1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* 19 ** Create a new virtual database engine. 20 */ 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 22 sqlite3 *db = pParse->db; 23 Vdbe *p; 24 p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); 25 if( p==0 ) return 0; 26 p->db = db; 27 if( db->pVdbe ){ 28 db->pVdbe->pPrev = p; 29 } 30 p->pNext = db->pVdbe; 31 p->pPrev = 0; 32 db->pVdbe = p; 33 p->magic = VDBE_MAGIC_INIT; 34 p->pParse = pParse; 35 assert( pParse->aLabel==0 ); 36 assert( pParse->nLabel==0 ); 37 assert( pParse->nOpAlloc==0 ); 38 assert( pParse->szOpAlloc==0 ); 39 return p; 40 } 41 42 /* 43 ** Change the error string stored in Vdbe.zErrMsg 44 */ 45 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 46 va_list ap; 47 sqlite3DbFree(p->db, p->zErrMsg); 48 va_start(ap, zFormat); 49 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 50 va_end(ap); 51 } 52 53 /* 54 ** Remember the SQL string for a prepared statement. 55 */ 56 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ 57 assert( isPrepareV2==1 || isPrepareV2==0 ); 58 if( p==0 ) return; 59 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG) 60 if( !isPrepareV2 ) return; 61 #endif 62 assert( p->zSql==0 ); 63 p->zSql = sqlite3DbStrNDup(p->db, z, n); 64 p->isPrepareV2 = (u8)isPrepareV2; 65 } 66 67 /* 68 ** Return the SQL associated with a prepared statement 69 */ 70 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 71 Vdbe *p = (Vdbe *)pStmt; 72 return p ? p->zSql : 0; 73 } 74 75 /* 76 ** Swap all content between two VDBE structures. 77 */ 78 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 79 Vdbe tmp, *pTmp; 80 char *zTmp; 81 tmp = *pA; 82 *pA = *pB; 83 *pB = tmp; 84 pTmp = pA->pNext; 85 pA->pNext = pB->pNext; 86 pB->pNext = pTmp; 87 pTmp = pA->pPrev; 88 pA->pPrev = pB->pPrev; 89 pB->pPrev = pTmp; 90 zTmp = pA->zSql; 91 pA->zSql = pB->zSql; 92 pB->zSql = zTmp; 93 pB->isPrepareV2 = pA->isPrepareV2; 94 } 95 96 /* 97 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 98 ** than its current size. nOp is guaranteed to be less than or equal 99 ** to 1024/sizeof(Op). 100 ** 101 ** If an out-of-memory error occurs while resizing the array, return 102 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain 103 ** unchanged (this is so that any opcodes already allocated can be 104 ** correctly deallocated along with the rest of the Vdbe). 105 */ 106 static int growOpArray(Vdbe *v, int nOp){ 107 VdbeOp *pNew; 108 Parse *p = v->pParse; 109 110 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 111 ** more frequent reallocs and hence provide more opportunities for 112 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 113 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 114 ** by the minimum* amount required until the size reaches 512. Normal 115 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 116 ** size of the op array or add 1KB of space, whichever is smaller. */ 117 #ifdef SQLITE_TEST_REALLOC_STRESS 118 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); 119 #else 120 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 121 UNUSED_PARAMETER(nOp); 122 #endif 123 124 assert( nOp<=(1024/sizeof(Op)) ); 125 assert( nNew>=(p->nOpAlloc+nOp) ); 126 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 127 if( pNew ){ 128 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 129 p->nOpAlloc = p->szOpAlloc/sizeof(Op); 130 v->aOp = pNew; 131 } 132 return (pNew ? SQLITE_OK : SQLITE_NOMEM); 133 } 134 135 #ifdef SQLITE_DEBUG 136 /* This routine is just a convenient place to set a breakpoint that will 137 ** fire after each opcode is inserted and displayed using 138 ** "PRAGMA vdbe_addoptrace=on". 139 */ 140 static void test_addop_breakpoint(void){ 141 static int n = 0; 142 n++; 143 } 144 #endif 145 146 /* 147 ** Add a new instruction to the list of instructions current in the 148 ** VDBE. Return the address of the new instruction. 149 ** 150 ** Parameters: 151 ** 152 ** p Pointer to the VDBE 153 ** 154 ** op The opcode for this instruction 155 ** 156 ** p1, p2, p3 Operands 157 ** 158 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 159 ** the sqlite3VdbeChangeP4() function to change the value of the P4 160 ** operand. 161 */ 162 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 163 assert( p->pParse->nOpAlloc<=p->nOp ); 164 if( growOpArray(p, 1) ) return 1; 165 assert( p->pParse->nOpAlloc>p->nOp ); 166 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 167 } 168 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 169 int i; 170 VdbeOp *pOp; 171 172 i = p->nOp; 173 assert( p->magic==VDBE_MAGIC_INIT ); 174 assert( op>0 && op<0xff ); 175 if( p->pParse->nOpAlloc<=i ){ 176 return growOp3(p, op, p1, p2, p3); 177 } 178 p->nOp++; 179 pOp = &p->aOp[i]; 180 pOp->opcode = (u8)op; 181 pOp->p5 = 0; 182 pOp->p1 = p1; 183 pOp->p2 = p2; 184 pOp->p3 = p3; 185 pOp->p4.p = 0; 186 pOp->p4type = P4_NOTUSED; 187 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 188 pOp->zComment = 0; 189 #endif 190 #ifdef SQLITE_DEBUG 191 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 192 int jj, kk; 193 Parse *pParse = p->pParse; 194 for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){ 195 struct yColCache *x = pParse->aColCache + jj; 196 if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue; 197 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); 198 kk++; 199 } 200 if( kk ) printf("\n"); 201 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 202 test_addop_breakpoint(); 203 } 204 #endif 205 #ifdef VDBE_PROFILE 206 pOp->cycles = 0; 207 pOp->cnt = 0; 208 #endif 209 #ifdef SQLITE_VDBE_COVERAGE 210 pOp->iSrcLine = 0; 211 #endif 212 return i; 213 } 214 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 215 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 216 } 217 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 218 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 219 } 220 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 221 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 222 } 223 224 /* Generate code for an unconditional jump to instruction iDest 225 */ 226 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 227 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 228 } 229 230 /* Generate code to cause the string zStr to be loaded into 231 ** register iDest 232 */ 233 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 234 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 235 } 236 237 /* 238 ** Generate code that initializes multiple registers to string or integer 239 ** constants. The registers begin with iDest and increase consecutively. 240 ** One register is initialized for each characgter in zTypes[]. For each 241 ** "s" character in zTypes[], the register is a string if the argument is 242 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 243 ** in zTypes[], the register is initialized to an integer. 244 */ 245 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 246 va_list ap; 247 int i; 248 char c; 249 va_start(ap, zTypes); 250 for(i=0; (c = zTypes[i])!=0; i++){ 251 if( c=='s' ){ 252 const char *z = va_arg(ap, const char*); 253 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0); 254 }else{ 255 assert( c=='i' ); 256 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++); 257 } 258 } 259 va_end(ap); 260 } 261 262 /* 263 ** Add an opcode that includes the p4 value as a pointer. 264 */ 265 int sqlite3VdbeAddOp4( 266 Vdbe *p, /* Add the opcode to this VM */ 267 int op, /* The new opcode */ 268 int p1, /* The P1 operand */ 269 int p2, /* The P2 operand */ 270 int p3, /* The P3 operand */ 271 const char *zP4, /* The P4 operand */ 272 int p4type /* P4 operand type */ 273 ){ 274 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 275 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 276 return addr; 277 } 278 279 /* 280 ** Add an opcode that includes the p4 value with a P4_INT64 or 281 ** P4_REAL type. 282 */ 283 int sqlite3VdbeAddOp4Dup8( 284 Vdbe *p, /* Add the opcode to this VM */ 285 int op, /* The new opcode */ 286 int p1, /* The P1 operand */ 287 int p2, /* The P2 operand */ 288 int p3, /* The P3 operand */ 289 const u8 *zP4, /* The P4 operand */ 290 int p4type /* P4 operand type */ 291 ){ 292 char *p4copy = sqlite3DbMallocRaw(sqlite3VdbeDb(p), 8); 293 if( p4copy ) memcpy(p4copy, zP4, 8); 294 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 295 } 296 297 /* 298 ** Add an OP_ParseSchema opcode. This routine is broken out from 299 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 300 ** as having been used. 301 ** 302 ** The zWhere string must have been obtained from sqlite3_malloc(). 303 ** This routine will take ownership of the allocated memory. 304 */ 305 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 306 int j; 307 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 308 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 309 } 310 311 /* 312 ** Add an opcode that includes the p4 value as an integer. 313 */ 314 int sqlite3VdbeAddOp4Int( 315 Vdbe *p, /* Add the opcode to this VM */ 316 int op, /* The new opcode */ 317 int p1, /* The P1 operand */ 318 int p2, /* The P2 operand */ 319 int p3, /* The P3 operand */ 320 int p4 /* The P4 operand as an integer */ 321 ){ 322 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 323 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32); 324 return addr; 325 } 326 327 /* 328 ** Create a new symbolic label for an instruction that has yet to be 329 ** coded. The symbolic label is really just a negative number. The 330 ** label can be used as the P2 value of an operation. Later, when 331 ** the label is resolved to a specific address, the VDBE will scan 332 ** through its operation list and change all values of P2 which match 333 ** the label into the resolved address. 334 ** 335 ** The VDBE knows that a P2 value is a label because labels are 336 ** always negative and P2 values are suppose to be non-negative. 337 ** Hence, a negative P2 value is a label that has yet to be resolved. 338 ** 339 ** Zero is returned if a malloc() fails. 340 */ 341 int sqlite3VdbeMakeLabel(Vdbe *v){ 342 Parse *p = v->pParse; 343 int i = p->nLabel++; 344 assert( v->magic==VDBE_MAGIC_INIT ); 345 if( (i & (i-1))==0 ){ 346 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 347 (i*2+1)*sizeof(p->aLabel[0])); 348 } 349 if( p->aLabel ){ 350 p->aLabel[i] = -1; 351 } 352 return ADDR(i); 353 } 354 355 /* 356 ** Resolve label "x" to be the address of the next instruction to 357 ** be inserted. The parameter "x" must have been obtained from 358 ** a prior call to sqlite3VdbeMakeLabel(). 359 */ 360 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 361 Parse *p = v->pParse; 362 int j = ADDR(x); 363 assert( v->magic==VDBE_MAGIC_INIT ); 364 assert( j<p->nLabel ); 365 assert( j>=0 ); 366 if( p->aLabel ){ 367 p->aLabel[j] = v->nOp; 368 } 369 p->iFixedOp = v->nOp - 1; 370 } 371 372 /* 373 ** Mark the VDBE as one that can only be run one time. 374 */ 375 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 376 p->runOnlyOnce = 1; 377 } 378 379 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 380 381 /* 382 ** The following type and function are used to iterate through all opcodes 383 ** in a Vdbe main program and each of the sub-programs (triggers) it may 384 ** invoke directly or indirectly. It should be used as follows: 385 ** 386 ** Op *pOp; 387 ** VdbeOpIter sIter; 388 ** 389 ** memset(&sIter, 0, sizeof(sIter)); 390 ** sIter.v = v; // v is of type Vdbe* 391 ** while( (pOp = opIterNext(&sIter)) ){ 392 ** // Do something with pOp 393 ** } 394 ** sqlite3DbFree(v->db, sIter.apSub); 395 ** 396 */ 397 typedef struct VdbeOpIter VdbeOpIter; 398 struct VdbeOpIter { 399 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 400 SubProgram **apSub; /* Array of subprograms */ 401 int nSub; /* Number of entries in apSub */ 402 int iAddr; /* Address of next instruction to return */ 403 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 404 }; 405 static Op *opIterNext(VdbeOpIter *p){ 406 Vdbe *v = p->v; 407 Op *pRet = 0; 408 Op *aOp; 409 int nOp; 410 411 if( p->iSub<=p->nSub ){ 412 413 if( p->iSub==0 ){ 414 aOp = v->aOp; 415 nOp = v->nOp; 416 }else{ 417 aOp = p->apSub[p->iSub-1]->aOp; 418 nOp = p->apSub[p->iSub-1]->nOp; 419 } 420 assert( p->iAddr<nOp ); 421 422 pRet = &aOp[p->iAddr]; 423 p->iAddr++; 424 if( p->iAddr==nOp ){ 425 p->iSub++; 426 p->iAddr = 0; 427 } 428 429 if( pRet->p4type==P4_SUBPROGRAM ){ 430 int nByte = (p->nSub+1)*sizeof(SubProgram*); 431 int j; 432 for(j=0; j<p->nSub; j++){ 433 if( p->apSub[j]==pRet->p4.pProgram ) break; 434 } 435 if( j==p->nSub ){ 436 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 437 if( !p->apSub ){ 438 pRet = 0; 439 }else{ 440 p->apSub[p->nSub++] = pRet->p4.pProgram; 441 } 442 } 443 } 444 } 445 446 return pRet; 447 } 448 449 /* 450 ** Check if the program stored in the VM associated with pParse may 451 ** throw an ABORT exception (causing the statement, but not entire transaction 452 ** to be rolled back). This condition is true if the main program or any 453 ** sub-programs contains any of the following: 454 ** 455 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 456 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 457 ** * OP_Destroy 458 ** * OP_VUpdate 459 ** * OP_VRename 460 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 461 ** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...) 462 ** 463 ** Then check that the value of Parse.mayAbort is true if an 464 ** ABORT may be thrown, or false otherwise. Return true if it does 465 ** match, or false otherwise. This function is intended to be used as 466 ** part of an assert statement in the compiler. Similar to: 467 ** 468 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 469 */ 470 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 471 int hasAbort = 0; 472 int hasFkCounter = 0; 473 int hasCreateTable = 0; 474 int hasInitCoroutine = 0; 475 Op *pOp; 476 VdbeOpIter sIter; 477 memset(&sIter, 0, sizeof(sIter)); 478 sIter.v = v; 479 480 while( (pOp = opIterNext(&sIter))!=0 ){ 481 int opcode = pOp->opcode; 482 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 483 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 484 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 485 ){ 486 hasAbort = 1; 487 break; 488 } 489 if( opcode==OP_CreateTable ) hasCreateTable = 1; 490 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 491 #ifndef SQLITE_OMIT_FOREIGN_KEY 492 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 493 hasFkCounter = 1; 494 } 495 #endif 496 } 497 sqlite3DbFree(v->db, sIter.apSub); 498 499 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 500 ** If malloc failed, then the while() loop above may not have iterated 501 ** through all opcodes and hasAbort may be set incorrectly. Return 502 ** true for this case to prevent the assert() in the callers frame 503 ** from failing. */ 504 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 505 || (hasCreateTable && hasInitCoroutine) ); 506 } 507 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 508 509 /* 510 ** This routine is called after all opcodes have been inserted. It loops 511 ** through all the opcodes and fixes up some details. 512 ** 513 ** (1) For each jump instruction with a negative P2 value (a label) 514 ** resolve the P2 value to an actual address. 515 ** 516 ** (2) Compute the maximum number of arguments used by any SQL function 517 ** and store that value in *pMaxFuncArgs. 518 ** 519 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 520 ** indicate what the prepared statement actually does. 521 ** 522 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 523 ** 524 ** (5) Reclaim the memory allocated for storing labels. 525 */ 526 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 527 int i; 528 int nMaxArgs = *pMaxFuncArgs; 529 Op *pOp; 530 Parse *pParse = p->pParse; 531 int *aLabel = pParse->aLabel; 532 p->readOnly = 1; 533 p->bIsReader = 0; 534 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ 535 u8 opcode = pOp->opcode; 536 537 /* NOTE: Be sure to update mkopcodeh.awk when adding or removing 538 ** cases from this switch! */ 539 switch( opcode ){ 540 case OP_Transaction: { 541 if( pOp->p2!=0 ) p->readOnly = 0; 542 /* fall thru */ 543 } 544 case OP_AutoCommit: 545 case OP_Savepoint: { 546 p->bIsReader = 1; 547 break; 548 } 549 #ifndef SQLITE_OMIT_WAL 550 case OP_Checkpoint: 551 #endif 552 case OP_Vacuum: 553 case OP_JournalMode: { 554 p->readOnly = 0; 555 p->bIsReader = 1; 556 break; 557 } 558 #ifndef SQLITE_OMIT_VIRTUALTABLE 559 case OP_VUpdate: { 560 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 561 break; 562 } 563 case OP_VFilter: { 564 int n; 565 assert( p->nOp - i >= 3 ); 566 assert( pOp[-1].opcode==OP_Integer ); 567 n = pOp[-1].p1; 568 if( n>nMaxArgs ) nMaxArgs = n; 569 break; 570 } 571 #endif 572 case OP_Next: 573 case OP_NextIfOpen: 574 case OP_SorterNext: { 575 pOp->p4.xAdvance = sqlite3BtreeNext; 576 pOp->p4type = P4_ADVANCE; 577 break; 578 } 579 case OP_Prev: 580 case OP_PrevIfOpen: { 581 pOp->p4.xAdvance = sqlite3BtreePrevious; 582 pOp->p4type = P4_ADVANCE; 583 break; 584 } 585 } 586 587 pOp->opflags = sqlite3OpcodeProperty[opcode]; 588 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){ 589 assert( ADDR(pOp->p2)<pParse->nLabel ); 590 pOp->p2 = aLabel[ADDR(pOp->p2)]; 591 } 592 } 593 sqlite3DbFree(p->db, pParse->aLabel); 594 pParse->aLabel = 0; 595 pParse->nLabel = 0; 596 *pMaxFuncArgs = nMaxArgs; 597 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 598 } 599 600 /* 601 ** Return the address of the next instruction to be inserted. 602 */ 603 int sqlite3VdbeCurrentAddr(Vdbe *p){ 604 assert( p->magic==VDBE_MAGIC_INIT ); 605 return p->nOp; 606 } 607 608 /* 609 ** Verify that at least N opcode slots are available in p without 610 ** having to malloc for more space (except when compiled using 611 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 612 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 613 ** fail due to a OOM fault and hence that the return value from 614 ** sqlite3VdbeAddOpList() will always be non-NULL. 615 */ 616 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 617 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 618 assert( p->nOp + N <= p->pParse->nOpAlloc ); 619 } 620 #endif 621 622 /* 623 ** This function returns a pointer to the array of opcodes associated with 624 ** the Vdbe passed as the first argument. It is the callers responsibility 625 ** to arrange for the returned array to be eventually freed using the 626 ** vdbeFreeOpArray() function. 627 ** 628 ** Before returning, *pnOp is set to the number of entries in the returned 629 ** array. Also, *pnMaxArg is set to the larger of its current value and 630 ** the number of entries in the Vdbe.apArg[] array required to execute the 631 ** returned program. 632 */ 633 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 634 VdbeOp *aOp = p->aOp; 635 assert( aOp && !p->db->mallocFailed ); 636 637 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 638 assert( DbMaskAllZero(p->btreeMask) ); 639 640 resolveP2Values(p, pnMaxArg); 641 *pnOp = p->nOp; 642 p->aOp = 0; 643 return aOp; 644 } 645 646 /* 647 ** Add a whole list of operations to the operation stack. Return a 648 ** pointer to the first operation inserted. 649 */ 650 VdbeOp *sqlite3VdbeAddOpList( 651 Vdbe *p, /* Add opcodes to the prepared statement */ 652 int nOp, /* Number of opcodes to add */ 653 VdbeOpList const *aOp, /* The opcodes to be added */ 654 int iLineno /* Source-file line number of first opcode */ 655 ){ 656 int i; 657 VdbeOp *pOut, *pFirst; 658 assert( nOp>0 ); 659 assert( p->magic==VDBE_MAGIC_INIT ); 660 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ 661 return 0; 662 } 663 pFirst = pOut = &p->aOp[p->nOp]; 664 for(i=0; i<nOp; i++, aOp++, pOut++){ 665 pOut->opcode = aOp->opcode; 666 pOut->p1 = aOp->p1; 667 pOut->p2 = aOp->p2; 668 assert( aOp->p2>=0 ); 669 pOut->p3 = aOp->p3; 670 pOut->p4type = P4_NOTUSED; 671 pOut->p4.p = 0; 672 pOut->p5 = 0; 673 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 674 pOut->zComment = 0; 675 #endif 676 #ifdef SQLITE_VDBE_COVERAGE 677 pOut->iSrcLine = iLineno+i; 678 #else 679 (void)iLineno; 680 #endif 681 #ifdef SQLITE_DEBUG 682 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 683 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 684 } 685 #endif 686 } 687 p->nOp += nOp; 688 return pFirst; 689 } 690 691 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 692 /* 693 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 694 */ 695 void sqlite3VdbeScanStatus( 696 Vdbe *p, /* VM to add scanstatus() to */ 697 int addrExplain, /* Address of OP_Explain (or 0) */ 698 int addrLoop, /* Address of loop counter */ 699 int addrVisit, /* Address of rows visited counter */ 700 LogEst nEst, /* Estimated number of output rows */ 701 const char *zName /* Name of table or index being scanned */ 702 ){ 703 int nByte = (p->nScan+1) * sizeof(ScanStatus); 704 ScanStatus *aNew; 705 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 706 if( aNew ){ 707 ScanStatus *pNew = &aNew[p->nScan++]; 708 pNew->addrExplain = addrExplain; 709 pNew->addrLoop = addrLoop; 710 pNew->addrVisit = addrVisit; 711 pNew->nEst = nEst; 712 pNew->zName = sqlite3DbStrDup(p->db, zName); 713 p->aScan = aNew; 714 } 715 } 716 #endif 717 718 719 /* 720 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 721 ** for a specific instruction. 722 */ 723 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){ 724 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 725 } 726 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ 727 sqlite3VdbeGetOp(p,addr)->p1 = val; 728 } 729 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ 730 sqlite3VdbeGetOp(p,addr)->p2 = val; 731 } 732 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ 733 sqlite3VdbeGetOp(p,addr)->p3 = val; 734 } 735 void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){ 736 if( !p->db->mallocFailed ) p->aOp[p->nOp-1].p5 = p5; 737 } 738 739 /* 740 ** Change the P2 operand of instruction addr so that it points to 741 ** the address of the next instruction to be coded. 742 */ 743 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 744 p->pParse->iFixedOp = p->nOp - 1; 745 sqlite3VdbeChangeP2(p, addr, p->nOp); 746 } 747 748 749 /* 750 ** If the input FuncDef structure is ephemeral, then free it. If 751 ** the FuncDef is not ephermal, then do nothing. 752 */ 753 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 754 if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 755 sqlite3DbFree(db, pDef); 756 } 757 } 758 759 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 760 761 /* 762 ** Delete a P4 value if necessary. 763 */ 764 static void freeP4(sqlite3 *db, int p4type, void *p4){ 765 if( p4 ){ 766 assert( db ); 767 switch( p4type ){ 768 case P4_FUNCCTX: { 769 freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc); 770 /* Fall through into the next case */ 771 } 772 case P4_REAL: 773 case P4_INT64: 774 case P4_DYNAMIC: 775 case P4_INTARRAY: { 776 sqlite3DbFree(db, p4); 777 break; 778 } 779 case P4_KEYINFO: { 780 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 781 break; 782 } 783 #ifdef SQLITE_ENABLE_CURSOR_HINTS 784 case P4_EXPR: { 785 sqlite3ExprDelete(db, (Expr*)p4); 786 break; 787 } 788 #endif 789 case P4_MPRINTF: { 790 if( db->pnBytesFreed==0 ) sqlite3_free(p4); 791 break; 792 } 793 case P4_FUNCDEF: { 794 freeEphemeralFunction(db, (FuncDef*)p4); 795 break; 796 } 797 case P4_MEM: { 798 if( db->pnBytesFreed==0 ){ 799 sqlite3ValueFree((sqlite3_value*)p4); 800 }else{ 801 Mem *p = (Mem*)p4; 802 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 803 sqlite3DbFree(db, p); 804 } 805 break; 806 } 807 case P4_VTAB : { 808 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 809 break; 810 } 811 } 812 } 813 } 814 815 /* 816 ** Free the space allocated for aOp and any p4 values allocated for the 817 ** opcodes contained within. If aOp is not NULL it is assumed to contain 818 ** nOp entries. 819 */ 820 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 821 if( aOp ){ 822 Op *pOp; 823 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ 824 if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p); 825 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 826 sqlite3DbFree(db, pOp->zComment); 827 #endif 828 } 829 } 830 sqlite3DbFree(db, aOp); 831 } 832 833 /* 834 ** Link the SubProgram object passed as the second argument into the linked 835 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 836 ** objects when the VM is no longer required. 837 */ 838 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 839 p->pNext = pVdbe->pProgram; 840 pVdbe->pProgram = p; 841 } 842 843 /* 844 ** Change the opcode at addr into OP_Noop 845 */ 846 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 847 VdbeOp *pOp; 848 if( p->db->mallocFailed ) return 0; 849 assert( addr>=0 && addr<p->nOp ); 850 pOp = &p->aOp[addr]; 851 freeP4(p->db, pOp->p4type, pOp->p4.p); 852 pOp->p4type = P4_NOTUSED; 853 pOp->p4.z = 0; 854 pOp->opcode = OP_Noop; 855 return 1; 856 } 857 858 /* 859 ** If the last opcode is "op" and it is not a jump destination, 860 ** then remove it. Return true if and only if an opcode was removed. 861 */ 862 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 863 if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){ 864 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 865 }else{ 866 return 0; 867 } 868 } 869 870 /* 871 ** Change the value of the P4 operand for a specific instruction. 872 ** This routine is useful when a large program is loaded from a 873 ** static array using sqlite3VdbeAddOpList but we want to make a 874 ** few minor changes to the program. 875 ** 876 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 877 ** the string is made into memory obtained from sqlite3_malloc(). 878 ** A value of n==0 means copy bytes of zP4 up to and including the 879 ** first null byte. If n>0 then copy n+1 bytes of zP4. 880 ** 881 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 882 ** to a string or structure that is guaranteed to exist for the lifetime of 883 ** the Vdbe. In these cases we can just copy the pointer. 884 ** 885 ** If addr<0 then change P4 on the most recently inserted instruction. 886 */ 887 static void SQLITE_NOINLINE vdbeChangeP4Full( 888 Vdbe *p, 889 Op *pOp, 890 const char *zP4, 891 int n 892 ){ 893 if( pOp->p4type ){ 894 freeP4(p->db, pOp->p4type, pOp->p4.p); 895 pOp->p4type = 0; 896 pOp->p4.p = 0; 897 } 898 if( n<0 ){ 899 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 900 }else{ 901 if( n==0 ) n = sqlite3Strlen30(zP4); 902 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 903 pOp->p4type = P4_DYNAMIC; 904 } 905 } 906 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 907 Op *pOp; 908 sqlite3 *db; 909 assert( p!=0 ); 910 db = p->db; 911 assert( p->magic==VDBE_MAGIC_INIT ); 912 assert( p->aOp!=0 || db->mallocFailed ); 913 if( db->mallocFailed ){ 914 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 915 return; 916 } 917 assert( p->nOp>0 ); 918 assert( addr<p->nOp ); 919 if( addr<0 ){ 920 addr = p->nOp - 1; 921 } 922 pOp = &p->aOp[addr]; 923 if( n>=0 || pOp->p4type ){ 924 vdbeChangeP4Full(p, pOp, zP4, n); 925 return; 926 } 927 if( n==P4_INT32 ){ 928 /* Note: this cast is safe, because the origin data point was an int 929 ** that was cast to a (const char *). */ 930 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 931 pOp->p4type = P4_INT32; 932 }else if( zP4!=0 ){ 933 assert( n<0 ); 934 pOp->p4.p = (void*)zP4; 935 pOp->p4type = (signed char)n; 936 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 937 } 938 } 939 940 /* 941 ** Set the P4 on the most recently added opcode to the KeyInfo for the 942 ** index given. 943 */ 944 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 945 Vdbe *v = pParse->pVdbe; 946 assert( v!=0 ); 947 assert( pIdx!=0 ); 948 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx), 949 P4_KEYINFO); 950 } 951 952 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 953 /* 954 ** Change the comment on the most recently coded instruction. Or 955 ** insert a No-op and add the comment to that new instruction. This 956 ** makes the code easier to read during debugging. None of this happens 957 ** in a production build. 958 */ 959 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 960 assert( p->nOp>0 || p->aOp==0 ); 961 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 962 if( p->nOp ){ 963 assert( p->aOp ); 964 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 965 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 966 } 967 } 968 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 969 va_list ap; 970 if( p ){ 971 va_start(ap, zFormat); 972 vdbeVComment(p, zFormat, ap); 973 va_end(ap); 974 } 975 } 976 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 977 va_list ap; 978 if( p ){ 979 sqlite3VdbeAddOp0(p, OP_Noop); 980 va_start(ap, zFormat); 981 vdbeVComment(p, zFormat, ap); 982 va_end(ap); 983 } 984 } 985 #endif /* NDEBUG */ 986 987 #ifdef SQLITE_VDBE_COVERAGE 988 /* 989 ** Set the value if the iSrcLine field for the previously coded instruction. 990 */ 991 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 992 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 993 } 994 #endif /* SQLITE_VDBE_COVERAGE */ 995 996 /* 997 ** Return the opcode for a given address. If the address is -1, then 998 ** return the most recently inserted opcode. 999 ** 1000 ** If a memory allocation error has occurred prior to the calling of this 1001 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1002 ** is readable but not writable, though it is cast to a writable value. 1003 ** The return of a dummy opcode allows the call to continue functioning 1004 ** after an OOM fault without having to check to see if the return from 1005 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1006 ** dummy will never be written to. This is verified by code inspection and 1007 ** by running with Valgrind. 1008 */ 1009 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1010 /* C89 specifies that the constant "dummy" will be initialized to all 1011 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1012 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1013 assert( p->magic==VDBE_MAGIC_INIT ); 1014 if( addr<0 ){ 1015 addr = p->nOp - 1; 1016 } 1017 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1018 if( p->db->mallocFailed ){ 1019 return (VdbeOp*)&dummy; 1020 }else{ 1021 return &p->aOp[addr]; 1022 } 1023 } 1024 1025 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1026 /* 1027 ** Return an integer value for one of the parameters to the opcode pOp 1028 ** determined by character c. 1029 */ 1030 static int translateP(char c, const Op *pOp){ 1031 if( c=='1' ) return pOp->p1; 1032 if( c=='2' ) return pOp->p2; 1033 if( c=='3' ) return pOp->p3; 1034 if( c=='4' ) return pOp->p4.i; 1035 return pOp->p5; 1036 } 1037 1038 /* 1039 ** Compute a string for the "comment" field of a VDBE opcode listing. 1040 ** 1041 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1042 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1043 ** absence of other comments, this synopsis becomes the comment on the opcode. 1044 ** Some translation occurs: 1045 ** 1046 ** "PX" -> "r[X]" 1047 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1048 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1049 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1050 */ 1051 static int displayComment( 1052 const Op *pOp, /* The opcode to be commented */ 1053 const char *zP4, /* Previously obtained value for P4 */ 1054 char *zTemp, /* Write result here */ 1055 int nTemp /* Space available in zTemp[] */ 1056 ){ 1057 const char *zOpName; 1058 const char *zSynopsis; 1059 int nOpName; 1060 int ii, jj; 1061 zOpName = sqlite3OpcodeName(pOp->opcode); 1062 nOpName = sqlite3Strlen30(zOpName); 1063 if( zOpName[nOpName+1] ){ 1064 int seenCom = 0; 1065 char c; 1066 zSynopsis = zOpName += nOpName + 1; 1067 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 1068 if( c=='P' ){ 1069 c = zSynopsis[++ii]; 1070 if( c=='4' ){ 1071 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 1072 }else if( c=='X' ){ 1073 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 1074 seenCom = 1; 1075 }else{ 1076 int v1 = translateP(c, pOp); 1077 int v2; 1078 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 1079 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1080 ii += 3; 1081 jj += sqlite3Strlen30(zTemp+jj); 1082 v2 = translateP(zSynopsis[ii], pOp); 1083 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1084 ii += 2; 1085 v2++; 1086 } 1087 if( v2>1 ){ 1088 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 1089 } 1090 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1091 ii += 4; 1092 } 1093 } 1094 jj += sqlite3Strlen30(zTemp+jj); 1095 }else{ 1096 zTemp[jj++] = c; 1097 } 1098 } 1099 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 1100 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 1101 jj += sqlite3Strlen30(zTemp+jj); 1102 } 1103 if( jj<nTemp ) zTemp[jj] = 0; 1104 }else if( pOp->zComment ){ 1105 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 1106 jj = sqlite3Strlen30(zTemp); 1107 }else{ 1108 zTemp[0] = 0; 1109 jj = 0; 1110 } 1111 return jj; 1112 } 1113 #endif /* SQLITE_DEBUG */ 1114 1115 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1116 /* 1117 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1118 ** that can be displayed in the P4 column of EXPLAIN output. 1119 */ 1120 static int displayP4Expr(int nTemp, char *zTemp, Expr *pExpr){ 1121 const char *zOp = 0; 1122 int n; 1123 switch( pExpr->op ){ 1124 case TK_STRING: 1125 sqlite3_snprintf(nTemp, zTemp, "%Q", pExpr->u.zToken); 1126 break; 1127 case TK_INTEGER: 1128 sqlite3_snprintf(nTemp, zTemp, "%d", pExpr->u.iValue); 1129 break; 1130 case TK_NULL: 1131 sqlite3_snprintf(nTemp, zTemp, "NULL"); 1132 break; 1133 case TK_REGISTER: { 1134 sqlite3_snprintf(nTemp, zTemp, "r[%d]", pExpr->iTable); 1135 break; 1136 } 1137 case TK_COLUMN: { 1138 if( pExpr->iColumn<0 ){ 1139 sqlite3_snprintf(nTemp, zTemp, "rowid"); 1140 }else{ 1141 sqlite3_snprintf(nTemp, zTemp, "c%d", (int)pExpr->iColumn); 1142 } 1143 break; 1144 } 1145 case TK_LT: zOp = "LT"; break; 1146 case TK_LE: zOp = "LE"; break; 1147 case TK_GT: zOp = "GT"; break; 1148 case TK_GE: zOp = "GE"; break; 1149 case TK_NE: zOp = "NE"; break; 1150 case TK_EQ: zOp = "EQ"; break; 1151 case TK_IS: zOp = "IS"; break; 1152 case TK_ISNOT: zOp = "ISNOT"; break; 1153 case TK_AND: zOp = "AND"; break; 1154 case TK_OR: zOp = "OR"; break; 1155 case TK_PLUS: zOp = "ADD"; break; 1156 case TK_STAR: zOp = "MUL"; break; 1157 case TK_MINUS: zOp = "SUB"; break; 1158 case TK_REM: zOp = "REM"; break; 1159 case TK_BITAND: zOp = "BITAND"; break; 1160 case TK_BITOR: zOp = "BITOR"; break; 1161 case TK_SLASH: zOp = "DIV"; break; 1162 case TK_LSHIFT: zOp = "LSHIFT"; break; 1163 case TK_RSHIFT: zOp = "RSHIFT"; break; 1164 case TK_CONCAT: zOp = "CONCAT"; break; 1165 case TK_UMINUS: zOp = "MINUS"; break; 1166 case TK_UPLUS: zOp = "PLUS"; break; 1167 case TK_BITNOT: zOp = "BITNOT"; break; 1168 case TK_NOT: zOp = "NOT"; break; 1169 case TK_ISNULL: zOp = "ISNULL"; break; 1170 case TK_NOTNULL: zOp = "NOTNULL"; break; 1171 1172 default: 1173 sqlite3_snprintf(nTemp, zTemp, "%s", "expr"); 1174 break; 1175 } 1176 1177 if( zOp ){ 1178 sqlite3_snprintf(nTemp, zTemp, "%s(", zOp); 1179 n = sqlite3Strlen30(zTemp); 1180 n += displayP4Expr(nTemp-n, zTemp+n, pExpr->pLeft); 1181 if( n<nTemp-1 && pExpr->pRight ){ 1182 zTemp[n++] = ','; 1183 n += displayP4Expr(nTemp-n, zTemp+n, pExpr->pRight); 1184 } 1185 sqlite3_snprintf(nTemp-n, zTemp+n, ")"); 1186 } 1187 return sqlite3Strlen30(zTemp); 1188 } 1189 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1190 1191 1192 #if VDBE_DISPLAY_P4 1193 /* 1194 ** Compute a string that describes the P4 parameter for an opcode. 1195 ** Use zTemp for any required temporary buffer space. 1196 */ 1197 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 1198 char *zP4 = zTemp; 1199 assert( nTemp>=20 ); 1200 switch( pOp->p4type ){ 1201 case P4_KEYINFO: { 1202 int i, j; 1203 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1204 assert( pKeyInfo->aSortOrder!=0 ); 1205 sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField); 1206 i = sqlite3Strlen30(zTemp); 1207 for(j=0; j<pKeyInfo->nField; j++){ 1208 CollSeq *pColl = pKeyInfo->aColl[j]; 1209 const char *zColl = pColl ? pColl->zName : "nil"; 1210 int n = sqlite3Strlen30(zColl); 1211 if( n==6 && memcmp(zColl,"BINARY",6)==0 ){ 1212 zColl = "B"; 1213 n = 1; 1214 } 1215 if( i+n>nTemp-7 ){ 1216 memcpy(&zTemp[i],",...",4); 1217 i += 4; 1218 break; 1219 } 1220 zTemp[i++] = ','; 1221 if( pKeyInfo->aSortOrder[j] ){ 1222 zTemp[i++] = '-'; 1223 } 1224 memcpy(&zTemp[i], zColl, n+1); 1225 i += n; 1226 } 1227 zTemp[i++] = ')'; 1228 zTemp[i] = 0; 1229 assert( i<nTemp ); 1230 break; 1231 } 1232 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1233 case P4_EXPR: { 1234 displayP4Expr(nTemp, zTemp, pOp->p4.pExpr); 1235 break; 1236 } 1237 #endif 1238 case P4_COLLSEQ: { 1239 CollSeq *pColl = pOp->p4.pColl; 1240 sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName); 1241 break; 1242 } 1243 case P4_FUNCDEF: { 1244 FuncDef *pDef = pOp->p4.pFunc; 1245 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); 1246 break; 1247 } 1248 #ifdef SQLITE_DEBUG 1249 case P4_FUNCCTX: { 1250 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1251 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); 1252 break; 1253 } 1254 #endif 1255 case P4_INT64: { 1256 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); 1257 break; 1258 } 1259 case P4_INT32: { 1260 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); 1261 break; 1262 } 1263 case P4_REAL: { 1264 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal); 1265 break; 1266 } 1267 case P4_MEM: { 1268 Mem *pMem = pOp->p4.pMem; 1269 if( pMem->flags & MEM_Str ){ 1270 zP4 = pMem->z; 1271 }else if( pMem->flags & MEM_Int ){ 1272 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); 1273 }else if( pMem->flags & MEM_Real ){ 1274 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r); 1275 }else if( pMem->flags & MEM_Null ){ 1276 sqlite3_snprintf(nTemp, zTemp, "NULL"); 1277 }else{ 1278 assert( pMem->flags & MEM_Blob ); 1279 zP4 = "(blob)"; 1280 } 1281 break; 1282 } 1283 #ifndef SQLITE_OMIT_VIRTUALTABLE 1284 case P4_VTAB: { 1285 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1286 sqlite3_snprintf(nTemp, zTemp, "vtab:%p", pVtab); 1287 break; 1288 } 1289 #endif 1290 case P4_INTARRAY: { 1291 sqlite3_snprintf(nTemp, zTemp, "intarray"); 1292 break; 1293 } 1294 case P4_SUBPROGRAM: { 1295 sqlite3_snprintf(nTemp, zTemp, "program"); 1296 break; 1297 } 1298 case P4_ADVANCE: { 1299 zTemp[0] = 0; 1300 break; 1301 } 1302 default: { 1303 zP4 = pOp->p4.z; 1304 if( zP4==0 ){ 1305 zP4 = zTemp; 1306 zTemp[0] = 0; 1307 } 1308 } 1309 } 1310 assert( zP4!=0 ); 1311 return zP4; 1312 } 1313 #endif /* VDBE_DISPLAY_P4 */ 1314 1315 /* 1316 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1317 ** 1318 ** The prepared statements need to know in advance the complete set of 1319 ** attached databases that will be use. A mask of these databases 1320 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1321 ** p->btreeMask of databases that will require a lock. 1322 */ 1323 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1324 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1325 assert( i<(int)sizeof(p->btreeMask)*8 ); 1326 DbMaskSet(p->btreeMask, i); 1327 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1328 DbMaskSet(p->lockMask, i); 1329 } 1330 } 1331 1332 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1333 /* 1334 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1335 ** this routine obtains the mutex associated with each BtShared structure 1336 ** that may be accessed by the VM passed as an argument. In doing so it also 1337 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1338 ** that the correct busy-handler callback is invoked if required. 1339 ** 1340 ** If SQLite is not threadsafe but does support shared-cache mode, then 1341 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1342 ** of all of BtShared structures accessible via the database handle 1343 ** associated with the VM. 1344 ** 1345 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1346 ** function is a no-op. 1347 ** 1348 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1349 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1350 ** corresponding to btrees that use shared cache. Then the runtime of 1351 ** this routine is N*N. But as N is rarely more than 1, this should not 1352 ** be a problem. 1353 */ 1354 void sqlite3VdbeEnter(Vdbe *p){ 1355 int i; 1356 sqlite3 *db; 1357 Db *aDb; 1358 int nDb; 1359 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1360 db = p->db; 1361 aDb = db->aDb; 1362 nDb = db->nDb; 1363 for(i=0; i<nDb; i++){ 1364 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1365 sqlite3BtreeEnter(aDb[i].pBt); 1366 } 1367 } 1368 } 1369 #endif 1370 1371 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1372 /* 1373 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1374 */ 1375 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1376 int i; 1377 sqlite3 *db; 1378 Db *aDb; 1379 int nDb; 1380 db = p->db; 1381 aDb = db->aDb; 1382 nDb = db->nDb; 1383 for(i=0; i<nDb; i++){ 1384 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1385 sqlite3BtreeLeave(aDb[i].pBt); 1386 } 1387 } 1388 } 1389 void sqlite3VdbeLeave(Vdbe *p){ 1390 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1391 vdbeLeave(p); 1392 } 1393 #endif 1394 1395 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1396 /* 1397 ** Print a single opcode. This routine is used for debugging only. 1398 */ 1399 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ 1400 char *zP4; 1401 char zPtr[50]; 1402 char zCom[100]; 1403 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1404 if( pOut==0 ) pOut = stdout; 1405 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1406 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1407 displayComment(pOp, zP4, zCom, sizeof(zCom)); 1408 #else 1409 zCom[0] = 0; 1410 #endif 1411 /* NB: The sqlite3OpcodeName() function is implemented by code created 1412 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1413 ** information from the vdbe.c source text */ 1414 fprintf(pOut, zFormat1, pc, 1415 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1416 zCom 1417 ); 1418 fflush(pOut); 1419 } 1420 #endif 1421 1422 /* 1423 ** Release an array of N Mem elements 1424 */ 1425 static void releaseMemArray(Mem *p, int N){ 1426 if( p && N ){ 1427 Mem *pEnd = &p[N]; 1428 sqlite3 *db = p->db; 1429 u8 malloc_failed = db->mallocFailed; 1430 if( db->pnBytesFreed ){ 1431 do{ 1432 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1433 }while( (++p)<pEnd ); 1434 return; 1435 } 1436 do{ 1437 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1438 assert( sqlite3VdbeCheckMemInvariants(p) ); 1439 1440 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1441 ** that takes advantage of the fact that the memory cell value is 1442 ** being set to NULL after releasing any dynamic resources. 1443 ** 1444 ** The justification for duplicating code is that according to 1445 ** callgrind, this causes a certain test case to hit the CPU 4.7 1446 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1447 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1448 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1449 ** with no indexes using a single prepared INSERT statement, bind() 1450 ** and reset(). Inserts are grouped into a transaction. 1451 */ 1452 testcase( p->flags & MEM_Agg ); 1453 testcase( p->flags & MEM_Dyn ); 1454 testcase( p->flags & MEM_Frame ); 1455 testcase( p->flags & MEM_RowSet ); 1456 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ 1457 sqlite3VdbeMemRelease(p); 1458 }else if( p->szMalloc ){ 1459 sqlite3DbFree(db, p->zMalloc); 1460 p->szMalloc = 0; 1461 } 1462 1463 p->flags = MEM_Undefined; 1464 }while( (++p)<pEnd ); 1465 db->mallocFailed = malloc_failed; 1466 } 1467 } 1468 1469 /* 1470 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1471 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1472 */ 1473 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1474 int i; 1475 Mem *aMem = VdbeFrameMem(p); 1476 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1477 for(i=0; i<p->nChildCsr; i++){ 1478 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1479 } 1480 releaseMemArray(aMem, p->nChildMem); 1481 sqlite3DbFree(p->v->db, p); 1482 } 1483 1484 #ifndef SQLITE_OMIT_EXPLAIN 1485 /* 1486 ** Give a listing of the program in the virtual machine. 1487 ** 1488 ** The interface is the same as sqlite3VdbeExec(). But instead of 1489 ** running the code, it invokes the callback once for each instruction. 1490 ** This feature is used to implement "EXPLAIN". 1491 ** 1492 ** When p->explain==1, each instruction is listed. When 1493 ** p->explain==2, only OP_Explain instructions are listed and these 1494 ** are shown in a different format. p->explain==2 is used to implement 1495 ** EXPLAIN QUERY PLAN. 1496 ** 1497 ** When p->explain==1, first the main program is listed, then each of 1498 ** the trigger subprograms are listed one by one. 1499 */ 1500 int sqlite3VdbeList( 1501 Vdbe *p /* The VDBE */ 1502 ){ 1503 int nRow; /* Stop when row count reaches this */ 1504 int nSub = 0; /* Number of sub-vdbes seen so far */ 1505 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1506 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1507 sqlite3 *db = p->db; /* The database connection */ 1508 int i; /* Loop counter */ 1509 int rc = SQLITE_OK; /* Return code */ 1510 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 1511 1512 assert( p->explain ); 1513 assert( p->magic==VDBE_MAGIC_RUN ); 1514 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1515 1516 /* Even though this opcode does not use dynamic strings for 1517 ** the result, result columns may become dynamic if the user calls 1518 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1519 */ 1520 releaseMemArray(pMem, 8); 1521 p->pResultSet = 0; 1522 1523 if( p->rc==SQLITE_NOMEM ){ 1524 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1525 ** sqlite3_column_text16() failed. */ 1526 db->mallocFailed = 1; 1527 return SQLITE_ERROR; 1528 } 1529 1530 /* When the number of output rows reaches nRow, that means the 1531 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1532 ** nRow is the sum of the number of rows in the main program, plus 1533 ** the sum of the number of rows in all trigger subprograms encountered 1534 ** so far. The nRow value will increase as new trigger subprograms are 1535 ** encountered, but p->pc will eventually catch up to nRow. 1536 */ 1537 nRow = p->nOp; 1538 if( p->explain==1 ){ 1539 /* The first 8 memory cells are used for the result set. So we will 1540 ** commandeer the 9th cell to use as storage for an array of pointers 1541 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1542 ** cells. */ 1543 assert( p->nMem>9 ); 1544 pSub = &p->aMem[9]; 1545 if( pSub->flags&MEM_Blob ){ 1546 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1547 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1548 nSub = pSub->n/sizeof(Vdbe*); 1549 apSub = (SubProgram **)pSub->z; 1550 } 1551 for(i=0; i<nSub; i++){ 1552 nRow += apSub[i]->nOp; 1553 } 1554 } 1555 1556 do{ 1557 i = p->pc++; 1558 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); 1559 if( i>=nRow ){ 1560 p->rc = SQLITE_OK; 1561 rc = SQLITE_DONE; 1562 }else if( db->u1.isInterrupted ){ 1563 p->rc = SQLITE_INTERRUPT; 1564 rc = SQLITE_ERROR; 1565 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 1566 }else{ 1567 char *zP4; 1568 Op *pOp; 1569 if( i<p->nOp ){ 1570 /* The output line number is small enough that we are still in the 1571 ** main program. */ 1572 pOp = &p->aOp[i]; 1573 }else{ 1574 /* We are currently listing subprograms. Figure out which one and 1575 ** pick up the appropriate opcode. */ 1576 int j; 1577 i -= p->nOp; 1578 for(j=0; i>=apSub[j]->nOp; j++){ 1579 i -= apSub[j]->nOp; 1580 } 1581 pOp = &apSub[j]->aOp[i]; 1582 } 1583 if( p->explain==1 ){ 1584 pMem->flags = MEM_Int; 1585 pMem->u.i = i; /* Program counter */ 1586 pMem++; 1587 1588 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1589 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1590 assert( pMem->z!=0 ); 1591 pMem->n = sqlite3Strlen30(pMem->z); 1592 pMem->enc = SQLITE_UTF8; 1593 pMem++; 1594 1595 /* When an OP_Program opcode is encounter (the only opcode that has 1596 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1597 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1598 ** has not already been seen. 1599 */ 1600 if( pOp->p4type==P4_SUBPROGRAM ){ 1601 int nByte = (nSub+1)*sizeof(SubProgram*); 1602 int j; 1603 for(j=0; j<nSub; j++){ 1604 if( apSub[j]==pOp->p4.pProgram ) break; 1605 } 1606 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){ 1607 apSub = (SubProgram **)pSub->z; 1608 apSub[nSub++] = pOp->p4.pProgram; 1609 pSub->flags |= MEM_Blob; 1610 pSub->n = nSub*sizeof(SubProgram*); 1611 } 1612 } 1613 } 1614 1615 pMem->flags = MEM_Int; 1616 pMem->u.i = pOp->p1; /* P1 */ 1617 pMem++; 1618 1619 pMem->flags = MEM_Int; 1620 pMem->u.i = pOp->p2; /* P2 */ 1621 pMem++; 1622 1623 pMem->flags = MEM_Int; 1624 pMem->u.i = pOp->p3; /* P3 */ 1625 pMem++; 1626 1627 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */ 1628 assert( p->db->mallocFailed ); 1629 return SQLITE_ERROR; 1630 } 1631 pMem->flags = MEM_Str|MEM_Term; 1632 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc); 1633 if( zP4!=pMem->z ){ 1634 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 1635 }else{ 1636 assert( pMem->z!=0 ); 1637 pMem->n = sqlite3Strlen30(pMem->z); 1638 pMem->enc = SQLITE_UTF8; 1639 } 1640 pMem++; 1641 1642 if( p->explain==1 ){ 1643 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ 1644 assert( p->db->mallocFailed ); 1645 return SQLITE_ERROR; 1646 } 1647 pMem->flags = MEM_Str|MEM_Term; 1648 pMem->n = 2; 1649 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1650 pMem->enc = SQLITE_UTF8; 1651 pMem++; 1652 1653 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1654 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ 1655 assert( p->db->mallocFailed ); 1656 return SQLITE_ERROR; 1657 } 1658 pMem->flags = MEM_Str|MEM_Term; 1659 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 1660 pMem->enc = SQLITE_UTF8; 1661 #else 1662 pMem->flags = MEM_Null; /* Comment */ 1663 #endif 1664 } 1665 1666 p->nResColumn = 8 - 4*(p->explain-1); 1667 p->pResultSet = &p->aMem[1]; 1668 p->rc = SQLITE_OK; 1669 rc = SQLITE_ROW; 1670 } 1671 return rc; 1672 } 1673 #endif /* SQLITE_OMIT_EXPLAIN */ 1674 1675 #ifdef SQLITE_DEBUG 1676 /* 1677 ** Print the SQL that was used to generate a VDBE program. 1678 */ 1679 void sqlite3VdbePrintSql(Vdbe *p){ 1680 const char *z = 0; 1681 if( p->zSql ){ 1682 z = p->zSql; 1683 }else if( p->nOp>=1 ){ 1684 const VdbeOp *pOp = &p->aOp[0]; 1685 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1686 z = pOp->p4.z; 1687 while( sqlite3Isspace(*z) ) z++; 1688 } 1689 } 1690 if( z ) printf("SQL: [%s]\n", z); 1691 } 1692 #endif 1693 1694 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 1695 /* 1696 ** Print an IOTRACE message showing SQL content. 1697 */ 1698 void sqlite3VdbeIOTraceSql(Vdbe *p){ 1699 int nOp = p->nOp; 1700 VdbeOp *pOp; 1701 if( sqlite3IoTrace==0 ) return; 1702 if( nOp<1 ) return; 1703 pOp = &p->aOp[0]; 1704 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1705 int i, j; 1706 char z[1000]; 1707 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 1708 for(i=0; sqlite3Isspace(z[i]); i++){} 1709 for(j=0; z[i]; i++){ 1710 if( sqlite3Isspace(z[i]) ){ 1711 if( z[i-1]!=' ' ){ 1712 z[j++] = ' '; 1713 } 1714 }else{ 1715 z[j++] = z[i]; 1716 } 1717 } 1718 z[j] = 0; 1719 sqlite3IoTrace("SQL %s\n", z); 1720 } 1721 } 1722 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 1723 1724 /* 1725 ** Allocate space from a fixed size buffer and return a pointer to 1726 ** that space. If insufficient space is available, return NULL. 1727 ** 1728 ** The pBuf parameter is the initial value of a pointer which will 1729 ** receive the new memory. pBuf is normally NULL. If pBuf is not 1730 ** NULL, it means that memory space has already been allocated and that 1731 ** this routine should not allocate any new memory. When pBuf is not 1732 ** NULL simply return pBuf. Only allocate new memory space when pBuf 1733 ** is NULL. 1734 ** 1735 ** nByte is the number of bytes of space needed. 1736 ** 1737 ** pFrom points to *pnFrom bytes of available space. New space is allocated 1738 ** from the end of the pFrom buffer and *pnFrom is decremented. 1739 ** 1740 ** *pnNeeded is a counter of the number of bytes of space that have failed 1741 ** to allocate. If there is insufficient space in pFrom to satisfy the 1742 ** request, then increment *pnNeeded by the amount of the request. 1743 */ 1744 static void *allocSpace( 1745 void *pBuf, /* Where return pointer will be stored */ 1746 int nByte, /* Number of bytes to allocate */ 1747 u8 *pFrom, /* Memory available for allocation */ 1748 int *pnFrom, /* IN/OUT: Space available at pFrom */ 1749 int *pnNeeded /* If allocation cannot be made, increment *pnByte */ 1750 ){ 1751 assert( EIGHT_BYTE_ALIGNMENT(pFrom) ); 1752 if( pBuf==0 ){ 1753 nByte = ROUND8(nByte); 1754 if( nByte <= *pnFrom ){ 1755 *pnFrom -= nByte; 1756 pBuf = &pFrom[*pnFrom]; 1757 }else{ 1758 *pnNeeded += nByte; 1759 } 1760 } 1761 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 1762 return pBuf; 1763 } 1764 1765 /* 1766 ** Rewind the VDBE back to the beginning in preparation for 1767 ** running it. 1768 */ 1769 void sqlite3VdbeRewind(Vdbe *p){ 1770 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1771 int i; 1772 #endif 1773 assert( p!=0 ); 1774 assert( p->magic==VDBE_MAGIC_INIT ); 1775 1776 /* There should be at least one opcode. 1777 */ 1778 assert( p->nOp>0 ); 1779 1780 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 1781 p->magic = VDBE_MAGIC_RUN; 1782 1783 #ifdef SQLITE_DEBUG 1784 for(i=1; i<p->nMem; i++){ 1785 assert( p->aMem[i].db==p->db ); 1786 } 1787 #endif 1788 p->pc = -1; 1789 p->rc = SQLITE_OK; 1790 p->errorAction = OE_Abort; 1791 p->magic = VDBE_MAGIC_RUN; 1792 p->nChange = 0; 1793 p->cacheCtr = 1; 1794 p->minWriteFileFormat = 255; 1795 p->iStatement = 0; 1796 p->nFkConstraint = 0; 1797 #ifdef VDBE_PROFILE 1798 for(i=0; i<p->nOp; i++){ 1799 p->aOp[i].cnt = 0; 1800 p->aOp[i].cycles = 0; 1801 } 1802 #endif 1803 } 1804 1805 /* 1806 ** Prepare a virtual machine for execution for the first time after 1807 ** creating the virtual machine. This involves things such 1808 ** as allocating registers and initializing the program counter. 1809 ** After the VDBE has be prepped, it can be executed by one or more 1810 ** calls to sqlite3VdbeExec(). 1811 ** 1812 ** This function may be called exactly once on each virtual machine. 1813 ** After this routine is called the VM has been "packaged" and is ready 1814 ** to run. After this routine is called, further calls to 1815 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 1816 ** the Vdbe from the Parse object that helped generate it so that the 1817 ** the Vdbe becomes an independent entity and the Parse object can be 1818 ** destroyed. 1819 ** 1820 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 1821 ** to its initial state after it has been run. 1822 */ 1823 void sqlite3VdbeMakeReady( 1824 Vdbe *p, /* The VDBE */ 1825 Parse *pParse /* Parsing context */ 1826 ){ 1827 sqlite3 *db; /* The database connection */ 1828 int nVar; /* Number of parameters */ 1829 int nMem; /* Number of VM memory registers */ 1830 int nCursor; /* Number of cursors required */ 1831 int nArg; /* Number of arguments in subprograms */ 1832 int nOnce; /* Number of OP_Once instructions */ 1833 int n; /* Loop counter */ 1834 int nFree; /* Available free space */ 1835 u8 *zCsr; /* Memory available for allocation */ 1836 int nByte; /* How much extra memory is needed */ 1837 1838 assert( p!=0 ); 1839 assert( p->nOp>0 ); 1840 assert( pParse!=0 ); 1841 assert( p->magic==VDBE_MAGIC_INIT ); 1842 assert( pParse==p->pParse ); 1843 db = p->db; 1844 assert( db->mallocFailed==0 ); 1845 nVar = pParse->nVar; 1846 nMem = pParse->nMem; 1847 nCursor = pParse->nTab; 1848 nArg = pParse->nMaxArg; 1849 nOnce = pParse->nOnce; 1850 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */ 1851 1852 /* For each cursor required, also allocate a memory cell. Memory 1853 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by 1854 ** the vdbe program. Instead they are used to allocate space for 1855 ** VdbeCursor/BtCursor structures. The blob of memory associated with 1856 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) 1857 ** stores the blob of memory associated with cursor 1, etc. 1858 ** 1859 ** See also: allocateCursor(). 1860 */ 1861 nMem += nCursor; 1862 1863 /* zCsr will initially point to nFree bytes of unused space at the 1864 ** end of the opcode array, p->aOp. The computation of nFree is 1865 ** conservative - it might be smaller than the true number of free 1866 ** bytes, but never larger. nFree must be a multiple of 8 - it is 1867 ** rounded down if is not. 1868 */ 1869 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode space used */ 1870 zCsr = &((u8*)p->aOp)[n]; /* Unused opcode space */ 1871 assert( EIGHT_BYTE_ALIGNMENT(zCsr) ); 1872 nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused space */ 1873 assert( nFree>=0 ); 1874 if( nFree>0 ){ 1875 memset(zCsr, 0, nFree); 1876 assert( EIGHT_BYTE_ALIGNMENT(&zCsr[nFree]) ); 1877 } 1878 1879 resolveP2Values(p, &nArg); 1880 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 1881 if( pParse->explain && nMem<10 ){ 1882 nMem = 10; 1883 } 1884 p->expired = 0; 1885 1886 /* Memory for registers, parameters, cursor, etc, is allocated in two 1887 ** passes. On the first pass, we try to reuse unused space at the 1888 ** end of the opcode array. If we are unable to satisfy all memory 1889 ** requirements by reusing the opcode array tail, then the second 1890 ** pass will fill in the rest using a fresh allocation. 1891 ** 1892 ** This two-pass approach that reuses as much memory as possible from 1893 ** the leftover space at the end of the opcode array can significantly 1894 ** reduce the amount of memory held by a prepared statement. 1895 */ 1896 do { 1897 nByte = 0; 1898 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), zCsr, &nFree, &nByte); 1899 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), zCsr, &nFree, &nByte); 1900 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), zCsr, &nFree, &nByte); 1901 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*), 1902 zCsr, &nFree, &nByte); 1903 p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, zCsr, &nFree, &nByte); 1904 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1905 p->anExec = allocSpace(p->anExec, p->nOp*sizeof(i64), zCsr, &nFree, &nByte); 1906 #endif 1907 if( nByte ){ 1908 p->pFree = sqlite3DbMallocZero(db, nByte); 1909 } 1910 zCsr = p->pFree; 1911 nFree = nByte; 1912 }while( nByte && !db->mallocFailed ); 1913 1914 p->nCursor = nCursor; 1915 p->nOnceFlag = nOnce; 1916 if( p->aVar ){ 1917 p->nVar = (ynVar)nVar; 1918 for(n=0; n<nVar; n++){ 1919 p->aVar[n].flags = MEM_Null; 1920 p->aVar[n].db = db; 1921 } 1922 } 1923 p->nzVar = pParse->nzVar; 1924 p->azVar = pParse->azVar; 1925 pParse->nzVar = 0; 1926 pParse->azVar = 0; 1927 if( p->aMem ){ 1928 p->aMem--; /* aMem[] goes from 1..nMem */ 1929 p->nMem = nMem; /* not from 0..nMem-1 */ 1930 for(n=1; n<=nMem; n++){ 1931 p->aMem[n].flags = MEM_Undefined; 1932 p->aMem[n].db = db; 1933 } 1934 } 1935 p->explain = pParse->explain; 1936 sqlite3VdbeRewind(p); 1937 } 1938 1939 /* 1940 ** Close a VDBE cursor and release all the resources that cursor 1941 ** happens to hold. 1942 */ 1943 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 1944 if( pCx==0 ){ 1945 return; 1946 } 1947 assert( pCx->pBt==0 || pCx->eCurType==CURTYPE_BTREE ); 1948 switch( pCx->eCurType ){ 1949 case CURTYPE_SORTER: { 1950 sqlite3VdbeSorterClose(p->db, pCx); 1951 break; 1952 } 1953 case CURTYPE_BTREE: { 1954 if( pCx->pBt ){ 1955 sqlite3BtreeClose(pCx->pBt); 1956 /* The pCx->pCursor will be close automatically, if it exists, by 1957 ** the call above. */ 1958 }else{ 1959 assert( pCx->uc.pCursor!=0 ); 1960 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 1961 } 1962 break; 1963 } 1964 #ifndef SQLITE_OMIT_VIRTUALTABLE 1965 case CURTYPE_VTAB: { 1966 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 1967 const sqlite3_module *pModule = pVCur->pVtab->pModule; 1968 assert( pVCur->pVtab->nRef>0 ); 1969 pVCur->pVtab->nRef--; 1970 pModule->xClose(pVCur); 1971 break; 1972 } 1973 #endif 1974 } 1975 } 1976 1977 /* 1978 ** Close all cursors in the current frame. 1979 */ 1980 static void closeCursorsInFrame(Vdbe *p){ 1981 if( p->apCsr ){ 1982 int i; 1983 for(i=0; i<p->nCursor; i++){ 1984 VdbeCursor *pC = p->apCsr[i]; 1985 if( pC ){ 1986 sqlite3VdbeFreeCursor(p, pC); 1987 p->apCsr[i] = 0; 1988 } 1989 } 1990 } 1991 } 1992 1993 /* 1994 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 1995 ** is used, for example, when a trigger sub-program is halted to restore 1996 ** control to the main program. 1997 */ 1998 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 1999 Vdbe *v = pFrame->v; 2000 closeCursorsInFrame(v); 2001 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2002 v->anExec = pFrame->anExec; 2003 #endif 2004 v->aOnceFlag = pFrame->aOnceFlag; 2005 v->nOnceFlag = pFrame->nOnceFlag; 2006 v->aOp = pFrame->aOp; 2007 v->nOp = pFrame->nOp; 2008 v->aMem = pFrame->aMem; 2009 v->nMem = pFrame->nMem; 2010 v->apCsr = pFrame->apCsr; 2011 v->nCursor = pFrame->nCursor; 2012 v->db->lastRowid = pFrame->lastRowid; 2013 v->nChange = pFrame->nChange; 2014 v->db->nChange = pFrame->nDbChange; 2015 return pFrame->pc; 2016 } 2017 2018 /* 2019 ** Close all cursors. 2020 ** 2021 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2022 ** cell array. This is necessary as the memory cell array may contain 2023 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2024 ** open cursors. 2025 */ 2026 static void closeAllCursors(Vdbe *p){ 2027 if( p->pFrame ){ 2028 VdbeFrame *pFrame; 2029 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2030 sqlite3VdbeFrameRestore(pFrame); 2031 p->pFrame = 0; 2032 p->nFrame = 0; 2033 } 2034 assert( p->nFrame==0 ); 2035 closeCursorsInFrame(p); 2036 if( p->aMem ){ 2037 releaseMemArray(&p->aMem[1], p->nMem); 2038 } 2039 while( p->pDelFrame ){ 2040 VdbeFrame *pDel = p->pDelFrame; 2041 p->pDelFrame = pDel->pParent; 2042 sqlite3VdbeFrameDelete(pDel); 2043 } 2044 2045 /* Delete any auxdata allocations made by the VM */ 2046 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0); 2047 assert( p->pAuxData==0 ); 2048 } 2049 2050 /* 2051 ** Clean up the VM after a single run. 2052 */ 2053 static void Cleanup(Vdbe *p){ 2054 sqlite3 *db = p->db; 2055 2056 #ifdef SQLITE_DEBUG 2057 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 2058 ** Vdbe.aMem[] arrays have already been cleaned up. */ 2059 int i; 2060 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 2061 if( p->aMem ){ 2062 for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 2063 } 2064 #endif 2065 2066 sqlite3DbFree(db, p->zErrMsg); 2067 p->zErrMsg = 0; 2068 p->pResultSet = 0; 2069 } 2070 2071 /* 2072 ** Set the number of result columns that will be returned by this SQL 2073 ** statement. This is now set at compile time, rather than during 2074 ** execution of the vdbe program so that sqlite3_column_count() can 2075 ** be called on an SQL statement before sqlite3_step(). 2076 */ 2077 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2078 Mem *pColName; 2079 int n; 2080 sqlite3 *db = p->db; 2081 2082 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2083 sqlite3DbFree(db, p->aColName); 2084 n = nResColumn*COLNAME_N; 2085 p->nResColumn = (u16)nResColumn; 2086 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n ); 2087 if( p->aColName==0 ) return; 2088 while( n-- > 0 ){ 2089 pColName->flags = MEM_Null; 2090 pColName->db = p->db; 2091 pColName++; 2092 } 2093 } 2094 2095 /* 2096 ** Set the name of the idx'th column to be returned by the SQL statement. 2097 ** zName must be a pointer to a nul terminated string. 2098 ** 2099 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2100 ** 2101 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2102 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2103 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2104 */ 2105 int sqlite3VdbeSetColName( 2106 Vdbe *p, /* Vdbe being configured */ 2107 int idx, /* Index of column zName applies to */ 2108 int var, /* One of the COLNAME_* constants */ 2109 const char *zName, /* Pointer to buffer containing name */ 2110 void (*xDel)(void*) /* Memory management strategy for zName */ 2111 ){ 2112 int rc; 2113 Mem *pColName; 2114 assert( idx<p->nResColumn ); 2115 assert( var<COLNAME_N ); 2116 if( p->db->mallocFailed ){ 2117 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2118 return SQLITE_NOMEM; 2119 } 2120 assert( p->aColName!=0 ); 2121 pColName = &(p->aColName[idx+var*p->nResColumn]); 2122 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2123 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2124 return rc; 2125 } 2126 2127 /* 2128 ** A read or write transaction may or may not be active on database handle 2129 ** db. If a transaction is active, commit it. If there is a 2130 ** write-transaction spanning more than one database file, this routine 2131 ** takes care of the master journal trickery. 2132 */ 2133 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2134 int i; 2135 int nTrans = 0; /* Number of databases with an active write-transaction */ 2136 int rc = SQLITE_OK; 2137 int needXcommit = 0; 2138 2139 #ifdef SQLITE_OMIT_VIRTUALTABLE 2140 /* With this option, sqlite3VtabSync() is defined to be simply 2141 ** SQLITE_OK so p is not used. 2142 */ 2143 UNUSED_PARAMETER(p); 2144 #endif 2145 2146 /* Before doing anything else, call the xSync() callback for any 2147 ** virtual module tables written in this transaction. This has to 2148 ** be done before determining whether a master journal file is 2149 ** required, as an xSync() callback may add an attached database 2150 ** to the transaction. 2151 */ 2152 rc = sqlite3VtabSync(db, p); 2153 2154 /* This loop determines (a) if the commit hook should be invoked and 2155 ** (b) how many database files have open write transactions, not 2156 ** including the temp database. (b) is important because if more than 2157 ** one database file has an open write transaction, a master journal 2158 ** file is required for an atomic commit. 2159 */ 2160 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2161 Btree *pBt = db->aDb[i].pBt; 2162 if( sqlite3BtreeIsInTrans(pBt) ){ 2163 needXcommit = 1; 2164 if( i!=1 ) nTrans++; 2165 sqlite3BtreeEnter(pBt); 2166 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt)); 2167 sqlite3BtreeLeave(pBt); 2168 } 2169 } 2170 if( rc!=SQLITE_OK ){ 2171 return rc; 2172 } 2173 2174 /* If there are any write-transactions at all, invoke the commit hook */ 2175 if( needXcommit && db->xCommitCallback ){ 2176 rc = db->xCommitCallback(db->pCommitArg); 2177 if( rc ){ 2178 return SQLITE_CONSTRAINT_COMMITHOOK; 2179 } 2180 } 2181 2182 /* The simple case - no more than one database file (not counting the 2183 ** TEMP database) has a transaction active. There is no need for the 2184 ** master-journal. 2185 ** 2186 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2187 ** string, it means the main database is :memory: or a temp file. In 2188 ** that case we do not support atomic multi-file commits, so use the 2189 ** simple case then too. 2190 */ 2191 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2192 || nTrans<=1 2193 ){ 2194 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2195 Btree *pBt = db->aDb[i].pBt; 2196 if( pBt ){ 2197 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2198 } 2199 } 2200 2201 /* Do the commit only if all databases successfully complete phase 1. 2202 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2203 ** IO error while deleting or truncating a journal file. It is unlikely, 2204 ** but could happen. In this case abandon processing and return the error. 2205 */ 2206 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2207 Btree *pBt = db->aDb[i].pBt; 2208 if( pBt ){ 2209 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2210 } 2211 } 2212 if( rc==SQLITE_OK ){ 2213 sqlite3VtabCommit(db); 2214 } 2215 } 2216 2217 /* The complex case - There is a multi-file write-transaction active. 2218 ** This requires a master journal file to ensure the transaction is 2219 ** committed atomically. 2220 */ 2221 #ifndef SQLITE_OMIT_DISKIO 2222 else{ 2223 sqlite3_vfs *pVfs = db->pVfs; 2224 int needSync = 0; 2225 char *zMaster = 0; /* File-name for the master journal */ 2226 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2227 sqlite3_file *pMaster = 0; 2228 i64 offset = 0; 2229 int res; 2230 int retryCount = 0; 2231 int nMainFile; 2232 2233 /* Select a master journal file name */ 2234 nMainFile = sqlite3Strlen30(zMainFile); 2235 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); 2236 if( zMaster==0 ) return SQLITE_NOMEM; 2237 do { 2238 u32 iRandom; 2239 if( retryCount ){ 2240 if( retryCount>100 ){ 2241 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 2242 sqlite3OsDelete(pVfs, zMaster, 0); 2243 break; 2244 }else if( retryCount==1 ){ 2245 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2246 } 2247 } 2248 retryCount++; 2249 sqlite3_randomness(sizeof(iRandom), &iRandom); 2250 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2251 (iRandom>>8)&0xffffff, iRandom&0xff); 2252 /* The antipenultimate character of the master journal name must 2253 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2254 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2255 sqlite3FileSuffix3(zMainFile, zMaster); 2256 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2257 }while( rc==SQLITE_OK && res ); 2258 if( rc==SQLITE_OK ){ 2259 /* Open the master journal. */ 2260 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2261 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2262 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2263 ); 2264 } 2265 if( rc!=SQLITE_OK ){ 2266 sqlite3DbFree(db, zMaster); 2267 return rc; 2268 } 2269 2270 /* Write the name of each database file in the transaction into the new 2271 ** master journal file. If an error occurs at this point close 2272 ** and delete the master journal file. All the individual journal files 2273 ** still have 'null' as the master journal pointer, so they will roll 2274 ** back independently if a failure occurs. 2275 */ 2276 for(i=0; i<db->nDb; i++){ 2277 Btree *pBt = db->aDb[i].pBt; 2278 if( sqlite3BtreeIsInTrans(pBt) ){ 2279 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2280 if( zFile==0 ){ 2281 continue; /* Ignore TEMP and :memory: databases */ 2282 } 2283 assert( zFile[0]!=0 ); 2284 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){ 2285 needSync = 1; 2286 } 2287 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2288 offset += sqlite3Strlen30(zFile)+1; 2289 if( rc!=SQLITE_OK ){ 2290 sqlite3OsCloseFree(pMaster); 2291 sqlite3OsDelete(pVfs, zMaster, 0); 2292 sqlite3DbFree(db, zMaster); 2293 return rc; 2294 } 2295 } 2296 } 2297 2298 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2299 ** flag is set this is not required. 2300 */ 2301 if( needSync 2302 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2303 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2304 ){ 2305 sqlite3OsCloseFree(pMaster); 2306 sqlite3OsDelete(pVfs, zMaster, 0); 2307 sqlite3DbFree(db, zMaster); 2308 return rc; 2309 } 2310 2311 /* Sync all the db files involved in the transaction. The same call 2312 ** sets the master journal pointer in each individual journal. If 2313 ** an error occurs here, do not delete the master journal file. 2314 ** 2315 ** If the error occurs during the first call to 2316 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2317 ** master journal file will be orphaned. But we cannot delete it, 2318 ** in case the master journal file name was written into the journal 2319 ** file before the failure occurred. 2320 */ 2321 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2322 Btree *pBt = db->aDb[i].pBt; 2323 if( pBt ){ 2324 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2325 } 2326 } 2327 sqlite3OsCloseFree(pMaster); 2328 assert( rc!=SQLITE_BUSY ); 2329 if( rc!=SQLITE_OK ){ 2330 sqlite3DbFree(db, zMaster); 2331 return rc; 2332 } 2333 2334 /* Delete the master journal file. This commits the transaction. After 2335 ** doing this the directory is synced again before any individual 2336 ** transaction files are deleted. 2337 */ 2338 rc = sqlite3OsDelete(pVfs, zMaster, needSync); 2339 sqlite3DbFree(db, zMaster); 2340 zMaster = 0; 2341 if( rc ){ 2342 return rc; 2343 } 2344 2345 /* All files and directories have already been synced, so the following 2346 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2347 ** deleting or truncating journals. If something goes wrong while 2348 ** this is happening we don't really care. The integrity of the 2349 ** transaction is already guaranteed, but some stray 'cold' journals 2350 ** may be lying around. Returning an error code won't help matters. 2351 */ 2352 disable_simulated_io_errors(); 2353 sqlite3BeginBenignMalloc(); 2354 for(i=0; i<db->nDb; i++){ 2355 Btree *pBt = db->aDb[i].pBt; 2356 if( pBt ){ 2357 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2358 } 2359 } 2360 sqlite3EndBenignMalloc(); 2361 enable_simulated_io_errors(); 2362 2363 sqlite3VtabCommit(db); 2364 } 2365 #endif 2366 2367 return rc; 2368 } 2369 2370 /* 2371 ** This routine checks that the sqlite3.nVdbeActive count variable 2372 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2373 ** currently active. An assertion fails if the two counts do not match. 2374 ** This is an internal self-check only - it is not an essential processing 2375 ** step. 2376 ** 2377 ** This is a no-op if NDEBUG is defined. 2378 */ 2379 #ifndef NDEBUG 2380 static void checkActiveVdbeCnt(sqlite3 *db){ 2381 Vdbe *p; 2382 int cnt = 0; 2383 int nWrite = 0; 2384 int nRead = 0; 2385 p = db->pVdbe; 2386 while( p ){ 2387 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2388 cnt++; 2389 if( p->readOnly==0 ) nWrite++; 2390 if( p->bIsReader ) nRead++; 2391 } 2392 p = p->pNext; 2393 } 2394 assert( cnt==db->nVdbeActive ); 2395 assert( nWrite==db->nVdbeWrite ); 2396 assert( nRead==db->nVdbeRead ); 2397 } 2398 #else 2399 #define checkActiveVdbeCnt(x) 2400 #endif 2401 2402 /* 2403 ** If the Vdbe passed as the first argument opened a statement-transaction, 2404 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2405 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2406 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2407 ** statement transaction is committed. 2408 ** 2409 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2410 ** Otherwise SQLITE_OK. 2411 */ 2412 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2413 sqlite3 *const db = p->db; 2414 int rc = SQLITE_OK; 2415 2416 /* If p->iStatement is greater than zero, then this Vdbe opened a 2417 ** statement transaction that should be closed here. The only exception 2418 ** is that an IO error may have occurred, causing an emergency rollback. 2419 ** In this case (db->nStatement==0), and there is nothing to do. 2420 */ 2421 if( db->nStatement && p->iStatement ){ 2422 int i; 2423 const int iSavepoint = p->iStatement-1; 2424 2425 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2426 assert( db->nStatement>0 ); 2427 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2428 2429 for(i=0; i<db->nDb; i++){ 2430 int rc2 = SQLITE_OK; 2431 Btree *pBt = db->aDb[i].pBt; 2432 if( pBt ){ 2433 if( eOp==SAVEPOINT_ROLLBACK ){ 2434 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2435 } 2436 if( rc2==SQLITE_OK ){ 2437 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2438 } 2439 if( rc==SQLITE_OK ){ 2440 rc = rc2; 2441 } 2442 } 2443 } 2444 db->nStatement--; 2445 p->iStatement = 0; 2446 2447 if( rc==SQLITE_OK ){ 2448 if( eOp==SAVEPOINT_ROLLBACK ){ 2449 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2450 } 2451 if( rc==SQLITE_OK ){ 2452 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2453 } 2454 } 2455 2456 /* If the statement transaction is being rolled back, also restore the 2457 ** database handles deferred constraint counter to the value it had when 2458 ** the statement transaction was opened. */ 2459 if( eOp==SAVEPOINT_ROLLBACK ){ 2460 db->nDeferredCons = p->nStmtDefCons; 2461 db->nDeferredImmCons = p->nStmtDefImmCons; 2462 } 2463 } 2464 return rc; 2465 } 2466 2467 /* 2468 ** This function is called when a transaction opened by the database 2469 ** handle associated with the VM passed as an argument is about to be 2470 ** committed. If there are outstanding deferred foreign key constraint 2471 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2472 ** 2473 ** If there are outstanding FK violations and this function returns 2474 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2475 ** and write an error message to it. Then return SQLITE_ERROR. 2476 */ 2477 #ifndef SQLITE_OMIT_FOREIGN_KEY 2478 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2479 sqlite3 *db = p->db; 2480 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2481 || (!deferred && p->nFkConstraint>0) 2482 ){ 2483 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2484 p->errorAction = OE_Abort; 2485 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2486 return SQLITE_ERROR; 2487 } 2488 return SQLITE_OK; 2489 } 2490 #endif 2491 2492 /* 2493 ** This routine is called the when a VDBE tries to halt. If the VDBE 2494 ** has made changes and is in autocommit mode, then commit those 2495 ** changes. If a rollback is needed, then do the rollback. 2496 ** 2497 ** This routine is the only way to move the state of a VM from 2498 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2499 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2500 ** 2501 ** Return an error code. If the commit could not complete because of 2502 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2503 ** means the close did not happen and needs to be repeated. 2504 */ 2505 int sqlite3VdbeHalt(Vdbe *p){ 2506 int rc; /* Used to store transient return codes */ 2507 sqlite3 *db = p->db; 2508 2509 /* This function contains the logic that determines if a statement or 2510 ** transaction will be committed or rolled back as a result of the 2511 ** execution of this virtual machine. 2512 ** 2513 ** If any of the following errors occur: 2514 ** 2515 ** SQLITE_NOMEM 2516 ** SQLITE_IOERR 2517 ** SQLITE_FULL 2518 ** SQLITE_INTERRUPT 2519 ** 2520 ** Then the internal cache might have been left in an inconsistent 2521 ** state. We need to rollback the statement transaction, if there is 2522 ** one, or the complete transaction if there is no statement transaction. 2523 */ 2524 2525 if( p->db->mallocFailed ){ 2526 p->rc = SQLITE_NOMEM; 2527 } 2528 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag); 2529 closeAllCursors(p); 2530 if( p->magic!=VDBE_MAGIC_RUN ){ 2531 return SQLITE_OK; 2532 } 2533 checkActiveVdbeCnt(db); 2534 2535 /* No commit or rollback needed if the program never started or if the 2536 ** SQL statement does not read or write a database file. */ 2537 if( p->pc>=0 && p->bIsReader ){ 2538 int mrc; /* Primary error code from p->rc */ 2539 int eStatementOp = 0; 2540 int isSpecialError; /* Set to true if a 'special' error */ 2541 2542 /* Lock all btrees used by the statement */ 2543 sqlite3VdbeEnter(p); 2544 2545 /* Check for one of the special errors */ 2546 mrc = p->rc & 0xff; 2547 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2548 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2549 if( isSpecialError ){ 2550 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2551 ** no rollback is necessary. Otherwise, at least a savepoint 2552 ** transaction must be rolled back to restore the database to a 2553 ** consistent state. 2554 ** 2555 ** Even if the statement is read-only, it is important to perform 2556 ** a statement or transaction rollback operation. If the error 2557 ** occurred while writing to the journal, sub-journal or database 2558 ** file as part of an effort to free up cache space (see function 2559 ** pagerStress() in pager.c), the rollback is required to restore 2560 ** the pager to a consistent state. 2561 */ 2562 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2563 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2564 eStatementOp = SAVEPOINT_ROLLBACK; 2565 }else{ 2566 /* We are forced to roll back the active transaction. Before doing 2567 ** so, abort any other statements this handle currently has active. 2568 */ 2569 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2570 sqlite3CloseSavepoints(db); 2571 db->autoCommit = 1; 2572 p->nChange = 0; 2573 } 2574 } 2575 } 2576 2577 /* Check for immediate foreign key violations. */ 2578 if( p->rc==SQLITE_OK ){ 2579 sqlite3VdbeCheckFk(p, 0); 2580 } 2581 2582 /* If the auto-commit flag is set and this is the only active writer 2583 ** VM, then we do either a commit or rollback of the current transaction. 2584 ** 2585 ** Note: This block also runs if one of the special errors handled 2586 ** above has occurred. 2587 */ 2588 if( !sqlite3VtabInSync(db) 2589 && db->autoCommit 2590 && db->nVdbeWrite==(p->readOnly==0) 2591 ){ 2592 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2593 rc = sqlite3VdbeCheckFk(p, 1); 2594 if( rc!=SQLITE_OK ){ 2595 if( NEVER(p->readOnly) ){ 2596 sqlite3VdbeLeave(p); 2597 return SQLITE_ERROR; 2598 } 2599 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2600 }else{ 2601 /* The auto-commit flag is true, the vdbe program was successful 2602 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2603 ** key constraints to hold up the transaction. This means a commit 2604 ** is required. */ 2605 rc = vdbeCommit(db, p); 2606 } 2607 if( rc==SQLITE_BUSY && p->readOnly ){ 2608 sqlite3VdbeLeave(p); 2609 return SQLITE_BUSY; 2610 }else if( rc!=SQLITE_OK ){ 2611 p->rc = rc; 2612 sqlite3RollbackAll(db, SQLITE_OK); 2613 p->nChange = 0; 2614 }else{ 2615 db->nDeferredCons = 0; 2616 db->nDeferredImmCons = 0; 2617 db->flags &= ~SQLITE_DeferFKs; 2618 sqlite3CommitInternalChanges(db); 2619 } 2620 }else{ 2621 sqlite3RollbackAll(db, SQLITE_OK); 2622 p->nChange = 0; 2623 } 2624 db->nStatement = 0; 2625 }else if( eStatementOp==0 ){ 2626 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2627 eStatementOp = SAVEPOINT_RELEASE; 2628 }else if( p->errorAction==OE_Abort ){ 2629 eStatementOp = SAVEPOINT_ROLLBACK; 2630 }else{ 2631 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2632 sqlite3CloseSavepoints(db); 2633 db->autoCommit = 1; 2634 p->nChange = 0; 2635 } 2636 } 2637 2638 /* If eStatementOp is non-zero, then a statement transaction needs to 2639 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2640 ** do so. If this operation returns an error, and the current statement 2641 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2642 ** current statement error code. 2643 */ 2644 if( eStatementOp ){ 2645 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2646 if( rc ){ 2647 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 2648 p->rc = rc; 2649 sqlite3DbFree(db, p->zErrMsg); 2650 p->zErrMsg = 0; 2651 } 2652 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2653 sqlite3CloseSavepoints(db); 2654 db->autoCommit = 1; 2655 p->nChange = 0; 2656 } 2657 } 2658 2659 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2660 ** has been rolled back, update the database connection change-counter. 2661 */ 2662 if( p->changeCntOn ){ 2663 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2664 sqlite3VdbeSetChanges(db, p->nChange); 2665 }else{ 2666 sqlite3VdbeSetChanges(db, 0); 2667 } 2668 p->nChange = 0; 2669 } 2670 2671 /* Release the locks */ 2672 sqlite3VdbeLeave(p); 2673 } 2674 2675 /* We have successfully halted and closed the VM. Record this fact. */ 2676 if( p->pc>=0 ){ 2677 db->nVdbeActive--; 2678 if( !p->readOnly ) db->nVdbeWrite--; 2679 if( p->bIsReader ) db->nVdbeRead--; 2680 assert( db->nVdbeActive>=db->nVdbeRead ); 2681 assert( db->nVdbeRead>=db->nVdbeWrite ); 2682 assert( db->nVdbeWrite>=0 ); 2683 } 2684 p->magic = VDBE_MAGIC_HALT; 2685 checkActiveVdbeCnt(db); 2686 if( p->db->mallocFailed ){ 2687 p->rc = SQLITE_NOMEM; 2688 } 2689 2690 /* If the auto-commit flag is set to true, then any locks that were held 2691 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2692 ** to invoke any required unlock-notify callbacks. 2693 */ 2694 if( db->autoCommit ){ 2695 sqlite3ConnectionUnlocked(db); 2696 } 2697 2698 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 2699 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 2700 } 2701 2702 2703 /* 2704 ** Each VDBE holds the result of the most recent sqlite3_step() call 2705 ** in p->rc. This routine sets that result back to SQLITE_OK. 2706 */ 2707 void sqlite3VdbeResetStepResult(Vdbe *p){ 2708 p->rc = SQLITE_OK; 2709 } 2710 2711 /* 2712 ** Copy the error code and error message belonging to the VDBE passed 2713 ** as the first argument to its database handle (so that they will be 2714 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 2715 ** 2716 ** This function does not clear the VDBE error code or message, just 2717 ** copies them to the database handle. 2718 */ 2719 int sqlite3VdbeTransferError(Vdbe *p){ 2720 sqlite3 *db = p->db; 2721 int rc = p->rc; 2722 if( p->zErrMsg ){ 2723 u8 mallocFailed = db->mallocFailed; 2724 sqlite3BeginBenignMalloc(); 2725 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 2726 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 2727 sqlite3EndBenignMalloc(); 2728 db->mallocFailed = mallocFailed; 2729 db->errCode = rc; 2730 }else{ 2731 sqlite3Error(db, rc); 2732 } 2733 return rc; 2734 } 2735 2736 #ifdef SQLITE_ENABLE_SQLLOG 2737 /* 2738 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 2739 ** invoke it. 2740 */ 2741 static void vdbeInvokeSqllog(Vdbe *v){ 2742 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 2743 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 2744 assert( v->db->init.busy==0 ); 2745 if( zExpanded ){ 2746 sqlite3GlobalConfig.xSqllog( 2747 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 2748 ); 2749 sqlite3DbFree(v->db, zExpanded); 2750 } 2751 } 2752 } 2753 #else 2754 # define vdbeInvokeSqllog(x) 2755 #endif 2756 2757 /* 2758 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 2759 ** Write any error messages into *pzErrMsg. Return the result code. 2760 ** 2761 ** After this routine is run, the VDBE should be ready to be executed 2762 ** again. 2763 ** 2764 ** To look at it another way, this routine resets the state of the 2765 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 2766 ** VDBE_MAGIC_INIT. 2767 */ 2768 int sqlite3VdbeReset(Vdbe *p){ 2769 sqlite3 *db; 2770 db = p->db; 2771 2772 /* If the VM did not run to completion or if it encountered an 2773 ** error, then it might not have been halted properly. So halt 2774 ** it now. 2775 */ 2776 sqlite3VdbeHalt(p); 2777 2778 /* If the VDBE has be run even partially, then transfer the error code 2779 ** and error message from the VDBE into the main database structure. But 2780 ** if the VDBE has just been set to run but has not actually executed any 2781 ** instructions yet, leave the main database error information unchanged. 2782 */ 2783 if( p->pc>=0 ){ 2784 vdbeInvokeSqllog(p); 2785 sqlite3VdbeTransferError(p); 2786 sqlite3DbFree(db, p->zErrMsg); 2787 p->zErrMsg = 0; 2788 if( p->runOnlyOnce ) p->expired = 1; 2789 }else if( p->rc && p->expired ){ 2790 /* The expired flag was set on the VDBE before the first call 2791 ** to sqlite3_step(). For consistency (since sqlite3_step() was 2792 ** called), set the database error in this case as well. 2793 */ 2794 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 2795 sqlite3DbFree(db, p->zErrMsg); 2796 p->zErrMsg = 0; 2797 } 2798 2799 /* Reclaim all memory used by the VDBE 2800 */ 2801 Cleanup(p); 2802 2803 /* Save profiling information from this VDBE run. 2804 */ 2805 #ifdef VDBE_PROFILE 2806 { 2807 FILE *out = fopen("vdbe_profile.out", "a"); 2808 if( out ){ 2809 int i; 2810 fprintf(out, "---- "); 2811 for(i=0; i<p->nOp; i++){ 2812 fprintf(out, "%02x", p->aOp[i].opcode); 2813 } 2814 fprintf(out, "\n"); 2815 if( p->zSql ){ 2816 char c, pc = 0; 2817 fprintf(out, "-- "); 2818 for(i=0; (c = p->zSql[i])!=0; i++){ 2819 if( pc=='\n' ) fprintf(out, "-- "); 2820 putc(c, out); 2821 pc = c; 2822 } 2823 if( pc!='\n' ) fprintf(out, "\n"); 2824 } 2825 for(i=0; i<p->nOp; i++){ 2826 char zHdr[100]; 2827 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 2828 p->aOp[i].cnt, 2829 p->aOp[i].cycles, 2830 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 2831 ); 2832 fprintf(out, "%s", zHdr); 2833 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 2834 } 2835 fclose(out); 2836 } 2837 } 2838 #endif 2839 p->iCurrentTime = 0; 2840 p->magic = VDBE_MAGIC_INIT; 2841 return p->rc & db->errMask; 2842 } 2843 2844 /* 2845 ** Clean up and delete a VDBE after execution. Return an integer which is 2846 ** the result code. Write any error message text into *pzErrMsg. 2847 */ 2848 int sqlite3VdbeFinalize(Vdbe *p){ 2849 int rc = SQLITE_OK; 2850 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 2851 rc = sqlite3VdbeReset(p); 2852 assert( (rc & p->db->errMask)==rc ); 2853 } 2854 sqlite3VdbeDelete(p); 2855 return rc; 2856 } 2857 2858 /* 2859 ** If parameter iOp is less than zero, then invoke the destructor for 2860 ** all auxiliary data pointers currently cached by the VM passed as 2861 ** the first argument. 2862 ** 2863 ** Or, if iOp is greater than or equal to zero, then the destructor is 2864 ** only invoked for those auxiliary data pointers created by the user 2865 ** function invoked by the OP_Function opcode at instruction iOp of 2866 ** VM pVdbe, and only then if: 2867 ** 2868 ** * the associated function parameter is the 32nd or later (counting 2869 ** from left to right), or 2870 ** 2871 ** * the corresponding bit in argument mask is clear (where the first 2872 ** function parameter corresponds to bit 0 etc.). 2873 */ 2874 void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){ 2875 AuxData **pp = &pVdbe->pAuxData; 2876 while( *pp ){ 2877 AuxData *pAux = *pp; 2878 if( (iOp<0) 2879 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg)))) 2880 ){ 2881 testcase( pAux->iArg==31 ); 2882 if( pAux->xDelete ){ 2883 pAux->xDelete(pAux->pAux); 2884 } 2885 *pp = pAux->pNext; 2886 sqlite3DbFree(pVdbe->db, pAux); 2887 }else{ 2888 pp= &pAux->pNext; 2889 } 2890 } 2891 } 2892 2893 /* 2894 ** Free all memory associated with the Vdbe passed as the second argument, 2895 ** except for object itself, which is preserved. 2896 ** 2897 ** The difference between this function and sqlite3VdbeDelete() is that 2898 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 2899 ** the database connection and frees the object itself. 2900 */ 2901 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 2902 SubProgram *pSub, *pNext; 2903 int i; 2904 assert( p->db==0 || p->db==db ); 2905 releaseMemArray(p->aVar, p->nVar); 2906 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2907 for(pSub=p->pProgram; pSub; pSub=pNext){ 2908 pNext = pSub->pNext; 2909 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 2910 sqlite3DbFree(db, pSub); 2911 } 2912 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); 2913 sqlite3DbFree(db, p->azVar); 2914 vdbeFreeOpArray(db, p->aOp, p->nOp); 2915 sqlite3DbFree(db, p->aColName); 2916 sqlite3DbFree(db, p->zSql); 2917 sqlite3DbFree(db, p->pFree); 2918 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2919 for(i=0; i<p->nScan; i++){ 2920 sqlite3DbFree(db, p->aScan[i].zName); 2921 } 2922 sqlite3DbFree(db, p->aScan); 2923 #endif 2924 } 2925 2926 /* 2927 ** Delete an entire VDBE. 2928 */ 2929 void sqlite3VdbeDelete(Vdbe *p){ 2930 sqlite3 *db; 2931 2932 if( NEVER(p==0) ) return; 2933 db = p->db; 2934 assert( sqlite3_mutex_held(db->mutex) ); 2935 sqlite3VdbeClearObject(db, p); 2936 if( p->pPrev ){ 2937 p->pPrev->pNext = p->pNext; 2938 }else{ 2939 assert( db->pVdbe==p ); 2940 db->pVdbe = p->pNext; 2941 } 2942 if( p->pNext ){ 2943 p->pNext->pPrev = p->pPrev; 2944 } 2945 p->magic = VDBE_MAGIC_DEAD; 2946 p->db = 0; 2947 sqlite3DbFree(db, p); 2948 } 2949 2950 /* 2951 ** The cursor "p" has a pending seek operation that has not yet been 2952 ** carried out. Seek the cursor now. If an error occurs, return 2953 ** the appropriate error code. 2954 */ 2955 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ 2956 int res, rc; 2957 #ifdef SQLITE_TEST 2958 extern int sqlite3_search_count; 2959 #endif 2960 assert( p->deferredMoveto ); 2961 assert( p->isTable ); 2962 assert( p->eCurType==CURTYPE_BTREE ); 2963 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); 2964 if( rc ) return rc; 2965 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 2966 #ifdef SQLITE_TEST 2967 sqlite3_search_count++; 2968 #endif 2969 p->deferredMoveto = 0; 2970 p->cacheStatus = CACHE_STALE; 2971 return SQLITE_OK; 2972 } 2973 2974 /* 2975 ** Something has moved cursor "p" out of place. Maybe the row it was 2976 ** pointed to was deleted out from under it. Or maybe the btree was 2977 ** rebalanced. Whatever the cause, try to restore "p" to the place it 2978 ** is supposed to be pointing. If the row was deleted out from under the 2979 ** cursor, set the cursor to point to a NULL row. 2980 */ 2981 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 2982 int isDifferentRow, rc; 2983 assert( p->eCurType==CURTYPE_BTREE ); 2984 assert( p->uc.pCursor!=0 ); 2985 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 2986 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 2987 p->cacheStatus = CACHE_STALE; 2988 if( isDifferentRow ) p->nullRow = 1; 2989 return rc; 2990 } 2991 2992 /* 2993 ** Check to ensure that the cursor is valid. Restore the cursor 2994 ** if need be. Return any I/O error from the restore operation. 2995 */ 2996 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 2997 assert( p->eCurType==CURTYPE_BTREE ); 2998 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 2999 return handleMovedCursor(p); 3000 } 3001 return SQLITE_OK; 3002 } 3003 3004 /* 3005 ** Make sure the cursor p is ready to read or write the row to which it 3006 ** was last positioned. Return an error code if an OOM fault or I/O error 3007 ** prevents us from positioning the cursor to its correct position. 3008 ** 3009 ** If a MoveTo operation is pending on the given cursor, then do that 3010 ** MoveTo now. If no move is pending, check to see if the row has been 3011 ** deleted out from under the cursor and if it has, mark the row as 3012 ** a NULL row. 3013 ** 3014 ** If the cursor is already pointing to the correct row and that row has 3015 ** not been deleted out from under the cursor, then this routine is a no-op. 3016 */ 3017 int sqlite3VdbeCursorMoveto(VdbeCursor *p){ 3018 if( p->eCurType==CURTYPE_BTREE ){ 3019 if( p->deferredMoveto ){ 3020 return handleDeferredMoveto(p); 3021 } 3022 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3023 return handleMovedCursor(p); 3024 } 3025 } 3026 return SQLITE_OK; 3027 } 3028 3029 /* 3030 ** The following functions: 3031 ** 3032 ** sqlite3VdbeSerialType() 3033 ** sqlite3VdbeSerialTypeLen() 3034 ** sqlite3VdbeSerialLen() 3035 ** sqlite3VdbeSerialPut() 3036 ** sqlite3VdbeSerialGet() 3037 ** 3038 ** encapsulate the code that serializes values for storage in SQLite 3039 ** data and index records. Each serialized value consists of a 3040 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3041 ** integer, stored as a varint. 3042 ** 3043 ** In an SQLite index record, the serial type is stored directly before 3044 ** the blob of data that it corresponds to. In a table record, all serial 3045 ** types are stored at the start of the record, and the blobs of data at 3046 ** the end. Hence these functions allow the caller to handle the 3047 ** serial-type and data blob separately. 3048 ** 3049 ** The following table describes the various storage classes for data: 3050 ** 3051 ** serial type bytes of data type 3052 ** -------------- --------------- --------------- 3053 ** 0 0 NULL 3054 ** 1 1 signed integer 3055 ** 2 2 signed integer 3056 ** 3 3 signed integer 3057 ** 4 4 signed integer 3058 ** 5 6 signed integer 3059 ** 6 8 signed integer 3060 ** 7 8 IEEE float 3061 ** 8 0 Integer constant 0 3062 ** 9 0 Integer constant 1 3063 ** 10,11 reserved for expansion 3064 ** N>=12 and even (N-12)/2 BLOB 3065 ** N>=13 and odd (N-13)/2 text 3066 ** 3067 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3068 ** of SQLite will not understand those serial types. 3069 */ 3070 3071 /* 3072 ** Return the serial-type for the value stored in pMem. 3073 */ 3074 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3075 int flags = pMem->flags; 3076 u32 n; 3077 3078 assert( pLen!=0 ); 3079 if( flags&MEM_Null ){ 3080 *pLen = 0; 3081 return 0; 3082 } 3083 if( flags&MEM_Int ){ 3084 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3085 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3086 i64 i = pMem->u.i; 3087 u64 u; 3088 if( i<0 ){ 3089 u = ~i; 3090 }else{ 3091 u = i; 3092 } 3093 if( u<=127 ){ 3094 if( (i&1)==i && file_format>=4 ){ 3095 *pLen = 0; 3096 return 8+(u32)u; 3097 }else{ 3098 *pLen = 1; 3099 return 1; 3100 } 3101 } 3102 if( u<=32767 ){ *pLen = 2; return 2; } 3103 if( u<=8388607 ){ *pLen = 3; return 3; } 3104 if( u<=2147483647 ){ *pLen = 4; return 4; } 3105 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3106 *pLen = 8; 3107 return 6; 3108 } 3109 if( flags&MEM_Real ){ 3110 *pLen = 8; 3111 return 7; 3112 } 3113 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3114 assert( pMem->n>=0 ); 3115 n = (u32)pMem->n; 3116 if( flags & MEM_Zero ){ 3117 n += pMem->u.nZero; 3118 } 3119 *pLen = n; 3120 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3121 } 3122 3123 /* 3124 ** The sizes for serial types less than 128 3125 */ 3126 static const u8 sqlite3SmallTypeSizes[] = { 3127 /* 0 1 2 3 4 5 6 7 8 9 */ 3128 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3129 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3130 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3131 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3132 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3133 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3134 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3135 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3136 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3137 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3138 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3139 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3140 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3141 }; 3142 3143 /* 3144 ** Return the length of the data corresponding to the supplied serial-type. 3145 */ 3146 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3147 if( serial_type>=128 ){ 3148 return (serial_type-12)/2; 3149 }else{ 3150 assert( serial_type<12 3151 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3152 return sqlite3SmallTypeSizes[serial_type]; 3153 } 3154 } 3155 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3156 assert( serial_type<128 ); 3157 return sqlite3SmallTypeSizes[serial_type]; 3158 } 3159 3160 /* 3161 ** If we are on an architecture with mixed-endian floating 3162 ** points (ex: ARM7) then swap the lower 4 bytes with the 3163 ** upper 4 bytes. Return the result. 3164 ** 3165 ** For most architectures, this is a no-op. 3166 ** 3167 ** (later): It is reported to me that the mixed-endian problem 3168 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3169 ** that early versions of GCC stored the two words of a 64-bit 3170 ** float in the wrong order. And that error has been propagated 3171 ** ever since. The blame is not necessarily with GCC, though. 3172 ** GCC might have just copying the problem from a prior compiler. 3173 ** I am also told that newer versions of GCC that follow a different 3174 ** ABI get the byte order right. 3175 ** 3176 ** Developers using SQLite on an ARM7 should compile and run their 3177 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3178 ** enabled, some asserts below will ensure that the byte order of 3179 ** floating point values is correct. 3180 ** 3181 ** (2007-08-30) Frank van Vugt has studied this problem closely 3182 ** and has send his findings to the SQLite developers. Frank 3183 ** writes that some Linux kernels offer floating point hardware 3184 ** emulation that uses only 32-bit mantissas instead of a full 3185 ** 48-bits as required by the IEEE standard. (This is the 3186 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3187 ** byte swapping becomes very complicated. To avoid problems, 3188 ** the necessary byte swapping is carried out using a 64-bit integer 3189 ** rather than a 64-bit float. Frank assures us that the code here 3190 ** works for him. We, the developers, have no way to independently 3191 ** verify this, but Frank seems to know what he is talking about 3192 ** so we trust him. 3193 */ 3194 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3195 static u64 floatSwap(u64 in){ 3196 union { 3197 u64 r; 3198 u32 i[2]; 3199 } u; 3200 u32 t; 3201 3202 u.r = in; 3203 t = u.i[0]; 3204 u.i[0] = u.i[1]; 3205 u.i[1] = t; 3206 return u.r; 3207 } 3208 # define swapMixedEndianFloat(X) X = floatSwap(X) 3209 #else 3210 # define swapMixedEndianFloat(X) 3211 #endif 3212 3213 /* 3214 ** Write the serialized data blob for the value stored in pMem into 3215 ** buf. It is assumed that the caller has allocated sufficient space. 3216 ** Return the number of bytes written. 3217 ** 3218 ** nBuf is the amount of space left in buf[]. The caller is responsible 3219 ** for allocating enough space to buf[] to hold the entire field, exclusive 3220 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3221 ** 3222 ** Return the number of bytes actually written into buf[]. The number 3223 ** of bytes in the zero-filled tail is included in the return value only 3224 ** if those bytes were zeroed in buf[]. 3225 */ 3226 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3227 u32 len; 3228 3229 /* Integer and Real */ 3230 if( serial_type<=7 && serial_type>0 ){ 3231 u64 v; 3232 u32 i; 3233 if( serial_type==7 ){ 3234 assert( sizeof(v)==sizeof(pMem->u.r) ); 3235 memcpy(&v, &pMem->u.r, sizeof(v)); 3236 swapMixedEndianFloat(v); 3237 }else{ 3238 v = pMem->u.i; 3239 } 3240 len = i = sqlite3SmallTypeSizes[serial_type]; 3241 assert( i>0 ); 3242 do{ 3243 buf[--i] = (u8)(v&0xFF); 3244 v >>= 8; 3245 }while( i ); 3246 return len; 3247 } 3248 3249 /* String or blob */ 3250 if( serial_type>=12 ){ 3251 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3252 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3253 len = pMem->n; 3254 if( len>0 ) memcpy(buf, pMem->z, len); 3255 return len; 3256 } 3257 3258 /* NULL or constants 0 or 1 */ 3259 return 0; 3260 } 3261 3262 /* Input "x" is a sequence of unsigned characters that represent a 3263 ** big-endian integer. Return the equivalent native integer 3264 */ 3265 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3266 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3267 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3268 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3269 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3270 3271 /* 3272 ** Deserialize the data blob pointed to by buf as serial type serial_type 3273 ** and store the result in pMem. Return the number of bytes read. 3274 ** 3275 ** This function is implemented as two separate routines for performance. 3276 ** The few cases that require local variables are broken out into a separate 3277 ** routine so that in most cases the overhead of moving the stack pointer 3278 ** is avoided. 3279 */ 3280 static u32 SQLITE_NOINLINE serialGet( 3281 const unsigned char *buf, /* Buffer to deserialize from */ 3282 u32 serial_type, /* Serial type to deserialize */ 3283 Mem *pMem /* Memory cell to write value into */ 3284 ){ 3285 u64 x = FOUR_BYTE_UINT(buf); 3286 u32 y = FOUR_BYTE_UINT(buf+4); 3287 x = (x<<32) + y; 3288 if( serial_type==6 ){ 3289 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3290 ** twos-complement integer. */ 3291 pMem->u.i = *(i64*)&x; 3292 pMem->flags = MEM_Int; 3293 testcase( pMem->u.i<0 ); 3294 }else{ 3295 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3296 ** floating point number. */ 3297 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3298 /* Verify that integers and floating point values use the same 3299 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3300 ** defined that 64-bit floating point values really are mixed 3301 ** endian. 3302 */ 3303 static const u64 t1 = ((u64)0x3ff00000)<<32; 3304 static const double r1 = 1.0; 3305 u64 t2 = t1; 3306 swapMixedEndianFloat(t2); 3307 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3308 #endif 3309 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3310 swapMixedEndianFloat(x); 3311 memcpy(&pMem->u.r, &x, sizeof(x)); 3312 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; 3313 } 3314 return 8; 3315 } 3316 u32 sqlite3VdbeSerialGet( 3317 const unsigned char *buf, /* Buffer to deserialize from */ 3318 u32 serial_type, /* Serial type to deserialize */ 3319 Mem *pMem /* Memory cell to write value into */ 3320 ){ 3321 switch( serial_type ){ 3322 case 10: /* Reserved for future use */ 3323 case 11: /* Reserved for future use */ 3324 case 0: { /* Null */ 3325 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3326 pMem->flags = MEM_Null; 3327 break; 3328 } 3329 case 1: { 3330 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3331 ** integer. */ 3332 pMem->u.i = ONE_BYTE_INT(buf); 3333 pMem->flags = MEM_Int; 3334 testcase( pMem->u.i<0 ); 3335 return 1; 3336 } 3337 case 2: { /* 2-byte signed integer */ 3338 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3339 ** twos-complement integer. */ 3340 pMem->u.i = TWO_BYTE_INT(buf); 3341 pMem->flags = MEM_Int; 3342 testcase( pMem->u.i<0 ); 3343 return 2; 3344 } 3345 case 3: { /* 3-byte signed integer */ 3346 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3347 ** twos-complement integer. */ 3348 pMem->u.i = THREE_BYTE_INT(buf); 3349 pMem->flags = MEM_Int; 3350 testcase( pMem->u.i<0 ); 3351 return 3; 3352 } 3353 case 4: { /* 4-byte signed integer */ 3354 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3355 ** twos-complement integer. */ 3356 pMem->u.i = FOUR_BYTE_INT(buf); 3357 #ifdef __HP_cc 3358 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3359 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3360 #endif 3361 pMem->flags = MEM_Int; 3362 testcase( pMem->u.i<0 ); 3363 return 4; 3364 } 3365 case 5: { /* 6-byte signed integer */ 3366 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3367 ** twos-complement integer. */ 3368 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3369 pMem->flags = MEM_Int; 3370 testcase( pMem->u.i<0 ); 3371 return 6; 3372 } 3373 case 6: /* 8-byte signed integer */ 3374 case 7: { /* IEEE floating point */ 3375 /* These use local variables, so do them in a separate routine 3376 ** to avoid having to move the frame pointer in the common case */ 3377 return serialGet(buf,serial_type,pMem); 3378 } 3379 case 8: /* Integer 0 */ 3380 case 9: { /* Integer 1 */ 3381 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3382 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3383 pMem->u.i = serial_type-8; 3384 pMem->flags = MEM_Int; 3385 return 0; 3386 } 3387 default: { 3388 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3389 ** length. 3390 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3391 ** (N-13)/2 bytes in length. */ 3392 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3393 pMem->z = (char *)buf; 3394 pMem->n = (serial_type-12)/2; 3395 pMem->flags = aFlag[serial_type&1]; 3396 return pMem->n; 3397 } 3398 } 3399 return 0; 3400 } 3401 /* 3402 ** This routine is used to allocate sufficient space for an UnpackedRecord 3403 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3404 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3405 ** 3406 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3407 ** the unaligned buffer passed via the second and third arguments (presumably 3408 ** stack space). If the former, then *ppFree is set to a pointer that should 3409 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3410 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3411 ** before returning. 3412 ** 3413 ** If an OOM error occurs, NULL is returned. 3414 */ 3415 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3416 KeyInfo *pKeyInfo, /* Description of the record */ 3417 char *pSpace, /* Unaligned space available */ 3418 int szSpace, /* Size of pSpace[] in bytes */ 3419 char **ppFree /* OUT: Caller should free this pointer */ 3420 ){ 3421 UnpackedRecord *p; /* Unpacked record to return */ 3422 int nOff; /* Increment pSpace by nOff to align it */ 3423 int nByte; /* Number of bytes required for *p */ 3424 3425 /* We want to shift the pointer pSpace up such that it is 8-byte aligned. 3426 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift 3427 ** it by. If pSpace is already 8-byte aligned, nOff should be zero. 3428 */ 3429 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7; 3430 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); 3431 if( nByte>szSpace+nOff ){ 3432 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3433 *ppFree = (char *)p; 3434 if( !p ) return 0; 3435 }else{ 3436 p = (UnpackedRecord*)&pSpace[nOff]; 3437 *ppFree = 0; 3438 } 3439 3440 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3441 assert( pKeyInfo->aSortOrder!=0 ); 3442 p->pKeyInfo = pKeyInfo; 3443 p->nField = pKeyInfo->nField + 1; 3444 return p; 3445 } 3446 3447 /* 3448 ** Given the nKey-byte encoding of a record in pKey[], populate the 3449 ** UnpackedRecord structure indicated by the fourth argument with the 3450 ** contents of the decoded record. 3451 */ 3452 void sqlite3VdbeRecordUnpack( 3453 KeyInfo *pKeyInfo, /* Information about the record format */ 3454 int nKey, /* Size of the binary record */ 3455 const void *pKey, /* The binary record */ 3456 UnpackedRecord *p /* Populate this structure before returning. */ 3457 ){ 3458 const unsigned char *aKey = (const unsigned char *)pKey; 3459 int d; 3460 u32 idx; /* Offset in aKey[] to read from */ 3461 u16 u; /* Unsigned loop counter */ 3462 u32 szHdr; 3463 Mem *pMem = p->aMem; 3464 3465 p->default_rc = 0; 3466 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3467 idx = getVarint32(aKey, szHdr); 3468 d = szHdr; 3469 u = 0; 3470 while( idx<szHdr && d<=nKey ){ 3471 u32 serial_type; 3472 3473 idx += getVarint32(&aKey[idx], serial_type); 3474 pMem->enc = pKeyInfo->enc; 3475 pMem->db = pKeyInfo->db; 3476 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 3477 pMem->szMalloc = 0; 3478 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3479 pMem++; 3480 if( (++u)>=p->nField ) break; 3481 } 3482 assert( u<=pKeyInfo->nField + 1 ); 3483 p->nField = u; 3484 } 3485 3486 #if SQLITE_DEBUG 3487 /* 3488 ** This function compares two index or table record keys in the same way 3489 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 3490 ** this function deserializes and compares values using the 3491 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 3492 ** in assert() statements to ensure that the optimized code in 3493 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 3494 ** 3495 ** Return true if the result of comparison is equivalent to desiredResult. 3496 ** Return false if there is a disagreement. 3497 */ 3498 static int vdbeRecordCompareDebug( 3499 int nKey1, const void *pKey1, /* Left key */ 3500 const UnpackedRecord *pPKey2, /* Right key */ 3501 int desiredResult /* Correct answer */ 3502 ){ 3503 u32 d1; /* Offset into aKey[] of next data element */ 3504 u32 idx1; /* Offset into aKey[] of next header element */ 3505 u32 szHdr1; /* Number of bytes in header */ 3506 int i = 0; 3507 int rc = 0; 3508 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3509 KeyInfo *pKeyInfo; 3510 Mem mem1; 3511 3512 pKeyInfo = pPKey2->pKeyInfo; 3513 if( pKeyInfo->db==0 ) return 1; 3514 mem1.enc = pKeyInfo->enc; 3515 mem1.db = pKeyInfo->db; 3516 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 3517 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3518 3519 /* Compilers may complain that mem1.u.i is potentially uninitialized. 3520 ** We could initialize it, as shown here, to silence those complaints. 3521 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 3522 ** the unnecessary initialization has a measurable negative performance 3523 ** impact, since this routine is a very high runner. And so, we choose 3524 ** to ignore the compiler warnings and leave this variable uninitialized. 3525 */ 3526 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 3527 3528 idx1 = getVarint32(aKey1, szHdr1); 3529 if( szHdr1>98307 ) return SQLITE_CORRUPT; 3530 d1 = szHdr1; 3531 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB ); 3532 assert( pKeyInfo->aSortOrder!=0 ); 3533 assert( pKeyInfo->nField>0 ); 3534 assert( idx1<=szHdr1 || CORRUPT_DB ); 3535 do{ 3536 u32 serial_type1; 3537 3538 /* Read the serial types for the next element in each key. */ 3539 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 3540 3541 /* Verify that there is enough key space remaining to avoid 3542 ** a buffer overread. The "d1+serial_type1+2" subexpression will 3543 ** always be greater than or equal to the amount of required key space. 3544 ** Use that approximation to avoid the more expensive call to 3545 ** sqlite3VdbeSerialTypeLen() in the common case. 3546 */ 3547 if( d1+serial_type1+2>(u32)nKey1 3548 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 3549 ){ 3550 break; 3551 } 3552 3553 /* Extract the values to be compared. 3554 */ 3555 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 3556 3557 /* Do the comparison 3558 */ 3559 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); 3560 if( rc!=0 ){ 3561 assert( mem1.szMalloc==0 ); /* See comment below */ 3562 if( pKeyInfo->aSortOrder[i] ){ 3563 rc = -rc; /* Invert the result for DESC sort order. */ 3564 } 3565 goto debugCompareEnd; 3566 } 3567 i++; 3568 }while( idx1<szHdr1 && i<pPKey2->nField ); 3569 3570 /* No memory allocation is ever used on mem1. Prove this using 3571 ** the following assert(). If the assert() fails, it indicates a 3572 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 3573 */ 3574 assert( mem1.szMalloc==0 ); 3575 3576 /* rc==0 here means that one of the keys ran out of fields and 3577 ** all the fields up to that point were equal. Return the default_rc 3578 ** value. */ 3579 rc = pPKey2->default_rc; 3580 3581 debugCompareEnd: 3582 if( desiredResult==0 && rc==0 ) return 1; 3583 if( desiredResult<0 && rc<0 ) return 1; 3584 if( desiredResult>0 && rc>0 ) return 1; 3585 if( CORRUPT_DB ) return 1; 3586 if( pKeyInfo->db->mallocFailed ) return 1; 3587 return 0; 3588 } 3589 #endif 3590 3591 #if SQLITE_DEBUG 3592 /* 3593 ** Count the number of fields (a.k.a. columns) in the record given by 3594 ** pKey,nKey. The verify that this count is less than or equal to the 3595 ** limit given by pKeyInfo->nField + pKeyInfo->nXField. 3596 ** 3597 ** If this constraint is not satisfied, it means that the high-speed 3598 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 3599 ** not work correctly. If this assert() ever fires, it probably means 3600 ** that the KeyInfo.nField or KeyInfo.nXField values were computed 3601 ** incorrectly. 3602 */ 3603 static void vdbeAssertFieldCountWithinLimits( 3604 int nKey, const void *pKey, /* The record to verify */ 3605 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 3606 ){ 3607 int nField = 0; 3608 u32 szHdr; 3609 u32 idx; 3610 u32 notUsed; 3611 const unsigned char *aKey = (const unsigned char*)pKey; 3612 3613 if( CORRUPT_DB ) return; 3614 idx = getVarint32(aKey, szHdr); 3615 assert( nKey>=0 ); 3616 assert( szHdr<=(u32)nKey ); 3617 while( idx<szHdr ){ 3618 idx += getVarint32(aKey+idx, notUsed); 3619 nField++; 3620 } 3621 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField ); 3622 } 3623 #else 3624 # define vdbeAssertFieldCountWithinLimits(A,B,C) 3625 #endif 3626 3627 /* 3628 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 3629 ** using the collation sequence pColl. As usual, return a negative , zero 3630 ** or positive value if *pMem1 is less than, equal to or greater than 3631 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 3632 */ 3633 static int vdbeCompareMemString( 3634 const Mem *pMem1, 3635 const Mem *pMem2, 3636 const CollSeq *pColl, 3637 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 3638 ){ 3639 if( pMem1->enc==pColl->enc ){ 3640 /* The strings are already in the correct encoding. Call the 3641 ** comparison function directly */ 3642 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 3643 }else{ 3644 int rc; 3645 const void *v1, *v2; 3646 int n1, n2; 3647 Mem c1; 3648 Mem c2; 3649 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 3650 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 3651 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 3652 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 3653 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 3654 n1 = v1==0 ? 0 : c1.n; 3655 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 3656 n2 = v2==0 ? 0 : c2.n; 3657 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); 3658 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM; 3659 sqlite3VdbeMemRelease(&c1); 3660 sqlite3VdbeMemRelease(&c2); 3661 return rc; 3662 } 3663 } 3664 3665 /* 3666 ** Compare two blobs. Return negative, zero, or positive if the first 3667 ** is less than, equal to, or greater than the second, respectively. 3668 ** If one blob is a prefix of the other, then the shorter is the lessor. 3669 */ 3670 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 3671 int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n); 3672 if( c ) return c; 3673 return pB1->n - pB2->n; 3674 } 3675 3676 /* 3677 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 3678 ** number. Return negative, zero, or positive if the first (i64) is less than, 3679 ** equal to, or greater than the second (double). 3680 */ 3681 static int sqlite3IntFloatCompare(i64 i, double r){ 3682 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 3683 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 3684 if( x<r ) return -1; 3685 if( x>r ) return +1; 3686 return 0; 3687 }else{ 3688 i64 y; 3689 double s; 3690 if( r<-9223372036854775808.0 ) return +1; 3691 if( r>9223372036854775807.0 ) return -1; 3692 y = (i64)r; 3693 if( i<y ) return -1; 3694 if( i>y ){ 3695 if( y==SMALLEST_INT64 && r>0.0 ) return -1; 3696 return +1; 3697 } 3698 s = (double)i; 3699 if( s<r ) return -1; 3700 if( s>r ) return +1; 3701 return 0; 3702 } 3703 } 3704 3705 /* 3706 ** Compare the values contained by the two memory cells, returning 3707 ** negative, zero or positive if pMem1 is less than, equal to, or greater 3708 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 3709 ** and reals) sorted numerically, followed by text ordered by the collating 3710 ** sequence pColl and finally blob's ordered by memcmp(). 3711 ** 3712 ** Two NULL values are considered equal by this function. 3713 */ 3714 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 3715 int f1, f2; 3716 int combined_flags; 3717 3718 f1 = pMem1->flags; 3719 f2 = pMem2->flags; 3720 combined_flags = f1|f2; 3721 assert( (combined_flags & MEM_RowSet)==0 ); 3722 3723 /* If one value is NULL, it is less than the other. If both values 3724 ** are NULL, return 0. 3725 */ 3726 if( combined_flags&MEM_Null ){ 3727 return (f2&MEM_Null) - (f1&MEM_Null); 3728 } 3729 3730 /* At least one of the two values is a number 3731 */ 3732 if( combined_flags&(MEM_Int|MEM_Real) ){ 3733 if( (f1 & f2 & MEM_Int)!=0 ){ 3734 if( pMem1->u.i < pMem2->u.i ) return -1; 3735 if( pMem1->u.i > pMem2->u.i ) return +1; 3736 return 0; 3737 } 3738 if( (f1 & f2 & MEM_Real)!=0 ){ 3739 if( pMem1->u.r < pMem2->u.r ) return -1; 3740 if( pMem1->u.r > pMem2->u.r ) return +1; 3741 return 0; 3742 } 3743 if( (f1&MEM_Int)!=0 ){ 3744 if( (f2&MEM_Real)!=0 ){ 3745 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 3746 }else{ 3747 return -1; 3748 } 3749 } 3750 if( (f1&MEM_Real)!=0 ){ 3751 if( (f2&MEM_Int)!=0 ){ 3752 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 3753 }else{ 3754 return -1; 3755 } 3756 } 3757 return +1; 3758 } 3759 3760 /* If one value is a string and the other is a blob, the string is less. 3761 ** If both are strings, compare using the collating functions. 3762 */ 3763 if( combined_flags&MEM_Str ){ 3764 if( (f1 & MEM_Str)==0 ){ 3765 return 1; 3766 } 3767 if( (f2 & MEM_Str)==0 ){ 3768 return -1; 3769 } 3770 3771 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 3772 assert( pMem1->enc==SQLITE_UTF8 || 3773 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 3774 3775 /* The collation sequence must be defined at this point, even if 3776 ** the user deletes the collation sequence after the vdbe program is 3777 ** compiled (this was not always the case). 3778 */ 3779 assert( !pColl || pColl->xCmp ); 3780 3781 if( pColl ){ 3782 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 3783 } 3784 /* If a NULL pointer was passed as the collate function, fall through 3785 ** to the blob case and use memcmp(). */ 3786 } 3787 3788 /* Both values must be blobs. Compare using memcmp(). */ 3789 return sqlite3BlobCompare(pMem1, pMem2); 3790 } 3791 3792 3793 /* 3794 ** The first argument passed to this function is a serial-type that 3795 ** corresponds to an integer - all values between 1 and 9 inclusive 3796 ** except 7. The second points to a buffer containing an integer value 3797 ** serialized according to serial_type. This function deserializes 3798 ** and returns the value. 3799 */ 3800 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 3801 u32 y; 3802 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 3803 switch( serial_type ){ 3804 case 0: 3805 case 1: 3806 testcase( aKey[0]&0x80 ); 3807 return ONE_BYTE_INT(aKey); 3808 case 2: 3809 testcase( aKey[0]&0x80 ); 3810 return TWO_BYTE_INT(aKey); 3811 case 3: 3812 testcase( aKey[0]&0x80 ); 3813 return THREE_BYTE_INT(aKey); 3814 case 4: { 3815 testcase( aKey[0]&0x80 ); 3816 y = FOUR_BYTE_UINT(aKey); 3817 return (i64)*(int*)&y; 3818 } 3819 case 5: { 3820 testcase( aKey[0]&0x80 ); 3821 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 3822 } 3823 case 6: { 3824 u64 x = FOUR_BYTE_UINT(aKey); 3825 testcase( aKey[0]&0x80 ); 3826 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 3827 return (i64)*(i64*)&x; 3828 } 3829 } 3830 3831 return (serial_type - 8); 3832 } 3833 3834 /* 3835 ** This function compares the two table rows or index records 3836 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 3837 ** or positive integer if key1 is less than, equal to or 3838 ** greater than key2. The {nKey1, pKey1} key must be a blob 3839 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 3840 ** key must be a parsed key such as obtained from 3841 ** sqlite3VdbeParseRecord. 3842 ** 3843 ** If argument bSkip is non-zero, it is assumed that the caller has already 3844 ** determined that the first fields of the keys are equal. 3845 ** 3846 ** Key1 and Key2 do not have to contain the same number of fields. If all 3847 ** fields that appear in both keys are equal, then pPKey2->default_rc is 3848 ** returned. 3849 ** 3850 ** If database corruption is discovered, set pPKey2->errCode to 3851 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 3852 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 3853 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 3854 */ 3855 int sqlite3VdbeRecordCompareWithSkip( 3856 int nKey1, const void *pKey1, /* Left key */ 3857 UnpackedRecord *pPKey2, /* Right key */ 3858 int bSkip /* If true, skip the first field */ 3859 ){ 3860 u32 d1; /* Offset into aKey[] of next data element */ 3861 int i; /* Index of next field to compare */ 3862 u32 szHdr1; /* Size of record header in bytes */ 3863 u32 idx1; /* Offset of first type in header */ 3864 int rc = 0; /* Return value */ 3865 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 3866 KeyInfo *pKeyInfo = pPKey2->pKeyInfo; 3867 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3868 Mem mem1; 3869 3870 /* If bSkip is true, then the caller has already determined that the first 3871 ** two elements in the keys are equal. Fix the various stack variables so 3872 ** that this routine begins comparing at the second field. */ 3873 if( bSkip ){ 3874 u32 s1; 3875 idx1 = 1 + getVarint32(&aKey1[1], s1); 3876 szHdr1 = aKey1[0]; 3877 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 3878 i = 1; 3879 pRhs++; 3880 }else{ 3881 idx1 = getVarint32(aKey1, szHdr1); 3882 d1 = szHdr1; 3883 if( d1>(unsigned)nKey1 ){ 3884 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3885 return 0; /* Corruption */ 3886 } 3887 i = 0; 3888 } 3889 3890 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3891 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 3892 || CORRUPT_DB ); 3893 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); 3894 assert( pPKey2->pKeyInfo->nField>0 ); 3895 assert( idx1<=szHdr1 || CORRUPT_DB ); 3896 do{ 3897 u32 serial_type; 3898 3899 /* RHS is an integer */ 3900 if( pRhs->flags & MEM_Int ){ 3901 serial_type = aKey1[idx1]; 3902 testcase( serial_type==12 ); 3903 if( serial_type>=10 ){ 3904 rc = +1; 3905 }else if( serial_type==0 ){ 3906 rc = -1; 3907 }else if( serial_type==7 ){ 3908 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 3909 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 3910 }else{ 3911 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 3912 i64 rhs = pRhs->u.i; 3913 if( lhs<rhs ){ 3914 rc = -1; 3915 }else if( lhs>rhs ){ 3916 rc = +1; 3917 } 3918 } 3919 } 3920 3921 /* RHS is real */ 3922 else if( pRhs->flags & MEM_Real ){ 3923 serial_type = aKey1[idx1]; 3924 if( serial_type>=10 ){ 3925 /* Serial types 12 or greater are strings and blobs (greater than 3926 ** numbers). Types 10 and 11 are currently "reserved for future 3927 ** use", so it doesn't really matter what the results of comparing 3928 ** them to numberic values are. */ 3929 rc = +1; 3930 }else if( serial_type==0 ){ 3931 rc = -1; 3932 }else{ 3933 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 3934 if( serial_type==7 ){ 3935 if( mem1.u.r<pRhs->u.r ){ 3936 rc = -1; 3937 }else if( mem1.u.r>pRhs->u.r ){ 3938 rc = +1; 3939 } 3940 }else{ 3941 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 3942 } 3943 } 3944 } 3945 3946 /* RHS is a string */ 3947 else if( pRhs->flags & MEM_Str ){ 3948 getVarint32(&aKey1[idx1], serial_type); 3949 testcase( serial_type==12 ); 3950 if( serial_type<12 ){ 3951 rc = -1; 3952 }else if( !(serial_type & 0x01) ){ 3953 rc = +1; 3954 }else{ 3955 mem1.n = (serial_type - 12) / 2; 3956 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 3957 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 3958 if( (d1+mem1.n) > (unsigned)nKey1 ){ 3959 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3960 return 0; /* Corruption */ 3961 }else if( pKeyInfo->aColl[i] ){ 3962 mem1.enc = pKeyInfo->enc; 3963 mem1.db = pKeyInfo->db; 3964 mem1.flags = MEM_Str; 3965 mem1.z = (char*)&aKey1[d1]; 3966 rc = vdbeCompareMemString( 3967 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 3968 ); 3969 }else{ 3970 int nCmp = MIN(mem1.n, pRhs->n); 3971 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 3972 if( rc==0 ) rc = mem1.n - pRhs->n; 3973 } 3974 } 3975 } 3976 3977 /* RHS is a blob */ 3978 else if( pRhs->flags & MEM_Blob ){ 3979 getVarint32(&aKey1[idx1], serial_type); 3980 testcase( serial_type==12 ); 3981 if( serial_type<12 || (serial_type & 0x01) ){ 3982 rc = -1; 3983 }else{ 3984 int nStr = (serial_type - 12) / 2; 3985 testcase( (d1+nStr)==(unsigned)nKey1 ); 3986 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 3987 if( (d1+nStr) > (unsigned)nKey1 ){ 3988 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3989 return 0; /* Corruption */ 3990 }else{ 3991 int nCmp = MIN(nStr, pRhs->n); 3992 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 3993 if( rc==0 ) rc = nStr - pRhs->n; 3994 } 3995 } 3996 } 3997 3998 /* RHS is null */ 3999 else{ 4000 serial_type = aKey1[idx1]; 4001 rc = (serial_type!=0); 4002 } 4003 4004 if( rc!=0 ){ 4005 if( pKeyInfo->aSortOrder[i] ){ 4006 rc = -rc; 4007 } 4008 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4009 assert( mem1.szMalloc==0 ); /* See comment below */ 4010 return rc; 4011 } 4012 4013 i++; 4014 pRhs++; 4015 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4016 idx1 += sqlite3VarintLen(serial_type); 4017 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); 4018 4019 /* No memory allocation is ever used on mem1. Prove this using 4020 ** the following assert(). If the assert() fails, it indicates a 4021 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4022 assert( mem1.szMalloc==0 ); 4023 4024 /* rc==0 here means that one or both of the keys ran out of fields and 4025 ** all the fields up to that point were equal. Return the default_rc 4026 ** value. */ 4027 assert( CORRUPT_DB 4028 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4029 || pKeyInfo->db->mallocFailed 4030 ); 4031 pPKey2->eqSeen = 1; 4032 return pPKey2->default_rc; 4033 } 4034 int sqlite3VdbeRecordCompare( 4035 int nKey1, const void *pKey1, /* Left key */ 4036 UnpackedRecord *pPKey2 /* Right key */ 4037 ){ 4038 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4039 } 4040 4041 4042 /* 4043 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4044 ** that (a) the first field of pPKey2 is an integer, and (b) the 4045 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4046 ** byte (i.e. is less than 128). 4047 ** 4048 ** To avoid concerns about buffer overreads, this routine is only used 4049 ** on schemas where the maximum valid header size is 63 bytes or less. 4050 */ 4051 static int vdbeRecordCompareInt( 4052 int nKey1, const void *pKey1, /* Left key */ 4053 UnpackedRecord *pPKey2 /* Right key */ 4054 ){ 4055 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4056 int serial_type = ((const u8*)pKey1)[1]; 4057 int res; 4058 u32 y; 4059 u64 x; 4060 i64 v = pPKey2->aMem[0].u.i; 4061 i64 lhs; 4062 4063 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4064 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4065 switch( serial_type ){ 4066 case 1: { /* 1-byte signed integer */ 4067 lhs = ONE_BYTE_INT(aKey); 4068 testcase( lhs<0 ); 4069 break; 4070 } 4071 case 2: { /* 2-byte signed integer */ 4072 lhs = TWO_BYTE_INT(aKey); 4073 testcase( lhs<0 ); 4074 break; 4075 } 4076 case 3: { /* 3-byte signed integer */ 4077 lhs = THREE_BYTE_INT(aKey); 4078 testcase( lhs<0 ); 4079 break; 4080 } 4081 case 4: { /* 4-byte signed integer */ 4082 y = FOUR_BYTE_UINT(aKey); 4083 lhs = (i64)*(int*)&y; 4084 testcase( lhs<0 ); 4085 break; 4086 } 4087 case 5: { /* 6-byte signed integer */ 4088 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4089 testcase( lhs<0 ); 4090 break; 4091 } 4092 case 6: { /* 8-byte signed integer */ 4093 x = FOUR_BYTE_UINT(aKey); 4094 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4095 lhs = *(i64*)&x; 4096 testcase( lhs<0 ); 4097 break; 4098 } 4099 case 8: 4100 lhs = 0; 4101 break; 4102 case 9: 4103 lhs = 1; 4104 break; 4105 4106 /* This case could be removed without changing the results of running 4107 ** this code. Including it causes gcc to generate a faster switch 4108 ** statement (since the range of switch targets now starts at zero and 4109 ** is contiguous) but does not cause any duplicate code to be generated 4110 ** (as gcc is clever enough to combine the two like cases). Other 4111 ** compilers might be similar. */ 4112 case 0: case 7: 4113 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4114 4115 default: 4116 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4117 } 4118 4119 if( v>lhs ){ 4120 res = pPKey2->r1; 4121 }else if( v<lhs ){ 4122 res = pPKey2->r2; 4123 }else if( pPKey2->nField>1 ){ 4124 /* The first fields of the two keys are equal. Compare the trailing 4125 ** fields. */ 4126 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4127 }else{ 4128 /* The first fields of the two keys are equal and there are no trailing 4129 ** fields. Return pPKey2->default_rc in this case. */ 4130 res = pPKey2->default_rc; 4131 pPKey2->eqSeen = 1; 4132 } 4133 4134 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4135 return res; 4136 } 4137 4138 /* 4139 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4140 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4141 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4142 ** at the start of (pKey1/nKey1) fits in a single byte. 4143 */ 4144 static int vdbeRecordCompareString( 4145 int nKey1, const void *pKey1, /* Left key */ 4146 UnpackedRecord *pPKey2 /* Right key */ 4147 ){ 4148 const u8 *aKey1 = (const u8*)pKey1; 4149 int serial_type; 4150 int res; 4151 4152 assert( pPKey2->aMem[0].flags & MEM_Str ); 4153 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4154 getVarint32(&aKey1[1], serial_type); 4155 if( serial_type<12 ){ 4156 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4157 }else if( !(serial_type & 0x01) ){ 4158 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4159 }else{ 4160 int nCmp; 4161 int nStr; 4162 int szHdr = aKey1[0]; 4163 4164 nStr = (serial_type-12) / 2; 4165 if( (szHdr + nStr) > nKey1 ){ 4166 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4167 return 0; /* Corruption */ 4168 } 4169 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4170 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4171 4172 if( res==0 ){ 4173 res = nStr - pPKey2->aMem[0].n; 4174 if( res==0 ){ 4175 if( pPKey2->nField>1 ){ 4176 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4177 }else{ 4178 res = pPKey2->default_rc; 4179 pPKey2->eqSeen = 1; 4180 } 4181 }else if( res>0 ){ 4182 res = pPKey2->r2; 4183 }else{ 4184 res = pPKey2->r1; 4185 } 4186 }else if( res>0 ){ 4187 res = pPKey2->r2; 4188 }else{ 4189 res = pPKey2->r1; 4190 } 4191 } 4192 4193 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4194 || CORRUPT_DB 4195 || pPKey2->pKeyInfo->db->mallocFailed 4196 ); 4197 return res; 4198 } 4199 4200 /* 4201 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4202 ** suitable for comparing serialized records to the unpacked record passed 4203 ** as the only argument. 4204 */ 4205 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4206 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4207 ** that the size-of-header varint that occurs at the start of each record 4208 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4209 ** also assumes that it is safe to overread a buffer by at least the 4210 ** maximum possible legal header size plus 8 bytes. Because there is 4211 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4212 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4213 ** limit the size of the header to 64 bytes in cases where the first field 4214 ** is an integer. 4215 ** 4216 ** The easiest way to enforce this limit is to consider only records with 4217 ** 13 fields or less. If the first field is an integer, the maximum legal 4218 ** header size is (12*5 + 1 + 1) bytes. */ 4219 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){ 4220 int flags = p->aMem[0].flags; 4221 if( p->pKeyInfo->aSortOrder[0] ){ 4222 p->r1 = 1; 4223 p->r2 = -1; 4224 }else{ 4225 p->r1 = -1; 4226 p->r2 = 1; 4227 } 4228 if( (flags & MEM_Int) ){ 4229 return vdbeRecordCompareInt; 4230 } 4231 testcase( flags & MEM_Real ); 4232 testcase( flags & MEM_Null ); 4233 testcase( flags & MEM_Blob ); 4234 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ 4235 assert( flags & MEM_Str ); 4236 return vdbeRecordCompareString; 4237 } 4238 } 4239 4240 return sqlite3VdbeRecordCompare; 4241 } 4242 4243 /* 4244 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4245 ** Read the rowid (the last field in the record) and store it in *rowid. 4246 ** Return SQLITE_OK if everything works, or an error code otherwise. 4247 ** 4248 ** pCur might be pointing to text obtained from a corrupt database file. 4249 ** So the content cannot be trusted. Do appropriate checks on the content. 4250 */ 4251 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4252 i64 nCellKey = 0; 4253 int rc; 4254 u32 szHdr; /* Size of the header */ 4255 u32 typeRowid; /* Serial type of the rowid */ 4256 u32 lenRowid; /* Size of the rowid */ 4257 Mem m, v; 4258 4259 /* Get the size of the index entry. Only indices entries of less 4260 ** than 2GiB are support - anything large must be database corruption. 4261 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4262 ** this code can safely assume that nCellKey is 32-bits 4263 */ 4264 assert( sqlite3BtreeCursorIsValid(pCur) ); 4265 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); 4266 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 4267 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4268 4269 /* Read in the complete content of the index entry */ 4270 sqlite3VdbeMemInit(&m, db, 0); 4271 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m); 4272 if( rc ){ 4273 return rc; 4274 } 4275 4276 /* The index entry must begin with a header size */ 4277 (void)getVarint32((u8*)m.z, szHdr); 4278 testcase( szHdr==3 ); 4279 testcase( szHdr==m.n ); 4280 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ 4281 goto idx_rowid_corruption; 4282 } 4283 4284 /* The last field of the index should be an integer - the ROWID. 4285 ** Verify that the last entry really is an integer. */ 4286 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 4287 testcase( typeRowid==1 ); 4288 testcase( typeRowid==2 ); 4289 testcase( typeRowid==3 ); 4290 testcase( typeRowid==4 ); 4291 testcase( typeRowid==5 ); 4292 testcase( typeRowid==6 ); 4293 testcase( typeRowid==8 ); 4294 testcase( typeRowid==9 ); 4295 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4296 goto idx_rowid_corruption; 4297 } 4298 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4299 testcase( (u32)m.n==szHdr+lenRowid ); 4300 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4301 goto idx_rowid_corruption; 4302 } 4303 4304 /* Fetch the integer off the end of the index record */ 4305 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4306 *rowid = v.u.i; 4307 sqlite3VdbeMemRelease(&m); 4308 return SQLITE_OK; 4309 4310 /* Jump here if database corruption is detected after m has been 4311 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4312 idx_rowid_corruption: 4313 testcase( m.szMalloc!=0 ); 4314 sqlite3VdbeMemRelease(&m); 4315 return SQLITE_CORRUPT_BKPT; 4316 } 4317 4318 /* 4319 ** Compare the key of the index entry that cursor pC is pointing to against 4320 ** the key string in pUnpacked. Write into *pRes a number 4321 ** that is negative, zero, or positive if pC is less than, equal to, 4322 ** or greater than pUnpacked. Return SQLITE_OK on success. 4323 ** 4324 ** pUnpacked is either created without a rowid or is truncated so that it 4325 ** omits the rowid at the end. The rowid at the end of the index entry 4326 ** is ignored as well. Hence, this routine only compares the prefixes 4327 ** of the keys prior to the final rowid, not the entire key. 4328 */ 4329 int sqlite3VdbeIdxKeyCompare( 4330 sqlite3 *db, /* Database connection */ 4331 VdbeCursor *pC, /* The cursor to compare against */ 4332 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4333 int *res /* Write the comparison result here */ 4334 ){ 4335 i64 nCellKey = 0; 4336 int rc; 4337 BtCursor *pCur; 4338 Mem m; 4339 4340 assert( pC->eCurType==CURTYPE_BTREE ); 4341 pCur = pC->uc.pCursor; 4342 assert( sqlite3BtreeCursorIsValid(pCur) ); 4343 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); 4344 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 4345 /* nCellKey will always be between 0 and 0xffffffff because of the way 4346 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4347 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4348 *res = 0; 4349 return SQLITE_CORRUPT_BKPT; 4350 } 4351 sqlite3VdbeMemInit(&m, db, 0); 4352 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m); 4353 if( rc ){ 4354 return rc; 4355 } 4356 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); 4357 sqlite3VdbeMemRelease(&m); 4358 return SQLITE_OK; 4359 } 4360 4361 /* 4362 ** This routine sets the value to be returned by subsequent calls to 4363 ** sqlite3_changes() on the database handle 'db'. 4364 */ 4365 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 4366 assert( sqlite3_mutex_held(db->mutex) ); 4367 db->nChange = nChange; 4368 db->nTotalChange += nChange; 4369 } 4370 4371 /* 4372 ** Set a flag in the vdbe to update the change counter when it is finalised 4373 ** or reset. 4374 */ 4375 void sqlite3VdbeCountChanges(Vdbe *v){ 4376 v->changeCntOn = 1; 4377 } 4378 4379 /* 4380 ** Mark every prepared statement associated with a database connection 4381 ** as expired. 4382 ** 4383 ** An expired statement means that recompilation of the statement is 4384 ** recommend. Statements expire when things happen that make their 4385 ** programs obsolete. Removing user-defined functions or collating 4386 ** sequences, or changing an authorization function are the types of 4387 ** things that make prepared statements obsolete. 4388 */ 4389 void sqlite3ExpirePreparedStatements(sqlite3 *db){ 4390 Vdbe *p; 4391 for(p = db->pVdbe; p; p=p->pNext){ 4392 p->expired = 1; 4393 } 4394 } 4395 4396 /* 4397 ** Return the database associated with the Vdbe. 4398 */ 4399 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 4400 return v->db; 4401 } 4402 4403 /* 4404 ** Return a pointer to an sqlite3_value structure containing the value bound 4405 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 4406 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 4407 ** constants) to the value before returning it. 4408 ** 4409 ** The returned value must be freed by the caller using sqlite3ValueFree(). 4410 */ 4411 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 4412 assert( iVar>0 ); 4413 if( v ){ 4414 Mem *pMem = &v->aVar[iVar-1]; 4415 if( 0==(pMem->flags & MEM_Null) ){ 4416 sqlite3_value *pRet = sqlite3ValueNew(v->db); 4417 if( pRet ){ 4418 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 4419 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 4420 } 4421 return pRet; 4422 } 4423 } 4424 return 0; 4425 } 4426 4427 /* 4428 ** Configure SQL variable iVar so that binding a new value to it signals 4429 ** to sqlite3_reoptimize() that re-preparing the statement may result 4430 ** in a better query plan. 4431 */ 4432 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 4433 assert( iVar>0 ); 4434 if( iVar>32 ){ 4435 v->expmask = 0xffffffff; 4436 }else{ 4437 v->expmask |= ((u32)1 << (iVar-1)); 4438 } 4439 } 4440 4441 #ifndef SQLITE_OMIT_VIRTUALTABLE 4442 /* 4443 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 4444 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 4445 ** in memory obtained from sqlite3DbMalloc). 4446 */ 4447 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 4448 if( pVtab->zErrMsg ){ 4449 sqlite3 *db = p->db; 4450 sqlite3DbFree(db, p->zErrMsg); 4451 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 4452 sqlite3_free(pVtab->zErrMsg); 4453 pVtab->zErrMsg = 0; 4454 } 4455 } 4456 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4457