xref: /sqlite-3.40.0/src/vdbeaux.c (revision da4c7ccc)
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
14 */
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
17 
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
21 
22 /*
23 ** Create a new virtual database engine.
24 */
25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26   sqlite3 *db = pParse->db;
27   Vdbe *p;
28   p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29   if( p==0 ) return 0;
30   memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31   p->db = db;
32   if( db->pVdbe ){
33     db->pVdbe->pPrev = p;
34   }
35   p->pNext = db->pVdbe;
36   p->pPrev = 0;
37   db->pVdbe = p;
38   assert( p->eVdbeState==VDBE_INIT_STATE );
39   p->pParse = pParse;
40   pParse->pVdbe = p;
41   assert( pParse->aLabel==0 );
42   assert( pParse->nLabel==0 );
43   assert( p->nOpAlloc==0 );
44   assert( pParse->szOpAlloc==0 );
45   sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46   return p;
47 }
48 
49 /*
50 ** Return the Parse object that owns a Vdbe object.
51 */
52 Parse *sqlite3VdbeParser(Vdbe *p){
53   return p->pParse;
54 }
55 
56 /*
57 ** Change the error string stored in Vdbe.zErrMsg
58 */
59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60   va_list ap;
61   sqlite3DbFree(p->db, p->zErrMsg);
62   va_start(ap, zFormat);
63   p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64   va_end(ap);
65 }
66 
67 /*
68 ** Remember the SQL string for a prepared statement.
69 */
70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71   if( p==0 ) return;
72   p->prepFlags = prepFlags;
73   if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74     p->expmask = 0;
75   }
76   assert( p->zSql==0 );
77   p->zSql = sqlite3DbStrNDup(p->db, z, n);
78 }
79 
80 #ifdef SQLITE_ENABLE_NORMALIZE
81 /*
82 ** Add a new element to the Vdbe->pDblStr list.
83 */
84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85   if( p ){
86     int n = sqlite3Strlen30(z);
87     DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88                             sizeof(*pStr)+n+1-sizeof(pStr->z));
89     if( pStr ){
90       pStr->pNextStr = p->pDblStr;
91       p->pDblStr = pStr;
92       memcpy(pStr->z, z, n+1);
93     }
94   }
95 }
96 #endif
97 
98 #ifdef SQLITE_ENABLE_NORMALIZE
99 /*
100 ** zId of length nId is a double-quoted identifier.  Check to see if
101 ** that identifier is really used as a string literal.
102 */
103 int sqlite3VdbeUsesDoubleQuotedString(
104   Vdbe *pVdbe,            /* The prepared statement */
105   const char *zId         /* The double-quoted identifier, already dequoted */
106 ){
107   DblquoteStr *pStr;
108   assert( zId!=0 );
109   if( pVdbe->pDblStr==0 ) return 0;
110   for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111     if( strcmp(zId, pStr->z)==0 ) return 1;
112   }
113   return 0;
114 }
115 #endif
116 
117 /*
118 ** Swap all content between two VDBE structures.
119 */
120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
121   Vdbe tmp, *pTmp;
122   char *zTmp;
123   assert( pA->db==pB->db );
124   tmp = *pA;
125   *pA = *pB;
126   *pB = tmp;
127   pTmp = pA->pNext;
128   pA->pNext = pB->pNext;
129   pB->pNext = pTmp;
130   pTmp = pA->pPrev;
131   pA->pPrev = pB->pPrev;
132   pB->pPrev = pTmp;
133   zTmp = pA->zSql;
134   pA->zSql = pB->zSql;
135   pB->zSql = zTmp;
136 #ifdef SQLITE_ENABLE_NORMALIZE
137   zTmp = pA->zNormSql;
138   pA->zNormSql = pB->zNormSql;
139   pB->zNormSql = zTmp;
140 #endif
141   pB->expmask = pA->expmask;
142   pB->prepFlags = pA->prepFlags;
143   memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
144   pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
145 }
146 
147 /*
148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
149 ** than its current size. nOp is guaranteed to be less than or equal
150 ** to 1024/sizeof(Op).
151 **
152 ** If an out-of-memory error occurs while resizing the array, return
153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
154 ** unchanged (this is so that any opcodes already allocated can be
155 ** correctly deallocated along with the rest of the Vdbe).
156 */
157 static int growOpArray(Vdbe *v, int nOp){
158   VdbeOp *pNew;
159   Parse *p = v->pParse;
160 
161   /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
162   ** more frequent reallocs and hence provide more opportunities for
163   ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used
164   ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array
165   ** by the minimum* amount required until the size reaches 512.  Normal
166   ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
167   ** size of the op array or add 1KB of space, whichever is smaller. */
168 #ifdef SQLITE_TEST_REALLOC_STRESS
169   sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
170                         : (sqlite3_int64)v->nOpAlloc+nOp);
171 #else
172   sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
173                         : (sqlite3_int64)(1024/sizeof(Op)));
174   UNUSED_PARAMETER(nOp);
175 #endif
176 
177   /* Ensure that the size of a VDBE does not grow too large */
178   if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
179     sqlite3OomFault(p->db);
180     return SQLITE_NOMEM;
181   }
182 
183   assert( nOp<=(int)(1024/sizeof(Op)) );
184   assert( nNew>=(v->nOpAlloc+nOp) );
185   pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
186   if( pNew ){
187     p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
188     v->nOpAlloc = p->szOpAlloc/sizeof(Op);
189     v->aOp = pNew;
190   }
191   return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
192 }
193 
194 #ifdef SQLITE_DEBUG
195 /* This routine is just a convenient place to set a breakpoint that will
196 ** fire after each opcode is inserted and displayed using
197 ** "PRAGMA vdbe_addoptrace=on".  Parameters "pc" (program counter) and
198 ** pOp are available to make the breakpoint conditional.
199 **
200 ** Other useful labels for breakpoints include:
201 **   test_trace_breakpoint(pc,pOp)
202 **   sqlite3CorruptError(lineno)
203 **   sqlite3MisuseError(lineno)
204 **   sqlite3CantopenError(lineno)
205 */
206 static void test_addop_breakpoint(int pc, Op *pOp){
207   static int n = 0;
208   n++;
209 }
210 #endif
211 
212 /*
213 ** Add a new instruction to the list of instructions current in the
214 ** VDBE.  Return the address of the new instruction.
215 **
216 ** Parameters:
217 **
218 **    p               Pointer to the VDBE
219 **
220 **    op              The opcode for this instruction
221 **
222 **    p1, p2, p3      Operands
223 **
224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
225 ** the sqlite3VdbeChangeP4() function to change the value of the P4
226 ** operand.
227 */
228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
229   assert( p->nOpAlloc<=p->nOp );
230   if( growOpArray(p, 1) ) return 1;
231   assert( p->nOpAlloc>p->nOp );
232   return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
233 }
234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
235   int i;
236   VdbeOp *pOp;
237 
238   i = p->nOp;
239   assert( p->eVdbeState==VDBE_INIT_STATE );
240   assert( op>=0 && op<0xff );
241   if( p->nOpAlloc<=i ){
242     return growOp3(p, op, p1, p2, p3);
243   }
244   assert( p->aOp!=0 );
245   p->nOp++;
246   pOp = &p->aOp[i];
247   assert( pOp!=0 );
248   pOp->opcode = (u8)op;
249   pOp->p5 = 0;
250   pOp->p1 = p1;
251   pOp->p2 = p2;
252   pOp->p3 = p3;
253   pOp->p4.p = 0;
254   pOp->p4type = P4_NOTUSED;
255 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
256   pOp->zComment = 0;
257 #endif
258 #ifdef SQLITE_DEBUG
259   if( p->db->flags & SQLITE_VdbeAddopTrace ){
260     sqlite3VdbePrintOp(0, i, &p->aOp[i]);
261     test_addop_breakpoint(i, &p->aOp[i]);
262   }
263 #endif
264 #ifdef VDBE_PROFILE
265   pOp->cycles = 0;
266   pOp->cnt = 0;
267 #endif
268 #ifdef SQLITE_VDBE_COVERAGE
269   pOp->iSrcLine = 0;
270 #endif
271   return i;
272 }
273 int sqlite3VdbeAddOp0(Vdbe *p, int op){
274   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
275 }
276 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
277   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
278 }
279 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
280   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
281 }
282 
283 /* Generate code for an unconditional jump to instruction iDest
284 */
285 int sqlite3VdbeGoto(Vdbe *p, int iDest){
286   return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
287 }
288 
289 /* Generate code to cause the string zStr to be loaded into
290 ** register iDest
291 */
292 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
293   return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
294 }
295 
296 /*
297 ** Generate code that initializes multiple registers to string or integer
298 ** constants.  The registers begin with iDest and increase consecutively.
299 ** One register is initialized for each characgter in zTypes[].  For each
300 ** "s" character in zTypes[], the register is a string if the argument is
301 ** not NULL, or OP_Null if the value is a null pointer.  For each "i" character
302 ** in zTypes[], the register is initialized to an integer.
303 **
304 ** If the input string does not end with "X" then an OP_ResultRow instruction
305 ** is generated for the values inserted.
306 */
307 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
308   va_list ap;
309   int i;
310   char c;
311   va_start(ap, zTypes);
312   for(i=0; (c = zTypes[i])!=0; i++){
313     if( c=='s' ){
314       const char *z = va_arg(ap, const char*);
315       sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
316     }else if( c=='i' ){
317       sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
318     }else{
319       goto skip_op_resultrow;
320     }
321   }
322   sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
323 skip_op_resultrow:
324   va_end(ap);
325 }
326 
327 /*
328 ** Add an opcode that includes the p4 value as a pointer.
329 */
330 int sqlite3VdbeAddOp4(
331   Vdbe *p,            /* Add the opcode to this VM */
332   int op,             /* The new opcode */
333   int p1,             /* The P1 operand */
334   int p2,             /* The P2 operand */
335   int p3,             /* The P3 operand */
336   const char *zP4,    /* The P4 operand */
337   int p4type          /* P4 operand type */
338 ){
339   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
340   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
341   return addr;
342 }
343 
344 /*
345 ** Add an OP_Function or OP_PureFunc opcode.
346 **
347 ** The eCallCtx argument is information (typically taken from Expr.op2)
348 ** that describes the calling context of the function.  0 means a general
349 ** function call.  NC_IsCheck means called by a check constraint,
350 ** NC_IdxExpr means called as part of an index expression.  NC_PartIdx
351 ** means in the WHERE clause of a partial index.  NC_GenCol means called
352 ** while computing a generated column value.  0 is the usual case.
353 */
354 int sqlite3VdbeAddFunctionCall(
355   Parse *pParse,        /* Parsing context */
356   int p1,               /* Constant argument mask */
357   int p2,               /* First argument register */
358   int p3,               /* Register into which results are written */
359   int nArg,             /* Number of argument */
360   const FuncDef *pFunc, /* The function to be invoked */
361   int eCallCtx          /* Calling context */
362 ){
363   Vdbe *v = pParse->pVdbe;
364   int nByte;
365   int addr;
366   sqlite3_context *pCtx;
367   assert( v );
368   nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
369   pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
370   if( pCtx==0 ){
371     assert( pParse->db->mallocFailed );
372     freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
373     return 0;
374   }
375   pCtx->pOut = 0;
376   pCtx->pFunc = (FuncDef*)pFunc;
377   pCtx->pVdbe = 0;
378   pCtx->isError = 0;
379   pCtx->argc = nArg;
380   pCtx->iOp = sqlite3VdbeCurrentAddr(v);
381   addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
382                            p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
383   sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
384   return addr;
385 }
386 
387 /*
388 ** Add an opcode that includes the p4 value with a P4_INT64 or
389 ** P4_REAL type.
390 */
391 int sqlite3VdbeAddOp4Dup8(
392   Vdbe *p,            /* Add the opcode to this VM */
393   int op,             /* The new opcode */
394   int p1,             /* The P1 operand */
395   int p2,             /* The P2 operand */
396   int p3,             /* The P3 operand */
397   const u8 *zP4,      /* The P4 operand */
398   int p4type          /* P4 operand type */
399 ){
400   char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
401   if( p4copy ) memcpy(p4copy, zP4, 8);
402   return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
403 }
404 
405 #ifndef SQLITE_OMIT_EXPLAIN
406 /*
407 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
408 ** 0 means "none".
409 */
410 int sqlite3VdbeExplainParent(Parse *pParse){
411   VdbeOp *pOp;
412   if( pParse->addrExplain==0 ) return 0;
413   pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
414   return pOp->p2;
415 }
416 
417 /*
418 ** Set a debugger breakpoint on the following routine in order to
419 ** monitor the EXPLAIN QUERY PLAN code generation.
420 */
421 #if defined(SQLITE_DEBUG)
422 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
423   (void)z1;
424   (void)z2;
425 }
426 #endif
427 
428 /*
429 ** Add a new OP_Explain opcode.
430 **
431 ** If the bPush flag is true, then make this opcode the parent for
432 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
433 */
434 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
435 #ifndef SQLITE_DEBUG
436   /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
437   ** But omit them (for performance) during production builds */
438   if( pParse->explain==2 )
439 #endif
440   {
441     char *zMsg;
442     Vdbe *v;
443     va_list ap;
444     int iThis;
445     va_start(ap, zFmt);
446     zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
447     va_end(ap);
448     v = pParse->pVdbe;
449     iThis = v->nOp;
450     sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
451                       zMsg, P4_DYNAMIC);
452     sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z);
453     if( bPush){
454       pParse->addrExplain = iThis;
455     }
456   }
457 }
458 
459 /*
460 ** Pop the EXPLAIN QUERY PLAN stack one level.
461 */
462 void sqlite3VdbeExplainPop(Parse *pParse){
463   sqlite3ExplainBreakpoint("POP", 0);
464   pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
465 }
466 #endif /* SQLITE_OMIT_EXPLAIN */
467 
468 /*
469 ** Add an OP_ParseSchema opcode.  This routine is broken out from
470 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
471 ** as having been used.
472 **
473 ** The zWhere string must have been obtained from sqlite3_malloc().
474 ** This routine will take ownership of the allocated memory.
475 */
476 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){
477   int j;
478   sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
479   sqlite3VdbeChangeP5(p, p5);
480   for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
481   sqlite3MayAbort(p->pParse);
482 }
483 
484 /*
485 ** Add an opcode that includes the p4 value as an integer.
486 */
487 int sqlite3VdbeAddOp4Int(
488   Vdbe *p,            /* Add the opcode to this VM */
489   int op,             /* The new opcode */
490   int p1,             /* The P1 operand */
491   int p2,             /* The P2 operand */
492   int p3,             /* The P3 operand */
493   int p4              /* The P4 operand as an integer */
494 ){
495   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
496   if( p->db->mallocFailed==0 ){
497     VdbeOp *pOp = &p->aOp[addr];
498     pOp->p4type = P4_INT32;
499     pOp->p4.i = p4;
500   }
501   return addr;
502 }
503 
504 /* Insert the end of a co-routine
505 */
506 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
507   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
508 
509   /* Clear the temporary register cache, thereby ensuring that each
510   ** co-routine has its own independent set of registers, because co-routines
511   ** might expect their registers to be preserved across an OP_Yield, and
512   ** that could cause problems if two or more co-routines are using the same
513   ** temporary register.
514   */
515   v->pParse->nTempReg = 0;
516   v->pParse->nRangeReg = 0;
517 }
518 
519 /*
520 ** Create a new symbolic label for an instruction that has yet to be
521 ** coded.  The symbolic label is really just a negative number.  The
522 ** label can be used as the P2 value of an operation.  Later, when
523 ** the label is resolved to a specific address, the VDBE will scan
524 ** through its operation list and change all values of P2 which match
525 ** the label into the resolved address.
526 **
527 ** The VDBE knows that a P2 value is a label because labels are
528 ** always negative and P2 values are suppose to be non-negative.
529 ** Hence, a negative P2 value is a label that has yet to be resolved.
530 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
531 ** property.
532 **
533 ** Variable usage notes:
534 **
535 **     Parse.aLabel[x]     Stores the address that the x-th label resolves
536 **                         into.  For testing (SQLITE_DEBUG), unresolved
537 **                         labels stores -1, but that is not required.
538 **     Parse.nLabelAlloc   Number of slots allocated to Parse.aLabel[]
539 **     Parse.nLabel        The *negative* of the number of labels that have
540 **                         been issued.  The negative is stored because
541 **                         that gives a performance improvement over storing
542 **                         the equivalent positive value.
543 */
544 int sqlite3VdbeMakeLabel(Parse *pParse){
545   return --pParse->nLabel;
546 }
547 
548 /*
549 ** Resolve label "x" to be the address of the next instruction to
550 ** be inserted.  The parameter "x" must have been obtained from
551 ** a prior call to sqlite3VdbeMakeLabel().
552 */
553 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
554   int nNewSize = 10 - p->nLabel;
555   p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
556                      nNewSize*sizeof(p->aLabel[0]));
557   if( p->aLabel==0 ){
558     p->nLabelAlloc = 0;
559   }else{
560 #ifdef SQLITE_DEBUG
561     int i;
562     for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
563 #endif
564     p->nLabelAlloc = nNewSize;
565     p->aLabel[j] = v->nOp;
566   }
567 }
568 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
569   Parse *p = v->pParse;
570   int j = ADDR(x);
571   assert( v->eVdbeState==VDBE_INIT_STATE );
572   assert( j<-p->nLabel );
573   assert( j>=0 );
574 #ifdef SQLITE_DEBUG
575   if( p->db->flags & SQLITE_VdbeAddopTrace ){
576     printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
577   }
578 #endif
579   if( p->nLabelAlloc + p->nLabel < 0 ){
580     resizeResolveLabel(p,v,j);
581   }else{
582     assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
583     p->aLabel[j] = v->nOp;
584   }
585 }
586 
587 /*
588 ** Mark the VDBE as one that can only be run one time.
589 */
590 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
591   sqlite3VdbeAddOp2(p, OP_Expire, 1, 1);
592 }
593 
594 /*
595 ** Mark the VDBE as one that can only be run multiple times.
596 */
597 void sqlite3VdbeReusable(Vdbe *p){
598   int i;
599   for(i=1; ALWAYS(i<p->nOp); i++){
600     if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){
601       p->aOp[1].opcode = OP_Noop;
602       break;
603     }
604   }
605 }
606 
607 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
608 
609 /*
610 ** The following type and function are used to iterate through all opcodes
611 ** in a Vdbe main program and each of the sub-programs (triggers) it may
612 ** invoke directly or indirectly. It should be used as follows:
613 **
614 **   Op *pOp;
615 **   VdbeOpIter sIter;
616 **
617 **   memset(&sIter, 0, sizeof(sIter));
618 **   sIter.v = v;                            // v is of type Vdbe*
619 **   while( (pOp = opIterNext(&sIter)) ){
620 **     // Do something with pOp
621 **   }
622 **   sqlite3DbFree(v->db, sIter.apSub);
623 **
624 */
625 typedef struct VdbeOpIter VdbeOpIter;
626 struct VdbeOpIter {
627   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
628   SubProgram **apSub;        /* Array of subprograms */
629   int nSub;                  /* Number of entries in apSub */
630   int iAddr;                 /* Address of next instruction to return */
631   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
632 };
633 static Op *opIterNext(VdbeOpIter *p){
634   Vdbe *v = p->v;
635   Op *pRet = 0;
636   Op *aOp;
637   int nOp;
638 
639   if( p->iSub<=p->nSub ){
640 
641     if( p->iSub==0 ){
642       aOp = v->aOp;
643       nOp = v->nOp;
644     }else{
645       aOp = p->apSub[p->iSub-1]->aOp;
646       nOp = p->apSub[p->iSub-1]->nOp;
647     }
648     assert( p->iAddr<nOp );
649 
650     pRet = &aOp[p->iAddr];
651     p->iAddr++;
652     if( p->iAddr==nOp ){
653       p->iSub++;
654       p->iAddr = 0;
655     }
656 
657     if( pRet->p4type==P4_SUBPROGRAM ){
658       int nByte = (p->nSub+1)*sizeof(SubProgram*);
659       int j;
660       for(j=0; j<p->nSub; j++){
661         if( p->apSub[j]==pRet->p4.pProgram ) break;
662       }
663       if( j==p->nSub ){
664         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
665         if( !p->apSub ){
666           pRet = 0;
667         }else{
668           p->apSub[p->nSub++] = pRet->p4.pProgram;
669         }
670       }
671     }
672   }
673 
674   return pRet;
675 }
676 
677 /*
678 ** Check if the program stored in the VM associated with pParse may
679 ** throw an ABORT exception (causing the statement, but not entire transaction
680 ** to be rolled back). This condition is true if the main program or any
681 ** sub-programs contains any of the following:
682 **
683 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
684 **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
685 **   *  OP_Destroy
686 **   *  OP_VUpdate
687 **   *  OP_VCreate
688 **   *  OP_VRename
689 **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
690 **   *  OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
691 **      (for CREATE TABLE AS SELECT ...)
692 **
693 ** Then check that the value of Parse.mayAbort is true if an
694 ** ABORT may be thrown, or false otherwise. Return true if it does
695 ** match, or false otherwise. This function is intended to be used as
696 ** part of an assert statement in the compiler. Similar to:
697 **
698 **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
699 */
700 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
701   int hasAbort = 0;
702   int hasFkCounter = 0;
703   int hasCreateTable = 0;
704   int hasCreateIndex = 0;
705   int hasInitCoroutine = 0;
706   Op *pOp;
707   VdbeOpIter sIter;
708 
709   if( v==0 ) return 0;
710   memset(&sIter, 0, sizeof(sIter));
711   sIter.v = v;
712 
713   while( (pOp = opIterNext(&sIter))!=0 ){
714     int opcode = pOp->opcode;
715     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
716      || opcode==OP_VDestroy
717      || opcode==OP_VCreate
718      || opcode==OP_ParseSchema
719      || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
720       && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
721     ){
722       hasAbort = 1;
723       break;
724     }
725     if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
726     if( mayAbort ){
727       /* hasCreateIndex may also be set for some DELETE statements that use
728       ** OP_Clear. So this routine may end up returning true in the case
729       ** where a "DELETE FROM tbl" has a statement-journal but does not
730       ** require one. This is not so bad - it is an inefficiency, not a bug. */
731       if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
732       if( opcode==OP_Clear ) hasCreateIndex = 1;
733     }
734     if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
735 #ifndef SQLITE_OMIT_FOREIGN_KEY
736     if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
737       hasFkCounter = 1;
738     }
739 #endif
740   }
741   sqlite3DbFree(v->db, sIter.apSub);
742 
743   /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
744   ** If malloc failed, then the while() loop above may not have iterated
745   ** through all opcodes and hasAbort may be set incorrectly. Return
746   ** true for this case to prevent the assert() in the callers frame
747   ** from failing.  */
748   return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
749         || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
750   );
751 }
752 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
753 
754 #ifdef SQLITE_DEBUG
755 /*
756 ** Increment the nWrite counter in the VDBE if the cursor is not an
757 ** ephemeral cursor, or if the cursor argument is NULL.
758 */
759 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
760   if( pC==0
761    || (pC->eCurType!=CURTYPE_SORTER
762        && pC->eCurType!=CURTYPE_PSEUDO
763        && !pC->isEphemeral)
764   ){
765     p->nWrite++;
766   }
767 }
768 #endif
769 
770 #ifdef SQLITE_DEBUG
771 /*
772 ** Assert if an Abort at this point in time might result in a corrupt
773 ** database.
774 */
775 void sqlite3VdbeAssertAbortable(Vdbe *p){
776   assert( p->nWrite==0 || p->usesStmtJournal );
777 }
778 #endif
779 
780 /*
781 ** This routine is called after all opcodes have been inserted.  It loops
782 ** through all the opcodes and fixes up some details.
783 **
784 ** (1) For each jump instruction with a negative P2 value (a label)
785 **     resolve the P2 value to an actual address.
786 **
787 ** (2) Compute the maximum number of arguments used by any SQL function
788 **     and store that value in *pMaxFuncArgs.
789 **
790 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
791 **     indicate what the prepared statement actually does.
792 **
793 ** (4) (discontinued)
794 **
795 ** (5) Reclaim the memory allocated for storing labels.
796 **
797 ** This routine will only function correctly if the mkopcodeh.tcl generator
798 ** script numbers the opcodes correctly.  Changes to this routine must be
799 ** coordinated with changes to mkopcodeh.tcl.
800 */
801 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
802   int nMaxArgs = *pMaxFuncArgs;
803   Op *pOp;
804   Parse *pParse = p->pParse;
805   int *aLabel = pParse->aLabel;
806   p->readOnly = 1;
807   p->bIsReader = 0;
808   pOp = &p->aOp[p->nOp-1];
809   while(1){
810 
811     /* Only JUMP opcodes and the short list of special opcodes in the switch
812     ** below need to be considered.  The mkopcodeh.tcl generator script groups
813     ** all these opcodes together near the front of the opcode list.  Skip
814     ** any opcode that does not need processing by virtual of the fact that
815     ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
816     */
817     if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
818       /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
819       ** cases from this switch! */
820       switch( pOp->opcode ){
821         case OP_Transaction: {
822           if( pOp->p2!=0 ) p->readOnly = 0;
823           /* no break */ deliberate_fall_through
824         }
825         case OP_AutoCommit:
826         case OP_Savepoint: {
827           p->bIsReader = 1;
828           break;
829         }
830 #ifndef SQLITE_OMIT_WAL
831         case OP_Checkpoint:
832 #endif
833         case OP_Vacuum:
834         case OP_JournalMode: {
835           p->readOnly = 0;
836           p->bIsReader = 1;
837           break;
838         }
839 #ifndef SQLITE_OMIT_VIRTUALTABLE
840         case OP_VUpdate: {
841           if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
842           break;
843         }
844         case OP_VFilter: {
845           int n;
846           assert( (pOp - p->aOp) >= 3 );
847           assert( pOp[-1].opcode==OP_Integer );
848           n = pOp[-1].p1;
849           if( n>nMaxArgs ) nMaxArgs = n;
850           /* Fall through into the default case */
851           /* no break */ deliberate_fall_through
852         }
853 #endif
854         default: {
855           if( pOp->p2<0 ){
856             /* The mkopcodeh.tcl script has so arranged things that the only
857             ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
858             ** have non-negative values for P2. */
859             assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
860             assert( ADDR(pOp->p2)<-pParse->nLabel );
861             pOp->p2 = aLabel[ADDR(pOp->p2)];
862           }
863           break;
864         }
865       }
866       /* The mkopcodeh.tcl script has so arranged things that the only
867       ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
868       ** have non-negative values for P2. */
869       assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
870     }
871     if( pOp==p->aOp ) break;
872     pOp--;
873   }
874   if( aLabel ){
875     sqlite3DbFreeNN(p->db, pParse->aLabel);
876     pParse->aLabel = 0;
877   }
878   pParse->nLabel = 0;
879   *pMaxFuncArgs = nMaxArgs;
880   assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
881 }
882 
883 /*
884 ** Return the address of the next instruction to be inserted.
885 */
886 int sqlite3VdbeCurrentAddr(Vdbe *p){
887   assert( p->eVdbeState==VDBE_INIT_STATE );
888   return p->nOp;
889 }
890 
891 /*
892 ** Verify that at least N opcode slots are available in p without
893 ** having to malloc for more space (except when compiled using
894 ** SQLITE_TEST_REALLOC_STRESS).  This interface is used during testing
895 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
896 ** fail due to a OOM fault and hence that the return value from
897 ** sqlite3VdbeAddOpList() will always be non-NULL.
898 */
899 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
900 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
901   assert( p->nOp + N <= p->nOpAlloc );
902 }
903 #endif
904 
905 /*
906 ** Verify that the VM passed as the only argument does not contain
907 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
908 ** by code in pragma.c to ensure that the implementation of certain
909 ** pragmas comports with the flags specified in the mkpragmatab.tcl
910 ** script.
911 */
912 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
913 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
914   int i;
915   for(i=0; i<p->nOp; i++){
916     assert( p->aOp[i].opcode!=OP_ResultRow );
917   }
918 }
919 #endif
920 
921 /*
922 ** Generate code (a single OP_Abortable opcode) that will
923 ** verify that the VDBE program can safely call Abort in the current
924 ** context.
925 */
926 #if defined(SQLITE_DEBUG)
927 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
928   if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
929 }
930 #endif
931 
932 /*
933 ** This function returns a pointer to the array of opcodes associated with
934 ** the Vdbe passed as the first argument. It is the callers responsibility
935 ** to arrange for the returned array to be eventually freed using the
936 ** vdbeFreeOpArray() function.
937 **
938 ** Before returning, *pnOp is set to the number of entries in the returned
939 ** array. Also, *pnMaxArg is set to the larger of its current value and
940 ** the number of entries in the Vdbe.apArg[] array required to execute the
941 ** returned program.
942 */
943 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
944   VdbeOp *aOp = p->aOp;
945   assert( aOp && !p->db->mallocFailed );
946 
947   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
948   assert( DbMaskAllZero(p->btreeMask) );
949 
950   resolveP2Values(p, pnMaxArg);
951   *pnOp = p->nOp;
952   p->aOp = 0;
953   return aOp;
954 }
955 
956 /*
957 ** Add a whole list of operations to the operation stack.  Return a
958 ** pointer to the first operation inserted.
959 **
960 ** Non-zero P2 arguments to jump instructions are automatically adjusted
961 ** so that the jump target is relative to the first operation inserted.
962 */
963 VdbeOp *sqlite3VdbeAddOpList(
964   Vdbe *p,                     /* Add opcodes to the prepared statement */
965   int nOp,                     /* Number of opcodes to add */
966   VdbeOpList const *aOp,       /* The opcodes to be added */
967   int iLineno                  /* Source-file line number of first opcode */
968 ){
969   int i;
970   VdbeOp *pOut, *pFirst;
971   assert( nOp>0 );
972   assert( p->eVdbeState==VDBE_INIT_STATE );
973   if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
974     return 0;
975   }
976   pFirst = pOut = &p->aOp[p->nOp];
977   for(i=0; i<nOp; i++, aOp++, pOut++){
978     pOut->opcode = aOp->opcode;
979     pOut->p1 = aOp->p1;
980     pOut->p2 = aOp->p2;
981     assert( aOp->p2>=0 );
982     if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
983       pOut->p2 += p->nOp;
984     }
985     pOut->p3 = aOp->p3;
986     pOut->p4type = P4_NOTUSED;
987     pOut->p4.p = 0;
988     pOut->p5 = 0;
989 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
990     pOut->zComment = 0;
991 #endif
992 #ifdef SQLITE_VDBE_COVERAGE
993     pOut->iSrcLine = iLineno+i;
994 #else
995     (void)iLineno;
996 #endif
997 #ifdef SQLITE_DEBUG
998     if( p->db->flags & SQLITE_VdbeAddopTrace ){
999       sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1000     }
1001 #endif
1002   }
1003   p->nOp += nOp;
1004   return pFirst;
1005 }
1006 
1007 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1008 /*
1009 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1010 */
1011 void sqlite3VdbeScanStatus(
1012   Vdbe *p,                        /* VM to add scanstatus() to */
1013   int addrExplain,                /* Address of OP_Explain (or 0) */
1014   int addrLoop,                   /* Address of loop counter */
1015   int addrVisit,                  /* Address of rows visited counter */
1016   LogEst nEst,                    /* Estimated number of output rows */
1017   const char *zName               /* Name of table or index being scanned */
1018 ){
1019   sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1020   ScanStatus *aNew;
1021   aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1022   if( aNew ){
1023     ScanStatus *pNew = &aNew[p->nScan++];
1024     pNew->addrExplain = addrExplain;
1025     pNew->addrLoop = addrLoop;
1026     pNew->addrVisit = addrVisit;
1027     pNew->nEst = nEst;
1028     pNew->zName = sqlite3DbStrDup(p->db, zName);
1029     p->aScan = aNew;
1030   }
1031 }
1032 #endif
1033 
1034 
1035 /*
1036 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1037 ** for a specific instruction.
1038 */
1039 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1040   sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1041 }
1042 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1043   sqlite3VdbeGetOp(p,addr)->p1 = val;
1044 }
1045 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1046   sqlite3VdbeGetOp(p,addr)->p2 = val;
1047 }
1048 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1049   sqlite3VdbeGetOp(p,addr)->p3 = val;
1050 }
1051 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1052   assert( p->nOp>0 || p->db->mallocFailed );
1053   if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1054 }
1055 
1056 /*
1057 ** Change the P2 operand of instruction addr so that it points to
1058 ** the address of the next instruction to be coded.
1059 */
1060 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1061   sqlite3VdbeChangeP2(p, addr, p->nOp);
1062 }
1063 
1064 /*
1065 ** Change the P2 operand of the jump instruction at addr so that
1066 ** the jump lands on the next opcode.  Or if the jump instruction was
1067 ** the previous opcode (and is thus a no-op) then simply back up
1068 ** the next instruction counter by one slot so that the jump is
1069 ** overwritten by the next inserted opcode.
1070 **
1071 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1072 ** strives to omit useless byte-code like this:
1073 **
1074 **        7   Once 0 8 0
1075 **        8   ...
1076 */
1077 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
1078   if( addr==p->nOp-1 ){
1079     assert( p->aOp[addr].opcode==OP_Once
1080          || p->aOp[addr].opcode==OP_If
1081          || p->aOp[addr].opcode==OP_FkIfZero );
1082     assert( p->aOp[addr].p4type==0 );
1083 #ifdef SQLITE_VDBE_COVERAGE
1084     sqlite3VdbeGetOp(p,-1)->iSrcLine = 0;  /* Erase VdbeCoverage() macros */
1085 #endif
1086     p->nOp--;
1087   }else{
1088     sqlite3VdbeChangeP2(p, addr, p->nOp);
1089   }
1090 }
1091 
1092 
1093 /*
1094 ** If the input FuncDef structure is ephemeral, then free it.  If
1095 ** the FuncDef is not ephermal, then do nothing.
1096 */
1097 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1098   if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1099     sqlite3DbFreeNN(db, pDef);
1100   }
1101 }
1102 
1103 /*
1104 ** Delete a P4 value if necessary.
1105 */
1106 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1107   if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1108   sqlite3DbFreeNN(db, p);
1109 }
1110 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1111   freeEphemeralFunction(db, p->pFunc);
1112   sqlite3DbFreeNN(db, p);
1113 }
1114 static void freeP4(sqlite3 *db, int p4type, void *p4){
1115   assert( db );
1116   switch( p4type ){
1117     case P4_FUNCCTX: {
1118       freeP4FuncCtx(db, (sqlite3_context*)p4);
1119       break;
1120     }
1121     case P4_REAL:
1122     case P4_INT64:
1123     case P4_DYNAMIC:
1124     case P4_INTARRAY: {
1125       sqlite3DbFree(db, p4);
1126       break;
1127     }
1128     case P4_KEYINFO: {
1129       if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1130       break;
1131     }
1132 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1133     case P4_EXPR: {
1134       sqlite3ExprDelete(db, (Expr*)p4);
1135       break;
1136     }
1137 #endif
1138     case P4_FUNCDEF: {
1139       freeEphemeralFunction(db, (FuncDef*)p4);
1140       break;
1141     }
1142     case P4_MEM: {
1143       if( db->pnBytesFreed==0 ){
1144         sqlite3ValueFree((sqlite3_value*)p4);
1145       }else{
1146         freeP4Mem(db, (Mem*)p4);
1147       }
1148       break;
1149     }
1150     case P4_VTAB : {
1151       if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1152       break;
1153     }
1154   }
1155 }
1156 
1157 /*
1158 ** Free the space allocated for aOp and any p4 values allocated for the
1159 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1160 ** nOp entries.
1161 */
1162 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1163   assert( nOp>=0 );
1164   if( aOp ){
1165     Op *pOp = &aOp[nOp-1];
1166     while(1){  /* Exit via break */
1167       if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1168 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1169       sqlite3DbFree(db, pOp->zComment);
1170 #endif
1171       if( pOp==aOp ) break;
1172       pOp--;
1173     }
1174     sqlite3DbFreeNN(db, aOp);
1175   }
1176 }
1177 
1178 /*
1179 ** Link the SubProgram object passed as the second argument into the linked
1180 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1181 ** objects when the VM is no longer required.
1182 */
1183 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1184   p->pNext = pVdbe->pProgram;
1185   pVdbe->pProgram = p;
1186 }
1187 
1188 /*
1189 ** Return true if the given Vdbe has any SubPrograms.
1190 */
1191 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1192   return pVdbe->pProgram!=0;
1193 }
1194 
1195 /*
1196 ** Change the opcode at addr into OP_Noop
1197 */
1198 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1199   VdbeOp *pOp;
1200   if( p->db->mallocFailed ) return 0;
1201   assert( addr>=0 && addr<p->nOp );
1202   pOp = &p->aOp[addr];
1203   freeP4(p->db, pOp->p4type, pOp->p4.p);
1204   pOp->p4type = P4_NOTUSED;
1205   pOp->p4.z = 0;
1206   pOp->opcode = OP_Noop;
1207   return 1;
1208 }
1209 
1210 /*
1211 ** If the last opcode is "op" and it is not a jump destination,
1212 ** then remove it.  Return true if and only if an opcode was removed.
1213 */
1214 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1215   if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1216     return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1217   }else{
1218     return 0;
1219   }
1220 }
1221 
1222 #ifdef SQLITE_DEBUG
1223 /*
1224 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1225 ** registers, except any identified by mask, are no longer in use.
1226 */
1227 void sqlite3VdbeReleaseRegisters(
1228   Parse *pParse,       /* Parsing context */
1229   int iFirst,          /* Index of first register to be released */
1230   int N,               /* Number of registers to release */
1231   u32 mask,            /* Mask of registers to NOT release */
1232   int bUndefine        /* If true, mark registers as undefined */
1233 ){
1234   if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return;
1235   assert( pParse->pVdbe );
1236   assert( iFirst>=1 );
1237   assert( iFirst+N-1<=pParse->nMem );
1238   if( N<=31 && mask!=0 ){
1239     while( N>0 && (mask&1)!=0 ){
1240       mask >>= 1;
1241       iFirst++;
1242       N--;
1243     }
1244     while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1245       mask &= ~MASKBIT32(N-1);
1246       N--;
1247     }
1248   }
1249   if( N>0 ){
1250     sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1251     if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1252   }
1253 }
1254 #endif /* SQLITE_DEBUG */
1255 
1256 
1257 /*
1258 ** Change the value of the P4 operand for a specific instruction.
1259 ** This routine is useful when a large program is loaded from a
1260 ** static array using sqlite3VdbeAddOpList but we want to make a
1261 ** few minor changes to the program.
1262 **
1263 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1264 ** the string is made into memory obtained from sqlite3_malloc().
1265 ** A value of n==0 means copy bytes of zP4 up to and including the
1266 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
1267 **
1268 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1269 ** to a string or structure that is guaranteed to exist for the lifetime of
1270 ** the Vdbe. In these cases we can just copy the pointer.
1271 **
1272 ** If addr<0 then change P4 on the most recently inserted instruction.
1273 */
1274 static void SQLITE_NOINLINE vdbeChangeP4Full(
1275   Vdbe *p,
1276   Op *pOp,
1277   const char *zP4,
1278   int n
1279 ){
1280   if( pOp->p4type ){
1281     freeP4(p->db, pOp->p4type, pOp->p4.p);
1282     pOp->p4type = 0;
1283     pOp->p4.p = 0;
1284   }
1285   if( n<0 ){
1286     sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1287   }else{
1288     if( n==0 ) n = sqlite3Strlen30(zP4);
1289     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1290     pOp->p4type = P4_DYNAMIC;
1291   }
1292 }
1293 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1294   Op *pOp;
1295   sqlite3 *db;
1296   assert( p!=0 );
1297   db = p->db;
1298   assert( p->eVdbeState==VDBE_INIT_STATE );
1299   assert( p->aOp!=0 || db->mallocFailed );
1300   if( db->mallocFailed ){
1301     if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1302     return;
1303   }
1304   assert( p->nOp>0 );
1305   assert( addr<p->nOp );
1306   if( addr<0 ){
1307     addr = p->nOp - 1;
1308   }
1309   pOp = &p->aOp[addr];
1310   if( n>=0 || pOp->p4type ){
1311     vdbeChangeP4Full(p, pOp, zP4, n);
1312     return;
1313   }
1314   if( n==P4_INT32 ){
1315     /* Note: this cast is safe, because the origin data point was an int
1316     ** that was cast to a (const char *). */
1317     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1318     pOp->p4type = P4_INT32;
1319   }else if( zP4!=0 ){
1320     assert( n<0 );
1321     pOp->p4.p = (void*)zP4;
1322     pOp->p4type = (signed char)n;
1323     if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1324   }
1325 }
1326 
1327 /*
1328 ** Change the P4 operand of the most recently coded instruction
1329 ** to the value defined by the arguments.  This is a high-speed
1330 ** version of sqlite3VdbeChangeP4().
1331 **
1332 ** The P4 operand must not have been previously defined.  And the new
1333 ** P4 must not be P4_INT32.  Use sqlite3VdbeChangeP4() in either of
1334 ** those cases.
1335 */
1336 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1337   VdbeOp *pOp;
1338   assert( n!=P4_INT32 && n!=P4_VTAB );
1339   assert( n<=0 );
1340   if( p->db->mallocFailed ){
1341     freeP4(p->db, n, pP4);
1342   }else{
1343     assert( pP4!=0 );
1344     assert( p->nOp>0 );
1345     pOp = &p->aOp[p->nOp-1];
1346     assert( pOp->p4type==P4_NOTUSED );
1347     pOp->p4type = n;
1348     pOp->p4.p = pP4;
1349   }
1350 }
1351 
1352 /*
1353 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1354 ** index given.
1355 */
1356 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1357   Vdbe *v = pParse->pVdbe;
1358   KeyInfo *pKeyInfo;
1359   assert( v!=0 );
1360   assert( pIdx!=0 );
1361   pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1362   if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1363 }
1364 
1365 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1366 /*
1367 ** Change the comment on the most recently coded instruction.  Or
1368 ** insert a No-op and add the comment to that new instruction.  This
1369 ** makes the code easier to read during debugging.  None of this happens
1370 ** in a production build.
1371 */
1372 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1373   assert( p->nOp>0 || p->aOp==0 );
1374   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 );
1375   if( p->nOp ){
1376     assert( p->aOp );
1377     sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1378     p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1379   }
1380 }
1381 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1382   va_list ap;
1383   if( p ){
1384     va_start(ap, zFormat);
1385     vdbeVComment(p, zFormat, ap);
1386     va_end(ap);
1387   }
1388 }
1389 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1390   va_list ap;
1391   if( p ){
1392     sqlite3VdbeAddOp0(p, OP_Noop);
1393     va_start(ap, zFormat);
1394     vdbeVComment(p, zFormat, ap);
1395     va_end(ap);
1396   }
1397 }
1398 #endif  /* NDEBUG */
1399 
1400 #ifdef SQLITE_VDBE_COVERAGE
1401 /*
1402 ** Set the value if the iSrcLine field for the previously coded instruction.
1403 */
1404 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1405   sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1406 }
1407 #endif /* SQLITE_VDBE_COVERAGE */
1408 
1409 /*
1410 ** Return the opcode for a given address.  If the address is -1, then
1411 ** return the most recently inserted opcode.
1412 **
1413 ** If a memory allocation error has occurred prior to the calling of this
1414 ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
1415 ** is readable but not writable, though it is cast to a writable value.
1416 ** The return of a dummy opcode allows the call to continue functioning
1417 ** after an OOM fault without having to check to see if the return from
1418 ** this routine is a valid pointer.  But because the dummy.opcode is 0,
1419 ** dummy will never be written to.  This is verified by code inspection and
1420 ** by running with Valgrind.
1421 */
1422 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1423   /* C89 specifies that the constant "dummy" will be initialized to all
1424   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
1425   static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
1426   assert( p->eVdbeState==VDBE_INIT_STATE );
1427   if( addr<0 ){
1428     addr = p->nOp - 1;
1429   }
1430   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1431   if( p->db->mallocFailed ){
1432     return (VdbeOp*)&dummy;
1433   }else{
1434     return &p->aOp[addr];
1435   }
1436 }
1437 
1438 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1439 /*
1440 ** Return an integer value for one of the parameters to the opcode pOp
1441 ** determined by character c.
1442 */
1443 static int translateP(char c, const Op *pOp){
1444   if( c=='1' ) return pOp->p1;
1445   if( c=='2' ) return pOp->p2;
1446   if( c=='3' ) return pOp->p3;
1447   if( c=='4' ) return pOp->p4.i;
1448   return pOp->p5;
1449 }
1450 
1451 /*
1452 ** Compute a string for the "comment" field of a VDBE opcode listing.
1453 **
1454 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1455 ** to an extra string that is appended to the sqlite3OpcodeName().  In the
1456 ** absence of other comments, this synopsis becomes the comment on the opcode.
1457 ** Some translation occurs:
1458 **
1459 **       "PX"      ->  "r[X]"
1460 **       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1
1461 **       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0
1462 **       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x
1463 */
1464 char *sqlite3VdbeDisplayComment(
1465   sqlite3 *db,       /* Optional - Oom error reporting only */
1466   const Op *pOp,     /* The opcode to be commented */
1467   const char *zP4    /* Previously obtained value for P4 */
1468 ){
1469   const char *zOpName;
1470   const char *zSynopsis;
1471   int nOpName;
1472   int ii;
1473   char zAlt[50];
1474   StrAccum x;
1475 
1476   sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1477   zOpName = sqlite3OpcodeName(pOp->opcode);
1478   nOpName = sqlite3Strlen30(zOpName);
1479   if( zOpName[nOpName+1] ){
1480     int seenCom = 0;
1481     char c;
1482     zSynopsis = zOpName + nOpName + 1;
1483     if( strncmp(zSynopsis,"IF ",3)==0 ){
1484       sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1485       zSynopsis = zAlt;
1486     }
1487     for(ii=0; (c = zSynopsis[ii])!=0; ii++){
1488       if( c=='P' ){
1489         c = zSynopsis[++ii];
1490         if( c=='4' ){
1491           sqlite3_str_appendall(&x, zP4);
1492         }else if( c=='X' ){
1493           sqlite3_str_appendall(&x, pOp->zComment);
1494           seenCom = 1;
1495         }else{
1496           int v1 = translateP(c, pOp);
1497           int v2;
1498           if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1499             ii += 3;
1500             v2 = translateP(zSynopsis[ii], pOp);
1501             if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1502               ii += 2;
1503               v2++;
1504             }
1505             if( v2<2 ){
1506               sqlite3_str_appendf(&x, "%d", v1);
1507             }else{
1508               sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
1509             }
1510           }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
1511             sqlite3_context *pCtx = pOp->p4.pCtx;
1512             if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
1513               sqlite3_str_appendf(&x, "%d", v1);
1514             }else if( pCtx->argc>1 ){
1515               sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
1516             }else if( x.accError==0 ){
1517               assert( x.nChar>2 );
1518               x.nChar -= 2;
1519               ii++;
1520             }
1521             ii += 3;
1522           }else{
1523             sqlite3_str_appendf(&x, "%d", v1);
1524             if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1525               ii += 4;
1526             }
1527           }
1528         }
1529       }else{
1530         sqlite3_str_appendchar(&x, 1, c);
1531       }
1532     }
1533     if( !seenCom && pOp->zComment ){
1534       sqlite3_str_appendf(&x, "; %s", pOp->zComment);
1535     }
1536   }else if( pOp->zComment ){
1537     sqlite3_str_appendall(&x, pOp->zComment);
1538   }
1539   if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
1540     sqlite3OomFault(db);
1541   }
1542   return sqlite3StrAccumFinish(&x);
1543 }
1544 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1545 
1546 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1547 /*
1548 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1549 ** that can be displayed in the P4 column of EXPLAIN output.
1550 */
1551 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1552   const char *zOp = 0;
1553   switch( pExpr->op ){
1554     case TK_STRING:
1555       assert( !ExprHasProperty(pExpr, EP_IntValue) );
1556       sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1557       break;
1558     case TK_INTEGER:
1559       sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1560       break;
1561     case TK_NULL:
1562       sqlite3_str_appendf(p, "NULL");
1563       break;
1564     case TK_REGISTER: {
1565       sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1566       break;
1567     }
1568     case TK_COLUMN: {
1569       if( pExpr->iColumn<0 ){
1570         sqlite3_str_appendf(p, "rowid");
1571       }else{
1572         sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1573       }
1574       break;
1575     }
1576     case TK_LT:      zOp = "LT";      break;
1577     case TK_LE:      zOp = "LE";      break;
1578     case TK_GT:      zOp = "GT";      break;
1579     case TK_GE:      zOp = "GE";      break;
1580     case TK_NE:      zOp = "NE";      break;
1581     case TK_EQ:      zOp = "EQ";      break;
1582     case TK_IS:      zOp = "IS";      break;
1583     case TK_ISNOT:   zOp = "ISNOT";   break;
1584     case TK_AND:     zOp = "AND";     break;
1585     case TK_OR:      zOp = "OR";      break;
1586     case TK_PLUS:    zOp = "ADD";     break;
1587     case TK_STAR:    zOp = "MUL";     break;
1588     case TK_MINUS:   zOp = "SUB";     break;
1589     case TK_REM:     zOp = "REM";     break;
1590     case TK_BITAND:  zOp = "BITAND";  break;
1591     case TK_BITOR:   zOp = "BITOR";   break;
1592     case TK_SLASH:   zOp = "DIV";     break;
1593     case TK_LSHIFT:  zOp = "LSHIFT";  break;
1594     case TK_RSHIFT:  zOp = "RSHIFT";  break;
1595     case TK_CONCAT:  zOp = "CONCAT";  break;
1596     case TK_UMINUS:  zOp = "MINUS";   break;
1597     case TK_UPLUS:   zOp = "PLUS";    break;
1598     case TK_BITNOT:  zOp = "BITNOT";  break;
1599     case TK_NOT:     zOp = "NOT";     break;
1600     case TK_ISNULL:  zOp = "ISNULL";  break;
1601     case TK_NOTNULL: zOp = "NOTNULL"; break;
1602 
1603     default:
1604       sqlite3_str_appendf(p, "%s", "expr");
1605       break;
1606   }
1607 
1608   if( zOp ){
1609     sqlite3_str_appendf(p, "%s(", zOp);
1610     displayP4Expr(p, pExpr->pLeft);
1611     if( pExpr->pRight ){
1612       sqlite3_str_append(p, ",", 1);
1613       displayP4Expr(p, pExpr->pRight);
1614     }
1615     sqlite3_str_append(p, ")", 1);
1616   }
1617 }
1618 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1619 
1620 
1621 #if VDBE_DISPLAY_P4
1622 /*
1623 ** Compute a string that describes the P4 parameter for an opcode.
1624 ** Use zTemp for any required temporary buffer space.
1625 */
1626 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
1627   char *zP4 = 0;
1628   StrAccum x;
1629 
1630   sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1631   switch( pOp->p4type ){
1632     case P4_KEYINFO: {
1633       int j;
1634       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1635       assert( pKeyInfo->aSortFlags!=0 );
1636       sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1637       for(j=0; j<pKeyInfo->nKeyField; j++){
1638         CollSeq *pColl = pKeyInfo->aColl[j];
1639         const char *zColl = pColl ? pColl->zName : "";
1640         if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1641         sqlite3_str_appendf(&x, ",%s%s%s",
1642                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1643                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1644                zColl);
1645       }
1646       sqlite3_str_append(&x, ")", 1);
1647       break;
1648     }
1649 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1650     case P4_EXPR: {
1651       displayP4Expr(&x, pOp->p4.pExpr);
1652       break;
1653     }
1654 #endif
1655     case P4_COLLSEQ: {
1656       static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
1657       CollSeq *pColl = pOp->p4.pColl;
1658       assert( pColl->enc<4 );
1659       sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
1660                           encnames[pColl->enc]);
1661       break;
1662     }
1663     case P4_FUNCDEF: {
1664       FuncDef *pDef = pOp->p4.pFunc;
1665       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1666       break;
1667     }
1668     case P4_FUNCCTX: {
1669       FuncDef *pDef = pOp->p4.pCtx->pFunc;
1670       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1671       break;
1672     }
1673     case P4_INT64: {
1674       sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1675       break;
1676     }
1677     case P4_INT32: {
1678       sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1679       break;
1680     }
1681     case P4_REAL: {
1682       sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1683       break;
1684     }
1685     case P4_MEM: {
1686       Mem *pMem = pOp->p4.pMem;
1687       if( pMem->flags & MEM_Str ){
1688         zP4 = pMem->z;
1689       }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1690         sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1691       }else if( pMem->flags & MEM_Real ){
1692         sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1693       }else if( pMem->flags & MEM_Null ){
1694         zP4 = "NULL";
1695       }else{
1696         assert( pMem->flags & MEM_Blob );
1697         zP4 = "(blob)";
1698       }
1699       break;
1700     }
1701 #ifndef SQLITE_OMIT_VIRTUALTABLE
1702     case P4_VTAB: {
1703       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1704       sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1705       break;
1706     }
1707 #endif
1708     case P4_INTARRAY: {
1709       u32 i;
1710       u32 *ai = pOp->p4.ai;
1711       u32 n = ai[0];   /* The first element of an INTARRAY is always the
1712                        ** count of the number of elements to follow */
1713       for(i=1; i<=n; i++){
1714         sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
1715       }
1716       sqlite3_str_append(&x, "]", 1);
1717       break;
1718     }
1719     case P4_SUBPROGRAM: {
1720       zP4 = "program";
1721       break;
1722     }
1723     case P4_TABLE: {
1724       zP4 = pOp->p4.pTab->zName;
1725       break;
1726     }
1727     default: {
1728       zP4 = pOp->p4.z;
1729     }
1730   }
1731   if( zP4 ) sqlite3_str_appendall(&x, zP4);
1732   if( (x.accError & SQLITE_NOMEM)!=0 ){
1733     sqlite3OomFault(db);
1734   }
1735   return sqlite3StrAccumFinish(&x);
1736 }
1737 #endif /* VDBE_DISPLAY_P4 */
1738 
1739 /*
1740 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1741 **
1742 ** The prepared statements need to know in advance the complete set of
1743 ** attached databases that will be use.  A mask of these databases
1744 ** is maintained in p->btreeMask.  The p->lockMask value is the subset of
1745 ** p->btreeMask of databases that will require a lock.
1746 */
1747 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1748   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1749   assert( i<(int)sizeof(p->btreeMask)*8 );
1750   DbMaskSet(p->btreeMask, i);
1751   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1752     DbMaskSet(p->lockMask, i);
1753   }
1754 }
1755 
1756 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1757 /*
1758 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1759 ** this routine obtains the mutex associated with each BtShared structure
1760 ** that may be accessed by the VM passed as an argument. In doing so it also
1761 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1762 ** that the correct busy-handler callback is invoked if required.
1763 **
1764 ** If SQLite is not threadsafe but does support shared-cache mode, then
1765 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1766 ** of all of BtShared structures accessible via the database handle
1767 ** associated with the VM.
1768 **
1769 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1770 ** function is a no-op.
1771 **
1772 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1773 ** statement p will ever use.  Let N be the number of bits in p->btreeMask
1774 ** corresponding to btrees that use shared cache.  Then the runtime of
1775 ** this routine is N*N.  But as N is rarely more than 1, this should not
1776 ** be a problem.
1777 */
1778 void sqlite3VdbeEnter(Vdbe *p){
1779   int i;
1780   sqlite3 *db;
1781   Db *aDb;
1782   int nDb;
1783   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1784   db = p->db;
1785   aDb = db->aDb;
1786   nDb = db->nDb;
1787   for(i=0; i<nDb; i++){
1788     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1789       sqlite3BtreeEnter(aDb[i].pBt);
1790     }
1791   }
1792 }
1793 #endif
1794 
1795 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1796 /*
1797 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1798 */
1799 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1800   int i;
1801   sqlite3 *db;
1802   Db *aDb;
1803   int nDb;
1804   db = p->db;
1805   aDb = db->aDb;
1806   nDb = db->nDb;
1807   for(i=0; i<nDb; i++){
1808     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1809       sqlite3BtreeLeave(aDb[i].pBt);
1810     }
1811   }
1812 }
1813 void sqlite3VdbeLeave(Vdbe *p){
1814   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1815   vdbeLeave(p);
1816 }
1817 #endif
1818 
1819 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1820 /*
1821 ** Print a single opcode.  This routine is used for debugging only.
1822 */
1823 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
1824   char *zP4;
1825   char *zCom;
1826   sqlite3 dummyDb;
1827   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1828   if( pOut==0 ) pOut = stdout;
1829   sqlite3BeginBenignMalloc();
1830   dummyDb.mallocFailed = 1;
1831   zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
1832 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1833   zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
1834 #else
1835   zCom = 0;
1836 #endif
1837   /* NB:  The sqlite3OpcodeName() function is implemented by code created
1838   ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1839   ** information from the vdbe.c source text */
1840   fprintf(pOut, zFormat1, pc,
1841       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
1842       zP4 ? zP4 : "", pOp->p5,
1843       zCom ? zCom : ""
1844   );
1845   fflush(pOut);
1846   sqlite3_free(zP4);
1847   sqlite3_free(zCom);
1848   sqlite3EndBenignMalloc();
1849 }
1850 #endif
1851 
1852 /*
1853 ** Initialize an array of N Mem element.
1854 **
1855 ** This is a high-runner, so only those fields that really do need to
1856 ** be initialized are set.  The Mem structure is organized so that
1857 ** the fields that get initialized are nearby and hopefully on the same
1858 ** cache line.
1859 **
1860 **    Mem.flags = flags
1861 **    Mem.db = db
1862 **    Mem.szMalloc = 0
1863 **
1864 ** All other fields of Mem can safely remain uninitialized for now.  They
1865 ** will be initialized before use.
1866 */
1867 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1868   if( N>0 ){
1869     do{
1870       p->flags = flags;
1871       p->db = db;
1872       p->szMalloc = 0;
1873 #ifdef SQLITE_DEBUG
1874       p->pScopyFrom = 0;
1875 #endif
1876       p++;
1877     }while( (--N)>0 );
1878   }
1879 }
1880 
1881 /*
1882 ** Release auxiliary memory held in an array of N Mem elements.
1883 **
1884 ** After this routine returns, all Mem elements in the array will still
1885 ** be valid.  Those Mem elements that were not holding auxiliary resources
1886 ** will be unchanged.  Mem elements which had something freed will be
1887 ** set to MEM_Undefined.
1888 */
1889 static void releaseMemArray(Mem *p, int N){
1890   if( p && N ){
1891     Mem *pEnd = &p[N];
1892     sqlite3 *db = p->db;
1893     if( db->pnBytesFreed ){
1894       do{
1895         if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1896       }while( (++p)<pEnd );
1897       return;
1898     }
1899     do{
1900       assert( (&p[1])==pEnd || p[0].db==p[1].db );
1901       assert( sqlite3VdbeCheckMemInvariants(p) );
1902 
1903       /* This block is really an inlined version of sqlite3VdbeMemRelease()
1904       ** that takes advantage of the fact that the memory cell value is
1905       ** being set to NULL after releasing any dynamic resources.
1906       **
1907       ** The justification for duplicating code is that according to
1908       ** callgrind, this causes a certain test case to hit the CPU 4.7
1909       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1910       ** sqlite3MemRelease() were called from here. With -O2, this jumps
1911       ** to 6.6 percent. The test case is inserting 1000 rows into a table
1912       ** with no indexes using a single prepared INSERT statement, bind()
1913       ** and reset(). Inserts are grouped into a transaction.
1914       */
1915       testcase( p->flags & MEM_Agg );
1916       testcase( p->flags & MEM_Dyn );
1917       if( p->flags&(MEM_Agg|MEM_Dyn) ){
1918         testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel );
1919         sqlite3VdbeMemRelease(p);
1920         p->flags = MEM_Undefined;
1921       }else if( p->szMalloc ){
1922         sqlite3DbFreeNN(db, p->zMalloc);
1923         p->szMalloc = 0;
1924         p->flags = MEM_Undefined;
1925       }
1926 #ifdef SQLITE_DEBUG
1927       else{
1928         p->flags = MEM_Undefined;
1929       }
1930 #endif
1931     }while( (++p)<pEnd );
1932   }
1933 }
1934 
1935 #ifdef SQLITE_DEBUG
1936 /*
1937 ** Verify that pFrame is a valid VdbeFrame pointer.  Return true if it is
1938 ** and false if something is wrong.
1939 **
1940 ** This routine is intended for use inside of assert() statements only.
1941 */
1942 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
1943   if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
1944   return 1;
1945 }
1946 #endif
1947 
1948 
1949 /*
1950 ** This is a destructor on a Mem object (which is really an sqlite3_value)
1951 ** that deletes the Frame object that is attached to it as a blob.
1952 **
1953 ** This routine does not delete the Frame right away.  It merely adds the
1954 ** frame to a list of frames to be deleted when the Vdbe halts.
1955 */
1956 void sqlite3VdbeFrameMemDel(void *pArg){
1957   VdbeFrame *pFrame = (VdbeFrame*)pArg;
1958   assert( sqlite3VdbeFrameIsValid(pFrame) );
1959   pFrame->pParent = pFrame->v->pDelFrame;
1960   pFrame->v->pDelFrame = pFrame;
1961 }
1962 
1963 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
1964 /*
1965 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
1966 ** QUERY PLAN output.
1967 **
1968 ** Return SQLITE_ROW on success.  Return SQLITE_DONE if there are no
1969 ** more opcodes to be displayed.
1970 */
1971 int sqlite3VdbeNextOpcode(
1972   Vdbe *p,         /* The statement being explained */
1973   Mem *pSub,       /* Storage for keeping track of subprogram nesting */
1974   int eMode,       /* 0: normal.  1: EQP.  2:  TablesUsed */
1975   int *piPc,       /* IN/OUT: Current rowid.  Overwritten with next rowid */
1976   int *piAddr,     /* OUT: Write index into (*paOp)[] here */
1977   Op **paOp        /* OUT: Write the opcode array here */
1978 ){
1979   int nRow;                            /* Stop when row count reaches this */
1980   int nSub = 0;                        /* Number of sub-vdbes seen so far */
1981   SubProgram **apSub = 0;              /* Array of sub-vdbes */
1982   int i;                               /* Next instruction address */
1983   int rc = SQLITE_OK;                  /* Result code */
1984   Op *aOp = 0;                         /* Opcode array */
1985   int iPc;                             /* Rowid.  Copy of value in *piPc */
1986 
1987   /* When the number of output rows reaches nRow, that means the
1988   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1989   ** nRow is the sum of the number of rows in the main program, plus
1990   ** the sum of the number of rows in all trigger subprograms encountered
1991   ** so far.  The nRow value will increase as new trigger subprograms are
1992   ** encountered, but p->pc will eventually catch up to nRow.
1993   */
1994   nRow = p->nOp;
1995   if( pSub!=0 ){
1996     if( pSub->flags&MEM_Blob ){
1997       /* pSub is initiallly NULL.  It is initialized to a BLOB by
1998       ** the P4_SUBPROGRAM processing logic below */
1999       nSub = pSub->n/sizeof(Vdbe*);
2000       apSub = (SubProgram **)pSub->z;
2001     }
2002     for(i=0; i<nSub; i++){
2003       nRow += apSub[i]->nOp;
2004     }
2005   }
2006   iPc = *piPc;
2007   while(1){  /* Loop exits via break */
2008     i = iPc++;
2009     if( i>=nRow ){
2010       p->rc = SQLITE_OK;
2011       rc = SQLITE_DONE;
2012       break;
2013     }
2014     if( i<p->nOp ){
2015       /* The rowid is small enough that we are still in the
2016       ** main program. */
2017       aOp = p->aOp;
2018     }else{
2019       /* We are currently listing subprograms.  Figure out which one and
2020       ** pick up the appropriate opcode. */
2021       int j;
2022       i -= p->nOp;
2023       assert( apSub!=0 );
2024       assert( nSub>0 );
2025       for(j=0; i>=apSub[j]->nOp; j++){
2026         i -= apSub[j]->nOp;
2027         assert( i<apSub[j]->nOp || j+1<nSub );
2028       }
2029       aOp = apSub[j]->aOp;
2030     }
2031 
2032     /* When an OP_Program opcode is encounter (the only opcode that has
2033     ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2034     ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2035     ** has not already been seen.
2036     */
2037     if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
2038       int nByte = (nSub+1)*sizeof(SubProgram*);
2039       int j;
2040       for(j=0; j<nSub; j++){
2041         if( apSub[j]==aOp[i].p4.pProgram ) break;
2042       }
2043       if( j==nSub ){
2044         p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2045         if( p->rc!=SQLITE_OK ){
2046           rc = SQLITE_ERROR;
2047           break;
2048         }
2049         apSub = (SubProgram **)pSub->z;
2050         apSub[nSub++] = aOp[i].p4.pProgram;
2051         MemSetTypeFlag(pSub, MEM_Blob);
2052         pSub->n = nSub*sizeof(SubProgram*);
2053         nRow += aOp[i].p4.pProgram->nOp;
2054       }
2055     }
2056     if( eMode==0 ) break;
2057 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2058     if( eMode==2 ){
2059       Op *pOp = aOp + i;
2060       if( pOp->opcode==OP_OpenRead ) break;
2061       if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
2062       if( pOp->opcode==OP_ReopenIdx ) break;
2063     }else
2064 #endif
2065     {
2066       assert( eMode==1 );
2067       if( aOp[i].opcode==OP_Explain ) break;
2068       if( aOp[i].opcode==OP_Init && iPc>1 ) break;
2069     }
2070   }
2071   *piPc = iPc;
2072   *piAddr = i;
2073   *paOp = aOp;
2074   return rc;
2075 }
2076 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2077 
2078 
2079 /*
2080 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2081 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2082 */
2083 void sqlite3VdbeFrameDelete(VdbeFrame *p){
2084   int i;
2085   Mem *aMem = VdbeFrameMem(p);
2086   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
2087   assert( sqlite3VdbeFrameIsValid(p) );
2088   for(i=0; i<p->nChildCsr; i++){
2089     if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]);
2090   }
2091   releaseMemArray(aMem, p->nChildMem);
2092   sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
2093   sqlite3DbFree(p->v->db, p);
2094 }
2095 
2096 #ifndef SQLITE_OMIT_EXPLAIN
2097 /*
2098 ** Give a listing of the program in the virtual machine.
2099 **
2100 ** The interface is the same as sqlite3VdbeExec().  But instead of
2101 ** running the code, it invokes the callback once for each instruction.
2102 ** This feature is used to implement "EXPLAIN".
2103 **
2104 ** When p->explain==1, each instruction is listed.  When
2105 ** p->explain==2, only OP_Explain instructions are listed and these
2106 ** are shown in a different format.  p->explain==2 is used to implement
2107 ** EXPLAIN QUERY PLAN.
2108 ** 2018-04-24:  In p->explain==2 mode, the OP_Init opcodes of triggers
2109 ** are also shown, so that the boundaries between the main program and
2110 ** each trigger are clear.
2111 **
2112 ** When p->explain==1, first the main program is listed, then each of
2113 ** the trigger subprograms are listed one by one.
2114 */
2115 int sqlite3VdbeList(
2116   Vdbe *p                   /* The VDBE */
2117 ){
2118   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
2119   sqlite3 *db = p->db;                 /* The database connection */
2120   int i;                               /* Loop counter */
2121   int rc = SQLITE_OK;                  /* Return code */
2122   Mem *pMem = &p->aMem[1];             /* First Mem of result set */
2123   int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
2124   Op *aOp;                             /* Array of opcodes */
2125   Op *pOp;                             /* Current opcode */
2126 
2127   assert( p->explain );
2128   assert( p->eVdbeState==VDBE_RUN_STATE );
2129   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
2130 
2131   /* Even though this opcode does not use dynamic strings for
2132   ** the result, result columns may become dynamic if the user calls
2133   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2134   */
2135   releaseMemArray(pMem, 8);
2136   p->pResultSet = 0;
2137 
2138   if( p->rc==SQLITE_NOMEM ){
2139     /* This happens if a malloc() inside a call to sqlite3_column_text() or
2140     ** sqlite3_column_text16() failed.  */
2141     sqlite3OomFault(db);
2142     return SQLITE_ERROR;
2143   }
2144 
2145   if( bListSubprogs ){
2146     /* The first 8 memory cells are used for the result set.  So we will
2147     ** commandeer the 9th cell to use as storage for an array of pointers
2148     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
2149     ** cells.  */
2150     assert( p->nMem>9 );
2151     pSub = &p->aMem[9];
2152   }else{
2153     pSub = 0;
2154   }
2155 
2156   /* Figure out which opcode is next to display */
2157   rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
2158 
2159   if( rc==SQLITE_OK ){
2160     pOp = aOp + i;
2161     if( AtomicLoad(&db->u1.isInterrupted) ){
2162       p->rc = SQLITE_INTERRUPT;
2163       rc = SQLITE_ERROR;
2164       sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2165     }else{
2166       char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
2167       if( p->explain==2 ){
2168         sqlite3VdbeMemSetInt64(pMem, pOp->p1);
2169         sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
2170         sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
2171         sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
2172         p->nResColumn = 4;
2173       }else{
2174         sqlite3VdbeMemSetInt64(pMem+0, i);
2175         sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
2176                              -1, SQLITE_UTF8, SQLITE_STATIC);
2177         sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
2178         sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
2179         sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
2180         /* pMem+5 for p4 is done last */
2181         sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
2182 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2183         {
2184           char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
2185           sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
2186         }
2187 #else
2188         sqlite3VdbeMemSetNull(pMem+7);
2189 #endif
2190         sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
2191         p->nResColumn = 8;
2192       }
2193       p->pResultSet = pMem;
2194       if( db->mallocFailed ){
2195         p->rc = SQLITE_NOMEM;
2196         rc = SQLITE_ERROR;
2197       }else{
2198         p->rc = SQLITE_OK;
2199         rc = SQLITE_ROW;
2200       }
2201     }
2202   }
2203   return rc;
2204 }
2205 #endif /* SQLITE_OMIT_EXPLAIN */
2206 
2207 #ifdef SQLITE_DEBUG
2208 /*
2209 ** Print the SQL that was used to generate a VDBE program.
2210 */
2211 void sqlite3VdbePrintSql(Vdbe *p){
2212   const char *z = 0;
2213   if( p->zSql ){
2214     z = p->zSql;
2215   }else if( p->nOp>=1 ){
2216     const VdbeOp *pOp = &p->aOp[0];
2217     if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2218       z = pOp->p4.z;
2219       while( sqlite3Isspace(*z) ) z++;
2220     }
2221   }
2222   if( z ) printf("SQL: [%s]\n", z);
2223 }
2224 #endif
2225 
2226 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2227 /*
2228 ** Print an IOTRACE message showing SQL content.
2229 */
2230 void sqlite3VdbeIOTraceSql(Vdbe *p){
2231   int nOp = p->nOp;
2232   VdbeOp *pOp;
2233   if( sqlite3IoTrace==0 ) return;
2234   if( nOp<1 ) return;
2235   pOp = &p->aOp[0];
2236   if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2237     int i, j;
2238     char z[1000];
2239     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2240     for(i=0; sqlite3Isspace(z[i]); i++){}
2241     for(j=0; z[i]; i++){
2242       if( sqlite3Isspace(z[i]) ){
2243         if( z[i-1]!=' ' ){
2244           z[j++] = ' ';
2245         }
2246       }else{
2247         z[j++] = z[i];
2248       }
2249     }
2250     z[j] = 0;
2251     sqlite3IoTrace("SQL %s\n", z);
2252   }
2253 }
2254 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2255 
2256 /* An instance of this object describes bulk memory available for use
2257 ** by subcomponents of a prepared statement.  Space is allocated out
2258 ** of a ReusableSpace object by the allocSpace() routine below.
2259 */
2260 struct ReusableSpace {
2261   u8 *pSpace;            /* Available memory */
2262   sqlite3_int64 nFree;   /* Bytes of available memory */
2263   sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2264 };
2265 
2266 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2267 ** from the ReusableSpace object.  Return a pointer to the allocated
2268 ** memory on success.  If insufficient memory is available in the
2269 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2270 ** value by the amount needed and return NULL.
2271 **
2272 ** If pBuf is not initially NULL, that means that the memory has already
2273 ** been allocated by a prior call to this routine, so just return a copy
2274 ** of pBuf and leave ReusableSpace unchanged.
2275 **
2276 ** This allocator is employed to repurpose unused slots at the end of the
2277 ** opcode array of prepared state for other memory needs of the prepared
2278 ** statement.
2279 */
2280 static void *allocSpace(
2281   struct ReusableSpace *p,  /* Bulk memory available for allocation */
2282   void *pBuf,               /* Pointer to a prior allocation */
2283   sqlite3_int64 nByte       /* Bytes of memory needed. */
2284 ){
2285   assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2286   if( pBuf==0 ){
2287     nByte = ROUND8P(nByte);
2288     if( nByte <= p->nFree ){
2289       p->nFree -= nByte;
2290       pBuf = &p->pSpace[p->nFree];
2291     }else{
2292       p->nNeeded += nByte;
2293     }
2294   }
2295   assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2296   return pBuf;
2297 }
2298 
2299 /*
2300 ** Rewind the VDBE back to the beginning in preparation for
2301 ** running it.
2302 */
2303 void sqlite3VdbeRewind(Vdbe *p){
2304 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2305   int i;
2306 #endif
2307   assert( p!=0 );
2308   assert( p->eVdbeState==VDBE_INIT_STATE
2309        || p->eVdbeState==VDBE_READY_STATE
2310        || p->eVdbeState==VDBE_HALT_STATE );
2311 
2312   /* There should be at least one opcode.
2313   */
2314   assert( p->nOp>0 );
2315 
2316   p->eVdbeState = VDBE_READY_STATE;
2317 
2318 #ifdef SQLITE_DEBUG
2319   for(i=0; i<p->nMem; i++){
2320     assert( p->aMem[i].db==p->db );
2321   }
2322 #endif
2323   p->pc = -1;
2324   p->rc = SQLITE_OK;
2325   p->errorAction = OE_Abort;
2326   p->nChange = 0;
2327   p->cacheCtr = 1;
2328   p->minWriteFileFormat = 255;
2329   p->iStatement = 0;
2330   p->nFkConstraint = 0;
2331 #ifdef VDBE_PROFILE
2332   for(i=0; i<p->nOp; i++){
2333     p->aOp[i].cnt = 0;
2334     p->aOp[i].cycles = 0;
2335   }
2336 #endif
2337 }
2338 
2339 /*
2340 ** Prepare a virtual machine for execution for the first time after
2341 ** creating the virtual machine.  This involves things such
2342 ** as allocating registers and initializing the program counter.
2343 ** After the VDBE has be prepped, it can be executed by one or more
2344 ** calls to sqlite3VdbeExec().
2345 **
2346 ** This function may be called exactly once on each virtual machine.
2347 ** After this routine is called the VM has been "packaged" and is ready
2348 ** to run.  After this routine is called, further calls to
2349 ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
2350 ** the Vdbe from the Parse object that helped generate it so that the
2351 ** the Vdbe becomes an independent entity and the Parse object can be
2352 ** destroyed.
2353 **
2354 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2355 ** to its initial state after it has been run.
2356 */
2357 void sqlite3VdbeMakeReady(
2358   Vdbe *p,                       /* The VDBE */
2359   Parse *pParse                  /* Parsing context */
2360 ){
2361   sqlite3 *db;                   /* The database connection */
2362   int nVar;                      /* Number of parameters */
2363   int nMem;                      /* Number of VM memory registers */
2364   int nCursor;                   /* Number of cursors required */
2365   int nArg;                      /* Number of arguments in subprograms */
2366   int n;                         /* Loop counter */
2367   struct ReusableSpace x;        /* Reusable bulk memory */
2368 
2369   assert( p!=0 );
2370   assert( p->nOp>0 );
2371   assert( pParse!=0 );
2372   assert( p->eVdbeState==VDBE_INIT_STATE );
2373   assert( pParse==p->pParse );
2374   p->pVList = pParse->pVList;
2375   pParse->pVList =  0;
2376   db = p->db;
2377   assert( db->mallocFailed==0 );
2378   nVar = pParse->nVar;
2379   nMem = pParse->nMem;
2380   nCursor = pParse->nTab;
2381   nArg = pParse->nMaxArg;
2382 
2383   /* Each cursor uses a memory cell.  The first cursor (cursor 0) can
2384   ** use aMem[0] which is not otherwise used by the VDBE program.  Allocate
2385   ** space at the end of aMem[] for cursors 1 and greater.
2386   ** See also: allocateCursor().
2387   */
2388   nMem += nCursor;
2389   if( nCursor==0 && nMem>0 ) nMem++;  /* Space for aMem[0] even if not used */
2390 
2391   /* Figure out how much reusable memory is available at the end of the
2392   ** opcode array.  This extra memory will be reallocated for other elements
2393   ** of the prepared statement.
2394   */
2395   n = ROUND8P(sizeof(Op)*p->nOp);             /* Bytes of opcode memory used */
2396   x.pSpace = &((u8*)p->aOp)[n];               /* Unused opcode memory */
2397   assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2398   x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */
2399   assert( x.nFree>=0 );
2400   assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2401 
2402   resolveP2Values(p, &nArg);
2403   p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2404   if( pParse->explain ){
2405     static const char * const azColName[] = {
2406        "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2407        "id", "parent", "notused", "detail"
2408     };
2409     int iFirst, mx, i;
2410     if( nMem<10 ) nMem = 10;
2411     p->explain = pParse->explain;
2412     if( pParse->explain==2 ){
2413       sqlite3VdbeSetNumCols(p, 4);
2414       iFirst = 8;
2415       mx = 12;
2416     }else{
2417       sqlite3VdbeSetNumCols(p, 8);
2418       iFirst = 0;
2419       mx = 8;
2420     }
2421     for(i=iFirst; i<mx; i++){
2422       sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
2423                             azColName[i], SQLITE_STATIC);
2424     }
2425   }
2426   p->expired = 0;
2427 
2428   /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2429   ** passes.  On the first pass, we try to reuse unused memory at the
2430   ** end of the opcode array.  If we are unable to satisfy all memory
2431   ** requirements by reusing the opcode array tail, then the second
2432   ** pass will fill in the remainder using a fresh memory allocation.
2433   **
2434   ** This two-pass approach that reuses as much memory as possible from
2435   ** the leftover memory at the end of the opcode array.  This can significantly
2436   ** reduce the amount of memory held by a prepared statement.
2437   */
2438   x.nNeeded = 0;
2439   p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2440   p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2441   p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2442   p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2443 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2444   p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64));
2445 #endif
2446   if( x.nNeeded ){
2447     x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2448     x.nFree = x.nNeeded;
2449     if( !db->mallocFailed ){
2450       p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2451       p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2452       p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2453       p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2454 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2455       p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2456 #endif
2457     }
2458   }
2459 
2460   if( db->mallocFailed ){
2461     p->nVar = 0;
2462     p->nCursor = 0;
2463     p->nMem = 0;
2464   }else{
2465     p->nCursor = nCursor;
2466     p->nVar = (ynVar)nVar;
2467     initMemArray(p->aVar, nVar, db, MEM_Null);
2468     p->nMem = nMem;
2469     initMemArray(p->aMem, nMem, db, MEM_Undefined);
2470     memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2471 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2472     memset(p->anExec, 0, p->nOp*sizeof(i64));
2473 #endif
2474   }
2475   sqlite3VdbeRewind(p);
2476 }
2477 
2478 /*
2479 ** Close a VDBE cursor and release all the resources that cursor
2480 ** happens to hold.
2481 */
2482 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2483   if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx);
2484 }
2485 void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){
2486   switch( pCx->eCurType ){
2487     case CURTYPE_SORTER: {
2488       sqlite3VdbeSorterClose(p->db, pCx);
2489       break;
2490     }
2491     case CURTYPE_BTREE: {
2492       assert( pCx->uc.pCursor!=0 );
2493       sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2494       break;
2495     }
2496 #ifndef SQLITE_OMIT_VIRTUALTABLE
2497     case CURTYPE_VTAB: {
2498       sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2499       const sqlite3_module *pModule = pVCur->pVtab->pModule;
2500       assert( pVCur->pVtab->nRef>0 );
2501       pVCur->pVtab->nRef--;
2502       pModule->xClose(pVCur);
2503       break;
2504     }
2505 #endif
2506   }
2507 }
2508 
2509 /*
2510 ** Close all cursors in the current frame.
2511 */
2512 static void closeCursorsInFrame(Vdbe *p){
2513   int i;
2514   for(i=0; i<p->nCursor; i++){
2515     VdbeCursor *pC = p->apCsr[i];
2516     if( pC ){
2517       sqlite3VdbeFreeCursorNN(p, pC);
2518       p->apCsr[i] = 0;
2519     }
2520   }
2521 }
2522 
2523 /*
2524 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2525 ** is used, for example, when a trigger sub-program is halted to restore
2526 ** control to the main program.
2527 */
2528 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2529   Vdbe *v = pFrame->v;
2530   closeCursorsInFrame(v);
2531 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2532   v->anExec = pFrame->anExec;
2533 #endif
2534   v->aOp = pFrame->aOp;
2535   v->nOp = pFrame->nOp;
2536   v->aMem = pFrame->aMem;
2537   v->nMem = pFrame->nMem;
2538   v->apCsr = pFrame->apCsr;
2539   v->nCursor = pFrame->nCursor;
2540   v->db->lastRowid = pFrame->lastRowid;
2541   v->nChange = pFrame->nChange;
2542   v->db->nChange = pFrame->nDbChange;
2543   sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2544   v->pAuxData = pFrame->pAuxData;
2545   pFrame->pAuxData = 0;
2546   return pFrame->pc;
2547 }
2548 
2549 /*
2550 ** Close all cursors.
2551 **
2552 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2553 ** cell array. This is necessary as the memory cell array may contain
2554 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2555 ** open cursors.
2556 */
2557 static void closeAllCursors(Vdbe *p){
2558   if( p->pFrame ){
2559     VdbeFrame *pFrame;
2560     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2561     sqlite3VdbeFrameRestore(pFrame);
2562     p->pFrame = 0;
2563     p->nFrame = 0;
2564   }
2565   assert( p->nFrame==0 );
2566   closeCursorsInFrame(p);
2567   releaseMemArray(p->aMem, p->nMem);
2568   while( p->pDelFrame ){
2569     VdbeFrame *pDel = p->pDelFrame;
2570     p->pDelFrame = pDel->pParent;
2571     sqlite3VdbeFrameDelete(pDel);
2572   }
2573 
2574   /* Delete any auxdata allocations made by the VM */
2575   if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2576   assert( p->pAuxData==0 );
2577 }
2578 
2579 /*
2580 ** Set the number of result columns that will be returned by this SQL
2581 ** statement. This is now set at compile time, rather than during
2582 ** execution of the vdbe program so that sqlite3_column_count() can
2583 ** be called on an SQL statement before sqlite3_step().
2584 */
2585 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2586   int n;
2587   sqlite3 *db = p->db;
2588 
2589   if( p->nResColumn ){
2590     releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2591     sqlite3DbFree(db, p->aColName);
2592   }
2593   n = nResColumn*COLNAME_N;
2594   p->nResColumn = (u16)nResColumn;
2595   p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2596   if( p->aColName==0 ) return;
2597   initMemArray(p->aColName, n, db, MEM_Null);
2598 }
2599 
2600 /*
2601 ** Set the name of the idx'th column to be returned by the SQL statement.
2602 ** zName must be a pointer to a nul terminated string.
2603 **
2604 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2605 **
2606 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2607 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2608 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2609 */
2610 int sqlite3VdbeSetColName(
2611   Vdbe *p,                         /* Vdbe being configured */
2612   int idx,                         /* Index of column zName applies to */
2613   int var,                         /* One of the COLNAME_* constants */
2614   const char *zName,               /* Pointer to buffer containing name */
2615   void (*xDel)(void*)              /* Memory management strategy for zName */
2616 ){
2617   int rc;
2618   Mem *pColName;
2619   assert( idx<p->nResColumn );
2620   assert( var<COLNAME_N );
2621   if( p->db->mallocFailed ){
2622     assert( !zName || xDel!=SQLITE_DYNAMIC );
2623     return SQLITE_NOMEM_BKPT;
2624   }
2625   assert( p->aColName!=0 );
2626   pColName = &(p->aColName[idx+var*p->nResColumn]);
2627   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2628   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2629   return rc;
2630 }
2631 
2632 /*
2633 ** A read or write transaction may or may not be active on database handle
2634 ** db. If a transaction is active, commit it. If there is a
2635 ** write-transaction spanning more than one database file, this routine
2636 ** takes care of the super-journal trickery.
2637 */
2638 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2639   int i;
2640   int nTrans = 0;  /* Number of databases with an active write-transaction
2641                    ** that are candidates for a two-phase commit using a
2642                    ** super-journal */
2643   int rc = SQLITE_OK;
2644   int needXcommit = 0;
2645 
2646 #ifdef SQLITE_OMIT_VIRTUALTABLE
2647   /* With this option, sqlite3VtabSync() is defined to be simply
2648   ** SQLITE_OK so p is not used.
2649   */
2650   UNUSED_PARAMETER(p);
2651 #endif
2652 
2653   /* Before doing anything else, call the xSync() callback for any
2654   ** virtual module tables written in this transaction. This has to
2655   ** be done before determining whether a super-journal file is
2656   ** required, as an xSync() callback may add an attached database
2657   ** to the transaction.
2658   */
2659   rc = sqlite3VtabSync(db, p);
2660 
2661   /* This loop determines (a) if the commit hook should be invoked and
2662   ** (b) how many database files have open write transactions, not
2663   ** including the temp database. (b) is important because if more than
2664   ** one database file has an open write transaction, a super-journal
2665   ** file is required for an atomic commit.
2666   */
2667   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2668     Btree *pBt = db->aDb[i].pBt;
2669     if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2670       /* Whether or not a database might need a super-journal depends upon
2671       ** its journal mode (among other things).  This matrix determines which
2672       ** journal modes use a super-journal and which do not */
2673       static const u8 aMJNeeded[] = {
2674         /* DELETE   */  1,
2675         /* PERSIST   */ 1,
2676         /* OFF       */ 0,
2677         /* TRUNCATE  */ 1,
2678         /* MEMORY    */ 0,
2679         /* WAL       */ 0
2680       };
2681       Pager *pPager;   /* Pager associated with pBt */
2682       needXcommit = 1;
2683       sqlite3BtreeEnter(pBt);
2684       pPager = sqlite3BtreePager(pBt);
2685       if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2686        && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2687        && sqlite3PagerIsMemdb(pPager)==0
2688       ){
2689         assert( i!=1 );
2690         nTrans++;
2691       }
2692       rc = sqlite3PagerExclusiveLock(pPager);
2693       sqlite3BtreeLeave(pBt);
2694     }
2695   }
2696   if( rc!=SQLITE_OK ){
2697     return rc;
2698   }
2699 
2700   /* If there are any write-transactions at all, invoke the commit hook */
2701   if( needXcommit && db->xCommitCallback ){
2702     rc = db->xCommitCallback(db->pCommitArg);
2703     if( rc ){
2704       return SQLITE_CONSTRAINT_COMMITHOOK;
2705     }
2706   }
2707 
2708   /* The simple case - no more than one database file (not counting the
2709   ** TEMP database) has a transaction active.   There is no need for the
2710   ** super-journal.
2711   **
2712   ** If the return value of sqlite3BtreeGetFilename() is a zero length
2713   ** string, it means the main database is :memory: or a temp file.  In
2714   ** that case we do not support atomic multi-file commits, so use the
2715   ** simple case then too.
2716   */
2717   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2718    || nTrans<=1
2719   ){
2720     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2721       Btree *pBt = db->aDb[i].pBt;
2722       if( pBt ){
2723         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2724       }
2725     }
2726 
2727     /* Do the commit only if all databases successfully complete phase 1.
2728     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2729     ** IO error while deleting or truncating a journal file. It is unlikely,
2730     ** but could happen. In this case abandon processing and return the error.
2731     */
2732     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2733       Btree *pBt = db->aDb[i].pBt;
2734       if( pBt ){
2735         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2736       }
2737     }
2738     if( rc==SQLITE_OK ){
2739       sqlite3VtabCommit(db);
2740     }
2741   }
2742 
2743   /* The complex case - There is a multi-file write-transaction active.
2744   ** This requires a super-journal file to ensure the transaction is
2745   ** committed atomically.
2746   */
2747 #ifndef SQLITE_OMIT_DISKIO
2748   else{
2749     sqlite3_vfs *pVfs = db->pVfs;
2750     char *zSuper = 0;   /* File-name for the super-journal */
2751     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2752     sqlite3_file *pSuperJrnl = 0;
2753     i64 offset = 0;
2754     int res;
2755     int retryCount = 0;
2756     int nMainFile;
2757 
2758     /* Select a super-journal file name */
2759     nMainFile = sqlite3Strlen30(zMainFile);
2760     zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
2761     if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
2762     zSuper += 4;
2763     do {
2764       u32 iRandom;
2765       if( retryCount ){
2766         if( retryCount>100 ){
2767           sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
2768           sqlite3OsDelete(pVfs, zSuper, 0);
2769           break;
2770         }else if( retryCount==1 ){
2771           sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
2772         }
2773       }
2774       retryCount++;
2775       sqlite3_randomness(sizeof(iRandom), &iRandom);
2776       sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
2777                                (iRandom>>8)&0xffffff, iRandom&0xff);
2778       /* The antipenultimate character of the super-journal name must
2779       ** be "9" to avoid name collisions when using 8+3 filenames. */
2780       assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
2781       sqlite3FileSuffix3(zMainFile, zSuper);
2782       rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
2783     }while( rc==SQLITE_OK && res );
2784     if( rc==SQLITE_OK ){
2785       /* Open the super-journal. */
2786       rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl,
2787           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2788           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
2789       );
2790     }
2791     if( rc!=SQLITE_OK ){
2792       sqlite3DbFree(db, zSuper-4);
2793       return rc;
2794     }
2795 
2796     /* Write the name of each database file in the transaction into the new
2797     ** super-journal file. If an error occurs at this point close
2798     ** and delete the super-journal file. All the individual journal files
2799     ** still have 'null' as the super-journal pointer, so they will roll
2800     ** back independently if a failure occurs.
2801     */
2802     for(i=0; i<db->nDb; i++){
2803       Btree *pBt = db->aDb[i].pBt;
2804       if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2805         char const *zFile = sqlite3BtreeGetJournalname(pBt);
2806         if( zFile==0 ){
2807           continue;  /* Ignore TEMP and :memory: databases */
2808         }
2809         assert( zFile[0]!=0 );
2810         rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
2811         offset += sqlite3Strlen30(zFile)+1;
2812         if( rc!=SQLITE_OK ){
2813           sqlite3OsCloseFree(pSuperJrnl);
2814           sqlite3OsDelete(pVfs, zSuper, 0);
2815           sqlite3DbFree(db, zSuper-4);
2816           return rc;
2817         }
2818       }
2819     }
2820 
2821     /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
2822     ** flag is set this is not required.
2823     */
2824     if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
2825      && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
2826     ){
2827       sqlite3OsCloseFree(pSuperJrnl);
2828       sqlite3OsDelete(pVfs, zSuper, 0);
2829       sqlite3DbFree(db, zSuper-4);
2830       return rc;
2831     }
2832 
2833     /* Sync all the db files involved in the transaction. The same call
2834     ** sets the super-journal pointer in each individual journal. If
2835     ** an error occurs here, do not delete the super-journal file.
2836     **
2837     ** If the error occurs during the first call to
2838     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2839     ** super-journal file will be orphaned. But we cannot delete it,
2840     ** in case the super-journal file name was written into the journal
2841     ** file before the failure occurred.
2842     */
2843     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2844       Btree *pBt = db->aDb[i].pBt;
2845       if( pBt ){
2846         rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
2847       }
2848     }
2849     sqlite3OsCloseFree(pSuperJrnl);
2850     assert( rc!=SQLITE_BUSY );
2851     if( rc!=SQLITE_OK ){
2852       sqlite3DbFree(db, zSuper-4);
2853       return rc;
2854     }
2855 
2856     /* Delete the super-journal file. This commits the transaction. After
2857     ** doing this the directory is synced again before any individual
2858     ** transaction files are deleted.
2859     */
2860     rc = sqlite3OsDelete(pVfs, zSuper, 1);
2861     sqlite3DbFree(db, zSuper-4);
2862     zSuper = 0;
2863     if( rc ){
2864       return rc;
2865     }
2866 
2867     /* All files and directories have already been synced, so the following
2868     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2869     ** deleting or truncating journals. If something goes wrong while
2870     ** this is happening we don't really care. The integrity of the
2871     ** transaction is already guaranteed, but some stray 'cold' journals
2872     ** may be lying around. Returning an error code won't help matters.
2873     */
2874     disable_simulated_io_errors();
2875     sqlite3BeginBenignMalloc();
2876     for(i=0; i<db->nDb; i++){
2877       Btree *pBt = db->aDb[i].pBt;
2878       if( pBt ){
2879         sqlite3BtreeCommitPhaseTwo(pBt, 1);
2880       }
2881     }
2882     sqlite3EndBenignMalloc();
2883     enable_simulated_io_errors();
2884 
2885     sqlite3VtabCommit(db);
2886   }
2887 #endif
2888 
2889   return rc;
2890 }
2891 
2892 /*
2893 ** This routine checks that the sqlite3.nVdbeActive count variable
2894 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2895 ** currently active. An assertion fails if the two counts do not match.
2896 ** This is an internal self-check only - it is not an essential processing
2897 ** step.
2898 **
2899 ** This is a no-op if NDEBUG is defined.
2900 */
2901 #ifndef NDEBUG
2902 static void checkActiveVdbeCnt(sqlite3 *db){
2903   Vdbe *p;
2904   int cnt = 0;
2905   int nWrite = 0;
2906   int nRead = 0;
2907   p = db->pVdbe;
2908   while( p ){
2909     if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2910       cnt++;
2911       if( p->readOnly==0 ) nWrite++;
2912       if( p->bIsReader ) nRead++;
2913     }
2914     p = p->pNext;
2915   }
2916   assert( cnt==db->nVdbeActive );
2917   assert( nWrite==db->nVdbeWrite );
2918   assert( nRead==db->nVdbeRead );
2919 }
2920 #else
2921 #define checkActiveVdbeCnt(x)
2922 #endif
2923 
2924 /*
2925 ** If the Vdbe passed as the first argument opened a statement-transaction,
2926 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2927 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2928 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2929 ** statement transaction is committed.
2930 **
2931 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2932 ** Otherwise SQLITE_OK.
2933 */
2934 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2935   sqlite3 *const db = p->db;
2936   int rc = SQLITE_OK;
2937   int i;
2938   const int iSavepoint = p->iStatement-1;
2939 
2940   assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2941   assert( db->nStatement>0 );
2942   assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2943 
2944   for(i=0; i<db->nDb; i++){
2945     int rc2 = SQLITE_OK;
2946     Btree *pBt = db->aDb[i].pBt;
2947     if( pBt ){
2948       if( eOp==SAVEPOINT_ROLLBACK ){
2949         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2950       }
2951       if( rc2==SQLITE_OK ){
2952         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2953       }
2954       if( rc==SQLITE_OK ){
2955         rc = rc2;
2956       }
2957     }
2958   }
2959   db->nStatement--;
2960   p->iStatement = 0;
2961 
2962   if( rc==SQLITE_OK ){
2963     if( eOp==SAVEPOINT_ROLLBACK ){
2964       rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2965     }
2966     if( rc==SQLITE_OK ){
2967       rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2968     }
2969   }
2970 
2971   /* If the statement transaction is being rolled back, also restore the
2972   ** database handles deferred constraint counter to the value it had when
2973   ** the statement transaction was opened.  */
2974   if( eOp==SAVEPOINT_ROLLBACK ){
2975     db->nDeferredCons = p->nStmtDefCons;
2976     db->nDeferredImmCons = p->nStmtDefImmCons;
2977   }
2978   return rc;
2979 }
2980 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2981   if( p->db->nStatement && p->iStatement ){
2982     return vdbeCloseStatement(p, eOp);
2983   }
2984   return SQLITE_OK;
2985 }
2986 
2987 
2988 /*
2989 ** This function is called when a transaction opened by the database
2990 ** handle associated with the VM passed as an argument is about to be
2991 ** committed. If there are outstanding deferred foreign key constraint
2992 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2993 **
2994 ** If there are outstanding FK violations and this function returns
2995 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2996 ** and write an error message to it. Then return SQLITE_ERROR.
2997 */
2998 #ifndef SQLITE_OMIT_FOREIGN_KEY
2999 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
3000   sqlite3 *db = p->db;
3001   if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
3002    || (!deferred && p->nFkConstraint>0)
3003   ){
3004     p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3005     p->errorAction = OE_Abort;
3006     sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
3007     if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR;
3008     return SQLITE_CONSTRAINT_FOREIGNKEY;
3009   }
3010   return SQLITE_OK;
3011 }
3012 #endif
3013 
3014 /*
3015 ** This routine is called the when a VDBE tries to halt.  If the VDBE
3016 ** has made changes and is in autocommit mode, then commit those
3017 ** changes.  If a rollback is needed, then do the rollback.
3018 **
3019 ** This routine is the only way to move the sqlite3eOpenState of a VM from
3020 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT.  It is harmless to
3021 ** call this on a VM that is in the SQLITE_STATE_HALT state.
3022 **
3023 ** Return an error code.  If the commit could not complete because of
3024 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
3025 ** means the close did not happen and needs to be repeated.
3026 */
3027 int sqlite3VdbeHalt(Vdbe *p){
3028   int rc;                         /* Used to store transient return codes */
3029   sqlite3 *db = p->db;
3030 
3031   /* This function contains the logic that determines if a statement or
3032   ** transaction will be committed or rolled back as a result of the
3033   ** execution of this virtual machine.
3034   **
3035   ** If any of the following errors occur:
3036   **
3037   **     SQLITE_NOMEM
3038   **     SQLITE_IOERR
3039   **     SQLITE_FULL
3040   **     SQLITE_INTERRUPT
3041   **
3042   ** Then the internal cache might have been left in an inconsistent
3043   ** state.  We need to rollback the statement transaction, if there is
3044   ** one, or the complete transaction if there is no statement transaction.
3045   */
3046 
3047   assert( p->eVdbeState==VDBE_RUN_STATE );
3048   if( db->mallocFailed ){
3049     p->rc = SQLITE_NOMEM_BKPT;
3050   }
3051   closeAllCursors(p);
3052   checkActiveVdbeCnt(db);
3053 
3054   /* No commit or rollback needed if the program never started or if the
3055   ** SQL statement does not read or write a database file.  */
3056   if( p->bIsReader ){
3057     int mrc;   /* Primary error code from p->rc */
3058     int eStatementOp = 0;
3059     int isSpecialError;            /* Set to true if a 'special' error */
3060 
3061     /* Lock all btrees used by the statement */
3062     sqlite3VdbeEnter(p);
3063 
3064     /* Check for one of the special errors */
3065     if( p->rc ){
3066       mrc = p->rc & 0xff;
3067       isSpecialError = mrc==SQLITE_NOMEM
3068                     || mrc==SQLITE_IOERR
3069                     || mrc==SQLITE_INTERRUPT
3070                     || mrc==SQLITE_FULL;
3071     }else{
3072       mrc = isSpecialError = 0;
3073     }
3074     if( isSpecialError ){
3075       /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3076       ** no rollback is necessary. Otherwise, at least a savepoint
3077       ** transaction must be rolled back to restore the database to a
3078       ** consistent state.
3079       **
3080       ** Even if the statement is read-only, it is important to perform
3081       ** a statement or transaction rollback operation. If the error
3082       ** occurred while writing to the journal, sub-journal or database
3083       ** file as part of an effort to free up cache space (see function
3084       ** pagerStress() in pager.c), the rollback is required to restore
3085       ** the pager to a consistent state.
3086       */
3087       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3088         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3089           eStatementOp = SAVEPOINT_ROLLBACK;
3090         }else{
3091           /* We are forced to roll back the active transaction. Before doing
3092           ** so, abort any other statements this handle currently has active.
3093           */
3094           sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3095           sqlite3CloseSavepoints(db);
3096           db->autoCommit = 1;
3097           p->nChange = 0;
3098         }
3099       }
3100     }
3101 
3102     /* Check for immediate foreign key violations. */
3103     if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3104       sqlite3VdbeCheckFk(p, 0);
3105     }
3106 
3107     /* If the auto-commit flag is set and this is the only active writer
3108     ** VM, then we do either a commit or rollback of the current transaction.
3109     **
3110     ** Note: This block also runs if one of the special errors handled
3111     ** above has occurred.
3112     */
3113     if( !sqlite3VtabInSync(db)
3114      && db->autoCommit
3115      && db->nVdbeWrite==(p->readOnly==0)
3116     ){
3117       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3118         rc = sqlite3VdbeCheckFk(p, 1);
3119         if( rc!=SQLITE_OK ){
3120           if( NEVER(p->readOnly) ){
3121             sqlite3VdbeLeave(p);
3122             return SQLITE_ERROR;
3123           }
3124           rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3125         }else if( db->flags & SQLITE_CorruptRdOnly ){
3126           rc = SQLITE_CORRUPT;
3127           db->flags &= ~SQLITE_CorruptRdOnly;
3128         }else{
3129           /* The auto-commit flag is true, the vdbe program was successful
3130           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3131           ** key constraints to hold up the transaction. This means a commit
3132           ** is required. */
3133           rc = vdbeCommit(db, p);
3134         }
3135         if( rc==SQLITE_BUSY && p->readOnly ){
3136           sqlite3VdbeLeave(p);
3137           return SQLITE_BUSY;
3138         }else if( rc!=SQLITE_OK ){
3139           p->rc = rc;
3140           sqlite3RollbackAll(db, SQLITE_OK);
3141           p->nChange = 0;
3142         }else{
3143           db->nDeferredCons = 0;
3144           db->nDeferredImmCons = 0;
3145           db->flags &= ~(u64)SQLITE_DeferFKs;
3146           sqlite3CommitInternalChanges(db);
3147         }
3148       }else{
3149         sqlite3RollbackAll(db, SQLITE_OK);
3150         p->nChange = 0;
3151       }
3152       db->nStatement = 0;
3153     }else if( eStatementOp==0 ){
3154       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3155         eStatementOp = SAVEPOINT_RELEASE;
3156       }else if( p->errorAction==OE_Abort ){
3157         eStatementOp = SAVEPOINT_ROLLBACK;
3158       }else{
3159         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3160         sqlite3CloseSavepoints(db);
3161         db->autoCommit = 1;
3162         p->nChange = 0;
3163       }
3164     }
3165 
3166     /* If eStatementOp is non-zero, then a statement transaction needs to
3167     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3168     ** do so. If this operation returns an error, and the current statement
3169     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3170     ** current statement error code.
3171     */
3172     if( eStatementOp ){
3173       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3174       if( rc ){
3175         if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3176           p->rc = rc;
3177           sqlite3DbFree(db, p->zErrMsg);
3178           p->zErrMsg = 0;
3179         }
3180         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3181         sqlite3CloseSavepoints(db);
3182         db->autoCommit = 1;
3183         p->nChange = 0;
3184       }
3185     }
3186 
3187     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3188     ** has been rolled back, update the database connection change-counter.
3189     */
3190     if( p->changeCntOn ){
3191       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3192         sqlite3VdbeSetChanges(db, p->nChange);
3193       }else{
3194         sqlite3VdbeSetChanges(db, 0);
3195       }
3196       p->nChange = 0;
3197     }
3198 
3199     /* Release the locks */
3200     sqlite3VdbeLeave(p);
3201   }
3202 
3203   /* We have successfully halted and closed the VM.  Record this fact. */
3204   db->nVdbeActive--;
3205   if( !p->readOnly ) db->nVdbeWrite--;
3206   if( p->bIsReader ) db->nVdbeRead--;
3207   assert( db->nVdbeActive>=db->nVdbeRead );
3208   assert( db->nVdbeRead>=db->nVdbeWrite );
3209   assert( db->nVdbeWrite>=0 );
3210   p->eVdbeState = VDBE_HALT_STATE;
3211   checkActiveVdbeCnt(db);
3212   if( db->mallocFailed ){
3213     p->rc = SQLITE_NOMEM_BKPT;
3214   }
3215 
3216   /* If the auto-commit flag is set to true, then any locks that were held
3217   ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3218   ** to invoke any required unlock-notify callbacks.
3219   */
3220   if( db->autoCommit ){
3221     sqlite3ConnectionUnlocked(db);
3222   }
3223 
3224   assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3225   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3226 }
3227 
3228 
3229 /*
3230 ** Each VDBE holds the result of the most recent sqlite3_step() call
3231 ** in p->rc.  This routine sets that result back to SQLITE_OK.
3232 */
3233 void sqlite3VdbeResetStepResult(Vdbe *p){
3234   p->rc = SQLITE_OK;
3235 }
3236 
3237 /*
3238 ** Copy the error code and error message belonging to the VDBE passed
3239 ** as the first argument to its database handle (so that they will be
3240 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3241 **
3242 ** This function does not clear the VDBE error code or message, just
3243 ** copies them to the database handle.
3244 */
3245 int sqlite3VdbeTransferError(Vdbe *p){
3246   sqlite3 *db = p->db;
3247   int rc = p->rc;
3248   if( p->zErrMsg ){
3249     db->bBenignMalloc++;
3250     sqlite3BeginBenignMalloc();
3251     if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3252     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3253     sqlite3EndBenignMalloc();
3254     db->bBenignMalloc--;
3255   }else if( db->pErr ){
3256     sqlite3ValueSetNull(db->pErr);
3257   }
3258   db->errCode = rc;
3259   db->errByteOffset = -1;
3260   return rc;
3261 }
3262 
3263 #ifdef SQLITE_ENABLE_SQLLOG
3264 /*
3265 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3266 ** invoke it.
3267 */
3268 static void vdbeInvokeSqllog(Vdbe *v){
3269   if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3270     char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3271     assert( v->db->init.busy==0 );
3272     if( zExpanded ){
3273       sqlite3GlobalConfig.xSqllog(
3274           sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3275       );
3276       sqlite3DbFree(v->db, zExpanded);
3277     }
3278   }
3279 }
3280 #else
3281 # define vdbeInvokeSqllog(x)
3282 #endif
3283 
3284 /*
3285 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3286 ** Write any error messages into *pzErrMsg.  Return the result code.
3287 **
3288 ** After this routine is run, the VDBE should be ready to be executed
3289 ** again.
3290 **
3291 ** To look at it another way, this routine resets the state of the
3292 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to
3293 ** VDBE_READY_STATE.
3294 */
3295 int sqlite3VdbeReset(Vdbe *p){
3296 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3297   int i;
3298 #endif
3299 
3300   sqlite3 *db;
3301   db = p->db;
3302 
3303   /* If the VM did not run to completion or if it encountered an
3304   ** error, then it might not have been halted properly.  So halt
3305   ** it now.
3306   */
3307   if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
3308 
3309   /* If the VDBE has been run even partially, then transfer the error code
3310   ** and error message from the VDBE into the main database structure.  But
3311   ** if the VDBE has just been set to run but has not actually executed any
3312   ** instructions yet, leave the main database error information unchanged.
3313   */
3314   if( p->pc>=0 ){
3315     vdbeInvokeSqllog(p);
3316     if( db->pErr || p->zErrMsg ){
3317       sqlite3VdbeTransferError(p);
3318     }else{
3319       db->errCode = p->rc;
3320     }
3321   }
3322 
3323   /* Reset register contents and reclaim error message memory.
3324   */
3325 #ifdef SQLITE_DEBUG
3326   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3327   ** Vdbe.aMem[] arrays have already been cleaned up.  */
3328   if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3329   if( p->aMem ){
3330     for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3331   }
3332 #endif
3333   if( p->zErrMsg ){
3334     sqlite3DbFree(db, p->zErrMsg);
3335     p->zErrMsg = 0;
3336   }
3337   p->pResultSet = 0;
3338 #ifdef SQLITE_DEBUG
3339   p->nWrite = 0;
3340 #endif
3341 
3342   /* Save profiling information from this VDBE run.
3343   */
3344 #ifdef VDBE_PROFILE
3345   {
3346     FILE *out = fopen("vdbe_profile.out", "a");
3347     if( out ){
3348       fprintf(out, "---- ");
3349       for(i=0; i<p->nOp; i++){
3350         fprintf(out, "%02x", p->aOp[i].opcode);
3351       }
3352       fprintf(out, "\n");
3353       if( p->zSql ){
3354         char c, pc = 0;
3355         fprintf(out, "-- ");
3356         for(i=0; (c = p->zSql[i])!=0; i++){
3357           if( pc=='\n' ) fprintf(out, "-- ");
3358           putc(c, out);
3359           pc = c;
3360         }
3361         if( pc!='\n' ) fprintf(out, "\n");
3362       }
3363       for(i=0; i<p->nOp; i++){
3364         char zHdr[100];
3365         sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3366            p->aOp[i].cnt,
3367            p->aOp[i].cycles,
3368            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
3369         );
3370         fprintf(out, "%s", zHdr);
3371         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3372       }
3373       fclose(out);
3374     }
3375   }
3376 #endif
3377   return p->rc & db->errMask;
3378 }
3379 
3380 /*
3381 ** Clean up and delete a VDBE after execution.  Return an integer which is
3382 ** the result code.  Write any error message text into *pzErrMsg.
3383 */
3384 int sqlite3VdbeFinalize(Vdbe *p){
3385   int rc = SQLITE_OK;
3386   assert( VDBE_RUN_STATE>VDBE_READY_STATE );
3387   assert( VDBE_HALT_STATE>VDBE_READY_STATE );
3388   assert( VDBE_INIT_STATE<VDBE_READY_STATE );
3389   if( p->eVdbeState>=VDBE_READY_STATE ){
3390     rc = sqlite3VdbeReset(p);
3391     assert( (rc & p->db->errMask)==rc );
3392   }
3393   sqlite3VdbeDelete(p);
3394   return rc;
3395 }
3396 
3397 /*
3398 ** If parameter iOp is less than zero, then invoke the destructor for
3399 ** all auxiliary data pointers currently cached by the VM passed as
3400 ** the first argument.
3401 **
3402 ** Or, if iOp is greater than or equal to zero, then the destructor is
3403 ** only invoked for those auxiliary data pointers created by the user
3404 ** function invoked by the OP_Function opcode at instruction iOp of
3405 ** VM pVdbe, and only then if:
3406 **
3407 **    * the associated function parameter is the 32nd or later (counting
3408 **      from left to right), or
3409 **
3410 **    * the corresponding bit in argument mask is clear (where the first
3411 **      function parameter corresponds to bit 0 etc.).
3412 */
3413 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3414   while( *pp ){
3415     AuxData *pAux = *pp;
3416     if( (iOp<0)
3417      || (pAux->iAuxOp==iOp
3418           && pAux->iAuxArg>=0
3419           && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3420     ){
3421       testcase( pAux->iAuxArg==31 );
3422       if( pAux->xDeleteAux ){
3423         pAux->xDeleteAux(pAux->pAux);
3424       }
3425       *pp = pAux->pNextAux;
3426       sqlite3DbFree(db, pAux);
3427     }else{
3428       pp= &pAux->pNextAux;
3429     }
3430   }
3431 }
3432 
3433 /*
3434 ** Free all memory associated with the Vdbe passed as the second argument,
3435 ** except for object itself, which is preserved.
3436 **
3437 ** The difference between this function and sqlite3VdbeDelete() is that
3438 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3439 ** the database connection and frees the object itself.
3440 */
3441 static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3442   SubProgram *pSub, *pNext;
3443   assert( p->db==0 || p->db==db );
3444   if( p->aColName ){
3445     releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3446     sqlite3DbFreeNN(db, p->aColName);
3447   }
3448   for(pSub=p->pProgram; pSub; pSub=pNext){
3449     pNext = pSub->pNext;
3450     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3451     sqlite3DbFree(db, pSub);
3452   }
3453   if( p->eVdbeState!=VDBE_INIT_STATE ){
3454     releaseMemArray(p->aVar, p->nVar);
3455     if( p->pVList ) sqlite3DbFreeNN(db, p->pVList);
3456     if( p->pFree ) sqlite3DbFreeNN(db, p->pFree);
3457   }
3458   vdbeFreeOpArray(db, p->aOp, p->nOp);
3459   sqlite3DbFree(db, p->zSql);
3460 #ifdef SQLITE_ENABLE_NORMALIZE
3461   sqlite3DbFree(db, p->zNormSql);
3462   {
3463     DblquoteStr *pThis, *pNext;
3464     for(pThis=p->pDblStr; pThis; pThis=pNext){
3465       pNext = pThis->pNextStr;
3466       sqlite3DbFree(db, pThis);
3467     }
3468   }
3469 #endif
3470 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3471   {
3472     int i;
3473     for(i=0; i<p->nScan; i++){
3474       sqlite3DbFree(db, p->aScan[i].zName);
3475     }
3476     sqlite3DbFree(db, p->aScan);
3477   }
3478 #endif
3479 }
3480 
3481 /*
3482 ** Delete an entire VDBE.
3483 */
3484 void sqlite3VdbeDelete(Vdbe *p){
3485   sqlite3 *db;
3486 
3487   assert( p!=0 );
3488   db = p->db;
3489   assert( sqlite3_mutex_held(db->mutex) );
3490   sqlite3VdbeClearObject(db, p);
3491   if( db->pnBytesFreed==0 ){
3492     if( p->pPrev ){
3493       p->pPrev->pNext = p->pNext;
3494     }else{
3495       assert( db->pVdbe==p );
3496       db->pVdbe = p->pNext;
3497     }
3498     if( p->pNext ){
3499       p->pNext->pPrev = p->pPrev;
3500     }
3501   }
3502   sqlite3DbFreeNN(db, p);
3503 }
3504 
3505 /*
3506 ** The cursor "p" has a pending seek operation that has not yet been
3507 ** carried out.  Seek the cursor now.  If an error occurs, return
3508 ** the appropriate error code.
3509 */
3510 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3511   int res, rc;
3512 #ifdef SQLITE_TEST
3513   extern int sqlite3_search_count;
3514 #endif
3515   assert( p->deferredMoveto );
3516   assert( p->isTable );
3517   assert( p->eCurType==CURTYPE_BTREE );
3518   rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res);
3519   if( rc ) return rc;
3520   if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3521 #ifdef SQLITE_TEST
3522   sqlite3_search_count++;
3523 #endif
3524   p->deferredMoveto = 0;
3525   p->cacheStatus = CACHE_STALE;
3526   return SQLITE_OK;
3527 }
3528 
3529 /*
3530 ** Something has moved cursor "p" out of place.  Maybe the row it was
3531 ** pointed to was deleted out from under it.  Or maybe the btree was
3532 ** rebalanced.  Whatever the cause, try to restore "p" to the place it
3533 ** is supposed to be pointing.  If the row was deleted out from under the
3534 ** cursor, set the cursor to point to a NULL row.
3535 */
3536 int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){
3537   int isDifferentRow, rc;
3538   assert( p->eCurType==CURTYPE_BTREE );
3539   assert( p->uc.pCursor!=0 );
3540   assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3541   rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3542   p->cacheStatus = CACHE_STALE;
3543   if( isDifferentRow ) p->nullRow = 1;
3544   return rc;
3545 }
3546 
3547 /*
3548 ** Check to ensure that the cursor is valid.  Restore the cursor
3549 ** if need be.  Return any I/O error from the restore operation.
3550 */
3551 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3552   assert( p->eCurType==CURTYPE_BTREE );
3553   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3554     return sqlite3VdbeHandleMovedCursor(p);
3555   }
3556   return SQLITE_OK;
3557 }
3558 
3559 /*
3560 ** The following functions:
3561 **
3562 ** sqlite3VdbeSerialType()
3563 ** sqlite3VdbeSerialTypeLen()
3564 ** sqlite3VdbeSerialLen()
3565 ** sqlite3VdbeSerialPut()  <--- in-lined into OP_MakeRecord as of 2022-04-02
3566 ** sqlite3VdbeSerialGet()
3567 **
3568 ** encapsulate the code that serializes values for storage in SQLite
3569 ** data and index records. Each serialized value consists of a
3570 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3571 ** integer, stored as a varint.
3572 **
3573 ** In an SQLite index record, the serial type is stored directly before
3574 ** the blob of data that it corresponds to. In a table record, all serial
3575 ** types are stored at the start of the record, and the blobs of data at
3576 ** the end. Hence these functions allow the caller to handle the
3577 ** serial-type and data blob separately.
3578 **
3579 ** The following table describes the various storage classes for data:
3580 **
3581 **   serial type        bytes of data      type
3582 **   --------------     ---------------    ---------------
3583 **      0                     0            NULL
3584 **      1                     1            signed integer
3585 **      2                     2            signed integer
3586 **      3                     3            signed integer
3587 **      4                     4            signed integer
3588 **      5                     6            signed integer
3589 **      6                     8            signed integer
3590 **      7                     8            IEEE float
3591 **      8                     0            Integer constant 0
3592 **      9                     0            Integer constant 1
3593 **     10,11                               reserved for expansion
3594 **    N>=12 and even       (N-12)/2        BLOB
3595 **    N>=13 and odd        (N-13)/2        text
3596 **
3597 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
3598 ** of SQLite will not understand those serial types.
3599 */
3600 
3601 #if 0 /* Inlined into the OP_MakeRecord opcode */
3602 /*
3603 ** Return the serial-type for the value stored in pMem.
3604 **
3605 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3606 **
3607 ** 2019-07-11:  The primary user of this subroutine was the OP_MakeRecord
3608 ** opcode in the byte-code engine.  But by moving this routine in-line, we
3609 ** can omit some redundant tests and make that opcode a lot faster.  So
3610 ** this routine is now only used by the STAT3 logic and STAT3 support has
3611 ** ended.  The code is kept here for historical reference only.
3612 */
3613 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3614   int flags = pMem->flags;
3615   u32 n;
3616 
3617   assert( pLen!=0 );
3618   if( flags&MEM_Null ){
3619     *pLen = 0;
3620     return 0;
3621   }
3622   if( flags&(MEM_Int|MEM_IntReal) ){
3623     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3624 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3625     i64 i = pMem->u.i;
3626     u64 u;
3627     testcase( flags & MEM_Int );
3628     testcase( flags & MEM_IntReal );
3629     if( i<0 ){
3630       u = ~i;
3631     }else{
3632       u = i;
3633     }
3634     if( u<=127 ){
3635       if( (i&1)==i && file_format>=4 ){
3636         *pLen = 0;
3637         return 8+(u32)u;
3638       }else{
3639         *pLen = 1;
3640         return 1;
3641       }
3642     }
3643     if( u<=32767 ){ *pLen = 2; return 2; }
3644     if( u<=8388607 ){ *pLen = 3; return 3; }
3645     if( u<=2147483647 ){ *pLen = 4; return 4; }
3646     if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3647     *pLen = 8;
3648     if( flags&MEM_IntReal ){
3649       /* If the value is IntReal and is going to take up 8 bytes to store
3650       ** as an integer, then we might as well make it an 8-byte floating
3651       ** point value */
3652       pMem->u.r = (double)pMem->u.i;
3653       pMem->flags &= ~MEM_IntReal;
3654       pMem->flags |= MEM_Real;
3655       return 7;
3656     }
3657     return 6;
3658   }
3659   if( flags&MEM_Real ){
3660     *pLen = 8;
3661     return 7;
3662   }
3663   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3664   assert( pMem->n>=0 );
3665   n = (u32)pMem->n;
3666   if( flags & MEM_Zero ){
3667     n += pMem->u.nZero;
3668   }
3669   *pLen = n;
3670   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3671 }
3672 #endif /* inlined into OP_MakeRecord */
3673 
3674 /*
3675 ** The sizes for serial types less than 128
3676 */
3677 const u8 sqlite3SmallTypeSizes[128] = {
3678         /*  0   1   2   3   4   5   6   7   8   9 */
3679 /*   0 */   0,  1,  2,  3,  4,  6,  8,  8,  0,  0,
3680 /*  10 */   0,  0,  0,  0,  1,  1,  2,  2,  3,  3,
3681 /*  20 */   4,  4,  5,  5,  6,  6,  7,  7,  8,  8,
3682 /*  30 */   9,  9, 10, 10, 11, 11, 12, 12, 13, 13,
3683 /*  40 */  14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3684 /*  50 */  19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3685 /*  60 */  24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3686 /*  70 */  29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3687 /*  80 */  34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3688 /*  90 */  39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3689 /* 100 */  44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3690 /* 110 */  49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3691 /* 120 */  54, 54, 55, 55, 56, 56, 57, 57
3692 };
3693 
3694 /*
3695 ** Return the length of the data corresponding to the supplied serial-type.
3696 */
3697 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3698   if( serial_type>=128 ){
3699     return (serial_type-12)/2;
3700   }else{
3701     assert( serial_type<12
3702             || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3703     return sqlite3SmallTypeSizes[serial_type];
3704   }
3705 }
3706 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3707   assert( serial_type<128 );
3708   return sqlite3SmallTypeSizes[serial_type];
3709 }
3710 
3711 /*
3712 ** If we are on an architecture with mixed-endian floating
3713 ** points (ex: ARM7) then swap the lower 4 bytes with the
3714 ** upper 4 bytes.  Return the result.
3715 **
3716 ** For most architectures, this is a no-op.
3717 **
3718 ** (later):  It is reported to me that the mixed-endian problem
3719 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
3720 ** that early versions of GCC stored the two words of a 64-bit
3721 ** float in the wrong order.  And that error has been propagated
3722 ** ever since.  The blame is not necessarily with GCC, though.
3723 ** GCC might have just copying the problem from a prior compiler.
3724 ** I am also told that newer versions of GCC that follow a different
3725 ** ABI get the byte order right.
3726 **
3727 ** Developers using SQLite on an ARM7 should compile and run their
3728 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
3729 ** enabled, some asserts below will ensure that the byte order of
3730 ** floating point values is correct.
3731 **
3732 ** (2007-08-30)  Frank van Vugt has studied this problem closely
3733 ** and has send his findings to the SQLite developers.  Frank
3734 ** writes that some Linux kernels offer floating point hardware
3735 ** emulation that uses only 32-bit mantissas instead of a full
3736 ** 48-bits as required by the IEEE standard.  (This is the
3737 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
3738 ** byte swapping becomes very complicated.  To avoid problems,
3739 ** the necessary byte swapping is carried out using a 64-bit integer
3740 ** rather than a 64-bit float.  Frank assures us that the code here
3741 ** works for him.  We, the developers, have no way to independently
3742 ** verify this, but Frank seems to know what he is talking about
3743 ** so we trust him.
3744 */
3745 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3746 u64 sqlite3FloatSwap(u64 in){
3747   union {
3748     u64 r;
3749     u32 i[2];
3750   } u;
3751   u32 t;
3752 
3753   u.r = in;
3754   t = u.i[0];
3755   u.i[0] = u.i[1];
3756   u.i[1] = t;
3757   return u.r;
3758 }
3759 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */
3760 
3761 
3762 /* Input "x" is a sequence of unsigned characters that represent a
3763 ** big-endian integer.  Return the equivalent native integer
3764 */
3765 #define ONE_BYTE_INT(x)    ((i8)(x)[0])
3766 #define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
3767 #define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3768 #define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3769 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3770 
3771 /*
3772 ** Deserialize the data blob pointed to by buf as serial type serial_type
3773 ** and store the result in pMem.
3774 **
3775 ** This function is implemented as two separate routines for performance.
3776 ** The few cases that require local variables are broken out into a separate
3777 ** routine so that in most cases the overhead of moving the stack pointer
3778 ** is avoided.
3779 */
3780 static void serialGet(
3781   const unsigned char *buf,     /* Buffer to deserialize from */
3782   u32 serial_type,              /* Serial type to deserialize */
3783   Mem *pMem                     /* Memory cell to write value into */
3784 ){
3785   u64 x = FOUR_BYTE_UINT(buf);
3786   u32 y = FOUR_BYTE_UINT(buf+4);
3787   x = (x<<32) + y;
3788   if( serial_type==6 ){
3789     /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3790     ** twos-complement integer. */
3791     pMem->u.i = *(i64*)&x;
3792     pMem->flags = MEM_Int;
3793     testcase( pMem->u.i<0 );
3794   }else{
3795     /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3796     ** floating point number. */
3797 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3798     /* Verify that integers and floating point values use the same
3799     ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3800     ** defined that 64-bit floating point values really are mixed
3801     ** endian.
3802     */
3803     static const u64 t1 = ((u64)0x3ff00000)<<32;
3804     static const double r1 = 1.0;
3805     u64 t2 = t1;
3806     swapMixedEndianFloat(t2);
3807     assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3808 #endif
3809     assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3810     swapMixedEndianFloat(x);
3811     memcpy(&pMem->u.r, &x, sizeof(x));
3812     pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
3813   }
3814 }
3815 void sqlite3VdbeSerialGet(
3816   const unsigned char *buf,     /* Buffer to deserialize from */
3817   u32 serial_type,              /* Serial type to deserialize */
3818   Mem *pMem                     /* Memory cell to write value into */
3819 ){
3820   switch( serial_type ){
3821     case 10: { /* Internal use only: NULL with virtual table
3822                ** UPDATE no-change flag set */
3823       pMem->flags = MEM_Null|MEM_Zero;
3824       pMem->n = 0;
3825       pMem->u.nZero = 0;
3826       return;
3827     }
3828     case 11:   /* Reserved for future use */
3829     case 0: {  /* Null */
3830       /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3831       pMem->flags = MEM_Null;
3832       return;
3833     }
3834     case 1: {
3835       /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3836       ** integer. */
3837       pMem->u.i = ONE_BYTE_INT(buf);
3838       pMem->flags = MEM_Int;
3839       testcase( pMem->u.i<0 );
3840       return;
3841     }
3842     case 2: { /* 2-byte signed integer */
3843       /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3844       ** twos-complement integer. */
3845       pMem->u.i = TWO_BYTE_INT(buf);
3846       pMem->flags = MEM_Int;
3847       testcase( pMem->u.i<0 );
3848       return;
3849     }
3850     case 3: { /* 3-byte signed integer */
3851       /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3852       ** twos-complement integer. */
3853       pMem->u.i = THREE_BYTE_INT(buf);
3854       pMem->flags = MEM_Int;
3855       testcase( pMem->u.i<0 );
3856       return;
3857     }
3858     case 4: { /* 4-byte signed integer */
3859       /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3860       ** twos-complement integer. */
3861       pMem->u.i = FOUR_BYTE_INT(buf);
3862 #ifdef __HP_cc
3863       /* Work around a sign-extension bug in the HP compiler for HP/UX */
3864       if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3865 #endif
3866       pMem->flags = MEM_Int;
3867       testcase( pMem->u.i<0 );
3868       return;
3869     }
3870     case 5: { /* 6-byte signed integer */
3871       /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3872       ** twos-complement integer. */
3873       pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3874       pMem->flags = MEM_Int;
3875       testcase( pMem->u.i<0 );
3876       return;
3877     }
3878     case 6:   /* 8-byte signed integer */
3879     case 7: { /* IEEE floating point */
3880       /* These use local variables, so do them in a separate routine
3881       ** to avoid having to move the frame pointer in the common case */
3882       serialGet(buf,serial_type,pMem);
3883       return;
3884     }
3885     case 8:    /* Integer 0 */
3886     case 9: {  /* Integer 1 */
3887       /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3888       /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3889       pMem->u.i = serial_type-8;
3890       pMem->flags = MEM_Int;
3891       return;
3892     }
3893     default: {
3894       /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3895       ** length.
3896       ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3897       ** (N-13)/2 bytes in length. */
3898       static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3899       pMem->z = (char *)buf;
3900       pMem->n = (serial_type-12)/2;
3901       pMem->flags = aFlag[serial_type&1];
3902       return;
3903     }
3904   }
3905   return;
3906 }
3907 /*
3908 ** This routine is used to allocate sufficient space for an UnpackedRecord
3909 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3910 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3911 **
3912 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3913 ** the unaligned buffer passed via the second and third arguments (presumably
3914 ** stack space). If the former, then *ppFree is set to a pointer that should
3915 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3916 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3917 ** before returning.
3918 **
3919 ** If an OOM error occurs, NULL is returned.
3920 */
3921 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3922   KeyInfo *pKeyInfo               /* Description of the record */
3923 ){
3924   UnpackedRecord *p;              /* Unpacked record to return */
3925   int nByte;                      /* Number of bytes required for *p */
3926   nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
3927   p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3928   if( !p ) return 0;
3929   p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))];
3930   assert( pKeyInfo->aSortFlags!=0 );
3931   p->pKeyInfo = pKeyInfo;
3932   p->nField = pKeyInfo->nKeyField + 1;
3933   return p;
3934 }
3935 
3936 /*
3937 ** Given the nKey-byte encoding of a record in pKey[], populate the
3938 ** UnpackedRecord structure indicated by the fourth argument with the
3939 ** contents of the decoded record.
3940 */
3941 void sqlite3VdbeRecordUnpack(
3942   KeyInfo *pKeyInfo,     /* Information about the record format */
3943   int nKey,              /* Size of the binary record */
3944   const void *pKey,      /* The binary record */
3945   UnpackedRecord *p      /* Populate this structure before returning. */
3946 ){
3947   const unsigned char *aKey = (const unsigned char *)pKey;
3948   u32 d;
3949   u32 idx;                        /* Offset in aKey[] to read from */
3950   u16 u;                          /* Unsigned loop counter */
3951   u32 szHdr;
3952   Mem *pMem = p->aMem;
3953 
3954   p->default_rc = 0;
3955   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
3956   idx = getVarint32(aKey, szHdr);
3957   d = szHdr;
3958   u = 0;
3959   while( idx<szHdr && d<=(u32)nKey ){
3960     u32 serial_type;
3961 
3962     idx += getVarint32(&aKey[idx], serial_type);
3963     pMem->enc = pKeyInfo->enc;
3964     pMem->db = pKeyInfo->db;
3965     /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
3966     pMem->szMalloc = 0;
3967     pMem->z = 0;
3968     sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
3969     d += sqlite3VdbeSerialTypeLen(serial_type);
3970     pMem++;
3971     if( (++u)>=p->nField ) break;
3972   }
3973   if( d>(u32)nKey && u ){
3974     assert( CORRUPT_DB );
3975     /* In a corrupt record entry, the last pMem might have been set up using
3976     ** uninitialized memory. Overwrite its value with NULL, to prevent
3977     ** warnings from MSAN. */
3978     sqlite3VdbeMemSetNull(pMem-1);
3979   }
3980   assert( u<=pKeyInfo->nKeyField + 1 );
3981   p->nField = u;
3982 }
3983 
3984 #ifdef SQLITE_DEBUG
3985 /*
3986 ** This function compares two index or table record keys in the same way
3987 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3988 ** this function deserializes and compares values using the
3989 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3990 ** in assert() statements to ensure that the optimized code in
3991 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
3992 **
3993 ** Return true if the result of comparison is equivalent to desiredResult.
3994 ** Return false if there is a disagreement.
3995 */
3996 static int vdbeRecordCompareDebug(
3997   int nKey1, const void *pKey1, /* Left key */
3998   const UnpackedRecord *pPKey2, /* Right key */
3999   int desiredResult             /* Correct answer */
4000 ){
4001   u32 d1;            /* Offset into aKey[] of next data element */
4002   u32 idx1;          /* Offset into aKey[] of next header element */
4003   u32 szHdr1;        /* Number of bytes in header */
4004   int i = 0;
4005   int rc = 0;
4006   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4007   KeyInfo *pKeyInfo;
4008   Mem mem1;
4009 
4010   pKeyInfo = pPKey2->pKeyInfo;
4011   if( pKeyInfo->db==0 ) return 1;
4012   mem1.enc = pKeyInfo->enc;
4013   mem1.db = pKeyInfo->db;
4014   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
4015   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4016 
4017   /* Compilers may complain that mem1.u.i is potentially uninitialized.
4018   ** We could initialize it, as shown here, to silence those complaints.
4019   ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4020   ** the unnecessary initialization has a measurable negative performance
4021   ** impact, since this routine is a very high runner.  And so, we choose
4022   ** to ignore the compiler warnings and leave this variable uninitialized.
4023   */
4024   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
4025 
4026   idx1 = getVarint32(aKey1, szHdr1);
4027   if( szHdr1>98307 ) return SQLITE_CORRUPT;
4028   d1 = szHdr1;
4029   assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4030   assert( pKeyInfo->aSortFlags!=0 );
4031   assert( pKeyInfo->nKeyField>0 );
4032   assert( idx1<=szHdr1 || CORRUPT_DB );
4033   do{
4034     u32 serial_type1;
4035 
4036     /* Read the serial types for the next element in each key. */
4037     idx1 += getVarint32( aKey1+idx1, serial_type1 );
4038 
4039     /* Verify that there is enough key space remaining to avoid
4040     ** a buffer overread.  The "d1+serial_type1+2" subexpression will
4041     ** always be greater than or equal to the amount of required key space.
4042     ** Use that approximation to avoid the more expensive call to
4043     ** sqlite3VdbeSerialTypeLen() in the common case.
4044     */
4045     if( d1+(u64)serial_type1+2>(u64)nKey1
4046      && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4047     ){
4048       break;
4049     }
4050 
4051     /* Extract the values to be compared.
4052     */
4053     sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4054     d1 += sqlite3VdbeSerialTypeLen(serial_type1);
4055 
4056     /* Do the comparison
4057     */
4058     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4059                            pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4060     if( rc!=0 ){
4061       assert( mem1.szMalloc==0 );  /* See comment below */
4062       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4063        && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4064       ){
4065         rc = -rc;
4066       }
4067       if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4068         rc = -rc;  /* Invert the result for DESC sort order. */
4069       }
4070       goto debugCompareEnd;
4071     }
4072     i++;
4073   }while( idx1<szHdr1 && i<pPKey2->nField );
4074 
4075   /* No memory allocation is ever used on mem1.  Prove this using
4076   ** the following assert().  If the assert() fails, it indicates a
4077   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4078   */
4079   assert( mem1.szMalloc==0 );
4080 
4081   /* rc==0 here means that one of the keys ran out of fields and
4082   ** all the fields up to that point were equal. Return the default_rc
4083   ** value.  */
4084   rc = pPKey2->default_rc;
4085 
4086 debugCompareEnd:
4087   if( desiredResult==0 && rc==0 ) return 1;
4088   if( desiredResult<0 && rc<0 ) return 1;
4089   if( desiredResult>0 && rc>0 ) return 1;
4090   if( CORRUPT_DB ) return 1;
4091   if( pKeyInfo->db->mallocFailed ) return 1;
4092   return 0;
4093 }
4094 #endif
4095 
4096 #ifdef SQLITE_DEBUG
4097 /*
4098 ** Count the number of fields (a.k.a. columns) in the record given by
4099 ** pKey,nKey.  The verify that this count is less than or equal to the
4100 ** limit given by pKeyInfo->nAllField.
4101 **
4102 ** If this constraint is not satisfied, it means that the high-speed
4103 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4104 ** not work correctly.  If this assert() ever fires, it probably means
4105 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4106 ** incorrectly.
4107 */
4108 static void vdbeAssertFieldCountWithinLimits(
4109   int nKey, const void *pKey,   /* The record to verify */
4110   const KeyInfo *pKeyInfo       /* Compare size with this KeyInfo */
4111 ){
4112   int nField = 0;
4113   u32 szHdr;
4114   u32 idx;
4115   u32 notUsed;
4116   const unsigned char *aKey = (const unsigned char*)pKey;
4117 
4118   if( CORRUPT_DB ) return;
4119   idx = getVarint32(aKey, szHdr);
4120   assert( nKey>=0 );
4121   assert( szHdr<=(u32)nKey );
4122   while( idx<szHdr ){
4123     idx += getVarint32(aKey+idx, notUsed);
4124     nField++;
4125   }
4126   assert( nField <= pKeyInfo->nAllField );
4127 }
4128 #else
4129 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4130 #endif
4131 
4132 /*
4133 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4134 ** using the collation sequence pColl. As usual, return a negative , zero
4135 ** or positive value if *pMem1 is less than, equal to or greater than
4136 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4137 */
4138 static int vdbeCompareMemString(
4139   const Mem *pMem1,
4140   const Mem *pMem2,
4141   const CollSeq *pColl,
4142   u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */
4143 ){
4144   if( pMem1->enc==pColl->enc ){
4145     /* The strings are already in the correct encoding.  Call the
4146      ** comparison function directly */
4147     return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4148   }else{
4149     int rc;
4150     const void *v1, *v2;
4151     Mem c1;
4152     Mem c2;
4153     sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4154     sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4155     sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4156     sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4157     v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4158     v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4159     if( (v1==0 || v2==0) ){
4160       if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4161       rc = 0;
4162     }else{
4163       rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4164     }
4165     sqlite3VdbeMemReleaseMalloc(&c1);
4166     sqlite3VdbeMemReleaseMalloc(&c2);
4167     return rc;
4168   }
4169 }
4170 
4171 /*
4172 ** The input pBlob is guaranteed to be a Blob that is not marked
4173 ** with MEM_Zero.  Return true if it could be a zero-blob.
4174 */
4175 static int isAllZero(const char *z, int n){
4176   int i;
4177   for(i=0; i<n; i++){
4178     if( z[i] ) return 0;
4179   }
4180   return 1;
4181 }
4182 
4183 /*
4184 ** Compare two blobs.  Return negative, zero, or positive if the first
4185 ** is less than, equal to, or greater than the second, respectively.
4186 ** If one blob is a prefix of the other, then the shorter is the lessor.
4187 */
4188 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4189   int c;
4190   int n1 = pB1->n;
4191   int n2 = pB2->n;
4192 
4193   /* It is possible to have a Blob value that has some non-zero content
4194   ** followed by zero content.  But that only comes up for Blobs formed
4195   ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4196   ** sqlite3MemCompare(). */
4197   assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4198   assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4199 
4200   if( (pB1->flags|pB2->flags) & MEM_Zero ){
4201     if( pB1->flags & pB2->flags & MEM_Zero ){
4202       return pB1->u.nZero - pB2->u.nZero;
4203     }else if( pB1->flags & MEM_Zero ){
4204       if( !isAllZero(pB2->z, pB2->n) ) return -1;
4205       return pB1->u.nZero - n2;
4206     }else{
4207       if( !isAllZero(pB1->z, pB1->n) ) return +1;
4208       return n1 - pB2->u.nZero;
4209     }
4210   }
4211   c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4212   if( c ) return c;
4213   return n1 - n2;
4214 }
4215 
4216 /*
4217 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4218 ** number.  Return negative, zero, or positive if the first (i64) is less than,
4219 ** equal to, or greater than the second (double).
4220 */
4221 int sqlite3IntFloatCompare(i64 i, double r){
4222   if( sizeof(LONGDOUBLE_TYPE)>8 ){
4223     LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4224     testcase( x<r );
4225     testcase( x>r );
4226     testcase( x==r );
4227     if( x<r ) return -1;
4228     if( x>r ) return +1;  /*NO_TEST*/ /* work around bugs in gcov */
4229     return 0;             /*NO_TEST*/ /* work around bugs in gcov */
4230   }else{
4231     i64 y;
4232     double s;
4233     if( r<-9223372036854775808.0 ) return +1;
4234     if( r>=9223372036854775808.0 ) return -1;
4235     y = (i64)r;
4236     if( i<y ) return -1;
4237     if( i>y ) return +1;
4238     s = (double)i;
4239     if( s<r ) return -1;
4240     if( s>r ) return +1;
4241     return 0;
4242   }
4243 }
4244 
4245 /*
4246 ** Compare the values contained by the two memory cells, returning
4247 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4248 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4249 ** and reals) sorted numerically, followed by text ordered by the collating
4250 ** sequence pColl and finally blob's ordered by memcmp().
4251 **
4252 ** Two NULL values are considered equal by this function.
4253 */
4254 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4255   int f1, f2;
4256   int combined_flags;
4257 
4258   f1 = pMem1->flags;
4259   f2 = pMem2->flags;
4260   combined_flags = f1|f2;
4261   assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4262 
4263   /* If one value is NULL, it is less than the other. If both values
4264   ** are NULL, return 0.
4265   */
4266   if( combined_flags&MEM_Null ){
4267     return (f2&MEM_Null) - (f1&MEM_Null);
4268   }
4269 
4270   /* At least one of the two values is a number
4271   */
4272   if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4273     testcase( combined_flags & MEM_Int );
4274     testcase( combined_flags & MEM_Real );
4275     testcase( combined_flags & MEM_IntReal );
4276     if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4277       testcase( f1 & f2 & MEM_Int );
4278       testcase( f1 & f2 & MEM_IntReal );
4279       if( pMem1->u.i < pMem2->u.i ) return -1;
4280       if( pMem1->u.i > pMem2->u.i ) return +1;
4281       return 0;
4282     }
4283     if( (f1 & f2 & MEM_Real)!=0 ){
4284       if( pMem1->u.r < pMem2->u.r ) return -1;
4285       if( pMem1->u.r > pMem2->u.r ) return +1;
4286       return 0;
4287     }
4288     if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4289       testcase( f1 & MEM_Int );
4290       testcase( f1 & MEM_IntReal );
4291       if( (f2&MEM_Real)!=0 ){
4292         return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4293       }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4294         if( pMem1->u.i < pMem2->u.i ) return -1;
4295         if( pMem1->u.i > pMem2->u.i ) return +1;
4296         return 0;
4297       }else{
4298         return -1;
4299       }
4300     }
4301     if( (f1&MEM_Real)!=0 ){
4302       if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4303         testcase( f2 & MEM_Int );
4304         testcase( f2 & MEM_IntReal );
4305         return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4306       }else{
4307         return -1;
4308       }
4309     }
4310     return +1;
4311   }
4312 
4313   /* If one value is a string and the other is a blob, the string is less.
4314   ** If both are strings, compare using the collating functions.
4315   */
4316   if( combined_flags&MEM_Str ){
4317     if( (f1 & MEM_Str)==0 ){
4318       return 1;
4319     }
4320     if( (f2 & MEM_Str)==0 ){
4321       return -1;
4322     }
4323 
4324     assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4325     assert( pMem1->enc==SQLITE_UTF8 ||
4326             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4327 
4328     /* The collation sequence must be defined at this point, even if
4329     ** the user deletes the collation sequence after the vdbe program is
4330     ** compiled (this was not always the case).
4331     */
4332     assert( !pColl || pColl->xCmp );
4333 
4334     if( pColl ){
4335       return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4336     }
4337     /* If a NULL pointer was passed as the collate function, fall through
4338     ** to the blob case and use memcmp().  */
4339   }
4340 
4341   /* Both values must be blobs.  Compare using memcmp().  */
4342   return sqlite3BlobCompare(pMem1, pMem2);
4343 }
4344 
4345 
4346 /*
4347 ** The first argument passed to this function is a serial-type that
4348 ** corresponds to an integer - all values between 1 and 9 inclusive
4349 ** except 7. The second points to a buffer containing an integer value
4350 ** serialized according to serial_type. This function deserializes
4351 ** and returns the value.
4352 */
4353 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4354   u32 y;
4355   assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4356   switch( serial_type ){
4357     case 0:
4358     case 1:
4359       testcase( aKey[0]&0x80 );
4360       return ONE_BYTE_INT(aKey);
4361     case 2:
4362       testcase( aKey[0]&0x80 );
4363       return TWO_BYTE_INT(aKey);
4364     case 3:
4365       testcase( aKey[0]&0x80 );
4366       return THREE_BYTE_INT(aKey);
4367     case 4: {
4368       testcase( aKey[0]&0x80 );
4369       y = FOUR_BYTE_UINT(aKey);
4370       return (i64)*(int*)&y;
4371     }
4372     case 5: {
4373       testcase( aKey[0]&0x80 );
4374       return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4375     }
4376     case 6: {
4377       u64 x = FOUR_BYTE_UINT(aKey);
4378       testcase( aKey[0]&0x80 );
4379       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4380       return (i64)*(i64*)&x;
4381     }
4382   }
4383 
4384   return (serial_type - 8);
4385 }
4386 
4387 /*
4388 ** This function compares the two table rows or index records
4389 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
4390 ** or positive integer if key1 is less than, equal to or
4391 ** greater than key2.  The {nKey1, pKey1} key must be a blob
4392 ** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2
4393 ** key must be a parsed key such as obtained from
4394 ** sqlite3VdbeParseRecord.
4395 **
4396 ** If argument bSkip is non-zero, it is assumed that the caller has already
4397 ** determined that the first fields of the keys are equal.
4398 **
4399 ** Key1 and Key2 do not have to contain the same number of fields. If all
4400 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4401 ** returned.
4402 **
4403 ** If database corruption is discovered, set pPKey2->errCode to
4404 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4405 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4406 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4407 */
4408 int sqlite3VdbeRecordCompareWithSkip(
4409   int nKey1, const void *pKey1,   /* Left key */
4410   UnpackedRecord *pPKey2,         /* Right key */
4411   int bSkip                       /* If true, skip the first field */
4412 ){
4413   u32 d1;                         /* Offset into aKey[] of next data element */
4414   int i;                          /* Index of next field to compare */
4415   u32 szHdr1;                     /* Size of record header in bytes */
4416   u32 idx1;                       /* Offset of first type in header */
4417   int rc = 0;                     /* Return value */
4418   Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
4419   KeyInfo *pKeyInfo;
4420   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4421   Mem mem1;
4422 
4423   /* If bSkip is true, then the caller has already determined that the first
4424   ** two elements in the keys are equal. Fix the various stack variables so
4425   ** that this routine begins comparing at the second field. */
4426   if( bSkip ){
4427     u32 s1 = aKey1[1];
4428     if( s1<0x80 ){
4429       idx1 = 2;
4430     }else{
4431       idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1);
4432     }
4433     szHdr1 = aKey1[0];
4434     d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4435     i = 1;
4436     pRhs++;
4437   }else{
4438     if( (szHdr1 = aKey1[0])<0x80 ){
4439       idx1 = 1;
4440     }else{
4441       idx1 = sqlite3GetVarint32(aKey1, &szHdr1);
4442     }
4443     d1 = szHdr1;
4444     i = 0;
4445   }
4446   if( d1>(unsigned)nKey1 ){
4447     pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4448     return 0;  /* Corruption */
4449   }
4450 
4451   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4452   assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4453        || CORRUPT_DB );
4454   assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4455   assert( pPKey2->pKeyInfo->nKeyField>0 );
4456   assert( idx1<=szHdr1 || CORRUPT_DB );
4457   do{
4458     u32 serial_type;
4459 
4460     /* RHS is an integer */
4461     if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4462       testcase( pRhs->flags & MEM_Int );
4463       testcase( pRhs->flags & MEM_IntReal );
4464       serial_type = aKey1[idx1];
4465       testcase( serial_type==12 );
4466       if( serial_type>=10 ){
4467         rc = +1;
4468       }else if( serial_type==0 ){
4469         rc = -1;
4470       }else if( serial_type==7 ){
4471         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4472         rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4473       }else{
4474         i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4475         i64 rhs = pRhs->u.i;
4476         if( lhs<rhs ){
4477           rc = -1;
4478         }else if( lhs>rhs ){
4479           rc = +1;
4480         }
4481       }
4482     }
4483 
4484     /* RHS is real */
4485     else if( pRhs->flags & MEM_Real ){
4486       serial_type = aKey1[idx1];
4487       if( serial_type>=10 ){
4488         /* Serial types 12 or greater are strings and blobs (greater than
4489         ** numbers). Types 10 and 11 are currently "reserved for future
4490         ** use", so it doesn't really matter what the results of comparing
4491         ** them to numberic values are.  */
4492         rc = +1;
4493       }else if( serial_type==0 ){
4494         rc = -1;
4495       }else{
4496         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4497         if( serial_type==7 ){
4498           if( mem1.u.r<pRhs->u.r ){
4499             rc = -1;
4500           }else if( mem1.u.r>pRhs->u.r ){
4501             rc = +1;
4502           }
4503         }else{
4504           rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4505         }
4506       }
4507     }
4508 
4509     /* RHS is a string */
4510     else if( pRhs->flags & MEM_Str ){
4511       getVarint32NR(&aKey1[idx1], serial_type);
4512       testcase( serial_type==12 );
4513       if( serial_type<12 ){
4514         rc = -1;
4515       }else if( !(serial_type & 0x01) ){
4516         rc = +1;
4517       }else{
4518         mem1.n = (serial_type - 12) / 2;
4519         testcase( (d1+mem1.n)==(unsigned)nKey1 );
4520         testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4521         if( (d1+mem1.n) > (unsigned)nKey1
4522          || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4523         ){
4524           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4525           return 0;                /* Corruption */
4526         }else if( pKeyInfo->aColl[i] ){
4527           mem1.enc = pKeyInfo->enc;
4528           mem1.db = pKeyInfo->db;
4529           mem1.flags = MEM_Str;
4530           mem1.z = (char*)&aKey1[d1];
4531           rc = vdbeCompareMemString(
4532               &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4533           );
4534         }else{
4535           int nCmp = MIN(mem1.n, pRhs->n);
4536           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4537           if( rc==0 ) rc = mem1.n - pRhs->n;
4538         }
4539       }
4540     }
4541 
4542     /* RHS is a blob */
4543     else if( pRhs->flags & MEM_Blob ){
4544       assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4545       getVarint32NR(&aKey1[idx1], serial_type);
4546       testcase( serial_type==12 );
4547       if( serial_type<12 || (serial_type & 0x01) ){
4548         rc = -1;
4549       }else{
4550         int nStr = (serial_type - 12) / 2;
4551         testcase( (d1+nStr)==(unsigned)nKey1 );
4552         testcase( (d1+nStr+1)==(unsigned)nKey1 );
4553         if( (d1+nStr) > (unsigned)nKey1 ){
4554           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4555           return 0;                /* Corruption */
4556         }else if( pRhs->flags & MEM_Zero ){
4557           if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4558             rc = 1;
4559           }else{
4560             rc = nStr - pRhs->u.nZero;
4561           }
4562         }else{
4563           int nCmp = MIN(nStr, pRhs->n);
4564           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4565           if( rc==0 ) rc = nStr - pRhs->n;
4566         }
4567       }
4568     }
4569 
4570     /* RHS is null */
4571     else{
4572       serial_type = aKey1[idx1];
4573       rc = (serial_type!=0);
4574     }
4575 
4576     if( rc!=0 ){
4577       int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4578       if( sortFlags ){
4579         if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4580          || ((sortFlags & KEYINFO_ORDER_DESC)
4581            !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4582         ){
4583           rc = -rc;
4584         }
4585       }
4586       assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4587       assert( mem1.szMalloc==0 );  /* See comment below */
4588       return rc;
4589     }
4590 
4591     i++;
4592     if( i==pPKey2->nField ) break;
4593     pRhs++;
4594     d1 += sqlite3VdbeSerialTypeLen(serial_type);
4595     idx1 += sqlite3VarintLen(serial_type);
4596   }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 );
4597 
4598   /* No memory allocation is ever used on mem1.  Prove this using
4599   ** the following assert().  If the assert() fails, it indicates a
4600   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
4601   assert( mem1.szMalloc==0 );
4602 
4603   /* rc==0 here means that one or both of the keys ran out of fields and
4604   ** all the fields up to that point were equal. Return the default_rc
4605   ** value.  */
4606   assert( CORRUPT_DB
4607        || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4608        || pPKey2->pKeyInfo->db->mallocFailed
4609   );
4610   pPKey2->eqSeen = 1;
4611   return pPKey2->default_rc;
4612 }
4613 int sqlite3VdbeRecordCompare(
4614   int nKey1, const void *pKey1,   /* Left key */
4615   UnpackedRecord *pPKey2          /* Right key */
4616 ){
4617   return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4618 }
4619 
4620 
4621 /*
4622 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4623 ** that (a) the first field of pPKey2 is an integer, and (b) the
4624 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4625 ** byte (i.e. is less than 128).
4626 **
4627 ** To avoid concerns about buffer overreads, this routine is only used
4628 ** on schemas where the maximum valid header size is 63 bytes or less.
4629 */
4630 static int vdbeRecordCompareInt(
4631   int nKey1, const void *pKey1, /* Left key */
4632   UnpackedRecord *pPKey2        /* Right key */
4633 ){
4634   const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4635   int serial_type = ((const u8*)pKey1)[1];
4636   int res;
4637   u32 y;
4638   u64 x;
4639   i64 v;
4640   i64 lhs;
4641 
4642   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4643   assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4644   switch( serial_type ){
4645     case 1: { /* 1-byte signed integer */
4646       lhs = ONE_BYTE_INT(aKey);
4647       testcase( lhs<0 );
4648       break;
4649     }
4650     case 2: { /* 2-byte signed integer */
4651       lhs = TWO_BYTE_INT(aKey);
4652       testcase( lhs<0 );
4653       break;
4654     }
4655     case 3: { /* 3-byte signed integer */
4656       lhs = THREE_BYTE_INT(aKey);
4657       testcase( lhs<0 );
4658       break;
4659     }
4660     case 4: { /* 4-byte signed integer */
4661       y = FOUR_BYTE_UINT(aKey);
4662       lhs = (i64)*(int*)&y;
4663       testcase( lhs<0 );
4664       break;
4665     }
4666     case 5: { /* 6-byte signed integer */
4667       lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4668       testcase( lhs<0 );
4669       break;
4670     }
4671     case 6: { /* 8-byte signed integer */
4672       x = FOUR_BYTE_UINT(aKey);
4673       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4674       lhs = *(i64*)&x;
4675       testcase( lhs<0 );
4676       break;
4677     }
4678     case 8:
4679       lhs = 0;
4680       break;
4681     case 9:
4682       lhs = 1;
4683       break;
4684 
4685     /* This case could be removed without changing the results of running
4686     ** this code. Including it causes gcc to generate a faster switch
4687     ** statement (since the range of switch targets now starts at zero and
4688     ** is contiguous) but does not cause any duplicate code to be generated
4689     ** (as gcc is clever enough to combine the two like cases). Other
4690     ** compilers might be similar.  */
4691     case 0: case 7:
4692       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4693 
4694     default:
4695       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4696   }
4697 
4698   assert( pPKey2->u.i == pPKey2->aMem[0].u.i );
4699   v = pPKey2->u.i;
4700   if( v>lhs ){
4701     res = pPKey2->r1;
4702   }else if( v<lhs ){
4703     res = pPKey2->r2;
4704   }else if( pPKey2->nField>1 ){
4705     /* The first fields of the two keys are equal. Compare the trailing
4706     ** fields.  */
4707     res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4708   }else{
4709     /* The first fields of the two keys are equal and there are no trailing
4710     ** fields. Return pPKey2->default_rc in this case. */
4711     res = pPKey2->default_rc;
4712     pPKey2->eqSeen = 1;
4713   }
4714 
4715   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4716   return res;
4717 }
4718 
4719 /*
4720 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4721 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4722 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4723 ** at the start of (pKey1/nKey1) fits in a single byte.
4724 */
4725 static int vdbeRecordCompareString(
4726   int nKey1, const void *pKey1, /* Left key */
4727   UnpackedRecord *pPKey2        /* Right key */
4728 ){
4729   const u8 *aKey1 = (const u8*)pKey1;
4730   int serial_type;
4731   int res;
4732 
4733   assert( pPKey2->aMem[0].flags & MEM_Str );
4734   assert( pPKey2->aMem[0].n == pPKey2->n );
4735   assert( pPKey2->aMem[0].z == pPKey2->u.z );
4736   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4737   serial_type = (signed char)(aKey1[1]);
4738 
4739 vrcs_restart:
4740   if( serial_type<12 ){
4741     if( serial_type<0 ){
4742       sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
4743       if( serial_type>=12 ) goto vrcs_restart;
4744       assert( CORRUPT_DB );
4745     }
4746     res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
4747   }else if( !(serial_type & 0x01) ){
4748     res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
4749   }else{
4750     int nCmp;
4751     int nStr;
4752     int szHdr = aKey1[0];
4753 
4754     nStr = (serial_type-12) / 2;
4755     if( (szHdr + nStr) > nKey1 ){
4756       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4757       return 0;    /* Corruption */
4758     }
4759     nCmp = MIN( pPKey2->n, nStr );
4760     res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp);
4761 
4762     if( res>0 ){
4763       res = pPKey2->r2;
4764     }else if( res<0 ){
4765       res = pPKey2->r1;
4766     }else{
4767       res = nStr - pPKey2->n;
4768       if( res==0 ){
4769         if( pPKey2->nField>1 ){
4770           res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4771         }else{
4772           res = pPKey2->default_rc;
4773           pPKey2->eqSeen = 1;
4774         }
4775       }else if( res>0 ){
4776         res = pPKey2->r2;
4777       }else{
4778         res = pPKey2->r1;
4779       }
4780     }
4781   }
4782 
4783   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4784        || CORRUPT_DB
4785        || pPKey2->pKeyInfo->db->mallocFailed
4786   );
4787   return res;
4788 }
4789 
4790 /*
4791 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4792 ** suitable for comparing serialized records to the unpacked record passed
4793 ** as the only argument.
4794 */
4795 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4796   /* varintRecordCompareInt() and varintRecordCompareString() both assume
4797   ** that the size-of-header varint that occurs at the start of each record
4798   ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4799   ** also assumes that it is safe to overread a buffer by at least the
4800   ** maximum possible legal header size plus 8 bytes. Because there is
4801   ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4802   ** buffer passed to varintRecordCompareInt() this makes it convenient to
4803   ** limit the size of the header to 64 bytes in cases where the first field
4804   ** is an integer.
4805   **
4806   ** The easiest way to enforce this limit is to consider only records with
4807   ** 13 fields or less. If the first field is an integer, the maximum legal
4808   ** header size is (12*5 + 1 + 1) bytes.  */
4809   if( p->pKeyInfo->nAllField<=13 ){
4810     int flags = p->aMem[0].flags;
4811     if( p->pKeyInfo->aSortFlags[0] ){
4812       if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
4813         return sqlite3VdbeRecordCompare;
4814       }
4815       p->r1 = 1;
4816       p->r2 = -1;
4817     }else{
4818       p->r1 = -1;
4819       p->r2 = 1;
4820     }
4821     if( (flags & MEM_Int) ){
4822       p->u.i = p->aMem[0].u.i;
4823       return vdbeRecordCompareInt;
4824     }
4825     testcase( flags & MEM_Real );
4826     testcase( flags & MEM_Null );
4827     testcase( flags & MEM_Blob );
4828     if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
4829      && p->pKeyInfo->aColl[0]==0
4830     ){
4831       assert( flags & MEM_Str );
4832       p->u.z = p->aMem[0].z;
4833       p->n = p->aMem[0].n;
4834       return vdbeRecordCompareString;
4835     }
4836   }
4837 
4838   return sqlite3VdbeRecordCompare;
4839 }
4840 
4841 /*
4842 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4843 ** Read the rowid (the last field in the record) and store it in *rowid.
4844 ** Return SQLITE_OK if everything works, or an error code otherwise.
4845 **
4846 ** pCur might be pointing to text obtained from a corrupt database file.
4847 ** So the content cannot be trusted.  Do appropriate checks on the content.
4848 */
4849 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4850   i64 nCellKey = 0;
4851   int rc;
4852   u32 szHdr;        /* Size of the header */
4853   u32 typeRowid;    /* Serial type of the rowid */
4854   u32 lenRowid;     /* Size of the rowid */
4855   Mem m, v;
4856 
4857   /* Get the size of the index entry.  Only indices entries of less
4858   ** than 2GiB are support - anything large must be database corruption.
4859   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4860   ** this code can safely assume that nCellKey is 32-bits
4861   */
4862   assert( sqlite3BtreeCursorIsValid(pCur) );
4863   nCellKey = sqlite3BtreePayloadSize(pCur);
4864   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4865 
4866   /* Read in the complete content of the index entry */
4867   sqlite3VdbeMemInit(&m, db, 0);
4868   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
4869   if( rc ){
4870     return rc;
4871   }
4872 
4873   /* The index entry must begin with a header size */
4874   getVarint32NR((u8*)m.z, szHdr);
4875   testcase( szHdr==3 );
4876   testcase( szHdr==(u32)m.n );
4877   testcase( szHdr>0x7fffffff );
4878   assert( m.n>=0 );
4879   if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
4880     goto idx_rowid_corruption;
4881   }
4882 
4883   /* The last field of the index should be an integer - the ROWID.
4884   ** Verify that the last entry really is an integer. */
4885   getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
4886   testcase( typeRowid==1 );
4887   testcase( typeRowid==2 );
4888   testcase( typeRowid==3 );
4889   testcase( typeRowid==4 );
4890   testcase( typeRowid==5 );
4891   testcase( typeRowid==6 );
4892   testcase( typeRowid==8 );
4893   testcase( typeRowid==9 );
4894   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4895     goto idx_rowid_corruption;
4896   }
4897   lenRowid = sqlite3SmallTypeSizes[typeRowid];
4898   testcase( (u32)m.n==szHdr+lenRowid );
4899   if( unlikely((u32)m.n<szHdr+lenRowid) ){
4900     goto idx_rowid_corruption;
4901   }
4902 
4903   /* Fetch the integer off the end of the index record */
4904   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4905   *rowid = v.u.i;
4906   sqlite3VdbeMemReleaseMalloc(&m);
4907   return SQLITE_OK;
4908 
4909   /* Jump here if database corruption is detected after m has been
4910   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
4911 idx_rowid_corruption:
4912   testcase( m.szMalloc!=0 );
4913   sqlite3VdbeMemReleaseMalloc(&m);
4914   return SQLITE_CORRUPT_BKPT;
4915 }
4916 
4917 /*
4918 ** Compare the key of the index entry that cursor pC is pointing to against
4919 ** the key string in pUnpacked.  Write into *pRes a number
4920 ** that is negative, zero, or positive if pC is less than, equal to,
4921 ** or greater than pUnpacked.  Return SQLITE_OK on success.
4922 **
4923 ** pUnpacked is either created without a rowid or is truncated so that it
4924 ** omits the rowid at the end.  The rowid at the end of the index entry
4925 ** is ignored as well.  Hence, this routine only compares the prefixes
4926 ** of the keys prior to the final rowid, not the entire key.
4927 */
4928 int sqlite3VdbeIdxKeyCompare(
4929   sqlite3 *db,                     /* Database connection */
4930   VdbeCursor *pC,                  /* The cursor to compare against */
4931   UnpackedRecord *pUnpacked,       /* Unpacked version of key */
4932   int *res                         /* Write the comparison result here */
4933 ){
4934   i64 nCellKey = 0;
4935   int rc;
4936   BtCursor *pCur;
4937   Mem m;
4938 
4939   assert( pC->eCurType==CURTYPE_BTREE );
4940   pCur = pC->uc.pCursor;
4941   assert( sqlite3BtreeCursorIsValid(pCur) );
4942   nCellKey = sqlite3BtreePayloadSize(pCur);
4943   /* nCellKey will always be between 0 and 0xffffffff because of the way
4944   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4945   if( nCellKey<=0 || nCellKey>0x7fffffff ){
4946     *res = 0;
4947     return SQLITE_CORRUPT_BKPT;
4948   }
4949   sqlite3VdbeMemInit(&m, db, 0);
4950   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
4951   if( rc ){
4952     return rc;
4953   }
4954   *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
4955   sqlite3VdbeMemReleaseMalloc(&m);
4956   return SQLITE_OK;
4957 }
4958 
4959 /*
4960 ** This routine sets the value to be returned by subsequent calls to
4961 ** sqlite3_changes() on the database handle 'db'.
4962 */
4963 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){
4964   assert( sqlite3_mutex_held(db->mutex) );
4965   db->nChange = nChange;
4966   db->nTotalChange += nChange;
4967 }
4968 
4969 /*
4970 ** Set a flag in the vdbe to update the change counter when it is finalised
4971 ** or reset.
4972 */
4973 void sqlite3VdbeCountChanges(Vdbe *v){
4974   v->changeCntOn = 1;
4975 }
4976 
4977 /*
4978 ** Mark every prepared statement associated with a database connection
4979 ** as expired.
4980 **
4981 ** An expired statement means that recompilation of the statement is
4982 ** recommend.  Statements expire when things happen that make their
4983 ** programs obsolete.  Removing user-defined functions or collating
4984 ** sequences, or changing an authorization function are the types of
4985 ** things that make prepared statements obsolete.
4986 **
4987 ** If iCode is 1, then expiration is advisory.  The statement should
4988 ** be reprepared before being restarted, but if it is already running
4989 ** it is allowed to run to completion.
4990 **
4991 ** Internally, this function just sets the Vdbe.expired flag on all
4992 ** prepared statements.  The flag is set to 1 for an immediate expiration
4993 ** and set to 2 for an advisory expiration.
4994 */
4995 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
4996   Vdbe *p;
4997   for(p = db->pVdbe; p; p=p->pNext){
4998     p->expired = iCode+1;
4999   }
5000 }
5001 
5002 /*
5003 ** Return the database associated with the Vdbe.
5004 */
5005 sqlite3 *sqlite3VdbeDb(Vdbe *v){
5006   return v->db;
5007 }
5008 
5009 /*
5010 ** Return the SQLITE_PREPARE flags for a Vdbe.
5011 */
5012 u8 sqlite3VdbePrepareFlags(Vdbe *v){
5013   return v->prepFlags;
5014 }
5015 
5016 /*
5017 ** Return a pointer to an sqlite3_value structure containing the value bound
5018 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5019 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5020 ** constants) to the value before returning it.
5021 **
5022 ** The returned value must be freed by the caller using sqlite3ValueFree().
5023 */
5024 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5025   assert( iVar>0 );
5026   if( v ){
5027     Mem *pMem = &v->aVar[iVar-1];
5028     assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5029     if( 0==(pMem->flags & MEM_Null) ){
5030       sqlite3_value *pRet = sqlite3ValueNew(v->db);
5031       if( pRet ){
5032         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5033         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5034       }
5035       return pRet;
5036     }
5037   }
5038   return 0;
5039 }
5040 
5041 /*
5042 ** Configure SQL variable iVar so that binding a new value to it signals
5043 ** to sqlite3_reoptimize() that re-preparing the statement may result
5044 ** in a better query plan.
5045 */
5046 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5047   assert( iVar>0 );
5048   assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5049   if( iVar>=32 ){
5050     v->expmask |= 0x80000000;
5051   }else{
5052     v->expmask |= ((u32)1 << (iVar-1));
5053   }
5054 }
5055 
5056 /*
5057 ** Cause a function to throw an error if it was call from OP_PureFunc
5058 ** rather than OP_Function.
5059 **
5060 ** OP_PureFunc means that the function must be deterministic, and should
5061 ** throw an error if it is given inputs that would make it non-deterministic.
5062 ** This routine is invoked by date/time functions that use non-deterministic
5063 ** features such as 'now'.
5064 */
5065 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5066   const VdbeOp *pOp;
5067 #ifdef SQLITE_ENABLE_STAT4
5068   if( pCtx->pVdbe==0 ) return 1;
5069 #endif
5070   pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5071   if( pOp->opcode==OP_PureFunc ){
5072     const char *zContext;
5073     char *zMsg;
5074     if( pOp->p5 & NC_IsCheck ){
5075       zContext = "a CHECK constraint";
5076     }else if( pOp->p5 & NC_GenCol ){
5077       zContext = "a generated column";
5078     }else{
5079       zContext = "an index";
5080     }
5081     zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5082                            pCtx->pFunc->zName, zContext);
5083     sqlite3_result_error(pCtx, zMsg, -1);
5084     sqlite3_free(zMsg);
5085     return 0;
5086   }
5087   return 1;
5088 }
5089 
5090 #ifndef SQLITE_OMIT_VIRTUALTABLE
5091 /*
5092 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5093 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5094 ** in memory obtained from sqlite3DbMalloc).
5095 */
5096 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5097   if( pVtab->zErrMsg ){
5098     sqlite3 *db = p->db;
5099     sqlite3DbFree(db, p->zErrMsg);
5100     p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5101     sqlite3_free(pVtab->zErrMsg);
5102     pVtab->zErrMsg = 0;
5103   }
5104 }
5105 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5106 
5107 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5108 
5109 /*
5110 ** If the second argument is not NULL, release any allocations associated
5111 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5112 ** structure itself, using sqlite3DbFree().
5113 **
5114 ** This function is used to free UnpackedRecord structures allocated by
5115 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5116 */
5117 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5118   if( p ){
5119     int i;
5120     for(i=0; i<nField; i++){
5121       Mem *pMem = &p->aMem[i];
5122       if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem);
5123     }
5124     sqlite3DbFreeNN(db, p);
5125   }
5126 }
5127 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5128 
5129 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5130 /*
5131 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5132 ** then cursor passed as the second argument should point to the row about
5133 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5134 ** the required value will be read from the row the cursor points to.
5135 */
5136 void sqlite3VdbePreUpdateHook(
5137   Vdbe *v,                        /* Vdbe pre-update hook is invoked by */
5138   VdbeCursor *pCsr,               /* Cursor to grab old.* values from */
5139   int op,                         /* SQLITE_INSERT, UPDATE or DELETE */
5140   const char *zDb,                /* Database name */
5141   Table *pTab,                    /* Modified table */
5142   i64 iKey1,                      /* Initial key value */
5143   int iReg,                       /* Register for new.* record */
5144   int iBlobWrite
5145 ){
5146   sqlite3 *db = v->db;
5147   i64 iKey2;
5148   PreUpdate preupdate;
5149   const char *zTbl = pTab->zName;
5150   static const u8 fakeSortOrder = 0;
5151 
5152   assert( db->pPreUpdate==0 );
5153   memset(&preupdate, 0, sizeof(PreUpdate));
5154   if( HasRowid(pTab)==0 ){
5155     iKey1 = iKey2 = 0;
5156     preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5157   }else{
5158     if( op==SQLITE_UPDATE ){
5159       iKey2 = v->aMem[iReg].u.i;
5160     }else{
5161       iKey2 = iKey1;
5162     }
5163   }
5164 
5165   assert( pCsr!=0 );
5166   assert( pCsr->eCurType==CURTYPE_BTREE );
5167   assert( pCsr->nField==pTab->nCol
5168        || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
5169   );
5170 
5171   preupdate.v = v;
5172   preupdate.pCsr = pCsr;
5173   preupdate.op = op;
5174   preupdate.iNewReg = iReg;
5175   preupdate.keyinfo.db = db;
5176   preupdate.keyinfo.enc = ENC(db);
5177   preupdate.keyinfo.nKeyField = pTab->nCol;
5178   preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5179   preupdate.iKey1 = iKey1;
5180   preupdate.iKey2 = iKey2;
5181   preupdate.pTab = pTab;
5182   preupdate.iBlobWrite = iBlobWrite;
5183 
5184   db->pPreUpdate = &preupdate;
5185   db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5186   db->pPreUpdate = 0;
5187   sqlite3DbFree(db, preupdate.aRecord);
5188   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5189   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5190   if( preupdate.aNew ){
5191     int i;
5192     for(i=0; i<pCsr->nField; i++){
5193       sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5194     }
5195     sqlite3DbFreeNN(db, preupdate.aNew);
5196   }
5197 }
5198 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5199