xref: /sqlite-3.40.0/src/vdbeaux.c (revision bd5af9ea)
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
14 */
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
17 
18 /*
19 ** Create a new virtual database engine.
20 */
21 Vdbe *sqlite3VdbeCreate(Parse *pParse){
22   sqlite3 *db = pParse->db;
23   Vdbe *p;
24   p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
25   if( p==0 ) return 0;
26   p->db = db;
27   if( db->pVdbe ){
28     db->pVdbe->pPrev = p;
29   }
30   p->pNext = db->pVdbe;
31   p->pPrev = 0;
32   db->pVdbe = p;
33   p->magic = VDBE_MAGIC_INIT;
34   p->pParse = pParse;
35   assert( pParse->aLabel==0 );
36   assert( pParse->nLabel==0 );
37   assert( pParse->nOpAlloc==0 );
38   assert( pParse->szOpAlloc==0 );
39   return p;
40 }
41 
42 /*
43 ** Change the error string stored in Vdbe.zErrMsg
44 */
45 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
46   va_list ap;
47   sqlite3DbFree(p->db, p->zErrMsg);
48   va_start(ap, zFormat);
49   p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
50   va_end(ap);
51 }
52 
53 /*
54 ** Remember the SQL string for a prepared statement.
55 */
56 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
57   assert( isPrepareV2==1 || isPrepareV2==0 );
58   if( p==0 ) return;
59 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
60   if( !isPrepareV2 ) return;
61 #endif
62   assert( p->zSql==0 );
63   p->zSql = sqlite3DbStrNDup(p->db, z, n);
64   p->isPrepareV2 = (u8)isPrepareV2;
65 }
66 
67 /*
68 ** Return the SQL associated with a prepared statement
69 */
70 const char *sqlite3_sql(sqlite3_stmt *pStmt){
71   Vdbe *p = (Vdbe *)pStmt;
72   return p ? p->zSql : 0;
73 }
74 
75 /*
76 ** Swap all content between two VDBE structures.
77 */
78 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
79   Vdbe tmp, *pTmp;
80   char *zTmp;
81   tmp = *pA;
82   *pA = *pB;
83   *pB = tmp;
84   pTmp = pA->pNext;
85   pA->pNext = pB->pNext;
86   pB->pNext = pTmp;
87   pTmp = pA->pPrev;
88   pA->pPrev = pB->pPrev;
89   pB->pPrev = pTmp;
90   zTmp = pA->zSql;
91   pA->zSql = pB->zSql;
92   pB->zSql = zTmp;
93   pB->isPrepareV2 = pA->isPrepareV2;
94 }
95 
96 /*
97 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
98 ** than its current size. nOp is guaranteed to be less than or equal
99 ** to 1024/sizeof(Op).
100 **
101 ** If an out-of-memory error occurs while resizing the array, return
102 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
103 ** unchanged (this is so that any opcodes already allocated can be
104 ** correctly deallocated along with the rest of the Vdbe).
105 */
106 static int growOpArray(Vdbe *v, int nOp){
107   VdbeOp *pNew;
108   Parse *p = v->pParse;
109 
110   /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
111   ** more frequent reallocs and hence provide more opportunities for
112   ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used
113   ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array
114   ** by the minimum* amount required until the size reaches 512.  Normal
115   ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
116   ** size of the op array or add 1KB of space, whichever is smaller. */
117 #ifdef SQLITE_TEST_REALLOC_STRESS
118   int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
119 #else
120   int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
121   UNUSED_PARAMETER(nOp);
122 #endif
123 
124   assert( nOp<=(1024/sizeof(Op)) );
125   assert( nNew>=(p->nOpAlloc+nOp) );
126   pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
127   if( pNew ){
128     p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
129     p->nOpAlloc = p->szOpAlloc/sizeof(Op);
130     v->aOp = pNew;
131   }
132   return (pNew ? SQLITE_OK : SQLITE_NOMEM);
133 }
134 
135 #ifdef SQLITE_DEBUG
136 /* This routine is just a convenient place to set a breakpoint that will
137 ** fire after each opcode is inserted and displayed using
138 ** "PRAGMA vdbe_addoptrace=on".
139 */
140 static void test_addop_breakpoint(void){
141   static int n = 0;
142   n++;
143 }
144 #endif
145 
146 /*
147 ** Add a new instruction to the list of instructions current in the
148 ** VDBE.  Return the address of the new instruction.
149 **
150 ** Parameters:
151 **
152 **    p               Pointer to the VDBE
153 **
154 **    op              The opcode for this instruction
155 **
156 **    p1, p2, p3      Operands
157 **
158 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
159 ** the sqlite3VdbeChangeP4() function to change the value of the P4
160 ** operand.
161 */
162 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
163   assert( p->pParse->nOpAlloc<=p->nOp );
164   if( growOpArray(p, 1) ) return 1;
165   assert( p->pParse->nOpAlloc>p->nOp );
166   return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
167 }
168 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
169   int i;
170   VdbeOp *pOp;
171 
172   i = p->nOp;
173   assert( p->magic==VDBE_MAGIC_INIT );
174   assert( op>0 && op<0xff );
175   if( p->pParse->nOpAlloc<=i ){
176     return growOp3(p, op, p1, p2, p3);
177   }
178   p->nOp++;
179   pOp = &p->aOp[i];
180   pOp->opcode = (u8)op;
181   pOp->p5 = 0;
182   pOp->p1 = p1;
183   pOp->p2 = p2;
184   pOp->p3 = p3;
185   pOp->p4.p = 0;
186   pOp->p4type = P4_NOTUSED;
187 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
188   pOp->zComment = 0;
189 #endif
190 #ifdef SQLITE_DEBUG
191   if( p->db->flags & SQLITE_VdbeAddopTrace ){
192     int jj, kk;
193     Parse *pParse = p->pParse;
194     for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){
195       struct yColCache *x = pParse->aColCache + jj;
196       if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue;
197       printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
198       kk++;
199     }
200     if( kk ) printf("\n");
201     sqlite3VdbePrintOp(0, i, &p->aOp[i]);
202     test_addop_breakpoint();
203   }
204 #endif
205 #ifdef VDBE_PROFILE
206   pOp->cycles = 0;
207   pOp->cnt = 0;
208 #endif
209 #ifdef SQLITE_VDBE_COVERAGE
210   pOp->iSrcLine = 0;
211 #endif
212   return i;
213 }
214 int sqlite3VdbeAddOp0(Vdbe *p, int op){
215   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
216 }
217 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
218   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
219 }
220 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
221   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
222 }
223 
224 /* Generate code for an unconditional jump to instruction iDest
225 */
226 int sqlite3VdbeGoto(Vdbe *p, int iDest){
227   return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
228 }
229 
230 /* Generate code to cause the string zStr to be loaded into
231 ** register iDest
232 */
233 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
234   return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
235 }
236 
237 /*
238 ** Generate code that initializes multiple registers to string or integer
239 ** constants.  The registers begin with iDest and increase consecutively.
240 ** One register is initialized for each characgter in zTypes[].  For each
241 ** "s" character in zTypes[], the register is a string if the argument is
242 ** not NULL, or OP_Null if the value is a null pointer.  For each "i" character
243 ** in zTypes[], the register is initialized to an integer.
244 */
245 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
246   va_list ap;
247   int i;
248   char c;
249   va_start(ap, zTypes);
250   for(i=0; (c = zTypes[i])!=0; i++){
251     if( c=='s' ){
252       const char *z = va_arg(ap, const char*);
253       sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0);
254     }else{
255       assert( c=='i' );
256       sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++);
257     }
258   }
259   va_end(ap);
260 }
261 
262 /*
263 ** Add an opcode that includes the p4 value as a pointer.
264 */
265 int sqlite3VdbeAddOp4(
266   Vdbe *p,            /* Add the opcode to this VM */
267   int op,             /* The new opcode */
268   int p1,             /* The P1 operand */
269   int p2,             /* The P2 operand */
270   int p3,             /* The P3 operand */
271   const char *zP4,    /* The P4 operand */
272   int p4type          /* P4 operand type */
273 ){
274   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
275   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
276   return addr;
277 }
278 
279 /*
280 ** Add an opcode that includes the p4 value with a P4_INT64 or
281 ** P4_REAL type.
282 */
283 int sqlite3VdbeAddOp4Dup8(
284   Vdbe *p,            /* Add the opcode to this VM */
285   int op,             /* The new opcode */
286   int p1,             /* The P1 operand */
287   int p2,             /* The P2 operand */
288   int p3,             /* The P3 operand */
289   const u8 *zP4,      /* The P4 operand */
290   int p4type          /* P4 operand type */
291 ){
292   char *p4copy = sqlite3DbMallocRaw(sqlite3VdbeDb(p), 8);
293   if( p4copy ) memcpy(p4copy, zP4, 8);
294   return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
295 }
296 
297 /*
298 ** Add an OP_ParseSchema opcode.  This routine is broken out from
299 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
300 ** as having been used.
301 **
302 ** The zWhere string must have been obtained from sqlite3_malloc().
303 ** This routine will take ownership of the allocated memory.
304 */
305 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
306   int j;
307   sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
308   for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
309 }
310 
311 /*
312 ** Add an opcode that includes the p4 value as an integer.
313 */
314 int sqlite3VdbeAddOp4Int(
315   Vdbe *p,            /* Add the opcode to this VM */
316   int op,             /* The new opcode */
317   int p1,             /* The P1 operand */
318   int p2,             /* The P2 operand */
319   int p3,             /* The P3 operand */
320   int p4              /* The P4 operand as an integer */
321 ){
322   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
323   sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
324   return addr;
325 }
326 
327 /*
328 ** Create a new symbolic label for an instruction that has yet to be
329 ** coded.  The symbolic label is really just a negative number.  The
330 ** label can be used as the P2 value of an operation.  Later, when
331 ** the label is resolved to a specific address, the VDBE will scan
332 ** through its operation list and change all values of P2 which match
333 ** the label into the resolved address.
334 **
335 ** The VDBE knows that a P2 value is a label because labels are
336 ** always negative and P2 values are suppose to be non-negative.
337 ** Hence, a negative P2 value is a label that has yet to be resolved.
338 **
339 ** Zero is returned if a malloc() fails.
340 */
341 int sqlite3VdbeMakeLabel(Vdbe *v){
342   Parse *p = v->pParse;
343   int i = p->nLabel++;
344   assert( v->magic==VDBE_MAGIC_INIT );
345   if( (i & (i-1))==0 ){
346     p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
347                                        (i*2+1)*sizeof(p->aLabel[0]));
348   }
349   if( p->aLabel ){
350     p->aLabel[i] = -1;
351   }
352   return ADDR(i);
353 }
354 
355 /*
356 ** Resolve label "x" to be the address of the next instruction to
357 ** be inserted.  The parameter "x" must have been obtained from
358 ** a prior call to sqlite3VdbeMakeLabel().
359 */
360 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
361   Parse *p = v->pParse;
362   int j = ADDR(x);
363   assert( v->magic==VDBE_MAGIC_INIT );
364   assert( j<p->nLabel );
365   assert( j>=0 );
366   if( p->aLabel ){
367     p->aLabel[j] = v->nOp;
368   }
369   p->iFixedOp = v->nOp - 1;
370 }
371 
372 /*
373 ** Mark the VDBE as one that can only be run one time.
374 */
375 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
376   p->runOnlyOnce = 1;
377 }
378 
379 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
380 
381 /*
382 ** The following type and function are used to iterate through all opcodes
383 ** in a Vdbe main program and each of the sub-programs (triggers) it may
384 ** invoke directly or indirectly. It should be used as follows:
385 **
386 **   Op *pOp;
387 **   VdbeOpIter sIter;
388 **
389 **   memset(&sIter, 0, sizeof(sIter));
390 **   sIter.v = v;                            // v is of type Vdbe*
391 **   while( (pOp = opIterNext(&sIter)) ){
392 **     // Do something with pOp
393 **   }
394 **   sqlite3DbFree(v->db, sIter.apSub);
395 **
396 */
397 typedef struct VdbeOpIter VdbeOpIter;
398 struct VdbeOpIter {
399   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
400   SubProgram **apSub;        /* Array of subprograms */
401   int nSub;                  /* Number of entries in apSub */
402   int iAddr;                 /* Address of next instruction to return */
403   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
404 };
405 static Op *opIterNext(VdbeOpIter *p){
406   Vdbe *v = p->v;
407   Op *pRet = 0;
408   Op *aOp;
409   int nOp;
410 
411   if( p->iSub<=p->nSub ){
412 
413     if( p->iSub==0 ){
414       aOp = v->aOp;
415       nOp = v->nOp;
416     }else{
417       aOp = p->apSub[p->iSub-1]->aOp;
418       nOp = p->apSub[p->iSub-1]->nOp;
419     }
420     assert( p->iAddr<nOp );
421 
422     pRet = &aOp[p->iAddr];
423     p->iAddr++;
424     if( p->iAddr==nOp ){
425       p->iSub++;
426       p->iAddr = 0;
427     }
428 
429     if( pRet->p4type==P4_SUBPROGRAM ){
430       int nByte = (p->nSub+1)*sizeof(SubProgram*);
431       int j;
432       for(j=0; j<p->nSub; j++){
433         if( p->apSub[j]==pRet->p4.pProgram ) break;
434       }
435       if( j==p->nSub ){
436         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
437         if( !p->apSub ){
438           pRet = 0;
439         }else{
440           p->apSub[p->nSub++] = pRet->p4.pProgram;
441         }
442       }
443     }
444   }
445 
446   return pRet;
447 }
448 
449 /*
450 ** Check if the program stored in the VM associated with pParse may
451 ** throw an ABORT exception (causing the statement, but not entire transaction
452 ** to be rolled back). This condition is true if the main program or any
453 ** sub-programs contains any of the following:
454 **
455 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
456 **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
457 **   *  OP_Destroy
458 **   *  OP_VUpdate
459 **   *  OP_VRename
460 **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
461 **   *  OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...)
462 **
463 ** Then check that the value of Parse.mayAbort is true if an
464 ** ABORT may be thrown, or false otherwise. Return true if it does
465 ** match, or false otherwise. This function is intended to be used as
466 ** part of an assert statement in the compiler. Similar to:
467 **
468 **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
469 */
470 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
471   int hasAbort = 0;
472   int hasFkCounter = 0;
473   int hasCreateTable = 0;
474   int hasInitCoroutine = 0;
475   Op *pOp;
476   VdbeOpIter sIter;
477   memset(&sIter, 0, sizeof(sIter));
478   sIter.v = v;
479 
480   while( (pOp = opIterNext(&sIter))!=0 ){
481     int opcode = pOp->opcode;
482     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
483      || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
484       && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
485     ){
486       hasAbort = 1;
487       break;
488     }
489     if( opcode==OP_CreateTable ) hasCreateTable = 1;
490     if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
491 #ifndef SQLITE_OMIT_FOREIGN_KEY
492     if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
493       hasFkCounter = 1;
494     }
495 #endif
496   }
497   sqlite3DbFree(v->db, sIter.apSub);
498 
499   /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
500   ** If malloc failed, then the while() loop above may not have iterated
501   ** through all opcodes and hasAbort may be set incorrectly. Return
502   ** true for this case to prevent the assert() in the callers frame
503   ** from failing.  */
504   return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
505               || (hasCreateTable && hasInitCoroutine) );
506 }
507 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
508 
509 /*
510 ** This routine is called after all opcodes have been inserted.  It loops
511 ** through all the opcodes and fixes up some details.
512 **
513 ** (1) For each jump instruction with a negative P2 value (a label)
514 **     resolve the P2 value to an actual address.
515 **
516 ** (2) Compute the maximum number of arguments used by any SQL function
517 **     and store that value in *pMaxFuncArgs.
518 **
519 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
520 **     indicate what the prepared statement actually does.
521 **
522 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
523 **
524 ** (5) Reclaim the memory allocated for storing labels.
525 */
526 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
527   int i;
528   int nMaxArgs = *pMaxFuncArgs;
529   Op *pOp;
530   Parse *pParse = p->pParse;
531   int *aLabel = pParse->aLabel;
532   p->readOnly = 1;
533   p->bIsReader = 0;
534   for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
535     u8 opcode = pOp->opcode;
536 
537     /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
538     ** cases from this switch! */
539     switch( opcode ){
540       case OP_Transaction: {
541         if( pOp->p2!=0 ) p->readOnly = 0;
542         /* fall thru */
543       }
544       case OP_AutoCommit:
545       case OP_Savepoint: {
546         p->bIsReader = 1;
547         break;
548       }
549 #ifndef SQLITE_OMIT_WAL
550       case OP_Checkpoint:
551 #endif
552       case OP_Vacuum:
553       case OP_JournalMode: {
554         p->readOnly = 0;
555         p->bIsReader = 1;
556         break;
557       }
558 #ifndef SQLITE_OMIT_VIRTUALTABLE
559       case OP_VUpdate: {
560         if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
561         break;
562       }
563       case OP_VFilter: {
564         int n;
565         assert( p->nOp - i >= 3 );
566         assert( pOp[-1].opcode==OP_Integer );
567         n = pOp[-1].p1;
568         if( n>nMaxArgs ) nMaxArgs = n;
569         break;
570       }
571 #endif
572       case OP_Next:
573       case OP_NextIfOpen:
574       case OP_SorterNext: {
575         pOp->p4.xAdvance = sqlite3BtreeNext;
576         pOp->p4type = P4_ADVANCE;
577         break;
578       }
579       case OP_Prev:
580       case OP_PrevIfOpen: {
581         pOp->p4.xAdvance = sqlite3BtreePrevious;
582         pOp->p4type = P4_ADVANCE;
583         break;
584       }
585     }
586 
587     pOp->opflags = sqlite3OpcodeProperty[opcode];
588     if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
589       assert( ADDR(pOp->p2)<pParse->nLabel );
590       pOp->p2 = aLabel[ADDR(pOp->p2)];
591     }
592   }
593   sqlite3DbFree(p->db, pParse->aLabel);
594   pParse->aLabel = 0;
595   pParse->nLabel = 0;
596   *pMaxFuncArgs = nMaxArgs;
597   assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
598 }
599 
600 /*
601 ** Return the address of the next instruction to be inserted.
602 */
603 int sqlite3VdbeCurrentAddr(Vdbe *p){
604   assert( p->magic==VDBE_MAGIC_INIT );
605   return p->nOp;
606 }
607 
608 /*
609 ** Verify that at least N opcode slots are available in p without
610 ** having to malloc for more space (except when compiled using
611 ** SQLITE_TEST_REALLOC_STRESS).  This interface is used during testing
612 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
613 ** fail due to a OOM fault and hence that the return value from
614 ** sqlite3VdbeAddOpList() will always be non-NULL.
615 */
616 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
617 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
618   assert( p->nOp + N <= p->pParse->nOpAlloc );
619 }
620 #endif
621 
622 /*
623 ** This function returns a pointer to the array of opcodes associated with
624 ** the Vdbe passed as the first argument. It is the callers responsibility
625 ** to arrange for the returned array to be eventually freed using the
626 ** vdbeFreeOpArray() function.
627 **
628 ** Before returning, *pnOp is set to the number of entries in the returned
629 ** array. Also, *pnMaxArg is set to the larger of its current value and
630 ** the number of entries in the Vdbe.apArg[] array required to execute the
631 ** returned program.
632 */
633 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
634   VdbeOp *aOp = p->aOp;
635   assert( aOp && !p->db->mallocFailed );
636 
637   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
638   assert( DbMaskAllZero(p->btreeMask) );
639 
640   resolveP2Values(p, pnMaxArg);
641   *pnOp = p->nOp;
642   p->aOp = 0;
643   return aOp;
644 }
645 
646 /*
647 ** Add a whole list of operations to the operation stack.  Return a
648 ** pointer to the first operation inserted.
649 */
650 VdbeOp *sqlite3VdbeAddOpList(
651   Vdbe *p,                     /* Add opcodes to the prepared statement */
652   int nOp,                     /* Number of opcodes to add */
653   VdbeOpList const *aOp,       /* The opcodes to be added */
654   int iLineno                  /* Source-file line number of first opcode */
655 ){
656   int i;
657   VdbeOp *pOut, *pFirst;
658   assert( nOp>0 );
659   assert( p->magic==VDBE_MAGIC_INIT );
660   if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
661     return 0;
662   }
663   pFirst = pOut = &p->aOp[p->nOp];
664   for(i=0; i<nOp; i++, aOp++, pOut++){
665     pOut->opcode = aOp->opcode;
666     pOut->p1 = aOp->p1;
667     pOut->p2 = aOp->p2;
668     assert( aOp->p2>=0 );
669     pOut->p3 = aOp->p3;
670     pOut->p4type = P4_NOTUSED;
671     pOut->p4.p = 0;
672     pOut->p5 = 0;
673 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
674     pOut->zComment = 0;
675 #endif
676 #ifdef SQLITE_VDBE_COVERAGE
677     pOut->iSrcLine = iLineno+i;
678 #else
679     (void)iLineno;
680 #endif
681 #ifdef SQLITE_DEBUG
682     if( p->db->flags & SQLITE_VdbeAddopTrace ){
683       sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
684     }
685 #endif
686   }
687   p->nOp += nOp;
688   return pFirst;
689 }
690 
691 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
692 /*
693 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
694 */
695 void sqlite3VdbeScanStatus(
696   Vdbe *p,                        /* VM to add scanstatus() to */
697   int addrExplain,                /* Address of OP_Explain (or 0) */
698   int addrLoop,                   /* Address of loop counter */
699   int addrVisit,                  /* Address of rows visited counter */
700   LogEst nEst,                    /* Estimated number of output rows */
701   const char *zName               /* Name of table or index being scanned */
702 ){
703   int nByte = (p->nScan+1) * sizeof(ScanStatus);
704   ScanStatus *aNew;
705   aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
706   if( aNew ){
707     ScanStatus *pNew = &aNew[p->nScan++];
708     pNew->addrExplain = addrExplain;
709     pNew->addrLoop = addrLoop;
710     pNew->addrVisit = addrVisit;
711     pNew->nEst = nEst;
712     pNew->zName = sqlite3DbStrDup(p->db, zName);
713     p->aScan = aNew;
714   }
715 }
716 #endif
717 
718 
719 /*
720 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
721 ** for a specific instruction.
722 */
723 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){
724   sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
725 }
726 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
727   sqlite3VdbeGetOp(p,addr)->p1 = val;
728 }
729 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
730   sqlite3VdbeGetOp(p,addr)->p2 = val;
731 }
732 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
733   sqlite3VdbeGetOp(p,addr)->p3 = val;
734 }
735 void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){
736   if( !p->db->mallocFailed ) p->aOp[p->nOp-1].p5 = p5;
737 }
738 
739 /*
740 ** Change the P2 operand of instruction addr so that it points to
741 ** the address of the next instruction to be coded.
742 */
743 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
744   p->pParse->iFixedOp = p->nOp - 1;
745   sqlite3VdbeChangeP2(p, addr, p->nOp);
746 }
747 
748 
749 /*
750 ** If the input FuncDef structure is ephemeral, then free it.  If
751 ** the FuncDef is not ephermal, then do nothing.
752 */
753 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
754   if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
755     sqlite3DbFree(db, pDef);
756   }
757 }
758 
759 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
760 
761 /*
762 ** Delete a P4 value if necessary.
763 */
764 static void freeP4(sqlite3 *db, int p4type, void *p4){
765   if( p4 ){
766     assert( db );
767     switch( p4type ){
768       case P4_FUNCCTX: {
769         freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc);
770         /* Fall through into the next case */
771       }
772       case P4_REAL:
773       case P4_INT64:
774       case P4_DYNAMIC:
775       case P4_INTARRAY: {
776         sqlite3DbFree(db, p4);
777         break;
778       }
779       case P4_KEYINFO: {
780         if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
781         break;
782       }
783 #ifdef SQLITE_ENABLE_CURSOR_HINTS
784       case P4_EXPR: {
785         sqlite3ExprDelete(db, (Expr*)p4);
786         break;
787       }
788 #endif
789       case P4_MPRINTF: {
790         if( db->pnBytesFreed==0 ) sqlite3_free(p4);
791         break;
792       }
793       case P4_FUNCDEF: {
794         freeEphemeralFunction(db, (FuncDef*)p4);
795         break;
796       }
797       case P4_MEM: {
798         if( db->pnBytesFreed==0 ){
799           sqlite3ValueFree((sqlite3_value*)p4);
800         }else{
801           Mem *p = (Mem*)p4;
802           if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
803           sqlite3DbFree(db, p);
804         }
805         break;
806       }
807       case P4_VTAB : {
808         if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
809         break;
810       }
811     }
812   }
813 }
814 
815 /*
816 ** Free the space allocated for aOp and any p4 values allocated for the
817 ** opcodes contained within. If aOp is not NULL it is assumed to contain
818 ** nOp entries.
819 */
820 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
821   if( aOp ){
822     Op *pOp;
823     for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
824       if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p);
825 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
826       sqlite3DbFree(db, pOp->zComment);
827 #endif
828     }
829   }
830   sqlite3DbFree(db, aOp);
831 }
832 
833 /*
834 ** Link the SubProgram object passed as the second argument into the linked
835 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
836 ** objects when the VM is no longer required.
837 */
838 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
839   p->pNext = pVdbe->pProgram;
840   pVdbe->pProgram = p;
841 }
842 
843 /*
844 ** Change the opcode at addr into OP_Noop
845 */
846 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
847   VdbeOp *pOp;
848   if( p->db->mallocFailed ) return 0;
849   assert( addr>=0 && addr<p->nOp );
850   pOp = &p->aOp[addr];
851   freeP4(p->db, pOp->p4type, pOp->p4.p);
852   pOp->p4type = P4_NOTUSED;
853   pOp->p4.z = 0;
854   pOp->opcode = OP_Noop;
855   return 1;
856 }
857 
858 /*
859 ** If the last opcode is "op" and it is not a jump destination,
860 ** then remove it.  Return true if and only if an opcode was removed.
861 */
862 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
863   if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
864     return sqlite3VdbeChangeToNoop(p, p->nOp-1);
865   }else{
866     return 0;
867   }
868 }
869 
870 /*
871 ** Change the value of the P4 operand for a specific instruction.
872 ** This routine is useful when a large program is loaded from a
873 ** static array using sqlite3VdbeAddOpList but we want to make a
874 ** few minor changes to the program.
875 **
876 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
877 ** the string is made into memory obtained from sqlite3_malloc().
878 ** A value of n==0 means copy bytes of zP4 up to and including the
879 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
880 **
881 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
882 ** to a string or structure that is guaranteed to exist for the lifetime of
883 ** the Vdbe. In these cases we can just copy the pointer.
884 **
885 ** If addr<0 then change P4 on the most recently inserted instruction.
886 */
887 static void SQLITE_NOINLINE vdbeChangeP4Full(
888   Vdbe *p,
889   Op *pOp,
890   const char *zP4,
891   int n
892 ){
893   if( pOp->p4type ){
894     freeP4(p->db, pOp->p4type, pOp->p4.p);
895     pOp->p4type = 0;
896     pOp->p4.p = 0;
897   }
898   if( n<0 ){
899     sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
900   }else{
901     if( n==0 ) n = sqlite3Strlen30(zP4);
902     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
903     pOp->p4type = P4_DYNAMIC;
904   }
905 }
906 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
907   Op *pOp;
908   sqlite3 *db;
909   assert( p!=0 );
910   db = p->db;
911   assert( p->magic==VDBE_MAGIC_INIT );
912   assert( p->aOp!=0 || db->mallocFailed );
913   if( db->mallocFailed ){
914     if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
915     return;
916   }
917   assert( p->nOp>0 );
918   assert( addr<p->nOp );
919   if( addr<0 ){
920     addr = p->nOp - 1;
921   }
922   pOp = &p->aOp[addr];
923   if( n>=0 || pOp->p4type ){
924     vdbeChangeP4Full(p, pOp, zP4, n);
925     return;
926   }
927   if( n==P4_INT32 ){
928     /* Note: this cast is safe, because the origin data point was an int
929     ** that was cast to a (const char *). */
930     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
931     pOp->p4type = P4_INT32;
932   }else if( zP4!=0 ){
933     assert( n<0 );
934     pOp->p4.p = (void*)zP4;
935     pOp->p4type = (signed char)n;
936     if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
937   }
938 }
939 
940 /*
941 ** Set the P4 on the most recently added opcode to the KeyInfo for the
942 ** index given.
943 */
944 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
945   Vdbe *v = pParse->pVdbe;
946   assert( v!=0 );
947   assert( pIdx!=0 );
948   sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx),
949                       P4_KEYINFO);
950 }
951 
952 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
953 /*
954 ** Change the comment on the most recently coded instruction.  Or
955 ** insert a No-op and add the comment to that new instruction.  This
956 ** makes the code easier to read during debugging.  None of this happens
957 ** in a production build.
958 */
959 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
960   assert( p->nOp>0 || p->aOp==0 );
961   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
962   if( p->nOp ){
963     assert( p->aOp );
964     sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
965     p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
966   }
967 }
968 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
969   va_list ap;
970   if( p ){
971     va_start(ap, zFormat);
972     vdbeVComment(p, zFormat, ap);
973     va_end(ap);
974   }
975 }
976 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
977   va_list ap;
978   if( p ){
979     sqlite3VdbeAddOp0(p, OP_Noop);
980     va_start(ap, zFormat);
981     vdbeVComment(p, zFormat, ap);
982     va_end(ap);
983   }
984 }
985 #endif  /* NDEBUG */
986 
987 #ifdef SQLITE_VDBE_COVERAGE
988 /*
989 ** Set the value if the iSrcLine field for the previously coded instruction.
990 */
991 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
992   sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
993 }
994 #endif /* SQLITE_VDBE_COVERAGE */
995 
996 /*
997 ** Return the opcode for a given address.  If the address is -1, then
998 ** return the most recently inserted opcode.
999 **
1000 ** If a memory allocation error has occurred prior to the calling of this
1001 ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
1002 ** is readable but not writable, though it is cast to a writable value.
1003 ** The return of a dummy opcode allows the call to continue functioning
1004 ** after an OOM fault without having to check to see if the return from
1005 ** this routine is a valid pointer.  But because the dummy.opcode is 0,
1006 ** dummy will never be written to.  This is verified by code inspection and
1007 ** by running with Valgrind.
1008 */
1009 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1010   /* C89 specifies that the constant "dummy" will be initialized to all
1011   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
1012   static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
1013   assert( p->magic==VDBE_MAGIC_INIT );
1014   if( addr<0 ){
1015     addr = p->nOp - 1;
1016   }
1017   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1018   if( p->db->mallocFailed ){
1019     return (VdbeOp*)&dummy;
1020   }else{
1021     return &p->aOp[addr];
1022   }
1023 }
1024 
1025 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1026 /*
1027 ** Return an integer value for one of the parameters to the opcode pOp
1028 ** determined by character c.
1029 */
1030 static int translateP(char c, const Op *pOp){
1031   if( c=='1' ) return pOp->p1;
1032   if( c=='2' ) return pOp->p2;
1033   if( c=='3' ) return pOp->p3;
1034   if( c=='4' ) return pOp->p4.i;
1035   return pOp->p5;
1036 }
1037 
1038 /*
1039 ** Compute a string for the "comment" field of a VDBE opcode listing.
1040 **
1041 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1042 ** to an extra string that is appended to the sqlite3OpcodeName().  In the
1043 ** absence of other comments, this synopsis becomes the comment on the opcode.
1044 ** Some translation occurs:
1045 **
1046 **       "PX"      ->  "r[X]"
1047 **       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1
1048 **       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0
1049 **       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x
1050 */
1051 static int displayComment(
1052   const Op *pOp,     /* The opcode to be commented */
1053   const char *zP4,   /* Previously obtained value for P4 */
1054   char *zTemp,       /* Write result here */
1055   int nTemp          /* Space available in zTemp[] */
1056 ){
1057   const char *zOpName;
1058   const char *zSynopsis;
1059   int nOpName;
1060   int ii, jj;
1061   zOpName = sqlite3OpcodeName(pOp->opcode);
1062   nOpName = sqlite3Strlen30(zOpName);
1063   if( zOpName[nOpName+1] ){
1064     int seenCom = 0;
1065     char c;
1066     zSynopsis = zOpName += nOpName + 1;
1067     for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1068       if( c=='P' ){
1069         c = zSynopsis[++ii];
1070         if( c=='4' ){
1071           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1072         }else if( c=='X' ){
1073           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1074           seenCom = 1;
1075         }else{
1076           int v1 = translateP(c, pOp);
1077           int v2;
1078           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1079           if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1080             ii += 3;
1081             jj += sqlite3Strlen30(zTemp+jj);
1082             v2 = translateP(zSynopsis[ii], pOp);
1083             if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1084               ii += 2;
1085               v2++;
1086             }
1087             if( v2>1 ){
1088               sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1089             }
1090           }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1091             ii += 4;
1092           }
1093         }
1094         jj += sqlite3Strlen30(zTemp+jj);
1095       }else{
1096         zTemp[jj++] = c;
1097       }
1098     }
1099     if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1100       sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1101       jj += sqlite3Strlen30(zTemp+jj);
1102     }
1103     if( jj<nTemp ) zTemp[jj] = 0;
1104   }else if( pOp->zComment ){
1105     sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1106     jj = sqlite3Strlen30(zTemp);
1107   }else{
1108     zTemp[0] = 0;
1109     jj = 0;
1110   }
1111   return jj;
1112 }
1113 #endif /* SQLITE_DEBUG */
1114 
1115 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1116 /*
1117 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1118 ** that can be displayed in the P4 column of EXPLAIN output.
1119 */
1120 static int displayP4Expr(int nTemp, char *zTemp, Expr *pExpr){
1121   const char *zOp = 0;
1122   int n;
1123   switch( pExpr->op ){
1124     case TK_STRING:
1125       sqlite3_snprintf(nTemp, zTemp, "%Q", pExpr->u.zToken);
1126       break;
1127     case TK_INTEGER:
1128       sqlite3_snprintf(nTemp, zTemp, "%d", pExpr->u.iValue);
1129       break;
1130     case TK_NULL:
1131       sqlite3_snprintf(nTemp, zTemp, "NULL");
1132       break;
1133     case TK_REGISTER: {
1134       sqlite3_snprintf(nTemp, zTemp, "r[%d]", pExpr->iTable);
1135       break;
1136     }
1137     case TK_COLUMN: {
1138       if( pExpr->iColumn<0 ){
1139         sqlite3_snprintf(nTemp, zTemp, "rowid");
1140       }else{
1141         sqlite3_snprintf(nTemp, zTemp, "c%d", (int)pExpr->iColumn);
1142       }
1143       break;
1144     }
1145     case TK_LT:      zOp = "LT";      break;
1146     case TK_LE:      zOp = "LE";      break;
1147     case TK_GT:      zOp = "GT";      break;
1148     case TK_GE:      zOp = "GE";      break;
1149     case TK_NE:      zOp = "NE";      break;
1150     case TK_EQ:      zOp = "EQ";      break;
1151     case TK_IS:      zOp = "IS";      break;
1152     case TK_ISNOT:   zOp = "ISNOT";   break;
1153     case TK_AND:     zOp = "AND";     break;
1154     case TK_OR:      zOp = "OR";      break;
1155     case TK_PLUS:    zOp = "ADD";     break;
1156     case TK_STAR:    zOp = "MUL";     break;
1157     case TK_MINUS:   zOp = "SUB";     break;
1158     case TK_REM:     zOp = "REM";     break;
1159     case TK_BITAND:  zOp = "BITAND";  break;
1160     case TK_BITOR:   zOp = "BITOR";   break;
1161     case TK_SLASH:   zOp = "DIV";     break;
1162     case TK_LSHIFT:  zOp = "LSHIFT";  break;
1163     case TK_RSHIFT:  zOp = "RSHIFT";  break;
1164     case TK_CONCAT:  zOp = "CONCAT";  break;
1165     case TK_UMINUS:  zOp = "MINUS";   break;
1166     case TK_UPLUS:   zOp = "PLUS";    break;
1167     case TK_BITNOT:  zOp = "BITNOT";  break;
1168     case TK_NOT:     zOp = "NOT";     break;
1169     case TK_ISNULL:  zOp = "ISNULL";  break;
1170     case TK_NOTNULL: zOp = "NOTNULL"; break;
1171 
1172     default:
1173       sqlite3_snprintf(nTemp, zTemp, "%s", "expr");
1174       break;
1175   }
1176 
1177   if( zOp ){
1178     sqlite3_snprintf(nTemp, zTemp, "%s(", zOp);
1179     n = sqlite3Strlen30(zTemp);
1180     n += displayP4Expr(nTemp-n, zTemp+n, pExpr->pLeft);
1181     if( n<nTemp-1 && pExpr->pRight ){
1182       zTemp[n++] = ',';
1183       n += displayP4Expr(nTemp-n, zTemp+n, pExpr->pRight);
1184     }
1185     sqlite3_snprintf(nTemp-n, zTemp+n, ")");
1186   }
1187   return sqlite3Strlen30(zTemp);
1188 }
1189 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1190 
1191 
1192 #if VDBE_DISPLAY_P4
1193 /*
1194 ** Compute a string that describes the P4 parameter for an opcode.
1195 ** Use zTemp for any required temporary buffer space.
1196 */
1197 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1198   char *zP4 = zTemp;
1199   assert( nTemp>=20 );
1200   switch( pOp->p4type ){
1201     case P4_KEYINFO: {
1202       int i, j;
1203       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1204       assert( pKeyInfo->aSortOrder!=0 );
1205       sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField);
1206       i = sqlite3Strlen30(zTemp);
1207       for(j=0; j<pKeyInfo->nField; j++){
1208         CollSeq *pColl = pKeyInfo->aColl[j];
1209         const char *zColl = pColl ? pColl->zName : "nil";
1210         int n = sqlite3Strlen30(zColl);
1211         if( n==6 && memcmp(zColl,"BINARY",6)==0 ){
1212           zColl = "B";
1213           n = 1;
1214         }
1215         if( i+n>nTemp-7 ){
1216           memcpy(&zTemp[i],",...",4);
1217           i += 4;
1218           break;
1219         }
1220         zTemp[i++] = ',';
1221         if( pKeyInfo->aSortOrder[j] ){
1222           zTemp[i++] = '-';
1223         }
1224         memcpy(&zTemp[i], zColl, n+1);
1225         i += n;
1226       }
1227       zTemp[i++] = ')';
1228       zTemp[i] = 0;
1229       assert( i<nTemp );
1230       break;
1231     }
1232 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1233     case P4_EXPR: {
1234       displayP4Expr(nTemp, zTemp, pOp->p4.pExpr);
1235       break;
1236     }
1237 #endif
1238     case P4_COLLSEQ: {
1239       CollSeq *pColl = pOp->p4.pColl;
1240       sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName);
1241       break;
1242     }
1243     case P4_FUNCDEF: {
1244       FuncDef *pDef = pOp->p4.pFunc;
1245       sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
1246       break;
1247     }
1248 #ifdef SQLITE_DEBUG
1249     case P4_FUNCCTX: {
1250       FuncDef *pDef = pOp->p4.pCtx->pFunc;
1251       sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
1252       break;
1253     }
1254 #endif
1255     case P4_INT64: {
1256       sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
1257       break;
1258     }
1259     case P4_INT32: {
1260       sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
1261       break;
1262     }
1263     case P4_REAL: {
1264       sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
1265       break;
1266     }
1267     case P4_MEM: {
1268       Mem *pMem = pOp->p4.pMem;
1269       if( pMem->flags & MEM_Str ){
1270         zP4 = pMem->z;
1271       }else if( pMem->flags & MEM_Int ){
1272         sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
1273       }else if( pMem->flags & MEM_Real ){
1274         sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r);
1275       }else if( pMem->flags & MEM_Null ){
1276         sqlite3_snprintf(nTemp, zTemp, "NULL");
1277       }else{
1278         assert( pMem->flags & MEM_Blob );
1279         zP4 = "(blob)";
1280       }
1281       break;
1282     }
1283 #ifndef SQLITE_OMIT_VIRTUALTABLE
1284     case P4_VTAB: {
1285       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1286       sqlite3_snprintf(nTemp, zTemp, "vtab:%p", pVtab);
1287       break;
1288     }
1289 #endif
1290     case P4_INTARRAY: {
1291       sqlite3_snprintf(nTemp, zTemp, "intarray");
1292       break;
1293     }
1294     case P4_SUBPROGRAM: {
1295       sqlite3_snprintf(nTemp, zTemp, "program");
1296       break;
1297     }
1298     case P4_ADVANCE: {
1299       zTemp[0] = 0;
1300       break;
1301     }
1302     default: {
1303       zP4 = pOp->p4.z;
1304       if( zP4==0 ){
1305         zP4 = zTemp;
1306         zTemp[0] = 0;
1307       }
1308     }
1309   }
1310   assert( zP4!=0 );
1311   return zP4;
1312 }
1313 #endif /* VDBE_DISPLAY_P4 */
1314 
1315 /*
1316 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1317 **
1318 ** The prepared statements need to know in advance the complete set of
1319 ** attached databases that will be use.  A mask of these databases
1320 ** is maintained in p->btreeMask.  The p->lockMask value is the subset of
1321 ** p->btreeMask of databases that will require a lock.
1322 */
1323 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1324   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1325   assert( i<(int)sizeof(p->btreeMask)*8 );
1326   DbMaskSet(p->btreeMask, i);
1327   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1328     DbMaskSet(p->lockMask, i);
1329   }
1330 }
1331 
1332 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1333 /*
1334 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1335 ** this routine obtains the mutex associated with each BtShared structure
1336 ** that may be accessed by the VM passed as an argument. In doing so it also
1337 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1338 ** that the correct busy-handler callback is invoked if required.
1339 **
1340 ** If SQLite is not threadsafe but does support shared-cache mode, then
1341 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1342 ** of all of BtShared structures accessible via the database handle
1343 ** associated with the VM.
1344 **
1345 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1346 ** function is a no-op.
1347 **
1348 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1349 ** statement p will ever use.  Let N be the number of bits in p->btreeMask
1350 ** corresponding to btrees that use shared cache.  Then the runtime of
1351 ** this routine is N*N.  But as N is rarely more than 1, this should not
1352 ** be a problem.
1353 */
1354 void sqlite3VdbeEnter(Vdbe *p){
1355   int i;
1356   sqlite3 *db;
1357   Db *aDb;
1358   int nDb;
1359   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1360   db = p->db;
1361   aDb = db->aDb;
1362   nDb = db->nDb;
1363   for(i=0; i<nDb; i++){
1364     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1365       sqlite3BtreeEnter(aDb[i].pBt);
1366     }
1367   }
1368 }
1369 #endif
1370 
1371 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1372 /*
1373 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1374 */
1375 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1376   int i;
1377   sqlite3 *db;
1378   Db *aDb;
1379   int nDb;
1380   db = p->db;
1381   aDb = db->aDb;
1382   nDb = db->nDb;
1383   for(i=0; i<nDb; i++){
1384     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1385       sqlite3BtreeLeave(aDb[i].pBt);
1386     }
1387   }
1388 }
1389 void sqlite3VdbeLeave(Vdbe *p){
1390   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1391   vdbeLeave(p);
1392 }
1393 #endif
1394 
1395 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1396 /*
1397 ** Print a single opcode.  This routine is used for debugging only.
1398 */
1399 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
1400   char *zP4;
1401   char zPtr[50];
1402   char zCom[100];
1403   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1404   if( pOut==0 ) pOut = stdout;
1405   zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1406 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1407   displayComment(pOp, zP4, zCom, sizeof(zCom));
1408 #else
1409   zCom[0] = 0;
1410 #endif
1411   /* NB:  The sqlite3OpcodeName() function is implemented by code created
1412   ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1413   ** information from the vdbe.c source text */
1414   fprintf(pOut, zFormat1, pc,
1415       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1416       zCom
1417   );
1418   fflush(pOut);
1419 }
1420 #endif
1421 
1422 /*
1423 ** Release an array of N Mem elements
1424 */
1425 static void releaseMemArray(Mem *p, int N){
1426   if( p && N ){
1427     Mem *pEnd = &p[N];
1428     sqlite3 *db = p->db;
1429     u8 malloc_failed = db->mallocFailed;
1430     if( db->pnBytesFreed ){
1431       do{
1432         if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1433       }while( (++p)<pEnd );
1434       return;
1435     }
1436     do{
1437       assert( (&p[1])==pEnd || p[0].db==p[1].db );
1438       assert( sqlite3VdbeCheckMemInvariants(p) );
1439 
1440       /* This block is really an inlined version of sqlite3VdbeMemRelease()
1441       ** that takes advantage of the fact that the memory cell value is
1442       ** being set to NULL after releasing any dynamic resources.
1443       **
1444       ** The justification for duplicating code is that according to
1445       ** callgrind, this causes a certain test case to hit the CPU 4.7
1446       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1447       ** sqlite3MemRelease() were called from here. With -O2, this jumps
1448       ** to 6.6 percent. The test case is inserting 1000 rows into a table
1449       ** with no indexes using a single prepared INSERT statement, bind()
1450       ** and reset(). Inserts are grouped into a transaction.
1451       */
1452       testcase( p->flags & MEM_Agg );
1453       testcase( p->flags & MEM_Dyn );
1454       testcase( p->flags & MEM_Frame );
1455       testcase( p->flags & MEM_RowSet );
1456       if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
1457         sqlite3VdbeMemRelease(p);
1458       }else if( p->szMalloc ){
1459         sqlite3DbFree(db, p->zMalloc);
1460         p->szMalloc = 0;
1461       }
1462 
1463       p->flags = MEM_Undefined;
1464     }while( (++p)<pEnd );
1465     db->mallocFailed = malloc_failed;
1466   }
1467 }
1468 
1469 /*
1470 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1471 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1472 */
1473 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1474   int i;
1475   Mem *aMem = VdbeFrameMem(p);
1476   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1477   for(i=0; i<p->nChildCsr; i++){
1478     sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1479   }
1480   releaseMemArray(aMem, p->nChildMem);
1481   sqlite3DbFree(p->v->db, p);
1482 }
1483 
1484 #ifndef SQLITE_OMIT_EXPLAIN
1485 /*
1486 ** Give a listing of the program in the virtual machine.
1487 **
1488 ** The interface is the same as sqlite3VdbeExec().  But instead of
1489 ** running the code, it invokes the callback once for each instruction.
1490 ** This feature is used to implement "EXPLAIN".
1491 **
1492 ** When p->explain==1, each instruction is listed.  When
1493 ** p->explain==2, only OP_Explain instructions are listed and these
1494 ** are shown in a different format.  p->explain==2 is used to implement
1495 ** EXPLAIN QUERY PLAN.
1496 **
1497 ** When p->explain==1, first the main program is listed, then each of
1498 ** the trigger subprograms are listed one by one.
1499 */
1500 int sqlite3VdbeList(
1501   Vdbe *p                   /* The VDBE */
1502 ){
1503   int nRow;                            /* Stop when row count reaches this */
1504   int nSub = 0;                        /* Number of sub-vdbes seen so far */
1505   SubProgram **apSub = 0;              /* Array of sub-vdbes */
1506   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
1507   sqlite3 *db = p->db;                 /* The database connection */
1508   int i;                               /* Loop counter */
1509   int rc = SQLITE_OK;                  /* Return code */
1510   Mem *pMem = &p->aMem[1];             /* First Mem of result set */
1511 
1512   assert( p->explain );
1513   assert( p->magic==VDBE_MAGIC_RUN );
1514   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1515 
1516   /* Even though this opcode does not use dynamic strings for
1517   ** the result, result columns may become dynamic if the user calls
1518   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1519   */
1520   releaseMemArray(pMem, 8);
1521   p->pResultSet = 0;
1522 
1523   if( p->rc==SQLITE_NOMEM ){
1524     /* This happens if a malloc() inside a call to sqlite3_column_text() or
1525     ** sqlite3_column_text16() failed.  */
1526     db->mallocFailed = 1;
1527     return SQLITE_ERROR;
1528   }
1529 
1530   /* When the number of output rows reaches nRow, that means the
1531   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1532   ** nRow is the sum of the number of rows in the main program, plus
1533   ** the sum of the number of rows in all trigger subprograms encountered
1534   ** so far.  The nRow value will increase as new trigger subprograms are
1535   ** encountered, but p->pc will eventually catch up to nRow.
1536   */
1537   nRow = p->nOp;
1538   if( p->explain==1 ){
1539     /* The first 8 memory cells are used for the result set.  So we will
1540     ** commandeer the 9th cell to use as storage for an array of pointers
1541     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
1542     ** cells.  */
1543     assert( p->nMem>9 );
1544     pSub = &p->aMem[9];
1545     if( pSub->flags&MEM_Blob ){
1546       /* On the first call to sqlite3_step(), pSub will hold a NULL.  It is
1547       ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1548       nSub = pSub->n/sizeof(Vdbe*);
1549       apSub = (SubProgram **)pSub->z;
1550     }
1551     for(i=0; i<nSub; i++){
1552       nRow += apSub[i]->nOp;
1553     }
1554   }
1555 
1556   do{
1557     i = p->pc++;
1558   }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1559   if( i>=nRow ){
1560     p->rc = SQLITE_OK;
1561     rc = SQLITE_DONE;
1562   }else if( db->u1.isInterrupted ){
1563     p->rc = SQLITE_INTERRUPT;
1564     rc = SQLITE_ERROR;
1565     sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
1566   }else{
1567     char *zP4;
1568     Op *pOp;
1569     if( i<p->nOp ){
1570       /* The output line number is small enough that we are still in the
1571       ** main program. */
1572       pOp = &p->aOp[i];
1573     }else{
1574       /* We are currently listing subprograms.  Figure out which one and
1575       ** pick up the appropriate opcode. */
1576       int j;
1577       i -= p->nOp;
1578       for(j=0; i>=apSub[j]->nOp; j++){
1579         i -= apSub[j]->nOp;
1580       }
1581       pOp = &apSub[j]->aOp[i];
1582     }
1583     if( p->explain==1 ){
1584       pMem->flags = MEM_Int;
1585       pMem->u.i = i;                                /* Program counter */
1586       pMem++;
1587 
1588       pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1589       pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1590       assert( pMem->z!=0 );
1591       pMem->n = sqlite3Strlen30(pMem->z);
1592       pMem->enc = SQLITE_UTF8;
1593       pMem++;
1594 
1595       /* When an OP_Program opcode is encounter (the only opcode that has
1596       ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1597       ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1598       ** has not already been seen.
1599       */
1600       if( pOp->p4type==P4_SUBPROGRAM ){
1601         int nByte = (nSub+1)*sizeof(SubProgram*);
1602         int j;
1603         for(j=0; j<nSub; j++){
1604           if( apSub[j]==pOp->p4.pProgram ) break;
1605         }
1606         if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
1607           apSub = (SubProgram **)pSub->z;
1608           apSub[nSub++] = pOp->p4.pProgram;
1609           pSub->flags |= MEM_Blob;
1610           pSub->n = nSub*sizeof(SubProgram*);
1611         }
1612       }
1613     }
1614 
1615     pMem->flags = MEM_Int;
1616     pMem->u.i = pOp->p1;                          /* P1 */
1617     pMem++;
1618 
1619     pMem->flags = MEM_Int;
1620     pMem->u.i = pOp->p2;                          /* P2 */
1621     pMem++;
1622 
1623     pMem->flags = MEM_Int;
1624     pMem->u.i = pOp->p3;                          /* P3 */
1625     pMem++;
1626 
1627     if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
1628       assert( p->db->mallocFailed );
1629       return SQLITE_ERROR;
1630     }
1631     pMem->flags = MEM_Str|MEM_Term;
1632     zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
1633     if( zP4!=pMem->z ){
1634       sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
1635     }else{
1636       assert( pMem->z!=0 );
1637       pMem->n = sqlite3Strlen30(pMem->z);
1638       pMem->enc = SQLITE_UTF8;
1639     }
1640     pMem++;
1641 
1642     if( p->explain==1 ){
1643       if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
1644         assert( p->db->mallocFailed );
1645         return SQLITE_ERROR;
1646       }
1647       pMem->flags = MEM_Str|MEM_Term;
1648       pMem->n = 2;
1649       sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
1650       pMem->enc = SQLITE_UTF8;
1651       pMem++;
1652 
1653 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1654       if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
1655         assert( p->db->mallocFailed );
1656         return SQLITE_ERROR;
1657       }
1658       pMem->flags = MEM_Str|MEM_Term;
1659       pMem->n = displayComment(pOp, zP4, pMem->z, 500);
1660       pMem->enc = SQLITE_UTF8;
1661 #else
1662       pMem->flags = MEM_Null;                       /* Comment */
1663 #endif
1664     }
1665 
1666     p->nResColumn = 8 - 4*(p->explain-1);
1667     p->pResultSet = &p->aMem[1];
1668     p->rc = SQLITE_OK;
1669     rc = SQLITE_ROW;
1670   }
1671   return rc;
1672 }
1673 #endif /* SQLITE_OMIT_EXPLAIN */
1674 
1675 #ifdef SQLITE_DEBUG
1676 /*
1677 ** Print the SQL that was used to generate a VDBE program.
1678 */
1679 void sqlite3VdbePrintSql(Vdbe *p){
1680   const char *z = 0;
1681   if( p->zSql ){
1682     z = p->zSql;
1683   }else if( p->nOp>=1 ){
1684     const VdbeOp *pOp = &p->aOp[0];
1685     if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1686       z = pOp->p4.z;
1687       while( sqlite3Isspace(*z) ) z++;
1688     }
1689   }
1690   if( z ) printf("SQL: [%s]\n", z);
1691 }
1692 #endif
1693 
1694 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1695 /*
1696 ** Print an IOTRACE message showing SQL content.
1697 */
1698 void sqlite3VdbeIOTraceSql(Vdbe *p){
1699   int nOp = p->nOp;
1700   VdbeOp *pOp;
1701   if( sqlite3IoTrace==0 ) return;
1702   if( nOp<1 ) return;
1703   pOp = &p->aOp[0];
1704   if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1705     int i, j;
1706     char z[1000];
1707     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1708     for(i=0; sqlite3Isspace(z[i]); i++){}
1709     for(j=0; z[i]; i++){
1710       if( sqlite3Isspace(z[i]) ){
1711         if( z[i-1]!=' ' ){
1712           z[j++] = ' ';
1713         }
1714       }else{
1715         z[j++] = z[i];
1716       }
1717     }
1718     z[j] = 0;
1719     sqlite3IoTrace("SQL %s\n", z);
1720   }
1721 }
1722 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1723 
1724 /*
1725 ** Allocate space from a fixed size buffer and return a pointer to
1726 ** that space.  If insufficient space is available, return NULL.
1727 **
1728 ** The pBuf parameter is the initial value of a pointer which will
1729 ** receive the new memory.  pBuf is normally NULL.  If pBuf is not
1730 ** NULL, it means that memory space has already been allocated and that
1731 ** this routine should not allocate any new memory.  When pBuf is not
1732 ** NULL simply return pBuf.  Only allocate new memory space when pBuf
1733 ** is NULL.
1734 **
1735 ** nByte is the number of bytes of space needed.
1736 **
1737 ** pFrom points to *pnFrom bytes of available space.  New space is allocated
1738 ** from the end of the pFrom buffer and *pnFrom is decremented.
1739 **
1740 ** *pnNeeded is a counter of the number of bytes of space that have failed
1741 ** to allocate.  If there is insufficient space in pFrom to satisfy the
1742 ** request, then increment *pnNeeded by the amount of the request.
1743 */
1744 static void *allocSpace(
1745   void *pBuf,          /* Where return pointer will be stored */
1746   int nByte,           /* Number of bytes to allocate */
1747   u8 *pFrom,           /* Memory available for allocation */
1748   int *pnFrom,         /* IN/OUT: Space available at pFrom */
1749   int *pnNeeded        /* If allocation cannot be made, increment *pnByte */
1750 ){
1751   assert( EIGHT_BYTE_ALIGNMENT(pFrom) );
1752   if( pBuf==0 ){
1753     nByte = ROUND8(nByte);
1754     if( nByte <= *pnFrom ){
1755       *pnFrom -= nByte;
1756       pBuf = &pFrom[*pnFrom];
1757     }else{
1758       *pnNeeded += nByte;
1759     }
1760   }
1761   assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
1762   return pBuf;
1763 }
1764 
1765 /*
1766 ** Rewind the VDBE back to the beginning in preparation for
1767 ** running it.
1768 */
1769 void sqlite3VdbeRewind(Vdbe *p){
1770 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1771   int i;
1772 #endif
1773   assert( p!=0 );
1774   assert( p->magic==VDBE_MAGIC_INIT );
1775 
1776   /* There should be at least one opcode.
1777   */
1778   assert( p->nOp>0 );
1779 
1780   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
1781   p->magic = VDBE_MAGIC_RUN;
1782 
1783 #ifdef SQLITE_DEBUG
1784   for(i=1; i<p->nMem; i++){
1785     assert( p->aMem[i].db==p->db );
1786   }
1787 #endif
1788   p->pc = -1;
1789   p->rc = SQLITE_OK;
1790   p->errorAction = OE_Abort;
1791   p->magic = VDBE_MAGIC_RUN;
1792   p->nChange = 0;
1793   p->cacheCtr = 1;
1794   p->minWriteFileFormat = 255;
1795   p->iStatement = 0;
1796   p->nFkConstraint = 0;
1797 #ifdef VDBE_PROFILE
1798   for(i=0; i<p->nOp; i++){
1799     p->aOp[i].cnt = 0;
1800     p->aOp[i].cycles = 0;
1801   }
1802 #endif
1803 }
1804 
1805 /*
1806 ** Prepare a virtual machine for execution for the first time after
1807 ** creating the virtual machine.  This involves things such
1808 ** as allocating registers and initializing the program counter.
1809 ** After the VDBE has be prepped, it can be executed by one or more
1810 ** calls to sqlite3VdbeExec().
1811 **
1812 ** This function may be called exactly once on each virtual machine.
1813 ** After this routine is called the VM has been "packaged" and is ready
1814 ** to run.  After this routine is called, further calls to
1815 ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
1816 ** the Vdbe from the Parse object that helped generate it so that the
1817 ** the Vdbe becomes an independent entity and the Parse object can be
1818 ** destroyed.
1819 **
1820 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1821 ** to its initial state after it has been run.
1822 */
1823 void sqlite3VdbeMakeReady(
1824   Vdbe *p,                       /* The VDBE */
1825   Parse *pParse                  /* Parsing context */
1826 ){
1827   sqlite3 *db;                   /* The database connection */
1828   int nVar;                      /* Number of parameters */
1829   int nMem;                      /* Number of VM memory registers */
1830   int nCursor;                   /* Number of cursors required */
1831   int nArg;                      /* Number of arguments in subprograms */
1832   int nOnce;                     /* Number of OP_Once instructions */
1833   int n;                         /* Loop counter */
1834   int nFree;                     /* Available free space */
1835   u8 *zCsr;                      /* Memory available for allocation */
1836   int nByte;                     /* How much extra memory is needed */
1837 
1838   assert( p!=0 );
1839   assert( p->nOp>0 );
1840   assert( pParse!=0 );
1841   assert( p->magic==VDBE_MAGIC_INIT );
1842   assert( pParse==p->pParse );
1843   db = p->db;
1844   assert( db->mallocFailed==0 );
1845   nVar = pParse->nVar;
1846   nMem = pParse->nMem;
1847   nCursor = pParse->nTab;
1848   nArg = pParse->nMaxArg;
1849   nOnce = pParse->nOnce;
1850   if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
1851 
1852   /* For each cursor required, also allocate a memory cell. Memory
1853   ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
1854   ** the vdbe program. Instead they are used to allocate space for
1855   ** VdbeCursor/BtCursor structures. The blob of memory associated with
1856   ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
1857   ** stores the blob of memory associated with cursor 1, etc.
1858   **
1859   ** See also: allocateCursor().
1860   */
1861   nMem += nCursor;
1862 
1863   /* zCsr will initially point to nFree bytes of unused space at the
1864   ** end of the opcode array, p->aOp.  The computation of nFree is
1865   ** conservative - it might be smaller than the true number of free
1866   ** bytes, but never larger.  nFree must be a multiple of 8 - it is
1867   ** rounded down if is not.
1868   */
1869   n = ROUND8(sizeof(Op)*p->nOp);              /* Bytes of opcode space used */
1870   zCsr = &((u8*)p->aOp)[n];                   /* Unused opcode space */
1871   assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
1872   nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused space */
1873   assert( nFree>=0 );
1874   if( nFree>0 ){
1875     memset(zCsr, 0, nFree);
1876     assert( EIGHT_BYTE_ALIGNMENT(&zCsr[nFree]) );
1877   }
1878 
1879   resolveP2Values(p, &nArg);
1880   p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1881   if( pParse->explain && nMem<10 ){
1882     nMem = 10;
1883   }
1884   p->expired = 0;
1885 
1886   /* Memory for registers, parameters, cursor, etc, is allocated in two
1887   ** passes.  On the first pass, we try to reuse unused space at the
1888   ** end of the opcode array.  If we are unable to satisfy all memory
1889   ** requirements by reusing the opcode array tail, then the second
1890   ** pass will fill in the rest using a fresh allocation.
1891   **
1892   ** This two-pass approach that reuses as much memory as possible from
1893   ** the leftover space at the end of the opcode array can significantly
1894   ** reduce the amount of memory held by a prepared statement.
1895   */
1896   do {
1897     nByte = 0;
1898     p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), zCsr, &nFree, &nByte);
1899     p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), zCsr, &nFree, &nByte);
1900     p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), zCsr, &nFree, &nByte);
1901     p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
1902                           zCsr, &nFree, &nByte);
1903     p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, zCsr, &nFree, &nByte);
1904 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1905     p->anExec = allocSpace(p->anExec, p->nOp*sizeof(i64), zCsr, &nFree, &nByte);
1906 #endif
1907     if( nByte ){
1908       p->pFree = sqlite3DbMallocZero(db, nByte);
1909     }
1910     zCsr = p->pFree;
1911     nFree = nByte;
1912   }while( nByte && !db->mallocFailed );
1913 
1914   p->nCursor = nCursor;
1915   p->nOnceFlag = nOnce;
1916   if( p->aVar ){
1917     p->nVar = (ynVar)nVar;
1918     for(n=0; n<nVar; n++){
1919       p->aVar[n].flags = MEM_Null;
1920       p->aVar[n].db = db;
1921     }
1922   }
1923   p->nzVar = pParse->nzVar;
1924   p->azVar = pParse->azVar;
1925   pParse->nzVar =  0;
1926   pParse->azVar = 0;
1927   if( p->aMem ){
1928     p->aMem--;                      /* aMem[] goes from 1..nMem */
1929     p->nMem = nMem;                 /*       not from 0..nMem-1 */
1930     for(n=1; n<=nMem; n++){
1931       p->aMem[n].flags = MEM_Undefined;
1932       p->aMem[n].db = db;
1933     }
1934   }
1935   p->explain = pParse->explain;
1936   sqlite3VdbeRewind(p);
1937 }
1938 
1939 /*
1940 ** Close a VDBE cursor and release all the resources that cursor
1941 ** happens to hold.
1942 */
1943 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
1944   if( pCx==0 ){
1945     return;
1946   }
1947   assert( pCx->pBt==0 || pCx->eCurType==CURTYPE_BTREE );
1948   switch( pCx->eCurType ){
1949     case CURTYPE_SORTER: {
1950       sqlite3VdbeSorterClose(p->db, pCx);
1951       break;
1952     }
1953     case CURTYPE_BTREE: {
1954       if( pCx->pBt ){
1955         sqlite3BtreeClose(pCx->pBt);
1956         /* The pCx->pCursor will be close automatically, if it exists, by
1957         ** the call above. */
1958       }else{
1959         assert( pCx->uc.pCursor!=0 );
1960         sqlite3BtreeCloseCursor(pCx->uc.pCursor);
1961       }
1962       break;
1963     }
1964 #ifndef SQLITE_OMIT_VIRTUALTABLE
1965     case CURTYPE_VTAB: {
1966       sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
1967       const sqlite3_module *pModule = pVCur->pVtab->pModule;
1968       assert( pVCur->pVtab->nRef>0 );
1969       pVCur->pVtab->nRef--;
1970       pModule->xClose(pVCur);
1971       break;
1972     }
1973 #endif
1974   }
1975 }
1976 
1977 /*
1978 ** Close all cursors in the current frame.
1979 */
1980 static void closeCursorsInFrame(Vdbe *p){
1981   if( p->apCsr ){
1982     int i;
1983     for(i=0; i<p->nCursor; i++){
1984       VdbeCursor *pC = p->apCsr[i];
1985       if( pC ){
1986         sqlite3VdbeFreeCursor(p, pC);
1987         p->apCsr[i] = 0;
1988       }
1989     }
1990   }
1991 }
1992 
1993 /*
1994 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
1995 ** is used, for example, when a trigger sub-program is halted to restore
1996 ** control to the main program.
1997 */
1998 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
1999   Vdbe *v = pFrame->v;
2000   closeCursorsInFrame(v);
2001 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2002   v->anExec = pFrame->anExec;
2003 #endif
2004   v->aOnceFlag = pFrame->aOnceFlag;
2005   v->nOnceFlag = pFrame->nOnceFlag;
2006   v->aOp = pFrame->aOp;
2007   v->nOp = pFrame->nOp;
2008   v->aMem = pFrame->aMem;
2009   v->nMem = pFrame->nMem;
2010   v->apCsr = pFrame->apCsr;
2011   v->nCursor = pFrame->nCursor;
2012   v->db->lastRowid = pFrame->lastRowid;
2013   v->nChange = pFrame->nChange;
2014   v->db->nChange = pFrame->nDbChange;
2015   return pFrame->pc;
2016 }
2017 
2018 /*
2019 ** Close all cursors.
2020 **
2021 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2022 ** cell array. This is necessary as the memory cell array may contain
2023 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2024 ** open cursors.
2025 */
2026 static void closeAllCursors(Vdbe *p){
2027   if( p->pFrame ){
2028     VdbeFrame *pFrame;
2029     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2030     sqlite3VdbeFrameRestore(pFrame);
2031     p->pFrame = 0;
2032     p->nFrame = 0;
2033   }
2034   assert( p->nFrame==0 );
2035   closeCursorsInFrame(p);
2036   if( p->aMem ){
2037     releaseMemArray(&p->aMem[1], p->nMem);
2038   }
2039   while( p->pDelFrame ){
2040     VdbeFrame *pDel = p->pDelFrame;
2041     p->pDelFrame = pDel->pParent;
2042     sqlite3VdbeFrameDelete(pDel);
2043   }
2044 
2045   /* Delete any auxdata allocations made by the VM */
2046   if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0);
2047   assert( p->pAuxData==0 );
2048 }
2049 
2050 /*
2051 ** Clean up the VM after a single run.
2052 */
2053 static void Cleanup(Vdbe *p){
2054   sqlite3 *db = p->db;
2055 
2056 #ifdef SQLITE_DEBUG
2057   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
2058   ** Vdbe.aMem[] arrays have already been cleaned up.  */
2059   int i;
2060   if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
2061   if( p->aMem ){
2062     for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
2063   }
2064 #endif
2065 
2066   sqlite3DbFree(db, p->zErrMsg);
2067   p->zErrMsg = 0;
2068   p->pResultSet = 0;
2069 }
2070 
2071 /*
2072 ** Set the number of result columns that will be returned by this SQL
2073 ** statement. This is now set at compile time, rather than during
2074 ** execution of the vdbe program so that sqlite3_column_count() can
2075 ** be called on an SQL statement before sqlite3_step().
2076 */
2077 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2078   Mem *pColName;
2079   int n;
2080   sqlite3 *db = p->db;
2081 
2082   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2083   sqlite3DbFree(db, p->aColName);
2084   n = nResColumn*COLNAME_N;
2085   p->nResColumn = (u16)nResColumn;
2086   p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
2087   if( p->aColName==0 ) return;
2088   while( n-- > 0 ){
2089     pColName->flags = MEM_Null;
2090     pColName->db = p->db;
2091     pColName++;
2092   }
2093 }
2094 
2095 /*
2096 ** Set the name of the idx'th column to be returned by the SQL statement.
2097 ** zName must be a pointer to a nul terminated string.
2098 **
2099 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2100 **
2101 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2102 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2103 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2104 */
2105 int sqlite3VdbeSetColName(
2106   Vdbe *p,                         /* Vdbe being configured */
2107   int idx,                         /* Index of column zName applies to */
2108   int var,                         /* One of the COLNAME_* constants */
2109   const char *zName,               /* Pointer to buffer containing name */
2110   void (*xDel)(void*)              /* Memory management strategy for zName */
2111 ){
2112   int rc;
2113   Mem *pColName;
2114   assert( idx<p->nResColumn );
2115   assert( var<COLNAME_N );
2116   if( p->db->mallocFailed ){
2117     assert( !zName || xDel!=SQLITE_DYNAMIC );
2118     return SQLITE_NOMEM;
2119   }
2120   assert( p->aColName!=0 );
2121   pColName = &(p->aColName[idx+var*p->nResColumn]);
2122   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2123   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2124   return rc;
2125 }
2126 
2127 /*
2128 ** A read or write transaction may or may not be active on database handle
2129 ** db. If a transaction is active, commit it. If there is a
2130 ** write-transaction spanning more than one database file, this routine
2131 ** takes care of the master journal trickery.
2132 */
2133 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2134   int i;
2135   int nTrans = 0;  /* Number of databases with an active write-transaction */
2136   int rc = SQLITE_OK;
2137   int needXcommit = 0;
2138 
2139 #ifdef SQLITE_OMIT_VIRTUALTABLE
2140   /* With this option, sqlite3VtabSync() is defined to be simply
2141   ** SQLITE_OK so p is not used.
2142   */
2143   UNUSED_PARAMETER(p);
2144 #endif
2145 
2146   /* Before doing anything else, call the xSync() callback for any
2147   ** virtual module tables written in this transaction. This has to
2148   ** be done before determining whether a master journal file is
2149   ** required, as an xSync() callback may add an attached database
2150   ** to the transaction.
2151   */
2152   rc = sqlite3VtabSync(db, p);
2153 
2154   /* This loop determines (a) if the commit hook should be invoked and
2155   ** (b) how many database files have open write transactions, not
2156   ** including the temp database. (b) is important because if more than
2157   ** one database file has an open write transaction, a master journal
2158   ** file is required for an atomic commit.
2159   */
2160   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2161     Btree *pBt = db->aDb[i].pBt;
2162     if( sqlite3BtreeIsInTrans(pBt) ){
2163       needXcommit = 1;
2164       if( i!=1 ) nTrans++;
2165       sqlite3BtreeEnter(pBt);
2166       rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
2167       sqlite3BtreeLeave(pBt);
2168     }
2169   }
2170   if( rc!=SQLITE_OK ){
2171     return rc;
2172   }
2173 
2174   /* If there are any write-transactions at all, invoke the commit hook */
2175   if( needXcommit && db->xCommitCallback ){
2176     rc = db->xCommitCallback(db->pCommitArg);
2177     if( rc ){
2178       return SQLITE_CONSTRAINT_COMMITHOOK;
2179     }
2180   }
2181 
2182   /* The simple case - no more than one database file (not counting the
2183   ** TEMP database) has a transaction active.   There is no need for the
2184   ** master-journal.
2185   **
2186   ** If the return value of sqlite3BtreeGetFilename() is a zero length
2187   ** string, it means the main database is :memory: or a temp file.  In
2188   ** that case we do not support atomic multi-file commits, so use the
2189   ** simple case then too.
2190   */
2191   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2192    || nTrans<=1
2193   ){
2194     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2195       Btree *pBt = db->aDb[i].pBt;
2196       if( pBt ){
2197         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2198       }
2199     }
2200 
2201     /* Do the commit only if all databases successfully complete phase 1.
2202     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2203     ** IO error while deleting or truncating a journal file. It is unlikely,
2204     ** but could happen. In this case abandon processing and return the error.
2205     */
2206     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2207       Btree *pBt = db->aDb[i].pBt;
2208       if( pBt ){
2209         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2210       }
2211     }
2212     if( rc==SQLITE_OK ){
2213       sqlite3VtabCommit(db);
2214     }
2215   }
2216 
2217   /* The complex case - There is a multi-file write-transaction active.
2218   ** This requires a master journal file to ensure the transaction is
2219   ** committed atomically.
2220   */
2221 #ifndef SQLITE_OMIT_DISKIO
2222   else{
2223     sqlite3_vfs *pVfs = db->pVfs;
2224     int needSync = 0;
2225     char *zMaster = 0;   /* File-name for the master journal */
2226     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2227     sqlite3_file *pMaster = 0;
2228     i64 offset = 0;
2229     int res;
2230     int retryCount = 0;
2231     int nMainFile;
2232 
2233     /* Select a master journal file name */
2234     nMainFile = sqlite3Strlen30(zMainFile);
2235     zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
2236     if( zMaster==0 ) return SQLITE_NOMEM;
2237     do {
2238       u32 iRandom;
2239       if( retryCount ){
2240         if( retryCount>100 ){
2241           sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2242           sqlite3OsDelete(pVfs, zMaster, 0);
2243           break;
2244         }else if( retryCount==1 ){
2245           sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2246         }
2247       }
2248       retryCount++;
2249       sqlite3_randomness(sizeof(iRandom), &iRandom);
2250       sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
2251                                (iRandom>>8)&0xffffff, iRandom&0xff);
2252       /* The antipenultimate character of the master journal name must
2253       ** be "9" to avoid name collisions when using 8+3 filenames. */
2254       assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2255       sqlite3FileSuffix3(zMainFile, zMaster);
2256       rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2257     }while( rc==SQLITE_OK && res );
2258     if( rc==SQLITE_OK ){
2259       /* Open the master journal. */
2260       rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2261           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2262           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2263       );
2264     }
2265     if( rc!=SQLITE_OK ){
2266       sqlite3DbFree(db, zMaster);
2267       return rc;
2268     }
2269 
2270     /* Write the name of each database file in the transaction into the new
2271     ** master journal file. If an error occurs at this point close
2272     ** and delete the master journal file. All the individual journal files
2273     ** still have 'null' as the master journal pointer, so they will roll
2274     ** back independently if a failure occurs.
2275     */
2276     for(i=0; i<db->nDb; i++){
2277       Btree *pBt = db->aDb[i].pBt;
2278       if( sqlite3BtreeIsInTrans(pBt) ){
2279         char const *zFile = sqlite3BtreeGetJournalname(pBt);
2280         if( zFile==0 ){
2281           continue;  /* Ignore TEMP and :memory: databases */
2282         }
2283         assert( zFile[0]!=0 );
2284         if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
2285           needSync = 1;
2286         }
2287         rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2288         offset += sqlite3Strlen30(zFile)+1;
2289         if( rc!=SQLITE_OK ){
2290           sqlite3OsCloseFree(pMaster);
2291           sqlite3OsDelete(pVfs, zMaster, 0);
2292           sqlite3DbFree(db, zMaster);
2293           return rc;
2294         }
2295       }
2296     }
2297 
2298     /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2299     ** flag is set this is not required.
2300     */
2301     if( needSync
2302      && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2303      && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2304     ){
2305       sqlite3OsCloseFree(pMaster);
2306       sqlite3OsDelete(pVfs, zMaster, 0);
2307       sqlite3DbFree(db, zMaster);
2308       return rc;
2309     }
2310 
2311     /* Sync all the db files involved in the transaction. The same call
2312     ** sets the master journal pointer in each individual journal. If
2313     ** an error occurs here, do not delete the master journal file.
2314     **
2315     ** If the error occurs during the first call to
2316     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2317     ** master journal file will be orphaned. But we cannot delete it,
2318     ** in case the master journal file name was written into the journal
2319     ** file before the failure occurred.
2320     */
2321     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2322       Btree *pBt = db->aDb[i].pBt;
2323       if( pBt ){
2324         rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
2325       }
2326     }
2327     sqlite3OsCloseFree(pMaster);
2328     assert( rc!=SQLITE_BUSY );
2329     if( rc!=SQLITE_OK ){
2330       sqlite3DbFree(db, zMaster);
2331       return rc;
2332     }
2333 
2334     /* Delete the master journal file. This commits the transaction. After
2335     ** doing this the directory is synced again before any individual
2336     ** transaction files are deleted.
2337     */
2338     rc = sqlite3OsDelete(pVfs, zMaster, needSync);
2339     sqlite3DbFree(db, zMaster);
2340     zMaster = 0;
2341     if( rc ){
2342       return rc;
2343     }
2344 
2345     /* All files and directories have already been synced, so the following
2346     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2347     ** deleting or truncating journals. If something goes wrong while
2348     ** this is happening we don't really care. The integrity of the
2349     ** transaction is already guaranteed, but some stray 'cold' journals
2350     ** may be lying around. Returning an error code won't help matters.
2351     */
2352     disable_simulated_io_errors();
2353     sqlite3BeginBenignMalloc();
2354     for(i=0; i<db->nDb; i++){
2355       Btree *pBt = db->aDb[i].pBt;
2356       if( pBt ){
2357         sqlite3BtreeCommitPhaseTwo(pBt, 1);
2358       }
2359     }
2360     sqlite3EndBenignMalloc();
2361     enable_simulated_io_errors();
2362 
2363     sqlite3VtabCommit(db);
2364   }
2365 #endif
2366 
2367   return rc;
2368 }
2369 
2370 /*
2371 ** This routine checks that the sqlite3.nVdbeActive count variable
2372 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2373 ** currently active. An assertion fails if the two counts do not match.
2374 ** This is an internal self-check only - it is not an essential processing
2375 ** step.
2376 **
2377 ** This is a no-op if NDEBUG is defined.
2378 */
2379 #ifndef NDEBUG
2380 static void checkActiveVdbeCnt(sqlite3 *db){
2381   Vdbe *p;
2382   int cnt = 0;
2383   int nWrite = 0;
2384   int nRead = 0;
2385   p = db->pVdbe;
2386   while( p ){
2387     if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2388       cnt++;
2389       if( p->readOnly==0 ) nWrite++;
2390       if( p->bIsReader ) nRead++;
2391     }
2392     p = p->pNext;
2393   }
2394   assert( cnt==db->nVdbeActive );
2395   assert( nWrite==db->nVdbeWrite );
2396   assert( nRead==db->nVdbeRead );
2397 }
2398 #else
2399 #define checkActiveVdbeCnt(x)
2400 #endif
2401 
2402 /*
2403 ** If the Vdbe passed as the first argument opened a statement-transaction,
2404 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2405 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2406 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2407 ** statement transaction is committed.
2408 **
2409 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2410 ** Otherwise SQLITE_OK.
2411 */
2412 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2413   sqlite3 *const db = p->db;
2414   int rc = SQLITE_OK;
2415 
2416   /* If p->iStatement is greater than zero, then this Vdbe opened a
2417   ** statement transaction that should be closed here. The only exception
2418   ** is that an IO error may have occurred, causing an emergency rollback.
2419   ** In this case (db->nStatement==0), and there is nothing to do.
2420   */
2421   if( db->nStatement && p->iStatement ){
2422     int i;
2423     const int iSavepoint = p->iStatement-1;
2424 
2425     assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2426     assert( db->nStatement>0 );
2427     assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2428 
2429     for(i=0; i<db->nDb; i++){
2430       int rc2 = SQLITE_OK;
2431       Btree *pBt = db->aDb[i].pBt;
2432       if( pBt ){
2433         if( eOp==SAVEPOINT_ROLLBACK ){
2434           rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2435         }
2436         if( rc2==SQLITE_OK ){
2437           rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2438         }
2439         if( rc==SQLITE_OK ){
2440           rc = rc2;
2441         }
2442       }
2443     }
2444     db->nStatement--;
2445     p->iStatement = 0;
2446 
2447     if( rc==SQLITE_OK ){
2448       if( eOp==SAVEPOINT_ROLLBACK ){
2449         rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2450       }
2451       if( rc==SQLITE_OK ){
2452         rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2453       }
2454     }
2455 
2456     /* If the statement transaction is being rolled back, also restore the
2457     ** database handles deferred constraint counter to the value it had when
2458     ** the statement transaction was opened.  */
2459     if( eOp==SAVEPOINT_ROLLBACK ){
2460       db->nDeferredCons = p->nStmtDefCons;
2461       db->nDeferredImmCons = p->nStmtDefImmCons;
2462     }
2463   }
2464   return rc;
2465 }
2466 
2467 /*
2468 ** This function is called when a transaction opened by the database
2469 ** handle associated with the VM passed as an argument is about to be
2470 ** committed. If there are outstanding deferred foreign key constraint
2471 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2472 **
2473 ** If there are outstanding FK violations and this function returns
2474 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2475 ** and write an error message to it. Then return SQLITE_ERROR.
2476 */
2477 #ifndef SQLITE_OMIT_FOREIGN_KEY
2478 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2479   sqlite3 *db = p->db;
2480   if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2481    || (!deferred && p->nFkConstraint>0)
2482   ){
2483     p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2484     p->errorAction = OE_Abort;
2485     sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
2486     return SQLITE_ERROR;
2487   }
2488   return SQLITE_OK;
2489 }
2490 #endif
2491 
2492 /*
2493 ** This routine is called the when a VDBE tries to halt.  If the VDBE
2494 ** has made changes and is in autocommit mode, then commit those
2495 ** changes.  If a rollback is needed, then do the rollback.
2496 **
2497 ** This routine is the only way to move the state of a VM from
2498 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
2499 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2500 **
2501 ** Return an error code.  If the commit could not complete because of
2502 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
2503 ** means the close did not happen and needs to be repeated.
2504 */
2505 int sqlite3VdbeHalt(Vdbe *p){
2506   int rc;                         /* Used to store transient return codes */
2507   sqlite3 *db = p->db;
2508 
2509   /* This function contains the logic that determines if a statement or
2510   ** transaction will be committed or rolled back as a result of the
2511   ** execution of this virtual machine.
2512   **
2513   ** If any of the following errors occur:
2514   **
2515   **     SQLITE_NOMEM
2516   **     SQLITE_IOERR
2517   **     SQLITE_FULL
2518   **     SQLITE_INTERRUPT
2519   **
2520   ** Then the internal cache might have been left in an inconsistent
2521   ** state.  We need to rollback the statement transaction, if there is
2522   ** one, or the complete transaction if there is no statement transaction.
2523   */
2524 
2525   if( p->db->mallocFailed ){
2526     p->rc = SQLITE_NOMEM;
2527   }
2528   if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
2529   closeAllCursors(p);
2530   if( p->magic!=VDBE_MAGIC_RUN ){
2531     return SQLITE_OK;
2532   }
2533   checkActiveVdbeCnt(db);
2534 
2535   /* No commit or rollback needed if the program never started or if the
2536   ** SQL statement does not read or write a database file.  */
2537   if( p->pc>=0 && p->bIsReader ){
2538     int mrc;   /* Primary error code from p->rc */
2539     int eStatementOp = 0;
2540     int isSpecialError;            /* Set to true if a 'special' error */
2541 
2542     /* Lock all btrees used by the statement */
2543     sqlite3VdbeEnter(p);
2544 
2545     /* Check for one of the special errors */
2546     mrc = p->rc & 0xff;
2547     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2548                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2549     if( isSpecialError ){
2550       /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2551       ** no rollback is necessary. Otherwise, at least a savepoint
2552       ** transaction must be rolled back to restore the database to a
2553       ** consistent state.
2554       **
2555       ** Even if the statement is read-only, it is important to perform
2556       ** a statement or transaction rollback operation. If the error
2557       ** occurred while writing to the journal, sub-journal or database
2558       ** file as part of an effort to free up cache space (see function
2559       ** pagerStress() in pager.c), the rollback is required to restore
2560       ** the pager to a consistent state.
2561       */
2562       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2563         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2564           eStatementOp = SAVEPOINT_ROLLBACK;
2565         }else{
2566           /* We are forced to roll back the active transaction. Before doing
2567           ** so, abort any other statements this handle currently has active.
2568           */
2569           sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2570           sqlite3CloseSavepoints(db);
2571           db->autoCommit = 1;
2572           p->nChange = 0;
2573         }
2574       }
2575     }
2576 
2577     /* Check for immediate foreign key violations. */
2578     if( p->rc==SQLITE_OK ){
2579       sqlite3VdbeCheckFk(p, 0);
2580     }
2581 
2582     /* If the auto-commit flag is set and this is the only active writer
2583     ** VM, then we do either a commit or rollback of the current transaction.
2584     **
2585     ** Note: This block also runs if one of the special errors handled
2586     ** above has occurred.
2587     */
2588     if( !sqlite3VtabInSync(db)
2589      && db->autoCommit
2590      && db->nVdbeWrite==(p->readOnly==0)
2591     ){
2592       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2593         rc = sqlite3VdbeCheckFk(p, 1);
2594         if( rc!=SQLITE_OK ){
2595           if( NEVER(p->readOnly) ){
2596             sqlite3VdbeLeave(p);
2597             return SQLITE_ERROR;
2598           }
2599           rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2600         }else{
2601           /* The auto-commit flag is true, the vdbe program was successful
2602           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2603           ** key constraints to hold up the transaction. This means a commit
2604           ** is required. */
2605           rc = vdbeCommit(db, p);
2606         }
2607         if( rc==SQLITE_BUSY && p->readOnly ){
2608           sqlite3VdbeLeave(p);
2609           return SQLITE_BUSY;
2610         }else if( rc!=SQLITE_OK ){
2611           p->rc = rc;
2612           sqlite3RollbackAll(db, SQLITE_OK);
2613           p->nChange = 0;
2614         }else{
2615           db->nDeferredCons = 0;
2616           db->nDeferredImmCons = 0;
2617           db->flags &= ~SQLITE_DeferFKs;
2618           sqlite3CommitInternalChanges(db);
2619         }
2620       }else{
2621         sqlite3RollbackAll(db, SQLITE_OK);
2622         p->nChange = 0;
2623       }
2624       db->nStatement = 0;
2625     }else if( eStatementOp==0 ){
2626       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2627         eStatementOp = SAVEPOINT_RELEASE;
2628       }else if( p->errorAction==OE_Abort ){
2629         eStatementOp = SAVEPOINT_ROLLBACK;
2630       }else{
2631         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2632         sqlite3CloseSavepoints(db);
2633         db->autoCommit = 1;
2634         p->nChange = 0;
2635       }
2636     }
2637 
2638     /* If eStatementOp is non-zero, then a statement transaction needs to
2639     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2640     ** do so. If this operation returns an error, and the current statement
2641     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2642     ** current statement error code.
2643     */
2644     if( eStatementOp ){
2645       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2646       if( rc ){
2647         if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
2648           p->rc = rc;
2649           sqlite3DbFree(db, p->zErrMsg);
2650           p->zErrMsg = 0;
2651         }
2652         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2653         sqlite3CloseSavepoints(db);
2654         db->autoCommit = 1;
2655         p->nChange = 0;
2656       }
2657     }
2658 
2659     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2660     ** has been rolled back, update the database connection change-counter.
2661     */
2662     if( p->changeCntOn ){
2663       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2664         sqlite3VdbeSetChanges(db, p->nChange);
2665       }else{
2666         sqlite3VdbeSetChanges(db, 0);
2667       }
2668       p->nChange = 0;
2669     }
2670 
2671     /* Release the locks */
2672     sqlite3VdbeLeave(p);
2673   }
2674 
2675   /* We have successfully halted and closed the VM.  Record this fact. */
2676   if( p->pc>=0 ){
2677     db->nVdbeActive--;
2678     if( !p->readOnly ) db->nVdbeWrite--;
2679     if( p->bIsReader ) db->nVdbeRead--;
2680     assert( db->nVdbeActive>=db->nVdbeRead );
2681     assert( db->nVdbeRead>=db->nVdbeWrite );
2682     assert( db->nVdbeWrite>=0 );
2683   }
2684   p->magic = VDBE_MAGIC_HALT;
2685   checkActiveVdbeCnt(db);
2686   if( p->db->mallocFailed ){
2687     p->rc = SQLITE_NOMEM;
2688   }
2689 
2690   /* If the auto-commit flag is set to true, then any locks that were held
2691   ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2692   ** to invoke any required unlock-notify callbacks.
2693   */
2694   if( db->autoCommit ){
2695     sqlite3ConnectionUnlocked(db);
2696   }
2697 
2698   assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
2699   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
2700 }
2701 
2702 
2703 /*
2704 ** Each VDBE holds the result of the most recent sqlite3_step() call
2705 ** in p->rc.  This routine sets that result back to SQLITE_OK.
2706 */
2707 void sqlite3VdbeResetStepResult(Vdbe *p){
2708   p->rc = SQLITE_OK;
2709 }
2710 
2711 /*
2712 ** Copy the error code and error message belonging to the VDBE passed
2713 ** as the first argument to its database handle (so that they will be
2714 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2715 **
2716 ** This function does not clear the VDBE error code or message, just
2717 ** copies them to the database handle.
2718 */
2719 int sqlite3VdbeTransferError(Vdbe *p){
2720   sqlite3 *db = p->db;
2721   int rc = p->rc;
2722   if( p->zErrMsg ){
2723     u8 mallocFailed = db->mallocFailed;
2724     sqlite3BeginBenignMalloc();
2725     if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
2726     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2727     sqlite3EndBenignMalloc();
2728     db->mallocFailed = mallocFailed;
2729     db->errCode = rc;
2730   }else{
2731     sqlite3Error(db, rc);
2732   }
2733   return rc;
2734 }
2735 
2736 #ifdef SQLITE_ENABLE_SQLLOG
2737 /*
2738 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2739 ** invoke it.
2740 */
2741 static void vdbeInvokeSqllog(Vdbe *v){
2742   if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2743     char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2744     assert( v->db->init.busy==0 );
2745     if( zExpanded ){
2746       sqlite3GlobalConfig.xSqllog(
2747           sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2748       );
2749       sqlite3DbFree(v->db, zExpanded);
2750     }
2751   }
2752 }
2753 #else
2754 # define vdbeInvokeSqllog(x)
2755 #endif
2756 
2757 /*
2758 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
2759 ** Write any error messages into *pzErrMsg.  Return the result code.
2760 **
2761 ** After this routine is run, the VDBE should be ready to be executed
2762 ** again.
2763 **
2764 ** To look at it another way, this routine resets the state of the
2765 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2766 ** VDBE_MAGIC_INIT.
2767 */
2768 int sqlite3VdbeReset(Vdbe *p){
2769   sqlite3 *db;
2770   db = p->db;
2771 
2772   /* If the VM did not run to completion or if it encountered an
2773   ** error, then it might not have been halted properly.  So halt
2774   ** it now.
2775   */
2776   sqlite3VdbeHalt(p);
2777 
2778   /* If the VDBE has be run even partially, then transfer the error code
2779   ** and error message from the VDBE into the main database structure.  But
2780   ** if the VDBE has just been set to run but has not actually executed any
2781   ** instructions yet, leave the main database error information unchanged.
2782   */
2783   if( p->pc>=0 ){
2784     vdbeInvokeSqllog(p);
2785     sqlite3VdbeTransferError(p);
2786     sqlite3DbFree(db, p->zErrMsg);
2787     p->zErrMsg = 0;
2788     if( p->runOnlyOnce ) p->expired = 1;
2789   }else if( p->rc && p->expired ){
2790     /* The expired flag was set on the VDBE before the first call
2791     ** to sqlite3_step(). For consistency (since sqlite3_step() was
2792     ** called), set the database error in this case as well.
2793     */
2794     sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
2795     sqlite3DbFree(db, p->zErrMsg);
2796     p->zErrMsg = 0;
2797   }
2798 
2799   /* Reclaim all memory used by the VDBE
2800   */
2801   Cleanup(p);
2802 
2803   /* Save profiling information from this VDBE run.
2804   */
2805 #ifdef VDBE_PROFILE
2806   {
2807     FILE *out = fopen("vdbe_profile.out", "a");
2808     if( out ){
2809       int i;
2810       fprintf(out, "---- ");
2811       for(i=0; i<p->nOp; i++){
2812         fprintf(out, "%02x", p->aOp[i].opcode);
2813       }
2814       fprintf(out, "\n");
2815       if( p->zSql ){
2816         char c, pc = 0;
2817         fprintf(out, "-- ");
2818         for(i=0; (c = p->zSql[i])!=0; i++){
2819           if( pc=='\n' ) fprintf(out, "-- ");
2820           putc(c, out);
2821           pc = c;
2822         }
2823         if( pc!='\n' ) fprintf(out, "\n");
2824       }
2825       for(i=0; i<p->nOp; i++){
2826         char zHdr[100];
2827         sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
2828            p->aOp[i].cnt,
2829            p->aOp[i].cycles,
2830            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2831         );
2832         fprintf(out, "%s", zHdr);
2833         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
2834       }
2835       fclose(out);
2836     }
2837   }
2838 #endif
2839   p->iCurrentTime = 0;
2840   p->magic = VDBE_MAGIC_INIT;
2841   return p->rc & db->errMask;
2842 }
2843 
2844 /*
2845 ** Clean up and delete a VDBE after execution.  Return an integer which is
2846 ** the result code.  Write any error message text into *pzErrMsg.
2847 */
2848 int sqlite3VdbeFinalize(Vdbe *p){
2849   int rc = SQLITE_OK;
2850   if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
2851     rc = sqlite3VdbeReset(p);
2852     assert( (rc & p->db->errMask)==rc );
2853   }
2854   sqlite3VdbeDelete(p);
2855   return rc;
2856 }
2857 
2858 /*
2859 ** If parameter iOp is less than zero, then invoke the destructor for
2860 ** all auxiliary data pointers currently cached by the VM passed as
2861 ** the first argument.
2862 **
2863 ** Or, if iOp is greater than or equal to zero, then the destructor is
2864 ** only invoked for those auxiliary data pointers created by the user
2865 ** function invoked by the OP_Function opcode at instruction iOp of
2866 ** VM pVdbe, and only then if:
2867 **
2868 **    * the associated function parameter is the 32nd or later (counting
2869 **      from left to right), or
2870 **
2871 **    * the corresponding bit in argument mask is clear (where the first
2872 **      function parameter corresponds to bit 0 etc.).
2873 */
2874 void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){
2875   AuxData **pp = &pVdbe->pAuxData;
2876   while( *pp ){
2877     AuxData *pAux = *pp;
2878     if( (iOp<0)
2879      || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
2880     ){
2881       testcase( pAux->iArg==31 );
2882       if( pAux->xDelete ){
2883         pAux->xDelete(pAux->pAux);
2884       }
2885       *pp = pAux->pNext;
2886       sqlite3DbFree(pVdbe->db, pAux);
2887     }else{
2888       pp= &pAux->pNext;
2889     }
2890   }
2891 }
2892 
2893 /*
2894 ** Free all memory associated with the Vdbe passed as the second argument,
2895 ** except for object itself, which is preserved.
2896 **
2897 ** The difference between this function and sqlite3VdbeDelete() is that
2898 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
2899 ** the database connection and frees the object itself.
2900 */
2901 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
2902   SubProgram *pSub, *pNext;
2903   int i;
2904   assert( p->db==0 || p->db==db );
2905   releaseMemArray(p->aVar, p->nVar);
2906   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2907   for(pSub=p->pProgram; pSub; pSub=pNext){
2908     pNext = pSub->pNext;
2909     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2910     sqlite3DbFree(db, pSub);
2911   }
2912   for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
2913   sqlite3DbFree(db, p->azVar);
2914   vdbeFreeOpArray(db, p->aOp, p->nOp);
2915   sqlite3DbFree(db, p->aColName);
2916   sqlite3DbFree(db, p->zSql);
2917   sqlite3DbFree(db, p->pFree);
2918 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2919   for(i=0; i<p->nScan; i++){
2920     sqlite3DbFree(db, p->aScan[i].zName);
2921   }
2922   sqlite3DbFree(db, p->aScan);
2923 #endif
2924 }
2925 
2926 /*
2927 ** Delete an entire VDBE.
2928 */
2929 void sqlite3VdbeDelete(Vdbe *p){
2930   sqlite3 *db;
2931 
2932   if( NEVER(p==0) ) return;
2933   db = p->db;
2934   assert( sqlite3_mutex_held(db->mutex) );
2935   sqlite3VdbeClearObject(db, p);
2936   if( p->pPrev ){
2937     p->pPrev->pNext = p->pNext;
2938   }else{
2939     assert( db->pVdbe==p );
2940     db->pVdbe = p->pNext;
2941   }
2942   if( p->pNext ){
2943     p->pNext->pPrev = p->pPrev;
2944   }
2945   p->magic = VDBE_MAGIC_DEAD;
2946   p->db = 0;
2947   sqlite3DbFree(db, p);
2948 }
2949 
2950 /*
2951 ** The cursor "p" has a pending seek operation that has not yet been
2952 ** carried out.  Seek the cursor now.  If an error occurs, return
2953 ** the appropriate error code.
2954 */
2955 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
2956   int res, rc;
2957 #ifdef SQLITE_TEST
2958   extern int sqlite3_search_count;
2959 #endif
2960   assert( p->deferredMoveto );
2961   assert( p->isTable );
2962   assert( p->eCurType==CURTYPE_BTREE );
2963   rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
2964   if( rc ) return rc;
2965   if( res!=0 ) return SQLITE_CORRUPT_BKPT;
2966 #ifdef SQLITE_TEST
2967   sqlite3_search_count++;
2968 #endif
2969   p->deferredMoveto = 0;
2970   p->cacheStatus = CACHE_STALE;
2971   return SQLITE_OK;
2972 }
2973 
2974 /*
2975 ** Something has moved cursor "p" out of place.  Maybe the row it was
2976 ** pointed to was deleted out from under it.  Or maybe the btree was
2977 ** rebalanced.  Whatever the cause, try to restore "p" to the place it
2978 ** is supposed to be pointing.  If the row was deleted out from under the
2979 ** cursor, set the cursor to point to a NULL row.
2980 */
2981 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
2982   int isDifferentRow, rc;
2983   assert( p->eCurType==CURTYPE_BTREE );
2984   assert( p->uc.pCursor!=0 );
2985   assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
2986   rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
2987   p->cacheStatus = CACHE_STALE;
2988   if( isDifferentRow ) p->nullRow = 1;
2989   return rc;
2990 }
2991 
2992 /*
2993 ** Check to ensure that the cursor is valid.  Restore the cursor
2994 ** if need be.  Return any I/O error from the restore operation.
2995 */
2996 int sqlite3VdbeCursorRestore(VdbeCursor *p){
2997   assert( p->eCurType==CURTYPE_BTREE );
2998   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
2999     return handleMovedCursor(p);
3000   }
3001   return SQLITE_OK;
3002 }
3003 
3004 /*
3005 ** Make sure the cursor p is ready to read or write the row to which it
3006 ** was last positioned.  Return an error code if an OOM fault or I/O error
3007 ** prevents us from positioning the cursor to its correct position.
3008 **
3009 ** If a MoveTo operation is pending on the given cursor, then do that
3010 ** MoveTo now.  If no move is pending, check to see if the row has been
3011 ** deleted out from under the cursor and if it has, mark the row as
3012 ** a NULL row.
3013 **
3014 ** If the cursor is already pointing to the correct row and that row has
3015 ** not been deleted out from under the cursor, then this routine is a no-op.
3016 */
3017 int sqlite3VdbeCursorMoveto(VdbeCursor *p){
3018   if( p->eCurType==CURTYPE_BTREE ){
3019     if( p->deferredMoveto ){
3020       return handleDeferredMoveto(p);
3021     }
3022     if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3023       return handleMovedCursor(p);
3024     }
3025   }
3026   return SQLITE_OK;
3027 }
3028 
3029 /*
3030 ** The following functions:
3031 **
3032 ** sqlite3VdbeSerialType()
3033 ** sqlite3VdbeSerialTypeLen()
3034 ** sqlite3VdbeSerialLen()
3035 ** sqlite3VdbeSerialPut()
3036 ** sqlite3VdbeSerialGet()
3037 **
3038 ** encapsulate the code that serializes values for storage in SQLite
3039 ** data and index records. Each serialized value consists of a
3040 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3041 ** integer, stored as a varint.
3042 **
3043 ** In an SQLite index record, the serial type is stored directly before
3044 ** the blob of data that it corresponds to. In a table record, all serial
3045 ** types are stored at the start of the record, and the blobs of data at
3046 ** the end. Hence these functions allow the caller to handle the
3047 ** serial-type and data blob separately.
3048 **
3049 ** The following table describes the various storage classes for data:
3050 **
3051 **   serial type        bytes of data      type
3052 **   --------------     ---------------    ---------------
3053 **      0                     0            NULL
3054 **      1                     1            signed integer
3055 **      2                     2            signed integer
3056 **      3                     3            signed integer
3057 **      4                     4            signed integer
3058 **      5                     6            signed integer
3059 **      6                     8            signed integer
3060 **      7                     8            IEEE float
3061 **      8                     0            Integer constant 0
3062 **      9                     0            Integer constant 1
3063 **     10,11                               reserved for expansion
3064 **    N>=12 and even       (N-12)/2        BLOB
3065 **    N>=13 and odd        (N-13)/2        text
3066 **
3067 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
3068 ** of SQLite will not understand those serial types.
3069 */
3070 
3071 /*
3072 ** Return the serial-type for the value stored in pMem.
3073 */
3074 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3075   int flags = pMem->flags;
3076   u32 n;
3077 
3078   assert( pLen!=0 );
3079   if( flags&MEM_Null ){
3080     *pLen = 0;
3081     return 0;
3082   }
3083   if( flags&MEM_Int ){
3084     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3085 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3086     i64 i = pMem->u.i;
3087     u64 u;
3088     if( i<0 ){
3089       u = ~i;
3090     }else{
3091       u = i;
3092     }
3093     if( u<=127 ){
3094       if( (i&1)==i && file_format>=4 ){
3095         *pLen = 0;
3096         return 8+(u32)u;
3097       }else{
3098         *pLen = 1;
3099         return 1;
3100       }
3101     }
3102     if( u<=32767 ){ *pLen = 2; return 2; }
3103     if( u<=8388607 ){ *pLen = 3; return 3; }
3104     if( u<=2147483647 ){ *pLen = 4; return 4; }
3105     if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3106     *pLen = 8;
3107     return 6;
3108   }
3109   if( flags&MEM_Real ){
3110     *pLen = 8;
3111     return 7;
3112   }
3113   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3114   assert( pMem->n>=0 );
3115   n = (u32)pMem->n;
3116   if( flags & MEM_Zero ){
3117     n += pMem->u.nZero;
3118   }
3119   *pLen = n;
3120   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3121 }
3122 
3123 /*
3124 ** The sizes for serial types less than 128
3125 */
3126 static const u8 sqlite3SmallTypeSizes[] = {
3127         /*  0   1   2   3   4   5   6   7   8   9 */
3128 /*   0 */   0,  1,  2,  3,  4,  6,  8,  8,  0,  0,
3129 /*  10 */   0,  0,  0,  0,  1,  1,  2,  2,  3,  3,
3130 /*  20 */   4,  4,  5,  5,  6,  6,  7,  7,  8,  8,
3131 /*  30 */   9,  9, 10, 10, 11, 11, 12, 12, 13, 13,
3132 /*  40 */  14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3133 /*  50 */  19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3134 /*  60 */  24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3135 /*  70 */  29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3136 /*  80 */  34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3137 /*  90 */  39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3138 /* 100 */  44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3139 /* 110 */  49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3140 /* 120 */  54, 54, 55, 55, 56, 56, 57, 57
3141 };
3142 
3143 /*
3144 ** Return the length of the data corresponding to the supplied serial-type.
3145 */
3146 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3147   if( serial_type>=128 ){
3148     return (serial_type-12)/2;
3149   }else{
3150     assert( serial_type<12
3151             || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3152     return sqlite3SmallTypeSizes[serial_type];
3153   }
3154 }
3155 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3156   assert( serial_type<128 );
3157   return sqlite3SmallTypeSizes[serial_type];
3158 }
3159 
3160 /*
3161 ** If we are on an architecture with mixed-endian floating
3162 ** points (ex: ARM7) then swap the lower 4 bytes with the
3163 ** upper 4 bytes.  Return the result.
3164 **
3165 ** For most architectures, this is a no-op.
3166 **
3167 ** (later):  It is reported to me that the mixed-endian problem
3168 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
3169 ** that early versions of GCC stored the two words of a 64-bit
3170 ** float in the wrong order.  And that error has been propagated
3171 ** ever since.  The blame is not necessarily with GCC, though.
3172 ** GCC might have just copying the problem from a prior compiler.
3173 ** I am also told that newer versions of GCC that follow a different
3174 ** ABI get the byte order right.
3175 **
3176 ** Developers using SQLite on an ARM7 should compile and run their
3177 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
3178 ** enabled, some asserts below will ensure that the byte order of
3179 ** floating point values is correct.
3180 **
3181 ** (2007-08-30)  Frank van Vugt has studied this problem closely
3182 ** and has send his findings to the SQLite developers.  Frank
3183 ** writes that some Linux kernels offer floating point hardware
3184 ** emulation that uses only 32-bit mantissas instead of a full
3185 ** 48-bits as required by the IEEE standard.  (This is the
3186 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
3187 ** byte swapping becomes very complicated.  To avoid problems,
3188 ** the necessary byte swapping is carried out using a 64-bit integer
3189 ** rather than a 64-bit float.  Frank assures us that the code here
3190 ** works for him.  We, the developers, have no way to independently
3191 ** verify this, but Frank seems to know what he is talking about
3192 ** so we trust him.
3193 */
3194 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3195 static u64 floatSwap(u64 in){
3196   union {
3197     u64 r;
3198     u32 i[2];
3199   } u;
3200   u32 t;
3201 
3202   u.r = in;
3203   t = u.i[0];
3204   u.i[0] = u.i[1];
3205   u.i[1] = t;
3206   return u.r;
3207 }
3208 # define swapMixedEndianFloat(X)  X = floatSwap(X)
3209 #else
3210 # define swapMixedEndianFloat(X)
3211 #endif
3212 
3213 /*
3214 ** Write the serialized data blob for the value stored in pMem into
3215 ** buf. It is assumed that the caller has allocated sufficient space.
3216 ** Return the number of bytes written.
3217 **
3218 ** nBuf is the amount of space left in buf[].  The caller is responsible
3219 ** for allocating enough space to buf[] to hold the entire field, exclusive
3220 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3221 **
3222 ** Return the number of bytes actually written into buf[].  The number
3223 ** of bytes in the zero-filled tail is included in the return value only
3224 ** if those bytes were zeroed in buf[].
3225 */
3226 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3227   u32 len;
3228 
3229   /* Integer and Real */
3230   if( serial_type<=7 && serial_type>0 ){
3231     u64 v;
3232     u32 i;
3233     if( serial_type==7 ){
3234       assert( sizeof(v)==sizeof(pMem->u.r) );
3235       memcpy(&v, &pMem->u.r, sizeof(v));
3236       swapMixedEndianFloat(v);
3237     }else{
3238       v = pMem->u.i;
3239     }
3240     len = i = sqlite3SmallTypeSizes[serial_type];
3241     assert( i>0 );
3242     do{
3243       buf[--i] = (u8)(v&0xFF);
3244       v >>= 8;
3245     }while( i );
3246     return len;
3247   }
3248 
3249   /* String or blob */
3250   if( serial_type>=12 ){
3251     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3252              == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3253     len = pMem->n;
3254     if( len>0 ) memcpy(buf, pMem->z, len);
3255     return len;
3256   }
3257 
3258   /* NULL or constants 0 or 1 */
3259   return 0;
3260 }
3261 
3262 /* Input "x" is a sequence of unsigned characters that represent a
3263 ** big-endian integer.  Return the equivalent native integer
3264 */
3265 #define ONE_BYTE_INT(x)    ((i8)(x)[0])
3266 #define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
3267 #define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3268 #define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3269 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3270 
3271 /*
3272 ** Deserialize the data blob pointed to by buf as serial type serial_type
3273 ** and store the result in pMem.  Return the number of bytes read.
3274 **
3275 ** This function is implemented as two separate routines for performance.
3276 ** The few cases that require local variables are broken out into a separate
3277 ** routine so that in most cases the overhead of moving the stack pointer
3278 ** is avoided.
3279 */
3280 static u32 SQLITE_NOINLINE serialGet(
3281   const unsigned char *buf,     /* Buffer to deserialize from */
3282   u32 serial_type,              /* Serial type to deserialize */
3283   Mem *pMem                     /* Memory cell to write value into */
3284 ){
3285   u64 x = FOUR_BYTE_UINT(buf);
3286   u32 y = FOUR_BYTE_UINT(buf+4);
3287   x = (x<<32) + y;
3288   if( serial_type==6 ){
3289     /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3290     ** twos-complement integer. */
3291     pMem->u.i = *(i64*)&x;
3292     pMem->flags = MEM_Int;
3293     testcase( pMem->u.i<0 );
3294   }else{
3295     /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3296     ** floating point number. */
3297 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3298     /* Verify that integers and floating point values use the same
3299     ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3300     ** defined that 64-bit floating point values really are mixed
3301     ** endian.
3302     */
3303     static const u64 t1 = ((u64)0x3ff00000)<<32;
3304     static const double r1 = 1.0;
3305     u64 t2 = t1;
3306     swapMixedEndianFloat(t2);
3307     assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3308 #endif
3309     assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3310     swapMixedEndianFloat(x);
3311     memcpy(&pMem->u.r, &x, sizeof(x));
3312     pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
3313   }
3314   return 8;
3315 }
3316 u32 sqlite3VdbeSerialGet(
3317   const unsigned char *buf,     /* Buffer to deserialize from */
3318   u32 serial_type,              /* Serial type to deserialize */
3319   Mem *pMem                     /* Memory cell to write value into */
3320 ){
3321   switch( serial_type ){
3322     case 10:   /* Reserved for future use */
3323     case 11:   /* Reserved for future use */
3324     case 0: {  /* Null */
3325       /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3326       pMem->flags = MEM_Null;
3327       break;
3328     }
3329     case 1: {
3330       /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3331       ** integer. */
3332       pMem->u.i = ONE_BYTE_INT(buf);
3333       pMem->flags = MEM_Int;
3334       testcase( pMem->u.i<0 );
3335       return 1;
3336     }
3337     case 2: { /* 2-byte signed integer */
3338       /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3339       ** twos-complement integer. */
3340       pMem->u.i = TWO_BYTE_INT(buf);
3341       pMem->flags = MEM_Int;
3342       testcase( pMem->u.i<0 );
3343       return 2;
3344     }
3345     case 3: { /* 3-byte signed integer */
3346       /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3347       ** twos-complement integer. */
3348       pMem->u.i = THREE_BYTE_INT(buf);
3349       pMem->flags = MEM_Int;
3350       testcase( pMem->u.i<0 );
3351       return 3;
3352     }
3353     case 4: { /* 4-byte signed integer */
3354       /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3355       ** twos-complement integer. */
3356       pMem->u.i = FOUR_BYTE_INT(buf);
3357 #ifdef __HP_cc
3358       /* Work around a sign-extension bug in the HP compiler for HP/UX */
3359       if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3360 #endif
3361       pMem->flags = MEM_Int;
3362       testcase( pMem->u.i<0 );
3363       return 4;
3364     }
3365     case 5: { /* 6-byte signed integer */
3366       /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3367       ** twos-complement integer. */
3368       pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3369       pMem->flags = MEM_Int;
3370       testcase( pMem->u.i<0 );
3371       return 6;
3372     }
3373     case 6:   /* 8-byte signed integer */
3374     case 7: { /* IEEE floating point */
3375       /* These use local variables, so do them in a separate routine
3376       ** to avoid having to move the frame pointer in the common case */
3377       return serialGet(buf,serial_type,pMem);
3378     }
3379     case 8:    /* Integer 0 */
3380     case 9: {  /* Integer 1 */
3381       /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3382       /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3383       pMem->u.i = serial_type-8;
3384       pMem->flags = MEM_Int;
3385       return 0;
3386     }
3387     default: {
3388       /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3389       ** length.
3390       ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3391       ** (N-13)/2 bytes in length. */
3392       static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3393       pMem->z = (char *)buf;
3394       pMem->n = (serial_type-12)/2;
3395       pMem->flags = aFlag[serial_type&1];
3396       return pMem->n;
3397     }
3398   }
3399   return 0;
3400 }
3401 /*
3402 ** This routine is used to allocate sufficient space for an UnpackedRecord
3403 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3404 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3405 **
3406 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3407 ** the unaligned buffer passed via the second and third arguments (presumably
3408 ** stack space). If the former, then *ppFree is set to a pointer that should
3409 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3410 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3411 ** before returning.
3412 **
3413 ** If an OOM error occurs, NULL is returned.
3414 */
3415 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3416   KeyInfo *pKeyInfo,              /* Description of the record */
3417   char *pSpace,                   /* Unaligned space available */
3418   int szSpace,                    /* Size of pSpace[] in bytes */
3419   char **ppFree                   /* OUT: Caller should free this pointer */
3420 ){
3421   UnpackedRecord *p;              /* Unpacked record to return */
3422   int nOff;                       /* Increment pSpace by nOff to align it */
3423   int nByte;                      /* Number of bytes required for *p */
3424 
3425   /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
3426   ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
3427   ** it by.  If pSpace is already 8-byte aligned, nOff should be zero.
3428   */
3429   nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
3430   nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
3431   if( nByte>szSpace+nOff ){
3432     p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3433     *ppFree = (char *)p;
3434     if( !p ) return 0;
3435   }else{
3436     p = (UnpackedRecord*)&pSpace[nOff];
3437     *ppFree = 0;
3438   }
3439 
3440   p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3441   assert( pKeyInfo->aSortOrder!=0 );
3442   p->pKeyInfo = pKeyInfo;
3443   p->nField = pKeyInfo->nField + 1;
3444   return p;
3445 }
3446 
3447 /*
3448 ** Given the nKey-byte encoding of a record in pKey[], populate the
3449 ** UnpackedRecord structure indicated by the fourth argument with the
3450 ** contents of the decoded record.
3451 */
3452 void sqlite3VdbeRecordUnpack(
3453   KeyInfo *pKeyInfo,     /* Information about the record format */
3454   int nKey,              /* Size of the binary record */
3455   const void *pKey,      /* The binary record */
3456   UnpackedRecord *p      /* Populate this structure before returning. */
3457 ){
3458   const unsigned char *aKey = (const unsigned char *)pKey;
3459   int d;
3460   u32 idx;                        /* Offset in aKey[] to read from */
3461   u16 u;                          /* Unsigned loop counter */
3462   u32 szHdr;
3463   Mem *pMem = p->aMem;
3464 
3465   p->default_rc = 0;
3466   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
3467   idx = getVarint32(aKey, szHdr);
3468   d = szHdr;
3469   u = 0;
3470   while( idx<szHdr && d<=nKey ){
3471     u32 serial_type;
3472 
3473     idx += getVarint32(&aKey[idx], serial_type);
3474     pMem->enc = pKeyInfo->enc;
3475     pMem->db = pKeyInfo->db;
3476     /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
3477     pMem->szMalloc = 0;
3478     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
3479     pMem++;
3480     if( (++u)>=p->nField ) break;
3481   }
3482   assert( u<=pKeyInfo->nField + 1 );
3483   p->nField = u;
3484 }
3485 
3486 #if SQLITE_DEBUG
3487 /*
3488 ** This function compares two index or table record keys in the same way
3489 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3490 ** this function deserializes and compares values using the
3491 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3492 ** in assert() statements to ensure that the optimized code in
3493 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
3494 **
3495 ** Return true if the result of comparison is equivalent to desiredResult.
3496 ** Return false if there is a disagreement.
3497 */
3498 static int vdbeRecordCompareDebug(
3499   int nKey1, const void *pKey1, /* Left key */
3500   const UnpackedRecord *pPKey2, /* Right key */
3501   int desiredResult             /* Correct answer */
3502 ){
3503   u32 d1;            /* Offset into aKey[] of next data element */
3504   u32 idx1;          /* Offset into aKey[] of next header element */
3505   u32 szHdr1;        /* Number of bytes in header */
3506   int i = 0;
3507   int rc = 0;
3508   const unsigned char *aKey1 = (const unsigned char *)pKey1;
3509   KeyInfo *pKeyInfo;
3510   Mem mem1;
3511 
3512   pKeyInfo = pPKey2->pKeyInfo;
3513   if( pKeyInfo->db==0 ) return 1;
3514   mem1.enc = pKeyInfo->enc;
3515   mem1.db = pKeyInfo->db;
3516   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
3517   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3518 
3519   /* Compilers may complain that mem1.u.i is potentially uninitialized.
3520   ** We could initialize it, as shown here, to silence those complaints.
3521   ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
3522   ** the unnecessary initialization has a measurable negative performance
3523   ** impact, since this routine is a very high runner.  And so, we choose
3524   ** to ignore the compiler warnings and leave this variable uninitialized.
3525   */
3526   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
3527 
3528   idx1 = getVarint32(aKey1, szHdr1);
3529   if( szHdr1>98307 ) return SQLITE_CORRUPT;
3530   d1 = szHdr1;
3531   assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
3532   assert( pKeyInfo->aSortOrder!=0 );
3533   assert( pKeyInfo->nField>0 );
3534   assert( idx1<=szHdr1 || CORRUPT_DB );
3535   do{
3536     u32 serial_type1;
3537 
3538     /* Read the serial types for the next element in each key. */
3539     idx1 += getVarint32( aKey1+idx1, serial_type1 );
3540 
3541     /* Verify that there is enough key space remaining to avoid
3542     ** a buffer overread.  The "d1+serial_type1+2" subexpression will
3543     ** always be greater than or equal to the amount of required key space.
3544     ** Use that approximation to avoid the more expensive call to
3545     ** sqlite3VdbeSerialTypeLen() in the common case.
3546     */
3547     if( d1+serial_type1+2>(u32)nKey1
3548      && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3549     ){
3550       break;
3551     }
3552 
3553     /* Extract the values to be compared.
3554     */
3555     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3556 
3557     /* Do the comparison
3558     */
3559     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
3560     if( rc!=0 ){
3561       assert( mem1.szMalloc==0 );  /* See comment below */
3562       if( pKeyInfo->aSortOrder[i] ){
3563         rc = -rc;  /* Invert the result for DESC sort order. */
3564       }
3565       goto debugCompareEnd;
3566     }
3567     i++;
3568   }while( idx1<szHdr1 && i<pPKey2->nField );
3569 
3570   /* No memory allocation is ever used on mem1.  Prove this using
3571   ** the following assert().  If the assert() fails, it indicates a
3572   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
3573   */
3574   assert( mem1.szMalloc==0 );
3575 
3576   /* rc==0 here means that one of the keys ran out of fields and
3577   ** all the fields up to that point were equal. Return the default_rc
3578   ** value.  */
3579   rc = pPKey2->default_rc;
3580 
3581 debugCompareEnd:
3582   if( desiredResult==0 && rc==0 ) return 1;
3583   if( desiredResult<0 && rc<0 ) return 1;
3584   if( desiredResult>0 && rc>0 ) return 1;
3585   if( CORRUPT_DB ) return 1;
3586   if( pKeyInfo->db->mallocFailed ) return 1;
3587   return 0;
3588 }
3589 #endif
3590 
3591 #if SQLITE_DEBUG
3592 /*
3593 ** Count the number of fields (a.k.a. columns) in the record given by
3594 ** pKey,nKey.  The verify that this count is less than or equal to the
3595 ** limit given by pKeyInfo->nField + pKeyInfo->nXField.
3596 **
3597 ** If this constraint is not satisfied, it means that the high-speed
3598 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3599 ** not work correctly.  If this assert() ever fires, it probably means
3600 ** that the KeyInfo.nField or KeyInfo.nXField values were computed
3601 ** incorrectly.
3602 */
3603 static void vdbeAssertFieldCountWithinLimits(
3604   int nKey, const void *pKey,   /* The record to verify */
3605   const KeyInfo *pKeyInfo       /* Compare size with this KeyInfo */
3606 ){
3607   int nField = 0;
3608   u32 szHdr;
3609   u32 idx;
3610   u32 notUsed;
3611   const unsigned char *aKey = (const unsigned char*)pKey;
3612 
3613   if( CORRUPT_DB ) return;
3614   idx = getVarint32(aKey, szHdr);
3615   assert( nKey>=0 );
3616   assert( szHdr<=(u32)nKey );
3617   while( idx<szHdr ){
3618     idx += getVarint32(aKey+idx, notUsed);
3619     nField++;
3620   }
3621   assert( nField <= pKeyInfo->nField+pKeyInfo->nXField );
3622 }
3623 #else
3624 # define vdbeAssertFieldCountWithinLimits(A,B,C)
3625 #endif
3626 
3627 /*
3628 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
3629 ** using the collation sequence pColl. As usual, return a negative , zero
3630 ** or positive value if *pMem1 is less than, equal to or greater than
3631 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3632 */
3633 static int vdbeCompareMemString(
3634   const Mem *pMem1,
3635   const Mem *pMem2,
3636   const CollSeq *pColl,
3637   u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */
3638 ){
3639   if( pMem1->enc==pColl->enc ){
3640     /* The strings are already in the correct encoding.  Call the
3641      ** comparison function directly */
3642     return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3643   }else{
3644     int rc;
3645     const void *v1, *v2;
3646     int n1, n2;
3647     Mem c1;
3648     Mem c2;
3649     sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3650     sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
3651     sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3652     sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3653     v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3654     n1 = v1==0 ? 0 : c1.n;
3655     v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3656     n2 = v2==0 ? 0 : c2.n;
3657     rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
3658     if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM;
3659     sqlite3VdbeMemRelease(&c1);
3660     sqlite3VdbeMemRelease(&c2);
3661     return rc;
3662   }
3663 }
3664 
3665 /*
3666 ** Compare two blobs.  Return negative, zero, or positive if the first
3667 ** is less than, equal to, or greater than the second, respectively.
3668 ** If one blob is a prefix of the other, then the shorter is the lessor.
3669 */
3670 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3671   int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
3672   if( c ) return c;
3673   return pB1->n - pB2->n;
3674 }
3675 
3676 /*
3677 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
3678 ** number.  Return negative, zero, or positive if the first (i64) is less than,
3679 ** equal to, or greater than the second (double).
3680 */
3681 static int sqlite3IntFloatCompare(i64 i, double r){
3682   if( sizeof(LONGDOUBLE_TYPE)>8 ){
3683     LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
3684     if( x<r ) return -1;
3685     if( x>r ) return +1;
3686     return 0;
3687   }else{
3688     i64 y;
3689     double s;
3690     if( r<-9223372036854775808.0 ) return +1;
3691     if( r>9223372036854775807.0 ) return -1;
3692     y = (i64)r;
3693     if( i<y ) return -1;
3694     if( i>y ){
3695       if( y==SMALLEST_INT64 && r>0.0 ) return -1;
3696       return +1;
3697     }
3698     s = (double)i;
3699     if( s<r ) return -1;
3700     if( s>r ) return +1;
3701     return 0;
3702   }
3703 }
3704 
3705 /*
3706 ** Compare the values contained by the two memory cells, returning
3707 ** negative, zero or positive if pMem1 is less than, equal to, or greater
3708 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3709 ** and reals) sorted numerically, followed by text ordered by the collating
3710 ** sequence pColl and finally blob's ordered by memcmp().
3711 **
3712 ** Two NULL values are considered equal by this function.
3713 */
3714 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
3715   int f1, f2;
3716   int combined_flags;
3717 
3718   f1 = pMem1->flags;
3719   f2 = pMem2->flags;
3720   combined_flags = f1|f2;
3721   assert( (combined_flags & MEM_RowSet)==0 );
3722 
3723   /* If one value is NULL, it is less than the other. If both values
3724   ** are NULL, return 0.
3725   */
3726   if( combined_flags&MEM_Null ){
3727     return (f2&MEM_Null) - (f1&MEM_Null);
3728   }
3729 
3730   /* At least one of the two values is a number
3731   */
3732   if( combined_flags&(MEM_Int|MEM_Real) ){
3733     if( (f1 & f2 & MEM_Int)!=0 ){
3734       if( pMem1->u.i < pMem2->u.i ) return -1;
3735       if( pMem1->u.i > pMem2->u.i ) return +1;
3736       return 0;
3737     }
3738     if( (f1 & f2 & MEM_Real)!=0 ){
3739       if( pMem1->u.r < pMem2->u.r ) return -1;
3740       if( pMem1->u.r > pMem2->u.r ) return +1;
3741       return 0;
3742     }
3743     if( (f1&MEM_Int)!=0 ){
3744       if( (f2&MEM_Real)!=0 ){
3745         return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
3746       }else{
3747         return -1;
3748       }
3749     }
3750     if( (f1&MEM_Real)!=0 ){
3751       if( (f2&MEM_Int)!=0 ){
3752         return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
3753       }else{
3754         return -1;
3755       }
3756     }
3757     return +1;
3758   }
3759 
3760   /* If one value is a string and the other is a blob, the string is less.
3761   ** If both are strings, compare using the collating functions.
3762   */
3763   if( combined_flags&MEM_Str ){
3764     if( (f1 & MEM_Str)==0 ){
3765       return 1;
3766     }
3767     if( (f2 & MEM_Str)==0 ){
3768       return -1;
3769     }
3770 
3771     assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
3772     assert( pMem1->enc==SQLITE_UTF8 ||
3773             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3774 
3775     /* The collation sequence must be defined at this point, even if
3776     ** the user deletes the collation sequence after the vdbe program is
3777     ** compiled (this was not always the case).
3778     */
3779     assert( !pColl || pColl->xCmp );
3780 
3781     if( pColl ){
3782       return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
3783     }
3784     /* If a NULL pointer was passed as the collate function, fall through
3785     ** to the blob case and use memcmp().  */
3786   }
3787 
3788   /* Both values must be blobs.  Compare using memcmp().  */
3789   return sqlite3BlobCompare(pMem1, pMem2);
3790 }
3791 
3792 
3793 /*
3794 ** The first argument passed to this function is a serial-type that
3795 ** corresponds to an integer - all values between 1 and 9 inclusive
3796 ** except 7. The second points to a buffer containing an integer value
3797 ** serialized according to serial_type. This function deserializes
3798 ** and returns the value.
3799 */
3800 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
3801   u32 y;
3802   assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
3803   switch( serial_type ){
3804     case 0:
3805     case 1:
3806       testcase( aKey[0]&0x80 );
3807       return ONE_BYTE_INT(aKey);
3808     case 2:
3809       testcase( aKey[0]&0x80 );
3810       return TWO_BYTE_INT(aKey);
3811     case 3:
3812       testcase( aKey[0]&0x80 );
3813       return THREE_BYTE_INT(aKey);
3814     case 4: {
3815       testcase( aKey[0]&0x80 );
3816       y = FOUR_BYTE_UINT(aKey);
3817       return (i64)*(int*)&y;
3818     }
3819     case 5: {
3820       testcase( aKey[0]&0x80 );
3821       return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
3822     }
3823     case 6: {
3824       u64 x = FOUR_BYTE_UINT(aKey);
3825       testcase( aKey[0]&0x80 );
3826       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3827       return (i64)*(i64*)&x;
3828     }
3829   }
3830 
3831   return (serial_type - 8);
3832 }
3833 
3834 /*
3835 ** This function compares the two table rows or index records
3836 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
3837 ** or positive integer if key1 is less than, equal to or
3838 ** greater than key2.  The {nKey1, pKey1} key must be a blob
3839 ** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2
3840 ** key must be a parsed key such as obtained from
3841 ** sqlite3VdbeParseRecord.
3842 **
3843 ** If argument bSkip is non-zero, it is assumed that the caller has already
3844 ** determined that the first fields of the keys are equal.
3845 **
3846 ** Key1 and Key2 do not have to contain the same number of fields. If all
3847 ** fields that appear in both keys are equal, then pPKey2->default_rc is
3848 ** returned.
3849 **
3850 ** If database corruption is discovered, set pPKey2->errCode to
3851 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
3852 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
3853 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
3854 */
3855 int sqlite3VdbeRecordCompareWithSkip(
3856   int nKey1, const void *pKey1,   /* Left key */
3857   UnpackedRecord *pPKey2,         /* Right key */
3858   int bSkip                       /* If true, skip the first field */
3859 ){
3860   u32 d1;                         /* Offset into aKey[] of next data element */
3861   int i;                          /* Index of next field to compare */
3862   u32 szHdr1;                     /* Size of record header in bytes */
3863   u32 idx1;                       /* Offset of first type in header */
3864   int rc = 0;                     /* Return value */
3865   Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
3866   KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
3867   const unsigned char *aKey1 = (const unsigned char *)pKey1;
3868   Mem mem1;
3869 
3870   /* If bSkip is true, then the caller has already determined that the first
3871   ** two elements in the keys are equal. Fix the various stack variables so
3872   ** that this routine begins comparing at the second field. */
3873   if( bSkip ){
3874     u32 s1;
3875     idx1 = 1 + getVarint32(&aKey1[1], s1);
3876     szHdr1 = aKey1[0];
3877     d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
3878     i = 1;
3879     pRhs++;
3880   }else{
3881     idx1 = getVarint32(aKey1, szHdr1);
3882     d1 = szHdr1;
3883     if( d1>(unsigned)nKey1 ){
3884       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3885       return 0;  /* Corruption */
3886     }
3887     i = 0;
3888   }
3889 
3890   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3891   assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
3892        || CORRUPT_DB );
3893   assert( pPKey2->pKeyInfo->aSortOrder!=0 );
3894   assert( pPKey2->pKeyInfo->nField>0 );
3895   assert( idx1<=szHdr1 || CORRUPT_DB );
3896   do{
3897     u32 serial_type;
3898 
3899     /* RHS is an integer */
3900     if( pRhs->flags & MEM_Int ){
3901       serial_type = aKey1[idx1];
3902       testcase( serial_type==12 );
3903       if( serial_type>=10 ){
3904         rc = +1;
3905       }else if( serial_type==0 ){
3906         rc = -1;
3907       }else if( serial_type==7 ){
3908         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3909         rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
3910       }else{
3911         i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
3912         i64 rhs = pRhs->u.i;
3913         if( lhs<rhs ){
3914           rc = -1;
3915         }else if( lhs>rhs ){
3916           rc = +1;
3917         }
3918       }
3919     }
3920 
3921     /* RHS is real */
3922     else if( pRhs->flags & MEM_Real ){
3923       serial_type = aKey1[idx1];
3924       if( serial_type>=10 ){
3925         /* Serial types 12 or greater are strings and blobs (greater than
3926         ** numbers). Types 10 and 11 are currently "reserved for future
3927         ** use", so it doesn't really matter what the results of comparing
3928         ** them to numberic values are.  */
3929         rc = +1;
3930       }else if( serial_type==0 ){
3931         rc = -1;
3932       }else{
3933         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3934         if( serial_type==7 ){
3935           if( mem1.u.r<pRhs->u.r ){
3936             rc = -1;
3937           }else if( mem1.u.r>pRhs->u.r ){
3938             rc = +1;
3939           }
3940         }else{
3941           rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
3942         }
3943       }
3944     }
3945 
3946     /* RHS is a string */
3947     else if( pRhs->flags & MEM_Str ){
3948       getVarint32(&aKey1[idx1], serial_type);
3949       testcase( serial_type==12 );
3950       if( serial_type<12 ){
3951         rc = -1;
3952       }else if( !(serial_type & 0x01) ){
3953         rc = +1;
3954       }else{
3955         mem1.n = (serial_type - 12) / 2;
3956         testcase( (d1+mem1.n)==(unsigned)nKey1 );
3957         testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
3958         if( (d1+mem1.n) > (unsigned)nKey1 ){
3959           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3960           return 0;                /* Corruption */
3961         }else if( pKeyInfo->aColl[i] ){
3962           mem1.enc = pKeyInfo->enc;
3963           mem1.db = pKeyInfo->db;
3964           mem1.flags = MEM_Str;
3965           mem1.z = (char*)&aKey1[d1];
3966           rc = vdbeCompareMemString(
3967               &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
3968           );
3969         }else{
3970           int nCmp = MIN(mem1.n, pRhs->n);
3971           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
3972           if( rc==0 ) rc = mem1.n - pRhs->n;
3973         }
3974       }
3975     }
3976 
3977     /* RHS is a blob */
3978     else if( pRhs->flags & MEM_Blob ){
3979       getVarint32(&aKey1[idx1], serial_type);
3980       testcase( serial_type==12 );
3981       if( serial_type<12 || (serial_type & 0x01) ){
3982         rc = -1;
3983       }else{
3984         int nStr = (serial_type - 12) / 2;
3985         testcase( (d1+nStr)==(unsigned)nKey1 );
3986         testcase( (d1+nStr+1)==(unsigned)nKey1 );
3987         if( (d1+nStr) > (unsigned)nKey1 ){
3988           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3989           return 0;                /* Corruption */
3990         }else{
3991           int nCmp = MIN(nStr, pRhs->n);
3992           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
3993           if( rc==0 ) rc = nStr - pRhs->n;
3994         }
3995       }
3996     }
3997 
3998     /* RHS is null */
3999     else{
4000       serial_type = aKey1[idx1];
4001       rc = (serial_type!=0);
4002     }
4003 
4004     if( rc!=0 ){
4005       if( pKeyInfo->aSortOrder[i] ){
4006         rc = -rc;
4007       }
4008       assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4009       assert( mem1.szMalloc==0 );  /* See comment below */
4010       return rc;
4011     }
4012 
4013     i++;
4014     pRhs++;
4015     d1 += sqlite3VdbeSerialTypeLen(serial_type);
4016     idx1 += sqlite3VarintLen(serial_type);
4017   }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
4018 
4019   /* No memory allocation is ever used on mem1.  Prove this using
4020   ** the following assert().  If the assert() fails, it indicates a
4021   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
4022   assert( mem1.szMalloc==0 );
4023 
4024   /* rc==0 here means that one or both of the keys ran out of fields and
4025   ** all the fields up to that point were equal. Return the default_rc
4026   ** value.  */
4027   assert( CORRUPT_DB
4028        || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4029        || pKeyInfo->db->mallocFailed
4030   );
4031   pPKey2->eqSeen = 1;
4032   return pPKey2->default_rc;
4033 }
4034 int sqlite3VdbeRecordCompare(
4035   int nKey1, const void *pKey1,   /* Left key */
4036   UnpackedRecord *pPKey2          /* Right key */
4037 ){
4038   return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4039 }
4040 
4041 
4042 /*
4043 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4044 ** that (a) the first field of pPKey2 is an integer, and (b) the
4045 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4046 ** byte (i.e. is less than 128).
4047 **
4048 ** To avoid concerns about buffer overreads, this routine is only used
4049 ** on schemas where the maximum valid header size is 63 bytes or less.
4050 */
4051 static int vdbeRecordCompareInt(
4052   int nKey1, const void *pKey1, /* Left key */
4053   UnpackedRecord *pPKey2        /* Right key */
4054 ){
4055   const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4056   int serial_type = ((const u8*)pKey1)[1];
4057   int res;
4058   u32 y;
4059   u64 x;
4060   i64 v = pPKey2->aMem[0].u.i;
4061   i64 lhs;
4062 
4063   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4064   assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4065   switch( serial_type ){
4066     case 1: { /* 1-byte signed integer */
4067       lhs = ONE_BYTE_INT(aKey);
4068       testcase( lhs<0 );
4069       break;
4070     }
4071     case 2: { /* 2-byte signed integer */
4072       lhs = TWO_BYTE_INT(aKey);
4073       testcase( lhs<0 );
4074       break;
4075     }
4076     case 3: { /* 3-byte signed integer */
4077       lhs = THREE_BYTE_INT(aKey);
4078       testcase( lhs<0 );
4079       break;
4080     }
4081     case 4: { /* 4-byte signed integer */
4082       y = FOUR_BYTE_UINT(aKey);
4083       lhs = (i64)*(int*)&y;
4084       testcase( lhs<0 );
4085       break;
4086     }
4087     case 5: { /* 6-byte signed integer */
4088       lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4089       testcase( lhs<0 );
4090       break;
4091     }
4092     case 6: { /* 8-byte signed integer */
4093       x = FOUR_BYTE_UINT(aKey);
4094       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4095       lhs = *(i64*)&x;
4096       testcase( lhs<0 );
4097       break;
4098     }
4099     case 8:
4100       lhs = 0;
4101       break;
4102     case 9:
4103       lhs = 1;
4104       break;
4105 
4106     /* This case could be removed without changing the results of running
4107     ** this code. Including it causes gcc to generate a faster switch
4108     ** statement (since the range of switch targets now starts at zero and
4109     ** is contiguous) but does not cause any duplicate code to be generated
4110     ** (as gcc is clever enough to combine the two like cases). Other
4111     ** compilers might be similar.  */
4112     case 0: case 7:
4113       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4114 
4115     default:
4116       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4117   }
4118 
4119   if( v>lhs ){
4120     res = pPKey2->r1;
4121   }else if( v<lhs ){
4122     res = pPKey2->r2;
4123   }else if( pPKey2->nField>1 ){
4124     /* The first fields of the two keys are equal. Compare the trailing
4125     ** fields.  */
4126     res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4127   }else{
4128     /* The first fields of the two keys are equal and there are no trailing
4129     ** fields. Return pPKey2->default_rc in this case. */
4130     res = pPKey2->default_rc;
4131     pPKey2->eqSeen = 1;
4132   }
4133 
4134   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4135   return res;
4136 }
4137 
4138 /*
4139 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4140 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4141 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4142 ** at the start of (pKey1/nKey1) fits in a single byte.
4143 */
4144 static int vdbeRecordCompareString(
4145   int nKey1, const void *pKey1, /* Left key */
4146   UnpackedRecord *pPKey2        /* Right key */
4147 ){
4148   const u8 *aKey1 = (const u8*)pKey1;
4149   int serial_type;
4150   int res;
4151 
4152   assert( pPKey2->aMem[0].flags & MEM_Str );
4153   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4154   getVarint32(&aKey1[1], serial_type);
4155   if( serial_type<12 ){
4156     res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
4157   }else if( !(serial_type & 0x01) ){
4158     res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
4159   }else{
4160     int nCmp;
4161     int nStr;
4162     int szHdr = aKey1[0];
4163 
4164     nStr = (serial_type-12) / 2;
4165     if( (szHdr + nStr) > nKey1 ){
4166       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4167       return 0;    /* Corruption */
4168     }
4169     nCmp = MIN( pPKey2->aMem[0].n, nStr );
4170     res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4171 
4172     if( res==0 ){
4173       res = nStr - pPKey2->aMem[0].n;
4174       if( res==0 ){
4175         if( pPKey2->nField>1 ){
4176           res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4177         }else{
4178           res = pPKey2->default_rc;
4179           pPKey2->eqSeen = 1;
4180         }
4181       }else if( res>0 ){
4182         res = pPKey2->r2;
4183       }else{
4184         res = pPKey2->r1;
4185       }
4186     }else if( res>0 ){
4187       res = pPKey2->r2;
4188     }else{
4189       res = pPKey2->r1;
4190     }
4191   }
4192 
4193   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4194        || CORRUPT_DB
4195        || pPKey2->pKeyInfo->db->mallocFailed
4196   );
4197   return res;
4198 }
4199 
4200 /*
4201 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4202 ** suitable for comparing serialized records to the unpacked record passed
4203 ** as the only argument.
4204 */
4205 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4206   /* varintRecordCompareInt() and varintRecordCompareString() both assume
4207   ** that the size-of-header varint that occurs at the start of each record
4208   ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4209   ** also assumes that it is safe to overread a buffer by at least the
4210   ** maximum possible legal header size plus 8 bytes. Because there is
4211   ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4212   ** buffer passed to varintRecordCompareInt() this makes it convenient to
4213   ** limit the size of the header to 64 bytes in cases where the first field
4214   ** is an integer.
4215   **
4216   ** The easiest way to enforce this limit is to consider only records with
4217   ** 13 fields or less. If the first field is an integer, the maximum legal
4218   ** header size is (12*5 + 1 + 1) bytes.  */
4219   if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
4220     int flags = p->aMem[0].flags;
4221     if( p->pKeyInfo->aSortOrder[0] ){
4222       p->r1 = 1;
4223       p->r2 = -1;
4224     }else{
4225       p->r1 = -1;
4226       p->r2 = 1;
4227     }
4228     if( (flags & MEM_Int) ){
4229       return vdbeRecordCompareInt;
4230     }
4231     testcase( flags & MEM_Real );
4232     testcase( flags & MEM_Null );
4233     testcase( flags & MEM_Blob );
4234     if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
4235       assert( flags & MEM_Str );
4236       return vdbeRecordCompareString;
4237     }
4238   }
4239 
4240   return sqlite3VdbeRecordCompare;
4241 }
4242 
4243 /*
4244 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4245 ** Read the rowid (the last field in the record) and store it in *rowid.
4246 ** Return SQLITE_OK if everything works, or an error code otherwise.
4247 **
4248 ** pCur might be pointing to text obtained from a corrupt database file.
4249 ** So the content cannot be trusted.  Do appropriate checks on the content.
4250 */
4251 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4252   i64 nCellKey = 0;
4253   int rc;
4254   u32 szHdr;        /* Size of the header */
4255   u32 typeRowid;    /* Serial type of the rowid */
4256   u32 lenRowid;     /* Size of the rowid */
4257   Mem m, v;
4258 
4259   /* Get the size of the index entry.  Only indices entries of less
4260   ** than 2GiB are support - anything large must be database corruption.
4261   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4262   ** this code can safely assume that nCellKey is 32-bits
4263   */
4264   assert( sqlite3BtreeCursorIsValid(pCur) );
4265   VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
4266   assert( rc==SQLITE_OK );     /* pCur is always valid so KeySize cannot fail */
4267   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4268 
4269   /* Read in the complete content of the index entry */
4270   sqlite3VdbeMemInit(&m, db, 0);
4271   rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
4272   if( rc ){
4273     return rc;
4274   }
4275 
4276   /* The index entry must begin with a header size */
4277   (void)getVarint32((u8*)m.z, szHdr);
4278   testcase( szHdr==3 );
4279   testcase( szHdr==m.n );
4280   if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
4281     goto idx_rowid_corruption;
4282   }
4283 
4284   /* The last field of the index should be an integer - the ROWID.
4285   ** Verify that the last entry really is an integer. */
4286   (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
4287   testcase( typeRowid==1 );
4288   testcase( typeRowid==2 );
4289   testcase( typeRowid==3 );
4290   testcase( typeRowid==4 );
4291   testcase( typeRowid==5 );
4292   testcase( typeRowid==6 );
4293   testcase( typeRowid==8 );
4294   testcase( typeRowid==9 );
4295   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4296     goto idx_rowid_corruption;
4297   }
4298   lenRowid = sqlite3SmallTypeSizes[typeRowid];
4299   testcase( (u32)m.n==szHdr+lenRowid );
4300   if( unlikely((u32)m.n<szHdr+lenRowid) ){
4301     goto idx_rowid_corruption;
4302   }
4303 
4304   /* Fetch the integer off the end of the index record */
4305   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4306   *rowid = v.u.i;
4307   sqlite3VdbeMemRelease(&m);
4308   return SQLITE_OK;
4309 
4310   /* Jump here if database corruption is detected after m has been
4311   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
4312 idx_rowid_corruption:
4313   testcase( m.szMalloc!=0 );
4314   sqlite3VdbeMemRelease(&m);
4315   return SQLITE_CORRUPT_BKPT;
4316 }
4317 
4318 /*
4319 ** Compare the key of the index entry that cursor pC is pointing to against
4320 ** the key string in pUnpacked.  Write into *pRes a number
4321 ** that is negative, zero, or positive if pC is less than, equal to,
4322 ** or greater than pUnpacked.  Return SQLITE_OK on success.
4323 **
4324 ** pUnpacked is either created without a rowid or is truncated so that it
4325 ** omits the rowid at the end.  The rowid at the end of the index entry
4326 ** is ignored as well.  Hence, this routine only compares the prefixes
4327 ** of the keys prior to the final rowid, not the entire key.
4328 */
4329 int sqlite3VdbeIdxKeyCompare(
4330   sqlite3 *db,                     /* Database connection */
4331   VdbeCursor *pC,                  /* The cursor to compare against */
4332   UnpackedRecord *pUnpacked,       /* Unpacked version of key */
4333   int *res                         /* Write the comparison result here */
4334 ){
4335   i64 nCellKey = 0;
4336   int rc;
4337   BtCursor *pCur;
4338   Mem m;
4339 
4340   assert( pC->eCurType==CURTYPE_BTREE );
4341   pCur = pC->uc.pCursor;
4342   assert( sqlite3BtreeCursorIsValid(pCur) );
4343   VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
4344   assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */
4345   /* nCellKey will always be between 0 and 0xffffffff because of the way
4346   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4347   if( nCellKey<=0 || nCellKey>0x7fffffff ){
4348     *res = 0;
4349     return SQLITE_CORRUPT_BKPT;
4350   }
4351   sqlite3VdbeMemInit(&m, db, 0);
4352   rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
4353   if( rc ){
4354     return rc;
4355   }
4356   *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
4357   sqlite3VdbeMemRelease(&m);
4358   return SQLITE_OK;
4359 }
4360 
4361 /*
4362 ** This routine sets the value to be returned by subsequent calls to
4363 ** sqlite3_changes() on the database handle 'db'.
4364 */
4365 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
4366   assert( sqlite3_mutex_held(db->mutex) );
4367   db->nChange = nChange;
4368   db->nTotalChange += nChange;
4369 }
4370 
4371 /*
4372 ** Set a flag in the vdbe to update the change counter when it is finalised
4373 ** or reset.
4374 */
4375 void sqlite3VdbeCountChanges(Vdbe *v){
4376   v->changeCntOn = 1;
4377 }
4378 
4379 /*
4380 ** Mark every prepared statement associated with a database connection
4381 ** as expired.
4382 **
4383 ** An expired statement means that recompilation of the statement is
4384 ** recommend.  Statements expire when things happen that make their
4385 ** programs obsolete.  Removing user-defined functions or collating
4386 ** sequences, or changing an authorization function are the types of
4387 ** things that make prepared statements obsolete.
4388 */
4389 void sqlite3ExpirePreparedStatements(sqlite3 *db){
4390   Vdbe *p;
4391   for(p = db->pVdbe; p; p=p->pNext){
4392     p->expired = 1;
4393   }
4394 }
4395 
4396 /*
4397 ** Return the database associated with the Vdbe.
4398 */
4399 sqlite3 *sqlite3VdbeDb(Vdbe *v){
4400   return v->db;
4401 }
4402 
4403 /*
4404 ** Return a pointer to an sqlite3_value structure containing the value bound
4405 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4406 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4407 ** constants) to the value before returning it.
4408 **
4409 ** The returned value must be freed by the caller using sqlite3ValueFree().
4410 */
4411 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
4412   assert( iVar>0 );
4413   if( v ){
4414     Mem *pMem = &v->aVar[iVar-1];
4415     if( 0==(pMem->flags & MEM_Null) ){
4416       sqlite3_value *pRet = sqlite3ValueNew(v->db);
4417       if( pRet ){
4418         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4419         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
4420       }
4421       return pRet;
4422     }
4423   }
4424   return 0;
4425 }
4426 
4427 /*
4428 ** Configure SQL variable iVar so that binding a new value to it signals
4429 ** to sqlite3_reoptimize() that re-preparing the statement may result
4430 ** in a better query plan.
4431 */
4432 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
4433   assert( iVar>0 );
4434   if( iVar>32 ){
4435     v->expmask = 0xffffffff;
4436   }else{
4437     v->expmask |= ((u32)1 << (iVar-1));
4438   }
4439 }
4440 
4441 #ifndef SQLITE_OMIT_VIRTUALTABLE
4442 /*
4443 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4444 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4445 ** in memory obtained from sqlite3DbMalloc).
4446 */
4447 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4448   if( pVtab->zErrMsg ){
4449     sqlite3 *db = p->db;
4450     sqlite3DbFree(db, p->zErrMsg);
4451     p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4452     sqlite3_free(pVtab->zErrMsg);
4453     pVtab->zErrMsg = 0;
4454   }
4455 }
4456 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4457