1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* 19 ** Create a new virtual database engine. 20 */ 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 22 sqlite3 *db = pParse->db; 23 Vdbe *p; 24 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 25 if( p==0 ) return 0; 26 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 27 p->db = db; 28 if( db->pVdbe ){ 29 db->pVdbe->pPrev = p; 30 } 31 p->pNext = db->pVdbe; 32 p->pPrev = 0; 33 db->pVdbe = p; 34 p->magic = VDBE_MAGIC_INIT; 35 p->pParse = pParse; 36 pParse->pVdbe = p; 37 assert( pParse->aLabel==0 ); 38 assert( pParse->nLabel==0 ); 39 assert( pParse->nOpAlloc==0 ); 40 assert( pParse->szOpAlloc==0 ); 41 sqlite3VdbeAddOp2(p, OP_Init, 0, 1); 42 return p; 43 } 44 45 /* 46 ** Change the error string stored in Vdbe.zErrMsg 47 */ 48 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 49 va_list ap; 50 sqlite3DbFree(p->db, p->zErrMsg); 51 va_start(ap, zFormat); 52 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 53 va_end(ap); 54 } 55 56 /* 57 ** Remember the SQL string for a prepared statement. 58 */ 59 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 60 if( p==0 ) return; 61 p->prepFlags = prepFlags; 62 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 63 p->expmask = 0; 64 } 65 assert( p->zSql==0 ); 66 p->zSql = sqlite3DbStrNDup(p->db, z, n); 67 } 68 69 #ifdef SQLITE_ENABLE_NORMALIZE 70 /* 71 ** Add a new element to the Vdbe->pDblStr list. 72 */ 73 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ 74 if( p ){ 75 int n = sqlite3Strlen30(z); 76 DblquoteStr *pStr = sqlite3DbMallocRawNN(db, 77 sizeof(*pStr)+n+1-sizeof(pStr->z)); 78 if( pStr ){ 79 pStr->pNextStr = p->pDblStr; 80 p->pDblStr = pStr; 81 memcpy(pStr->z, z, n+1); 82 } 83 } 84 } 85 #endif 86 87 #ifdef SQLITE_ENABLE_NORMALIZE 88 /* 89 ** zId of length nId is a double-quoted identifier. Check to see if 90 ** that identifier is really used as a string literal. 91 */ 92 int sqlite3VdbeUsesDoubleQuotedString( 93 Vdbe *pVdbe, /* The prepared statement */ 94 const char *zId /* The double-quoted identifier, already dequoted */ 95 ){ 96 DblquoteStr *pStr; 97 assert( zId!=0 ); 98 if( pVdbe->pDblStr==0 ) return 0; 99 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ 100 if( strcmp(zId, pStr->z)==0 ) return 1; 101 } 102 return 0; 103 } 104 #endif 105 106 /* 107 ** Swap all content between two VDBE structures. 108 */ 109 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 110 Vdbe tmp, *pTmp; 111 char *zTmp; 112 assert( pA->db==pB->db ); 113 tmp = *pA; 114 *pA = *pB; 115 *pB = tmp; 116 pTmp = pA->pNext; 117 pA->pNext = pB->pNext; 118 pB->pNext = pTmp; 119 pTmp = pA->pPrev; 120 pA->pPrev = pB->pPrev; 121 pB->pPrev = pTmp; 122 zTmp = pA->zSql; 123 pA->zSql = pB->zSql; 124 pB->zSql = zTmp; 125 #if 0 126 zTmp = pA->zNormSql; 127 pA->zNormSql = pB->zNormSql; 128 pB->zNormSql = zTmp; 129 #endif 130 pB->expmask = pA->expmask; 131 pB->prepFlags = pA->prepFlags; 132 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 133 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 134 } 135 136 /* 137 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 138 ** than its current size. nOp is guaranteed to be less than or equal 139 ** to 1024/sizeof(Op). 140 ** 141 ** If an out-of-memory error occurs while resizing the array, return 142 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain 143 ** unchanged (this is so that any opcodes already allocated can be 144 ** correctly deallocated along with the rest of the Vdbe). 145 */ 146 static int growOpArray(Vdbe *v, int nOp){ 147 VdbeOp *pNew; 148 Parse *p = v->pParse; 149 150 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 151 ** more frequent reallocs and hence provide more opportunities for 152 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 153 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 154 ** by the minimum* amount required until the size reaches 512. Normal 155 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 156 ** size of the op array or add 1KB of space, whichever is smaller. */ 157 #ifdef SQLITE_TEST_REALLOC_STRESS 158 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); 159 #else 160 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 161 UNUSED_PARAMETER(nOp); 162 #endif 163 164 /* Ensure that the size of a VDBE does not grow too large */ 165 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 166 sqlite3OomFault(p->db); 167 return SQLITE_NOMEM; 168 } 169 170 assert( nOp<=(1024/sizeof(Op)) ); 171 assert( nNew>=(p->nOpAlloc+nOp) ); 172 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 173 if( pNew ){ 174 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 175 p->nOpAlloc = p->szOpAlloc/sizeof(Op); 176 v->aOp = pNew; 177 } 178 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 179 } 180 181 #ifdef SQLITE_DEBUG 182 /* This routine is just a convenient place to set a breakpoint that will 183 ** fire after each opcode is inserted and displayed using 184 ** "PRAGMA vdbe_addoptrace=on". 185 */ 186 static void test_addop_breakpoint(void){ 187 static int n = 0; 188 n++; 189 } 190 #endif 191 192 /* 193 ** Add a new instruction to the list of instructions current in the 194 ** VDBE. Return the address of the new instruction. 195 ** 196 ** Parameters: 197 ** 198 ** p Pointer to the VDBE 199 ** 200 ** op The opcode for this instruction 201 ** 202 ** p1, p2, p3 Operands 203 ** 204 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 205 ** the sqlite3VdbeChangeP4() function to change the value of the P4 206 ** operand. 207 */ 208 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 209 assert( p->pParse->nOpAlloc<=p->nOp ); 210 if( growOpArray(p, 1) ) return 1; 211 assert( p->pParse->nOpAlloc>p->nOp ); 212 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 213 } 214 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 215 int i; 216 VdbeOp *pOp; 217 218 i = p->nOp; 219 assert( p->magic==VDBE_MAGIC_INIT ); 220 assert( op>=0 && op<0xff ); 221 if( p->pParse->nOpAlloc<=i ){ 222 return growOp3(p, op, p1, p2, p3); 223 } 224 p->nOp++; 225 pOp = &p->aOp[i]; 226 pOp->opcode = (u8)op; 227 pOp->p5 = 0; 228 pOp->p1 = p1; 229 pOp->p2 = p2; 230 pOp->p3 = p3; 231 pOp->p4.p = 0; 232 pOp->p4type = P4_NOTUSED; 233 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 234 pOp->zComment = 0; 235 #endif 236 #ifdef SQLITE_DEBUG 237 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 238 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 239 test_addop_breakpoint(); 240 } 241 #endif 242 #ifdef VDBE_PROFILE 243 pOp->cycles = 0; 244 pOp->cnt = 0; 245 #endif 246 #ifdef SQLITE_VDBE_COVERAGE 247 pOp->iSrcLine = 0; 248 #endif 249 return i; 250 } 251 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 252 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 253 } 254 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 255 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 256 } 257 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 258 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 259 } 260 261 /* Generate code for an unconditional jump to instruction iDest 262 */ 263 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 264 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 265 } 266 267 /* Generate code to cause the string zStr to be loaded into 268 ** register iDest 269 */ 270 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 271 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 272 } 273 274 /* 275 ** Generate code that initializes multiple registers to string or integer 276 ** constants. The registers begin with iDest and increase consecutively. 277 ** One register is initialized for each characgter in zTypes[]. For each 278 ** "s" character in zTypes[], the register is a string if the argument is 279 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 280 ** in zTypes[], the register is initialized to an integer. 281 ** 282 ** If the input string does not end with "X" then an OP_ResultRow instruction 283 ** is generated for the values inserted. 284 */ 285 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 286 va_list ap; 287 int i; 288 char c; 289 va_start(ap, zTypes); 290 for(i=0; (c = zTypes[i])!=0; i++){ 291 if( c=='s' ){ 292 const char *z = va_arg(ap, const char*); 293 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 294 }else if( c=='i' ){ 295 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 296 }else{ 297 goto skip_op_resultrow; 298 } 299 } 300 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 301 skip_op_resultrow: 302 va_end(ap); 303 } 304 305 /* 306 ** Add an opcode that includes the p4 value as a pointer. 307 */ 308 int sqlite3VdbeAddOp4( 309 Vdbe *p, /* Add the opcode to this VM */ 310 int op, /* The new opcode */ 311 int p1, /* The P1 operand */ 312 int p2, /* The P2 operand */ 313 int p3, /* The P3 operand */ 314 const char *zP4, /* The P4 operand */ 315 int p4type /* P4 operand type */ 316 ){ 317 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 318 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 319 return addr; 320 } 321 322 /* 323 ** Add an opcode that includes the p4 value with a P4_INT64 or 324 ** P4_REAL type. 325 */ 326 int sqlite3VdbeAddOp4Dup8( 327 Vdbe *p, /* Add the opcode to this VM */ 328 int op, /* The new opcode */ 329 int p1, /* The P1 operand */ 330 int p2, /* The P2 operand */ 331 int p3, /* The P3 operand */ 332 const u8 *zP4, /* The P4 operand */ 333 int p4type /* P4 operand type */ 334 ){ 335 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 336 if( p4copy ) memcpy(p4copy, zP4, 8); 337 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 338 } 339 340 #ifndef SQLITE_OMIT_EXPLAIN 341 /* 342 ** Return the address of the current EXPLAIN QUERY PLAN baseline. 343 ** 0 means "none". 344 */ 345 int sqlite3VdbeExplainParent(Parse *pParse){ 346 VdbeOp *pOp; 347 if( pParse->addrExplain==0 ) return 0; 348 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); 349 return pOp->p2; 350 } 351 352 /* 353 ** Set a debugger breakpoint on the following routine in order to 354 ** monitor the EXPLAIN QUERY PLAN code generation. 355 */ 356 #if defined(SQLITE_DEBUG) 357 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ 358 (void)z1; 359 (void)z2; 360 } 361 #endif 362 363 /* 364 ** Add a new OP_ opcode. 365 ** 366 ** If the bPush flag is true, then make this opcode the parent for 367 ** subsequent Explains until sqlite3VdbeExplainPop() is called. 368 */ 369 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ 370 #if !defined(SQLITE_DEBUG) 371 if( pParse->explain==2 ) 372 #endif 373 { 374 char *zMsg; 375 Vdbe *v; 376 va_list ap; 377 int iThis; 378 va_start(ap, zFmt); 379 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); 380 va_end(ap); 381 v = pParse->pVdbe; 382 iThis = v->nOp; 383 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, 384 zMsg, P4_DYNAMIC); 385 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z); 386 if( bPush){ 387 pParse->addrExplain = iThis; 388 } 389 } 390 } 391 392 /* 393 ** Pop the EXPLAIN QUERY PLAN stack one level. 394 */ 395 void sqlite3VdbeExplainPop(Parse *pParse){ 396 sqlite3ExplainBreakpoint("POP", 0); 397 pParse->addrExplain = sqlite3VdbeExplainParent(pParse); 398 } 399 #endif /* SQLITE_OMIT_EXPLAIN */ 400 401 /* 402 ** Add an OP_ParseSchema opcode. This routine is broken out from 403 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 404 ** as having been used. 405 ** 406 ** The zWhere string must have been obtained from sqlite3_malloc(). 407 ** This routine will take ownership of the allocated memory. 408 */ 409 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 410 int j; 411 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 412 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 413 } 414 415 /* 416 ** Add an opcode that includes the p4 value as an integer. 417 */ 418 int sqlite3VdbeAddOp4Int( 419 Vdbe *p, /* Add the opcode to this VM */ 420 int op, /* The new opcode */ 421 int p1, /* The P1 operand */ 422 int p2, /* The P2 operand */ 423 int p3, /* The P3 operand */ 424 int p4 /* The P4 operand as an integer */ 425 ){ 426 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 427 if( p->db->mallocFailed==0 ){ 428 VdbeOp *pOp = &p->aOp[addr]; 429 pOp->p4type = P4_INT32; 430 pOp->p4.i = p4; 431 } 432 return addr; 433 } 434 435 /* Insert the end of a co-routine 436 */ 437 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 438 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 439 440 /* Clear the temporary register cache, thereby ensuring that each 441 ** co-routine has its own independent set of registers, because co-routines 442 ** might expect their registers to be preserved across an OP_Yield, and 443 ** that could cause problems if two or more co-routines are using the same 444 ** temporary register. 445 */ 446 v->pParse->nTempReg = 0; 447 v->pParse->nRangeReg = 0; 448 } 449 450 /* 451 ** Create a new symbolic label for an instruction that has yet to be 452 ** coded. The symbolic label is really just a negative number. The 453 ** label can be used as the P2 value of an operation. Later, when 454 ** the label is resolved to a specific address, the VDBE will scan 455 ** through its operation list and change all values of P2 which match 456 ** the label into the resolved address. 457 ** 458 ** The VDBE knows that a P2 value is a label because labels are 459 ** always negative and P2 values are suppose to be non-negative. 460 ** Hence, a negative P2 value is a label that has yet to be resolved. 461 ** 462 ** Zero is returned if a malloc() fails. 463 */ 464 int sqlite3VdbeMakeLabel(Vdbe *v){ 465 Parse *p = v->pParse; 466 int i = p->nLabel++; 467 assert( v->magic==VDBE_MAGIC_INIT ); 468 if( (i & (i-1))==0 ){ 469 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 470 (i*2+1)*sizeof(p->aLabel[0])); 471 } 472 if( p->aLabel ){ 473 p->aLabel[i] = -1; 474 } 475 return ADDR(i); 476 } 477 478 /* 479 ** Resolve label "x" to be the address of the next instruction to 480 ** be inserted. The parameter "x" must have been obtained from 481 ** a prior call to sqlite3VdbeMakeLabel(). 482 */ 483 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 484 Parse *p = v->pParse; 485 int j = ADDR(x); 486 assert( v->magic==VDBE_MAGIC_INIT ); 487 assert( j<p->nLabel ); 488 assert( j>=0 ); 489 if( p->aLabel ){ 490 #ifdef SQLITE_DEBUG 491 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 492 printf("RESOLVE LABEL %d to %d\n", x, v->nOp); 493 } 494 #endif 495 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ 496 p->aLabel[j] = v->nOp; 497 } 498 } 499 500 /* 501 ** Mark the VDBE as one that can only be run one time. 502 */ 503 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 504 p->runOnlyOnce = 1; 505 } 506 507 /* 508 ** Mark the VDBE as one that can only be run multiple times. 509 */ 510 void sqlite3VdbeReusable(Vdbe *p){ 511 p->runOnlyOnce = 0; 512 } 513 514 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 515 516 /* 517 ** The following type and function are used to iterate through all opcodes 518 ** in a Vdbe main program and each of the sub-programs (triggers) it may 519 ** invoke directly or indirectly. It should be used as follows: 520 ** 521 ** Op *pOp; 522 ** VdbeOpIter sIter; 523 ** 524 ** memset(&sIter, 0, sizeof(sIter)); 525 ** sIter.v = v; // v is of type Vdbe* 526 ** while( (pOp = opIterNext(&sIter)) ){ 527 ** // Do something with pOp 528 ** } 529 ** sqlite3DbFree(v->db, sIter.apSub); 530 ** 531 */ 532 typedef struct VdbeOpIter VdbeOpIter; 533 struct VdbeOpIter { 534 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 535 SubProgram **apSub; /* Array of subprograms */ 536 int nSub; /* Number of entries in apSub */ 537 int iAddr; /* Address of next instruction to return */ 538 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 539 }; 540 static Op *opIterNext(VdbeOpIter *p){ 541 Vdbe *v = p->v; 542 Op *pRet = 0; 543 Op *aOp; 544 int nOp; 545 546 if( p->iSub<=p->nSub ){ 547 548 if( p->iSub==0 ){ 549 aOp = v->aOp; 550 nOp = v->nOp; 551 }else{ 552 aOp = p->apSub[p->iSub-1]->aOp; 553 nOp = p->apSub[p->iSub-1]->nOp; 554 } 555 assert( p->iAddr<nOp ); 556 557 pRet = &aOp[p->iAddr]; 558 p->iAddr++; 559 if( p->iAddr==nOp ){ 560 p->iSub++; 561 p->iAddr = 0; 562 } 563 564 if( pRet->p4type==P4_SUBPROGRAM ){ 565 int nByte = (p->nSub+1)*sizeof(SubProgram*); 566 int j; 567 for(j=0; j<p->nSub; j++){ 568 if( p->apSub[j]==pRet->p4.pProgram ) break; 569 } 570 if( j==p->nSub ){ 571 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 572 if( !p->apSub ){ 573 pRet = 0; 574 }else{ 575 p->apSub[p->nSub++] = pRet->p4.pProgram; 576 } 577 } 578 } 579 } 580 581 return pRet; 582 } 583 584 /* 585 ** Check if the program stored in the VM associated with pParse may 586 ** throw an ABORT exception (causing the statement, but not entire transaction 587 ** to be rolled back). This condition is true if the main program or any 588 ** sub-programs contains any of the following: 589 ** 590 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 591 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 592 ** * OP_Destroy 593 ** * OP_VUpdate 594 ** * OP_VRename 595 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 596 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 597 ** (for CREATE TABLE AS SELECT ...) 598 ** 599 ** Then check that the value of Parse.mayAbort is true if an 600 ** ABORT may be thrown, or false otherwise. Return true if it does 601 ** match, or false otherwise. This function is intended to be used as 602 ** part of an assert statement in the compiler. Similar to: 603 ** 604 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 605 */ 606 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 607 int hasAbort = 0; 608 int hasFkCounter = 0; 609 int hasCreateTable = 0; 610 int hasInitCoroutine = 0; 611 Op *pOp; 612 VdbeOpIter sIter; 613 memset(&sIter, 0, sizeof(sIter)); 614 sIter.v = v; 615 616 while( (pOp = opIterNext(&sIter))!=0 ){ 617 int opcode = pOp->opcode; 618 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 619 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 620 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 621 ){ 622 hasAbort = 1; 623 break; 624 } 625 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; 626 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 627 #ifndef SQLITE_OMIT_FOREIGN_KEY 628 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 629 hasFkCounter = 1; 630 } 631 #endif 632 } 633 sqlite3DbFree(v->db, sIter.apSub); 634 635 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 636 ** If malloc failed, then the while() loop above may not have iterated 637 ** through all opcodes and hasAbort may be set incorrectly. Return 638 ** true for this case to prevent the assert() in the callers frame 639 ** from failing. */ 640 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 641 || (hasCreateTable && hasInitCoroutine) ); 642 } 643 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 644 645 #ifdef SQLITE_DEBUG 646 /* 647 ** Increment the nWrite counter in the VDBE if the cursor is not an 648 ** ephemeral cursor, or if the cursor argument is NULL. 649 */ 650 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ 651 if( pC==0 652 || (pC->eCurType!=CURTYPE_SORTER 653 && pC->eCurType!=CURTYPE_PSEUDO 654 && !pC->isEphemeral) 655 ){ 656 p->nWrite++; 657 } 658 } 659 #endif 660 661 #ifdef SQLITE_DEBUG 662 /* 663 ** Assert if an Abort at this point in time might result in a corrupt 664 ** database. 665 */ 666 void sqlite3VdbeAssertAbortable(Vdbe *p){ 667 assert( p->nWrite==0 || p->usesStmtJournal ); 668 } 669 #endif 670 671 /* 672 ** This routine is called after all opcodes have been inserted. It loops 673 ** through all the opcodes and fixes up some details. 674 ** 675 ** (1) For each jump instruction with a negative P2 value (a label) 676 ** resolve the P2 value to an actual address. 677 ** 678 ** (2) Compute the maximum number of arguments used by any SQL function 679 ** and store that value in *pMaxFuncArgs. 680 ** 681 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 682 ** indicate what the prepared statement actually does. 683 ** 684 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 685 ** 686 ** (5) Reclaim the memory allocated for storing labels. 687 ** 688 ** This routine will only function correctly if the mkopcodeh.tcl generator 689 ** script numbers the opcodes correctly. Changes to this routine must be 690 ** coordinated with changes to mkopcodeh.tcl. 691 */ 692 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 693 int nMaxArgs = *pMaxFuncArgs; 694 Op *pOp; 695 Parse *pParse = p->pParse; 696 int *aLabel = pParse->aLabel; 697 p->readOnly = 1; 698 p->bIsReader = 0; 699 pOp = &p->aOp[p->nOp-1]; 700 while(1){ 701 702 /* Only JUMP opcodes and the short list of special opcodes in the switch 703 ** below need to be considered. The mkopcodeh.tcl generator script groups 704 ** all these opcodes together near the front of the opcode list. Skip 705 ** any opcode that does not need processing by virtual of the fact that 706 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 707 */ 708 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 709 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 710 ** cases from this switch! */ 711 switch( pOp->opcode ){ 712 case OP_Transaction: { 713 if( pOp->p2!=0 ) p->readOnly = 0; 714 /* fall thru */ 715 } 716 case OP_AutoCommit: 717 case OP_Savepoint: { 718 p->bIsReader = 1; 719 break; 720 } 721 #ifndef SQLITE_OMIT_WAL 722 case OP_Checkpoint: 723 #endif 724 case OP_Vacuum: 725 case OP_JournalMode: { 726 p->readOnly = 0; 727 p->bIsReader = 1; 728 break; 729 } 730 case OP_Next: 731 case OP_SorterNext: { 732 pOp->p4.xAdvance = sqlite3BtreeNext; 733 pOp->p4type = P4_ADVANCE; 734 /* The code generator never codes any of these opcodes as a jump 735 ** to a label. They are always coded as a jump backwards to a 736 ** known address */ 737 assert( pOp->p2>=0 ); 738 break; 739 } 740 case OP_Prev: { 741 pOp->p4.xAdvance = sqlite3BtreePrevious; 742 pOp->p4type = P4_ADVANCE; 743 /* The code generator never codes any of these opcodes as a jump 744 ** to a label. They are always coded as a jump backwards to a 745 ** known address */ 746 assert( pOp->p2>=0 ); 747 break; 748 } 749 #ifndef SQLITE_OMIT_VIRTUALTABLE 750 case OP_VUpdate: { 751 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 752 break; 753 } 754 case OP_VFilter: { 755 int n; 756 assert( (pOp - p->aOp) >= 3 ); 757 assert( pOp[-1].opcode==OP_Integer ); 758 n = pOp[-1].p1; 759 if( n>nMaxArgs ) nMaxArgs = n; 760 /* Fall through into the default case */ 761 } 762 #endif 763 default: { 764 if( pOp->p2<0 ){ 765 /* The mkopcodeh.tcl script has so arranged things that the only 766 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 767 ** have non-negative values for P2. */ 768 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 769 assert( ADDR(pOp->p2)<pParse->nLabel ); 770 pOp->p2 = aLabel[ADDR(pOp->p2)]; 771 } 772 break; 773 } 774 } 775 /* The mkopcodeh.tcl script has so arranged things that the only 776 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 777 ** have non-negative values for P2. */ 778 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 779 } 780 if( pOp==p->aOp ) break; 781 pOp--; 782 } 783 sqlite3DbFree(p->db, pParse->aLabel); 784 pParse->aLabel = 0; 785 pParse->nLabel = 0; 786 *pMaxFuncArgs = nMaxArgs; 787 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 788 } 789 790 /* 791 ** Return the address of the next instruction to be inserted. 792 */ 793 int sqlite3VdbeCurrentAddr(Vdbe *p){ 794 assert( p->magic==VDBE_MAGIC_INIT ); 795 return p->nOp; 796 } 797 798 /* 799 ** Verify that at least N opcode slots are available in p without 800 ** having to malloc for more space (except when compiled using 801 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 802 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 803 ** fail due to a OOM fault and hence that the return value from 804 ** sqlite3VdbeAddOpList() will always be non-NULL. 805 */ 806 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 807 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 808 assert( p->nOp + N <= p->pParse->nOpAlloc ); 809 } 810 #endif 811 812 /* 813 ** Verify that the VM passed as the only argument does not contain 814 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 815 ** by code in pragma.c to ensure that the implementation of certain 816 ** pragmas comports with the flags specified in the mkpragmatab.tcl 817 ** script. 818 */ 819 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 820 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 821 int i; 822 for(i=0; i<p->nOp; i++){ 823 assert( p->aOp[i].opcode!=OP_ResultRow ); 824 } 825 } 826 #endif 827 828 /* 829 ** Generate code (a single OP_Abortable opcode) that will 830 ** verify that the VDBE program can safely call Abort in the current 831 ** context. 832 */ 833 #if defined(SQLITE_DEBUG) 834 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ 835 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); 836 } 837 #endif 838 839 /* 840 ** This function returns a pointer to the array of opcodes associated with 841 ** the Vdbe passed as the first argument. It is the callers responsibility 842 ** to arrange for the returned array to be eventually freed using the 843 ** vdbeFreeOpArray() function. 844 ** 845 ** Before returning, *pnOp is set to the number of entries in the returned 846 ** array. Also, *pnMaxArg is set to the larger of its current value and 847 ** the number of entries in the Vdbe.apArg[] array required to execute the 848 ** returned program. 849 */ 850 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 851 VdbeOp *aOp = p->aOp; 852 assert( aOp && !p->db->mallocFailed ); 853 854 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 855 assert( DbMaskAllZero(p->btreeMask) ); 856 857 resolveP2Values(p, pnMaxArg); 858 *pnOp = p->nOp; 859 p->aOp = 0; 860 return aOp; 861 } 862 863 /* 864 ** Add a whole list of operations to the operation stack. Return a 865 ** pointer to the first operation inserted. 866 ** 867 ** Non-zero P2 arguments to jump instructions are automatically adjusted 868 ** so that the jump target is relative to the first operation inserted. 869 */ 870 VdbeOp *sqlite3VdbeAddOpList( 871 Vdbe *p, /* Add opcodes to the prepared statement */ 872 int nOp, /* Number of opcodes to add */ 873 VdbeOpList const *aOp, /* The opcodes to be added */ 874 int iLineno /* Source-file line number of first opcode */ 875 ){ 876 int i; 877 VdbeOp *pOut, *pFirst; 878 assert( nOp>0 ); 879 assert( p->magic==VDBE_MAGIC_INIT ); 880 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ 881 return 0; 882 } 883 pFirst = pOut = &p->aOp[p->nOp]; 884 for(i=0; i<nOp; i++, aOp++, pOut++){ 885 pOut->opcode = aOp->opcode; 886 pOut->p1 = aOp->p1; 887 pOut->p2 = aOp->p2; 888 assert( aOp->p2>=0 ); 889 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 890 pOut->p2 += p->nOp; 891 } 892 pOut->p3 = aOp->p3; 893 pOut->p4type = P4_NOTUSED; 894 pOut->p4.p = 0; 895 pOut->p5 = 0; 896 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 897 pOut->zComment = 0; 898 #endif 899 #ifdef SQLITE_VDBE_COVERAGE 900 pOut->iSrcLine = iLineno+i; 901 #else 902 (void)iLineno; 903 #endif 904 #ifdef SQLITE_DEBUG 905 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 906 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 907 } 908 #endif 909 } 910 p->nOp += nOp; 911 return pFirst; 912 } 913 914 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 915 /* 916 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 917 */ 918 void sqlite3VdbeScanStatus( 919 Vdbe *p, /* VM to add scanstatus() to */ 920 int addrExplain, /* Address of OP_Explain (or 0) */ 921 int addrLoop, /* Address of loop counter */ 922 int addrVisit, /* Address of rows visited counter */ 923 LogEst nEst, /* Estimated number of output rows */ 924 const char *zName /* Name of table or index being scanned */ 925 ){ 926 int nByte = (p->nScan+1) * sizeof(ScanStatus); 927 ScanStatus *aNew; 928 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 929 if( aNew ){ 930 ScanStatus *pNew = &aNew[p->nScan++]; 931 pNew->addrExplain = addrExplain; 932 pNew->addrLoop = addrLoop; 933 pNew->addrVisit = addrVisit; 934 pNew->nEst = nEst; 935 pNew->zName = sqlite3DbStrDup(p->db, zName); 936 p->aScan = aNew; 937 } 938 } 939 #endif 940 941 942 /* 943 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 944 ** for a specific instruction. 945 */ 946 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){ 947 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 948 } 949 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ 950 sqlite3VdbeGetOp(p,addr)->p1 = val; 951 } 952 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ 953 sqlite3VdbeGetOp(p,addr)->p2 = val; 954 } 955 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ 956 sqlite3VdbeGetOp(p,addr)->p3 = val; 957 } 958 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 959 assert( p->nOp>0 || p->db->mallocFailed ); 960 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 961 } 962 963 /* 964 ** Change the P2 operand of instruction addr so that it points to 965 ** the address of the next instruction to be coded. 966 */ 967 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 968 sqlite3VdbeChangeP2(p, addr, p->nOp); 969 } 970 971 972 /* 973 ** If the input FuncDef structure is ephemeral, then free it. If 974 ** the FuncDef is not ephermal, then do nothing. 975 */ 976 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 977 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 978 sqlite3DbFreeNN(db, pDef); 979 } 980 } 981 982 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 983 984 /* 985 ** Delete a P4 value if necessary. 986 */ 987 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 988 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 989 sqlite3DbFreeNN(db, p); 990 } 991 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 992 freeEphemeralFunction(db, p->pFunc); 993 sqlite3DbFreeNN(db, p); 994 } 995 static void freeP4(sqlite3 *db, int p4type, void *p4){ 996 assert( db ); 997 switch( p4type ){ 998 case P4_FUNCCTX: { 999 freeP4FuncCtx(db, (sqlite3_context*)p4); 1000 break; 1001 } 1002 case P4_REAL: 1003 case P4_INT64: 1004 case P4_DYNAMIC: 1005 case P4_DYNBLOB: 1006 case P4_INTARRAY: { 1007 sqlite3DbFree(db, p4); 1008 break; 1009 } 1010 case P4_KEYINFO: { 1011 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 1012 break; 1013 } 1014 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1015 case P4_EXPR: { 1016 sqlite3ExprDelete(db, (Expr*)p4); 1017 break; 1018 } 1019 #endif 1020 case P4_FUNCDEF: { 1021 freeEphemeralFunction(db, (FuncDef*)p4); 1022 break; 1023 } 1024 case P4_MEM: { 1025 if( db->pnBytesFreed==0 ){ 1026 sqlite3ValueFree((sqlite3_value*)p4); 1027 }else{ 1028 freeP4Mem(db, (Mem*)p4); 1029 } 1030 break; 1031 } 1032 case P4_VTAB : { 1033 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 1034 break; 1035 } 1036 } 1037 } 1038 1039 /* 1040 ** Free the space allocated for aOp and any p4 values allocated for the 1041 ** opcodes contained within. If aOp is not NULL it is assumed to contain 1042 ** nOp entries. 1043 */ 1044 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 1045 if( aOp ){ 1046 Op *pOp; 1047 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){ 1048 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 1049 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1050 sqlite3DbFree(db, pOp->zComment); 1051 #endif 1052 } 1053 sqlite3DbFreeNN(db, aOp); 1054 } 1055 } 1056 1057 /* 1058 ** Link the SubProgram object passed as the second argument into the linked 1059 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 1060 ** objects when the VM is no longer required. 1061 */ 1062 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 1063 p->pNext = pVdbe->pProgram; 1064 pVdbe->pProgram = p; 1065 } 1066 1067 /* 1068 ** Change the opcode at addr into OP_Noop 1069 */ 1070 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 1071 VdbeOp *pOp; 1072 if( p->db->mallocFailed ) return 0; 1073 assert( addr>=0 && addr<p->nOp ); 1074 pOp = &p->aOp[addr]; 1075 freeP4(p->db, pOp->p4type, pOp->p4.p); 1076 pOp->p4type = P4_NOTUSED; 1077 pOp->p4.z = 0; 1078 pOp->opcode = OP_Noop; 1079 return 1; 1080 } 1081 1082 /* 1083 ** If the last opcode is "op" and it is not a jump destination, 1084 ** then remove it. Return true if and only if an opcode was removed. 1085 */ 1086 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 1087 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 1088 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 1089 }else{ 1090 return 0; 1091 } 1092 } 1093 1094 /* 1095 ** Change the value of the P4 operand for a specific instruction. 1096 ** This routine is useful when a large program is loaded from a 1097 ** static array using sqlite3VdbeAddOpList but we want to make a 1098 ** few minor changes to the program. 1099 ** 1100 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 1101 ** the string is made into memory obtained from sqlite3_malloc(). 1102 ** A value of n==0 means copy bytes of zP4 up to and including the 1103 ** first null byte. If n>0 then copy n+1 bytes of zP4. 1104 ** 1105 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 1106 ** to a string or structure that is guaranteed to exist for the lifetime of 1107 ** the Vdbe. In these cases we can just copy the pointer. 1108 ** 1109 ** If addr<0 then change P4 on the most recently inserted instruction. 1110 */ 1111 static void SQLITE_NOINLINE vdbeChangeP4Full( 1112 Vdbe *p, 1113 Op *pOp, 1114 const char *zP4, 1115 int n 1116 ){ 1117 if( pOp->p4type ){ 1118 freeP4(p->db, pOp->p4type, pOp->p4.p); 1119 pOp->p4type = 0; 1120 pOp->p4.p = 0; 1121 } 1122 if( n<0 ){ 1123 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 1124 }else{ 1125 if( n==0 ) n = sqlite3Strlen30(zP4); 1126 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 1127 pOp->p4type = P4_DYNAMIC; 1128 } 1129 } 1130 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 1131 Op *pOp; 1132 sqlite3 *db; 1133 assert( p!=0 ); 1134 db = p->db; 1135 assert( p->magic==VDBE_MAGIC_INIT ); 1136 assert( p->aOp!=0 || db->mallocFailed ); 1137 if( db->mallocFailed ){ 1138 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 1139 return; 1140 } 1141 assert( p->nOp>0 ); 1142 assert( addr<p->nOp ); 1143 if( addr<0 ){ 1144 addr = p->nOp - 1; 1145 } 1146 pOp = &p->aOp[addr]; 1147 if( n>=0 || pOp->p4type ){ 1148 vdbeChangeP4Full(p, pOp, zP4, n); 1149 return; 1150 } 1151 if( n==P4_INT32 ){ 1152 /* Note: this cast is safe, because the origin data point was an int 1153 ** that was cast to a (const char *). */ 1154 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 1155 pOp->p4type = P4_INT32; 1156 }else if( zP4!=0 ){ 1157 assert( n<0 ); 1158 pOp->p4.p = (void*)zP4; 1159 pOp->p4type = (signed char)n; 1160 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 1161 } 1162 } 1163 1164 /* 1165 ** Change the P4 operand of the most recently coded instruction 1166 ** to the value defined by the arguments. This is a high-speed 1167 ** version of sqlite3VdbeChangeP4(). 1168 ** 1169 ** The P4 operand must not have been previously defined. And the new 1170 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 1171 ** those cases. 1172 */ 1173 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1174 VdbeOp *pOp; 1175 assert( n!=P4_INT32 && n!=P4_VTAB ); 1176 assert( n<=0 ); 1177 if( p->db->mallocFailed ){ 1178 freeP4(p->db, n, pP4); 1179 }else{ 1180 assert( pP4!=0 ); 1181 assert( p->nOp>0 ); 1182 pOp = &p->aOp[p->nOp-1]; 1183 assert( pOp->p4type==P4_NOTUSED ); 1184 pOp->p4type = n; 1185 pOp->p4.p = pP4; 1186 } 1187 } 1188 1189 /* 1190 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1191 ** index given. 1192 */ 1193 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1194 Vdbe *v = pParse->pVdbe; 1195 KeyInfo *pKeyInfo; 1196 assert( v!=0 ); 1197 assert( pIdx!=0 ); 1198 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1199 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1200 } 1201 1202 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1203 /* 1204 ** Change the comment on the most recently coded instruction. Or 1205 ** insert a No-op and add the comment to that new instruction. This 1206 ** makes the code easier to read during debugging. None of this happens 1207 ** in a production build. 1208 */ 1209 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1210 assert( p->nOp>0 || p->aOp==0 ); 1211 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 1212 if( p->nOp ){ 1213 assert( p->aOp ); 1214 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1215 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1216 } 1217 } 1218 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1219 va_list ap; 1220 if( p ){ 1221 va_start(ap, zFormat); 1222 vdbeVComment(p, zFormat, ap); 1223 va_end(ap); 1224 } 1225 } 1226 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1227 va_list ap; 1228 if( p ){ 1229 sqlite3VdbeAddOp0(p, OP_Noop); 1230 va_start(ap, zFormat); 1231 vdbeVComment(p, zFormat, ap); 1232 va_end(ap); 1233 } 1234 } 1235 #endif /* NDEBUG */ 1236 1237 #ifdef SQLITE_VDBE_COVERAGE 1238 /* 1239 ** Set the value if the iSrcLine field for the previously coded instruction. 1240 */ 1241 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1242 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1243 } 1244 #endif /* SQLITE_VDBE_COVERAGE */ 1245 1246 /* 1247 ** Return the opcode for a given address. If the address is -1, then 1248 ** return the most recently inserted opcode. 1249 ** 1250 ** If a memory allocation error has occurred prior to the calling of this 1251 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1252 ** is readable but not writable, though it is cast to a writable value. 1253 ** The return of a dummy opcode allows the call to continue functioning 1254 ** after an OOM fault without having to check to see if the return from 1255 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1256 ** dummy will never be written to. This is verified by code inspection and 1257 ** by running with Valgrind. 1258 */ 1259 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1260 /* C89 specifies that the constant "dummy" will be initialized to all 1261 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1262 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1263 assert( p->magic==VDBE_MAGIC_INIT ); 1264 if( addr<0 ){ 1265 addr = p->nOp - 1; 1266 } 1267 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1268 if( p->db->mallocFailed ){ 1269 return (VdbeOp*)&dummy; 1270 }else{ 1271 return &p->aOp[addr]; 1272 } 1273 } 1274 1275 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1276 /* 1277 ** Return an integer value for one of the parameters to the opcode pOp 1278 ** determined by character c. 1279 */ 1280 static int translateP(char c, const Op *pOp){ 1281 if( c=='1' ) return pOp->p1; 1282 if( c=='2' ) return pOp->p2; 1283 if( c=='3' ) return pOp->p3; 1284 if( c=='4' ) return pOp->p4.i; 1285 return pOp->p5; 1286 } 1287 1288 /* 1289 ** Compute a string for the "comment" field of a VDBE opcode listing. 1290 ** 1291 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1292 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1293 ** absence of other comments, this synopsis becomes the comment on the opcode. 1294 ** Some translation occurs: 1295 ** 1296 ** "PX" -> "r[X]" 1297 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1298 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1299 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1300 */ 1301 static int displayComment( 1302 const Op *pOp, /* The opcode to be commented */ 1303 const char *zP4, /* Previously obtained value for P4 */ 1304 char *zTemp, /* Write result here */ 1305 int nTemp /* Space available in zTemp[] */ 1306 ){ 1307 const char *zOpName; 1308 const char *zSynopsis; 1309 int nOpName; 1310 int ii, jj; 1311 char zAlt[50]; 1312 zOpName = sqlite3OpcodeName(pOp->opcode); 1313 nOpName = sqlite3Strlen30(zOpName); 1314 if( zOpName[nOpName+1] ){ 1315 int seenCom = 0; 1316 char c; 1317 zSynopsis = zOpName += nOpName + 1; 1318 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1319 if( pOp->p5 & SQLITE_STOREP2 ){ 1320 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3); 1321 }else{ 1322 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1323 } 1324 zSynopsis = zAlt; 1325 } 1326 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 1327 if( c=='P' ){ 1328 c = zSynopsis[++ii]; 1329 if( c=='4' ){ 1330 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 1331 }else if( c=='X' ){ 1332 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 1333 seenCom = 1; 1334 }else{ 1335 int v1 = translateP(c, pOp); 1336 int v2; 1337 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 1338 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1339 ii += 3; 1340 jj += sqlite3Strlen30(zTemp+jj); 1341 v2 = translateP(zSynopsis[ii], pOp); 1342 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1343 ii += 2; 1344 v2++; 1345 } 1346 if( v2>1 ){ 1347 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 1348 } 1349 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1350 ii += 4; 1351 } 1352 } 1353 jj += sqlite3Strlen30(zTemp+jj); 1354 }else{ 1355 zTemp[jj++] = c; 1356 } 1357 } 1358 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 1359 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 1360 jj += sqlite3Strlen30(zTemp+jj); 1361 } 1362 if( jj<nTemp ) zTemp[jj] = 0; 1363 }else if( pOp->zComment ){ 1364 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 1365 jj = sqlite3Strlen30(zTemp); 1366 }else{ 1367 zTemp[0] = 0; 1368 jj = 0; 1369 } 1370 return jj; 1371 } 1372 #endif /* SQLITE_DEBUG */ 1373 1374 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1375 /* 1376 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1377 ** that can be displayed in the P4 column of EXPLAIN output. 1378 */ 1379 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1380 const char *zOp = 0; 1381 switch( pExpr->op ){ 1382 case TK_STRING: 1383 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); 1384 break; 1385 case TK_INTEGER: 1386 sqlite3_str_appendf(p, "%d", pExpr->u.iValue); 1387 break; 1388 case TK_NULL: 1389 sqlite3_str_appendf(p, "NULL"); 1390 break; 1391 case TK_REGISTER: { 1392 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); 1393 break; 1394 } 1395 case TK_COLUMN: { 1396 if( pExpr->iColumn<0 ){ 1397 sqlite3_str_appendf(p, "rowid"); 1398 }else{ 1399 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); 1400 } 1401 break; 1402 } 1403 case TK_LT: zOp = "LT"; break; 1404 case TK_LE: zOp = "LE"; break; 1405 case TK_GT: zOp = "GT"; break; 1406 case TK_GE: zOp = "GE"; break; 1407 case TK_NE: zOp = "NE"; break; 1408 case TK_EQ: zOp = "EQ"; break; 1409 case TK_IS: zOp = "IS"; break; 1410 case TK_ISNOT: zOp = "ISNOT"; break; 1411 case TK_AND: zOp = "AND"; break; 1412 case TK_OR: zOp = "OR"; break; 1413 case TK_PLUS: zOp = "ADD"; break; 1414 case TK_STAR: zOp = "MUL"; break; 1415 case TK_MINUS: zOp = "SUB"; break; 1416 case TK_REM: zOp = "REM"; break; 1417 case TK_BITAND: zOp = "BITAND"; break; 1418 case TK_BITOR: zOp = "BITOR"; break; 1419 case TK_SLASH: zOp = "DIV"; break; 1420 case TK_LSHIFT: zOp = "LSHIFT"; break; 1421 case TK_RSHIFT: zOp = "RSHIFT"; break; 1422 case TK_CONCAT: zOp = "CONCAT"; break; 1423 case TK_UMINUS: zOp = "MINUS"; break; 1424 case TK_UPLUS: zOp = "PLUS"; break; 1425 case TK_BITNOT: zOp = "BITNOT"; break; 1426 case TK_NOT: zOp = "NOT"; break; 1427 case TK_ISNULL: zOp = "ISNULL"; break; 1428 case TK_NOTNULL: zOp = "NOTNULL"; break; 1429 1430 default: 1431 sqlite3_str_appendf(p, "%s", "expr"); 1432 break; 1433 } 1434 1435 if( zOp ){ 1436 sqlite3_str_appendf(p, "%s(", zOp); 1437 displayP4Expr(p, pExpr->pLeft); 1438 if( pExpr->pRight ){ 1439 sqlite3_str_append(p, ",", 1); 1440 displayP4Expr(p, pExpr->pRight); 1441 } 1442 sqlite3_str_append(p, ")", 1); 1443 } 1444 } 1445 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1446 1447 1448 #if VDBE_DISPLAY_P4 1449 /* 1450 ** Compute a string that describes the P4 parameter for an opcode. 1451 ** Use zTemp for any required temporary buffer space. 1452 */ 1453 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 1454 char *zP4 = zTemp; 1455 StrAccum x; 1456 assert( nTemp>=20 ); 1457 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0); 1458 switch( pOp->p4type ){ 1459 case P4_KEYINFO: { 1460 int j; 1461 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1462 assert( pKeyInfo->aSortOrder!=0 ); 1463 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); 1464 for(j=0; j<pKeyInfo->nKeyField; j++){ 1465 CollSeq *pColl = pKeyInfo->aColl[j]; 1466 const char *zColl = pColl ? pColl->zName : ""; 1467 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1468 sqlite3_str_appendf(&x, ",%s%s", 1469 pKeyInfo->aSortOrder[j] ? "-" : "", zColl); 1470 } 1471 sqlite3_str_append(&x, ")", 1); 1472 break; 1473 } 1474 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1475 case P4_EXPR: { 1476 displayP4Expr(&x, pOp->p4.pExpr); 1477 break; 1478 } 1479 #endif 1480 case P4_COLLSEQ: { 1481 CollSeq *pColl = pOp->p4.pColl; 1482 sqlite3_str_appendf(&x, "(%.20s)", pColl->zName); 1483 break; 1484 } 1485 case P4_FUNCDEF: { 1486 FuncDef *pDef = pOp->p4.pFunc; 1487 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1488 break; 1489 } 1490 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1491 case P4_FUNCCTX: { 1492 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1493 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1494 break; 1495 } 1496 #endif 1497 case P4_INT64: { 1498 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); 1499 break; 1500 } 1501 case P4_INT32: { 1502 sqlite3_str_appendf(&x, "%d", pOp->p4.i); 1503 break; 1504 } 1505 case P4_REAL: { 1506 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); 1507 break; 1508 } 1509 case P4_MEM: { 1510 Mem *pMem = pOp->p4.pMem; 1511 if( pMem->flags & MEM_Str ){ 1512 zP4 = pMem->z; 1513 }else if( pMem->flags & MEM_Int ){ 1514 sqlite3_str_appendf(&x, "%lld", pMem->u.i); 1515 }else if( pMem->flags & MEM_Real ){ 1516 sqlite3_str_appendf(&x, "%.16g", pMem->u.r); 1517 }else if( pMem->flags & MEM_Null ){ 1518 zP4 = "NULL"; 1519 }else{ 1520 assert( pMem->flags & MEM_Blob ); 1521 zP4 = "(blob)"; 1522 } 1523 break; 1524 } 1525 #ifndef SQLITE_OMIT_VIRTUALTABLE 1526 case P4_VTAB: { 1527 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1528 sqlite3_str_appendf(&x, "vtab:%p", pVtab); 1529 break; 1530 } 1531 #endif 1532 case P4_INTARRAY: { 1533 int i; 1534 int *ai = pOp->p4.ai; 1535 int n = ai[0]; /* The first element of an INTARRAY is always the 1536 ** count of the number of elements to follow */ 1537 for(i=1; i<=n; i++){ 1538 sqlite3_str_appendf(&x, ",%d", ai[i]); 1539 } 1540 zTemp[0] = '['; 1541 sqlite3_str_append(&x, "]", 1); 1542 break; 1543 } 1544 case P4_SUBPROGRAM: { 1545 sqlite3_str_appendf(&x, "program"); 1546 break; 1547 } 1548 case P4_DYNBLOB: 1549 case P4_ADVANCE: { 1550 zTemp[0] = 0; 1551 break; 1552 } 1553 case P4_TABLE: { 1554 sqlite3_str_appendf(&x, "%s", pOp->p4.pTab->zName); 1555 break; 1556 } 1557 default: { 1558 zP4 = pOp->p4.z; 1559 if( zP4==0 ){ 1560 zP4 = zTemp; 1561 zTemp[0] = 0; 1562 } 1563 } 1564 } 1565 sqlite3StrAccumFinish(&x); 1566 assert( zP4!=0 ); 1567 return zP4; 1568 } 1569 #endif /* VDBE_DISPLAY_P4 */ 1570 1571 /* 1572 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1573 ** 1574 ** The prepared statements need to know in advance the complete set of 1575 ** attached databases that will be use. A mask of these databases 1576 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1577 ** p->btreeMask of databases that will require a lock. 1578 */ 1579 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1580 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1581 assert( i<(int)sizeof(p->btreeMask)*8 ); 1582 DbMaskSet(p->btreeMask, i); 1583 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1584 DbMaskSet(p->lockMask, i); 1585 } 1586 } 1587 1588 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1589 /* 1590 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1591 ** this routine obtains the mutex associated with each BtShared structure 1592 ** that may be accessed by the VM passed as an argument. In doing so it also 1593 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1594 ** that the correct busy-handler callback is invoked if required. 1595 ** 1596 ** If SQLite is not threadsafe but does support shared-cache mode, then 1597 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1598 ** of all of BtShared structures accessible via the database handle 1599 ** associated with the VM. 1600 ** 1601 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1602 ** function is a no-op. 1603 ** 1604 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1605 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1606 ** corresponding to btrees that use shared cache. Then the runtime of 1607 ** this routine is N*N. But as N is rarely more than 1, this should not 1608 ** be a problem. 1609 */ 1610 void sqlite3VdbeEnter(Vdbe *p){ 1611 int i; 1612 sqlite3 *db; 1613 Db *aDb; 1614 int nDb; 1615 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1616 db = p->db; 1617 aDb = db->aDb; 1618 nDb = db->nDb; 1619 for(i=0; i<nDb; i++){ 1620 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1621 sqlite3BtreeEnter(aDb[i].pBt); 1622 } 1623 } 1624 } 1625 #endif 1626 1627 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1628 /* 1629 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1630 */ 1631 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1632 int i; 1633 sqlite3 *db; 1634 Db *aDb; 1635 int nDb; 1636 db = p->db; 1637 aDb = db->aDb; 1638 nDb = db->nDb; 1639 for(i=0; i<nDb; i++){ 1640 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1641 sqlite3BtreeLeave(aDb[i].pBt); 1642 } 1643 } 1644 } 1645 void sqlite3VdbeLeave(Vdbe *p){ 1646 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1647 vdbeLeave(p); 1648 } 1649 #endif 1650 1651 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1652 /* 1653 ** Print a single opcode. This routine is used for debugging only. 1654 */ 1655 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ 1656 char *zP4; 1657 char zPtr[50]; 1658 char zCom[100]; 1659 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1660 if( pOut==0 ) pOut = stdout; 1661 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1662 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1663 displayComment(pOp, zP4, zCom, sizeof(zCom)); 1664 #else 1665 zCom[0] = 0; 1666 #endif 1667 /* NB: The sqlite3OpcodeName() function is implemented by code created 1668 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1669 ** information from the vdbe.c source text */ 1670 fprintf(pOut, zFormat1, pc, 1671 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1672 zCom 1673 ); 1674 fflush(pOut); 1675 } 1676 #endif 1677 1678 /* 1679 ** Initialize an array of N Mem element. 1680 */ 1681 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1682 while( (N--)>0 ){ 1683 p->db = db; 1684 p->flags = flags; 1685 p->szMalloc = 0; 1686 #ifdef SQLITE_DEBUG 1687 p->pScopyFrom = 0; 1688 #endif 1689 p++; 1690 } 1691 } 1692 1693 /* 1694 ** Release an array of N Mem elements 1695 */ 1696 static void releaseMemArray(Mem *p, int N){ 1697 if( p && N ){ 1698 Mem *pEnd = &p[N]; 1699 sqlite3 *db = p->db; 1700 if( db->pnBytesFreed ){ 1701 do{ 1702 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1703 }while( (++p)<pEnd ); 1704 return; 1705 } 1706 do{ 1707 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1708 assert( sqlite3VdbeCheckMemInvariants(p) ); 1709 1710 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1711 ** that takes advantage of the fact that the memory cell value is 1712 ** being set to NULL after releasing any dynamic resources. 1713 ** 1714 ** The justification for duplicating code is that according to 1715 ** callgrind, this causes a certain test case to hit the CPU 4.7 1716 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1717 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1718 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1719 ** with no indexes using a single prepared INSERT statement, bind() 1720 ** and reset(). Inserts are grouped into a transaction. 1721 */ 1722 testcase( p->flags & MEM_Agg ); 1723 testcase( p->flags & MEM_Dyn ); 1724 testcase( p->xDel==sqlite3VdbeFrameMemDel ); 1725 if( p->flags&(MEM_Agg|MEM_Dyn) ){ 1726 sqlite3VdbeMemRelease(p); 1727 }else if( p->szMalloc ){ 1728 sqlite3DbFreeNN(db, p->zMalloc); 1729 p->szMalloc = 0; 1730 } 1731 1732 p->flags = MEM_Undefined; 1733 }while( (++p)<pEnd ); 1734 } 1735 } 1736 1737 #ifdef SQLITE_DEBUG 1738 /* 1739 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is 1740 ** and false if something is wrong. 1741 ** 1742 ** This routine is intended for use inside of assert() statements only. 1743 */ 1744 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){ 1745 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; 1746 return 1; 1747 } 1748 #endif 1749 1750 1751 /* 1752 ** This is a destructor on a Mem object (which is really an sqlite3_value) 1753 ** that deletes the Frame object that is attached to it as a blob. 1754 ** 1755 ** This routine does not delete the Frame right away. It merely adds the 1756 ** frame to a list of frames to be deleted when the Vdbe halts. 1757 */ 1758 void sqlite3VdbeFrameMemDel(void *pArg){ 1759 VdbeFrame *pFrame = (VdbeFrame*)pArg; 1760 assert( sqlite3VdbeFrameIsValid(pFrame) ); 1761 pFrame->pParent = pFrame->v->pDelFrame; 1762 pFrame->v->pDelFrame = pFrame; 1763 } 1764 1765 1766 /* 1767 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1768 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1769 */ 1770 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1771 int i; 1772 Mem *aMem = VdbeFrameMem(p); 1773 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1774 assert( sqlite3VdbeFrameIsValid(p) ); 1775 for(i=0; i<p->nChildCsr; i++){ 1776 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1777 } 1778 releaseMemArray(aMem, p->nChildMem); 1779 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 1780 sqlite3DbFree(p->v->db, p); 1781 } 1782 1783 #ifndef SQLITE_OMIT_EXPLAIN 1784 /* 1785 ** Give a listing of the program in the virtual machine. 1786 ** 1787 ** The interface is the same as sqlite3VdbeExec(). But instead of 1788 ** running the code, it invokes the callback once for each instruction. 1789 ** This feature is used to implement "EXPLAIN". 1790 ** 1791 ** When p->explain==1, each instruction is listed. When 1792 ** p->explain==2, only OP_Explain instructions are listed and these 1793 ** are shown in a different format. p->explain==2 is used to implement 1794 ** EXPLAIN QUERY PLAN. 1795 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers 1796 ** are also shown, so that the boundaries between the main program and 1797 ** each trigger are clear. 1798 ** 1799 ** When p->explain==1, first the main program is listed, then each of 1800 ** the trigger subprograms are listed one by one. 1801 */ 1802 int sqlite3VdbeList( 1803 Vdbe *p /* The VDBE */ 1804 ){ 1805 int nRow; /* Stop when row count reaches this */ 1806 int nSub = 0; /* Number of sub-vdbes seen so far */ 1807 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1808 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1809 sqlite3 *db = p->db; /* The database connection */ 1810 int i; /* Loop counter */ 1811 int rc = SQLITE_OK; /* Return code */ 1812 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 1813 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); 1814 Op *pOp = 0; 1815 1816 assert( p->explain ); 1817 assert( p->magic==VDBE_MAGIC_RUN ); 1818 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1819 1820 /* Even though this opcode does not use dynamic strings for 1821 ** the result, result columns may become dynamic if the user calls 1822 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1823 */ 1824 releaseMemArray(pMem, 8); 1825 p->pResultSet = 0; 1826 1827 if( p->rc==SQLITE_NOMEM ){ 1828 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1829 ** sqlite3_column_text16() failed. */ 1830 sqlite3OomFault(db); 1831 return SQLITE_ERROR; 1832 } 1833 1834 /* When the number of output rows reaches nRow, that means the 1835 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1836 ** nRow is the sum of the number of rows in the main program, plus 1837 ** the sum of the number of rows in all trigger subprograms encountered 1838 ** so far. The nRow value will increase as new trigger subprograms are 1839 ** encountered, but p->pc will eventually catch up to nRow. 1840 */ 1841 nRow = p->nOp; 1842 if( bListSubprogs ){ 1843 /* The first 8 memory cells are used for the result set. So we will 1844 ** commandeer the 9th cell to use as storage for an array of pointers 1845 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1846 ** cells. */ 1847 assert( p->nMem>9 ); 1848 pSub = &p->aMem[9]; 1849 if( pSub->flags&MEM_Blob ){ 1850 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1851 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1852 nSub = pSub->n/sizeof(Vdbe*); 1853 apSub = (SubProgram **)pSub->z; 1854 } 1855 for(i=0; i<nSub; i++){ 1856 nRow += apSub[i]->nOp; 1857 } 1858 } 1859 1860 while(1){ /* Loop exits via break */ 1861 i = p->pc++; 1862 if( i>=nRow ){ 1863 p->rc = SQLITE_OK; 1864 rc = SQLITE_DONE; 1865 break; 1866 } 1867 if( i<p->nOp ){ 1868 /* The output line number is small enough that we are still in the 1869 ** main program. */ 1870 pOp = &p->aOp[i]; 1871 }else{ 1872 /* We are currently listing subprograms. Figure out which one and 1873 ** pick up the appropriate opcode. */ 1874 int j; 1875 i -= p->nOp; 1876 for(j=0; i>=apSub[j]->nOp; j++){ 1877 i -= apSub[j]->nOp; 1878 } 1879 pOp = &apSub[j]->aOp[i]; 1880 } 1881 1882 /* When an OP_Program opcode is encounter (the only opcode that has 1883 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1884 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1885 ** has not already been seen. 1886 */ 1887 if( bListSubprogs && pOp->p4type==P4_SUBPROGRAM ){ 1888 int nByte = (nSub+1)*sizeof(SubProgram*); 1889 int j; 1890 for(j=0; j<nSub; j++){ 1891 if( apSub[j]==pOp->p4.pProgram ) break; 1892 } 1893 if( j==nSub ){ 1894 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); 1895 if( p->rc!=SQLITE_OK ){ 1896 rc = SQLITE_ERROR; 1897 break; 1898 } 1899 apSub = (SubProgram **)pSub->z; 1900 apSub[nSub++] = pOp->p4.pProgram; 1901 pSub->flags |= MEM_Blob; 1902 pSub->n = nSub*sizeof(SubProgram*); 1903 nRow += pOp->p4.pProgram->nOp; 1904 } 1905 } 1906 if( p->explain<2 ) break; 1907 if( pOp->opcode==OP_Explain ) break; 1908 if( pOp->opcode==OP_Init && p->pc>1 ) break; 1909 } 1910 1911 if( rc==SQLITE_OK ){ 1912 if( db->u1.isInterrupted ){ 1913 p->rc = SQLITE_INTERRUPT; 1914 rc = SQLITE_ERROR; 1915 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 1916 }else{ 1917 char *zP4; 1918 if( p->explain==1 ){ 1919 pMem->flags = MEM_Int; 1920 pMem->u.i = i; /* Program counter */ 1921 pMem++; 1922 1923 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1924 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1925 assert( pMem->z!=0 ); 1926 pMem->n = sqlite3Strlen30(pMem->z); 1927 pMem->enc = SQLITE_UTF8; 1928 pMem++; 1929 } 1930 1931 pMem->flags = MEM_Int; 1932 pMem->u.i = pOp->p1; /* P1 */ 1933 pMem++; 1934 1935 pMem->flags = MEM_Int; 1936 pMem->u.i = pOp->p2; /* P2 */ 1937 pMem++; 1938 1939 pMem->flags = MEM_Int; 1940 pMem->u.i = pOp->p3; /* P3 */ 1941 pMem++; 1942 1943 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */ 1944 assert( p->db->mallocFailed ); 1945 return SQLITE_ERROR; 1946 } 1947 pMem->flags = MEM_Str|MEM_Term; 1948 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc); 1949 if( zP4!=pMem->z ){ 1950 pMem->n = 0; 1951 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 1952 }else{ 1953 assert( pMem->z!=0 ); 1954 pMem->n = sqlite3Strlen30(pMem->z); 1955 pMem->enc = SQLITE_UTF8; 1956 } 1957 pMem++; 1958 1959 if( p->explain==1 ){ 1960 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ 1961 assert( p->db->mallocFailed ); 1962 return SQLITE_ERROR; 1963 } 1964 pMem->flags = MEM_Str|MEM_Term; 1965 pMem->n = 2; 1966 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1967 pMem->enc = SQLITE_UTF8; 1968 pMem++; 1969 1970 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1971 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ 1972 assert( p->db->mallocFailed ); 1973 return SQLITE_ERROR; 1974 } 1975 pMem->flags = MEM_Str|MEM_Term; 1976 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 1977 pMem->enc = SQLITE_UTF8; 1978 #else 1979 pMem->flags = MEM_Null; /* Comment */ 1980 #endif 1981 } 1982 1983 p->nResColumn = 8 - 4*(p->explain-1); 1984 p->pResultSet = &p->aMem[1]; 1985 p->rc = SQLITE_OK; 1986 rc = SQLITE_ROW; 1987 } 1988 } 1989 return rc; 1990 } 1991 #endif /* SQLITE_OMIT_EXPLAIN */ 1992 1993 #ifdef SQLITE_DEBUG 1994 /* 1995 ** Print the SQL that was used to generate a VDBE program. 1996 */ 1997 void sqlite3VdbePrintSql(Vdbe *p){ 1998 const char *z = 0; 1999 if( p->zSql ){ 2000 z = p->zSql; 2001 }else if( p->nOp>=1 ){ 2002 const VdbeOp *pOp = &p->aOp[0]; 2003 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2004 z = pOp->p4.z; 2005 while( sqlite3Isspace(*z) ) z++; 2006 } 2007 } 2008 if( z ) printf("SQL: [%s]\n", z); 2009 } 2010 #endif 2011 2012 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 2013 /* 2014 ** Print an IOTRACE message showing SQL content. 2015 */ 2016 void sqlite3VdbeIOTraceSql(Vdbe *p){ 2017 int nOp = p->nOp; 2018 VdbeOp *pOp; 2019 if( sqlite3IoTrace==0 ) return; 2020 if( nOp<1 ) return; 2021 pOp = &p->aOp[0]; 2022 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2023 int i, j; 2024 char z[1000]; 2025 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 2026 for(i=0; sqlite3Isspace(z[i]); i++){} 2027 for(j=0; z[i]; i++){ 2028 if( sqlite3Isspace(z[i]) ){ 2029 if( z[i-1]!=' ' ){ 2030 z[j++] = ' '; 2031 } 2032 }else{ 2033 z[j++] = z[i]; 2034 } 2035 } 2036 z[j] = 0; 2037 sqlite3IoTrace("SQL %s\n", z); 2038 } 2039 } 2040 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 2041 2042 /* An instance of this object describes bulk memory available for use 2043 ** by subcomponents of a prepared statement. Space is allocated out 2044 ** of a ReusableSpace object by the allocSpace() routine below. 2045 */ 2046 struct ReusableSpace { 2047 u8 *pSpace; /* Available memory */ 2048 int nFree; /* Bytes of available memory */ 2049 int nNeeded; /* Total bytes that could not be allocated */ 2050 }; 2051 2052 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 2053 ** from the ReusableSpace object. Return a pointer to the allocated 2054 ** memory on success. If insufficient memory is available in the 2055 ** ReusableSpace object, increase the ReusableSpace.nNeeded 2056 ** value by the amount needed and return NULL. 2057 ** 2058 ** If pBuf is not initially NULL, that means that the memory has already 2059 ** been allocated by a prior call to this routine, so just return a copy 2060 ** of pBuf and leave ReusableSpace unchanged. 2061 ** 2062 ** This allocator is employed to repurpose unused slots at the end of the 2063 ** opcode array of prepared state for other memory needs of the prepared 2064 ** statement. 2065 */ 2066 static void *allocSpace( 2067 struct ReusableSpace *p, /* Bulk memory available for allocation */ 2068 void *pBuf, /* Pointer to a prior allocation */ 2069 int nByte /* Bytes of memory needed */ 2070 ){ 2071 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 2072 if( pBuf==0 ){ 2073 nByte = ROUND8(nByte); 2074 if( nByte <= p->nFree ){ 2075 p->nFree -= nByte; 2076 pBuf = &p->pSpace[p->nFree]; 2077 }else{ 2078 p->nNeeded += nByte; 2079 } 2080 } 2081 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 2082 return pBuf; 2083 } 2084 2085 /* 2086 ** Rewind the VDBE back to the beginning in preparation for 2087 ** running it. 2088 */ 2089 void sqlite3VdbeRewind(Vdbe *p){ 2090 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 2091 int i; 2092 #endif 2093 assert( p!=0 ); 2094 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET ); 2095 2096 /* There should be at least one opcode. 2097 */ 2098 assert( p->nOp>0 ); 2099 2100 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 2101 p->magic = VDBE_MAGIC_RUN; 2102 2103 #ifdef SQLITE_DEBUG 2104 for(i=0; i<p->nMem; i++){ 2105 assert( p->aMem[i].db==p->db ); 2106 } 2107 #endif 2108 p->pc = -1; 2109 p->rc = SQLITE_OK; 2110 p->errorAction = OE_Abort; 2111 p->nChange = 0; 2112 p->cacheCtr = 1; 2113 p->minWriteFileFormat = 255; 2114 p->iStatement = 0; 2115 p->nFkConstraint = 0; 2116 #ifdef VDBE_PROFILE 2117 for(i=0; i<p->nOp; i++){ 2118 p->aOp[i].cnt = 0; 2119 p->aOp[i].cycles = 0; 2120 } 2121 #endif 2122 } 2123 2124 /* 2125 ** Prepare a virtual machine for execution for the first time after 2126 ** creating the virtual machine. This involves things such 2127 ** as allocating registers and initializing the program counter. 2128 ** After the VDBE has be prepped, it can be executed by one or more 2129 ** calls to sqlite3VdbeExec(). 2130 ** 2131 ** This function may be called exactly once on each virtual machine. 2132 ** After this routine is called the VM has been "packaged" and is ready 2133 ** to run. After this routine is called, further calls to 2134 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 2135 ** the Vdbe from the Parse object that helped generate it so that the 2136 ** the Vdbe becomes an independent entity and the Parse object can be 2137 ** destroyed. 2138 ** 2139 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 2140 ** to its initial state after it has been run. 2141 */ 2142 void sqlite3VdbeMakeReady( 2143 Vdbe *p, /* The VDBE */ 2144 Parse *pParse /* Parsing context */ 2145 ){ 2146 sqlite3 *db; /* The database connection */ 2147 int nVar; /* Number of parameters */ 2148 int nMem; /* Number of VM memory registers */ 2149 int nCursor; /* Number of cursors required */ 2150 int nArg; /* Number of arguments in subprograms */ 2151 int n; /* Loop counter */ 2152 struct ReusableSpace x; /* Reusable bulk memory */ 2153 2154 assert( p!=0 ); 2155 assert( p->nOp>0 ); 2156 assert( pParse!=0 ); 2157 assert( p->magic==VDBE_MAGIC_INIT ); 2158 assert( pParse==p->pParse ); 2159 db = p->db; 2160 assert( db->mallocFailed==0 ); 2161 nVar = pParse->nVar; 2162 nMem = pParse->nMem; 2163 nCursor = pParse->nTab; 2164 nArg = pParse->nMaxArg; 2165 2166 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 2167 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 2168 ** space at the end of aMem[] for cursors 1 and greater. 2169 ** See also: allocateCursor(). 2170 */ 2171 nMem += nCursor; 2172 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 2173 2174 /* Figure out how much reusable memory is available at the end of the 2175 ** opcode array. This extra memory will be reallocated for other elements 2176 ** of the prepared statement. 2177 */ 2178 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 2179 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 2180 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 2181 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 2182 assert( x.nFree>=0 ); 2183 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 2184 2185 resolveP2Values(p, &nArg); 2186 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 2187 if( pParse->explain && nMem<10 ){ 2188 nMem = 10; 2189 } 2190 p->expired = 0; 2191 2192 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 2193 ** passes. On the first pass, we try to reuse unused memory at the 2194 ** end of the opcode array. If we are unable to satisfy all memory 2195 ** requirements by reusing the opcode array tail, then the second 2196 ** pass will fill in the remainder using a fresh memory allocation. 2197 ** 2198 ** This two-pass approach that reuses as much memory as possible from 2199 ** the leftover memory at the end of the opcode array. This can significantly 2200 ** reduce the amount of memory held by a prepared statement. 2201 */ 2202 do { 2203 x.nNeeded = 0; 2204 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 2205 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 2206 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 2207 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 2208 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2209 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 2210 #endif 2211 if( x.nNeeded==0 ) break; 2212 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 2213 x.nFree = x.nNeeded; 2214 }while( !db->mallocFailed ); 2215 2216 p->pVList = pParse->pVList; 2217 pParse->pVList = 0; 2218 p->explain = pParse->explain; 2219 if( db->mallocFailed ){ 2220 p->nVar = 0; 2221 p->nCursor = 0; 2222 p->nMem = 0; 2223 }else{ 2224 p->nCursor = nCursor; 2225 p->nVar = (ynVar)nVar; 2226 initMemArray(p->aVar, nVar, db, MEM_Null); 2227 p->nMem = nMem; 2228 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2229 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2230 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2231 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2232 #endif 2233 } 2234 sqlite3VdbeRewind(p); 2235 } 2236 2237 /* 2238 ** Close a VDBE cursor and release all the resources that cursor 2239 ** happens to hold. 2240 */ 2241 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2242 if( pCx==0 ){ 2243 return; 2244 } 2245 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE ); 2246 switch( pCx->eCurType ){ 2247 case CURTYPE_SORTER: { 2248 sqlite3VdbeSorterClose(p->db, pCx); 2249 break; 2250 } 2251 case CURTYPE_BTREE: { 2252 if( pCx->isEphemeral ){ 2253 if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx); 2254 /* The pCx->pCursor will be close automatically, if it exists, by 2255 ** the call above. */ 2256 }else{ 2257 assert( pCx->uc.pCursor!=0 ); 2258 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2259 } 2260 break; 2261 } 2262 #ifndef SQLITE_OMIT_VIRTUALTABLE 2263 case CURTYPE_VTAB: { 2264 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2265 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2266 assert( pVCur->pVtab->nRef>0 ); 2267 pVCur->pVtab->nRef--; 2268 pModule->xClose(pVCur); 2269 break; 2270 } 2271 #endif 2272 } 2273 } 2274 2275 /* 2276 ** Close all cursors in the current frame. 2277 */ 2278 static void closeCursorsInFrame(Vdbe *p){ 2279 if( p->apCsr ){ 2280 int i; 2281 for(i=0; i<p->nCursor; i++){ 2282 VdbeCursor *pC = p->apCsr[i]; 2283 if( pC ){ 2284 sqlite3VdbeFreeCursor(p, pC); 2285 p->apCsr[i] = 0; 2286 } 2287 } 2288 } 2289 } 2290 2291 /* 2292 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2293 ** is used, for example, when a trigger sub-program is halted to restore 2294 ** control to the main program. 2295 */ 2296 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2297 Vdbe *v = pFrame->v; 2298 closeCursorsInFrame(v); 2299 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2300 v->anExec = pFrame->anExec; 2301 #endif 2302 v->aOp = pFrame->aOp; 2303 v->nOp = pFrame->nOp; 2304 v->aMem = pFrame->aMem; 2305 v->nMem = pFrame->nMem; 2306 v->apCsr = pFrame->apCsr; 2307 v->nCursor = pFrame->nCursor; 2308 v->db->lastRowid = pFrame->lastRowid; 2309 v->nChange = pFrame->nChange; 2310 v->db->nChange = pFrame->nDbChange; 2311 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2312 v->pAuxData = pFrame->pAuxData; 2313 pFrame->pAuxData = 0; 2314 return pFrame->pc; 2315 } 2316 2317 /* 2318 ** Close all cursors. 2319 ** 2320 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2321 ** cell array. This is necessary as the memory cell array may contain 2322 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2323 ** open cursors. 2324 */ 2325 static void closeAllCursors(Vdbe *p){ 2326 if( p->pFrame ){ 2327 VdbeFrame *pFrame; 2328 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2329 sqlite3VdbeFrameRestore(pFrame); 2330 p->pFrame = 0; 2331 p->nFrame = 0; 2332 } 2333 assert( p->nFrame==0 ); 2334 closeCursorsInFrame(p); 2335 if( p->aMem ){ 2336 releaseMemArray(p->aMem, p->nMem); 2337 } 2338 while( p->pDelFrame ){ 2339 VdbeFrame *pDel = p->pDelFrame; 2340 p->pDelFrame = pDel->pParent; 2341 sqlite3VdbeFrameDelete(pDel); 2342 } 2343 2344 /* Delete any auxdata allocations made by the VM */ 2345 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2346 assert( p->pAuxData==0 ); 2347 } 2348 2349 /* 2350 ** Set the number of result columns that will be returned by this SQL 2351 ** statement. This is now set at compile time, rather than during 2352 ** execution of the vdbe program so that sqlite3_column_count() can 2353 ** be called on an SQL statement before sqlite3_step(). 2354 */ 2355 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2356 int n; 2357 sqlite3 *db = p->db; 2358 2359 if( p->nResColumn ){ 2360 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2361 sqlite3DbFree(db, p->aColName); 2362 } 2363 n = nResColumn*COLNAME_N; 2364 p->nResColumn = (u16)nResColumn; 2365 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2366 if( p->aColName==0 ) return; 2367 initMemArray(p->aColName, n, db, MEM_Null); 2368 } 2369 2370 /* 2371 ** Set the name of the idx'th column to be returned by the SQL statement. 2372 ** zName must be a pointer to a nul terminated string. 2373 ** 2374 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2375 ** 2376 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2377 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2378 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2379 */ 2380 int sqlite3VdbeSetColName( 2381 Vdbe *p, /* Vdbe being configured */ 2382 int idx, /* Index of column zName applies to */ 2383 int var, /* One of the COLNAME_* constants */ 2384 const char *zName, /* Pointer to buffer containing name */ 2385 void (*xDel)(void*) /* Memory management strategy for zName */ 2386 ){ 2387 int rc; 2388 Mem *pColName; 2389 assert( idx<p->nResColumn ); 2390 assert( var<COLNAME_N ); 2391 if( p->db->mallocFailed ){ 2392 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2393 return SQLITE_NOMEM_BKPT; 2394 } 2395 assert( p->aColName!=0 ); 2396 pColName = &(p->aColName[idx+var*p->nResColumn]); 2397 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2398 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2399 return rc; 2400 } 2401 2402 /* 2403 ** A read or write transaction may or may not be active on database handle 2404 ** db. If a transaction is active, commit it. If there is a 2405 ** write-transaction spanning more than one database file, this routine 2406 ** takes care of the master journal trickery. 2407 */ 2408 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2409 int i; 2410 int nTrans = 0; /* Number of databases with an active write-transaction 2411 ** that are candidates for a two-phase commit using a 2412 ** master-journal */ 2413 int rc = SQLITE_OK; 2414 int needXcommit = 0; 2415 2416 #ifdef SQLITE_OMIT_VIRTUALTABLE 2417 /* With this option, sqlite3VtabSync() is defined to be simply 2418 ** SQLITE_OK so p is not used. 2419 */ 2420 UNUSED_PARAMETER(p); 2421 #endif 2422 2423 /* Before doing anything else, call the xSync() callback for any 2424 ** virtual module tables written in this transaction. This has to 2425 ** be done before determining whether a master journal file is 2426 ** required, as an xSync() callback may add an attached database 2427 ** to the transaction. 2428 */ 2429 rc = sqlite3VtabSync(db, p); 2430 2431 /* This loop determines (a) if the commit hook should be invoked and 2432 ** (b) how many database files have open write transactions, not 2433 ** including the temp database. (b) is important because if more than 2434 ** one database file has an open write transaction, a master journal 2435 ** file is required for an atomic commit. 2436 */ 2437 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2438 Btree *pBt = db->aDb[i].pBt; 2439 if( sqlite3BtreeIsInTrans(pBt) ){ 2440 /* Whether or not a database might need a master journal depends upon 2441 ** its journal mode (among other things). This matrix determines which 2442 ** journal modes use a master journal and which do not */ 2443 static const u8 aMJNeeded[] = { 2444 /* DELETE */ 1, 2445 /* PERSIST */ 1, 2446 /* OFF */ 0, 2447 /* TRUNCATE */ 1, 2448 /* MEMORY */ 0, 2449 /* WAL */ 0 2450 }; 2451 Pager *pPager; /* Pager associated with pBt */ 2452 needXcommit = 1; 2453 sqlite3BtreeEnter(pBt); 2454 pPager = sqlite3BtreePager(pBt); 2455 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2456 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2457 && sqlite3PagerIsMemdb(pPager)==0 2458 ){ 2459 assert( i!=1 ); 2460 nTrans++; 2461 } 2462 rc = sqlite3PagerExclusiveLock(pPager); 2463 sqlite3BtreeLeave(pBt); 2464 } 2465 } 2466 if( rc!=SQLITE_OK ){ 2467 return rc; 2468 } 2469 2470 /* If there are any write-transactions at all, invoke the commit hook */ 2471 if( needXcommit && db->xCommitCallback ){ 2472 rc = db->xCommitCallback(db->pCommitArg); 2473 if( rc ){ 2474 return SQLITE_CONSTRAINT_COMMITHOOK; 2475 } 2476 } 2477 2478 /* The simple case - no more than one database file (not counting the 2479 ** TEMP database) has a transaction active. There is no need for the 2480 ** master-journal. 2481 ** 2482 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2483 ** string, it means the main database is :memory: or a temp file. In 2484 ** that case we do not support atomic multi-file commits, so use the 2485 ** simple case then too. 2486 */ 2487 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2488 || nTrans<=1 2489 ){ 2490 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2491 Btree *pBt = db->aDb[i].pBt; 2492 if( pBt ){ 2493 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2494 } 2495 } 2496 2497 /* Do the commit only if all databases successfully complete phase 1. 2498 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2499 ** IO error while deleting or truncating a journal file. It is unlikely, 2500 ** but could happen. In this case abandon processing and return the error. 2501 */ 2502 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2503 Btree *pBt = db->aDb[i].pBt; 2504 if( pBt ){ 2505 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2506 } 2507 } 2508 if( rc==SQLITE_OK ){ 2509 sqlite3VtabCommit(db); 2510 } 2511 } 2512 2513 /* The complex case - There is a multi-file write-transaction active. 2514 ** This requires a master journal file to ensure the transaction is 2515 ** committed atomically. 2516 */ 2517 #ifndef SQLITE_OMIT_DISKIO 2518 else{ 2519 sqlite3_vfs *pVfs = db->pVfs; 2520 char *zMaster = 0; /* File-name for the master journal */ 2521 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2522 sqlite3_file *pMaster = 0; 2523 i64 offset = 0; 2524 int res; 2525 int retryCount = 0; 2526 int nMainFile; 2527 2528 /* Select a master journal file name */ 2529 nMainFile = sqlite3Strlen30(zMainFile); 2530 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); 2531 if( zMaster==0 ) return SQLITE_NOMEM_BKPT; 2532 do { 2533 u32 iRandom; 2534 if( retryCount ){ 2535 if( retryCount>100 ){ 2536 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 2537 sqlite3OsDelete(pVfs, zMaster, 0); 2538 break; 2539 }else if( retryCount==1 ){ 2540 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2541 } 2542 } 2543 retryCount++; 2544 sqlite3_randomness(sizeof(iRandom), &iRandom); 2545 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2546 (iRandom>>8)&0xffffff, iRandom&0xff); 2547 /* The antipenultimate character of the master journal name must 2548 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2549 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2550 sqlite3FileSuffix3(zMainFile, zMaster); 2551 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2552 }while( rc==SQLITE_OK && res ); 2553 if( rc==SQLITE_OK ){ 2554 /* Open the master journal. */ 2555 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2556 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2557 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2558 ); 2559 } 2560 if( rc!=SQLITE_OK ){ 2561 sqlite3DbFree(db, zMaster); 2562 return rc; 2563 } 2564 2565 /* Write the name of each database file in the transaction into the new 2566 ** master journal file. If an error occurs at this point close 2567 ** and delete the master journal file. All the individual journal files 2568 ** still have 'null' as the master journal pointer, so they will roll 2569 ** back independently if a failure occurs. 2570 */ 2571 for(i=0; i<db->nDb; i++){ 2572 Btree *pBt = db->aDb[i].pBt; 2573 if( sqlite3BtreeIsInTrans(pBt) ){ 2574 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2575 if( zFile==0 ){ 2576 continue; /* Ignore TEMP and :memory: databases */ 2577 } 2578 assert( zFile[0]!=0 ); 2579 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2580 offset += sqlite3Strlen30(zFile)+1; 2581 if( rc!=SQLITE_OK ){ 2582 sqlite3OsCloseFree(pMaster); 2583 sqlite3OsDelete(pVfs, zMaster, 0); 2584 sqlite3DbFree(db, zMaster); 2585 return rc; 2586 } 2587 } 2588 } 2589 2590 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2591 ** flag is set this is not required. 2592 */ 2593 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2594 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2595 ){ 2596 sqlite3OsCloseFree(pMaster); 2597 sqlite3OsDelete(pVfs, zMaster, 0); 2598 sqlite3DbFree(db, zMaster); 2599 return rc; 2600 } 2601 2602 /* Sync all the db files involved in the transaction. The same call 2603 ** sets the master journal pointer in each individual journal. If 2604 ** an error occurs here, do not delete the master journal file. 2605 ** 2606 ** If the error occurs during the first call to 2607 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2608 ** master journal file will be orphaned. But we cannot delete it, 2609 ** in case the master journal file name was written into the journal 2610 ** file before the failure occurred. 2611 */ 2612 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2613 Btree *pBt = db->aDb[i].pBt; 2614 if( pBt ){ 2615 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2616 } 2617 } 2618 sqlite3OsCloseFree(pMaster); 2619 assert( rc!=SQLITE_BUSY ); 2620 if( rc!=SQLITE_OK ){ 2621 sqlite3DbFree(db, zMaster); 2622 return rc; 2623 } 2624 2625 /* Delete the master journal file. This commits the transaction. After 2626 ** doing this the directory is synced again before any individual 2627 ** transaction files are deleted. 2628 */ 2629 rc = sqlite3OsDelete(pVfs, zMaster, 1); 2630 sqlite3DbFree(db, zMaster); 2631 zMaster = 0; 2632 if( rc ){ 2633 return rc; 2634 } 2635 2636 /* All files and directories have already been synced, so the following 2637 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2638 ** deleting or truncating journals. If something goes wrong while 2639 ** this is happening we don't really care. The integrity of the 2640 ** transaction is already guaranteed, but some stray 'cold' journals 2641 ** may be lying around. Returning an error code won't help matters. 2642 */ 2643 disable_simulated_io_errors(); 2644 sqlite3BeginBenignMalloc(); 2645 for(i=0; i<db->nDb; i++){ 2646 Btree *pBt = db->aDb[i].pBt; 2647 if( pBt ){ 2648 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2649 } 2650 } 2651 sqlite3EndBenignMalloc(); 2652 enable_simulated_io_errors(); 2653 2654 sqlite3VtabCommit(db); 2655 } 2656 #endif 2657 2658 return rc; 2659 } 2660 2661 /* 2662 ** This routine checks that the sqlite3.nVdbeActive count variable 2663 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2664 ** currently active. An assertion fails if the two counts do not match. 2665 ** This is an internal self-check only - it is not an essential processing 2666 ** step. 2667 ** 2668 ** This is a no-op if NDEBUG is defined. 2669 */ 2670 #ifndef NDEBUG 2671 static void checkActiveVdbeCnt(sqlite3 *db){ 2672 Vdbe *p; 2673 int cnt = 0; 2674 int nWrite = 0; 2675 int nRead = 0; 2676 p = db->pVdbe; 2677 while( p ){ 2678 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2679 cnt++; 2680 if( p->readOnly==0 ) nWrite++; 2681 if( p->bIsReader ) nRead++; 2682 } 2683 p = p->pNext; 2684 } 2685 assert( cnt==db->nVdbeActive ); 2686 assert( nWrite==db->nVdbeWrite ); 2687 assert( nRead==db->nVdbeRead ); 2688 } 2689 #else 2690 #define checkActiveVdbeCnt(x) 2691 #endif 2692 2693 /* 2694 ** If the Vdbe passed as the first argument opened a statement-transaction, 2695 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2696 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2697 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2698 ** statement transaction is committed. 2699 ** 2700 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2701 ** Otherwise SQLITE_OK. 2702 */ 2703 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 2704 sqlite3 *const db = p->db; 2705 int rc = SQLITE_OK; 2706 int i; 2707 const int iSavepoint = p->iStatement-1; 2708 2709 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2710 assert( db->nStatement>0 ); 2711 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2712 2713 for(i=0; i<db->nDb; i++){ 2714 int rc2 = SQLITE_OK; 2715 Btree *pBt = db->aDb[i].pBt; 2716 if( pBt ){ 2717 if( eOp==SAVEPOINT_ROLLBACK ){ 2718 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2719 } 2720 if( rc2==SQLITE_OK ){ 2721 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2722 } 2723 if( rc==SQLITE_OK ){ 2724 rc = rc2; 2725 } 2726 } 2727 } 2728 db->nStatement--; 2729 p->iStatement = 0; 2730 2731 if( rc==SQLITE_OK ){ 2732 if( eOp==SAVEPOINT_ROLLBACK ){ 2733 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2734 } 2735 if( rc==SQLITE_OK ){ 2736 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2737 } 2738 } 2739 2740 /* If the statement transaction is being rolled back, also restore the 2741 ** database handles deferred constraint counter to the value it had when 2742 ** the statement transaction was opened. */ 2743 if( eOp==SAVEPOINT_ROLLBACK ){ 2744 db->nDeferredCons = p->nStmtDefCons; 2745 db->nDeferredImmCons = p->nStmtDefImmCons; 2746 } 2747 return rc; 2748 } 2749 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2750 if( p->db->nStatement && p->iStatement ){ 2751 return vdbeCloseStatement(p, eOp); 2752 } 2753 return SQLITE_OK; 2754 } 2755 2756 2757 /* 2758 ** This function is called when a transaction opened by the database 2759 ** handle associated with the VM passed as an argument is about to be 2760 ** committed. If there are outstanding deferred foreign key constraint 2761 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2762 ** 2763 ** If there are outstanding FK violations and this function returns 2764 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2765 ** and write an error message to it. Then return SQLITE_ERROR. 2766 */ 2767 #ifndef SQLITE_OMIT_FOREIGN_KEY 2768 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2769 sqlite3 *db = p->db; 2770 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2771 || (!deferred && p->nFkConstraint>0) 2772 ){ 2773 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2774 p->errorAction = OE_Abort; 2775 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2776 return SQLITE_ERROR; 2777 } 2778 return SQLITE_OK; 2779 } 2780 #endif 2781 2782 /* 2783 ** This routine is called the when a VDBE tries to halt. If the VDBE 2784 ** has made changes and is in autocommit mode, then commit those 2785 ** changes. If a rollback is needed, then do the rollback. 2786 ** 2787 ** This routine is the only way to move the state of a VM from 2788 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2789 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2790 ** 2791 ** Return an error code. If the commit could not complete because of 2792 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2793 ** means the close did not happen and needs to be repeated. 2794 */ 2795 int sqlite3VdbeHalt(Vdbe *p){ 2796 int rc; /* Used to store transient return codes */ 2797 sqlite3 *db = p->db; 2798 2799 /* This function contains the logic that determines if a statement or 2800 ** transaction will be committed or rolled back as a result of the 2801 ** execution of this virtual machine. 2802 ** 2803 ** If any of the following errors occur: 2804 ** 2805 ** SQLITE_NOMEM 2806 ** SQLITE_IOERR 2807 ** SQLITE_FULL 2808 ** SQLITE_INTERRUPT 2809 ** 2810 ** Then the internal cache might have been left in an inconsistent 2811 ** state. We need to rollback the statement transaction, if there is 2812 ** one, or the complete transaction if there is no statement transaction. 2813 */ 2814 2815 if( p->magic!=VDBE_MAGIC_RUN ){ 2816 return SQLITE_OK; 2817 } 2818 if( db->mallocFailed ){ 2819 p->rc = SQLITE_NOMEM_BKPT; 2820 } 2821 closeAllCursors(p); 2822 checkActiveVdbeCnt(db); 2823 2824 /* No commit or rollback needed if the program never started or if the 2825 ** SQL statement does not read or write a database file. */ 2826 if( p->pc>=0 && p->bIsReader ){ 2827 int mrc; /* Primary error code from p->rc */ 2828 int eStatementOp = 0; 2829 int isSpecialError; /* Set to true if a 'special' error */ 2830 2831 /* Lock all btrees used by the statement */ 2832 sqlite3VdbeEnter(p); 2833 2834 /* Check for one of the special errors */ 2835 mrc = p->rc & 0xff; 2836 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2837 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2838 if( isSpecialError ){ 2839 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2840 ** no rollback is necessary. Otherwise, at least a savepoint 2841 ** transaction must be rolled back to restore the database to a 2842 ** consistent state. 2843 ** 2844 ** Even if the statement is read-only, it is important to perform 2845 ** a statement or transaction rollback operation. If the error 2846 ** occurred while writing to the journal, sub-journal or database 2847 ** file as part of an effort to free up cache space (see function 2848 ** pagerStress() in pager.c), the rollback is required to restore 2849 ** the pager to a consistent state. 2850 */ 2851 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2852 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2853 eStatementOp = SAVEPOINT_ROLLBACK; 2854 }else{ 2855 /* We are forced to roll back the active transaction. Before doing 2856 ** so, abort any other statements this handle currently has active. 2857 */ 2858 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2859 sqlite3CloseSavepoints(db); 2860 db->autoCommit = 1; 2861 p->nChange = 0; 2862 } 2863 } 2864 } 2865 2866 /* Check for immediate foreign key violations. */ 2867 if( p->rc==SQLITE_OK ){ 2868 sqlite3VdbeCheckFk(p, 0); 2869 } 2870 2871 /* If the auto-commit flag is set and this is the only active writer 2872 ** VM, then we do either a commit or rollback of the current transaction. 2873 ** 2874 ** Note: This block also runs if one of the special errors handled 2875 ** above has occurred. 2876 */ 2877 if( !sqlite3VtabInSync(db) 2878 && db->autoCommit 2879 && db->nVdbeWrite==(p->readOnly==0) 2880 ){ 2881 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2882 rc = sqlite3VdbeCheckFk(p, 1); 2883 if( rc!=SQLITE_OK ){ 2884 if( NEVER(p->readOnly) ){ 2885 sqlite3VdbeLeave(p); 2886 return SQLITE_ERROR; 2887 } 2888 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2889 }else{ 2890 /* The auto-commit flag is true, the vdbe program was successful 2891 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2892 ** key constraints to hold up the transaction. This means a commit 2893 ** is required. */ 2894 rc = vdbeCommit(db, p); 2895 } 2896 if( rc==SQLITE_BUSY && p->readOnly ){ 2897 sqlite3VdbeLeave(p); 2898 return SQLITE_BUSY; 2899 }else if( rc!=SQLITE_OK ){ 2900 p->rc = rc; 2901 sqlite3RollbackAll(db, SQLITE_OK); 2902 p->nChange = 0; 2903 }else{ 2904 db->nDeferredCons = 0; 2905 db->nDeferredImmCons = 0; 2906 db->flags &= ~(u64)SQLITE_DeferFKs; 2907 sqlite3CommitInternalChanges(db); 2908 } 2909 }else{ 2910 sqlite3RollbackAll(db, SQLITE_OK); 2911 p->nChange = 0; 2912 } 2913 db->nStatement = 0; 2914 }else if( eStatementOp==0 ){ 2915 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2916 eStatementOp = SAVEPOINT_RELEASE; 2917 }else if( p->errorAction==OE_Abort ){ 2918 eStatementOp = SAVEPOINT_ROLLBACK; 2919 }else{ 2920 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2921 sqlite3CloseSavepoints(db); 2922 db->autoCommit = 1; 2923 p->nChange = 0; 2924 } 2925 } 2926 2927 /* If eStatementOp is non-zero, then a statement transaction needs to 2928 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2929 ** do so. If this operation returns an error, and the current statement 2930 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2931 ** current statement error code. 2932 */ 2933 if( eStatementOp ){ 2934 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2935 if( rc ){ 2936 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 2937 p->rc = rc; 2938 sqlite3DbFree(db, p->zErrMsg); 2939 p->zErrMsg = 0; 2940 } 2941 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2942 sqlite3CloseSavepoints(db); 2943 db->autoCommit = 1; 2944 p->nChange = 0; 2945 } 2946 } 2947 2948 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2949 ** has been rolled back, update the database connection change-counter. 2950 */ 2951 if( p->changeCntOn ){ 2952 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2953 sqlite3VdbeSetChanges(db, p->nChange); 2954 }else{ 2955 sqlite3VdbeSetChanges(db, 0); 2956 } 2957 p->nChange = 0; 2958 } 2959 2960 /* Release the locks */ 2961 sqlite3VdbeLeave(p); 2962 } 2963 2964 /* We have successfully halted and closed the VM. Record this fact. */ 2965 if( p->pc>=0 ){ 2966 db->nVdbeActive--; 2967 if( !p->readOnly ) db->nVdbeWrite--; 2968 if( p->bIsReader ) db->nVdbeRead--; 2969 assert( db->nVdbeActive>=db->nVdbeRead ); 2970 assert( db->nVdbeRead>=db->nVdbeWrite ); 2971 assert( db->nVdbeWrite>=0 ); 2972 } 2973 p->magic = VDBE_MAGIC_HALT; 2974 checkActiveVdbeCnt(db); 2975 if( db->mallocFailed ){ 2976 p->rc = SQLITE_NOMEM_BKPT; 2977 } 2978 2979 /* If the auto-commit flag is set to true, then any locks that were held 2980 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2981 ** to invoke any required unlock-notify callbacks. 2982 */ 2983 if( db->autoCommit ){ 2984 sqlite3ConnectionUnlocked(db); 2985 } 2986 2987 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 2988 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 2989 } 2990 2991 2992 /* 2993 ** Each VDBE holds the result of the most recent sqlite3_step() call 2994 ** in p->rc. This routine sets that result back to SQLITE_OK. 2995 */ 2996 void sqlite3VdbeResetStepResult(Vdbe *p){ 2997 p->rc = SQLITE_OK; 2998 } 2999 3000 /* 3001 ** Copy the error code and error message belonging to the VDBE passed 3002 ** as the first argument to its database handle (so that they will be 3003 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 3004 ** 3005 ** This function does not clear the VDBE error code or message, just 3006 ** copies them to the database handle. 3007 */ 3008 int sqlite3VdbeTransferError(Vdbe *p){ 3009 sqlite3 *db = p->db; 3010 int rc = p->rc; 3011 if( p->zErrMsg ){ 3012 db->bBenignMalloc++; 3013 sqlite3BeginBenignMalloc(); 3014 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 3015 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 3016 sqlite3EndBenignMalloc(); 3017 db->bBenignMalloc--; 3018 }else if( db->pErr ){ 3019 sqlite3ValueSetNull(db->pErr); 3020 } 3021 db->errCode = rc; 3022 return rc; 3023 } 3024 3025 #ifdef SQLITE_ENABLE_SQLLOG 3026 /* 3027 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 3028 ** invoke it. 3029 */ 3030 static void vdbeInvokeSqllog(Vdbe *v){ 3031 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 3032 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 3033 assert( v->db->init.busy==0 ); 3034 if( zExpanded ){ 3035 sqlite3GlobalConfig.xSqllog( 3036 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 3037 ); 3038 sqlite3DbFree(v->db, zExpanded); 3039 } 3040 } 3041 } 3042 #else 3043 # define vdbeInvokeSqllog(x) 3044 #endif 3045 3046 /* 3047 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 3048 ** Write any error messages into *pzErrMsg. Return the result code. 3049 ** 3050 ** After this routine is run, the VDBE should be ready to be executed 3051 ** again. 3052 ** 3053 ** To look at it another way, this routine resets the state of the 3054 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 3055 ** VDBE_MAGIC_INIT. 3056 */ 3057 int sqlite3VdbeReset(Vdbe *p){ 3058 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 3059 int i; 3060 #endif 3061 3062 sqlite3 *db; 3063 db = p->db; 3064 3065 /* If the VM did not run to completion or if it encountered an 3066 ** error, then it might not have been halted properly. So halt 3067 ** it now. 3068 */ 3069 sqlite3VdbeHalt(p); 3070 3071 /* If the VDBE has been run even partially, then transfer the error code 3072 ** and error message from the VDBE into the main database structure. But 3073 ** if the VDBE has just been set to run but has not actually executed any 3074 ** instructions yet, leave the main database error information unchanged. 3075 */ 3076 if( p->pc>=0 ){ 3077 vdbeInvokeSqllog(p); 3078 sqlite3VdbeTransferError(p); 3079 if( p->runOnlyOnce ) p->expired = 1; 3080 }else if( p->rc && p->expired ){ 3081 /* The expired flag was set on the VDBE before the first call 3082 ** to sqlite3_step(). For consistency (since sqlite3_step() was 3083 ** called), set the database error in this case as well. 3084 */ 3085 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 3086 } 3087 3088 /* Reset register contents and reclaim error message memory. 3089 */ 3090 #ifdef SQLITE_DEBUG 3091 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 3092 ** Vdbe.aMem[] arrays have already been cleaned up. */ 3093 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 3094 if( p->aMem ){ 3095 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 3096 } 3097 #endif 3098 sqlite3DbFree(db, p->zErrMsg); 3099 p->zErrMsg = 0; 3100 p->pResultSet = 0; 3101 #ifdef SQLITE_DEBUG 3102 p->nWrite = 0; 3103 #endif 3104 3105 /* Save profiling information from this VDBE run. 3106 */ 3107 #ifdef VDBE_PROFILE 3108 { 3109 FILE *out = fopen("vdbe_profile.out", "a"); 3110 if( out ){ 3111 fprintf(out, "---- "); 3112 for(i=0; i<p->nOp; i++){ 3113 fprintf(out, "%02x", p->aOp[i].opcode); 3114 } 3115 fprintf(out, "\n"); 3116 if( p->zSql ){ 3117 char c, pc = 0; 3118 fprintf(out, "-- "); 3119 for(i=0; (c = p->zSql[i])!=0; i++){ 3120 if( pc=='\n' ) fprintf(out, "-- "); 3121 putc(c, out); 3122 pc = c; 3123 } 3124 if( pc!='\n' ) fprintf(out, "\n"); 3125 } 3126 for(i=0; i<p->nOp; i++){ 3127 char zHdr[100]; 3128 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 3129 p->aOp[i].cnt, 3130 p->aOp[i].cycles, 3131 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 3132 ); 3133 fprintf(out, "%s", zHdr); 3134 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 3135 } 3136 fclose(out); 3137 } 3138 } 3139 #endif 3140 p->magic = VDBE_MAGIC_RESET; 3141 return p->rc & db->errMask; 3142 } 3143 3144 /* 3145 ** Clean up and delete a VDBE after execution. Return an integer which is 3146 ** the result code. Write any error message text into *pzErrMsg. 3147 */ 3148 int sqlite3VdbeFinalize(Vdbe *p){ 3149 int rc = SQLITE_OK; 3150 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 3151 rc = sqlite3VdbeReset(p); 3152 assert( (rc & p->db->errMask)==rc ); 3153 } 3154 sqlite3VdbeDelete(p); 3155 return rc; 3156 } 3157 3158 /* 3159 ** If parameter iOp is less than zero, then invoke the destructor for 3160 ** all auxiliary data pointers currently cached by the VM passed as 3161 ** the first argument. 3162 ** 3163 ** Or, if iOp is greater than or equal to zero, then the destructor is 3164 ** only invoked for those auxiliary data pointers created by the user 3165 ** function invoked by the OP_Function opcode at instruction iOp of 3166 ** VM pVdbe, and only then if: 3167 ** 3168 ** * the associated function parameter is the 32nd or later (counting 3169 ** from left to right), or 3170 ** 3171 ** * the corresponding bit in argument mask is clear (where the first 3172 ** function parameter corresponds to bit 0 etc.). 3173 */ 3174 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 3175 while( *pp ){ 3176 AuxData *pAux = *pp; 3177 if( (iOp<0) 3178 || (pAux->iAuxOp==iOp 3179 && pAux->iAuxArg>=0 3180 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 3181 ){ 3182 testcase( pAux->iAuxArg==31 ); 3183 if( pAux->xDeleteAux ){ 3184 pAux->xDeleteAux(pAux->pAux); 3185 } 3186 *pp = pAux->pNextAux; 3187 sqlite3DbFree(db, pAux); 3188 }else{ 3189 pp= &pAux->pNextAux; 3190 } 3191 } 3192 } 3193 3194 /* 3195 ** Free all memory associated with the Vdbe passed as the second argument, 3196 ** except for object itself, which is preserved. 3197 ** 3198 ** The difference between this function and sqlite3VdbeDelete() is that 3199 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 3200 ** the database connection and frees the object itself. 3201 */ 3202 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 3203 SubProgram *pSub, *pNext; 3204 assert( p->db==0 || p->db==db ); 3205 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 3206 for(pSub=p->pProgram; pSub; pSub=pNext){ 3207 pNext = pSub->pNext; 3208 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 3209 sqlite3DbFree(db, pSub); 3210 } 3211 if( p->magic!=VDBE_MAGIC_INIT ){ 3212 releaseMemArray(p->aVar, p->nVar); 3213 sqlite3DbFree(db, p->pVList); 3214 sqlite3DbFree(db, p->pFree); 3215 } 3216 vdbeFreeOpArray(db, p->aOp, p->nOp); 3217 sqlite3DbFree(db, p->aColName); 3218 sqlite3DbFree(db, p->zSql); 3219 #ifdef SQLITE_ENABLE_NORMALIZE 3220 sqlite3DbFree(db, p->zNormSql); 3221 { 3222 DblquoteStr *pThis, *pNext; 3223 for(pThis=p->pDblStr; pThis; pThis=pNext){ 3224 pNext = pThis->pNextStr; 3225 sqlite3DbFree(db, pThis); 3226 } 3227 } 3228 #endif 3229 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3230 { 3231 int i; 3232 for(i=0; i<p->nScan; i++){ 3233 sqlite3DbFree(db, p->aScan[i].zName); 3234 } 3235 sqlite3DbFree(db, p->aScan); 3236 } 3237 #endif 3238 } 3239 3240 /* 3241 ** Delete an entire VDBE. 3242 */ 3243 void sqlite3VdbeDelete(Vdbe *p){ 3244 sqlite3 *db; 3245 3246 assert( p!=0 ); 3247 db = p->db; 3248 assert( sqlite3_mutex_held(db->mutex) ); 3249 sqlite3VdbeClearObject(db, p); 3250 if( p->pPrev ){ 3251 p->pPrev->pNext = p->pNext; 3252 }else{ 3253 assert( db->pVdbe==p ); 3254 db->pVdbe = p->pNext; 3255 } 3256 if( p->pNext ){ 3257 p->pNext->pPrev = p->pPrev; 3258 } 3259 p->magic = VDBE_MAGIC_DEAD; 3260 p->db = 0; 3261 sqlite3DbFreeNN(db, p); 3262 } 3263 3264 /* 3265 ** The cursor "p" has a pending seek operation that has not yet been 3266 ** carried out. Seek the cursor now. If an error occurs, return 3267 ** the appropriate error code. 3268 */ 3269 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ 3270 int res, rc; 3271 #ifdef SQLITE_TEST 3272 extern int sqlite3_search_count; 3273 #endif 3274 assert( p->deferredMoveto ); 3275 assert( p->isTable ); 3276 assert( p->eCurType==CURTYPE_BTREE ); 3277 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); 3278 if( rc ) return rc; 3279 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3280 #ifdef SQLITE_TEST 3281 sqlite3_search_count++; 3282 #endif 3283 p->deferredMoveto = 0; 3284 p->cacheStatus = CACHE_STALE; 3285 return SQLITE_OK; 3286 } 3287 3288 /* 3289 ** Something has moved cursor "p" out of place. Maybe the row it was 3290 ** pointed to was deleted out from under it. Or maybe the btree was 3291 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3292 ** is supposed to be pointing. If the row was deleted out from under the 3293 ** cursor, set the cursor to point to a NULL row. 3294 */ 3295 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 3296 int isDifferentRow, rc; 3297 assert( p->eCurType==CURTYPE_BTREE ); 3298 assert( p->uc.pCursor!=0 ); 3299 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3300 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3301 p->cacheStatus = CACHE_STALE; 3302 if( isDifferentRow ) p->nullRow = 1; 3303 return rc; 3304 } 3305 3306 /* 3307 ** Check to ensure that the cursor is valid. Restore the cursor 3308 ** if need be. Return any I/O error from the restore operation. 3309 */ 3310 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3311 assert( p->eCurType==CURTYPE_BTREE ); 3312 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3313 return handleMovedCursor(p); 3314 } 3315 return SQLITE_OK; 3316 } 3317 3318 /* 3319 ** Make sure the cursor p is ready to read or write the row to which it 3320 ** was last positioned. Return an error code if an OOM fault or I/O error 3321 ** prevents us from positioning the cursor to its correct position. 3322 ** 3323 ** If a MoveTo operation is pending on the given cursor, then do that 3324 ** MoveTo now. If no move is pending, check to see if the row has been 3325 ** deleted out from under the cursor and if it has, mark the row as 3326 ** a NULL row. 3327 ** 3328 ** If the cursor is already pointing to the correct row and that row has 3329 ** not been deleted out from under the cursor, then this routine is a no-op. 3330 */ 3331 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){ 3332 VdbeCursor *p = *pp; 3333 assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO ); 3334 if( p->deferredMoveto ){ 3335 int iMap; 3336 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){ 3337 *pp = p->pAltCursor; 3338 *piCol = iMap - 1; 3339 return SQLITE_OK; 3340 } 3341 return handleDeferredMoveto(p); 3342 } 3343 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3344 return handleMovedCursor(p); 3345 } 3346 return SQLITE_OK; 3347 } 3348 3349 /* 3350 ** The following functions: 3351 ** 3352 ** sqlite3VdbeSerialType() 3353 ** sqlite3VdbeSerialTypeLen() 3354 ** sqlite3VdbeSerialLen() 3355 ** sqlite3VdbeSerialPut() 3356 ** sqlite3VdbeSerialGet() 3357 ** 3358 ** encapsulate the code that serializes values for storage in SQLite 3359 ** data and index records. Each serialized value consists of a 3360 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3361 ** integer, stored as a varint. 3362 ** 3363 ** In an SQLite index record, the serial type is stored directly before 3364 ** the blob of data that it corresponds to. In a table record, all serial 3365 ** types are stored at the start of the record, and the blobs of data at 3366 ** the end. Hence these functions allow the caller to handle the 3367 ** serial-type and data blob separately. 3368 ** 3369 ** The following table describes the various storage classes for data: 3370 ** 3371 ** serial type bytes of data type 3372 ** -------------- --------------- --------------- 3373 ** 0 0 NULL 3374 ** 1 1 signed integer 3375 ** 2 2 signed integer 3376 ** 3 3 signed integer 3377 ** 4 4 signed integer 3378 ** 5 6 signed integer 3379 ** 6 8 signed integer 3380 ** 7 8 IEEE float 3381 ** 8 0 Integer constant 0 3382 ** 9 0 Integer constant 1 3383 ** 10,11 reserved for expansion 3384 ** N>=12 and even (N-12)/2 BLOB 3385 ** N>=13 and odd (N-13)/2 text 3386 ** 3387 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3388 ** of SQLite will not understand those serial types. 3389 */ 3390 3391 /* 3392 ** Return the serial-type for the value stored in pMem. 3393 */ 3394 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3395 int flags = pMem->flags; 3396 u32 n; 3397 3398 assert( pLen!=0 ); 3399 if( flags&MEM_Null ){ 3400 *pLen = 0; 3401 return 0; 3402 } 3403 if( flags&MEM_Int ){ 3404 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3405 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3406 i64 i = pMem->u.i; 3407 u64 u; 3408 if( i<0 ){ 3409 u = ~i; 3410 }else{ 3411 u = i; 3412 } 3413 if( u<=127 ){ 3414 if( (i&1)==i && file_format>=4 ){ 3415 *pLen = 0; 3416 return 8+(u32)u; 3417 }else{ 3418 *pLen = 1; 3419 return 1; 3420 } 3421 } 3422 if( u<=32767 ){ *pLen = 2; return 2; } 3423 if( u<=8388607 ){ *pLen = 3; return 3; } 3424 if( u<=2147483647 ){ *pLen = 4; return 4; } 3425 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3426 *pLen = 8; 3427 return 6; 3428 } 3429 if( flags&MEM_Real ){ 3430 *pLen = 8; 3431 return 7; 3432 } 3433 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3434 assert( pMem->n>=0 ); 3435 n = (u32)pMem->n; 3436 if( flags & MEM_Zero ){ 3437 n += pMem->u.nZero; 3438 } 3439 *pLen = n; 3440 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3441 } 3442 3443 /* 3444 ** The sizes for serial types less than 128 3445 */ 3446 static const u8 sqlite3SmallTypeSizes[] = { 3447 /* 0 1 2 3 4 5 6 7 8 9 */ 3448 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3449 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3450 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3451 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3452 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3453 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3454 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3455 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3456 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3457 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3458 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3459 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3460 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3461 }; 3462 3463 /* 3464 ** Return the length of the data corresponding to the supplied serial-type. 3465 */ 3466 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3467 if( serial_type>=128 ){ 3468 return (serial_type-12)/2; 3469 }else{ 3470 assert( serial_type<12 3471 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3472 return sqlite3SmallTypeSizes[serial_type]; 3473 } 3474 } 3475 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3476 assert( serial_type<128 ); 3477 return sqlite3SmallTypeSizes[serial_type]; 3478 } 3479 3480 /* 3481 ** If we are on an architecture with mixed-endian floating 3482 ** points (ex: ARM7) then swap the lower 4 bytes with the 3483 ** upper 4 bytes. Return the result. 3484 ** 3485 ** For most architectures, this is a no-op. 3486 ** 3487 ** (later): It is reported to me that the mixed-endian problem 3488 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3489 ** that early versions of GCC stored the two words of a 64-bit 3490 ** float in the wrong order. And that error has been propagated 3491 ** ever since. The blame is not necessarily with GCC, though. 3492 ** GCC might have just copying the problem from a prior compiler. 3493 ** I am also told that newer versions of GCC that follow a different 3494 ** ABI get the byte order right. 3495 ** 3496 ** Developers using SQLite on an ARM7 should compile and run their 3497 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3498 ** enabled, some asserts below will ensure that the byte order of 3499 ** floating point values is correct. 3500 ** 3501 ** (2007-08-30) Frank van Vugt has studied this problem closely 3502 ** and has send his findings to the SQLite developers. Frank 3503 ** writes that some Linux kernels offer floating point hardware 3504 ** emulation that uses only 32-bit mantissas instead of a full 3505 ** 48-bits as required by the IEEE standard. (This is the 3506 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3507 ** byte swapping becomes very complicated. To avoid problems, 3508 ** the necessary byte swapping is carried out using a 64-bit integer 3509 ** rather than a 64-bit float. Frank assures us that the code here 3510 ** works for him. We, the developers, have no way to independently 3511 ** verify this, but Frank seems to know what he is talking about 3512 ** so we trust him. 3513 */ 3514 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3515 static u64 floatSwap(u64 in){ 3516 union { 3517 u64 r; 3518 u32 i[2]; 3519 } u; 3520 u32 t; 3521 3522 u.r = in; 3523 t = u.i[0]; 3524 u.i[0] = u.i[1]; 3525 u.i[1] = t; 3526 return u.r; 3527 } 3528 # define swapMixedEndianFloat(X) X = floatSwap(X) 3529 #else 3530 # define swapMixedEndianFloat(X) 3531 #endif 3532 3533 /* 3534 ** Write the serialized data blob for the value stored in pMem into 3535 ** buf. It is assumed that the caller has allocated sufficient space. 3536 ** Return the number of bytes written. 3537 ** 3538 ** nBuf is the amount of space left in buf[]. The caller is responsible 3539 ** for allocating enough space to buf[] to hold the entire field, exclusive 3540 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3541 ** 3542 ** Return the number of bytes actually written into buf[]. The number 3543 ** of bytes in the zero-filled tail is included in the return value only 3544 ** if those bytes were zeroed in buf[]. 3545 */ 3546 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3547 u32 len; 3548 3549 /* Integer and Real */ 3550 if( serial_type<=7 && serial_type>0 ){ 3551 u64 v; 3552 u32 i; 3553 if( serial_type==7 ){ 3554 assert( sizeof(v)==sizeof(pMem->u.r) ); 3555 memcpy(&v, &pMem->u.r, sizeof(v)); 3556 swapMixedEndianFloat(v); 3557 }else{ 3558 v = pMem->u.i; 3559 } 3560 len = i = sqlite3SmallTypeSizes[serial_type]; 3561 assert( i>0 ); 3562 do{ 3563 buf[--i] = (u8)(v&0xFF); 3564 v >>= 8; 3565 }while( i ); 3566 return len; 3567 } 3568 3569 /* String or blob */ 3570 if( serial_type>=12 ){ 3571 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3572 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3573 len = pMem->n; 3574 if( len>0 ) memcpy(buf, pMem->z, len); 3575 return len; 3576 } 3577 3578 /* NULL or constants 0 or 1 */ 3579 return 0; 3580 } 3581 3582 /* Input "x" is a sequence of unsigned characters that represent a 3583 ** big-endian integer. Return the equivalent native integer 3584 */ 3585 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3586 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3587 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3588 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3589 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3590 3591 /* 3592 ** Deserialize the data blob pointed to by buf as serial type serial_type 3593 ** and store the result in pMem. Return the number of bytes read. 3594 ** 3595 ** This function is implemented as two separate routines for performance. 3596 ** The few cases that require local variables are broken out into a separate 3597 ** routine so that in most cases the overhead of moving the stack pointer 3598 ** is avoided. 3599 */ 3600 static u32 SQLITE_NOINLINE serialGet( 3601 const unsigned char *buf, /* Buffer to deserialize from */ 3602 u32 serial_type, /* Serial type to deserialize */ 3603 Mem *pMem /* Memory cell to write value into */ 3604 ){ 3605 u64 x = FOUR_BYTE_UINT(buf); 3606 u32 y = FOUR_BYTE_UINT(buf+4); 3607 x = (x<<32) + y; 3608 if( serial_type==6 ){ 3609 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3610 ** twos-complement integer. */ 3611 pMem->u.i = *(i64*)&x; 3612 pMem->flags = MEM_Int; 3613 testcase( pMem->u.i<0 ); 3614 }else{ 3615 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3616 ** floating point number. */ 3617 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3618 /* Verify that integers and floating point values use the same 3619 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3620 ** defined that 64-bit floating point values really are mixed 3621 ** endian. 3622 */ 3623 static const u64 t1 = ((u64)0x3ff00000)<<32; 3624 static const double r1 = 1.0; 3625 u64 t2 = t1; 3626 swapMixedEndianFloat(t2); 3627 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3628 #endif 3629 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3630 swapMixedEndianFloat(x); 3631 memcpy(&pMem->u.r, &x, sizeof(x)); 3632 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; 3633 } 3634 return 8; 3635 } 3636 u32 sqlite3VdbeSerialGet( 3637 const unsigned char *buf, /* Buffer to deserialize from */ 3638 u32 serial_type, /* Serial type to deserialize */ 3639 Mem *pMem /* Memory cell to write value into */ 3640 ){ 3641 switch( serial_type ){ 3642 case 10: { /* Internal use only: NULL with virtual table 3643 ** UPDATE no-change flag set */ 3644 pMem->flags = MEM_Null|MEM_Zero; 3645 pMem->n = 0; 3646 pMem->u.nZero = 0; 3647 break; 3648 } 3649 case 11: /* Reserved for future use */ 3650 case 0: { /* Null */ 3651 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3652 pMem->flags = MEM_Null; 3653 break; 3654 } 3655 case 1: { 3656 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3657 ** integer. */ 3658 pMem->u.i = ONE_BYTE_INT(buf); 3659 pMem->flags = MEM_Int; 3660 testcase( pMem->u.i<0 ); 3661 return 1; 3662 } 3663 case 2: { /* 2-byte signed integer */ 3664 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3665 ** twos-complement integer. */ 3666 pMem->u.i = TWO_BYTE_INT(buf); 3667 pMem->flags = MEM_Int; 3668 testcase( pMem->u.i<0 ); 3669 return 2; 3670 } 3671 case 3: { /* 3-byte signed integer */ 3672 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3673 ** twos-complement integer. */ 3674 pMem->u.i = THREE_BYTE_INT(buf); 3675 pMem->flags = MEM_Int; 3676 testcase( pMem->u.i<0 ); 3677 return 3; 3678 } 3679 case 4: { /* 4-byte signed integer */ 3680 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3681 ** twos-complement integer. */ 3682 pMem->u.i = FOUR_BYTE_INT(buf); 3683 #ifdef __HP_cc 3684 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3685 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3686 #endif 3687 pMem->flags = MEM_Int; 3688 testcase( pMem->u.i<0 ); 3689 return 4; 3690 } 3691 case 5: { /* 6-byte signed integer */ 3692 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3693 ** twos-complement integer. */ 3694 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3695 pMem->flags = MEM_Int; 3696 testcase( pMem->u.i<0 ); 3697 return 6; 3698 } 3699 case 6: /* 8-byte signed integer */ 3700 case 7: { /* IEEE floating point */ 3701 /* These use local variables, so do them in a separate routine 3702 ** to avoid having to move the frame pointer in the common case */ 3703 return serialGet(buf,serial_type,pMem); 3704 } 3705 case 8: /* Integer 0 */ 3706 case 9: { /* Integer 1 */ 3707 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3708 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3709 pMem->u.i = serial_type-8; 3710 pMem->flags = MEM_Int; 3711 return 0; 3712 } 3713 default: { 3714 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3715 ** length. 3716 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3717 ** (N-13)/2 bytes in length. */ 3718 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3719 pMem->z = (char *)buf; 3720 pMem->n = (serial_type-12)/2; 3721 pMem->flags = aFlag[serial_type&1]; 3722 return pMem->n; 3723 } 3724 } 3725 return 0; 3726 } 3727 /* 3728 ** This routine is used to allocate sufficient space for an UnpackedRecord 3729 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3730 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3731 ** 3732 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3733 ** the unaligned buffer passed via the second and third arguments (presumably 3734 ** stack space). If the former, then *ppFree is set to a pointer that should 3735 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3736 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3737 ** before returning. 3738 ** 3739 ** If an OOM error occurs, NULL is returned. 3740 */ 3741 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3742 KeyInfo *pKeyInfo /* Description of the record */ 3743 ){ 3744 UnpackedRecord *p; /* Unpacked record to return */ 3745 int nByte; /* Number of bytes required for *p */ 3746 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 3747 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3748 if( !p ) return 0; 3749 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3750 assert( pKeyInfo->aSortOrder!=0 ); 3751 p->pKeyInfo = pKeyInfo; 3752 p->nField = pKeyInfo->nKeyField + 1; 3753 return p; 3754 } 3755 3756 /* 3757 ** Given the nKey-byte encoding of a record in pKey[], populate the 3758 ** UnpackedRecord structure indicated by the fourth argument with the 3759 ** contents of the decoded record. 3760 */ 3761 void sqlite3VdbeRecordUnpack( 3762 KeyInfo *pKeyInfo, /* Information about the record format */ 3763 int nKey, /* Size of the binary record */ 3764 const void *pKey, /* The binary record */ 3765 UnpackedRecord *p /* Populate this structure before returning. */ 3766 ){ 3767 const unsigned char *aKey = (const unsigned char *)pKey; 3768 int d; 3769 u32 idx; /* Offset in aKey[] to read from */ 3770 u16 u; /* Unsigned loop counter */ 3771 u32 szHdr; 3772 Mem *pMem = p->aMem; 3773 3774 p->default_rc = 0; 3775 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3776 idx = getVarint32(aKey, szHdr); 3777 d = szHdr; 3778 u = 0; 3779 while( idx<szHdr && d<=nKey ){ 3780 u32 serial_type; 3781 3782 idx += getVarint32(&aKey[idx], serial_type); 3783 pMem->enc = pKeyInfo->enc; 3784 pMem->db = pKeyInfo->db; 3785 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 3786 pMem->szMalloc = 0; 3787 pMem->z = 0; 3788 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3789 pMem++; 3790 if( (++u)>=p->nField ) break; 3791 } 3792 assert( u<=pKeyInfo->nKeyField + 1 ); 3793 p->nField = u; 3794 } 3795 3796 #ifdef SQLITE_DEBUG 3797 /* 3798 ** This function compares two index or table record keys in the same way 3799 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 3800 ** this function deserializes and compares values using the 3801 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 3802 ** in assert() statements to ensure that the optimized code in 3803 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 3804 ** 3805 ** Return true if the result of comparison is equivalent to desiredResult. 3806 ** Return false if there is a disagreement. 3807 */ 3808 static int vdbeRecordCompareDebug( 3809 int nKey1, const void *pKey1, /* Left key */ 3810 const UnpackedRecord *pPKey2, /* Right key */ 3811 int desiredResult /* Correct answer */ 3812 ){ 3813 u32 d1; /* Offset into aKey[] of next data element */ 3814 u32 idx1; /* Offset into aKey[] of next header element */ 3815 u32 szHdr1; /* Number of bytes in header */ 3816 int i = 0; 3817 int rc = 0; 3818 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3819 KeyInfo *pKeyInfo; 3820 Mem mem1; 3821 3822 pKeyInfo = pPKey2->pKeyInfo; 3823 if( pKeyInfo->db==0 ) return 1; 3824 mem1.enc = pKeyInfo->enc; 3825 mem1.db = pKeyInfo->db; 3826 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 3827 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3828 3829 /* Compilers may complain that mem1.u.i is potentially uninitialized. 3830 ** We could initialize it, as shown here, to silence those complaints. 3831 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 3832 ** the unnecessary initialization has a measurable negative performance 3833 ** impact, since this routine is a very high runner. And so, we choose 3834 ** to ignore the compiler warnings and leave this variable uninitialized. 3835 */ 3836 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 3837 3838 idx1 = getVarint32(aKey1, szHdr1); 3839 if( szHdr1>98307 ) return SQLITE_CORRUPT; 3840 d1 = szHdr1; 3841 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 3842 assert( pKeyInfo->aSortOrder!=0 ); 3843 assert( pKeyInfo->nKeyField>0 ); 3844 assert( idx1<=szHdr1 || CORRUPT_DB ); 3845 do{ 3846 u32 serial_type1; 3847 3848 /* Read the serial types for the next element in each key. */ 3849 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 3850 3851 /* Verify that there is enough key space remaining to avoid 3852 ** a buffer overread. The "d1+serial_type1+2" subexpression will 3853 ** always be greater than or equal to the amount of required key space. 3854 ** Use that approximation to avoid the more expensive call to 3855 ** sqlite3VdbeSerialTypeLen() in the common case. 3856 */ 3857 if( d1+serial_type1+2>(u32)nKey1 3858 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 3859 ){ 3860 break; 3861 } 3862 3863 /* Extract the values to be compared. 3864 */ 3865 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 3866 3867 /* Do the comparison 3868 */ 3869 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); 3870 if( rc!=0 ){ 3871 assert( mem1.szMalloc==0 ); /* See comment below */ 3872 if( pKeyInfo->aSortOrder[i] ){ 3873 rc = -rc; /* Invert the result for DESC sort order. */ 3874 } 3875 goto debugCompareEnd; 3876 } 3877 i++; 3878 }while( idx1<szHdr1 && i<pPKey2->nField ); 3879 3880 /* No memory allocation is ever used on mem1. Prove this using 3881 ** the following assert(). If the assert() fails, it indicates a 3882 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 3883 */ 3884 assert( mem1.szMalloc==0 ); 3885 3886 /* rc==0 here means that one of the keys ran out of fields and 3887 ** all the fields up to that point were equal. Return the default_rc 3888 ** value. */ 3889 rc = pPKey2->default_rc; 3890 3891 debugCompareEnd: 3892 if( desiredResult==0 && rc==0 ) return 1; 3893 if( desiredResult<0 && rc<0 ) return 1; 3894 if( desiredResult>0 && rc>0 ) return 1; 3895 if( CORRUPT_DB ) return 1; 3896 if( pKeyInfo->db->mallocFailed ) return 1; 3897 return 0; 3898 } 3899 #endif 3900 3901 #ifdef SQLITE_DEBUG 3902 /* 3903 ** Count the number of fields (a.k.a. columns) in the record given by 3904 ** pKey,nKey. The verify that this count is less than or equal to the 3905 ** limit given by pKeyInfo->nAllField. 3906 ** 3907 ** If this constraint is not satisfied, it means that the high-speed 3908 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 3909 ** not work correctly. If this assert() ever fires, it probably means 3910 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 3911 ** incorrectly. 3912 */ 3913 static void vdbeAssertFieldCountWithinLimits( 3914 int nKey, const void *pKey, /* The record to verify */ 3915 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 3916 ){ 3917 int nField = 0; 3918 u32 szHdr; 3919 u32 idx; 3920 u32 notUsed; 3921 const unsigned char *aKey = (const unsigned char*)pKey; 3922 3923 if( CORRUPT_DB ) return; 3924 idx = getVarint32(aKey, szHdr); 3925 assert( nKey>=0 ); 3926 assert( szHdr<=(u32)nKey ); 3927 while( idx<szHdr ){ 3928 idx += getVarint32(aKey+idx, notUsed); 3929 nField++; 3930 } 3931 assert( nField <= pKeyInfo->nAllField ); 3932 } 3933 #else 3934 # define vdbeAssertFieldCountWithinLimits(A,B,C) 3935 #endif 3936 3937 /* 3938 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 3939 ** using the collation sequence pColl. As usual, return a negative , zero 3940 ** or positive value if *pMem1 is less than, equal to or greater than 3941 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 3942 */ 3943 static int vdbeCompareMemString( 3944 const Mem *pMem1, 3945 const Mem *pMem2, 3946 const CollSeq *pColl, 3947 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 3948 ){ 3949 if( pMem1->enc==pColl->enc ){ 3950 /* The strings are already in the correct encoding. Call the 3951 ** comparison function directly */ 3952 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 3953 }else{ 3954 int rc; 3955 const void *v1, *v2; 3956 Mem c1; 3957 Mem c2; 3958 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 3959 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 3960 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 3961 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 3962 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 3963 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 3964 if( (v1==0 || v2==0) ){ 3965 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 3966 rc = 0; 3967 }else{ 3968 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 3969 } 3970 sqlite3VdbeMemRelease(&c1); 3971 sqlite3VdbeMemRelease(&c2); 3972 return rc; 3973 } 3974 } 3975 3976 /* 3977 ** The input pBlob is guaranteed to be a Blob that is not marked 3978 ** with MEM_Zero. Return true if it could be a zero-blob. 3979 */ 3980 static int isAllZero(const char *z, int n){ 3981 int i; 3982 for(i=0; i<n; i++){ 3983 if( z[i] ) return 0; 3984 } 3985 return 1; 3986 } 3987 3988 /* 3989 ** Compare two blobs. Return negative, zero, or positive if the first 3990 ** is less than, equal to, or greater than the second, respectively. 3991 ** If one blob is a prefix of the other, then the shorter is the lessor. 3992 */ 3993 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 3994 int c; 3995 int n1 = pB1->n; 3996 int n2 = pB2->n; 3997 3998 /* It is possible to have a Blob value that has some non-zero content 3999 ** followed by zero content. But that only comes up for Blobs formed 4000 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 4001 ** sqlite3MemCompare(). */ 4002 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 4003 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 4004 4005 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 4006 if( pB1->flags & pB2->flags & MEM_Zero ){ 4007 return pB1->u.nZero - pB2->u.nZero; 4008 }else if( pB1->flags & MEM_Zero ){ 4009 if( !isAllZero(pB2->z, pB2->n) ) return -1; 4010 return pB1->u.nZero - n2; 4011 }else{ 4012 if( !isAllZero(pB1->z, pB1->n) ) return +1; 4013 return n1 - pB2->u.nZero; 4014 } 4015 } 4016 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 4017 if( c ) return c; 4018 return n1 - n2; 4019 } 4020 4021 /* 4022 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 4023 ** number. Return negative, zero, or positive if the first (i64) is less than, 4024 ** equal to, or greater than the second (double). 4025 */ 4026 static int sqlite3IntFloatCompare(i64 i, double r){ 4027 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 4028 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 4029 if( x<r ) return -1; 4030 if( x>r ) return +1; 4031 return 0; 4032 }else{ 4033 i64 y; 4034 double s; 4035 if( r<-9223372036854775808.0 ) return +1; 4036 if( r>=9223372036854775808.0 ) return -1; 4037 y = (i64)r; 4038 if( i<y ) return -1; 4039 if( i>y ) return +1; 4040 s = (double)i; 4041 if( s<r ) return -1; 4042 if( s>r ) return +1; 4043 return 0; 4044 } 4045 } 4046 4047 /* 4048 ** Compare the values contained by the two memory cells, returning 4049 ** negative, zero or positive if pMem1 is less than, equal to, or greater 4050 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 4051 ** and reals) sorted numerically, followed by text ordered by the collating 4052 ** sequence pColl and finally blob's ordered by memcmp(). 4053 ** 4054 ** Two NULL values are considered equal by this function. 4055 */ 4056 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 4057 int f1, f2; 4058 int combined_flags; 4059 4060 f1 = pMem1->flags; 4061 f2 = pMem2->flags; 4062 combined_flags = f1|f2; 4063 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); 4064 4065 /* If one value is NULL, it is less than the other. If both values 4066 ** are NULL, return 0. 4067 */ 4068 if( combined_flags&MEM_Null ){ 4069 return (f2&MEM_Null) - (f1&MEM_Null); 4070 } 4071 4072 /* At least one of the two values is a number 4073 */ 4074 if( combined_flags&(MEM_Int|MEM_Real) ){ 4075 if( (f1 & f2 & MEM_Int)!=0 ){ 4076 if( pMem1->u.i < pMem2->u.i ) return -1; 4077 if( pMem1->u.i > pMem2->u.i ) return +1; 4078 return 0; 4079 } 4080 if( (f1 & f2 & MEM_Real)!=0 ){ 4081 if( pMem1->u.r < pMem2->u.r ) return -1; 4082 if( pMem1->u.r > pMem2->u.r ) return +1; 4083 return 0; 4084 } 4085 if( (f1&MEM_Int)!=0 ){ 4086 if( (f2&MEM_Real)!=0 ){ 4087 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 4088 }else{ 4089 return -1; 4090 } 4091 } 4092 if( (f1&MEM_Real)!=0 ){ 4093 if( (f2&MEM_Int)!=0 ){ 4094 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 4095 }else{ 4096 return -1; 4097 } 4098 } 4099 return +1; 4100 } 4101 4102 /* If one value is a string and the other is a blob, the string is less. 4103 ** If both are strings, compare using the collating functions. 4104 */ 4105 if( combined_flags&MEM_Str ){ 4106 if( (f1 & MEM_Str)==0 ){ 4107 return 1; 4108 } 4109 if( (f2 & MEM_Str)==0 ){ 4110 return -1; 4111 } 4112 4113 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 4114 assert( pMem1->enc==SQLITE_UTF8 || 4115 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 4116 4117 /* The collation sequence must be defined at this point, even if 4118 ** the user deletes the collation sequence after the vdbe program is 4119 ** compiled (this was not always the case). 4120 */ 4121 assert( !pColl || pColl->xCmp ); 4122 4123 if( pColl ){ 4124 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 4125 } 4126 /* If a NULL pointer was passed as the collate function, fall through 4127 ** to the blob case and use memcmp(). */ 4128 } 4129 4130 /* Both values must be blobs. Compare using memcmp(). */ 4131 return sqlite3BlobCompare(pMem1, pMem2); 4132 } 4133 4134 4135 /* 4136 ** The first argument passed to this function is a serial-type that 4137 ** corresponds to an integer - all values between 1 and 9 inclusive 4138 ** except 7. The second points to a buffer containing an integer value 4139 ** serialized according to serial_type. This function deserializes 4140 ** and returns the value. 4141 */ 4142 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 4143 u32 y; 4144 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 4145 switch( serial_type ){ 4146 case 0: 4147 case 1: 4148 testcase( aKey[0]&0x80 ); 4149 return ONE_BYTE_INT(aKey); 4150 case 2: 4151 testcase( aKey[0]&0x80 ); 4152 return TWO_BYTE_INT(aKey); 4153 case 3: 4154 testcase( aKey[0]&0x80 ); 4155 return THREE_BYTE_INT(aKey); 4156 case 4: { 4157 testcase( aKey[0]&0x80 ); 4158 y = FOUR_BYTE_UINT(aKey); 4159 return (i64)*(int*)&y; 4160 } 4161 case 5: { 4162 testcase( aKey[0]&0x80 ); 4163 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4164 } 4165 case 6: { 4166 u64 x = FOUR_BYTE_UINT(aKey); 4167 testcase( aKey[0]&0x80 ); 4168 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4169 return (i64)*(i64*)&x; 4170 } 4171 } 4172 4173 return (serial_type - 8); 4174 } 4175 4176 /* 4177 ** This function compares the two table rows or index records 4178 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 4179 ** or positive integer if key1 is less than, equal to or 4180 ** greater than key2. The {nKey1, pKey1} key must be a blob 4181 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 4182 ** key must be a parsed key such as obtained from 4183 ** sqlite3VdbeParseRecord. 4184 ** 4185 ** If argument bSkip is non-zero, it is assumed that the caller has already 4186 ** determined that the first fields of the keys are equal. 4187 ** 4188 ** Key1 and Key2 do not have to contain the same number of fields. If all 4189 ** fields that appear in both keys are equal, then pPKey2->default_rc is 4190 ** returned. 4191 ** 4192 ** If database corruption is discovered, set pPKey2->errCode to 4193 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 4194 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 4195 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 4196 */ 4197 int sqlite3VdbeRecordCompareWithSkip( 4198 int nKey1, const void *pKey1, /* Left key */ 4199 UnpackedRecord *pPKey2, /* Right key */ 4200 int bSkip /* If true, skip the first field */ 4201 ){ 4202 u32 d1; /* Offset into aKey[] of next data element */ 4203 int i; /* Index of next field to compare */ 4204 u32 szHdr1; /* Size of record header in bytes */ 4205 u32 idx1; /* Offset of first type in header */ 4206 int rc = 0; /* Return value */ 4207 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 4208 KeyInfo *pKeyInfo; 4209 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4210 Mem mem1; 4211 4212 /* If bSkip is true, then the caller has already determined that the first 4213 ** two elements in the keys are equal. Fix the various stack variables so 4214 ** that this routine begins comparing at the second field. */ 4215 if( bSkip ){ 4216 u32 s1; 4217 idx1 = 1 + getVarint32(&aKey1[1], s1); 4218 szHdr1 = aKey1[0]; 4219 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 4220 i = 1; 4221 pRhs++; 4222 }else{ 4223 idx1 = getVarint32(aKey1, szHdr1); 4224 d1 = szHdr1; 4225 if( d1>(unsigned)nKey1 ){ 4226 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4227 return 0; /* Corruption */ 4228 } 4229 i = 0; 4230 } 4231 4232 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4233 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 4234 || CORRUPT_DB ); 4235 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); 4236 assert( pPKey2->pKeyInfo->nKeyField>0 ); 4237 assert( idx1<=szHdr1 || CORRUPT_DB ); 4238 do{ 4239 u32 serial_type; 4240 4241 /* RHS is an integer */ 4242 if( pRhs->flags & MEM_Int ){ 4243 serial_type = aKey1[idx1]; 4244 testcase( serial_type==12 ); 4245 if( serial_type>=10 ){ 4246 rc = +1; 4247 }else if( serial_type==0 ){ 4248 rc = -1; 4249 }else if( serial_type==7 ){ 4250 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4251 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4252 }else{ 4253 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4254 i64 rhs = pRhs->u.i; 4255 if( lhs<rhs ){ 4256 rc = -1; 4257 }else if( lhs>rhs ){ 4258 rc = +1; 4259 } 4260 } 4261 } 4262 4263 /* RHS is real */ 4264 else if( pRhs->flags & MEM_Real ){ 4265 serial_type = aKey1[idx1]; 4266 if( serial_type>=10 ){ 4267 /* Serial types 12 or greater are strings and blobs (greater than 4268 ** numbers). Types 10 and 11 are currently "reserved for future 4269 ** use", so it doesn't really matter what the results of comparing 4270 ** them to numberic values are. */ 4271 rc = +1; 4272 }else if( serial_type==0 ){ 4273 rc = -1; 4274 }else{ 4275 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4276 if( serial_type==7 ){ 4277 if( mem1.u.r<pRhs->u.r ){ 4278 rc = -1; 4279 }else if( mem1.u.r>pRhs->u.r ){ 4280 rc = +1; 4281 } 4282 }else{ 4283 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4284 } 4285 } 4286 } 4287 4288 /* RHS is a string */ 4289 else if( pRhs->flags & MEM_Str ){ 4290 getVarint32(&aKey1[idx1], serial_type); 4291 testcase( serial_type==12 ); 4292 if( serial_type<12 ){ 4293 rc = -1; 4294 }else if( !(serial_type & 0x01) ){ 4295 rc = +1; 4296 }else{ 4297 mem1.n = (serial_type - 12) / 2; 4298 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4299 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4300 if( (d1+mem1.n) > (unsigned)nKey1 ){ 4301 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4302 return 0; /* Corruption */ 4303 }else if( (pKeyInfo = pPKey2->pKeyInfo)->aColl[i] ){ 4304 mem1.enc = pKeyInfo->enc; 4305 mem1.db = pKeyInfo->db; 4306 mem1.flags = MEM_Str; 4307 mem1.z = (char*)&aKey1[d1]; 4308 rc = vdbeCompareMemString( 4309 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4310 ); 4311 }else{ 4312 int nCmp = MIN(mem1.n, pRhs->n); 4313 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4314 if( rc==0 ) rc = mem1.n - pRhs->n; 4315 } 4316 } 4317 } 4318 4319 /* RHS is a blob */ 4320 else if( pRhs->flags & MEM_Blob ){ 4321 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4322 getVarint32(&aKey1[idx1], serial_type); 4323 testcase( serial_type==12 ); 4324 if( serial_type<12 || (serial_type & 0x01) ){ 4325 rc = -1; 4326 }else{ 4327 int nStr = (serial_type - 12) / 2; 4328 testcase( (d1+nStr)==(unsigned)nKey1 ); 4329 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4330 if( (d1+nStr) > (unsigned)nKey1 ){ 4331 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4332 return 0; /* Corruption */ 4333 }else if( pRhs->flags & MEM_Zero ){ 4334 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4335 rc = 1; 4336 }else{ 4337 rc = nStr - pRhs->u.nZero; 4338 } 4339 }else{ 4340 int nCmp = MIN(nStr, pRhs->n); 4341 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4342 if( rc==0 ) rc = nStr - pRhs->n; 4343 } 4344 } 4345 } 4346 4347 /* RHS is null */ 4348 else{ 4349 serial_type = aKey1[idx1]; 4350 rc = (serial_type!=0); 4351 } 4352 4353 if( rc!=0 ){ 4354 if( pPKey2->pKeyInfo->aSortOrder[i] ){ 4355 rc = -rc; 4356 } 4357 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4358 assert( mem1.szMalloc==0 ); /* See comment below */ 4359 return rc; 4360 } 4361 4362 i++; 4363 if( i==pPKey2->nField ) break; 4364 pRhs++; 4365 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4366 idx1 += sqlite3VarintLen(serial_type); 4367 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 ); 4368 4369 /* No memory allocation is ever used on mem1. Prove this using 4370 ** the following assert(). If the assert() fails, it indicates a 4371 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4372 assert( mem1.szMalloc==0 ); 4373 4374 /* rc==0 here means that one or both of the keys ran out of fields and 4375 ** all the fields up to that point were equal. Return the default_rc 4376 ** value. */ 4377 assert( CORRUPT_DB 4378 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4379 || pPKey2->pKeyInfo->db->mallocFailed 4380 ); 4381 pPKey2->eqSeen = 1; 4382 return pPKey2->default_rc; 4383 } 4384 int sqlite3VdbeRecordCompare( 4385 int nKey1, const void *pKey1, /* Left key */ 4386 UnpackedRecord *pPKey2 /* Right key */ 4387 ){ 4388 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4389 } 4390 4391 4392 /* 4393 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4394 ** that (a) the first field of pPKey2 is an integer, and (b) the 4395 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4396 ** byte (i.e. is less than 128). 4397 ** 4398 ** To avoid concerns about buffer overreads, this routine is only used 4399 ** on schemas where the maximum valid header size is 63 bytes or less. 4400 */ 4401 static int vdbeRecordCompareInt( 4402 int nKey1, const void *pKey1, /* Left key */ 4403 UnpackedRecord *pPKey2 /* Right key */ 4404 ){ 4405 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4406 int serial_type = ((const u8*)pKey1)[1]; 4407 int res; 4408 u32 y; 4409 u64 x; 4410 i64 v; 4411 i64 lhs; 4412 4413 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4414 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4415 switch( serial_type ){ 4416 case 1: { /* 1-byte signed integer */ 4417 lhs = ONE_BYTE_INT(aKey); 4418 testcase( lhs<0 ); 4419 break; 4420 } 4421 case 2: { /* 2-byte signed integer */ 4422 lhs = TWO_BYTE_INT(aKey); 4423 testcase( lhs<0 ); 4424 break; 4425 } 4426 case 3: { /* 3-byte signed integer */ 4427 lhs = THREE_BYTE_INT(aKey); 4428 testcase( lhs<0 ); 4429 break; 4430 } 4431 case 4: { /* 4-byte signed integer */ 4432 y = FOUR_BYTE_UINT(aKey); 4433 lhs = (i64)*(int*)&y; 4434 testcase( lhs<0 ); 4435 break; 4436 } 4437 case 5: { /* 6-byte signed integer */ 4438 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4439 testcase( lhs<0 ); 4440 break; 4441 } 4442 case 6: { /* 8-byte signed integer */ 4443 x = FOUR_BYTE_UINT(aKey); 4444 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4445 lhs = *(i64*)&x; 4446 testcase( lhs<0 ); 4447 break; 4448 } 4449 case 8: 4450 lhs = 0; 4451 break; 4452 case 9: 4453 lhs = 1; 4454 break; 4455 4456 /* This case could be removed without changing the results of running 4457 ** this code. Including it causes gcc to generate a faster switch 4458 ** statement (since the range of switch targets now starts at zero and 4459 ** is contiguous) but does not cause any duplicate code to be generated 4460 ** (as gcc is clever enough to combine the two like cases). Other 4461 ** compilers might be similar. */ 4462 case 0: case 7: 4463 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4464 4465 default: 4466 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4467 } 4468 4469 v = pPKey2->aMem[0].u.i; 4470 if( v>lhs ){ 4471 res = pPKey2->r1; 4472 }else if( v<lhs ){ 4473 res = pPKey2->r2; 4474 }else if( pPKey2->nField>1 ){ 4475 /* The first fields of the two keys are equal. Compare the trailing 4476 ** fields. */ 4477 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4478 }else{ 4479 /* The first fields of the two keys are equal and there are no trailing 4480 ** fields. Return pPKey2->default_rc in this case. */ 4481 res = pPKey2->default_rc; 4482 pPKey2->eqSeen = 1; 4483 } 4484 4485 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4486 return res; 4487 } 4488 4489 /* 4490 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4491 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4492 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4493 ** at the start of (pKey1/nKey1) fits in a single byte. 4494 */ 4495 static int vdbeRecordCompareString( 4496 int nKey1, const void *pKey1, /* Left key */ 4497 UnpackedRecord *pPKey2 /* Right key */ 4498 ){ 4499 const u8 *aKey1 = (const u8*)pKey1; 4500 int serial_type; 4501 int res; 4502 4503 assert( pPKey2->aMem[0].flags & MEM_Str ); 4504 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4505 getVarint32(&aKey1[1], serial_type); 4506 if( serial_type<12 ){ 4507 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4508 }else if( !(serial_type & 0x01) ){ 4509 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4510 }else{ 4511 int nCmp; 4512 int nStr; 4513 int szHdr = aKey1[0]; 4514 4515 nStr = (serial_type-12) / 2; 4516 if( (szHdr + nStr) > nKey1 ){ 4517 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4518 return 0; /* Corruption */ 4519 } 4520 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4521 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4522 4523 if( res==0 ){ 4524 res = nStr - pPKey2->aMem[0].n; 4525 if( res==0 ){ 4526 if( pPKey2->nField>1 ){ 4527 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4528 }else{ 4529 res = pPKey2->default_rc; 4530 pPKey2->eqSeen = 1; 4531 } 4532 }else if( res>0 ){ 4533 res = pPKey2->r2; 4534 }else{ 4535 res = pPKey2->r1; 4536 } 4537 }else if( res>0 ){ 4538 res = pPKey2->r2; 4539 }else{ 4540 res = pPKey2->r1; 4541 } 4542 } 4543 4544 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4545 || CORRUPT_DB 4546 || pPKey2->pKeyInfo->db->mallocFailed 4547 ); 4548 return res; 4549 } 4550 4551 /* 4552 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4553 ** suitable for comparing serialized records to the unpacked record passed 4554 ** as the only argument. 4555 */ 4556 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4557 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4558 ** that the size-of-header varint that occurs at the start of each record 4559 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4560 ** also assumes that it is safe to overread a buffer by at least the 4561 ** maximum possible legal header size plus 8 bytes. Because there is 4562 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4563 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4564 ** limit the size of the header to 64 bytes in cases where the first field 4565 ** is an integer. 4566 ** 4567 ** The easiest way to enforce this limit is to consider only records with 4568 ** 13 fields or less. If the first field is an integer, the maximum legal 4569 ** header size is (12*5 + 1 + 1) bytes. */ 4570 if( p->pKeyInfo->nAllField<=13 ){ 4571 int flags = p->aMem[0].flags; 4572 if( p->pKeyInfo->aSortOrder[0] ){ 4573 p->r1 = 1; 4574 p->r2 = -1; 4575 }else{ 4576 p->r1 = -1; 4577 p->r2 = 1; 4578 } 4579 if( (flags & MEM_Int) ){ 4580 return vdbeRecordCompareInt; 4581 } 4582 testcase( flags & MEM_Real ); 4583 testcase( flags & MEM_Null ); 4584 testcase( flags & MEM_Blob ); 4585 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ 4586 assert( flags & MEM_Str ); 4587 return vdbeRecordCompareString; 4588 } 4589 } 4590 4591 return sqlite3VdbeRecordCompare; 4592 } 4593 4594 /* 4595 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4596 ** Read the rowid (the last field in the record) and store it in *rowid. 4597 ** Return SQLITE_OK if everything works, or an error code otherwise. 4598 ** 4599 ** pCur might be pointing to text obtained from a corrupt database file. 4600 ** So the content cannot be trusted. Do appropriate checks on the content. 4601 */ 4602 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4603 i64 nCellKey = 0; 4604 int rc; 4605 u32 szHdr; /* Size of the header */ 4606 u32 typeRowid; /* Serial type of the rowid */ 4607 u32 lenRowid; /* Size of the rowid */ 4608 Mem m, v; 4609 4610 /* Get the size of the index entry. Only indices entries of less 4611 ** than 2GiB are support - anything large must be database corruption. 4612 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4613 ** this code can safely assume that nCellKey is 32-bits 4614 */ 4615 assert( sqlite3BtreeCursorIsValid(pCur) ); 4616 nCellKey = sqlite3BtreePayloadSize(pCur); 4617 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4618 4619 /* Read in the complete content of the index entry */ 4620 sqlite3VdbeMemInit(&m, db, 0); 4621 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4622 if( rc ){ 4623 return rc; 4624 } 4625 4626 /* The index entry must begin with a header size */ 4627 (void)getVarint32((u8*)m.z, szHdr); 4628 testcase( szHdr==3 ); 4629 testcase( szHdr==m.n ); 4630 testcase( szHdr>0x7fffffff ); 4631 assert( m.n>=0 ); 4632 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ 4633 goto idx_rowid_corruption; 4634 } 4635 4636 /* The last field of the index should be an integer - the ROWID. 4637 ** Verify that the last entry really is an integer. */ 4638 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 4639 testcase( typeRowid==1 ); 4640 testcase( typeRowid==2 ); 4641 testcase( typeRowid==3 ); 4642 testcase( typeRowid==4 ); 4643 testcase( typeRowid==5 ); 4644 testcase( typeRowid==6 ); 4645 testcase( typeRowid==8 ); 4646 testcase( typeRowid==9 ); 4647 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4648 goto idx_rowid_corruption; 4649 } 4650 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4651 testcase( (u32)m.n==szHdr+lenRowid ); 4652 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4653 goto idx_rowid_corruption; 4654 } 4655 4656 /* Fetch the integer off the end of the index record */ 4657 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4658 *rowid = v.u.i; 4659 sqlite3VdbeMemRelease(&m); 4660 return SQLITE_OK; 4661 4662 /* Jump here if database corruption is detected after m has been 4663 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4664 idx_rowid_corruption: 4665 testcase( m.szMalloc!=0 ); 4666 sqlite3VdbeMemRelease(&m); 4667 return SQLITE_CORRUPT_BKPT; 4668 } 4669 4670 /* 4671 ** Compare the key of the index entry that cursor pC is pointing to against 4672 ** the key string in pUnpacked. Write into *pRes a number 4673 ** that is negative, zero, or positive if pC is less than, equal to, 4674 ** or greater than pUnpacked. Return SQLITE_OK on success. 4675 ** 4676 ** pUnpacked is either created without a rowid or is truncated so that it 4677 ** omits the rowid at the end. The rowid at the end of the index entry 4678 ** is ignored as well. Hence, this routine only compares the prefixes 4679 ** of the keys prior to the final rowid, not the entire key. 4680 */ 4681 int sqlite3VdbeIdxKeyCompare( 4682 sqlite3 *db, /* Database connection */ 4683 VdbeCursor *pC, /* The cursor to compare against */ 4684 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4685 int *res /* Write the comparison result here */ 4686 ){ 4687 i64 nCellKey = 0; 4688 int rc; 4689 BtCursor *pCur; 4690 Mem m; 4691 4692 assert( pC->eCurType==CURTYPE_BTREE ); 4693 pCur = pC->uc.pCursor; 4694 assert( sqlite3BtreeCursorIsValid(pCur) ); 4695 nCellKey = sqlite3BtreePayloadSize(pCur); 4696 /* nCellKey will always be between 0 and 0xffffffff because of the way 4697 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4698 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4699 *res = 0; 4700 return SQLITE_CORRUPT_BKPT; 4701 } 4702 sqlite3VdbeMemInit(&m, db, 0); 4703 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4704 if( rc ){ 4705 return rc; 4706 } 4707 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); 4708 sqlite3VdbeMemRelease(&m); 4709 return SQLITE_OK; 4710 } 4711 4712 /* 4713 ** This routine sets the value to be returned by subsequent calls to 4714 ** sqlite3_changes() on the database handle 'db'. 4715 */ 4716 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 4717 assert( sqlite3_mutex_held(db->mutex) ); 4718 db->nChange = nChange; 4719 db->nTotalChange += nChange; 4720 } 4721 4722 /* 4723 ** Set a flag in the vdbe to update the change counter when it is finalised 4724 ** or reset. 4725 */ 4726 void sqlite3VdbeCountChanges(Vdbe *v){ 4727 v->changeCntOn = 1; 4728 } 4729 4730 /* 4731 ** Mark every prepared statement associated with a database connection 4732 ** as expired. 4733 ** 4734 ** An expired statement means that recompilation of the statement is 4735 ** recommend. Statements expire when things happen that make their 4736 ** programs obsolete. Removing user-defined functions or collating 4737 ** sequences, or changing an authorization function are the types of 4738 ** things that make prepared statements obsolete. 4739 ** 4740 ** If iCode is 1, then expiration is advisory. The statement should 4741 ** be reprepared before being restarted, but if it is already running 4742 ** it is allowed to run to completion. 4743 ** 4744 ** Internally, this function just sets the Vdbe.expired flag on all 4745 ** prepared statements. The flag is set to 1 for an immediate expiration 4746 ** and set to 2 for an advisory expiration. 4747 */ 4748 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ 4749 Vdbe *p; 4750 for(p = db->pVdbe; p; p=p->pNext){ 4751 p->expired = iCode+1; 4752 } 4753 } 4754 4755 /* 4756 ** Return the database associated with the Vdbe. 4757 */ 4758 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 4759 return v->db; 4760 } 4761 4762 /* 4763 ** Return the SQLITE_PREPARE flags for a Vdbe. 4764 */ 4765 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 4766 return v->prepFlags; 4767 } 4768 4769 /* 4770 ** Return a pointer to an sqlite3_value structure containing the value bound 4771 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 4772 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 4773 ** constants) to the value before returning it. 4774 ** 4775 ** The returned value must be freed by the caller using sqlite3ValueFree(). 4776 */ 4777 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 4778 assert( iVar>0 ); 4779 if( v ){ 4780 Mem *pMem = &v->aVar[iVar-1]; 4781 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 4782 if( 0==(pMem->flags & MEM_Null) ){ 4783 sqlite3_value *pRet = sqlite3ValueNew(v->db); 4784 if( pRet ){ 4785 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 4786 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 4787 } 4788 return pRet; 4789 } 4790 } 4791 return 0; 4792 } 4793 4794 /* 4795 ** Configure SQL variable iVar so that binding a new value to it signals 4796 ** to sqlite3_reoptimize() that re-preparing the statement may result 4797 ** in a better query plan. 4798 */ 4799 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 4800 assert( iVar>0 ); 4801 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 4802 if( iVar>=32 ){ 4803 v->expmask |= 0x80000000; 4804 }else{ 4805 v->expmask |= ((u32)1 << (iVar-1)); 4806 } 4807 } 4808 4809 /* 4810 ** Cause a function to throw an error if it was call from OP_PureFunc 4811 ** rather than OP_Function. 4812 ** 4813 ** OP_PureFunc means that the function must be deterministic, and should 4814 ** throw an error if it is given inputs that would make it non-deterministic. 4815 ** This routine is invoked by date/time functions that use non-deterministic 4816 ** features such as 'now'. 4817 */ 4818 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 4819 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 4820 if( pCtx->pVdbe==0 ) return 1; 4821 #endif 4822 if( pCtx->pVdbe->aOp[pCtx->iOp].opcode==OP_PureFunc ){ 4823 sqlite3_result_error(pCtx, 4824 "non-deterministic function in index expression or CHECK constraint", 4825 -1); 4826 return 0; 4827 } 4828 return 1; 4829 } 4830 4831 #ifndef SQLITE_OMIT_VIRTUALTABLE 4832 /* 4833 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 4834 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 4835 ** in memory obtained from sqlite3DbMalloc). 4836 */ 4837 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 4838 if( pVtab->zErrMsg ){ 4839 sqlite3 *db = p->db; 4840 sqlite3DbFree(db, p->zErrMsg); 4841 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 4842 sqlite3_free(pVtab->zErrMsg); 4843 pVtab->zErrMsg = 0; 4844 } 4845 } 4846 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4847 4848 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4849 4850 /* 4851 ** If the second argument is not NULL, release any allocations associated 4852 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 4853 ** structure itself, using sqlite3DbFree(). 4854 ** 4855 ** This function is used to free UnpackedRecord structures allocated by 4856 ** the vdbeUnpackRecord() function found in vdbeapi.c. 4857 */ 4858 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 4859 if( p ){ 4860 int i; 4861 for(i=0; i<nField; i++){ 4862 Mem *pMem = &p->aMem[i]; 4863 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem); 4864 } 4865 sqlite3DbFreeNN(db, p); 4866 } 4867 } 4868 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4869 4870 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4871 /* 4872 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 4873 ** then cursor passed as the second argument should point to the row about 4874 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 4875 ** the required value will be read from the row the cursor points to. 4876 */ 4877 void sqlite3VdbePreUpdateHook( 4878 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 4879 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 4880 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 4881 const char *zDb, /* Database name */ 4882 Table *pTab, /* Modified table */ 4883 i64 iKey1, /* Initial key value */ 4884 int iReg /* Register for new.* record */ 4885 ){ 4886 sqlite3 *db = v->db; 4887 i64 iKey2; 4888 PreUpdate preupdate; 4889 const char *zTbl = pTab->zName; 4890 static const u8 fakeSortOrder = 0; 4891 4892 assert( db->pPreUpdate==0 ); 4893 memset(&preupdate, 0, sizeof(PreUpdate)); 4894 if( HasRowid(pTab)==0 ){ 4895 iKey1 = iKey2 = 0; 4896 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 4897 }else{ 4898 if( op==SQLITE_UPDATE ){ 4899 iKey2 = v->aMem[iReg].u.i; 4900 }else{ 4901 iKey2 = iKey1; 4902 } 4903 } 4904 4905 assert( pCsr->nField==pTab->nCol 4906 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 4907 ); 4908 4909 preupdate.v = v; 4910 preupdate.pCsr = pCsr; 4911 preupdate.op = op; 4912 preupdate.iNewReg = iReg; 4913 preupdate.keyinfo.db = db; 4914 preupdate.keyinfo.enc = ENC(db); 4915 preupdate.keyinfo.nKeyField = pTab->nCol; 4916 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder; 4917 preupdate.iKey1 = iKey1; 4918 preupdate.iKey2 = iKey2; 4919 preupdate.pTab = pTab; 4920 4921 db->pPreUpdate = &preupdate; 4922 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 4923 db->pPreUpdate = 0; 4924 sqlite3DbFree(db, preupdate.aRecord); 4925 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 4926 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 4927 if( preupdate.aNew ){ 4928 int i; 4929 for(i=0; i<pCsr->nField; i++){ 4930 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 4931 } 4932 sqlite3DbFreeNN(db, preupdate.aNew); 4933 } 4934 } 4935 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4936