &preupdate;
5235   db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5236   db->pPreUpdate = 0;
5237   sqlite3DbFree(db, preupdate.aRecord);
5238   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5239   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5240   if( preupdate.aNew ){
5241     int i;
5242     for(i=0; i<pCsr->nField; i++){
5243       sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5244     }
5245     sqlite3DbFreeNN(db, preupdate.aNew);
5246   }
5247 }
5248 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5249