1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* 19 ** Create a new virtual database engine. 20 */ 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 22 sqlite3 *db = pParse->db; 23 Vdbe *p; 24 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 25 if( p==0 ) return 0; 26 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 27 p->db = db; 28 if( db->pVdbe ){ 29 db->pVdbe->pPrev = p; 30 } 31 p->pNext = db->pVdbe; 32 p->pPrev = 0; 33 db->pVdbe = p; 34 p->magic = VDBE_MAGIC_INIT; 35 p->pParse = pParse; 36 pParse->pVdbe = p; 37 assert( pParse->aLabel==0 ); 38 assert( pParse->nLabel==0 ); 39 assert( pParse->nOpAlloc==0 ); 40 assert( pParse->szOpAlloc==0 ); 41 sqlite3VdbeAddOp2(p, OP_Init, 0, 1); 42 return p; 43 } 44 45 /* 46 ** Change the error string stored in Vdbe.zErrMsg 47 */ 48 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 49 va_list ap; 50 sqlite3DbFree(p->db, p->zErrMsg); 51 va_start(ap, zFormat); 52 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 53 va_end(ap); 54 } 55 56 /* 57 ** Remember the SQL string for a prepared statement. 58 */ 59 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 60 if( p==0 ) return; 61 p->prepFlags = prepFlags; 62 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 63 p->expmask = 0; 64 } 65 assert( p->zSql==0 ); 66 p->zSql = sqlite3DbStrNDup(p->db, z, n); 67 } 68 69 /* 70 ** Swap all content between two VDBE structures. 71 */ 72 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 73 Vdbe tmp, *pTmp; 74 char *zTmp; 75 assert( pA->db==pB->db ); 76 tmp = *pA; 77 *pA = *pB; 78 *pB = tmp; 79 pTmp = pA->pNext; 80 pA->pNext = pB->pNext; 81 pB->pNext = pTmp; 82 pTmp = pA->pPrev; 83 pA->pPrev = pB->pPrev; 84 pB->pPrev = pTmp; 85 zTmp = pA->zSql; 86 pA->zSql = pB->zSql; 87 pB->zSql = zTmp; 88 pB->expmask = pA->expmask; 89 pB->prepFlags = pA->prepFlags; 90 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 91 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 92 } 93 94 /* 95 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 96 ** than its current size. nOp is guaranteed to be less than or equal 97 ** to 1024/sizeof(Op). 98 ** 99 ** If an out-of-memory error occurs while resizing the array, return 100 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain 101 ** unchanged (this is so that any opcodes already allocated can be 102 ** correctly deallocated along with the rest of the Vdbe). 103 */ 104 static int growOpArray(Vdbe *v, int nOp){ 105 VdbeOp *pNew; 106 Parse *p = v->pParse; 107 108 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 109 ** more frequent reallocs and hence provide more opportunities for 110 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 111 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 112 ** by the minimum* amount required until the size reaches 512. Normal 113 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 114 ** size of the op array or add 1KB of space, whichever is smaller. */ 115 #ifdef SQLITE_TEST_REALLOC_STRESS 116 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); 117 #else 118 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 119 UNUSED_PARAMETER(nOp); 120 #endif 121 122 /* Ensure that the size of a VDBE does not grow too large */ 123 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 124 sqlite3OomFault(p->db); 125 return SQLITE_NOMEM; 126 } 127 128 assert( nOp<=(1024/sizeof(Op)) ); 129 assert( nNew>=(p->nOpAlloc+nOp) ); 130 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 131 if( pNew ){ 132 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 133 p->nOpAlloc = p->szOpAlloc/sizeof(Op); 134 v->aOp = pNew; 135 } 136 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 137 } 138 139 #ifdef SQLITE_DEBUG 140 /* This routine is just a convenient place to set a breakpoint that will 141 ** fire after each opcode is inserted and displayed using 142 ** "PRAGMA vdbe_addoptrace=on". 143 */ 144 static void test_addop_breakpoint(void){ 145 static int n = 0; 146 n++; 147 } 148 #endif 149 150 /* 151 ** Add a new instruction to the list of instructions current in the 152 ** VDBE. Return the address of the new instruction. 153 ** 154 ** Parameters: 155 ** 156 ** p Pointer to the VDBE 157 ** 158 ** op The opcode for this instruction 159 ** 160 ** p1, p2, p3 Operands 161 ** 162 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 163 ** the sqlite3VdbeChangeP4() function to change the value of the P4 164 ** operand. 165 */ 166 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 167 assert( p->pParse->nOpAlloc<=p->nOp ); 168 if( growOpArray(p, 1) ) return 1; 169 assert( p->pParse->nOpAlloc>p->nOp ); 170 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 171 } 172 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 173 int i; 174 VdbeOp *pOp; 175 176 i = p->nOp; 177 assert( p->magic==VDBE_MAGIC_INIT ); 178 assert( op>=0 && op<0xff ); 179 if( p->pParse->nOpAlloc<=i ){ 180 return growOp3(p, op, p1, p2, p3); 181 } 182 p->nOp++; 183 pOp = &p->aOp[i]; 184 pOp->opcode = (u8)op; 185 pOp->p5 = 0; 186 pOp->p1 = p1; 187 pOp->p2 = p2; 188 pOp->p3 = p3; 189 pOp->p4.p = 0; 190 pOp->p4type = P4_NOTUSED; 191 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 192 pOp->zComment = 0; 193 #endif 194 #ifdef SQLITE_DEBUG 195 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 196 int jj, kk; 197 Parse *pParse = p->pParse; 198 for(jj=kk=0; jj<pParse->nColCache; jj++){ 199 struct yColCache *x = pParse->aColCache + jj; 200 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); 201 kk++; 202 } 203 if( kk ) printf("\n"); 204 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 205 test_addop_breakpoint(); 206 } 207 #endif 208 #ifdef VDBE_PROFILE 209 pOp->cycles = 0; 210 pOp->cnt = 0; 211 #endif 212 #ifdef SQLITE_VDBE_COVERAGE 213 pOp->iSrcLine = 0; 214 #endif 215 return i; 216 } 217 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 218 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 219 } 220 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 221 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 222 } 223 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 224 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 225 } 226 227 /* Generate code for an unconditional jump to instruction iDest 228 */ 229 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 230 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 231 } 232 233 /* Generate code to cause the string zStr to be loaded into 234 ** register iDest 235 */ 236 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 237 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 238 } 239 240 /* 241 ** Generate code that initializes multiple registers to string or integer 242 ** constants. The registers begin with iDest and increase consecutively. 243 ** One register is initialized for each characgter in zTypes[]. For each 244 ** "s" character in zTypes[], the register is a string if the argument is 245 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 246 ** in zTypes[], the register is initialized to an integer. 247 ** 248 ** If the input string does not end with "X" then an OP_ResultRow instruction 249 ** is generated for the values inserted. 250 */ 251 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 252 va_list ap; 253 int i; 254 char c; 255 va_start(ap, zTypes); 256 for(i=0; (c = zTypes[i])!=0; i++){ 257 if( c=='s' ){ 258 const char *z = va_arg(ap, const char*); 259 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 260 }else if( c=='i' ){ 261 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 262 }else{ 263 goto skip_op_resultrow; 264 } 265 } 266 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 267 skip_op_resultrow: 268 va_end(ap); 269 } 270 271 /* 272 ** Add an opcode that includes the p4 value as a pointer. 273 */ 274 int sqlite3VdbeAddOp4( 275 Vdbe *p, /* Add the opcode to this VM */ 276 int op, /* The new opcode */ 277 int p1, /* The P1 operand */ 278 int p2, /* The P2 operand */ 279 int p3, /* The P3 operand */ 280 const char *zP4, /* The P4 operand */ 281 int p4type /* P4 operand type */ 282 ){ 283 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 284 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 285 return addr; 286 } 287 288 /* 289 ** Add an opcode that includes the p4 value with a P4_INT64 or 290 ** P4_REAL type. 291 */ 292 int sqlite3VdbeAddOp4Dup8( 293 Vdbe *p, /* Add the opcode to this VM */ 294 int op, /* The new opcode */ 295 int p1, /* The P1 operand */ 296 int p2, /* The P2 operand */ 297 int p3, /* The P3 operand */ 298 const u8 *zP4, /* The P4 operand */ 299 int p4type /* P4 operand type */ 300 ){ 301 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 302 if( p4copy ) memcpy(p4copy, zP4, 8); 303 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 304 } 305 306 #ifndef SQLITE_OMIT_EXPLAIN 307 /* 308 ** Return the address of the current EXPLAIN QUERY PLAN baseline. 309 ** 0 means "none". 310 */ 311 int sqlite3VdbeExplainParent(Parse *pParse){ 312 VdbeOp *pOp; 313 if( pParse->addrExplain==0 ) return 0; 314 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); 315 return pOp->p2; 316 } 317 318 /* 319 ** Add a new OP_Explain opcode. 320 ** 321 ** If the bPush flag is true, then make this opcode the parent for 322 ** subsequent Explains until sqlite3VdbeExplainPop() is called. 323 */ 324 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ 325 if( pParse->explain==2 ){ 326 char *zMsg; 327 Vdbe *v = pParse->pVdbe; 328 va_list ap; 329 int iThis; 330 va_start(ap, zFmt); 331 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); 332 va_end(ap); 333 v = pParse->pVdbe; 334 iThis = v->nOp; 335 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, 336 zMsg, P4_DYNAMIC); 337 if( bPush) pParse->addrExplain = iThis; 338 } 339 } 340 341 /* 342 ** Pop the EXPLAIN QUERY PLAN stack one level. 343 */ 344 void sqlite3VdbeExplainPop(Parse *pParse){ 345 pParse->addrExplain = sqlite3VdbeExplainParent(pParse); 346 } 347 #endif /* SQLITE_OMIT_EXPLAIN */ 348 349 /* 350 ** Add an OP_ParseSchema opcode. This routine is broken out from 351 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 352 ** as having been used. 353 ** 354 ** The zWhere string must have been obtained from sqlite3_malloc(). 355 ** This routine will take ownership of the allocated memory. 356 */ 357 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 358 int j; 359 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 360 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 361 } 362 363 /* 364 ** Add an opcode that includes the p4 value as an integer. 365 */ 366 int sqlite3VdbeAddOp4Int( 367 Vdbe *p, /* Add the opcode to this VM */ 368 int op, /* The new opcode */ 369 int p1, /* The P1 operand */ 370 int p2, /* The P2 operand */ 371 int p3, /* The P3 operand */ 372 int p4 /* The P4 operand as an integer */ 373 ){ 374 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 375 if( p->db->mallocFailed==0 ){ 376 VdbeOp *pOp = &p->aOp[addr]; 377 pOp->p4type = P4_INT32; 378 pOp->p4.i = p4; 379 } 380 return addr; 381 } 382 383 /* Insert the end of a co-routine 384 */ 385 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 386 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 387 388 /* Clear the temporary register cache, thereby ensuring that each 389 ** co-routine has its own independent set of registers, because co-routines 390 ** might expect their registers to be preserved across an OP_Yield, and 391 ** that could cause problems if two or more co-routines are using the same 392 ** temporary register. 393 */ 394 v->pParse->nTempReg = 0; 395 v->pParse->nRangeReg = 0; 396 } 397 398 /* 399 ** Create a new symbolic label for an instruction that has yet to be 400 ** coded. The symbolic label is really just a negative number. The 401 ** label can be used as the P2 value of an operation. Later, when 402 ** the label is resolved to a specific address, the VDBE will scan 403 ** through its operation list and change all values of P2 which match 404 ** the label into the resolved address. 405 ** 406 ** The VDBE knows that a P2 value is a label because labels are 407 ** always negative and P2 values are suppose to be non-negative. 408 ** Hence, a negative P2 value is a label that has yet to be resolved. 409 ** 410 ** Zero is returned if a malloc() fails. 411 */ 412 int sqlite3VdbeMakeLabel(Vdbe *v){ 413 Parse *p = v->pParse; 414 int i = p->nLabel++; 415 assert( v->magic==VDBE_MAGIC_INIT ); 416 if( (i & (i-1))==0 ){ 417 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 418 (i*2+1)*sizeof(p->aLabel[0])); 419 } 420 if( p->aLabel ){ 421 p->aLabel[i] = -1; 422 } 423 return ADDR(i); 424 } 425 426 /* 427 ** Resolve label "x" to be the address of the next instruction to 428 ** be inserted. The parameter "x" must have been obtained from 429 ** a prior call to sqlite3VdbeMakeLabel(). 430 */ 431 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 432 Parse *p = v->pParse; 433 int j = ADDR(x); 434 assert( v->magic==VDBE_MAGIC_INIT ); 435 assert( j<p->nLabel ); 436 assert( j>=0 ); 437 if( p->aLabel ){ 438 #ifdef SQLITE_DEBUG 439 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 440 printf("RESOLVE LABEL %d to %d\n", x, v->nOp); 441 } 442 #endif 443 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ 444 p->aLabel[j] = v->nOp; 445 } 446 } 447 448 #ifdef SQLITE_COVERAGE_TEST 449 /* 450 ** Return TRUE if and only if the label x has already been resolved. 451 ** Return FALSE (zero) if label x is still unresolved. 452 ** 453 ** This routine is only used inside of testcase() macros, and so it 454 ** only exists when measuring test coverage. 455 */ 456 int sqlite3VdbeLabelHasBeenResolved(Vdbe *v, int x){ 457 return v->pParse->aLabel && v->pParse->aLabel[ADDR(x)]>=0; 458 } 459 #endif /* SQLITE_COVERAGE_TEST */ 460 461 /* 462 ** Mark the VDBE as one that can only be run one time. 463 */ 464 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 465 p->runOnlyOnce = 1; 466 } 467 468 /* 469 ** Mark the VDBE as one that can only be run multiple times. 470 */ 471 void sqlite3VdbeReusable(Vdbe *p){ 472 p->runOnlyOnce = 0; 473 } 474 475 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 476 477 /* 478 ** The following type and function are used to iterate through all opcodes 479 ** in a Vdbe main program and each of the sub-programs (triggers) it may 480 ** invoke directly or indirectly. It should be used as follows: 481 ** 482 ** Op *pOp; 483 ** VdbeOpIter sIter; 484 ** 485 ** memset(&sIter, 0, sizeof(sIter)); 486 ** sIter.v = v; // v is of type Vdbe* 487 ** while( (pOp = opIterNext(&sIter)) ){ 488 ** // Do something with pOp 489 ** } 490 ** sqlite3DbFree(v->db, sIter.apSub); 491 ** 492 */ 493 typedef struct VdbeOpIter VdbeOpIter; 494 struct VdbeOpIter { 495 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 496 SubProgram **apSub; /* Array of subprograms */ 497 int nSub; /* Number of entries in apSub */ 498 int iAddr; /* Address of next instruction to return */ 499 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 500 }; 501 static Op *opIterNext(VdbeOpIter *p){ 502 Vdbe *v = p->v; 503 Op *pRet = 0; 504 Op *aOp; 505 int nOp; 506 507 if( p->iSub<=p->nSub ){ 508 509 if( p->iSub==0 ){ 510 aOp = v->aOp; 511 nOp = v->nOp; 512 }else{ 513 aOp = p->apSub[p->iSub-1]->aOp; 514 nOp = p->apSub[p->iSub-1]->nOp; 515 } 516 assert( p->iAddr<nOp ); 517 518 pRet = &aOp[p->iAddr]; 519 p->iAddr++; 520 if( p->iAddr==nOp ){ 521 p->iSub++; 522 p->iAddr = 0; 523 } 524 525 if( pRet->p4type==P4_SUBPROGRAM ){ 526 int nByte = (p->nSub+1)*sizeof(SubProgram*); 527 int j; 528 for(j=0; j<p->nSub; j++){ 529 if( p->apSub[j]==pRet->p4.pProgram ) break; 530 } 531 if( j==p->nSub ){ 532 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 533 if( !p->apSub ){ 534 pRet = 0; 535 }else{ 536 p->apSub[p->nSub++] = pRet->p4.pProgram; 537 } 538 } 539 } 540 } 541 542 return pRet; 543 } 544 545 /* 546 ** Check if the program stored in the VM associated with pParse may 547 ** throw an ABORT exception (causing the statement, but not entire transaction 548 ** to be rolled back). This condition is true if the main program or any 549 ** sub-programs contains any of the following: 550 ** 551 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 552 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 553 ** * OP_Destroy 554 ** * OP_VUpdate 555 ** * OP_VRename 556 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 557 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 558 ** (for CREATE TABLE AS SELECT ...) 559 ** 560 ** Then check that the value of Parse.mayAbort is true if an 561 ** ABORT may be thrown, or false otherwise. Return true if it does 562 ** match, or false otherwise. This function is intended to be used as 563 ** part of an assert statement in the compiler. Similar to: 564 ** 565 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 566 */ 567 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 568 int hasAbort = 0; 569 int hasFkCounter = 0; 570 int hasCreateTable = 0; 571 int hasInitCoroutine = 0; 572 Op *pOp; 573 VdbeOpIter sIter; 574 memset(&sIter, 0, sizeof(sIter)); 575 sIter.v = v; 576 577 while( (pOp = opIterNext(&sIter))!=0 ){ 578 int opcode = pOp->opcode; 579 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 580 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 581 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 582 ){ 583 hasAbort = 1; 584 break; 585 } 586 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; 587 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 588 #ifndef SQLITE_OMIT_FOREIGN_KEY 589 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 590 hasFkCounter = 1; 591 } 592 #endif 593 } 594 sqlite3DbFree(v->db, sIter.apSub); 595 596 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 597 ** If malloc failed, then the while() loop above may not have iterated 598 ** through all opcodes and hasAbort may be set incorrectly. Return 599 ** true for this case to prevent the assert() in the callers frame 600 ** from failing. */ 601 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 602 || (hasCreateTable && hasInitCoroutine) ); 603 } 604 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 605 606 #ifdef SQLITE_DEBUG 607 /* 608 ** Increment the nWrite counter in the VDBE if the cursor is not an 609 ** ephemeral cursor, or if the cursor argument is NULL. 610 */ 611 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ 612 if( pC==0 613 || (pC->eCurType!=CURTYPE_SORTER 614 && pC->eCurType!=CURTYPE_PSEUDO 615 && !pC->isEphemeral) 616 ){ 617 p->nWrite++; 618 } 619 } 620 #endif 621 622 #ifdef SQLITE_DEBUG 623 /* 624 ** Assert if an Abort at this point in time might result in a corrupt 625 ** database. 626 */ 627 void sqlite3VdbeAssertAbortable(Vdbe *p){ 628 assert( p->nWrite==0 || p->usesStmtJournal ); 629 } 630 #endif 631 632 /* 633 ** This routine is called after all opcodes have been inserted. It loops 634 ** through all the opcodes and fixes up some details. 635 ** 636 ** (1) For each jump instruction with a negative P2 value (a label) 637 ** resolve the P2 value to an actual address. 638 ** 639 ** (2) Compute the maximum number of arguments used by any SQL function 640 ** and store that value in *pMaxFuncArgs. 641 ** 642 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 643 ** indicate what the prepared statement actually does. 644 ** 645 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 646 ** 647 ** (5) Reclaim the memory allocated for storing labels. 648 ** 649 ** This routine will only function correctly if the mkopcodeh.tcl generator 650 ** script numbers the opcodes correctly. Changes to this routine must be 651 ** coordinated with changes to mkopcodeh.tcl. 652 */ 653 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 654 int nMaxArgs = *pMaxFuncArgs; 655 Op *pOp; 656 Parse *pParse = p->pParse; 657 int *aLabel = pParse->aLabel; 658 p->readOnly = 1; 659 p->bIsReader = 0; 660 pOp = &p->aOp[p->nOp-1]; 661 while(1){ 662 663 /* Only JUMP opcodes and the short list of special opcodes in the switch 664 ** below need to be considered. The mkopcodeh.tcl generator script groups 665 ** all these opcodes together near the front of the opcode list. Skip 666 ** any opcode that does not need processing by virtual of the fact that 667 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 668 */ 669 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 670 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 671 ** cases from this switch! */ 672 switch( pOp->opcode ){ 673 case OP_Transaction: { 674 if( pOp->p2!=0 ) p->readOnly = 0; 675 /* fall thru */ 676 } 677 case OP_AutoCommit: 678 case OP_Savepoint: { 679 p->bIsReader = 1; 680 break; 681 } 682 #ifndef SQLITE_OMIT_WAL 683 case OP_Checkpoint: 684 #endif 685 case OP_Vacuum: 686 case OP_JournalMode: { 687 p->readOnly = 0; 688 p->bIsReader = 1; 689 break; 690 } 691 case OP_Next: 692 case OP_SorterNext: { 693 pOp->p4.xAdvance = sqlite3BtreeNext; 694 pOp->p4type = P4_ADVANCE; 695 /* The code generator never codes any of these opcodes as a jump 696 ** to a label. They are always coded as a jump backwards to a 697 ** known address */ 698 assert( pOp->p2>=0 ); 699 break; 700 } 701 case OP_Prev: { 702 pOp->p4.xAdvance = sqlite3BtreePrevious; 703 pOp->p4type = P4_ADVANCE; 704 /* The code generator never codes any of these opcodes as a jump 705 ** to a label. They are always coded as a jump backwards to a 706 ** known address */ 707 assert( pOp->p2>=0 ); 708 break; 709 } 710 #ifndef SQLITE_OMIT_VIRTUALTABLE 711 case OP_VUpdate: { 712 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 713 break; 714 } 715 case OP_VFilter: { 716 int n; 717 assert( (pOp - p->aOp) >= 3 ); 718 assert( pOp[-1].opcode==OP_Integer ); 719 n = pOp[-1].p1; 720 if( n>nMaxArgs ) nMaxArgs = n; 721 /* Fall through into the default case */ 722 } 723 #endif 724 default: { 725 if( pOp->p2<0 ){ 726 /* The mkopcodeh.tcl script has so arranged things that the only 727 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 728 ** have non-negative values for P2. */ 729 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 730 assert( ADDR(pOp->p2)<pParse->nLabel ); 731 pOp->p2 = aLabel[ADDR(pOp->p2)]; 732 } 733 break; 734 } 735 } 736 /* The mkopcodeh.tcl script has so arranged things that the only 737 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 738 ** have non-negative values for P2. */ 739 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 740 } 741 if( pOp==p->aOp ) break; 742 pOp--; 743 } 744 sqlite3DbFree(p->db, pParse->aLabel); 745 pParse->aLabel = 0; 746 pParse->nLabel = 0; 747 *pMaxFuncArgs = nMaxArgs; 748 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 749 } 750 751 /* 752 ** Return the address of the next instruction to be inserted. 753 */ 754 int sqlite3VdbeCurrentAddr(Vdbe *p){ 755 assert( p->magic==VDBE_MAGIC_INIT ); 756 return p->nOp; 757 } 758 759 /* 760 ** Verify that at least N opcode slots are available in p without 761 ** having to malloc for more space (except when compiled using 762 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 763 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 764 ** fail due to a OOM fault and hence that the return value from 765 ** sqlite3VdbeAddOpList() will always be non-NULL. 766 */ 767 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 768 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 769 assert( p->nOp + N <= p->pParse->nOpAlloc ); 770 } 771 #endif 772 773 /* 774 ** Verify that the VM passed as the only argument does not contain 775 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 776 ** by code in pragma.c to ensure that the implementation of certain 777 ** pragmas comports with the flags specified in the mkpragmatab.tcl 778 ** script. 779 */ 780 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 781 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 782 int i; 783 for(i=0; i<p->nOp; i++){ 784 assert( p->aOp[i].opcode!=OP_ResultRow ); 785 } 786 } 787 #endif 788 789 /* 790 ** Generate code (a single OP_Abortable opcode) that will 791 ** verify that the VDBE program can safely call Abort in the current 792 ** context. 793 */ 794 #if defined(SQLITE_DEBUG) 795 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ 796 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); 797 } 798 #endif 799 800 /* 801 ** This function returns a pointer to the array of opcodes associated with 802 ** the Vdbe passed as the first argument. It is the callers responsibility 803 ** to arrange for the returned array to be eventually freed using the 804 ** vdbeFreeOpArray() function. 805 ** 806 ** Before returning, *pnOp is set to the number of entries in the returned 807 ** array. Also, *pnMaxArg is set to the larger of its current value and 808 ** the number of entries in the Vdbe.apArg[] array required to execute the 809 ** returned program. 810 */ 811 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 812 VdbeOp *aOp = p->aOp; 813 assert( aOp && !p->db->mallocFailed ); 814 815 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 816 assert( DbMaskAllZero(p->btreeMask) ); 817 818 resolveP2Values(p, pnMaxArg); 819 *pnOp = p->nOp; 820 p->aOp = 0; 821 return aOp; 822 } 823 824 /* 825 ** Add a whole list of operations to the operation stack. Return a 826 ** pointer to the first operation inserted. 827 ** 828 ** Non-zero P2 arguments to jump instructions are automatically adjusted 829 ** so that the jump target is relative to the first operation inserted. 830 */ 831 VdbeOp *sqlite3VdbeAddOpList( 832 Vdbe *p, /* Add opcodes to the prepared statement */ 833 int nOp, /* Number of opcodes to add */ 834 VdbeOpList const *aOp, /* The opcodes to be added */ 835 int iLineno /* Source-file line number of first opcode */ 836 ){ 837 int i; 838 VdbeOp *pOut, *pFirst; 839 assert( nOp>0 ); 840 assert( p->magic==VDBE_MAGIC_INIT ); 841 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ 842 return 0; 843 } 844 pFirst = pOut = &p->aOp[p->nOp]; 845 for(i=0; i<nOp; i++, aOp++, pOut++){ 846 pOut->opcode = aOp->opcode; 847 pOut->p1 = aOp->p1; 848 pOut->p2 = aOp->p2; 849 assert( aOp->p2>=0 ); 850 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 851 pOut->p2 += p->nOp; 852 } 853 pOut->p3 = aOp->p3; 854 pOut->p4type = P4_NOTUSED; 855 pOut->p4.p = 0; 856 pOut->p5 = 0; 857 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 858 pOut->zComment = 0; 859 #endif 860 #ifdef SQLITE_VDBE_COVERAGE 861 pOut->iSrcLine = iLineno+i; 862 #else 863 (void)iLineno; 864 #endif 865 #ifdef SQLITE_DEBUG 866 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 867 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 868 } 869 #endif 870 } 871 p->nOp += nOp; 872 return pFirst; 873 } 874 875 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 876 /* 877 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 878 */ 879 void sqlite3VdbeScanStatus( 880 Vdbe *p, /* VM to add scanstatus() to */ 881 int addrExplain, /* Address of OP_Explain (or 0) */ 882 int addrLoop, /* Address of loop counter */ 883 int addrVisit, /* Address of rows visited counter */ 884 LogEst nEst, /* Estimated number of output rows */ 885 const char *zName /* Name of table or index being scanned */ 886 ){ 887 int nByte = (p->nScan+1) * sizeof(ScanStatus); 888 ScanStatus *aNew; 889 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 890 if( aNew ){ 891 ScanStatus *pNew = &aNew[p->nScan++]; 892 pNew->addrExplain = addrExplain; 893 pNew->addrLoop = addrLoop; 894 pNew->addrVisit = addrVisit; 895 pNew->nEst = nEst; 896 pNew->zName = sqlite3DbStrDup(p->db, zName); 897 p->aScan = aNew; 898 } 899 } 900 #endif 901 902 903 /* 904 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 905 ** for a specific instruction. 906 */ 907 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){ 908 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 909 } 910 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ 911 sqlite3VdbeGetOp(p,addr)->p1 = val; 912 } 913 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ 914 sqlite3VdbeGetOp(p,addr)->p2 = val; 915 } 916 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ 917 sqlite3VdbeGetOp(p,addr)->p3 = val; 918 } 919 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 920 assert( p->nOp>0 || p->db->mallocFailed ); 921 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 922 } 923 924 /* 925 ** Change the P2 operand of instruction addr so that it points to 926 ** the address of the next instruction to be coded. 927 */ 928 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 929 sqlite3VdbeChangeP2(p, addr, p->nOp); 930 } 931 932 933 /* 934 ** If the input FuncDef structure is ephemeral, then free it. If 935 ** the FuncDef is not ephermal, then do nothing. 936 */ 937 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 938 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 939 sqlite3DbFreeNN(db, pDef); 940 } 941 } 942 943 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 944 945 /* 946 ** Delete a P4 value if necessary. 947 */ 948 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 949 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 950 sqlite3DbFreeNN(db, p); 951 } 952 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 953 freeEphemeralFunction(db, p->pFunc); 954 sqlite3DbFreeNN(db, p); 955 } 956 static void freeP4(sqlite3 *db, int p4type, void *p4){ 957 assert( db ); 958 switch( p4type ){ 959 case P4_FUNCCTX: { 960 freeP4FuncCtx(db, (sqlite3_context*)p4); 961 break; 962 } 963 case P4_REAL: 964 case P4_INT64: 965 case P4_DYNAMIC: 966 case P4_DYNBLOB: 967 case P4_INTARRAY: { 968 sqlite3DbFree(db, p4); 969 break; 970 } 971 case P4_KEYINFO: { 972 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 973 break; 974 } 975 #ifdef SQLITE_ENABLE_CURSOR_HINTS 976 case P4_EXPR: { 977 sqlite3ExprDelete(db, (Expr*)p4); 978 break; 979 } 980 #endif 981 case P4_FUNCDEF: { 982 freeEphemeralFunction(db, (FuncDef*)p4); 983 break; 984 } 985 case P4_MEM: { 986 if( db->pnBytesFreed==0 ){ 987 sqlite3ValueFree((sqlite3_value*)p4); 988 }else{ 989 freeP4Mem(db, (Mem*)p4); 990 } 991 break; 992 } 993 case P4_VTAB : { 994 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 995 break; 996 } 997 } 998 } 999 1000 /* 1001 ** Free the space allocated for aOp and any p4 values allocated for the 1002 ** opcodes contained within. If aOp is not NULL it is assumed to contain 1003 ** nOp entries. 1004 */ 1005 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 1006 if( aOp ){ 1007 Op *pOp; 1008 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){ 1009 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 1010 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1011 sqlite3DbFree(db, pOp->zComment); 1012 #endif 1013 } 1014 sqlite3DbFreeNN(db, aOp); 1015 } 1016 } 1017 1018 /* 1019 ** Link the SubProgram object passed as the second argument into the linked 1020 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 1021 ** objects when the VM is no longer required. 1022 */ 1023 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 1024 p->pNext = pVdbe->pProgram; 1025 pVdbe->pProgram = p; 1026 } 1027 1028 /* 1029 ** Change the opcode at addr into OP_Noop 1030 */ 1031 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 1032 VdbeOp *pOp; 1033 if( p->db->mallocFailed ) return 0; 1034 assert( addr>=0 && addr<p->nOp ); 1035 pOp = &p->aOp[addr]; 1036 freeP4(p->db, pOp->p4type, pOp->p4.p); 1037 pOp->p4type = P4_NOTUSED; 1038 pOp->p4.z = 0; 1039 pOp->opcode = OP_Noop; 1040 return 1; 1041 } 1042 1043 /* 1044 ** If the last opcode is "op" and it is not a jump destination, 1045 ** then remove it. Return true if and only if an opcode was removed. 1046 */ 1047 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 1048 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 1049 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 1050 }else{ 1051 return 0; 1052 } 1053 } 1054 1055 /* 1056 ** Change the value of the P4 operand for a specific instruction. 1057 ** This routine is useful when a large program is loaded from a 1058 ** static array using sqlite3VdbeAddOpList but we want to make a 1059 ** few minor changes to the program. 1060 ** 1061 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 1062 ** the string is made into memory obtained from sqlite3_malloc(). 1063 ** A value of n==0 means copy bytes of zP4 up to and including the 1064 ** first null byte. If n>0 then copy n+1 bytes of zP4. 1065 ** 1066 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 1067 ** to a string or structure that is guaranteed to exist for the lifetime of 1068 ** the Vdbe. In these cases we can just copy the pointer. 1069 ** 1070 ** If addr<0 then change P4 on the most recently inserted instruction. 1071 */ 1072 static void SQLITE_NOINLINE vdbeChangeP4Full( 1073 Vdbe *p, 1074 Op *pOp, 1075 const char *zP4, 1076 int n 1077 ){ 1078 if( pOp->p4type ){ 1079 freeP4(p->db, pOp->p4type, pOp->p4.p); 1080 pOp->p4type = 0; 1081 pOp->p4.p = 0; 1082 } 1083 if( n<0 ){ 1084 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 1085 }else{ 1086 if( n==0 ) n = sqlite3Strlen30(zP4); 1087 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 1088 pOp->p4type = P4_DYNAMIC; 1089 } 1090 } 1091 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 1092 Op *pOp; 1093 sqlite3 *db; 1094 assert( p!=0 ); 1095 db = p->db; 1096 assert( p->magic==VDBE_MAGIC_INIT ); 1097 assert( p->aOp!=0 || db->mallocFailed ); 1098 if( db->mallocFailed ){ 1099 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 1100 return; 1101 } 1102 assert( p->nOp>0 ); 1103 assert( addr<p->nOp ); 1104 if( addr<0 ){ 1105 addr = p->nOp - 1; 1106 } 1107 pOp = &p->aOp[addr]; 1108 if( n>=0 || pOp->p4type ){ 1109 vdbeChangeP4Full(p, pOp, zP4, n); 1110 return; 1111 } 1112 if( n==P4_INT32 ){ 1113 /* Note: this cast is safe, because the origin data point was an int 1114 ** that was cast to a (const char *). */ 1115 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 1116 pOp->p4type = P4_INT32; 1117 }else if( zP4!=0 ){ 1118 assert( n<0 ); 1119 pOp->p4.p = (void*)zP4; 1120 pOp->p4type = (signed char)n; 1121 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 1122 } 1123 } 1124 1125 /* 1126 ** Change the P4 operand of the most recently coded instruction 1127 ** to the value defined by the arguments. This is a high-speed 1128 ** version of sqlite3VdbeChangeP4(). 1129 ** 1130 ** The P4 operand must not have been previously defined. And the new 1131 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 1132 ** those cases. 1133 */ 1134 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1135 VdbeOp *pOp; 1136 assert( n!=P4_INT32 && n!=P4_VTAB ); 1137 assert( n<=0 ); 1138 if( p->db->mallocFailed ){ 1139 freeP4(p->db, n, pP4); 1140 }else{ 1141 assert( pP4!=0 ); 1142 assert( p->nOp>0 ); 1143 pOp = &p->aOp[p->nOp-1]; 1144 assert( pOp->p4type==P4_NOTUSED ); 1145 pOp->p4type = n; 1146 pOp->p4.p = pP4; 1147 } 1148 } 1149 1150 /* 1151 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1152 ** index given. 1153 */ 1154 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1155 Vdbe *v = pParse->pVdbe; 1156 KeyInfo *pKeyInfo; 1157 assert( v!=0 ); 1158 assert( pIdx!=0 ); 1159 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1160 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1161 } 1162 1163 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1164 /* 1165 ** Change the comment on the most recently coded instruction. Or 1166 ** insert a No-op and add the comment to that new instruction. This 1167 ** makes the code easier to read during debugging. None of this happens 1168 ** in a production build. 1169 */ 1170 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1171 assert( p->nOp>0 || p->aOp==0 ); 1172 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 1173 if( p->nOp ){ 1174 assert( p->aOp ); 1175 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1176 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1177 } 1178 } 1179 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1180 va_list ap; 1181 if( p ){ 1182 va_start(ap, zFormat); 1183 vdbeVComment(p, zFormat, ap); 1184 va_end(ap); 1185 } 1186 } 1187 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1188 va_list ap; 1189 if( p ){ 1190 sqlite3VdbeAddOp0(p, OP_Noop); 1191 va_start(ap, zFormat); 1192 vdbeVComment(p, zFormat, ap); 1193 va_end(ap); 1194 } 1195 } 1196 #endif /* NDEBUG */ 1197 1198 #ifdef SQLITE_VDBE_COVERAGE 1199 /* 1200 ** Set the value if the iSrcLine field for the previously coded instruction. 1201 */ 1202 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1203 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1204 } 1205 #endif /* SQLITE_VDBE_COVERAGE */ 1206 1207 /* 1208 ** Return the opcode for a given address. If the address is -1, then 1209 ** return the most recently inserted opcode. 1210 ** 1211 ** If a memory allocation error has occurred prior to the calling of this 1212 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1213 ** is readable but not writable, though it is cast to a writable value. 1214 ** The return of a dummy opcode allows the call to continue functioning 1215 ** after an OOM fault without having to check to see if the return from 1216 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1217 ** dummy will never be written to. This is verified by code inspection and 1218 ** by running with Valgrind. 1219 */ 1220 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1221 /* C89 specifies that the constant "dummy" will be initialized to all 1222 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1223 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1224 assert( p->magic==VDBE_MAGIC_INIT ); 1225 if( addr<0 ){ 1226 addr = p->nOp - 1; 1227 } 1228 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1229 if( p->db->mallocFailed ){ 1230 return (VdbeOp*)&dummy; 1231 }else{ 1232 return &p->aOp[addr]; 1233 } 1234 } 1235 1236 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1237 /* 1238 ** Return an integer value for one of the parameters to the opcode pOp 1239 ** determined by character c. 1240 */ 1241 static int translateP(char c, const Op *pOp){ 1242 if( c=='1' ) return pOp->p1; 1243 if( c=='2' ) return pOp->p2; 1244 if( c=='3' ) return pOp->p3; 1245 if( c=='4' ) return pOp->p4.i; 1246 return pOp->p5; 1247 } 1248 1249 /* 1250 ** Compute a string for the "comment" field of a VDBE opcode listing. 1251 ** 1252 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1253 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1254 ** absence of other comments, this synopsis becomes the comment on the opcode. 1255 ** Some translation occurs: 1256 ** 1257 ** "PX" -> "r[X]" 1258 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1259 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1260 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1261 */ 1262 static int displayComment( 1263 const Op *pOp, /* The opcode to be commented */ 1264 const char *zP4, /* Previously obtained value for P4 */ 1265 char *zTemp, /* Write result here */ 1266 int nTemp /* Space available in zTemp[] */ 1267 ){ 1268 const char *zOpName; 1269 const char *zSynopsis; 1270 int nOpName; 1271 int ii, jj; 1272 char zAlt[50]; 1273 zOpName = sqlite3OpcodeName(pOp->opcode); 1274 nOpName = sqlite3Strlen30(zOpName); 1275 if( zOpName[nOpName+1] ){ 1276 int seenCom = 0; 1277 char c; 1278 zSynopsis = zOpName += nOpName + 1; 1279 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1280 if( pOp->p5 & SQLITE_STOREP2 ){ 1281 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3); 1282 }else{ 1283 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1284 } 1285 zSynopsis = zAlt; 1286 } 1287 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 1288 if( c=='P' ){ 1289 c = zSynopsis[++ii]; 1290 if( c=='4' ){ 1291 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 1292 }else if( c=='X' ){ 1293 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 1294 seenCom = 1; 1295 }else{ 1296 int v1 = translateP(c, pOp); 1297 int v2; 1298 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 1299 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1300 ii += 3; 1301 jj += sqlite3Strlen30(zTemp+jj); 1302 v2 = translateP(zSynopsis[ii], pOp); 1303 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1304 ii += 2; 1305 v2++; 1306 } 1307 if( v2>1 ){ 1308 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 1309 } 1310 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1311 ii += 4; 1312 } 1313 } 1314 jj += sqlite3Strlen30(zTemp+jj); 1315 }else{ 1316 zTemp[jj++] = c; 1317 } 1318 } 1319 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 1320 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 1321 jj += sqlite3Strlen30(zTemp+jj); 1322 } 1323 if( jj<nTemp ) zTemp[jj] = 0; 1324 }else if( pOp->zComment ){ 1325 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 1326 jj = sqlite3Strlen30(zTemp); 1327 }else{ 1328 zTemp[0] = 0; 1329 jj = 0; 1330 } 1331 return jj; 1332 } 1333 #endif /* SQLITE_DEBUG */ 1334 1335 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1336 /* 1337 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1338 ** that can be displayed in the P4 column of EXPLAIN output. 1339 */ 1340 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1341 const char *zOp = 0; 1342 switch( pExpr->op ){ 1343 case TK_STRING: 1344 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); 1345 break; 1346 case TK_INTEGER: 1347 sqlite3_str_appendf(p, "%d", pExpr->u.iValue); 1348 break; 1349 case TK_NULL: 1350 sqlite3_str_appendf(p, "NULL"); 1351 break; 1352 case TK_REGISTER: { 1353 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); 1354 break; 1355 } 1356 case TK_COLUMN: { 1357 if( pExpr->iColumn<0 ){ 1358 sqlite3_str_appendf(p, "rowid"); 1359 }else{ 1360 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); 1361 } 1362 break; 1363 } 1364 case TK_LT: zOp = "LT"; break; 1365 case TK_LE: zOp = "LE"; break; 1366 case TK_GT: zOp = "GT"; break; 1367 case TK_GE: zOp = "GE"; break; 1368 case TK_NE: zOp = "NE"; break; 1369 case TK_EQ: zOp = "EQ"; break; 1370 case TK_IS: zOp = "IS"; break; 1371 case TK_ISNOT: zOp = "ISNOT"; break; 1372 case TK_AND: zOp = "AND"; break; 1373 case TK_OR: zOp = "OR"; break; 1374 case TK_PLUS: zOp = "ADD"; break; 1375 case TK_STAR: zOp = "MUL"; break; 1376 case TK_MINUS: zOp = "SUB"; break; 1377 case TK_REM: zOp = "REM"; break; 1378 case TK_BITAND: zOp = "BITAND"; break; 1379 case TK_BITOR: zOp = "BITOR"; break; 1380 case TK_SLASH: zOp = "DIV"; break; 1381 case TK_LSHIFT: zOp = "LSHIFT"; break; 1382 case TK_RSHIFT: zOp = "RSHIFT"; break; 1383 case TK_CONCAT: zOp = "CONCAT"; break; 1384 case TK_UMINUS: zOp = "MINUS"; break; 1385 case TK_UPLUS: zOp = "PLUS"; break; 1386 case TK_BITNOT: zOp = "BITNOT"; break; 1387 case TK_NOT: zOp = "NOT"; break; 1388 case TK_ISNULL: zOp = "ISNULL"; break; 1389 case TK_NOTNULL: zOp = "NOTNULL"; break; 1390 1391 default: 1392 sqlite3_str_appendf(p, "%s", "expr"); 1393 break; 1394 } 1395 1396 if( zOp ){ 1397 sqlite3_str_appendf(p, "%s(", zOp); 1398 displayP4Expr(p, pExpr->pLeft); 1399 if( pExpr->pRight ){ 1400 sqlite3_str_append(p, ",", 1); 1401 displayP4Expr(p, pExpr->pRight); 1402 } 1403 sqlite3_str_append(p, ")", 1); 1404 } 1405 } 1406 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1407 1408 1409 #if VDBE_DISPLAY_P4 1410 /* 1411 ** Compute a string that describes the P4 parameter for an opcode. 1412 ** Use zTemp for any required temporary buffer space. 1413 */ 1414 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 1415 char *zP4 = zTemp; 1416 StrAccum x; 1417 assert( nTemp>=20 ); 1418 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0); 1419 switch( pOp->p4type ){ 1420 case P4_KEYINFO: { 1421 int j; 1422 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1423 assert( pKeyInfo->aSortOrder!=0 ); 1424 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); 1425 for(j=0; j<pKeyInfo->nKeyField; j++){ 1426 CollSeq *pColl = pKeyInfo->aColl[j]; 1427 const char *zColl = pColl ? pColl->zName : ""; 1428 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1429 sqlite3_str_appendf(&x, ",%s%s", 1430 pKeyInfo->aSortOrder[j] ? "-" : "", zColl); 1431 } 1432 sqlite3_str_append(&x, ")", 1); 1433 break; 1434 } 1435 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1436 case P4_EXPR: { 1437 displayP4Expr(&x, pOp->p4.pExpr); 1438 break; 1439 } 1440 #endif 1441 case P4_COLLSEQ: { 1442 CollSeq *pColl = pOp->p4.pColl; 1443 sqlite3_str_appendf(&x, "(%.20s)", pColl->zName); 1444 break; 1445 } 1446 case P4_FUNCDEF: { 1447 FuncDef *pDef = pOp->p4.pFunc; 1448 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1449 break; 1450 } 1451 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1452 case P4_FUNCCTX: { 1453 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1454 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1455 break; 1456 } 1457 #endif 1458 case P4_INT64: { 1459 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); 1460 break; 1461 } 1462 case P4_INT32: { 1463 sqlite3_str_appendf(&x, "%d", pOp->p4.i); 1464 break; 1465 } 1466 case P4_REAL: { 1467 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); 1468 break; 1469 } 1470 case P4_MEM: { 1471 Mem *pMem = pOp->p4.pMem; 1472 if( pMem->flags & MEM_Str ){ 1473 zP4 = pMem->z; 1474 }else if( pMem->flags & MEM_Int ){ 1475 sqlite3_str_appendf(&x, "%lld", pMem->u.i); 1476 }else if( pMem->flags & MEM_Real ){ 1477 sqlite3_str_appendf(&x, "%.16g", pMem->u.r); 1478 }else if( pMem->flags & MEM_Null ){ 1479 zP4 = "NULL"; 1480 }else{ 1481 assert( pMem->flags & MEM_Blob ); 1482 zP4 = "(blob)"; 1483 } 1484 break; 1485 } 1486 #ifndef SQLITE_OMIT_VIRTUALTABLE 1487 case P4_VTAB: { 1488 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1489 sqlite3_str_appendf(&x, "vtab:%p", pVtab); 1490 break; 1491 } 1492 #endif 1493 case P4_INTARRAY: { 1494 int i; 1495 int *ai = pOp->p4.ai; 1496 int n = ai[0]; /* The first element of an INTARRAY is always the 1497 ** count of the number of elements to follow */ 1498 for(i=1; i<=n; i++){ 1499 sqlite3_str_appendf(&x, ",%d", ai[i]); 1500 } 1501 zTemp[0] = '['; 1502 sqlite3_str_append(&x, "]", 1); 1503 break; 1504 } 1505 case P4_SUBPROGRAM: { 1506 sqlite3_str_appendf(&x, "program"); 1507 break; 1508 } 1509 case P4_DYNBLOB: 1510 case P4_ADVANCE: { 1511 zTemp[0] = 0; 1512 break; 1513 } 1514 case P4_TABLE: { 1515 sqlite3_str_appendf(&x, "%s", pOp->p4.pTab->zName); 1516 break; 1517 } 1518 default: { 1519 zP4 = pOp->p4.z; 1520 if( zP4==0 ){ 1521 zP4 = zTemp; 1522 zTemp[0] = 0; 1523 } 1524 } 1525 } 1526 sqlite3StrAccumFinish(&x); 1527 assert( zP4!=0 ); 1528 return zP4; 1529 } 1530 #endif /* VDBE_DISPLAY_P4 */ 1531 1532 /* 1533 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1534 ** 1535 ** The prepared statements need to know in advance the complete set of 1536 ** attached databases that will be use. A mask of these databases 1537 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1538 ** p->btreeMask of databases that will require a lock. 1539 */ 1540 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1541 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1542 assert( i<(int)sizeof(p->btreeMask)*8 ); 1543 DbMaskSet(p->btreeMask, i); 1544 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1545 DbMaskSet(p->lockMask, i); 1546 } 1547 } 1548 1549 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1550 /* 1551 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1552 ** this routine obtains the mutex associated with each BtShared structure 1553 ** that may be accessed by the VM passed as an argument. In doing so it also 1554 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1555 ** that the correct busy-handler callback is invoked if required. 1556 ** 1557 ** If SQLite is not threadsafe but does support shared-cache mode, then 1558 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1559 ** of all of BtShared structures accessible via the database handle 1560 ** associated with the VM. 1561 ** 1562 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1563 ** function is a no-op. 1564 ** 1565 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1566 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1567 ** corresponding to btrees that use shared cache. Then the runtime of 1568 ** this routine is N*N. But as N is rarely more than 1, this should not 1569 ** be a problem. 1570 */ 1571 void sqlite3VdbeEnter(Vdbe *p){ 1572 int i; 1573 sqlite3 *db; 1574 Db *aDb; 1575 int nDb; 1576 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1577 db = p->db; 1578 aDb = db->aDb; 1579 nDb = db->nDb; 1580 for(i=0; i<nDb; i++){ 1581 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1582 sqlite3BtreeEnter(aDb[i].pBt); 1583 } 1584 } 1585 } 1586 #endif 1587 1588 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1589 /* 1590 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1591 */ 1592 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1593 int i; 1594 sqlite3 *db; 1595 Db *aDb; 1596 int nDb; 1597 db = p->db; 1598 aDb = db->aDb; 1599 nDb = db->nDb; 1600 for(i=0; i<nDb; i++){ 1601 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1602 sqlite3BtreeLeave(aDb[i].pBt); 1603 } 1604 } 1605 } 1606 void sqlite3VdbeLeave(Vdbe *p){ 1607 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1608 vdbeLeave(p); 1609 } 1610 #endif 1611 1612 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1613 /* 1614 ** Print a single opcode. This routine is used for debugging only. 1615 */ 1616 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ 1617 char *zP4; 1618 char zPtr[50]; 1619 char zCom[100]; 1620 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1621 if( pOut==0 ) pOut = stdout; 1622 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1623 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1624 displayComment(pOp, zP4, zCom, sizeof(zCom)); 1625 #else 1626 zCom[0] = 0; 1627 #endif 1628 /* NB: The sqlite3OpcodeName() function is implemented by code created 1629 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1630 ** information from the vdbe.c source text */ 1631 fprintf(pOut, zFormat1, pc, 1632 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1633 zCom 1634 ); 1635 fflush(pOut); 1636 } 1637 #endif 1638 1639 /* 1640 ** Initialize an array of N Mem element. 1641 */ 1642 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1643 while( (N--)>0 ){ 1644 p->db = db; 1645 p->flags = flags; 1646 p->szMalloc = 0; 1647 #ifdef SQLITE_DEBUG 1648 p->pScopyFrom = 0; 1649 #endif 1650 #ifdef SQLITE_DEBUG_COLUMNCACHE 1651 p->iTabColHash = 0; 1652 #endif 1653 p++; 1654 } 1655 } 1656 1657 /* 1658 ** Release an array of N Mem elements 1659 */ 1660 static void releaseMemArray(Mem *p, int N){ 1661 if( p && N ){ 1662 Mem *pEnd = &p[N]; 1663 sqlite3 *db = p->db; 1664 if( db->pnBytesFreed ){ 1665 do{ 1666 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1667 }while( (++p)<pEnd ); 1668 return; 1669 } 1670 do{ 1671 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1672 assert( sqlite3VdbeCheckMemInvariants(p) ); 1673 1674 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1675 ** that takes advantage of the fact that the memory cell value is 1676 ** being set to NULL after releasing any dynamic resources. 1677 ** 1678 ** The justification for duplicating code is that according to 1679 ** callgrind, this causes a certain test case to hit the CPU 4.7 1680 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1681 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1682 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1683 ** with no indexes using a single prepared INSERT statement, bind() 1684 ** and reset(). Inserts are grouped into a transaction. 1685 */ 1686 testcase( p->flags & MEM_Agg ); 1687 testcase( p->flags & MEM_Dyn ); 1688 testcase( p->flags & MEM_Frame ); 1689 testcase( p->flags & MEM_RowSet ); 1690 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ 1691 sqlite3VdbeMemRelease(p); 1692 }else if( p->szMalloc ){ 1693 sqlite3DbFreeNN(db, p->zMalloc); 1694 p->szMalloc = 0; 1695 } 1696 1697 p->flags = MEM_Undefined; 1698 }while( (++p)<pEnd ); 1699 } 1700 } 1701 1702 /* 1703 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1704 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1705 */ 1706 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1707 int i; 1708 Mem *aMem = VdbeFrameMem(p); 1709 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1710 for(i=0; i<p->nChildCsr; i++){ 1711 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1712 } 1713 releaseMemArray(aMem, p->nChildMem); 1714 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 1715 sqlite3DbFree(p->v->db, p); 1716 } 1717 1718 #ifndef SQLITE_OMIT_EXPLAIN 1719 /* 1720 ** Give a listing of the program in the virtual machine. 1721 ** 1722 ** The interface is the same as sqlite3VdbeExec(). But instead of 1723 ** running the code, it invokes the callback once for each instruction. 1724 ** This feature is used to implement "EXPLAIN". 1725 ** 1726 ** When p->explain==1, each instruction is listed. When 1727 ** p->explain==2, only OP_Explain instructions are listed and these 1728 ** are shown in a different format. p->explain==2 is used to implement 1729 ** EXPLAIN QUERY PLAN. 1730 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers 1731 ** are also shown, so that the boundaries between the main program and 1732 ** each trigger are clear. 1733 ** 1734 ** When p->explain==1, first the main program is listed, then each of 1735 ** the trigger subprograms are listed one by one. 1736 */ 1737 int sqlite3VdbeList( 1738 Vdbe *p /* The VDBE */ 1739 ){ 1740 int nRow; /* Stop when row count reaches this */ 1741 int nSub = 0; /* Number of sub-vdbes seen so far */ 1742 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1743 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1744 sqlite3 *db = p->db; /* The database connection */ 1745 int i; /* Loop counter */ 1746 int rc = SQLITE_OK; /* Return code */ 1747 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 1748 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); 1749 Op *pOp = 0; 1750 1751 assert( p->explain ); 1752 assert( p->magic==VDBE_MAGIC_RUN ); 1753 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1754 1755 /* Even though this opcode does not use dynamic strings for 1756 ** the result, result columns may become dynamic if the user calls 1757 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1758 */ 1759 releaseMemArray(pMem, 8); 1760 p->pResultSet = 0; 1761 1762 if( p->rc==SQLITE_NOMEM ){ 1763 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1764 ** sqlite3_column_text16() failed. */ 1765 sqlite3OomFault(db); 1766 return SQLITE_ERROR; 1767 } 1768 1769 /* When the number of output rows reaches nRow, that means the 1770 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1771 ** nRow is the sum of the number of rows in the main program, plus 1772 ** the sum of the number of rows in all trigger subprograms encountered 1773 ** so far. The nRow value will increase as new trigger subprograms are 1774 ** encountered, but p->pc will eventually catch up to nRow. 1775 */ 1776 nRow = p->nOp; 1777 if( bListSubprogs ){ 1778 /* The first 8 memory cells are used for the result set. So we will 1779 ** commandeer the 9th cell to use as storage for an array of pointers 1780 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1781 ** cells. */ 1782 assert( p->nMem>9 ); 1783 pSub = &p->aMem[9]; 1784 if( pSub->flags&MEM_Blob ){ 1785 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1786 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1787 nSub = pSub->n/sizeof(Vdbe*); 1788 apSub = (SubProgram **)pSub->z; 1789 } 1790 for(i=0; i<nSub; i++){ 1791 nRow += apSub[i]->nOp; 1792 } 1793 } 1794 1795 while(1){ /* Loop exits via break */ 1796 i = p->pc++; 1797 if( i>=nRow ){ 1798 p->rc = SQLITE_OK; 1799 rc = SQLITE_DONE; 1800 break; 1801 } 1802 if( i<p->nOp ){ 1803 /* The output line number is small enough that we are still in the 1804 ** main program. */ 1805 pOp = &p->aOp[i]; 1806 }else{ 1807 /* We are currently listing subprograms. Figure out which one and 1808 ** pick up the appropriate opcode. */ 1809 int j; 1810 i -= p->nOp; 1811 for(j=0; i>=apSub[j]->nOp; j++){ 1812 i -= apSub[j]->nOp; 1813 } 1814 pOp = &apSub[j]->aOp[i]; 1815 } 1816 1817 /* When an OP_Program opcode is encounter (the only opcode that has 1818 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1819 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1820 ** has not already been seen. 1821 */ 1822 if( bListSubprogs && pOp->p4type==P4_SUBPROGRAM ){ 1823 int nByte = (nSub+1)*sizeof(SubProgram*); 1824 int j; 1825 for(j=0; j<nSub; j++){ 1826 if( apSub[j]==pOp->p4.pProgram ) break; 1827 } 1828 if( j==nSub ){ 1829 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); 1830 if( p->rc!=SQLITE_OK ){ 1831 rc = SQLITE_ERROR; 1832 break; 1833 } 1834 apSub = (SubProgram **)pSub->z; 1835 apSub[nSub++] = pOp->p4.pProgram; 1836 pSub->flags |= MEM_Blob; 1837 pSub->n = nSub*sizeof(SubProgram*); 1838 nRow += pOp->p4.pProgram->nOp; 1839 } 1840 } 1841 if( p->explain<2 ) break; 1842 if( pOp->opcode==OP_Explain ) break; 1843 if( pOp->opcode==OP_Init && p->pc>1 ) break; 1844 } 1845 1846 if( rc==SQLITE_OK ){ 1847 if( db->u1.isInterrupted ){ 1848 p->rc = SQLITE_INTERRUPT; 1849 rc = SQLITE_ERROR; 1850 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 1851 }else{ 1852 char *zP4; 1853 if( p->explain==1 ){ 1854 pMem->flags = MEM_Int; 1855 pMem->u.i = i; /* Program counter */ 1856 pMem++; 1857 1858 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1859 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1860 assert( pMem->z!=0 ); 1861 pMem->n = sqlite3Strlen30(pMem->z); 1862 pMem->enc = SQLITE_UTF8; 1863 pMem++; 1864 } 1865 1866 pMem->flags = MEM_Int; 1867 pMem->u.i = pOp->p1; /* P1 */ 1868 pMem++; 1869 1870 pMem->flags = MEM_Int; 1871 pMem->u.i = pOp->p2; /* P2 */ 1872 pMem++; 1873 1874 pMem->flags = MEM_Int; 1875 pMem->u.i = pOp->p3; /* P3 */ 1876 pMem++; 1877 1878 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */ 1879 assert( p->db->mallocFailed ); 1880 return SQLITE_ERROR; 1881 } 1882 pMem->flags = MEM_Str|MEM_Term; 1883 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc); 1884 if( zP4!=pMem->z ){ 1885 pMem->n = 0; 1886 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 1887 }else{ 1888 assert( pMem->z!=0 ); 1889 pMem->n = sqlite3Strlen30(pMem->z); 1890 pMem->enc = SQLITE_UTF8; 1891 } 1892 pMem++; 1893 1894 if( p->explain==1 ){ 1895 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ 1896 assert( p->db->mallocFailed ); 1897 return SQLITE_ERROR; 1898 } 1899 pMem->flags = MEM_Str|MEM_Term; 1900 pMem->n = 2; 1901 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1902 pMem->enc = SQLITE_UTF8; 1903 pMem++; 1904 1905 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1906 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ 1907 assert( p->db->mallocFailed ); 1908 return SQLITE_ERROR; 1909 } 1910 pMem->flags = MEM_Str|MEM_Term; 1911 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 1912 pMem->enc = SQLITE_UTF8; 1913 #else 1914 pMem->flags = MEM_Null; /* Comment */ 1915 #endif 1916 } 1917 1918 p->nResColumn = 8 - 4*(p->explain-1); 1919 p->pResultSet = &p->aMem[1]; 1920 p->rc = SQLITE_OK; 1921 rc = SQLITE_ROW; 1922 } 1923 } 1924 return rc; 1925 } 1926 #endif /* SQLITE_OMIT_EXPLAIN */ 1927 1928 #ifdef SQLITE_DEBUG 1929 /* 1930 ** Print the SQL that was used to generate a VDBE program. 1931 */ 1932 void sqlite3VdbePrintSql(Vdbe *p){ 1933 const char *z = 0; 1934 if( p->zSql ){ 1935 z = p->zSql; 1936 }else if( p->nOp>=1 ){ 1937 const VdbeOp *pOp = &p->aOp[0]; 1938 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1939 z = pOp->p4.z; 1940 while( sqlite3Isspace(*z) ) z++; 1941 } 1942 } 1943 if( z ) printf("SQL: [%s]\n", z); 1944 } 1945 #endif 1946 1947 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 1948 /* 1949 ** Print an IOTRACE message showing SQL content. 1950 */ 1951 void sqlite3VdbeIOTraceSql(Vdbe *p){ 1952 int nOp = p->nOp; 1953 VdbeOp *pOp; 1954 if( sqlite3IoTrace==0 ) return; 1955 if( nOp<1 ) return; 1956 pOp = &p->aOp[0]; 1957 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1958 int i, j; 1959 char z[1000]; 1960 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 1961 for(i=0; sqlite3Isspace(z[i]); i++){} 1962 for(j=0; z[i]; i++){ 1963 if( sqlite3Isspace(z[i]) ){ 1964 if( z[i-1]!=' ' ){ 1965 z[j++] = ' '; 1966 } 1967 }else{ 1968 z[j++] = z[i]; 1969 } 1970 } 1971 z[j] = 0; 1972 sqlite3IoTrace("SQL %s\n", z); 1973 } 1974 } 1975 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 1976 1977 /* An instance of this object describes bulk memory available for use 1978 ** by subcomponents of a prepared statement. Space is allocated out 1979 ** of a ReusableSpace object by the allocSpace() routine below. 1980 */ 1981 struct ReusableSpace { 1982 u8 *pSpace; /* Available memory */ 1983 int nFree; /* Bytes of available memory */ 1984 int nNeeded; /* Total bytes that could not be allocated */ 1985 }; 1986 1987 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 1988 ** from the ReusableSpace object. Return a pointer to the allocated 1989 ** memory on success. If insufficient memory is available in the 1990 ** ReusableSpace object, increase the ReusableSpace.nNeeded 1991 ** value by the amount needed and return NULL. 1992 ** 1993 ** If pBuf is not initially NULL, that means that the memory has already 1994 ** been allocated by a prior call to this routine, so just return a copy 1995 ** of pBuf and leave ReusableSpace unchanged. 1996 ** 1997 ** This allocator is employed to repurpose unused slots at the end of the 1998 ** opcode array of prepared state for other memory needs of the prepared 1999 ** statement. 2000 */ 2001 static void *allocSpace( 2002 struct ReusableSpace *p, /* Bulk memory available for allocation */ 2003 void *pBuf, /* Pointer to a prior allocation */ 2004 int nByte /* Bytes of memory needed */ 2005 ){ 2006 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 2007 if( pBuf==0 ){ 2008 nByte = ROUND8(nByte); 2009 if( nByte <= p->nFree ){ 2010 p->nFree -= nByte; 2011 pBuf = &p->pSpace[p->nFree]; 2012 }else{ 2013 p->nNeeded += nByte; 2014 } 2015 } 2016 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 2017 return pBuf; 2018 } 2019 2020 /* 2021 ** Rewind the VDBE back to the beginning in preparation for 2022 ** running it. 2023 */ 2024 void sqlite3VdbeRewind(Vdbe *p){ 2025 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 2026 int i; 2027 #endif 2028 assert( p!=0 ); 2029 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET ); 2030 2031 /* There should be at least one opcode. 2032 */ 2033 assert( p->nOp>0 ); 2034 2035 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 2036 p->magic = VDBE_MAGIC_RUN; 2037 2038 #ifdef SQLITE_DEBUG 2039 for(i=0; i<p->nMem; i++){ 2040 assert( p->aMem[i].db==p->db ); 2041 } 2042 #endif 2043 p->pc = -1; 2044 p->rc = SQLITE_OK; 2045 p->errorAction = OE_Abort; 2046 p->nChange = 0; 2047 p->cacheCtr = 1; 2048 p->minWriteFileFormat = 255; 2049 p->iStatement = 0; 2050 p->nFkConstraint = 0; 2051 #ifdef VDBE_PROFILE 2052 for(i=0; i<p->nOp; i++){ 2053 p->aOp[i].cnt = 0; 2054 p->aOp[i].cycles = 0; 2055 } 2056 #endif 2057 } 2058 2059 /* 2060 ** Prepare a virtual machine for execution for the first time after 2061 ** creating the virtual machine. This involves things such 2062 ** as allocating registers and initializing the program counter. 2063 ** After the VDBE has be prepped, it can be executed by one or more 2064 ** calls to sqlite3VdbeExec(). 2065 ** 2066 ** This function may be called exactly once on each virtual machine. 2067 ** After this routine is called the VM has been "packaged" and is ready 2068 ** to run. After this routine is called, further calls to 2069 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 2070 ** the Vdbe from the Parse object that helped generate it so that the 2071 ** the Vdbe becomes an independent entity and the Parse object can be 2072 ** destroyed. 2073 ** 2074 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 2075 ** to its initial state after it has been run. 2076 */ 2077 void sqlite3VdbeMakeReady( 2078 Vdbe *p, /* The VDBE */ 2079 Parse *pParse /* Parsing context */ 2080 ){ 2081 sqlite3 *db; /* The database connection */ 2082 int nVar; /* Number of parameters */ 2083 int nMem; /* Number of VM memory registers */ 2084 int nCursor; /* Number of cursors required */ 2085 int nArg; /* Number of arguments in subprograms */ 2086 int n; /* Loop counter */ 2087 struct ReusableSpace x; /* Reusable bulk memory */ 2088 2089 assert( p!=0 ); 2090 assert( p->nOp>0 ); 2091 assert( pParse!=0 ); 2092 assert( p->magic==VDBE_MAGIC_INIT ); 2093 assert( pParse==p->pParse ); 2094 db = p->db; 2095 assert( db->mallocFailed==0 ); 2096 nVar = pParse->nVar; 2097 nMem = pParse->nMem; 2098 nCursor = pParse->nTab; 2099 nArg = pParse->nMaxArg; 2100 2101 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 2102 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 2103 ** space at the end of aMem[] for cursors 1 and greater. 2104 ** See also: allocateCursor(). 2105 */ 2106 nMem += nCursor; 2107 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 2108 2109 /* Figure out how much reusable memory is available at the end of the 2110 ** opcode array. This extra memory will be reallocated for other elements 2111 ** of the prepared statement. 2112 */ 2113 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 2114 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 2115 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 2116 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 2117 assert( x.nFree>=0 ); 2118 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 2119 2120 resolveP2Values(p, &nArg); 2121 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 2122 if( pParse->explain && nMem<10 ){ 2123 nMem = 10; 2124 } 2125 p->expired = 0; 2126 2127 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 2128 ** passes. On the first pass, we try to reuse unused memory at the 2129 ** end of the opcode array. If we are unable to satisfy all memory 2130 ** requirements by reusing the opcode array tail, then the second 2131 ** pass will fill in the remainder using a fresh memory allocation. 2132 ** 2133 ** This two-pass approach that reuses as much memory as possible from 2134 ** the leftover memory at the end of the opcode array. This can significantly 2135 ** reduce the amount of memory held by a prepared statement. 2136 */ 2137 do { 2138 x.nNeeded = 0; 2139 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 2140 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 2141 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 2142 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 2143 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2144 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 2145 #endif 2146 if( x.nNeeded==0 ) break; 2147 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 2148 x.nFree = x.nNeeded; 2149 }while( !db->mallocFailed ); 2150 2151 p->pVList = pParse->pVList; 2152 pParse->pVList = 0; 2153 p->explain = pParse->explain; 2154 if( db->mallocFailed ){ 2155 p->nVar = 0; 2156 p->nCursor = 0; 2157 p->nMem = 0; 2158 }else{ 2159 p->nCursor = nCursor; 2160 p->nVar = (ynVar)nVar; 2161 initMemArray(p->aVar, nVar, db, MEM_Null); 2162 p->nMem = nMem; 2163 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2164 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2165 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2166 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2167 #endif 2168 } 2169 sqlite3VdbeRewind(p); 2170 } 2171 2172 /* 2173 ** Close a VDBE cursor and release all the resources that cursor 2174 ** happens to hold. 2175 */ 2176 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2177 if( pCx==0 ){ 2178 return; 2179 } 2180 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE ); 2181 switch( pCx->eCurType ){ 2182 case CURTYPE_SORTER: { 2183 sqlite3VdbeSorterClose(p->db, pCx); 2184 break; 2185 } 2186 case CURTYPE_BTREE: { 2187 if( pCx->isEphemeral ){ 2188 if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx); 2189 /* The pCx->pCursor will be close automatically, if it exists, by 2190 ** the call above. */ 2191 }else{ 2192 assert( pCx->uc.pCursor!=0 ); 2193 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2194 } 2195 break; 2196 } 2197 #ifndef SQLITE_OMIT_VIRTUALTABLE 2198 case CURTYPE_VTAB: { 2199 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2200 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2201 assert( pVCur->pVtab->nRef>0 ); 2202 pVCur->pVtab->nRef--; 2203 pModule->xClose(pVCur); 2204 break; 2205 } 2206 #endif 2207 } 2208 } 2209 2210 /* 2211 ** Close all cursors in the current frame. 2212 */ 2213 static void closeCursorsInFrame(Vdbe *p){ 2214 if( p->apCsr ){ 2215 int i; 2216 for(i=0; i<p->nCursor; i++){ 2217 VdbeCursor *pC = p->apCsr[i]; 2218 if( pC ){ 2219 sqlite3VdbeFreeCursor(p, pC); 2220 p->apCsr[i] = 0; 2221 } 2222 } 2223 } 2224 } 2225 2226 /* 2227 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2228 ** is used, for example, when a trigger sub-program is halted to restore 2229 ** control to the main program. 2230 */ 2231 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2232 Vdbe *v = pFrame->v; 2233 closeCursorsInFrame(v); 2234 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2235 v->anExec = pFrame->anExec; 2236 #endif 2237 v->aOp = pFrame->aOp; 2238 v->nOp = pFrame->nOp; 2239 v->aMem = pFrame->aMem; 2240 v->nMem = pFrame->nMem; 2241 v->apCsr = pFrame->apCsr; 2242 v->nCursor = pFrame->nCursor; 2243 v->db->lastRowid = pFrame->lastRowid; 2244 v->nChange = pFrame->nChange; 2245 v->db->nChange = pFrame->nDbChange; 2246 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2247 v->pAuxData = pFrame->pAuxData; 2248 pFrame->pAuxData = 0; 2249 return pFrame->pc; 2250 } 2251 2252 /* 2253 ** Close all cursors. 2254 ** 2255 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2256 ** cell array. This is necessary as the memory cell array may contain 2257 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2258 ** open cursors. 2259 */ 2260 static void closeAllCursors(Vdbe *p){ 2261 if( p->pFrame ){ 2262 VdbeFrame *pFrame; 2263 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2264 sqlite3VdbeFrameRestore(pFrame); 2265 p->pFrame = 0; 2266 p->nFrame = 0; 2267 } 2268 assert( p->nFrame==0 ); 2269 closeCursorsInFrame(p); 2270 if( p->aMem ){ 2271 releaseMemArray(p->aMem, p->nMem); 2272 } 2273 while( p->pDelFrame ){ 2274 VdbeFrame *pDel = p->pDelFrame; 2275 p->pDelFrame = pDel->pParent; 2276 sqlite3VdbeFrameDelete(pDel); 2277 } 2278 2279 /* Delete any auxdata allocations made by the VM */ 2280 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2281 assert( p->pAuxData==0 ); 2282 } 2283 2284 /* 2285 ** Set the number of result columns that will be returned by this SQL 2286 ** statement. This is now set at compile time, rather than during 2287 ** execution of the vdbe program so that sqlite3_column_count() can 2288 ** be called on an SQL statement before sqlite3_step(). 2289 */ 2290 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2291 int n; 2292 sqlite3 *db = p->db; 2293 2294 if( p->nResColumn ){ 2295 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2296 sqlite3DbFree(db, p->aColName); 2297 } 2298 n = nResColumn*COLNAME_N; 2299 p->nResColumn = (u16)nResColumn; 2300 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2301 if( p->aColName==0 ) return; 2302 initMemArray(p->aColName, n, db, MEM_Null); 2303 } 2304 2305 /* 2306 ** Set the name of the idx'th column to be returned by the SQL statement. 2307 ** zName must be a pointer to a nul terminated string. 2308 ** 2309 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2310 ** 2311 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2312 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2313 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2314 */ 2315 int sqlite3VdbeSetColName( 2316 Vdbe *p, /* Vdbe being configured */ 2317 int idx, /* Index of column zName applies to */ 2318 int var, /* One of the COLNAME_* constants */ 2319 const char *zName, /* Pointer to buffer containing name */ 2320 void (*xDel)(void*) /* Memory management strategy for zName */ 2321 ){ 2322 int rc; 2323 Mem *pColName; 2324 assert( idx<p->nResColumn ); 2325 assert( var<COLNAME_N ); 2326 if( p->db->mallocFailed ){ 2327 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2328 return SQLITE_NOMEM_BKPT; 2329 } 2330 assert( p->aColName!=0 ); 2331 pColName = &(p->aColName[idx+var*p->nResColumn]); 2332 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2333 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2334 return rc; 2335 } 2336 2337 /* 2338 ** A read or write transaction may or may not be active on database handle 2339 ** db. If a transaction is active, commit it. If there is a 2340 ** write-transaction spanning more than one database file, this routine 2341 ** takes care of the master journal trickery. 2342 */ 2343 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2344 int i; 2345 int nTrans = 0; /* Number of databases with an active write-transaction 2346 ** that are candidates for a two-phase commit using a 2347 ** master-journal */ 2348 int rc = SQLITE_OK; 2349 int needXcommit = 0; 2350 2351 #ifdef SQLITE_OMIT_VIRTUALTABLE 2352 /* With this option, sqlite3VtabSync() is defined to be simply 2353 ** SQLITE_OK so p is not used. 2354 */ 2355 UNUSED_PARAMETER(p); 2356 #endif 2357 2358 /* Before doing anything else, call the xSync() callback for any 2359 ** virtual module tables written in this transaction. This has to 2360 ** be done before determining whether a master journal file is 2361 ** required, as an xSync() callback may add an attached database 2362 ** to the transaction. 2363 */ 2364 rc = sqlite3VtabSync(db, p); 2365 2366 /* This loop determines (a) if the commit hook should be invoked and 2367 ** (b) how many database files have open write transactions, not 2368 ** including the temp database. (b) is important because if more than 2369 ** one database file has an open write transaction, a master journal 2370 ** file is required for an atomic commit. 2371 */ 2372 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2373 Btree *pBt = db->aDb[i].pBt; 2374 if( sqlite3BtreeIsInTrans(pBt) ){ 2375 /* Whether or not a database might need a master journal depends upon 2376 ** its journal mode (among other things). This matrix determines which 2377 ** journal modes use a master journal and which do not */ 2378 static const u8 aMJNeeded[] = { 2379 /* DELETE */ 1, 2380 /* PERSIST */ 1, 2381 /* OFF */ 0, 2382 /* TRUNCATE */ 1, 2383 /* MEMORY */ 0, 2384 /* WAL */ 0 2385 }; 2386 Pager *pPager; /* Pager associated with pBt */ 2387 needXcommit = 1; 2388 sqlite3BtreeEnter(pBt); 2389 pPager = sqlite3BtreePager(pBt); 2390 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2391 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2392 && sqlite3PagerIsMemdb(pPager)==0 2393 ){ 2394 assert( i!=1 ); 2395 nTrans++; 2396 } 2397 rc = sqlite3PagerExclusiveLock(pPager); 2398 sqlite3BtreeLeave(pBt); 2399 } 2400 } 2401 if( rc!=SQLITE_OK ){ 2402 return rc; 2403 } 2404 2405 /* If there are any write-transactions at all, invoke the commit hook */ 2406 if( needXcommit && db->xCommitCallback ){ 2407 rc = db->xCommitCallback(db->pCommitArg); 2408 if( rc ){ 2409 return SQLITE_CONSTRAINT_COMMITHOOK; 2410 } 2411 } 2412 2413 /* The simple case - no more than one database file (not counting the 2414 ** TEMP database) has a transaction active. There is no need for the 2415 ** master-journal. 2416 ** 2417 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2418 ** string, it means the main database is :memory: or a temp file. In 2419 ** that case we do not support atomic multi-file commits, so use the 2420 ** simple case then too. 2421 */ 2422 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2423 || nTrans<=1 2424 ){ 2425 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2426 Btree *pBt = db->aDb[i].pBt; 2427 if( pBt ){ 2428 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2429 } 2430 } 2431 2432 /* Do the commit only if all databases successfully complete phase 1. 2433 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2434 ** IO error while deleting or truncating a journal file. It is unlikely, 2435 ** but could happen. In this case abandon processing and return the error. 2436 */ 2437 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2438 Btree *pBt = db->aDb[i].pBt; 2439 if( pBt ){ 2440 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2441 } 2442 } 2443 if( rc==SQLITE_OK ){ 2444 sqlite3VtabCommit(db); 2445 } 2446 } 2447 2448 /* The complex case - There is a multi-file write-transaction active. 2449 ** This requires a master journal file to ensure the transaction is 2450 ** committed atomically. 2451 */ 2452 #ifndef SQLITE_OMIT_DISKIO 2453 else{ 2454 sqlite3_vfs *pVfs = db->pVfs; 2455 char *zMaster = 0; /* File-name for the master journal */ 2456 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2457 sqlite3_file *pMaster = 0; 2458 i64 offset = 0; 2459 int res; 2460 int retryCount = 0; 2461 int nMainFile; 2462 2463 /* Select a master journal file name */ 2464 nMainFile = sqlite3Strlen30(zMainFile); 2465 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); 2466 if( zMaster==0 ) return SQLITE_NOMEM_BKPT; 2467 do { 2468 u32 iRandom; 2469 if( retryCount ){ 2470 if( retryCount>100 ){ 2471 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 2472 sqlite3OsDelete(pVfs, zMaster, 0); 2473 break; 2474 }else if( retryCount==1 ){ 2475 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2476 } 2477 } 2478 retryCount++; 2479 sqlite3_randomness(sizeof(iRandom), &iRandom); 2480 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2481 (iRandom>>8)&0xffffff, iRandom&0xff); 2482 /* The antipenultimate character of the master journal name must 2483 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2484 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2485 sqlite3FileSuffix3(zMainFile, zMaster); 2486 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2487 }while( rc==SQLITE_OK && res ); 2488 if( rc==SQLITE_OK ){ 2489 /* Open the master journal. */ 2490 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2491 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2492 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2493 ); 2494 } 2495 if( rc!=SQLITE_OK ){ 2496 sqlite3DbFree(db, zMaster); 2497 return rc; 2498 } 2499 2500 /* Write the name of each database file in the transaction into the new 2501 ** master journal file. If an error occurs at this point close 2502 ** and delete the master journal file. All the individual journal files 2503 ** still have 'null' as the master journal pointer, so they will roll 2504 ** back independently if a failure occurs. 2505 */ 2506 for(i=0; i<db->nDb; i++){ 2507 Btree *pBt = db->aDb[i].pBt; 2508 if( sqlite3BtreeIsInTrans(pBt) ){ 2509 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2510 if( zFile==0 ){ 2511 continue; /* Ignore TEMP and :memory: databases */ 2512 } 2513 assert( zFile[0]!=0 ); 2514 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2515 offset += sqlite3Strlen30(zFile)+1; 2516 if( rc!=SQLITE_OK ){ 2517 sqlite3OsCloseFree(pMaster); 2518 sqlite3OsDelete(pVfs, zMaster, 0); 2519 sqlite3DbFree(db, zMaster); 2520 return rc; 2521 } 2522 } 2523 } 2524 2525 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2526 ** flag is set this is not required. 2527 */ 2528 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2529 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2530 ){ 2531 sqlite3OsCloseFree(pMaster); 2532 sqlite3OsDelete(pVfs, zMaster, 0); 2533 sqlite3DbFree(db, zMaster); 2534 return rc; 2535 } 2536 2537 /* Sync all the db files involved in the transaction. The same call 2538 ** sets the master journal pointer in each individual journal. If 2539 ** an error occurs here, do not delete the master journal file. 2540 ** 2541 ** If the error occurs during the first call to 2542 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2543 ** master journal file will be orphaned. But we cannot delete it, 2544 ** in case the master journal file name was written into the journal 2545 ** file before the failure occurred. 2546 */ 2547 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2548 Btree *pBt = db->aDb[i].pBt; 2549 if( pBt ){ 2550 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2551 } 2552 } 2553 sqlite3OsCloseFree(pMaster); 2554 assert( rc!=SQLITE_BUSY ); 2555 if( rc!=SQLITE_OK ){ 2556 sqlite3DbFree(db, zMaster); 2557 return rc; 2558 } 2559 2560 /* Delete the master journal file. This commits the transaction. After 2561 ** doing this the directory is synced again before any individual 2562 ** transaction files are deleted. 2563 */ 2564 rc = sqlite3OsDelete(pVfs, zMaster, 1); 2565 sqlite3DbFree(db, zMaster); 2566 zMaster = 0; 2567 if( rc ){ 2568 return rc; 2569 } 2570 2571 /* All files and directories have already been synced, so the following 2572 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2573 ** deleting or truncating journals. If something goes wrong while 2574 ** this is happening we don't really care. The integrity of the 2575 ** transaction is already guaranteed, but some stray 'cold' journals 2576 ** may be lying around. Returning an error code won't help matters. 2577 */ 2578 disable_simulated_io_errors(); 2579 sqlite3BeginBenignMalloc(); 2580 for(i=0; i<db->nDb; i++){ 2581 Btree *pBt = db->aDb[i].pBt; 2582 if( pBt ){ 2583 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2584 } 2585 } 2586 sqlite3EndBenignMalloc(); 2587 enable_simulated_io_errors(); 2588 2589 sqlite3VtabCommit(db); 2590 } 2591 #endif 2592 2593 return rc; 2594 } 2595 2596 /* 2597 ** This routine checks that the sqlite3.nVdbeActive count variable 2598 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2599 ** currently active. An assertion fails if the two counts do not match. 2600 ** This is an internal self-check only - it is not an essential processing 2601 ** step. 2602 ** 2603 ** This is a no-op if NDEBUG is defined. 2604 */ 2605 #ifndef NDEBUG 2606 static void checkActiveVdbeCnt(sqlite3 *db){ 2607 Vdbe *p; 2608 int cnt = 0; 2609 int nWrite = 0; 2610 int nRead = 0; 2611 p = db->pVdbe; 2612 while( p ){ 2613 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2614 cnt++; 2615 if( p->readOnly==0 ) nWrite++; 2616 if( p->bIsReader ) nRead++; 2617 } 2618 p = p->pNext; 2619 } 2620 assert( cnt==db->nVdbeActive ); 2621 assert( nWrite==db->nVdbeWrite ); 2622 assert( nRead==db->nVdbeRead ); 2623 } 2624 #else 2625 #define checkActiveVdbeCnt(x) 2626 #endif 2627 2628 /* 2629 ** If the Vdbe passed as the first argument opened a statement-transaction, 2630 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2631 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2632 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2633 ** statement transaction is committed. 2634 ** 2635 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2636 ** Otherwise SQLITE_OK. 2637 */ 2638 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 2639 sqlite3 *const db = p->db; 2640 int rc = SQLITE_OK; 2641 int i; 2642 const int iSavepoint = p->iStatement-1; 2643 2644 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2645 assert( db->nStatement>0 ); 2646 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2647 2648 for(i=0; i<db->nDb; i++){ 2649 int rc2 = SQLITE_OK; 2650 Btree *pBt = db->aDb[i].pBt; 2651 if( pBt ){ 2652 if( eOp==SAVEPOINT_ROLLBACK ){ 2653 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2654 } 2655 if( rc2==SQLITE_OK ){ 2656 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2657 } 2658 if( rc==SQLITE_OK ){ 2659 rc = rc2; 2660 } 2661 } 2662 } 2663 db->nStatement--; 2664 p->iStatement = 0; 2665 2666 if( rc==SQLITE_OK ){ 2667 if( eOp==SAVEPOINT_ROLLBACK ){ 2668 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2669 } 2670 if( rc==SQLITE_OK ){ 2671 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2672 } 2673 } 2674 2675 /* If the statement transaction is being rolled back, also restore the 2676 ** database handles deferred constraint counter to the value it had when 2677 ** the statement transaction was opened. */ 2678 if( eOp==SAVEPOINT_ROLLBACK ){ 2679 db->nDeferredCons = p->nStmtDefCons; 2680 db->nDeferredImmCons = p->nStmtDefImmCons; 2681 } 2682 return rc; 2683 } 2684 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2685 if( p->db->nStatement && p->iStatement ){ 2686 return vdbeCloseStatement(p, eOp); 2687 } 2688 return SQLITE_OK; 2689 } 2690 2691 2692 /* 2693 ** This function is called when a transaction opened by the database 2694 ** handle associated with the VM passed as an argument is about to be 2695 ** committed. If there are outstanding deferred foreign key constraint 2696 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2697 ** 2698 ** If there are outstanding FK violations and this function returns 2699 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2700 ** and write an error message to it. Then return SQLITE_ERROR. 2701 */ 2702 #ifndef SQLITE_OMIT_FOREIGN_KEY 2703 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2704 sqlite3 *db = p->db; 2705 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2706 || (!deferred && p->nFkConstraint>0) 2707 ){ 2708 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2709 p->errorAction = OE_Abort; 2710 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2711 return SQLITE_ERROR; 2712 } 2713 return SQLITE_OK; 2714 } 2715 #endif 2716 2717 /* 2718 ** This routine is called the when a VDBE tries to halt. If the VDBE 2719 ** has made changes and is in autocommit mode, then commit those 2720 ** changes. If a rollback is needed, then do the rollback. 2721 ** 2722 ** This routine is the only way to move the state of a VM from 2723 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2724 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2725 ** 2726 ** Return an error code. If the commit could not complete because of 2727 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2728 ** means the close did not happen and needs to be repeated. 2729 */ 2730 int sqlite3VdbeHalt(Vdbe *p){ 2731 int rc; /* Used to store transient return codes */ 2732 sqlite3 *db = p->db; 2733 2734 /* This function contains the logic that determines if a statement or 2735 ** transaction will be committed or rolled back as a result of the 2736 ** execution of this virtual machine. 2737 ** 2738 ** If any of the following errors occur: 2739 ** 2740 ** SQLITE_NOMEM 2741 ** SQLITE_IOERR 2742 ** SQLITE_FULL 2743 ** SQLITE_INTERRUPT 2744 ** 2745 ** Then the internal cache might have been left in an inconsistent 2746 ** state. We need to rollback the statement transaction, if there is 2747 ** one, or the complete transaction if there is no statement transaction. 2748 */ 2749 2750 if( p->magic!=VDBE_MAGIC_RUN ){ 2751 return SQLITE_OK; 2752 } 2753 if( db->mallocFailed ){ 2754 p->rc = SQLITE_NOMEM_BKPT; 2755 } 2756 closeAllCursors(p); 2757 checkActiveVdbeCnt(db); 2758 2759 /* No commit or rollback needed if the program never started or if the 2760 ** SQL statement does not read or write a database file. */ 2761 if( p->pc>=0 && p->bIsReader ){ 2762 int mrc; /* Primary error code from p->rc */ 2763 int eStatementOp = 0; 2764 int isSpecialError; /* Set to true if a 'special' error */ 2765 2766 /* Lock all btrees used by the statement */ 2767 sqlite3VdbeEnter(p); 2768 2769 /* Check for one of the special errors */ 2770 mrc = p->rc & 0xff; 2771 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2772 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2773 if( isSpecialError ){ 2774 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2775 ** no rollback is necessary. Otherwise, at least a savepoint 2776 ** transaction must be rolled back to restore the database to a 2777 ** consistent state. 2778 ** 2779 ** Even if the statement is read-only, it is important to perform 2780 ** a statement or transaction rollback operation. If the error 2781 ** occurred while writing to the journal, sub-journal or database 2782 ** file as part of an effort to free up cache space (see function 2783 ** pagerStress() in pager.c), the rollback is required to restore 2784 ** the pager to a consistent state. 2785 */ 2786 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2787 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2788 eStatementOp = SAVEPOINT_ROLLBACK; 2789 }else{ 2790 /* We are forced to roll back the active transaction. Before doing 2791 ** so, abort any other statements this handle currently has active. 2792 */ 2793 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2794 sqlite3CloseSavepoints(db); 2795 db->autoCommit = 1; 2796 p->nChange = 0; 2797 } 2798 } 2799 } 2800 2801 /* Check for immediate foreign key violations. */ 2802 if( p->rc==SQLITE_OK ){ 2803 sqlite3VdbeCheckFk(p, 0); 2804 } 2805 2806 /* If the auto-commit flag is set and this is the only active writer 2807 ** VM, then we do either a commit or rollback of the current transaction. 2808 ** 2809 ** Note: This block also runs if one of the special errors handled 2810 ** above has occurred. 2811 */ 2812 if( !sqlite3VtabInSync(db) 2813 && db->autoCommit 2814 && db->nVdbeWrite==(p->readOnly==0) 2815 ){ 2816 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2817 rc = sqlite3VdbeCheckFk(p, 1); 2818 if( rc!=SQLITE_OK ){ 2819 if( NEVER(p->readOnly) ){ 2820 sqlite3VdbeLeave(p); 2821 return SQLITE_ERROR; 2822 } 2823 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2824 }else{ 2825 /* The auto-commit flag is true, the vdbe program was successful 2826 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2827 ** key constraints to hold up the transaction. This means a commit 2828 ** is required. */ 2829 rc = vdbeCommit(db, p); 2830 } 2831 if( rc==SQLITE_BUSY && p->readOnly ){ 2832 sqlite3VdbeLeave(p); 2833 return SQLITE_BUSY; 2834 }else if( rc!=SQLITE_OK ){ 2835 p->rc = rc; 2836 sqlite3RollbackAll(db, SQLITE_OK); 2837 p->nChange = 0; 2838 }else{ 2839 db->nDeferredCons = 0; 2840 db->nDeferredImmCons = 0; 2841 db->flags &= ~SQLITE_DeferFKs; 2842 sqlite3CommitInternalChanges(db); 2843 } 2844 }else{ 2845 sqlite3RollbackAll(db, SQLITE_OK); 2846 p->nChange = 0; 2847 } 2848 db->nStatement = 0; 2849 }else if( eStatementOp==0 ){ 2850 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2851 eStatementOp = SAVEPOINT_RELEASE; 2852 }else if( p->errorAction==OE_Abort ){ 2853 eStatementOp = SAVEPOINT_ROLLBACK; 2854 }else{ 2855 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2856 sqlite3CloseSavepoints(db); 2857 db->autoCommit = 1; 2858 p->nChange = 0; 2859 } 2860 } 2861 2862 /* If eStatementOp is non-zero, then a statement transaction needs to 2863 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2864 ** do so. If this operation returns an error, and the current statement 2865 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2866 ** current statement error code. 2867 */ 2868 if( eStatementOp ){ 2869 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2870 if( rc ){ 2871 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 2872 p->rc = rc; 2873 sqlite3DbFree(db, p->zErrMsg); 2874 p->zErrMsg = 0; 2875 } 2876 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2877 sqlite3CloseSavepoints(db); 2878 db->autoCommit = 1; 2879 p->nChange = 0; 2880 } 2881 } 2882 2883 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2884 ** has been rolled back, update the database connection change-counter. 2885 */ 2886 if( p->changeCntOn ){ 2887 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2888 sqlite3VdbeSetChanges(db, p->nChange); 2889 }else{ 2890 sqlite3VdbeSetChanges(db, 0); 2891 } 2892 p->nChange = 0; 2893 } 2894 2895 /* Release the locks */ 2896 sqlite3VdbeLeave(p); 2897 } 2898 2899 /* We have successfully halted and closed the VM. Record this fact. */ 2900 if( p->pc>=0 ){ 2901 db->nVdbeActive--; 2902 if( !p->readOnly ) db->nVdbeWrite--; 2903 if( p->bIsReader ) db->nVdbeRead--; 2904 assert( db->nVdbeActive>=db->nVdbeRead ); 2905 assert( db->nVdbeRead>=db->nVdbeWrite ); 2906 assert( db->nVdbeWrite>=0 ); 2907 } 2908 p->magic = VDBE_MAGIC_HALT; 2909 checkActiveVdbeCnt(db); 2910 if( db->mallocFailed ){ 2911 p->rc = SQLITE_NOMEM_BKPT; 2912 } 2913 2914 /* If the auto-commit flag is set to true, then any locks that were held 2915 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2916 ** to invoke any required unlock-notify callbacks. 2917 */ 2918 if( db->autoCommit ){ 2919 sqlite3ConnectionUnlocked(db); 2920 } 2921 2922 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 2923 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 2924 } 2925 2926 2927 /* 2928 ** Each VDBE holds the result of the most recent sqlite3_step() call 2929 ** in p->rc. This routine sets that result back to SQLITE_OK. 2930 */ 2931 void sqlite3VdbeResetStepResult(Vdbe *p){ 2932 p->rc = SQLITE_OK; 2933 } 2934 2935 /* 2936 ** Copy the error code and error message belonging to the VDBE passed 2937 ** as the first argument to its database handle (so that they will be 2938 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 2939 ** 2940 ** This function does not clear the VDBE error code or message, just 2941 ** copies them to the database handle. 2942 */ 2943 int sqlite3VdbeTransferError(Vdbe *p){ 2944 sqlite3 *db = p->db; 2945 int rc = p->rc; 2946 if( p->zErrMsg ){ 2947 db->bBenignMalloc++; 2948 sqlite3BeginBenignMalloc(); 2949 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 2950 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 2951 sqlite3EndBenignMalloc(); 2952 db->bBenignMalloc--; 2953 }else if( db->pErr ){ 2954 sqlite3ValueSetNull(db->pErr); 2955 } 2956 db->errCode = rc; 2957 return rc; 2958 } 2959 2960 #ifdef SQLITE_ENABLE_SQLLOG 2961 /* 2962 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 2963 ** invoke it. 2964 */ 2965 static void vdbeInvokeSqllog(Vdbe *v){ 2966 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 2967 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 2968 assert( v->db->init.busy==0 ); 2969 if( zExpanded ){ 2970 sqlite3GlobalConfig.xSqllog( 2971 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 2972 ); 2973 sqlite3DbFree(v->db, zExpanded); 2974 } 2975 } 2976 } 2977 #else 2978 # define vdbeInvokeSqllog(x) 2979 #endif 2980 2981 /* 2982 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 2983 ** Write any error messages into *pzErrMsg. Return the result code. 2984 ** 2985 ** After this routine is run, the VDBE should be ready to be executed 2986 ** again. 2987 ** 2988 ** To look at it another way, this routine resets the state of the 2989 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 2990 ** VDBE_MAGIC_INIT. 2991 */ 2992 int sqlite3VdbeReset(Vdbe *p){ 2993 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 2994 int i; 2995 #endif 2996 2997 sqlite3 *db; 2998 db = p->db; 2999 3000 /* If the VM did not run to completion or if it encountered an 3001 ** error, then it might not have been halted properly. So halt 3002 ** it now. 3003 */ 3004 sqlite3VdbeHalt(p); 3005 3006 /* If the VDBE has be run even partially, then transfer the error code 3007 ** and error message from the VDBE into the main database structure. But 3008 ** if the VDBE has just been set to run but has not actually executed any 3009 ** instructions yet, leave the main database error information unchanged. 3010 */ 3011 if( p->pc>=0 ){ 3012 vdbeInvokeSqllog(p); 3013 sqlite3VdbeTransferError(p); 3014 if( p->runOnlyOnce ) p->expired = 1; 3015 }else if( p->rc && p->expired ){ 3016 /* The expired flag was set on the VDBE before the first call 3017 ** to sqlite3_step(). For consistency (since sqlite3_step() was 3018 ** called), set the database error in this case as well. 3019 */ 3020 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 3021 } 3022 3023 /* Reset register contents and reclaim error message memory. 3024 */ 3025 #ifdef SQLITE_DEBUG 3026 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 3027 ** Vdbe.aMem[] arrays have already been cleaned up. */ 3028 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 3029 if( p->aMem ){ 3030 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 3031 } 3032 #endif 3033 sqlite3DbFree(db, p->zErrMsg); 3034 p->zErrMsg = 0; 3035 p->pResultSet = 0; 3036 #ifdef SQLITE_DEBUG 3037 p->nWrite = 0; 3038 #endif 3039 3040 /* Save profiling information from this VDBE run. 3041 */ 3042 #ifdef VDBE_PROFILE 3043 { 3044 FILE *out = fopen("vdbe_profile.out", "a"); 3045 if( out ){ 3046 fprintf(out, "---- "); 3047 for(i=0; i<p->nOp; i++){ 3048 fprintf(out, "%02x", p->aOp[i].opcode); 3049 } 3050 fprintf(out, "\n"); 3051 if( p->zSql ){ 3052 char c, pc = 0; 3053 fprintf(out, "-- "); 3054 for(i=0; (c = p->zSql[i])!=0; i++){ 3055 if( pc=='\n' ) fprintf(out, "-- "); 3056 putc(c, out); 3057 pc = c; 3058 } 3059 if( pc!='\n' ) fprintf(out, "\n"); 3060 } 3061 for(i=0; i<p->nOp; i++){ 3062 char zHdr[100]; 3063 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 3064 p->aOp[i].cnt, 3065 p->aOp[i].cycles, 3066 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 3067 ); 3068 fprintf(out, "%s", zHdr); 3069 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 3070 } 3071 fclose(out); 3072 } 3073 } 3074 #endif 3075 p->magic = VDBE_MAGIC_RESET; 3076 return p->rc & db->errMask; 3077 } 3078 3079 /* 3080 ** Clean up and delete a VDBE after execution. Return an integer which is 3081 ** the result code. Write any error message text into *pzErrMsg. 3082 */ 3083 int sqlite3VdbeFinalize(Vdbe *p){ 3084 int rc = SQLITE_OK; 3085 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 3086 rc = sqlite3VdbeReset(p); 3087 assert( (rc & p->db->errMask)==rc ); 3088 } 3089 sqlite3VdbeDelete(p); 3090 return rc; 3091 } 3092 3093 /* 3094 ** If parameter iOp is less than zero, then invoke the destructor for 3095 ** all auxiliary data pointers currently cached by the VM passed as 3096 ** the first argument. 3097 ** 3098 ** Or, if iOp is greater than or equal to zero, then the destructor is 3099 ** only invoked for those auxiliary data pointers created by the user 3100 ** function invoked by the OP_Function opcode at instruction iOp of 3101 ** VM pVdbe, and only then if: 3102 ** 3103 ** * the associated function parameter is the 32nd or later (counting 3104 ** from left to right), or 3105 ** 3106 ** * the corresponding bit in argument mask is clear (where the first 3107 ** function parameter corresponds to bit 0 etc.). 3108 */ 3109 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 3110 while( *pp ){ 3111 AuxData *pAux = *pp; 3112 if( (iOp<0) 3113 || (pAux->iAuxOp==iOp 3114 && pAux->iAuxArg>=0 3115 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 3116 ){ 3117 testcase( pAux->iAuxArg==31 ); 3118 if( pAux->xDeleteAux ){ 3119 pAux->xDeleteAux(pAux->pAux); 3120 } 3121 *pp = pAux->pNextAux; 3122 sqlite3DbFree(db, pAux); 3123 }else{ 3124 pp= &pAux->pNextAux; 3125 } 3126 } 3127 } 3128 3129 /* 3130 ** Free all memory associated with the Vdbe passed as the second argument, 3131 ** except for object itself, which is preserved. 3132 ** 3133 ** The difference between this function and sqlite3VdbeDelete() is that 3134 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 3135 ** the database connection and frees the object itself. 3136 */ 3137 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 3138 SubProgram *pSub, *pNext; 3139 assert( p->db==0 || p->db==db ); 3140 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 3141 for(pSub=p->pProgram; pSub; pSub=pNext){ 3142 pNext = pSub->pNext; 3143 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 3144 sqlite3DbFree(db, pSub); 3145 } 3146 if( p->magic!=VDBE_MAGIC_INIT ){ 3147 releaseMemArray(p->aVar, p->nVar); 3148 sqlite3DbFree(db, p->pVList); 3149 sqlite3DbFree(db, p->pFree); 3150 } 3151 vdbeFreeOpArray(db, p->aOp, p->nOp); 3152 sqlite3DbFree(db, p->aColName); 3153 sqlite3DbFree(db, p->zSql); 3154 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3155 { 3156 int i; 3157 for(i=0; i<p->nScan; i++){ 3158 sqlite3DbFree(db, p->aScan[i].zName); 3159 } 3160 sqlite3DbFree(db, p->aScan); 3161 } 3162 #endif 3163 } 3164 3165 /* 3166 ** Delete an entire VDBE. 3167 */ 3168 void sqlite3VdbeDelete(Vdbe *p){ 3169 sqlite3 *db; 3170 3171 assert( p!=0 ); 3172 db = p->db; 3173 assert( sqlite3_mutex_held(db->mutex) ); 3174 sqlite3VdbeClearObject(db, p); 3175 if( p->pPrev ){ 3176 p->pPrev->pNext = p->pNext; 3177 }else{ 3178 assert( db->pVdbe==p ); 3179 db->pVdbe = p->pNext; 3180 } 3181 if( p->pNext ){ 3182 p->pNext->pPrev = p->pPrev; 3183 } 3184 p->magic = VDBE_MAGIC_DEAD; 3185 p->db = 0; 3186 sqlite3DbFreeNN(db, p); 3187 } 3188 3189 /* 3190 ** The cursor "p" has a pending seek operation that has not yet been 3191 ** carried out. Seek the cursor now. If an error occurs, return 3192 ** the appropriate error code. 3193 */ 3194 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ 3195 int res, rc; 3196 #ifdef SQLITE_TEST 3197 extern int sqlite3_search_count; 3198 #endif 3199 assert( p->deferredMoveto ); 3200 assert( p->isTable ); 3201 assert( p->eCurType==CURTYPE_BTREE ); 3202 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); 3203 if( rc ) return rc; 3204 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3205 #ifdef SQLITE_TEST 3206 sqlite3_search_count++; 3207 #endif 3208 p->deferredMoveto = 0; 3209 p->cacheStatus = CACHE_STALE; 3210 return SQLITE_OK; 3211 } 3212 3213 /* 3214 ** Something has moved cursor "p" out of place. Maybe the row it was 3215 ** pointed to was deleted out from under it. Or maybe the btree was 3216 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3217 ** is supposed to be pointing. If the row was deleted out from under the 3218 ** cursor, set the cursor to point to a NULL row. 3219 */ 3220 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 3221 int isDifferentRow, rc; 3222 assert( p->eCurType==CURTYPE_BTREE ); 3223 assert( p->uc.pCursor!=0 ); 3224 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3225 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3226 p->cacheStatus = CACHE_STALE; 3227 if( isDifferentRow ) p->nullRow = 1; 3228 return rc; 3229 } 3230 3231 /* 3232 ** Check to ensure that the cursor is valid. Restore the cursor 3233 ** if need be. Return any I/O error from the restore operation. 3234 */ 3235 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3236 assert( p->eCurType==CURTYPE_BTREE ); 3237 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3238 return handleMovedCursor(p); 3239 } 3240 return SQLITE_OK; 3241 } 3242 3243 /* 3244 ** Make sure the cursor p is ready to read or write the row to which it 3245 ** was last positioned. Return an error code if an OOM fault or I/O error 3246 ** prevents us from positioning the cursor to its correct position. 3247 ** 3248 ** If a MoveTo operation is pending on the given cursor, then do that 3249 ** MoveTo now. If no move is pending, check to see if the row has been 3250 ** deleted out from under the cursor and if it has, mark the row as 3251 ** a NULL row. 3252 ** 3253 ** If the cursor is already pointing to the correct row and that row has 3254 ** not been deleted out from under the cursor, then this routine is a no-op. 3255 */ 3256 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){ 3257 VdbeCursor *p = *pp; 3258 assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO ); 3259 if( p->deferredMoveto ){ 3260 int iMap; 3261 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){ 3262 *pp = p->pAltCursor; 3263 *piCol = iMap - 1; 3264 return SQLITE_OK; 3265 } 3266 return handleDeferredMoveto(p); 3267 } 3268 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3269 return handleMovedCursor(p); 3270 } 3271 return SQLITE_OK; 3272 } 3273 3274 /* 3275 ** The following functions: 3276 ** 3277 ** sqlite3VdbeSerialType() 3278 ** sqlite3VdbeSerialTypeLen() 3279 ** sqlite3VdbeSerialLen() 3280 ** sqlite3VdbeSerialPut() 3281 ** sqlite3VdbeSerialGet() 3282 ** 3283 ** encapsulate the code that serializes values for storage in SQLite 3284 ** data and index records. Each serialized value consists of a 3285 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3286 ** integer, stored as a varint. 3287 ** 3288 ** In an SQLite index record, the serial type is stored directly before 3289 ** the blob of data that it corresponds to. In a table record, all serial 3290 ** types are stored at the start of the record, and the blobs of data at 3291 ** the end. Hence these functions allow the caller to handle the 3292 ** serial-type and data blob separately. 3293 ** 3294 ** The following table describes the various storage classes for data: 3295 ** 3296 ** serial type bytes of data type 3297 ** -------------- --------------- --------------- 3298 ** 0 0 NULL 3299 ** 1 1 signed integer 3300 ** 2 2 signed integer 3301 ** 3 3 signed integer 3302 ** 4 4 signed integer 3303 ** 5 6 signed integer 3304 ** 6 8 signed integer 3305 ** 7 8 IEEE float 3306 ** 8 0 Integer constant 0 3307 ** 9 0 Integer constant 1 3308 ** 10,11 reserved for expansion 3309 ** N>=12 and even (N-12)/2 BLOB 3310 ** N>=13 and odd (N-13)/2 text 3311 ** 3312 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3313 ** of SQLite will not understand those serial types. 3314 */ 3315 3316 /* 3317 ** Return the serial-type for the value stored in pMem. 3318 */ 3319 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3320 int flags = pMem->flags; 3321 u32 n; 3322 3323 assert( pLen!=0 ); 3324 if( flags&MEM_Null ){ 3325 *pLen = 0; 3326 return 0; 3327 } 3328 if( flags&MEM_Int ){ 3329 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3330 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3331 i64 i = pMem->u.i; 3332 u64 u; 3333 if( i<0 ){ 3334 u = ~i; 3335 }else{ 3336 u = i; 3337 } 3338 if( u<=127 ){ 3339 if( (i&1)==i && file_format>=4 ){ 3340 *pLen = 0; 3341 return 8+(u32)u; 3342 }else{ 3343 *pLen = 1; 3344 return 1; 3345 } 3346 } 3347 if( u<=32767 ){ *pLen = 2; return 2; } 3348 if( u<=8388607 ){ *pLen = 3; return 3; } 3349 if( u<=2147483647 ){ *pLen = 4; return 4; } 3350 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3351 *pLen = 8; 3352 return 6; 3353 } 3354 if( flags&MEM_Real ){ 3355 *pLen = 8; 3356 return 7; 3357 } 3358 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3359 assert( pMem->n>=0 ); 3360 n = (u32)pMem->n; 3361 if( flags & MEM_Zero ){ 3362 n += pMem->u.nZero; 3363 } 3364 *pLen = n; 3365 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3366 } 3367 3368 /* 3369 ** The sizes for serial types less than 128 3370 */ 3371 static const u8 sqlite3SmallTypeSizes[] = { 3372 /* 0 1 2 3 4 5 6 7 8 9 */ 3373 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3374 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3375 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3376 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3377 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3378 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3379 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3380 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3381 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3382 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3383 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3384 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3385 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3386 }; 3387 3388 /* 3389 ** Return the length of the data corresponding to the supplied serial-type. 3390 */ 3391 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3392 if( serial_type>=128 ){ 3393 return (serial_type-12)/2; 3394 }else{ 3395 assert( serial_type<12 3396 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3397 return sqlite3SmallTypeSizes[serial_type]; 3398 } 3399 } 3400 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3401 assert( serial_type<128 ); 3402 return sqlite3SmallTypeSizes[serial_type]; 3403 } 3404 3405 /* 3406 ** If we are on an architecture with mixed-endian floating 3407 ** points (ex: ARM7) then swap the lower 4 bytes with the 3408 ** upper 4 bytes. Return the result. 3409 ** 3410 ** For most architectures, this is a no-op. 3411 ** 3412 ** (later): It is reported to me that the mixed-endian problem 3413 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3414 ** that early versions of GCC stored the two words of a 64-bit 3415 ** float in the wrong order. And that error has been propagated 3416 ** ever since. The blame is not necessarily with GCC, though. 3417 ** GCC might have just copying the problem from a prior compiler. 3418 ** I am also told that newer versions of GCC that follow a different 3419 ** ABI get the byte order right. 3420 ** 3421 ** Developers using SQLite on an ARM7 should compile and run their 3422 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3423 ** enabled, some asserts below will ensure that the byte order of 3424 ** floating point values is correct. 3425 ** 3426 ** (2007-08-30) Frank van Vugt has studied this problem closely 3427 ** and has send his findings to the SQLite developers. Frank 3428 ** writes that some Linux kernels offer floating point hardware 3429 ** emulation that uses only 32-bit mantissas instead of a full 3430 ** 48-bits as required by the IEEE standard. (This is the 3431 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3432 ** byte swapping becomes very complicated. To avoid problems, 3433 ** the necessary byte swapping is carried out using a 64-bit integer 3434 ** rather than a 64-bit float. Frank assures us that the code here 3435 ** works for him. We, the developers, have no way to independently 3436 ** verify this, but Frank seems to know what he is talking about 3437 ** so we trust him. 3438 */ 3439 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3440 static u64 floatSwap(u64 in){ 3441 union { 3442 u64 r; 3443 u32 i[2]; 3444 } u; 3445 u32 t; 3446 3447 u.r = in; 3448 t = u.i[0]; 3449 u.i[0] = u.i[1]; 3450 u.i[1] = t; 3451 return u.r; 3452 } 3453 # define swapMixedEndianFloat(X) X = floatSwap(X) 3454 #else 3455 # define swapMixedEndianFloat(X) 3456 #endif 3457 3458 /* 3459 ** Write the serialized data blob for the value stored in pMem into 3460 ** buf. It is assumed that the caller has allocated sufficient space. 3461 ** Return the number of bytes written. 3462 ** 3463 ** nBuf is the amount of space left in buf[]. The caller is responsible 3464 ** for allocating enough space to buf[] to hold the entire field, exclusive 3465 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3466 ** 3467 ** Return the number of bytes actually written into buf[]. The number 3468 ** of bytes in the zero-filled tail is included in the return value only 3469 ** if those bytes were zeroed in buf[]. 3470 */ 3471 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3472 u32 len; 3473 3474 /* Integer and Real */ 3475 if( serial_type<=7 && serial_type>0 ){ 3476 u64 v; 3477 u32 i; 3478 if( serial_type==7 ){ 3479 assert( sizeof(v)==sizeof(pMem->u.r) ); 3480 memcpy(&v, &pMem->u.r, sizeof(v)); 3481 swapMixedEndianFloat(v); 3482 }else{ 3483 v = pMem->u.i; 3484 } 3485 len = i = sqlite3SmallTypeSizes[serial_type]; 3486 assert( i>0 ); 3487 do{ 3488 buf[--i] = (u8)(v&0xFF); 3489 v >>= 8; 3490 }while( i ); 3491 return len; 3492 } 3493 3494 /* String or blob */ 3495 if( serial_type>=12 ){ 3496 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3497 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3498 len = pMem->n; 3499 if( len>0 ) memcpy(buf, pMem->z, len); 3500 return len; 3501 } 3502 3503 /* NULL or constants 0 or 1 */ 3504 return 0; 3505 } 3506 3507 /* Input "x" is a sequence of unsigned characters that represent a 3508 ** big-endian integer. Return the equivalent native integer 3509 */ 3510 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3511 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3512 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3513 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3514 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3515 3516 /* 3517 ** Deserialize the data blob pointed to by buf as serial type serial_type 3518 ** and store the result in pMem. Return the number of bytes read. 3519 ** 3520 ** This function is implemented as two separate routines for performance. 3521 ** The few cases that require local variables are broken out into a separate 3522 ** routine so that in most cases the overhead of moving the stack pointer 3523 ** is avoided. 3524 */ 3525 static u32 SQLITE_NOINLINE serialGet( 3526 const unsigned char *buf, /* Buffer to deserialize from */ 3527 u32 serial_type, /* Serial type to deserialize */ 3528 Mem *pMem /* Memory cell to write value into */ 3529 ){ 3530 u64 x = FOUR_BYTE_UINT(buf); 3531 u32 y = FOUR_BYTE_UINT(buf+4); 3532 x = (x<<32) + y; 3533 if( serial_type==6 ){ 3534 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3535 ** twos-complement integer. */ 3536 pMem->u.i = *(i64*)&x; 3537 pMem->flags = MEM_Int; 3538 testcase( pMem->u.i<0 ); 3539 }else{ 3540 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3541 ** floating point number. */ 3542 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3543 /* Verify that integers and floating point values use the same 3544 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3545 ** defined that 64-bit floating point values really are mixed 3546 ** endian. 3547 */ 3548 static const u64 t1 = ((u64)0x3ff00000)<<32; 3549 static const double r1 = 1.0; 3550 u64 t2 = t1; 3551 swapMixedEndianFloat(t2); 3552 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3553 #endif 3554 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3555 swapMixedEndianFloat(x); 3556 memcpy(&pMem->u.r, &x, sizeof(x)); 3557 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; 3558 } 3559 return 8; 3560 } 3561 u32 sqlite3VdbeSerialGet( 3562 const unsigned char *buf, /* Buffer to deserialize from */ 3563 u32 serial_type, /* Serial type to deserialize */ 3564 Mem *pMem /* Memory cell to write value into */ 3565 ){ 3566 switch( serial_type ){ 3567 case 10: { /* Internal use only: NULL with virtual table 3568 ** UPDATE no-change flag set */ 3569 pMem->flags = MEM_Null|MEM_Zero; 3570 pMem->n = 0; 3571 pMem->u.nZero = 0; 3572 break; 3573 } 3574 case 11: /* Reserved for future use */ 3575 case 0: { /* Null */ 3576 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3577 pMem->flags = MEM_Null; 3578 break; 3579 } 3580 case 1: { 3581 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3582 ** integer. */ 3583 pMem->u.i = ONE_BYTE_INT(buf); 3584 pMem->flags = MEM_Int; 3585 testcase( pMem->u.i<0 ); 3586 return 1; 3587 } 3588 case 2: { /* 2-byte signed integer */ 3589 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3590 ** twos-complement integer. */ 3591 pMem->u.i = TWO_BYTE_INT(buf); 3592 pMem->flags = MEM_Int; 3593 testcase( pMem->u.i<0 ); 3594 return 2; 3595 } 3596 case 3: { /* 3-byte signed integer */ 3597 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3598 ** twos-complement integer. */ 3599 pMem->u.i = THREE_BYTE_INT(buf); 3600 pMem->flags = MEM_Int; 3601 testcase( pMem->u.i<0 ); 3602 return 3; 3603 } 3604 case 4: { /* 4-byte signed integer */ 3605 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3606 ** twos-complement integer. */ 3607 pMem->u.i = FOUR_BYTE_INT(buf); 3608 #ifdef __HP_cc 3609 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3610 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3611 #endif 3612 pMem->flags = MEM_Int; 3613 testcase( pMem->u.i<0 ); 3614 return 4; 3615 } 3616 case 5: { /* 6-byte signed integer */ 3617 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3618 ** twos-complement integer. */ 3619 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3620 pMem->flags = MEM_Int; 3621 testcase( pMem->u.i<0 ); 3622 return 6; 3623 } 3624 case 6: /* 8-byte signed integer */ 3625 case 7: { /* IEEE floating point */ 3626 /* These use local variables, so do them in a separate routine 3627 ** to avoid having to move the frame pointer in the common case */ 3628 return serialGet(buf,serial_type,pMem); 3629 } 3630 case 8: /* Integer 0 */ 3631 case 9: { /* Integer 1 */ 3632 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3633 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3634 pMem->u.i = serial_type-8; 3635 pMem->flags = MEM_Int; 3636 return 0; 3637 } 3638 default: { 3639 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3640 ** length. 3641 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3642 ** (N-13)/2 bytes in length. */ 3643 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3644 pMem->z = (char *)buf; 3645 pMem->n = (serial_type-12)/2; 3646 pMem->flags = aFlag[serial_type&1]; 3647 return pMem->n; 3648 } 3649 } 3650 return 0; 3651 } 3652 /* 3653 ** This routine is used to allocate sufficient space for an UnpackedRecord 3654 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3655 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3656 ** 3657 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3658 ** the unaligned buffer passed via the second and third arguments (presumably 3659 ** stack space). If the former, then *ppFree is set to a pointer that should 3660 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3661 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3662 ** before returning. 3663 ** 3664 ** If an OOM error occurs, NULL is returned. 3665 */ 3666 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3667 KeyInfo *pKeyInfo /* Description of the record */ 3668 ){ 3669 UnpackedRecord *p; /* Unpacked record to return */ 3670 int nByte; /* Number of bytes required for *p */ 3671 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 3672 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3673 if( !p ) return 0; 3674 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3675 assert( pKeyInfo->aSortOrder!=0 ); 3676 p->pKeyInfo = pKeyInfo; 3677 p->nField = pKeyInfo->nKeyField + 1; 3678 return p; 3679 } 3680 3681 /* 3682 ** Given the nKey-byte encoding of a record in pKey[], populate the 3683 ** UnpackedRecord structure indicated by the fourth argument with the 3684 ** contents of the decoded record. 3685 */ 3686 void sqlite3VdbeRecordUnpack( 3687 KeyInfo *pKeyInfo, /* Information about the record format */ 3688 int nKey, /* Size of the binary record */ 3689 const void *pKey, /* The binary record */ 3690 UnpackedRecord *p /* Populate this structure before returning. */ 3691 ){ 3692 const unsigned char *aKey = (const unsigned char *)pKey; 3693 int d; 3694 u32 idx; /* Offset in aKey[] to read from */ 3695 u16 u; /* Unsigned loop counter */ 3696 u32 szHdr; 3697 Mem *pMem = p->aMem; 3698 3699 p->default_rc = 0; 3700 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3701 idx = getVarint32(aKey, szHdr); 3702 d = szHdr; 3703 u = 0; 3704 while( idx<szHdr && d<=nKey ){ 3705 u32 serial_type; 3706 3707 idx += getVarint32(&aKey[idx], serial_type); 3708 pMem->enc = pKeyInfo->enc; 3709 pMem->db = pKeyInfo->db; 3710 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 3711 pMem->szMalloc = 0; 3712 pMem->z = 0; 3713 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3714 pMem++; 3715 if( (++u)>=p->nField ) break; 3716 } 3717 assert( u<=pKeyInfo->nKeyField + 1 ); 3718 p->nField = u; 3719 } 3720 3721 #ifdef SQLITE_DEBUG 3722 /* 3723 ** This function compares two index or table record keys in the same way 3724 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 3725 ** this function deserializes and compares values using the 3726 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 3727 ** in assert() statements to ensure that the optimized code in 3728 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 3729 ** 3730 ** Return true if the result of comparison is equivalent to desiredResult. 3731 ** Return false if there is a disagreement. 3732 */ 3733 static int vdbeRecordCompareDebug( 3734 int nKey1, const void *pKey1, /* Left key */ 3735 const UnpackedRecord *pPKey2, /* Right key */ 3736 int desiredResult /* Correct answer */ 3737 ){ 3738 u32 d1; /* Offset into aKey[] of next data element */ 3739 u32 idx1; /* Offset into aKey[] of next header element */ 3740 u32 szHdr1; /* Number of bytes in header */ 3741 int i = 0; 3742 int rc = 0; 3743 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3744 KeyInfo *pKeyInfo; 3745 Mem mem1; 3746 3747 pKeyInfo = pPKey2->pKeyInfo; 3748 if( pKeyInfo->db==0 ) return 1; 3749 mem1.enc = pKeyInfo->enc; 3750 mem1.db = pKeyInfo->db; 3751 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 3752 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3753 3754 /* Compilers may complain that mem1.u.i is potentially uninitialized. 3755 ** We could initialize it, as shown here, to silence those complaints. 3756 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 3757 ** the unnecessary initialization has a measurable negative performance 3758 ** impact, since this routine is a very high runner. And so, we choose 3759 ** to ignore the compiler warnings and leave this variable uninitialized. 3760 */ 3761 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 3762 3763 idx1 = getVarint32(aKey1, szHdr1); 3764 if( szHdr1>98307 ) return SQLITE_CORRUPT; 3765 d1 = szHdr1; 3766 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 3767 assert( pKeyInfo->aSortOrder!=0 ); 3768 assert( pKeyInfo->nKeyField>0 ); 3769 assert( idx1<=szHdr1 || CORRUPT_DB ); 3770 do{ 3771 u32 serial_type1; 3772 3773 /* Read the serial types for the next element in each key. */ 3774 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 3775 3776 /* Verify that there is enough key space remaining to avoid 3777 ** a buffer overread. The "d1+serial_type1+2" subexpression will 3778 ** always be greater than or equal to the amount of required key space. 3779 ** Use that approximation to avoid the more expensive call to 3780 ** sqlite3VdbeSerialTypeLen() in the common case. 3781 */ 3782 if( d1+serial_type1+2>(u32)nKey1 3783 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 3784 ){ 3785 break; 3786 } 3787 3788 /* Extract the values to be compared. 3789 */ 3790 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 3791 3792 /* Do the comparison 3793 */ 3794 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); 3795 if( rc!=0 ){ 3796 assert( mem1.szMalloc==0 ); /* See comment below */ 3797 if( pKeyInfo->aSortOrder[i] ){ 3798 rc = -rc; /* Invert the result for DESC sort order. */ 3799 } 3800 goto debugCompareEnd; 3801 } 3802 i++; 3803 }while( idx1<szHdr1 && i<pPKey2->nField ); 3804 3805 /* No memory allocation is ever used on mem1. Prove this using 3806 ** the following assert(). If the assert() fails, it indicates a 3807 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 3808 */ 3809 assert( mem1.szMalloc==0 ); 3810 3811 /* rc==0 here means that one of the keys ran out of fields and 3812 ** all the fields up to that point were equal. Return the default_rc 3813 ** value. */ 3814 rc = pPKey2->default_rc; 3815 3816 debugCompareEnd: 3817 if( desiredResult==0 && rc==0 ) return 1; 3818 if( desiredResult<0 && rc<0 ) return 1; 3819 if( desiredResult>0 && rc>0 ) return 1; 3820 if( CORRUPT_DB ) return 1; 3821 if( pKeyInfo->db->mallocFailed ) return 1; 3822 return 0; 3823 } 3824 #endif 3825 3826 #ifdef SQLITE_DEBUG 3827 /* 3828 ** Count the number of fields (a.k.a. columns) in the record given by 3829 ** pKey,nKey. The verify that this count is less than or equal to the 3830 ** limit given by pKeyInfo->nAllField. 3831 ** 3832 ** If this constraint is not satisfied, it means that the high-speed 3833 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 3834 ** not work correctly. If this assert() ever fires, it probably means 3835 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 3836 ** incorrectly. 3837 */ 3838 static void vdbeAssertFieldCountWithinLimits( 3839 int nKey, const void *pKey, /* The record to verify */ 3840 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 3841 ){ 3842 int nField = 0; 3843 u32 szHdr; 3844 u32 idx; 3845 u32 notUsed; 3846 const unsigned char *aKey = (const unsigned char*)pKey; 3847 3848 if( CORRUPT_DB ) return; 3849 idx = getVarint32(aKey, szHdr); 3850 assert( nKey>=0 ); 3851 assert( szHdr<=(u32)nKey ); 3852 while( idx<szHdr ){ 3853 idx += getVarint32(aKey+idx, notUsed); 3854 nField++; 3855 } 3856 assert( nField <= pKeyInfo->nAllField ); 3857 } 3858 #else 3859 # define vdbeAssertFieldCountWithinLimits(A,B,C) 3860 #endif 3861 3862 /* 3863 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 3864 ** using the collation sequence pColl. As usual, return a negative , zero 3865 ** or positive value if *pMem1 is less than, equal to or greater than 3866 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 3867 */ 3868 static int vdbeCompareMemString( 3869 const Mem *pMem1, 3870 const Mem *pMem2, 3871 const CollSeq *pColl, 3872 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 3873 ){ 3874 if( pMem1->enc==pColl->enc ){ 3875 /* The strings are already in the correct encoding. Call the 3876 ** comparison function directly */ 3877 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 3878 }else{ 3879 int rc; 3880 const void *v1, *v2; 3881 Mem c1; 3882 Mem c2; 3883 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 3884 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 3885 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 3886 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 3887 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 3888 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 3889 if( (v1==0 || v2==0) ){ 3890 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 3891 rc = 0; 3892 }else{ 3893 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 3894 } 3895 sqlite3VdbeMemRelease(&c1); 3896 sqlite3VdbeMemRelease(&c2); 3897 return rc; 3898 } 3899 } 3900 3901 /* 3902 ** The input pBlob is guaranteed to be a Blob that is not marked 3903 ** with MEM_Zero. Return true if it could be a zero-blob. 3904 */ 3905 static int isAllZero(const char *z, int n){ 3906 int i; 3907 for(i=0; i<n; i++){ 3908 if( z[i] ) return 0; 3909 } 3910 return 1; 3911 } 3912 3913 /* 3914 ** Compare two blobs. Return negative, zero, or positive if the first 3915 ** is less than, equal to, or greater than the second, respectively. 3916 ** If one blob is a prefix of the other, then the shorter is the lessor. 3917 */ 3918 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 3919 int c; 3920 int n1 = pB1->n; 3921 int n2 = pB2->n; 3922 3923 /* It is possible to have a Blob value that has some non-zero content 3924 ** followed by zero content. But that only comes up for Blobs formed 3925 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 3926 ** sqlite3MemCompare(). */ 3927 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 3928 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 3929 3930 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 3931 if( pB1->flags & pB2->flags & MEM_Zero ){ 3932 return pB1->u.nZero - pB2->u.nZero; 3933 }else if( pB1->flags & MEM_Zero ){ 3934 if( !isAllZero(pB2->z, pB2->n) ) return -1; 3935 return pB1->u.nZero - n2; 3936 }else{ 3937 if( !isAllZero(pB1->z, pB1->n) ) return +1; 3938 return n1 - pB2->u.nZero; 3939 } 3940 } 3941 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 3942 if( c ) return c; 3943 return n1 - n2; 3944 } 3945 3946 /* 3947 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 3948 ** number. Return negative, zero, or positive if the first (i64) is less than, 3949 ** equal to, or greater than the second (double). 3950 */ 3951 static int sqlite3IntFloatCompare(i64 i, double r){ 3952 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 3953 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 3954 if( x<r ) return -1; 3955 if( x>r ) return +1; 3956 return 0; 3957 }else{ 3958 i64 y; 3959 double s; 3960 if( r<-9223372036854775808.0 ) return +1; 3961 if( r>=9223372036854775808.0 ) return -1; 3962 y = (i64)r; 3963 if( i<y ) return -1; 3964 if( i>y ) return +1; 3965 s = (double)i; 3966 if( s<r ) return -1; 3967 if( s>r ) return +1; 3968 return 0; 3969 } 3970 } 3971 3972 /* 3973 ** Compare the values contained by the two memory cells, returning 3974 ** negative, zero or positive if pMem1 is less than, equal to, or greater 3975 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 3976 ** and reals) sorted numerically, followed by text ordered by the collating 3977 ** sequence pColl and finally blob's ordered by memcmp(). 3978 ** 3979 ** Two NULL values are considered equal by this function. 3980 */ 3981 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 3982 int f1, f2; 3983 int combined_flags; 3984 3985 f1 = pMem1->flags; 3986 f2 = pMem2->flags; 3987 combined_flags = f1|f2; 3988 assert( (combined_flags & MEM_RowSet)==0 ); 3989 3990 /* If one value is NULL, it is less than the other. If both values 3991 ** are NULL, return 0. 3992 */ 3993 if( combined_flags&MEM_Null ){ 3994 return (f2&MEM_Null) - (f1&MEM_Null); 3995 } 3996 3997 /* At least one of the two values is a number 3998 */ 3999 if( combined_flags&(MEM_Int|MEM_Real) ){ 4000 if( (f1 & f2 & MEM_Int)!=0 ){ 4001 if( pMem1->u.i < pMem2->u.i ) return -1; 4002 if( pMem1->u.i > pMem2->u.i ) return +1; 4003 return 0; 4004 } 4005 if( (f1 & f2 & MEM_Real)!=0 ){ 4006 if( pMem1->u.r < pMem2->u.r ) return -1; 4007 if( pMem1->u.r > pMem2->u.r ) return +1; 4008 return 0; 4009 } 4010 if( (f1&MEM_Int)!=0 ){ 4011 if( (f2&MEM_Real)!=0 ){ 4012 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 4013 }else{ 4014 return -1; 4015 } 4016 } 4017 if( (f1&MEM_Real)!=0 ){ 4018 if( (f2&MEM_Int)!=0 ){ 4019 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 4020 }else{ 4021 return -1; 4022 } 4023 } 4024 return +1; 4025 } 4026 4027 /* If one value is a string and the other is a blob, the string is less. 4028 ** If both are strings, compare using the collating functions. 4029 */ 4030 if( combined_flags&MEM_Str ){ 4031 if( (f1 & MEM_Str)==0 ){ 4032 return 1; 4033 } 4034 if( (f2 & MEM_Str)==0 ){ 4035 return -1; 4036 } 4037 4038 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 4039 assert( pMem1->enc==SQLITE_UTF8 || 4040 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 4041 4042 /* The collation sequence must be defined at this point, even if 4043 ** the user deletes the collation sequence after the vdbe program is 4044 ** compiled (this was not always the case). 4045 */ 4046 assert( !pColl || pColl->xCmp ); 4047 4048 if( pColl ){ 4049 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 4050 } 4051 /* If a NULL pointer was passed as the collate function, fall through 4052 ** to the blob case and use memcmp(). */ 4053 } 4054 4055 /* Both values must be blobs. Compare using memcmp(). */ 4056 return sqlite3BlobCompare(pMem1, pMem2); 4057 } 4058 4059 4060 /* 4061 ** The first argument passed to this function is a serial-type that 4062 ** corresponds to an integer - all values between 1 and 9 inclusive 4063 ** except 7. The second points to a buffer containing an integer value 4064 ** serialized according to serial_type. This function deserializes 4065 ** and returns the value. 4066 */ 4067 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 4068 u32 y; 4069 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 4070 switch( serial_type ){ 4071 case 0: 4072 case 1: 4073 testcase( aKey[0]&0x80 ); 4074 return ONE_BYTE_INT(aKey); 4075 case 2: 4076 testcase( aKey[0]&0x80 ); 4077 return TWO_BYTE_INT(aKey); 4078 case 3: 4079 testcase( aKey[0]&0x80 ); 4080 return THREE_BYTE_INT(aKey); 4081 case 4: { 4082 testcase( aKey[0]&0x80 ); 4083 y = FOUR_BYTE_UINT(aKey); 4084 return (i64)*(int*)&y; 4085 } 4086 case 5: { 4087 testcase( aKey[0]&0x80 ); 4088 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4089 } 4090 case 6: { 4091 u64 x = FOUR_BYTE_UINT(aKey); 4092 testcase( aKey[0]&0x80 ); 4093 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4094 return (i64)*(i64*)&x; 4095 } 4096 } 4097 4098 return (serial_type - 8); 4099 } 4100 4101 /* 4102 ** This function compares the two table rows or index records 4103 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 4104 ** or positive integer if key1 is less than, equal to or 4105 ** greater than key2. The {nKey1, pKey1} key must be a blob 4106 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 4107 ** key must be a parsed key such as obtained from 4108 ** sqlite3VdbeParseRecord. 4109 ** 4110 ** If argument bSkip is non-zero, it is assumed that the caller has already 4111 ** determined that the first fields of the keys are equal. 4112 ** 4113 ** Key1 and Key2 do not have to contain the same number of fields. If all 4114 ** fields that appear in both keys are equal, then pPKey2->default_rc is 4115 ** returned. 4116 ** 4117 ** If database corruption is discovered, set pPKey2->errCode to 4118 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 4119 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 4120 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 4121 */ 4122 int sqlite3VdbeRecordCompareWithSkip( 4123 int nKey1, const void *pKey1, /* Left key */ 4124 UnpackedRecord *pPKey2, /* Right key */ 4125 int bSkip /* If true, skip the first field */ 4126 ){ 4127 u32 d1; /* Offset into aKey[] of next data element */ 4128 int i; /* Index of next field to compare */ 4129 u32 szHdr1; /* Size of record header in bytes */ 4130 u32 idx1; /* Offset of first type in header */ 4131 int rc = 0; /* Return value */ 4132 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 4133 KeyInfo *pKeyInfo; 4134 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4135 Mem mem1; 4136 4137 /* If bSkip is true, then the caller has already determined that the first 4138 ** two elements in the keys are equal. Fix the various stack variables so 4139 ** that this routine begins comparing at the second field. */ 4140 if( bSkip ){ 4141 u32 s1; 4142 idx1 = 1 + getVarint32(&aKey1[1], s1); 4143 szHdr1 = aKey1[0]; 4144 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 4145 i = 1; 4146 pRhs++; 4147 }else{ 4148 idx1 = getVarint32(aKey1, szHdr1); 4149 d1 = szHdr1; 4150 if( d1>(unsigned)nKey1 ){ 4151 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4152 return 0; /* Corruption */ 4153 } 4154 i = 0; 4155 } 4156 4157 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4158 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 4159 || CORRUPT_DB ); 4160 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); 4161 assert( pPKey2->pKeyInfo->nKeyField>0 ); 4162 assert( idx1<=szHdr1 || CORRUPT_DB ); 4163 do{ 4164 u32 serial_type; 4165 4166 /* RHS is an integer */ 4167 if( pRhs->flags & MEM_Int ){ 4168 serial_type = aKey1[idx1]; 4169 testcase( serial_type==12 ); 4170 if( serial_type>=10 ){ 4171 rc = +1; 4172 }else if( serial_type==0 ){ 4173 rc = -1; 4174 }else if( serial_type==7 ){ 4175 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4176 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4177 }else{ 4178 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4179 i64 rhs = pRhs->u.i; 4180 if( lhs<rhs ){ 4181 rc = -1; 4182 }else if( lhs>rhs ){ 4183 rc = +1; 4184 } 4185 } 4186 } 4187 4188 /* RHS is real */ 4189 else if( pRhs->flags & MEM_Real ){ 4190 serial_type = aKey1[idx1]; 4191 if( serial_type>=10 ){ 4192 /* Serial types 12 or greater are strings and blobs (greater than 4193 ** numbers). Types 10 and 11 are currently "reserved for future 4194 ** use", so it doesn't really matter what the results of comparing 4195 ** them to numberic values are. */ 4196 rc = +1; 4197 }else if( serial_type==0 ){ 4198 rc = -1; 4199 }else{ 4200 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4201 if( serial_type==7 ){ 4202 if( mem1.u.r<pRhs->u.r ){ 4203 rc = -1; 4204 }else if( mem1.u.r>pRhs->u.r ){ 4205 rc = +1; 4206 } 4207 }else{ 4208 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4209 } 4210 } 4211 } 4212 4213 /* RHS is a string */ 4214 else if( pRhs->flags & MEM_Str ){ 4215 getVarint32(&aKey1[idx1], serial_type); 4216 testcase( serial_type==12 ); 4217 if( serial_type<12 ){ 4218 rc = -1; 4219 }else if( !(serial_type & 0x01) ){ 4220 rc = +1; 4221 }else{ 4222 mem1.n = (serial_type - 12) / 2; 4223 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4224 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4225 if( (d1+mem1.n) > (unsigned)nKey1 ){ 4226 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4227 return 0; /* Corruption */ 4228 }else if( (pKeyInfo = pPKey2->pKeyInfo)->aColl[i] ){ 4229 mem1.enc = pKeyInfo->enc; 4230 mem1.db = pKeyInfo->db; 4231 mem1.flags = MEM_Str; 4232 mem1.z = (char*)&aKey1[d1]; 4233 rc = vdbeCompareMemString( 4234 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4235 ); 4236 }else{ 4237 int nCmp = MIN(mem1.n, pRhs->n); 4238 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4239 if( rc==0 ) rc = mem1.n - pRhs->n; 4240 } 4241 } 4242 } 4243 4244 /* RHS is a blob */ 4245 else if( pRhs->flags & MEM_Blob ){ 4246 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4247 getVarint32(&aKey1[idx1], serial_type); 4248 testcase( serial_type==12 ); 4249 if( serial_type<12 || (serial_type & 0x01) ){ 4250 rc = -1; 4251 }else{ 4252 int nStr = (serial_type - 12) / 2; 4253 testcase( (d1+nStr)==(unsigned)nKey1 ); 4254 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4255 if( (d1+nStr) > (unsigned)nKey1 ){ 4256 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4257 return 0; /* Corruption */ 4258 }else if( pRhs->flags & MEM_Zero ){ 4259 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4260 rc = 1; 4261 }else{ 4262 rc = nStr - pRhs->u.nZero; 4263 } 4264 }else{ 4265 int nCmp = MIN(nStr, pRhs->n); 4266 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4267 if( rc==0 ) rc = nStr - pRhs->n; 4268 } 4269 } 4270 } 4271 4272 /* RHS is null */ 4273 else{ 4274 serial_type = aKey1[idx1]; 4275 rc = (serial_type!=0); 4276 } 4277 4278 if( rc!=0 ){ 4279 if( pPKey2->pKeyInfo->aSortOrder[i] ){ 4280 rc = -rc; 4281 } 4282 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4283 assert( mem1.szMalloc==0 ); /* See comment below */ 4284 return rc; 4285 } 4286 4287 i++; 4288 if( i==pPKey2->nField ) break; 4289 pRhs++; 4290 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4291 idx1 += sqlite3VarintLen(serial_type); 4292 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 ); 4293 4294 /* No memory allocation is ever used on mem1. Prove this using 4295 ** the following assert(). If the assert() fails, it indicates a 4296 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4297 assert( mem1.szMalloc==0 ); 4298 4299 /* rc==0 here means that one or both of the keys ran out of fields and 4300 ** all the fields up to that point were equal. Return the default_rc 4301 ** value. */ 4302 assert( CORRUPT_DB 4303 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4304 || pPKey2->pKeyInfo->db->mallocFailed 4305 ); 4306 pPKey2->eqSeen = 1; 4307 return pPKey2->default_rc; 4308 } 4309 int sqlite3VdbeRecordCompare( 4310 int nKey1, const void *pKey1, /* Left key */ 4311 UnpackedRecord *pPKey2 /* Right key */ 4312 ){ 4313 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4314 } 4315 4316 4317 /* 4318 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4319 ** that (a) the first field of pPKey2 is an integer, and (b) the 4320 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4321 ** byte (i.e. is less than 128). 4322 ** 4323 ** To avoid concerns about buffer overreads, this routine is only used 4324 ** on schemas where the maximum valid header size is 63 bytes or less. 4325 */ 4326 static int vdbeRecordCompareInt( 4327 int nKey1, const void *pKey1, /* Left key */ 4328 UnpackedRecord *pPKey2 /* Right key */ 4329 ){ 4330 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4331 int serial_type = ((const u8*)pKey1)[1]; 4332 int res; 4333 u32 y; 4334 u64 x; 4335 i64 v; 4336 i64 lhs; 4337 4338 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4339 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4340 switch( serial_type ){ 4341 case 1: { /* 1-byte signed integer */ 4342 lhs = ONE_BYTE_INT(aKey); 4343 testcase( lhs<0 ); 4344 break; 4345 } 4346 case 2: { /* 2-byte signed integer */ 4347 lhs = TWO_BYTE_INT(aKey); 4348 testcase( lhs<0 ); 4349 break; 4350 } 4351 case 3: { /* 3-byte signed integer */ 4352 lhs = THREE_BYTE_INT(aKey); 4353 testcase( lhs<0 ); 4354 break; 4355 } 4356 case 4: { /* 4-byte signed integer */ 4357 y = FOUR_BYTE_UINT(aKey); 4358 lhs = (i64)*(int*)&y; 4359 testcase( lhs<0 ); 4360 break; 4361 } 4362 case 5: { /* 6-byte signed integer */ 4363 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4364 testcase( lhs<0 ); 4365 break; 4366 } 4367 case 6: { /* 8-byte signed integer */ 4368 x = FOUR_BYTE_UINT(aKey); 4369 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4370 lhs = *(i64*)&x; 4371 testcase( lhs<0 ); 4372 break; 4373 } 4374 case 8: 4375 lhs = 0; 4376 break; 4377 case 9: 4378 lhs = 1; 4379 break; 4380 4381 /* This case could be removed without changing the results of running 4382 ** this code. Including it causes gcc to generate a faster switch 4383 ** statement (since the range of switch targets now starts at zero and 4384 ** is contiguous) but does not cause any duplicate code to be generated 4385 ** (as gcc is clever enough to combine the two like cases). Other 4386 ** compilers might be similar. */ 4387 case 0: case 7: 4388 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4389 4390 default: 4391 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4392 } 4393 4394 v = pPKey2->aMem[0].u.i; 4395 if( v>lhs ){ 4396 res = pPKey2->r1; 4397 }else if( v<lhs ){ 4398 res = pPKey2->r2; 4399 }else if( pPKey2->nField>1 ){ 4400 /* The first fields of the two keys are equal. Compare the trailing 4401 ** fields. */ 4402 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4403 }else{ 4404 /* The first fields of the two keys are equal and there are no trailing 4405 ** fields. Return pPKey2->default_rc in this case. */ 4406 res = pPKey2->default_rc; 4407 pPKey2->eqSeen = 1; 4408 } 4409 4410 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4411 return res; 4412 } 4413 4414 /* 4415 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4416 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4417 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4418 ** at the start of (pKey1/nKey1) fits in a single byte. 4419 */ 4420 static int vdbeRecordCompareString( 4421 int nKey1, const void *pKey1, /* Left key */ 4422 UnpackedRecord *pPKey2 /* Right key */ 4423 ){ 4424 const u8 *aKey1 = (const u8*)pKey1; 4425 int serial_type; 4426 int res; 4427 4428 assert( pPKey2->aMem[0].flags & MEM_Str ); 4429 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4430 getVarint32(&aKey1[1], serial_type); 4431 if( serial_type<12 ){ 4432 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4433 }else if( !(serial_type & 0x01) ){ 4434 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4435 }else{ 4436 int nCmp; 4437 int nStr; 4438 int szHdr = aKey1[0]; 4439 4440 nStr = (serial_type-12) / 2; 4441 if( (szHdr + nStr) > nKey1 ){ 4442 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4443 return 0; /* Corruption */ 4444 } 4445 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4446 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4447 4448 if( res==0 ){ 4449 res = nStr - pPKey2->aMem[0].n; 4450 if( res==0 ){ 4451 if( pPKey2->nField>1 ){ 4452 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4453 }else{ 4454 res = pPKey2->default_rc; 4455 pPKey2->eqSeen = 1; 4456 } 4457 }else if( res>0 ){ 4458 res = pPKey2->r2; 4459 }else{ 4460 res = pPKey2->r1; 4461 } 4462 }else if( res>0 ){ 4463 res = pPKey2->r2; 4464 }else{ 4465 res = pPKey2->r1; 4466 } 4467 } 4468 4469 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4470 || CORRUPT_DB 4471 || pPKey2->pKeyInfo->db->mallocFailed 4472 ); 4473 return res; 4474 } 4475 4476 /* 4477 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4478 ** suitable for comparing serialized records to the unpacked record passed 4479 ** as the only argument. 4480 */ 4481 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4482 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4483 ** that the size-of-header varint that occurs at the start of each record 4484 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4485 ** also assumes that it is safe to overread a buffer by at least the 4486 ** maximum possible legal header size plus 8 bytes. Because there is 4487 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4488 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4489 ** limit the size of the header to 64 bytes in cases where the first field 4490 ** is an integer. 4491 ** 4492 ** The easiest way to enforce this limit is to consider only records with 4493 ** 13 fields or less. If the first field is an integer, the maximum legal 4494 ** header size is (12*5 + 1 + 1) bytes. */ 4495 if( p->pKeyInfo->nAllField<=13 ){ 4496 int flags = p->aMem[0].flags; 4497 if( p->pKeyInfo->aSortOrder[0] ){ 4498 p->r1 = 1; 4499 p->r2 = -1; 4500 }else{ 4501 p->r1 = -1; 4502 p->r2 = 1; 4503 } 4504 if( (flags & MEM_Int) ){ 4505 return vdbeRecordCompareInt; 4506 } 4507 testcase( flags & MEM_Real ); 4508 testcase( flags & MEM_Null ); 4509 testcase( flags & MEM_Blob ); 4510 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ 4511 assert( flags & MEM_Str ); 4512 return vdbeRecordCompareString; 4513 } 4514 } 4515 4516 return sqlite3VdbeRecordCompare; 4517 } 4518 4519 /* 4520 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4521 ** Read the rowid (the last field in the record) and store it in *rowid. 4522 ** Return SQLITE_OK if everything works, or an error code otherwise. 4523 ** 4524 ** pCur might be pointing to text obtained from a corrupt database file. 4525 ** So the content cannot be trusted. Do appropriate checks on the content. 4526 */ 4527 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4528 i64 nCellKey = 0; 4529 int rc; 4530 u32 szHdr; /* Size of the header */ 4531 u32 typeRowid; /* Serial type of the rowid */ 4532 u32 lenRowid; /* Size of the rowid */ 4533 Mem m, v; 4534 4535 /* Get the size of the index entry. Only indices entries of less 4536 ** than 2GiB are support - anything large must be database corruption. 4537 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4538 ** this code can safely assume that nCellKey is 32-bits 4539 */ 4540 assert( sqlite3BtreeCursorIsValid(pCur) ); 4541 nCellKey = sqlite3BtreePayloadSize(pCur); 4542 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4543 4544 /* Read in the complete content of the index entry */ 4545 sqlite3VdbeMemInit(&m, db, 0); 4546 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4547 if( rc ){ 4548 return rc; 4549 } 4550 4551 /* The index entry must begin with a header size */ 4552 (void)getVarint32((u8*)m.z, szHdr); 4553 testcase( szHdr==3 ); 4554 testcase( szHdr==m.n ); 4555 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ 4556 goto idx_rowid_corruption; 4557 } 4558 4559 /* The last field of the index should be an integer - the ROWID. 4560 ** Verify that the last entry really is an integer. */ 4561 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 4562 testcase( typeRowid==1 ); 4563 testcase( typeRowid==2 ); 4564 testcase( typeRowid==3 ); 4565 testcase( typeRowid==4 ); 4566 testcase( typeRowid==5 ); 4567 testcase( typeRowid==6 ); 4568 testcase( typeRowid==8 ); 4569 testcase( typeRowid==9 ); 4570 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4571 goto idx_rowid_corruption; 4572 } 4573 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4574 testcase( (u32)m.n==szHdr+lenRowid ); 4575 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4576 goto idx_rowid_corruption; 4577 } 4578 4579 /* Fetch the integer off the end of the index record */ 4580 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4581 *rowid = v.u.i; 4582 sqlite3VdbeMemRelease(&m); 4583 return SQLITE_OK; 4584 4585 /* Jump here if database corruption is detected after m has been 4586 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4587 idx_rowid_corruption: 4588 testcase( m.szMalloc!=0 ); 4589 sqlite3VdbeMemRelease(&m); 4590 return SQLITE_CORRUPT_BKPT; 4591 } 4592 4593 /* 4594 ** Compare the key of the index entry that cursor pC is pointing to against 4595 ** the key string in pUnpacked. Write into *pRes a number 4596 ** that is negative, zero, or positive if pC is less than, equal to, 4597 ** or greater than pUnpacked. Return SQLITE_OK on success. 4598 ** 4599 ** pUnpacked is either created without a rowid or is truncated so that it 4600 ** omits the rowid at the end. The rowid at the end of the index entry 4601 ** is ignored as well. Hence, this routine only compares the prefixes 4602 ** of the keys prior to the final rowid, not the entire key. 4603 */ 4604 int sqlite3VdbeIdxKeyCompare( 4605 sqlite3 *db, /* Database connection */ 4606 VdbeCursor *pC, /* The cursor to compare against */ 4607 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4608 int *res /* Write the comparison result here */ 4609 ){ 4610 i64 nCellKey = 0; 4611 int rc; 4612 BtCursor *pCur; 4613 Mem m; 4614 4615 assert( pC->eCurType==CURTYPE_BTREE ); 4616 pCur = pC->uc.pCursor; 4617 assert( sqlite3BtreeCursorIsValid(pCur) ); 4618 nCellKey = sqlite3BtreePayloadSize(pCur); 4619 /* nCellKey will always be between 0 and 0xffffffff because of the way 4620 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4621 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4622 *res = 0; 4623 return SQLITE_CORRUPT_BKPT; 4624 } 4625 sqlite3VdbeMemInit(&m, db, 0); 4626 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4627 if( rc ){ 4628 return rc; 4629 } 4630 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); 4631 sqlite3VdbeMemRelease(&m); 4632 return SQLITE_OK; 4633 } 4634 4635 /* 4636 ** This routine sets the value to be returned by subsequent calls to 4637 ** sqlite3_changes() on the database handle 'db'. 4638 */ 4639 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 4640 assert( sqlite3_mutex_held(db->mutex) ); 4641 db->nChange = nChange; 4642 db->nTotalChange += nChange; 4643 } 4644 4645 /* 4646 ** Set a flag in the vdbe to update the change counter when it is finalised 4647 ** or reset. 4648 */ 4649 void sqlite3VdbeCountChanges(Vdbe *v){ 4650 v->changeCntOn = 1; 4651 } 4652 4653 /* 4654 ** Mark every prepared statement associated with a database connection 4655 ** as expired. 4656 ** 4657 ** An expired statement means that recompilation of the statement is 4658 ** recommend. Statements expire when things happen that make their 4659 ** programs obsolete. Removing user-defined functions or collating 4660 ** sequences, or changing an authorization function are the types of 4661 ** things that make prepared statements obsolete. 4662 */ 4663 void sqlite3ExpirePreparedStatements(sqlite3 *db){ 4664 Vdbe *p; 4665 for(p = db->pVdbe; p; p=p->pNext){ 4666 p->expired = 1; 4667 } 4668 } 4669 4670 /* 4671 ** Return the database associated with the Vdbe. 4672 */ 4673 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 4674 return v->db; 4675 } 4676 4677 /* 4678 ** Return the SQLITE_PREPARE flags for a Vdbe. 4679 */ 4680 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 4681 return v->prepFlags; 4682 } 4683 4684 /* 4685 ** Return a pointer to an sqlite3_value structure containing the value bound 4686 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 4687 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 4688 ** constants) to the value before returning it. 4689 ** 4690 ** The returned value must be freed by the caller using sqlite3ValueFree(). 4691 */ 4692 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 4693 assert( iVar>0 ); 4694 if( v ){ 4695 Mem *pMem = &v->aVar[iVar-1]; 4696 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 4697 if( 0==(pMem->flags & MEM_Null) ){ 4698 sqlite3_value *pRet = sqlite3ValueNew(v->db); 4699 if( pRet ){ 4700 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 4701 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 4702 } 4703 return pRet; 4704 } 4705 } 4706 return 0; 4707 } 4708 4709 /* 4710 ** Configure SQL variable iVar so that binding a new value to it signals 4711 ** to sqlite3_reoptimize() that re-preparing the statement may result 4712 ** in a better query plan. 4713 */ 4714 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 4715 assert( iVar>0 ); 4716 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 4717 if( iVar>=32 ){ 4718 v->expmask |= 0x80000000; 4719 }else{ 4720 v->expmask |= ((u32)1 << (iVar-1)); 4721 } 4722 } 4723 4724 /* 4725 ** Cause a function to throw an error if it was call from OP_PureFunc 4726 ** rather than OP_Function. 4727 ** 4728 ** OP_PureFunc means that the function must be deterministic, and should 4729 ** throw an error if it is given inputs that would make it non-deterministic. 4730 ** This routine is invoked by date/time functions that use non-deterministic 4731 ** features such as 'now'. 4732 */ 4733 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 4734 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 4735 if( pCtx->pVdbe==0 ) return 1; 4736 #endif 4737 if( pCtx->pVdbe->aOp[pCtx->iOp].opcode==OP_PureFunc ){ 4738 sqlite3_result_error(pCtx, 4739 "non-deterministic function in index expression or CHECK constraint", 4740 -1); 4741 return 0; 4742 } 4743 return 1; 4744 } 4745 4746 #ifndef SQLITE_OMIT_VIRTUALTABLE 4747 /* 4748 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 4749 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 4750 ** in memory obtained from sqlite3DbMalloc). 4751 */ 4752 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 4753 if( pVtab->zErrMsg ){ 4754 sqlite3 *db = p->db; 4755 sqlite3DbFree(db, p->zErrMsg); 4756 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 4757 sqlite3_free(pVtab->zErrMsg); 4758 pVtab->zErrMsg = 0; 4759 } 4760 } 4761 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4762 4763 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4764 4765 /* 4766 ** If the second argument is not NULL, release any allocations associated 4767 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 4768 ** structure itself, using sqlite3DbFree(). 4769 ** 4770 ** This function is used to free UnpackedRecord structures allocated by 4771 ** the vdbeUnpackRecord() function found in vdbeapi.c. 4772 */ 4773 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 4774 if( p ){ 4775 int i; 4776 for(i=0; i<nField; i++){ 4777 Mem *pMem = &p->aMem[i]; 4778 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem); 4779 } 4780 sqlite3DbFreeNN(db, p); 4781 } 4782 } 4783 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4784 4785 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4786 /* 4787 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 4788 ** then cursor passed as the second argument should point to the row about 4789 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 4790 ** the required value will be read from the row the cursor points to. 4791 */ 4792 void sqlite3VdbePreUpdateHook( 4793 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 4794 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 4795 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 4796 const char *zDb, /* Database name */ 4797 Table *pTab, /* Modified table */ 4798 i64 iKey1, /* Initial key value */ 4799 int iReg /* Register for new.* record */ 4800 ){ 4801 sqlite3 *db = v->db; 4802 i64 iKey2; 4803 PreUpdate preupdate; 4804 const char *zTbl = pTab->zName; 4805 static const u8 fakeSortOrder = 0; 4806 4807 assert( db->pPreUpdate==0 ); 4808 memset(&preupdate, 0, sizeof(PreUpdate)); 4809 if( HasRowid(pTab)==0 ){ 4810 iKey1 = iKey2 = 0; 4811 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 4812 }else{ 4813 if( op==SQLITE_UPDATE ){ 4814 iKey2 = v->aMem[iReg].u.i; 4815 }else{ 4816 iKey2 = iKey1; 4817 } 4818 } 4819 4820 assert( pCsr->nField==pTab->nCol 4821 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 4822 ); 4823 4824 preupdate.v = v; 4825 preupdate.pCsr = pCsr; 4826 preupdate.op = op; 4827 preupdate.iNewReg = iReg; 4828 preupdate.keyinfo.db = db; 4829 preupdate.keyinfo.enc = ENC(db); 4830 preupdate.keyinfo.nKeyField = pTab->nCol; 4831 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder; 4832 preupdate.iKey1 = iKey1; 4833 preupdate.iKey2 = iKey2; 4834 preupdate.pTab = pTab; 4835 4836 db->pPreUpdate = &preupdate; 4837 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 4838 db->pPreUpdate = 0; 4839 sqlite3DbFree(db, preupdate.aRecord); 4840 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 4841 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 4842 if( preupdate.aNew ){ 4843 int i; 4844 for(i=0; i<pCsr->nField; i++){ 4845 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 4846 } 4847 sqlite3DbFreeNN(db, preupdate.aNew); 4848 } 4849 } 4850 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4851