xref: /sqlite-3.40.0/src/vdbeaux.c (revision aeb4e6ee)
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
14 */
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
17 
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
21 
22 /*
23 ** Create a new virtual database engine.
24 */
25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26   sqlite3 *db = pParse->db;
27   Vdbe *p;
28   p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29   if( p==0 ) return 0;
30   memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31   p->db = db;
32   if( db->pVdbe ){
33     db->pVdbe->pPrev = p;
34   }
35   p->pNext = db->pVdbe;
36   p->pPrev = 0;
37   db->pVdbe = p;
38   p->magic = VDBE_MAGIC_INIT;
39   p->pParse = pParse;
40   pParse->pVdbe = p;
41   assert( pParse->aLabel==0 );
42   assert( pParse->nLabel==0 );
43   assert( p->nOpAlloc==0 );
44   assert( pParse->szOpAlloc==0 );
45   sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46   return p;
47 }
48 
49 /*
50 ** Return the Parse object that owns a Vdbe object.
51 */
52 Parse *sqlite3VdbeParser(Vdbe *p){
53   return p->pParse;
54 }
55 
56 /*
57 ** Change the error string stored in Vdbe.zErrMsg
58 */
59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60   va_list ap;
61   sqlite3DbFree(p->db, p->zErrMsg);
62   va_start(ap, zFormat);
63   p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64   va_end(ap);
65 }
66 
67 /*
68 ** Remember the SQL string for a prepared statement.
69 */
70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71   if( p==0 ) return;
72   p->prepFlags = prepFlags;
73   if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74     p->expmask = 0;
75   }
76   assert( p->zSql==0 );
77   p->zSql = sqlite3DbStrNDup(p->db, z, n);
78 }
79 
80 #ifdef SQLITE_ENABLE_NORMALIZE
81 /*
82 ** Add a new element to the Vdbe->pDblStr list.
83 */
84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85   if( p ){
86     int n = sqlite3Strlen30(z);
87     DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88                             sizeof(*pStr)+n+1-sizeof(pStr->z));
89     if( pStr ){
90       pStr->pNextStr = p->pDblStr;
91       p->pDblStr = pStr;
92       memcpy(pStr->z, z, n+1);
93     }
94   }
95 }
96 #endif
97 
98 #ifdef SQLITE_ENABLE_NORMALIZE
99 /*
100 ** zId of length nId is a double-quoted identifier.  Check to see if
101 ** that identifier is really used as a string literal.
102 */
103 int sqlite3VdbeUsesDoubleQuotedString(
104   Vdbe *pVdbe,            /* The prepared statement */
105   const char *zId         /* The double-quoted identifier, already dequoted */
106 ){
107   DblquoteStr *pStr;
108   assert( zId!=0 );
109   if( pVdbe->pDblStr==0 ) return 0;
110   for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111     if( strcmp(zId, pStr->z)==0 ) return 1;
112   }
113   return 0;
114 }
115 #endif
116 
117 /*
118 ** Swap all content between two VDBE structures.
119 */
120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
121   Vdbe tmp, *pTmp;
122   char *zTmp;
123   assert( pA->db==pB->db );
124   tmp = *pA;
125   *pA = *pB;
126   *pB = tmp;
127   pTmp = pA->pNext;
128   pA->pNext = pB->pNext;
129   pB->pNext = pTmp;
130   pTmp = pA->pPrev;
131   pA->pPrev = pB->pPrev;
132   pB->pPrev = pTmp;
133   zTmp = pA->zSql;
134   pA->zSql = pB->zSql;
135   pB->zSql = zTmp;
136 #ifdef SQLITE_ENABLE_NORMALIZE
137   zTmp = pA->zNormSql;
138   pA->zNormSql = pB->zNormSql;
139   pB->zNormSql = zTmp;
140 #endif
141   pB->expmask = pA->expmask;
142   pB->prepFlags = pA->prepFlags;
143   memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
144   pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
145 }
146 
147 /*
148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
149 ** than its current size. nOp is guaranteed to be less than or equal
150 ** to 1024/sizeof(Op).
151 **
152 ** If an out-of-memory error occurs while resizing the array, return
153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
154 ** unchanged (this is so that any opcodes already allocated can be
155 ** correctly deallocated along with the rest of the Vdbe).
156 */
157 static int growOpArray(Vdbe *v, int nOp){
158   VdbeOp *pNew;
159   Parse *p = v->pParse;
160 
161   /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
162   ** more frequent reallocs and hence provide more opportunities for
163   ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used
164   ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array
165   ** by the minimum* amount required until the size reaches 512.  Normal
166   ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
167   ** size of the op array or add 1KB of space, whichever is smaller. */
168 #ifdef SQLITE_TEST_REALLOC_STRESS
169   sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
170                         : (sqlite3_int64)v->nOpAlloc+nOp);
171 #else
172   sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
173                         : (sqlite3_int64)(1024/sizeof(Op)));
174   UNUSED_PARAMETER(nOp);
175 #endif
176 
177   /* Ensure that the size of a VDBE does not grow too large */
178   if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
179     sqlite3OomFault(p->db);
180     return SQLITE_NOMEM;
181   }
182 
183   assert( nOp<=(1024/sizeof(Op)) );
184   assert( nNew>=(v->nOpAlloc+nOp) );
185   pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
186   if( pNew ){
187     p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
188     v->nOpAlloc = p->szOpAlloc/sizeof(Op);
189     v->aOp = pNew;
190   }
191   return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
192 }
193 
194 #ifdef SQLITE_DEBUG
195 /* This routine is just a convenient place to set a breakpoint that will
196 ** fire after each opcode is inserted and displayed using
197 ** "PRAGMA vdbe_addoptrace=on".  Parameters "pc" (program counter) and
198 ** pOp are available to make the breakpoint conditional.
199 **
200 ** Other useful labels for breakpoints include:
201 **   test_trace_breakpoint(pc,pOp)
202 **   sqlite3CorruptError(lineno)
203 **   sqlite3MisuseError(lineno)
204 **   sqlite3CantopenError(lineno)
205 */
206 static void test_addop_breakpoint(int pc, Op *pOp){
207   static int n = 0;
208   n++;
209 }
210 #endif
211 
212 /*
213 ** Add a new instruction to the list of instructions current in the
214 ** VDBE.  Return the address of the new instruction.
215 **
216 ** Parameters:
217 **
218 **    p               Pointer to the VDBE
219 **
220 **    op              The opcode for this instruction
221 **
222 **    p1, p2, p3      Operands
223 **
224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
225 ** the sqlite3VdbeChangeP4() function to change the value of the P4
226 ** operand.
227 */
228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
229   assert( p->nOpAlloc<=p->nOp );
230   if( growOpArray(p, 1) ) return 1;
231   assert( p->nOpAlloc>p->nOp );
232   return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
233 }
234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
235   int i;
236   VdbeOp *pOp;
237 
238   i = p->nOp;
239   assert( p->magic==VDBE_MAGIC_INIT );
240   assert( op>=0 && op<0xff );
241   if( p->nOpAlloc<=i ){
242     return growOp3(p, op, p1, p2, p3);
243   }
244   p->nOp++;
245   pOp = &p->aOp[i];
246   pOp->opcode = (u8)op;
247   pOp->p5 = 0;
248   pOp->p1 = p1;
249   pOp->p2 = p2;
250   pOp->p3 = p3;
251   pOp->p4.p = 0;
252   pOp->p4type = P4_NOTUSED;
253 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
254   pOp->zComment = 0;
255 #endif
256 #ifdef SQLITE_DEBUG
257   if( p->db->flags & SQLITE_VdbeAddopTrace ){
258     sqlite3VdbePrintOp(0, i, &p->aOp[i]);
259     test_addop_breakpoint(i, &p->aOp[i]);
260   }
261 #endif
262 #ifdef VDBE_PROFILE
263   pOp->cycles = 0;
264   pOp->cnt = 0;
265 #endif
266 #ifdef SQLITE_VDBE_COVERAGE
267   pOp->iSrcLine = 0;
268 #endif
269   return i;
270 }
271 int sqlite3VdbeAddOp0(Vdbe *p, int op){
272   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
273 }
274 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
275   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
276 }
277 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
278   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
279 }
280 
281 /* Generate code for an unconditional jump to instruction iDest
282 */
283 int sqlite3VdbeGoto(Vdbe *p, int iDest){
284   return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
285 }
286 
287 /* Generate code to cause the string zStr to be loaded into
288 ** register iDest
289 */
290 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
291   return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
292 }
293 
294 /*
295 ** Generate code that initializes multiple registers to string or integer
296 ** constants.  The registers begin with iDest and increase consecutively.
297 ** One register is initialized for each characgter in zTypes[].  For each
298 ** "s" character in zTypes[], the register is a string if the argument is
299 ** not NULL, or OP_Null if the value is a null pointer.  For each "i" character
300 ** in zTypes[], the register is initialized to an integer.
301 **
302 ** If the input string does not end with "X" then an OP_ResultRow instruction
303 ** is generated for the values inserted.
304 */
305 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
306   va_list ap;
307   int i;
308   char c;
309   va_start(ap, zTypes);
310   for(i=0; (c = zTypes[i])!=0; i++){
311     if( c=='s' ){
312       const char *z = va_arg(ap, const char*);
313       sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
314     }else if( c=='i' ){
315       sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
316     }else{
317       goto skip_op_resultrow;
318     }
319   }
320   sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
321 skip_op_resultrow:
322   va_end(ap);
323 }
324 
325 /*
326 ** Add an opcode that includes the p4 value as a pointer.
327 */
328 int sqlite3VdbeAddOp4(
329   Vdbe *p,            /* Add the opcode to this VM */
330   int op,             /* The new opcode */
331   int p1,             /* The P1 operand */
332   int p2,             /* The P2 operand */
333   int p3,             /* The P3 operand */
334   const char *zP4,    /* The P4 operand */
335   int p4type          /* P4 operand type */
336 ){
337   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
338   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
339   return addr;
340 }
341 
342 /*
343 ** Add an OP_Function or OP_PureFunc opcode.
344 **
345 ** The eCallCtx argument is information (typically taken from Expr.op2)
346 ** that describes the calling context of the function.  0 means a general
347 ** function call.  NC_IsCheck means called by a check constraint,
348 ** NC_IdxExpr means called as part of an index expression.  NC_PartIdx
349 ** means in the WHERE clause of a partial index.  NC_GenCol means called
350 ** while computing a generated column value.  0 is the usual case.
351 */
352 int sqlite3VdbeAddFunctionCall(
353   Parse *pParse,        /* Parsing context */
354   int p1,               /* Constant argument mask */
355   int p2,               /* First argument register */
356   int p3,               /* Register into which results are written */
357   int nArg,             /* Number of argument */
358   const FuncDef *pFunc, /* The function to be invoked */
359   int eCallCtx          /* Calling context */
360 ){
361   Vdbe *v = pParse->pVdbe;
362   int nByte;
363   int addr;
364   sqlite3_context *pCtx;
365   assert( v );
366   nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
367   pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
368   if( pCtx==0 ){
369     assert( pParse->db->mallocFailed );
370     freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
371     return 0;
372   }
373   pCtx->pOut = 0;
374   pCtx->pFunc = (FuncDef*)pFunc;
375   pCtx->pVdbe = 0;
376   pCtx->isError = 0;
377   pCtx->argc = nArg;
378   pCtx->iOp = sqlite3VdbeCurrentAddr(v);
379   addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
380                            p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
381   sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
382   return addr;
383 }
384 
385 /*
386 ** Add an opcode that includes the p4 value with a P4_INT64 or
387 ** P4_REAL type.
388 */
389 int sqlite3VdbeAddOp4Dup8(
390   Vdbe *p,            /* Add the opcode to this VM */
391   int op,             /* The new opcode */
392   int p1,             /* The P1 operand */
393   int p2,             /* The P2 operand */
394   int p3,             /* The P3 operand */
395   const u8 *zP4,      /* The P4 operand */
396   int p4type          /* P4 operand type */
397 ){
398   char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
399   if( p4copy ) memcpy(p4copy, zP4, 8);
400   return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
401 }
402 
403 #ifndef SQLITE_OMIT_EXPLAIN
404 /*
405 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
406 ** 0 means "none".
407 */
408 int sqlite3VdbeExplainParent(Parse *pParse){
409   VdbeOp *pOp;
410   if( pParse->addrExplain==0 ) return 0;
411   pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
412   return pOp->p2;
413 }
414 
415 /*
416 ** Set a debugger breakpoint on the following routine in order to
417 ** monitor the EXPLAIN QUERY PLAN code generation.
418 */
419 #if defined(SQLITE_DEBUG)
420 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
421   (void)z1;
422   (void)z2;
423 }
424 #endif
425 
426 /*
427 ** Add a new OP_Explain opcode.
428 **
429 ** If the bPush flag is true, then make this opcode the parent for
430 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
431 */
432 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
433 #ifndef SQLITE_DEBUG
434   /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
435   ** But omit them (for performance) during production builds */
436   if( pParse->explain==2 )
437 #endif
438   {
439     char *zMsg;
440     Vdbe *v;
441     va_list ap;
442     int iThis;
443     va_start(ap, zFmt);
444     zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
445     va_end(ap);
446     v = pParse->pVdbe;
447     iThis = v->nOp;
448     sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
449                       zMsg, P4_DYNAMIC);
450     sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z);
451     if( bPush){
452       pParse->addrExplain = iThis;
453     }
454   }
455 }
456 
457 /*
458 ** Pop the EXPLAIN QUERY PLAN stack one level.
459 */
460 void sqlite3VdbeExplainPop(Parse *pParse){
461   sqlite3ExplainBreakpoint("POP", 0);
462   pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
463 }
464 #endif /* SQLITE_OMIT_EXPLAIN */
465 
466 /*
467 ** Add an OP_ParseSchema opcode.  This routine is broken out from
468 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
469 ** as having been used.
470 **
471 ** The zWhere string must have been obtained from sqlite3_malloc().
472 ** This routine will take ownership of the allocated memory.
473 */
474 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
475   int j;
476   sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
477   for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
478   sqlite3MayAbort(p->pParse);
479 }
480 
481 /*
482 ** Add an opcode that includes the p4 value as an integer.
483 */
484 int sqlite3VdbeAddOp4Int(
485   Vdbe *p,            /* Add the opcode to this VM */
486   int op,             /* The new opcode */
487   int p1,             /* The P1 operand */
488   int p2,             /* The P2 operand */
489   int p3,             /* The P3 operand */
490   int p4              /* The P4 operand as an integer */
491 ){
492   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
493   if( p->db->mallocFailed==0 ){
494     VdbeOp *pOp = &p->aOp[addr];
495     pOp->p4type = P4_INT32;
496     pOp->p4.i = p4;
497   }
498   return addr;
499 }
500 
501 /* Insert the end of a co-routine
502 */
503 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
504   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
505 
506   /* Clear the temporary register cache, thereby ensuring that each
507   ** co-routine has its own independent set of registers, because co-routines
508   ** might expect their registers to be preserved across an OP_Yield, and
509   ** that could cause problems if two or more co-routines are using the same
510   ** temporary register.
511   */
512   v->pParse->nTempReg = 0;
513   v->pParse->nRangeReg = 0;
514 }
515 
516 /*
517 ** Create a new symbolic label for an instruction that has yet to be
518 ** coded.  The symbolic label is really just a negative number.  The
519 ** label can be used as the P2 value of an operation.  Later, when
520 ** the label is resolved to a specific address, the VDBE will scan
521 ** through its operation list and change all values of P2 which match
522 ** the label into the resolved address.
523 **
524 ** The VDBE knows that a P2 value is a label because labels are
525 ** always negative and P2 values are suppose to be non-negative.
526 ** Hence, a negative P2 value is a label that has yet to be resolved.
527 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
528 ** property.
529 **
530 ** Variable usage notes:
531 **
532 **     Parse.aLabel[x]     Stores the address that the x-th label resolves
533 **                         into.  For testing (SQLITE_DEBUG), unresolved
534 **                         labels stores -1, but that is not required.
535 **     Parse.nLabelAlloc   Number of slots allocated to Parse.aLabel[]
536 **     Parse.nLabel        The *negative* of the number of labels that have
537 **                         been issued.  The negative is stored because
538 **                         that gives a performance improvement over storing
539 **                         the equivalent positive value.
540 */
541 int sqlite3VdbeMakeLabel(Parse *pParse){
542   return --pParse->nLabel;
543 }
544 
545 /*
546 ** Resolve label "x" to be the address of the next instruction to
547 ** be inserted.  The parameter "x" must have been obtained from
548 ** a prior call to sqlite3VdbeMakeLabel().
549 */
550 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
551   int nNewSize = 10 - p->nLabel;
552   p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
553                      nNewSize*sizeof(p->aLabel[0]));
554   if( p->aLabel==0 ){
555     p->nLabelAlloc = 0;
556   }else{
557 #ifdef SQLITE_DEBUG
558     int i;
559     for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
560 #endif
561     p->nLabelAlloc = nNewSize;
562     p->aLabel[j] = v->nOp;
563   }
564 }
565 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
566   Parse *p = v->pParse;
567   int j = ADDR(x);
568   assert( v->magic==VDBE_MAGIC_INIT );
569   assert( j<-p->nLabel );
570   assert( j>=0 );
571 #ifdef SQLITE_DEBUG
572   if( p->db->flags & SQLITE_VdbeAddopTrace ){
573     printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
574   }
575 #endif
576   if( p->nLabelAlloc + p->nLabel < 0 ){
577     resizeResolveLabel(p,v,j);
578   }else{
579     assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
580     p->aLabel[j] = v->nOp;
581   }
582 }
583 
584 /*
585 ** Mark the VDBE as one that can only be run one time.
586 */
587 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
588   p->runOnlyOnce = 1;
589 }
590 
591 /*
592 ** Mark the VDBE as one that can only be run multiple times.
593 */
594 void sqlite3VdbeReusable(Vdbe *p){
595   p->runOnlyOnce = 0;
596 }
597 
598 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
599 
600 /*
601 ** The following type and function are used to iterate through all opcodes
602 ** in a Vdbe main program and each of the sub-programs (triggers) it may
603 ** invoke directly or indirectly. It should be used as follows:
604 **
605 **   Op *pOp;
606 **   VdbeOpIter sIter;
607 **
608 **   memset(&sIter, 0, sizeof(sIter));
609 **   sIter.v = v;                            // v is of type Vdbe*
610 **   while( (pOp = opIterNext(&sIter)) ){
611 **     // Do something with pOp
612 **   }
613 **   sqlite3DbFree(v->db, sIter.apSub);
614 **
615 */
616 typedef struct VdbeOpIter VdbeOpIter;
617 struct VdbeOpIter {
618   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
619   SubProgram **apSub;        /* Array of subprograms */
620   int nSub;                  /* Number of entries in apSub */
621   int iAddr;                 /* Address of next instruction to return */
622   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
623 };
624 static Op *opIterNext(VdbeOpIter *p){
625   Vdbe *v = p->v;
626   Op *pRet = 0;
627   Op *aOp;
628   int nOp;
629 
630   if( p->iSub<=p->nSub ){
631 
632     if( p->iSub==0 ){
633       aOp = v->aOp;
634       nOp = v->nOp;
635     }else{
636       aOp = p->apSub[p->iSub-1]->aOp;
637       nOp = p->apSub[p->iSub-1]->nOp;
638     }
639     assert( p->iAddr<nOp );
640 
641     pRet = &aOp[p->iAddr];
642     p->iAddr++;
643     if( p->iAddr==nOp ){
644       p->iSub++;
645       p->iAddr = 0;
646     }
647 
648     if( pRet->p4type==P4_SUBPROGRAM ){
649       int nByte = (p->nSub+1)*sizeof(SubProgram*);
650       int j;
651       for(j=0; j<p->nSub; j++){
652         if( p->apSub[j]==pRet->p4.pProgram ) break;
653       }
654       if( j==p->nSub ){
655         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
656         if( !p->apSub ){
657           pRet = 0;
658         }else{
659           p->apSub[p->nSub++] = pRet->p4.pProgram;
660         }
661       }
662     }
663   }
664 
665   return pRet;
666 }
667 
668 /*
669 ** Check if the program stored in the VM associated with pParse may
670 ** throw an ABORT exception (causing the statement, but not entire transaction
671 ** to be rolled back). This condition is true if the main program or any
672 ** sub-programs contains any of the following:
673 **
674 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
675 **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
676 **   *  OP_Destroy
677 **   *  OP_VUpdate
678 **   *  OP_VCreate
679 **   *  OP_VRename
680 **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
681 **   *  OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
682 **      (for CREATE TABLE AS SELECT ...)
683 **
684 ** Then check that the value of Parse.mayAbort is true if an
685 ** ABORT may be thrown, or false otherwise. Return true if it does
686 ** match, or false otherwise. This function is intended to be used as
687 ** part of an assert statement in the compiler. Similar to:
688 **
689 **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
690 */
691 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
692   int hasAbort = 0;
693   int hasFkCounter = 0;
694   int hasCreateTable = 0;
695   int hasCreateIndex = 0;
696   int hasInitCoroutine = 0;
697   Op *pOp;
698   VdbeOpIter sIter;
699   memset(&sIter, 0, sizeof(sIter));
700   sIter.v = v;
701 
702   while( (pOp = opIterNext(&sIter))!=0 ){
703     int opcode = pOp->opcode;
704     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
705      || opcode==OP_VDestroy
706      || opcode==OP_VCreate
707      || opcode==OP_ParseSchema
708      || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
709       && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
710     ){
711       hasAbort = 1;
712       break;
713     }
714     if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
715     if( mayAbort ){
716       /* hasCreateIndex may also be set for some DELETE statements that use
717       ** OP_Clear. So this routine may end up returning true in the case
718       ** where a "DELETE FROM tbl" has a statement-journal but does not
719       ** require one. This is not so bad - it is an inefficiency, not a bug. */
720       if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
721       if( opcode==OP_Clear ) hasCreateIndex = 1;
722     }
723     if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
724 #ifndef SQLITE_OMIT_FOREIGN_KEY
725     if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
726       hasFkCounter = 1;
727     }
728 #endif
729   }
730   sqlite3DbFree(v->db, sIter.apSub);
731 
732   /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
733   ** If malloc failed, then the while() loop above may not have iterated
734   ** through all opcodes and hasAbort may be set incorrectly. Return
735   ** true for this case to prevent the assert() in the callers frame
736   ** from failing.  */
737   return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
738         || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
739   );
740 }
741 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
742 
743 #ifdef SQLITE_DEBUG
744 /*
745 ** Increment the nWrite counter in the VDBE if the cursor is not an
746 ** ephemeral cursor, or if the cursor argument is NULL.
747 */
748 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
749   if( pC==0
750    || (pC->eCurType!=CURTYPE_SORTER
751        && pC->eCurType!=CURTYPE_PSEUDO
752        && !pC->isEphemeral)
753   ){
754     p->nWrite++;
755   }
756 }
757 #endif
758 
759 #ifdef SQLITE_DEBUG
760 /*
761 ** Assert if an Abort at this point in time might result in a corrupt
762 ** database.
763 */
764 void sqlite3VdbeAssertAbortable(Vdbe *p){
765   assert( p->nWrite==0 || p->usesStmtJournal );
766 }
767 #endif
768 
769 /*
770 ** This routine is called after all opcodes have been inserted.  It loops
771 ** through all the opcodes and fixes up some details.
772 **
773 ** (1) For each jump instruction with a negative P2 value (a label)
774 **     resolve the P2 value to an actual address.
775 **
776 ** (2) Compute the maximum number of arguments used by any SQL function
777 **     and store that value in *pMaxFuncArgs.
778 **
779 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
780 **     indicate what the prepared statement actually does.
781 **
782 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
783 **
784 ** (5) Reclaim the memory allocated for storing labels.
785 **
786 ** This routine will only function correctly if the mkopcodeh.tcl generator
787 ** script numbers the opcodes correctly.  Changes to this routine must be
788 ** coordinated with changes to mkopcodeh.tcl.
789 */
790 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
791   int nMaxArgs = *pMaxFuncArgs;
792   Op *pOp;
793   Parse *pParse = p->pParse;
794   int *aLabel = pParse->aLabel;
795   p->readOnly = 1;
796   p->bIsReader = 0;
797   pOp = &p->aOp[p->nOp-1];
798   while(1){
799 
800     /* Only JUMP opcodes and the short list of special opcodes in the switch
801     ** below need to be considered.  The mkopcodeh.tcl generator script groups
802     ** all these opcodes together near the front of the opcode list.  Skip
803     ** any opcode that does not need processing by virtual of the fact that
804     ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
805     */
806     if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
807       /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
808       ** cases from this switch! */
809       switch( pOp->opcode ){
810         case OP_Transaction: {
811           if( pOp->p2!=0 ) p->readOnly = 0;
812           /* no break */ deliberate_fall_through
813         }
814         case OP_AutoCommit:
815         case OP_Savepoint: {
816           p->bIsReader = 1;
817           break;
818         }
819 #ifndef SQLITE_OMIT_WAL
820         case OP_Checkpoint:
821 #endif
822         case OP_Vacuum:
823         case OP_JournalMode: {
824           p->readOnly = 0;
825           p->bIsReader = 1;
826           break;
827         }
828         case OP_Next:
829         case OP_SorterNext: {
830           pOp->p4.xAdvance = sqlite3BtreeNext;
831           pOp->p4type = P4_ADVANCE;
832           /* The code generator never codes any of these opcodes as a jump
833           ** to a label.  They are always coded as a jump backwards to a
834           ** known address */
835           assert( pOp->p2>=0 );
836           break;
837         }
838         case OP_Prev: {
839           pOp->p4.xAdvance = sqlite3BtreePrevious;
840           pOp->p4type = P4_ADVANCE;
841           /* The code generator never codes any of these opcodes as a jump
842           ** to a label.  They are always coded as a jump backwards to a
843           ** known address */
844           assert( pOp->p2>=0 );
845           break;
846         }
847 #ifndef SQLITE_OMIT_VIRTUALTABLE
848         case OP_VUpdate: {
849           if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
850           break;
851         }
852         case OP_VFilter: {
853           int n;
854           assert( (pOp - p->aOp) >= 3 );
855           assert( pOp[-1].opcode==OP_Integer );
856           n = pOp[-1].p1;
857           if( n>nMaxArgs ) nMaxArgs = n;
858           /* Fall through into the default case */
859           /* no break */ deliberate_fall_through
860         }
861 #endif
862         default: {
863           if( pOp->p2<0 ){
864             /* The mkopcodeh.tcl script has so arranged things that the only
865             ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
866             ** have non-negative values for P2. */
867             assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
868             assert( ADDR(pOp->p2)<-pParse->nLabel );
869             pOp->p2 = aLabel[ADDR(pOp->p2)];
870           }
871           break;
872         }
873       }
874       /* The mkopcodeh.tcl script has so arranged things that the only
875       ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
876       ** have non-negative values for P2. */
877       assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
878     }
879     if( pOp==p->aOp ) break;
880     pOp--;
881   }
882   sqlite3DbFree(p->db, pParse->aLabel);
883   pParse->aLabel = 0;
884   pParse->nLabel = 0;
885   *pMaxFuncArgs = nMaxArgs;
886   assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
887 }
888 
889 /*
890 ** Return the address of the next instruction to be inserted.
891 */
892 int sqlite3VdbeCurrentAddr(Vdbe *p){
893   assert( p->magic==VDBE_MAGIC_INIT );
894   return p->nOp;
895 }
896 
897 /*
898 ** Verify that at least N opcode slots are available in p without
899 ** having to malloc for more space (except when compiled using
900 ** SQLITE_TEST_REALLOC_STRESS).  This interface is used during testing
901 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
902 ** fail due to a OOM fault and hence that the return value from
903 ** sqlite3VdbeAddOpList() will always be non-NULL.
904 */
905 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
906 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
907   assert( p->nOp + N <= p->nOpAlloc );
908 }
909 #endif
910 
911 /*
912 ** Verify that the VM passed as the only argument does not contain
913 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
914 ** by code in pragma.c to ensure that the implementation of certain
915 ** pragmas comports with the flags specified in the mkpragmatab.tcl
916 ** script.
917 */
918 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
919 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
920   int i;
921   for(i=0; i<p->nOp; i++){
922     assert( p->aOp[i].opcode!=OP_ResultRow );
923   }
924 }
925 #endif
926 
927 /*
928 ** Generate code (a single OP_Abortable opcode) that will
929 ** verify that the VDBE program can safely call Abort in the current
930 ** context.
931 */
932 #if defined(SQLITE_DEBUG)
933 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
934   if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
935 }
936 #endif
937 
938 /*
939 ** This function returns a pointer to the array of opcodes associated with
940 ** the Vdbe passed as the first argument. It is the callers responsibility
941 ** to arrange for the returned array to be eventually freed using the
942 ** vdbeFreeOpArray() function.
943 **
944 ** Before returning, *pnOp is set to the number of entries in the returned
945 ** array. Also, *pnMaxArg is set to the larger of its current value and
946 ** the number of entries in the Vdbe.apArg[] array required to execute the
947 ** returned program.
948 */
949 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
950   VdbeOp *aOp = p->aOp;
951   assert( aOp && !p->db->mallocFailed );
952 
953   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
954   assert( DbMaskAllZero(p->btreeMask) );
955 
956   resolveP2Values(p, pnMaxArg);
957   *pnOp = p->nOp;
958   p->aOp = 0;
959   return aOp;
960 }
961 
962 /*
963 ** Add a whole list of operations to the operation stack.  Return a
964 ** pointer to the first operation inserted.
965 **
966 ** Non-zero P2 arguments to jump instructions are automatically adjusted
967 ** so that the jump target is relative to the first operation inserted.
968 */
969 VdbeOp *sqlite3VdbeAddOpList(
970   Vdbe *p,                     /* Add opcodes to the prepared statement */
971   int nOp,                     /* Number of opcodes to add */
972   VdbeOpList const *aOp,       /* The opcodes to be added */
973   int iLineno                  /* Source-file line number of first opcode */
974 ){
975   int i;
976   VdbeOp *pOut, *pFirst;
977   assert( nOp>0 );
978   assert( p->magic==VDBE_MAGIC_INIT );
979   if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
980     return 0;
981   }
982   pFirst = pOut = &p->aOp[p->nOp];
983   for(i=0; i<nOp; i++, aOp++, pOut++){
984     pOut->opcode = aOp->opcode;
985     pOut->p1 = aOp->p1;
986     pOut->p2 = aOp->p2;
987     assert( aOp->p2>=0 );
988     if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
989       pOut->p2 += p->nOp;
990     }
991     pOut->p3 = aOp->p3;
992     pOut->p4type = P4_NOTUSED;
993     pOut->p4.p = 0;
994     pOut->p5 = 0;
995 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
996     pOut->zComment = 0;
997 #endif
998 #ifdef SQLITE_VDBE_COVERAGE
999     pOut->iSrcLine = iLineno+i;
1000 #else
1001     (void)iLineno;
1002 #endif
1003 #ifdef SQLITE_DEBUG
1004     if( p->db->flags & SQLITE_VdbeAddopTrace ){
1005       sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1006     }
1007 #endif
1008   }
1009   p->nOp += nOp;
1010   return pFirst;
1011 }
1012 
1013 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1014 /*
1015 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1016 */
1017 void sqlite3VdbeScanStatus(
1018   Vdbe *p,                        /* VM to add scanstatus() to */
1019   int addrExplain,                /* Address of OP_Explain (or 0) */
1020   int addrLoop,                   /* Address of loop counter */
1021   int addrVisit,                  /* Address of rows visited counter */
1022   LogEst nEst,                    /* Estimated number of output rows */
1023   const char *zName               /* Name of table or index being scanned */
1024 ){
1025   sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1026   ScanStatus *aNew;
1027   aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1028   if( aNew ){
1029     ScanStatus *pNew = &aNew[p->nScan++];
1030     pNew->addrExplain = addrExplain;
1031     pNew->addrLoop = addrLoop;
1032     pNew->addrVisit = addrVisit;
1033     pNew->nEst = nEst;
1034     pNew->zName = sqlite3DbStrDup(p->db, zName);
1035     p->aScan = aNew;
1036   }
1037 }
1038 #endif
1039 
1040 
1041 /*
1042 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1043 ** for a specific instruction.
1044 */
1045 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1046   sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1047 }
1048 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1049   sqlite3VdbeGetOp(p,addr)->p1 = val;
1050 }
1051 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1052   sqlite3VdbeGetOp(p,addr)->p2 = val;
1053 }
1054 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1055   sqlite3VdbeGetOp(p,addr)->p3 = val;
1056 }
1057 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1058   assert( p->nOp>0 || p->db->mallocFailed );
1059   if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1060 }
1061 
1062 /*
1063 ** Change the P2 operand of instruction addr so that it points to
1064 ** the address of the next instruction to be coded.
1065 */
1066 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1067   sqlite3VdbeChangeP2(p, addr, p->nOp);
1068 }
1069 
1070 /*
1071 ** Change the P2 operand of the jump instruction at addr so that
1072 ** the jump lands on the next opcode.  Or if the jump instruction was
1073 ** the previous opcode (and is thus a no-op) then simply back up
1074 ** the next instruction counter by one slot so that the jump is
1075 ** overwritten by the next inserted opcode.
1076 **
1077 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1078 ** strives to omit useless byte-code like this:
1079 **
1080 **        7   Once 0 8 0
1081 **        8   ...
1082 */
1083 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
1084   if( addr==p->nOp-1 ){
1085     assert( p->aOp[addr].opcode==OP_Once
1086          || p->aOp[addr].opcode==OP_If
1087          || p->aOp[addr].opcode==OP_FkIfZero );
1088     assert( p->aOp[addr].p4type==0 );
1089 #ifdef SQLITE_VDBE_COVERAGE
1090     sqlite3VdbeGetOp(p,-1)->iSrcLine = 0;  /* Erase VdbeCoverage() macros */
1091 #endif
1092     p->nOp--;
1093   }else{
1094     sqlite3VdbeChangeP2(p, addr, p->nOp);
1095   }
1096 }
1097 
1098 
1099 /*
1100 ** If the input FuncDef structure is ephemeral, then free it.  If
1101 ** the FuncDef is not ephermal, then do nothing.
1102 */
1103 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1104   if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1105     sqlite3DbFreeNN(db, pDef);
1106   }
1107 }
1108 
1109 /*
1110 ** Delete a P4 value if necessary.
1111 */
1112 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1113   if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1114   sqlite3DbFreeNN(db, p);
1115 }
1116 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1117   freeEphemeralFunction(db, p->pFunc);
1118   sqlite3DbFreeNN(db, p);
1119 }
1120 static void freeP4(sqlite3 *db, int p4type, void *p4){
1121   assert( db );
1122   switch( p4type ){
1123     case P4_FUNCCTX: {
1124       freeP4FuncCtx(db, (sqlite3_context*)p4);
1125       break;
1126     }
1127     case P4_REAL:
1128     case P4_INT64:
1129     case P4_DYNAMIC:
1130     case P4_DYNBLOB:
1131     case P4_INTARRAY: {
1132       sqlite3DbFree(db, p4);
1133       break;
1134     }
1135     case P4_KEYINFO: {
1136       if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1137       break;
1138     }
1139 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1140     case P4_EXPR: {
1141       sqlite3ExprDelete(db, (Expr*)p4);
1142       break;
1143     }
1144 #endif
1145     case P4_FUNCDEF: {
1146       freeEphemeralFunction(db, (FuncDef*)p4);
1147       break;
1148     }
1149     case P4_MEM: {
1150       if( db->pnBytesFreed==0 ){
1151         sqlite3ValueFree((sqlite3_value*)p4);
1152       }else{
1153         freeP4Mem(db, (Mem*)p4);
1154       }
1155       break;
1156     }
1157     case P4_VTAB : {
1158       if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1159       break;
1160     }
1161   }
1162 }
1163 
1164 /*
1165 ** Free the space allocated for aOp and any p4 values allocated for the
1166 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1167 ** nOp entries.
1168 */
1169 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1170   if( aOp ){
1171     Op *pOp;
1172     for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
1173       if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1174 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1175       sqlite3DbFree(db, pOp->zComment);
1176 #endif
1177     }
1178     sqlite3DbFreeNN(db, aOp);
1179   }
1180 }
1181 
1182 /*
1183 ** Link the SubProgram object passed as the second argument into the linked
1184 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1185 ** objects when the VM is no longer required.
1186 */
1187 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1188   p->pNext = pVdbe->pProgram;
1189   pVdbe->pProgram = p;
1190 }
1191 
1192 /*
1193 ** Return true if the given Vdbe has any SubPrograms.
1194 */
1195 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1196   return pVdbe->pProgram!=0;
1197 }
1198 
1199 /*
1200 ** Change the opcode at addr into OP_Noop
1201 */
1202 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1203   VdbeOp *pOp;
1204   if( p->db->mallocFailed ) return 0;
1205   assert( addr>=0 && addr<p->nOp );
1206   pOp = &p->aOp[addr];
1207   freeP4(p->db, pOp->p4type, pOp->p4.p);
1208   pOp->p4type = P4_NOTUSED;
1209   pOp->p4.z = 0;
1210   pOp->opcode = OP_Noop;
1211   return 1;
1212 }
1213 
1214 /*
1215 ** If the last opcode is "op" and it is not a jump destination,
1216 ** then remove it.  Return true if and only if an opcode was removed.
1217 */
1218 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1219   if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1220     return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1221   }else{
1222     return 0;
1223   }
1224 }
1225 
1226 #ifdef SQLITE_DEBUG
1227 /*
1228 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1229 ** registers, except any identified by mask, are no longer in use.
1230 */
1231 void sqlite3VdbeReleaseRegisters(
1232   Parse *pParse,       /* Parsing context */
1233   int iFirst,          /* Index of first register to be released */
1234   int N,               /* Number of registers to release */
1235   u32 mask,            /* Mask of registers to NOT release */
1236   int bUndefine        /* If true, mark registers as undefined */
1237 ){
1238   if( N==0 ) return;
1239   assert( pParse->pVdbe );
1240   assert( iFirst>=1 );
1241   assert( iFirst+N-1<=pParse->nMem );
1242   if( N<=31 && mask!=0 ){
1243     while( N>0 && (mask&1)!=0 ){
1244       mask >>= 1;
1245       iFirst++;
1246       N--;
1247     }
1248     while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1249       mask &= ~MASKBIT32(N-1);
1250       N--;
1251     }
1252   }
1253   if( N>0 ){
1254     sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1255     if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1256   }
1257 }
1258 #endif /* SQLITE_DEBUG */
1259 
1260 
1261 /*
1262 ** Change the value of the P4 operand for a specific instruction.
1263 ** This routine is useful when a large program is loaded from a
1264 ** static array using sqlite3VdbeAddOpList but we want to make a
1265 ** few minor changes to the program.
1266 **
1267 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1268 ** the string is made into memory obtained from sqlite3_malloc().
1269 ** A value of n==0 means copy bytes of zP4 up to and including the
1270 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
1271 **
1272 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1273 ** to a string or structure that is guaranteed to exist for the lifetime of
1274 ** the Vdbe. In these cases we can just copy the pointer.
1275 **
1276 ** If addr<0 then change P4 on the most recently inserted instruction.
1277 */
1278 static void SQLITE_NOINLINE vdbeChangeP4Full(
1279   Vdbe *p,
1280   Op *pOp,
1281   const char *zP4,
1282   int n
1283 ){
1284   if( pOp->p4type ){
1285     freeP4(p->db, pOp->p4type, pOp->p4.p);
1286     pOp->p4type = 0;
1287     pOp->p4.p = 0;
1288   }
1289   if( n<0 ){
1290     sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1291   }else{
1292     if( n==0 ) n = sqlite3Strlen30(zP4);
1293     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1294     pOp->p4type = P4_DYNAMIC;
1295   }
1296 }
1297 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1298   Op *pOp;
1299   sqlite3 *db;
1300   assert( p!=0 );
1301   db = p->db;
1302   assert( p->magic==VDBE_MAGIC_INIT );
1303   assert( p->aOp!=0 || db->mallocFailed );
1304   if( db->mallocFailed ){
1305     if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1306     return;
1307   }
1308   assert( p->nOp>0 );
1309   assert( addr<p->nOp );
1310   if( addr<0 ){
1311     addr = p->nOp - 1;
1312   }
1313   pOp = &p->aOp[addr];
1314   if( n>=0 || pOp->p4type ){
1315     vdbeChangeP4Full(p, pOp, zP4, n);
1316     return;
1317   }
1318   if( n==P4_INT32 ){
1319     /* Note: this cast is safe, because the origin data point was an int
1320     ** that was cast to a (const char *). */
1321     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1322     pOp->p4type = P4_INT32;
1323   }else if( zP4!=0 ){
1324     assert( n<0 );
1325     pOp->p4.p = (void*)zP4;
1326     pOp->p4type = (signed char)n;
1327     if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1328   }
1329 }
1330 
1331 /*
1332 ** Change the P4 operand of the most recently coded instruction
1333 ** to the value defined by the arguments.  This is a high-speed
1334 ** version of sqlite3VdbeChangeP4().
1335 **
1336 ** The P4 operand must not have been previously defined.  And the new
1337 ** P4 must not be P4_INT32.  Use sqlite3VdbeChangeP4() in either of
1338 ** those cases.
1339 */
1340 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1341   VdbeOp *pOp;
1342   assert( n!=P4_INT32 && n!=P4_VTAB );
1343   assert( n<=0 );
1344   if( p->db->mallocFailed ){
1345     freeP4(p->db, n, pP4);
1346   }else{
1347     assert( pP4!=0 );
1348     assert( p->nOp>0 );
1349     pOp = &p->aOp[p->nOp-1];
1350     assert( pOp->p4type==P4_NOTUSED );
1351     pOp->p4type = n;
1352     pOp->p4.p = pP4;
1353   }
1354 }
1355 
1356 /*
1357 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1358 ** index given.
1359 */
1360 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1361   Vdbe *v = pParse->pVdbe;
1362   KeyInfo *pKeyInfo;
1363   assert( v!=0 );
1364   assert( pIdx!=0 );
1365   pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1366   if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1367 }
1368 
1369 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1370 /*
1371 ** Change the comment on the most recently coded instruction.  Or
1372 ** insert a No-op and add the comment to that new instruction.  This
1373 ** makes the code easier to read during debugging.  None of this happens
1374 ** in a production build.
1375 */
1376 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1377   assert( p->nOp>0 || p->aOp==0 );
1378   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed
1379           || p->pParse->nErr>0 );
1380   if( p->nOp ){
1381     assert( p->aOp );
1382     sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1383     p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1384   }
1385 }
1386 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1387   va_list ap;
1388   if( p ){
1389     va_start(ap, zFormat);
1390     vdbeVComment(p, zFormat, ap);
1391     va_end(ap);
1392   }
1393 }
1394 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1395   va_list ap;
1396   if( p ){
1397     sqlite3VdbeAddOp0(p, OP_Noop);
1398     va_start(ap, zFormat);
1399     vdbeVComment(p, zFormat, ap);
1400     va_end(ap);
1401   }
1402 }
1403 #endif  /* NDEBUG */
1404 
1405 #ifdef SQLITE_VDBE_COVERAGE
1406 /*
1407 ** Set the value if the iSrcLine field for the previously coded instruction.
1408 */
1409 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1410   sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1411 }
1412 #endif /* SQLITE_VDBE_COVERAGE */
1413 
1414 /*
1415 ** Return the opcode for a given address.  If the address is -1, then
1416 ** return the most recently inserted opcode.
1417 **
1418 ** If a memory allocation error has occurred prior to the calling of this
1419 ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
1420 ** is readable but not writable, though it is cast to a writable value.
1421 ** The return of a dummy opcode allows the call to continue functioning
1422 ** after an OOM fault without having to check to see if the return from
1423 ** this routine is a valid pointer.  But because the dummy.opcode is 0,
1424 ** dummy will never be written to.  This is verified by code inspection and
1425 ** by running with Valgrind.
1426 */
1427 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1428   /* C89 specifies that the constant "dummy" will be initialized to all
1429   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
1430   static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
1431   assert( p->magic==VDBE_MAGIC_INIT );
1432   if( addr<0 ){
1433     addr = p->nOp - 1;
1434   }
1435   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1436   if( p->db->mallocFailed ){
1437     return (VdbeOp*)&dummy;
1438   }else{
1439     return &p->aOp[addr];
1440   }
1441 }
1442 
1443 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1444 /*
1445 ** Return an integer value for one of the parameters to the opcode pOp
1446 ** determined by character c.
1447 */
1448 static int translateP(char c, const Op *pOp){
1449   if( c=='1' ) return pOp->p1;
1450   if( c=='2' ) return pOp->p2;
1451   if( c=='3' ) return pOp->p3;
1452   if( c=='4' ) return pOp->p4.i;
1453   return pOp->p5;
1454 }
1455 
1456 /*
1457 ** Compute a string for the "comment" field of a VDBE opcode listing.
1458 **
1459 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1460 ** to an extra string that is appended to the sqlite3OpcodeName().  In the
1461 ** absence of other comments, this synopsis becomes the comment on the opcode.
1462 ** Some translation occurs:
1463 **
1464 **       "PX"      ->  "r[X]"
1465 **       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1
1466 **       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0
1467 **       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x
1468 */
1469 char *sqlite3VdbeDisplayComment(
1470   sqlite3 *db,       /* Optional - Oom error reporting only */
1471   const Op *pOp,     /* The opcode to be commented */
1472   const char *zP4    /* Previously obtained value for P4 */
1473 ){
1474   const char *zOpName;
1475   const char *zSynopsis;
1476   int nOpName;
1477   int ii;
1478   char zAlt[50];
1479   StrAccum x;
1480 
1481   sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1482   zOpName = sqlite3OpcodeName(pOp->opcode);
1483   nOpName = sqlite3Strlen30(zOpName);
1484   if( zOpName[nOpName+1] ){
1485     int seenCom = 0;
1486     char c;
1487     zSynopsis = zOpName += nOpName + 1;
1488     if( strncmp(zSynopsis,"IF ",3)==0 ){
1489       if( pOp->p5 & SQLITE_STOREP2 ){
1490         sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
1491       }else{
1492         sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1493       }
1494       zSynopsis = zAlt;
1495     }
1496     for(ii=0; (c = zSynopsis[ii])!=0; ii++){
1497       if( c=='P' ){
1498         c = zSynopsis[++ii];
1499         if( c=='4' ){
1500           sqlite3_str_appendall(&x, zP4);
1501         }else if( c=='X' ){
1502           sqlite3_str_appendall(&x, pOp->zComment);
1503           seenCom = 1;
1504         }else{
1505           int v1 = translateP(c, pOp);
1506           int v2;
1507           if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1508             ii += 3;
1509             v2 = translateP(zSynopsis[ii], pOp);
1510             if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1511               ii += 2;
1512               v2++;
1513             }
1514             if( v2<2 ){
1515               sqlite3_str_appendf(&x, "%d", v1);
1516             }else{
1517               sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
1518             }
1519           }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
1520             sqlite3_context *pCtx = pOp->p4.pCtx;
1521             if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
1522               sqlite3_str_appendf(&x, "%d", v1);
1523             }else if( pCtx->argc>1 ){
1524               sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
1525             }else if( x.accError==0 ){
1526               assert( x.nChar>2 );
1527               x.nChar -= 2;
1528               ii++;
1529             }
1530             ii += 3;
1531           }else{
1532             sqlite3_str_appendf(&x, "%d", v1);
1533             if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1534               ii += 4;
1535             }
1536           }
1537         }
1538       }else{
1539         sqlite3_str_appendchar(&x, 1, c);
1540       }
1541     }
1542     if( !seenCom && pOp->zComment ){
1543       sqlite3_str_appendf(&x, "; %s", pOp->zComment);
1544     }
1545   }else if( pOp->zComment ){
1546     sqlite3_str_appendall(&x, pOp->zComment);
1547   }
1548   if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
1549     sqlite3OomFault(db);
1550   }
1551   return sqlite3StrAccumFinish(&x);
1552 }
1553 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1554 
1555 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1556 /*
1557 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1558 ** that can be displayed in the P4 column of EXPLAIN output.
1559 */
1560 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1561   const char *zOp = 0;
1562   switch( pExpr->op ){
1563     case TK_STRING:
1564       sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1565       break;
1566     case TK_INTEGER:
1567       sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1568       break;
1569     case TK_NULL:
1570       sqlite3_str_appendf(p, "NULL");
1571       break;
1572     case TK_REGISTER: {
1573       sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1574       break;
1575     }
1576     case TK_COLUMN: {
1577       if( pExpr->iColumn<0 ){
1578         sqlite3_str_appendf(p, "rowid");
1579       }else{
1580         sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1581       }
1582       break;
1583     }
1584     case TK_LT:      zOp = "LT";      break;
1585     case TK_LE:      zOp = "LE";      break;
1586     case TK_GT:      zOp = "GT";      break;
1587     case TK_GE:      zOp = "GE";      break;
1588     case TK_NE:      zOp = "NE";      break;
1589     case TK_EQ:      zOp = "EQ";      break;
1590     case TK_IS:      zOp = "IS";      break;
1591     case TK_ISNOT:   zOp = "ISNOT";   break;
1592     case TK_AND:     zOp = "AND";     break;
1593     case TK_OR:      zOp = "OR";      break;
1594     case TK_PLUS:    zOp = "ADD";     break;
1595     case TK_STAR:    zOp = "MUL";     break;
1596     case TK_MINUS:   zOp = "SUB";     break;
1597     case TK_REM:     zOp = "REM";     break;
1598     case TK_BITAND:  zOp = "BITAND";  break;
1599     case TK_BITOR:   zOp = "BITOR";   break;
1600     case TK_SLASH:   zOp = "DIV";     break;
1601     case TK_LSHIFT:  zOp = "LSHIFT";  break;
1602     case TK_RSHIFT:  zOp = "RSHIFT";  break;
1603     case TK_CONCAT:  zOp = "CONCAT";  break;
1604     case TK_UMINUS:  zOp = "MINUS";   break;
1605     case TK_UPLUS:   zOp = "PLUS";    break;
1606     case TK_BITNOT:  zOp = "BITNOT";  break;
1607     case TK_NOT:     zOp = "NOT";     break;
1608     case TK_ISNULL:  zOp = "ISNULL";  break;
1609     case TK_NOTNULL: zOp = "NOTNULL"; break;
1610 
1611     default:
1612       sqlite3_str_appendf(p, "%s", "expr");
1613       break;
1614   }
1615 
1616   if( zOp ){
1617     sqlite3_str_appendf(p, "%s(", zOp);
1618     displayP4Expr(p, pExpr->pLeft);
1619     if( pExpr->pRight ){
1620       sqlite3_str_append(p, ",", 1);
1621       displayP4Expr(p, pExpr->pRight);
1622     }
1623     sqlite3_str_append(p, ")", 1);
1624   }
1625 }
1626 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1627 
1628 
1629 #if VDBE_DISPLAY_P4
1630 /*
1631 ** Compute a string that describes the P4 parameter for an opcode.
1632 ** Use zTemp for any required temporary buffer space.
1633 */
1634 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
1635   char *zP4 = 0;
1636   StrAccum x;
1637 
1638   sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1639   switch( pOp->p4type ){
1640     case P4_KEYINFO: {
1641       int j;
1642       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1643       assert( pKeyInfo->aSortFlags!=0 );
1644       sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1645       for(j=0; j<pKeyInfo->nKeyField; j++){
1646         CollSeq *pColl = pKeyInfo->aColl[j];
1647         const char *zColl = pColl ? pColl->zName : "";
1648         if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1649         sqlite3_str_appendf(&x, ",%s%s%s",
1650                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1651                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1652                zColl);
1653       }
1654       sqlite3_str_append(&x, ")", 1);
1655       break;
1656     }
1657 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1658     case P4_EXPR: {
1659       displayP4Expr(&x, pOp->p4.pExpr);
1660       break;
1661     }
1662 #endif
1663     case P4_COLLSEQ: {
1664       static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
1665       CollSeq *pColl = pOp->p4.pColl;
1666       assert( pColl->enc>=0 && pColl->enc<4 );
1667       sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
1668                           encnames[pColl->enc]);
1669       break;
1670     }
1671     case P4_FUNCDEF: {
1672       FuncDef *pDef = pOp->p4.pFunc;
1673       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1674       break;
1675     }
1676     case P4_FUNCCTX: {
1677       FuncDef *pDef = pOp->p4.pCtx->pFunc;
1678       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1679       break;
1680     }
1681     case P4_INT64: {
1682       sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1683       break;
1684     }
1685     case P4_INT32: {
1686       sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1687       break;
1688     }
1689     case P4_REAL: {
1690       sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1691       break;
1692     }
1693     case P4_MEM: {
1694       Mem *pMem = pOp->p4.pMem;
1695       if( pMem->flags & MEM_Str ){
1696         zP4 = pMem->z;
1697       }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1698         sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1699       }else if( pMem->flags & MEM_Real ){
1700         sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1701       }else if( pMem->flags & MEM_Null ){
1702         zP4 = "NULL";
1703       }else{
1704         assert( pMem->flags & MEM_Blob );
1705         zP4 = "(blob)";
1706       }
1707       break;
1708     }
1709 #ifndef SQLITE_OMIT_VIRTUALTABLE
1710     case P4_VTAB: {
1711       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1712       sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1713       break;
1714     }
1715 #endif
1716     case P4_INTARRAY: {
1717       u32 i;
1718       u32 *ai = pOp->p4.ai;
1719       u32 n = ai[0];   /* The first element of an INTARRAY is always the
1720                        ** count of the number of elements to follow */
1721       for(i=1; i<=n; i++){
1722         sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
1723       }
1724       sqlite3_str_append(&x, "]", 1);
1725       break;
1726     }
1727     case P4_SUBPROGRAM: {
1728       zP4 = "program";
1729       break;
1730     }
1731     case P4_DYNBLOB:
1732     case P4_ADVANCE: {
1733       break;
1734     }
1735     case P4_TABLE: {
1736       zP4 = pOp->p4.pTab->zName;
1737       break;
1738     }
1739     default: {
1740       zP4 = pOp->p4.z;
1741     }
1742   }
1743   if( zP4 ) sqlite3_str_appendall(&x, zP4);
1744   if( (x.accError & SQLITE_NOMEM)!=0 ){
1745     sqlite3OomFault(db);
1746   }
1747   return sqlite3StrAccumFinish(&x);
1748 }
1749 #endif /* VDBE_DISPLAY_P4 */
1750 
1751 /*
1752 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1753 **
1754 ** The prepared statements need to know in advance the complete set of
1755 ** attached databases that will be use.  A mask of these databases
1756 ** is maintained in p->btreeMask.  The p->lockMask value is the subset of
1757 ** p->btreeMask of databases that will require a lock.
1758 */
1759 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1760   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1761   assert( i<(int)sizeof(p->btreeMask)*8 );
1762   DbMaskSet(p->btreeMask, i);
1763   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1764     DbMaskSet(p->lockMask, i);
1765   }
1766 }
1767 
1768 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1769 /*
1770 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1771 ** this routine obtains the mutex associated with each BtShared structure
1772 ** that may be accessed by the VM passed as an argument. In doing so it also
1773 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1774 ** that the correct busy-handler callback is invoked if required.
1775 **
1776 ** If SQLite is not threadsafe but does support shared-cache mode, then
1777 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1778 ** of all of BtShared structures accessible via the database handle
1779 ** associated with the VM.
1780 **
1781 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1782 ** function is a no-op.
1783 **
1784 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1785 ** statement p will ever use.  Let N be the number of bits in p->btreeMask
1786 ** corresponding to btrees that use shared cache.  Then the runtime of
1787 ** this routine is N*N.  But as N is rarely more than 1, this should not
1788 ** be a problem.
1789 */
1790 void sqlite3VdbeEnter(Vdbe *p){
1791   int i;
1792   sqlite3 *db;
1793   Db *aDb;
1794   int nDb;
1795   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1796   db = p->db;
1797   aDb = db->aDb;
1798   nDb = db->nDb;
1799   for(i=0; i<nDb; i++){
1800     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1801       sqlite3BtreeEnter(aDb[i].pBt);
1802     }
1803   }
1804 }
1805 #endif
1806 
1807 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1808 /*
1809 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1810 */
1811 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1812   int i;
1813   sqlite3 *db;
1814   Db *aDb;
1815   int nDb;
1816   db = p->db;
1817   aDb = db->aDb;
1818   nDb = db->nDb;
1819   for(i=0; i<nDb; i++){
1820     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1821       sqlite3BtreeLeave(aDb[i].pBt);
1822     }
1823   }
1824 }
1825 void sqlite3VdbeLeave(Vdbe *p){
1826   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1827   vdbeLeave(p);
1828 }
1829 #endif
1830 
1831 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1832 /*
1833 ** Print a single opcode.  This routine is used for debugging only.
1834 */
1835 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
1836   char *zP4;
1837   char *zCom;
1838   sqlite3 dummyDb;
1839   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1840   if( pOut==0 ) pOut = stdout;
1841   sqlite3BeginBenignMalloc();
1842   dummyDb.mallocFailed = 1;
1843   zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
1844 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1845   zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
1846 #else
1847   zCom = 0;
1848 #endif
1849   /* NB:  The sqlite3OpcodeName() function is implemented by code created
1850   ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1851   ** information from the vdbe.c source text */
1852   fprintf(pOut, zFormat1, pc,
1853       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
1854       zP4 ? zP4 : "", pOp->p5,
1855       zCom ? zCom : ""
1856   );
1857   fflush(pOut);
1858   sqlite3_free(zP4);
1859   sqlite3_free(zCom);
1860   sqlite3EndBenignMalloc();
1861 }
1862 #endif
1863 
1864 /*
1865 ** Initialize an array of N Mem element.
1866 */
1867 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1868   while( (N--)>0 ){
1869     p->db = db;
1870     p->flags = flags;
1871     p->szMalloc = 0;
1872 #ifdef SQLITE_DEBUG
1873     p->pScopyFrom = 0;
1874 #endif
1875     p++;
1876   }
1877 }
1878 
1879 /*
1880 ** Release an array of N Mem elements
1881 */
1882 static void releaseMemArray(Mem *p, int N){
1883   if( p && N ){
1884     Mem *pEnd = &p[N];
1885     sqlite3 *db = p->db;
1886     if( db->pnBytesFreed ){
1887       do{
1888         if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1889       }while( (++p)<pEnd );
1890       return;
1891     }
1892     do{
1893       assert( (&p[1])==pEnd || p[0].db==p[1].db );
1894       assert( sqlite3VdbeCheckMemInvariants(p) );
1895 
1896       /* This block is really an inlined version of sqlite3VdbeMemRelease()
1897       ** that takes advantage of the fact that the memory cell value is
1898       ** being set to NULL after releasing any dynamic resources.
1899       **
1900       ** The justification for duplicating code is that according to
1901       ** callgrind, this causes a certain test case to hit the CPU 4.7
1902       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1903       ** sqlite3MemRelease() were called from here. With -O2, this jumps
1904       ** to 6.6 percent. The test case is inserting 1000 rows into a table
1905       ** with no indexes using a single prepared INSERT statement, bind()
1906       ** and reset(). Inserts are grouped into a transaction.
1907       */
1908       testcase( p->flags & MEM_Agg );
1909       testcase( p->flags & MEM_Dyn );
1910       testcase( p->xDel==sqlite3VdbeFrameMemDel );
1911       if( p->flags&(MEM_Agg|MEM_Dyn) ){
1912         sqlite3VdbeMemRelease(p);
1913       }else if( p->szMalloc ){
1914         sqlite3DbFreeNN(db, p->zMalloc);
1915         p->szMalloc = 0;
1916       }
1917 
1918       p->flags = MEM_Undefined;
1919     }while( (++p)<pEnd );
1920   }
1921 }
1922 
1923 #ifdef SQLITE_DEBUG
1924 /*
1925 ** Verify that pFrame is a valid VdbeFrame pointer.  Return true if it is
1926 ** and false if something is wrong.
1927 **
1928 ** This routine is intended for use inside of assert() statements only.
1929 */
1930 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
1931   if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
1932   return 1;
1933 }
1934 #endif
1935 
1936 
1937 /*
1938 ** This is a destructor on a Mem object (which is really an sqlite3_value)
1939 ** that deletes the Frame object that is attached to it as a blob.
1940 **
1941 ** This routine does not delete the Frame right away.  It merely adds the
1942 ** frame to a list of frames to be deleted when the Vdbe halts.
1943 */
1944 void sqlite3VdbeFrameMemDel(void *pArg){
1945   VdbeFrame *pFrame = (VdbeFrame*)pArg;
1946   assert( sqlite3VdbeFrameIsValid(pFrame) );
1947   pFrame->pParent = pFrame->v->pDelFrame;
1948   pFrame->v->pDelFrame = pFrame;
1949 }
1950 
1951 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
1952 /*
1953 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
1954 ** QUERY PLAN output.
1955 **
1956 ** Return SQLITE_ROW on success.  Return SQLITE_DONE if there are no
1957 ** more opcodes to be displayed.
1958 */
1959 int sqlite3VdbeNextOpcode(
1960   Vdbe *p,         /* The statement being explained */
1961   Mem *pSub,       /* Storage for keeping track of subprogram nesting */
1962   int eMode,       /* 0: normal.  1: EQP.  2:  TablesUsed */
1963   int *piPc,       /* IN/OUT: Current rowid.  Overwritten with next rowid */
1964   int *piAddr,     /* OUT: Write index into (*paOp)[] here */
1965   Op **paOp        /* OUT: Write the opcode array here */
1966 ){
1967   int nRow;                            /* Stop when row count reaches this */
1968   int nSub = 0;                        /* Number of sub-vdbes seen so far */
1969   SubProgram **apSub = 0;              /* Array of sub-vdbes */
1970   int i;                               /* Next instruction address */
1971   int rc = SQLITE_OK;                  /* Result code */
1972   Op *aOp = 0;                         /* Opcode array */
1973   int iPc;                             /* Rowid.  Copy of value in *piPc */
1974 
1975   /* When the number of output rows reaches nRow, that means the
1976   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1977   ** nRow is the sum of the number of rows in the main program, plus
1978   ** the sum of the number of rows in all trigger subprograms encountered
1979   ** so far.  The nRow value will increase as new trigger subprograms are
1980   ** encountered, but p->pc will eventually catch up to nRow.
1981   */
1982   nRow = p->nOp;
1983   if( pSub!=0 ){
1984     if( pSub->flags&MEM_Blob ){
1985       /* pSub is initiallly NULL.  It is initialized to a BLOB by
1986       ** the P4_SUBPROGRAM processing logic below */
1987       nSub = pSub->n/sizeof(Vdbe*);
1988       apSub = (SubProgram **)pSub->z;
1989     }
1990     for(i=0; i<nSub; i++){
1991       nRow += apSub[i]->nOp;
1992     }
1993   }
1994   iPc = *piPc;
1995   while(1){  /* Loop exits via break */
1996     i = iPc++;
1997     if( i>=nRow ){
1998       p->rc = SQLITE_OK;
1999       rc = SQLITE_DONE;
2000       break;
2001     }
2002     if( i<p->nOp ){
2003       /* The rowid is small enough that we are still in the
2004       ** main program. */
2005       aOp = p->aOp;
2006     }else{
2007       /* We are currently listing subprograms.  Figure out which one and
2008       ** pick up the appropriate opcode. */
2009       int j;
2010       i -= p->nOp;
2011       assert( apSub!=0 );
2012       assert( nSub>0 );
2013       for(j=0; i>=apSub[j]->nOp; j++){
2014         i -= apSub[j]->nOp;
2015         assert( i<apSub[j]->nOp || j+1<nSub );
2016       }
2017       aOp = apSub[j]->aOp;
2018     }
2019 
2020     /* When an OP_Program opcode is encounter (the only opcode that has
2021     ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2022     ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2023     ** has not already been seen.
2024     */
2025     if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
2026       int nByte = (nSub+1)*sizeof(SubProgram*);
2027       int j;
2028       for(j=0; j<nSub; j++){
2029         if( apSub[j]==aOp[i].p4.pProgram ) break;
2030       }
2031       if( j==nSub ){
2032         p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2033         if( p->rc!=SQLITE_OK ){
2034           rc = SQLITE_ERROR;
2035           break;
2036         }
2037         apSub = (SubProgram **)pSub->z;
2038         apSub[nSub++] = aOp[i].p4.pProgram;
2039         MemSetTypeFlag(pSub, MEM_Blob);
2040         pSub->n = nSub*sizeof(SubProgram*);
2041         nRow += aOp[i].p4.pProgram->nOp;
2042       }
2043     }
2044     if( eMode==0 ) break;
2045 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2046     if( eMode==2 ){
2047       Op *pOp = aOp + i;
2048       if( pOp->opcode==OP_OpenRead ) break;
2049       if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
2050       if( pOp->opcode==OP_ReopenIdx ) break;
2051     }else
2052 #endif
2053     {
2054       assert( eMode==1 );
2055       if( aOp[i].opcode==OP_Explain ) break;
2056       if( aOp[i].opcode==OP_Init && iPc>1 ) break;
2057     }
2058   }
2059   *piPc = iPc;
2060   *piAddr = i;
2061   *paOp = aOp;
2062   return rc;
2063 }
2064 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2065 
2066 
2067 /*
2068 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2069 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2070 */
2071 void sqlite3VdbeFrameDelete(VdbeFrame *p){
2072   int i;
2073   Mem *aMem = VdbeFrameMem(p);
2074   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
2075   assert( sqlite3VdbeFrameIsValid(p) );
2076   for(i=0; i<p->nChildCsr; i++){
2077     sqlite3VdbeFreeCursor(p->v, apCsr[i]);
2078   }
2079   releaseMemArray(aMem, p->nChildMem);
2080   sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
2081   sqlite3DbFree(p->v->db, p);
2082 }
2083 
2084 #ifndef SQLITE_OMIT_EXPLAIN
2085 /*
2086 ** Give a listing of the program in the virtual machine.
2087 **
2088 ** The interface is the same as sqlite3VdbeExec().  But instead of
2089 ** running the code, it invokes the callback once for each instruction.
2090 ** This feature is used to implement "EXPLAIN".
2091 **
2092 ** When p->explain==1, each instruction is listed.  When
2093 ** p->explain==2, only OP_Explain instructions are listed and these
2094 ** are shown in a different format.  p->explain==2 is used to implement
2095 ** EXPLAIN QUERY PLAN.
2096 ** 2018-04-24:  In p->explain==2 mode, the OP_Init opcodes of triggers
2097 ** are also shown, so that the boundaries between the main program and
2098 ** each trigger are clear.
2099 **
2100 ** When p->explain==1, first the main program is listed, then each of
2101 ** the trigger subprograms are listed one by one.
2102 */
2103 int sqlite3VdbeList(
2104   Vdbe *p                   /* The VDBE */
2105 ){
2106   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
2107   sqlite3 *db = p->db;                 /* The database connection */
2108   int i;                               /* Loop counter */
2109   int rc = SQLITE_OK;                  /* Return code */
2110   Mem *pMem = &p->aMem[1];             /* First Mem of result set */
2111   int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
2112   Op *aOp;                             /* Array of opcodes */
2113   Op *pOp;                             /* Current opcode */
2114 
2115   assert( p->explain );
2116   assert( p->magic==VDBE_MAGIC_RUN );
2117   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
2118 
2119   /* Even though this opcode does not use dynamic strings for
2120   ** the result, result columns may become dynamic if the user calls
2121   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2122   */
2123   releaseMemArray(pMem, 8);
2124   p->pResultSet = 0;
2125 
2126   if( p->rc==SQLITE_NOMEM ){
2127     /* This happens if a malloc() inside a call to sqlite3_column_text() or
2128     ** sqlite3_column_text16() failed.  */
2129     sqlite3OomFault(db);
2130     return SQLITE_ERROR;
2131   }
2132 
2133   if( bListSubprogs ){
2134     /* The first 8 memory cells are used for the result set.  So we will
2135     ** commandeer the 9th cell to use as storage for an array of pointers
2136     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
2137     ** cells.  */
2138     assert( p->nMem>9 );
2139     pSub = &p->aMem[9];
2140   }else{
2141     pSub = 0;
2142   }
2143 
2144   /* Figure out which opcode is next to display */
2145   rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
2146 
2147   if( rc==SQLITE_OK ){
2148     pOp = aOp + i;
2149     if( AtomicLoad(&db->u1.isInterrupted) ){
2150       p->rc = SQLITE_INTERRUPT;
2151       rc = SQLITE_ERROR;
2152       sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2153     }else{
2154       char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
2155       if( p->explain==2 ){
2156         sqlite3VdbeMemSetInt64(pMem, pOp->p1);
2157         sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
2158         sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
2159         sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
2160         p->nResColumn = 4;
2161       }else{
2162         sqlite3VdbeMemSetInt64(pMem+0, i);
2163         sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
2164                              -1, SQLITE_UTF8, SQLITE_STATIC);
2165         sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
2166         sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
2167         sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
2168         /* pMem+5 for p4 is done last */
2169         sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
2170 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2171         {
2172           char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
2173           sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
2174         }
2175 #else
2176         sqlite3VdbeMemSetNull(pMem+7);
2177 #endif
2178         sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
2179         p->nResColumn = 8;
2180       }
2181       p->pResultSet = pMem;
2182       if( db->mallocFailed ){
2183         p->rc = SQLITE_NOMEM;
2184         rc = SQLITE_ERROR;
2185       }else{
2186         p->rc = SQLITE_OK;
2187         rc = SQLITE_ROW;
2188       }
2189     }
2190   }
2191   return rc;
2192 }
2193 #endif /* SQLITE_OMIT_EXPLAIN */
2194 
2195 #ifdef SQLITE_DEBUG
2196 /*
2197 ** Print the SQL that was used to generate a VDBE program.
2198 */
2199 void sqlite3VdbePrintSql(Vdbe *p){
2200   const char *z = 0;
2201   if( p->zSql ){
2202     z = p->zSql;
2203   }else if( p->nOp>=1 ){
2204     const VdbeOp *pOp = &p->aOp[0];
2205     if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2206       z = pOp->p4.z;
2207       while( sqlite3Isspace(*z) ) z++;
2208     }
2209   }
2210   if( z ) printf("SQL: [%s]\n", z);
2211 }
2212 #endif
2213 
2214 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2215 /*
2216 ** Print an IOTRACE message showing SQL content.
2217 */
2218 void sqlite3VdbeIOTraceSql(Vdbe *p){
2219   int nOp = p->nOp;
2220   VdbeOp *pOp;
2221   if( sqlite3IoTrace==0 ) return;
2222   if( nOp<1 ) return;
2223   pOp = &p->aOp[0];
2224   if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2225     int i, j;
2226     char z[1000];
2227     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2228     for(i=0; sqlite3Isspace(z[i]); i++){}
2229     for(j=0; z[i]; i++){
2230       if( sqlite3Isspace(z[i]) ){
2231         if( z[i-1]!=' ' ){
2232           z[j++] = ' ';
2233         }
2234       }else{
2235         z[j++] = z[i];
2236       }
2237     }
2238     z[j] = 0;
2239     sqlite3IoTrace("SQL %s\n", z);
2240   }
2241 }
2242 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2243 
2244 /* An instance of this object describes bulk memory available for use
2245 ** by subcomponents of a prepared statement.  Space is allocated out
2246 ** of a ReusableSpace object by the allocSpace() routine below.
2247 */
2248 struct ReusableSpace {
2249   u8 *pSpace;            /* Available memory */
2250   sqlite3_int64 nFree;   /* Bytes of available memory */
2251   sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2252 };
2253 
2254 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2255 ** from the ReusableSpace object.  Return a pointer to the allocated
2256 ** memory on success.  If insufficient memory is available in the
2257 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2258 ** value by the amount needed and return NULL.
2259 **
2260 ** If pBuf is not initially NULL, that means that the memory has already
2261 ** been allocated by a prior call to this routine, so just return a copy
2262 ** of pBuf and leave ReusableSpace unchanged.
2263 **
2264 ** This allocator is employed to repurpose unused slots at the end of the
2265 ** opcode array of prepared state for other memory needs of the prepared
2266 ** statement.
2267 */
2268 static void *allocSpace(
2269   struct ReusableSpace *p,  /* Bulk memory available for allocation */
2270   void *pBuf,               /* Pointer to a prior allocation */
2271   sqlite3_int64 nByte       /* Bytes of memory needed */
2272 ){
2273   assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2274   if( pBuf==0 ){
2275     nByte = ROUND8(nByte);
2276     if( nByte <= p->nFree ){
2277       p->nFree -= nByte;
2278       pBuf = &p->pSpace[p->nFree];
2279     }else{
2280       p->nNeeded += nByte;
2281     }
2282   }
2283   assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2284   return pBuf;
2285 }
2286 
2287 /*
2288 ** Rewind the VDBE back to the beginning in preparation for
2289 ** running it.
2290 */
2291 void sqlite3VdbeRewind(Vdbe *p){
2292 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2293   int i;
2294 #endif
2295   assert( p!=0 );
2296   assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET );
2297 
2298   /* There should be at least one opcode.
2299   */
2300   assert( p->nOp>0 );
2301 
2302   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
2303   p->magic = VDBE_MAGIC_RUN;
2304 
2305 #ifdef SQLITE_DEBUG
2306   for(i=0; i<p->nMem; i++){
2307     assert( p->aMem[i].db==p->db );
2308   }
2309 #endif
2310   p->pc = -1;
2311   p->rc = SQLITE_OK;
2312   p->errorAction = OE_Abort;
2313   p->nChange = 0;
2314   p->cacheCtr = 1;
2315   p->minWriteFileFormat = 255;
2316   p->iStatement = 0;
2317   p->nFkConstraint = 0;
2318 #ifdef VDBE_PROFILE
2319   for(i=0; i<p->nOp; i++){
2320     p->aOp[i].cnt = 0;
2321     p->aOp[i].cycles = 0;
2322   }
2323 #endif
2324 }
2325 
2326 /*
2327 ** Prepare a virtual machine for execution for the first time after
2328 ** creating the virtual machine.  This involves things such
2329 ** as allocating registers and initializing the program counter.
2330 ** After the VDBE has be prepped, it can be executed by one or more
2331 ** calls to sqlite3VdbeExec().
2332 **
2333 ** This function may be called exactly once on each virtual machine.
2334 ** After this routine is called the VM has been "packaged" and is ready
2335 ** to run.  After this routine is called, further calls to
2336 ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
2337 ** the Vdbe from the Parse object that helped generate it so that the
2338 ** the Vdbe becomes an independent entity and the Parse object can be
2339 ** destroyed.
2340 **
2341 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2342 ** to its initial state after it has been run.
2343 */
2344 void sqlite3VdbeMakeReady(
2345   Vdbe *p,                       /* The VDBE */
2346   Parse *pParse                  /* Parsing context */
2347 ){
2348   sqlite3 *db;                   /* The database connection */
2349   int nVar;                      /* Number of parameters */
2350   int nMem;                      /* Number of VM memory registers */
2351   int nCursor;                   /* Number of cursors required */
2352   int nArg;                      /* Number of arguments in subprograms */
2353   int n;                         /* Loop counter */
2354   struct ReusableSpace x;        /* Reusable bulk memory */
2355 
2356   assert( p!=0 );
2357   assert( p->nOp>0 );
2358   assert( pParse!=0 );
2359   assert( p->magic==VDBE_MAGIC_INIT );
2360   assert( pParse==p->pParse );
2361   db = p->db;
2362   assert( db->mallocFailed==0 );
2363   nVar = pParse->nVar;
2364   nMem = pParse->nMem;
2365   nCursor = pParse->nTab;
2366   nArg = pParse->nMaxArg;
2367 
2368   /* Each cursor uses a memory cell.  The first cursor (cursor 0) can
2369   ** use aMem[0] which is not otherwise used by the VDBE program.  Allocate
2370   ** space at the end of aMem[] for cursors 1 and greater.
2371   ** See also: allocateCursor().
2372   */
2373   nMem += nCursor;
2374   if( nCursor==0 && nMem>0 ) nMem++;  /* Space for aMem[0] even if not used */
2375 
2376   /* Figure out how much reusable memory is available at the end of the
2377   ** opcode array.  This extra memory will be reallocated for other elements
2378   ** of the prepared statement.
2379   */
2380   n = ROUND8(sizeof(Op)*p->nOp);              /* Bytes of opcode memory used */
2381   x.pSpace = &((u8*)p->aOp)[n];               /* Unused opcode memory */
2382   assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2383   x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */
2384   assert( x.nFree>=0 );
2385   assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2386 
2387   resolveP2Values(p, &nArg);
2388   p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2389   if( pParse->explain ){
2390     static const char * const azColName[] = {
2391        "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2392        "id", "parent", "notused", "detail"
2393     };
2394     int iFirst, mx, i;
2395     if( nMem<10 ) nMem = 10;
2396     p->explain = pParse->explain;
2397     if( pParse->explain==2 ){
2398       sqlite3VdbeSetNumCols(p, 4);
2399       iFirst = 8;
2400       mx = 12;
2401     }else{
2402       sqlite3VdbeSetNumCols(p, 8);
2403       iFirst = 0;
2404       mx = 8;
2405     }
2406     for(i=iFirst; i<mx; i++){
2407       sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
2408                             azColName[i], SQLITE_STATIC);
2409     }
2410   }
2411   p->expired = 0;
2412 
2413   /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2414   ** passes.  On the first pass, we try to reuse unused memory at the
2415   ** end of the opcode array.  If we are unable to satisfy all memory
2416   ** requirements by reusing the opcode array tail, then the second
2417   ** pass will fill in the remainder using a fresh memory allocation.
2418   **
2419   ** This two-pass approach that reuses as much memory as possible from
2420   ** the leftover memory at the end of the opcode array.  This can significantly
2421   ** reduce the amount of memory held by a prepared statement.
2422   */
2423   x.nNeeded = 0;
2424   p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2425   p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2426   p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2427   p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2428 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2429   p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64));
2430 #endif
2431   if( x.nNeeded ){
2432     x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2433     x.nFree = x.nNeeded;
2434     if( !db->mallocFailed ){
2435       p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2436       p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2437       p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2438       p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2439 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2440       p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2441 #endif
2442     }
2443   }
2444 
2445   p->pVList = pParse->pVList;
2446   pParse->pVList =  0;
2447   if( db->mallocFailed ){
2448     p->nVar = 0;
2449     p->nCursor = 0;
2450     p->nMem = 0;
2451   }else{
2452     p->nCursor = nCursor;
2453     p->nVar = (ynVar)nVar;
2454     initMemArray(p->aVar, nVar, db, MEM_Null);
2455     p->nMem = nMem;
2456     initMemArray(p->aMem, nMem, db, MEM_Undefined);
2457     memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2458 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2459     memset(p->anExec, 0, p->nOp*sizeof(i64));
2460 #endif
2461   }
2462   sqlite3VdbeRewind(p);
2463 }
2464 
2465 /*
2466 ** Close a VDBE cursor and release all the resources that cursor
2467 ** happens to hold.
2468 */
2469 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2470   if( pCx==0 ){
2471     return;
2472   }
2473   assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2474   switch( pCx->eCurType ){
2475     case CURTYPE_SORTER: {
2476       sqlite3VdbeSorterClose(p->db, pCx);
2477       break;
2478     }
2479     case CURTYPE_BTREE: {
2480       if( pCx->isEphemeral ){
2481         if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx);
2482         /* The pCx->pCursor will be close automatically, if it exists, by
2483         ** the call above. */
2484       }else{
2485         assert( pCx->uc.pCursor!=0 );
2486         sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2487       }
2488       break;
2489     }
2490 #ifndef SQLITE_OMIT_VIRTUALTABLE
2491     case CURTYPE_VTAB: {
2492       sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2493       const sqlite3_module *pModule = pVCur->pVtab->pModule;
2494       assert( pVCur->pVtab->nRef>0 );
2495       pVCur->pVtab->nRef--;
2496       pModule->xClose(pVCur);
2497       break;
2498     }
2499 #endif
2500   }
2501 }
2502 
2503 /*
2504 ** Close all cursors in the current frame.
2505 */
2506 static void closeCursorsInFrame(Vdbe *p){
2507   if( p->apCsr ){
2508     int i;
2509     for(i=0; i<p->nCursor; i++){
2510       VdbeCursor *pC = p->apCsr[i];
2511       if( pC ){
2512         sqlite3VdbeFreeCursor(p, pC);
2513         p->apCsr[i] = 0;
2514       }
2515     }
2516   }
2517 }
2518 
2519 /*
2520 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2521 ** is used, for example, when a trigger sub-program is halted to restore
2522 ** control to the main program.
2523 */
2524 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2525   Vdbe *v = pFrame->v;
2526   closeCursorsInFrame(v);
2527 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2528   v->anExec = pFrame->anExec;
2529 #endif
2530   v->aOp = pFrame->aOp;
2531   v->nOp = pFrame->nOp;
2532   v->aMem = pFrame->aMem;
2533   v->nMem = pFrame->nMem;
2534   v->apCsr = pFrame->apCsr;
2535   v->nCursor = pFrame->nCursor;
2536   v->db->lastRowid = pFrame->lastRowid;
2537   v->nChange = pFrame->nChange;
2538   v->db->nChange = pFrame->nDbChange;
2539   sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2540   v->pAuxData = pFrame->pAuxData;
2541   pFrame->pAuxData = 0;
2542   return pFrame->pc;
2543 }
2544 
2545 /*
2546 ** Close all cursors.
2547 **
2548 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2549 ** cell array. This is necessary as the memory cell array may contain
2550 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2551 ** open cursors.
2552 */
2553 static void closeAllCursors(Vdbe *p){
2554   if( p->pFrame ){
2555     VdbeFrame *pFrame;
2556     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2557     sqlite3VdbeFrameRestore(pFrame);
2558     p->pFrame = 0;
2559     p->nFrame = 0;
2560   }
2561   assert( p->nFrame==0 );
2562   closeCursorsInFrame(p);
2563   if( p->aMem ){
2564     releaseMemArray(p->aMem, p->nMem);
2565   }
2566   while( p->pDelFrame ){
2567     VdbeFrame *pDel = p->pDelFrame;
2568     p->pDelFrame = pDel->pParent;
2569     sqlite3VdbeFrameDelete(pDel);
2570   }
2571 
2572   /* Delete any auxdata allocations made by the VM */
2573   if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2574   assert( p->pAuxData==0 );
2575 }
2576 
2577 /*
2578 ** Set the number of result columns that will be returned by this SQL
2579 ** statement. This is now set at compile time, rather than during
2580 ** execution of the vdbe program so that sqlite3_column_count() can
2581 ** be called on an SQL statement before sqlite3_step().
2582 */
2583 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2584   int n;
2585   sqlite3 *db = p->db;
2586 
2587   if( p->nResColumn ){
2588     releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2589     sqlite3DbFree(db, p->aColName);
2590   }
2591   n = nResColumn*COLNAME_N;
2592   p->nResColumn = (u16)nResColumn;
2593   p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2594   if( p->aColName==0 ) return;
2595   initMemArray(p->aColName, n, db, MEM_Null);
2596 }
2597 
2598 /*
2599 ** Set the name of the idx'th column to be returned by the SQL statement.
2600 ** zName must be a pointer to a nul terminated string.
2601 **
2602 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2603 **
2604 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2605 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2606 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2607 */
2608 int sqlite3VdbeSetColName(
2609   Vdbe *p,                         /* Vdbe being configured */
2610   int idx,                         /* Index of column zName applies to */
2611   int var,                         /* One of the COLNAME_* constants */
2612   const char *zName,               /* Pointer to buffer containing name */
2613   void (*xDel)(void*)              /* Memory management strategy for zName */
2614 ){
2615   int rc;
2616   Mem *pColName;
2617   assert( idx<p->nResColumn );
2618   assert( var<COLNAME_N );
2619   if( p->db->mallocFailed ){
2620     assert( !zName || xDel!=SQLITE_DYNAMIC );
2621     return SQLITE_NOMEM_BKPT;
2622   }
2623   assert( p->aColName!=0 );
2624   pColName = &(p->aColName[idx+var*p->nResColumn]);
2625   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2626   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2627   return rc;
2628 }
2629 
2630 /*
2631 ** A read or write transaction may or may not be active on database handle
2632 ** db. If a transaction is active, commit it. If there is a
2633 ** write-transaction spanning more than one database file, this routine
2634 ** takes care of the super-journal trickery.
2635 */
2636 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2637   int i;
2638   int nTrans = 0;  /* Number of databases with an active write-transaction
2639                    ** that are candidates for a two-phase commit using a
2640                    ** super-journal */
2641   int rc = SQLITE_OK;
2642   int needXcommit = 0;
2643 
2644 #ifdef SQLITE_OMIT_VIRTUALTABLE
2645   /* With this option, sqlite3VtabSync() is defined to be simply
2646   ** SQLITE_OK so p is not used.
2647   */
2648   UNUSED_PARAMETER(p);
2649 #endif
2650 
2651   /* Before doing anything else, call the xSync() callback for any
2652   ** virtual module tables written in this transaction. This has to
2653   ** be done before determining whether a super-journal file is
2654   ** required, as an xSync() callback may add an attached database
2655   ** to the transaction.
2656   */
2657   rc = sqlite3VtabSync(db, p);
2658 
2659   /* This loop determines (a) if the commit hook should be invoked and
2660   ** (b) how many database files have open write transactions, not
2661   ** including the temp database. (b) is important because if more than
2662   ** one database file has an open write transaction, a super-journal
2663   ** file is required for an atomic commit.
2664   */
2665   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2666     Btree *pBt = db->aDb[i].pBt;
2667     if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2668       /* Whether or not a database might need a super-journal depends upon
2669       ** its journal mode (among other things).  This matrix determines which
2670       ** journal modes use a super-journal and which do not */
2671       static const u8 aMJNeeded[] = {
2672         /* DELETE   */  1,
2673         /* PERSIST   */ 1,
2674         /* OFF       */ 0,
2675         /* TRUNCATE  */ 1,
2676         /* MEMORY    */ 0,
2677         /* WAL       */ 0
2678       };
2679       Pager *pPager;   /* Pager associated with pBt */
2680       needXcommit = 1;
2681       sqlite3BtreeEnter(pBt);
2682       pPager = sqlite3BtreePager(pBt);
2683       if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2684        && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2685        && sqlite3PagerIsMemdb(pPager)==0
2686       ){
2687         assert( i!=1 );
2688         nTrans++;
2689       }
2690       rc = sqlite3PagerExclusiveLock(pPager);
2691       sqlite3BtreeLeave(pBt);
2692     }
2693   }
2694   if( rc!=SQLITE_OK ){
2695     return rc;
2696   }
2697 
2698   /* If there are any write-transactions at all, invoke the commit hook */
2699   if( needXcommit && db->xCommitCallback ){
2700     rc = db->xCommitCallback(db->pCommitArg);
2701     if( rc ){
2702       return SQLITE_CONSTRAINT_COMMITHOOK;
2703     }
2704   }
2705 
2706   /* The simple case - no more than one database file (not counting the
2707   ** TEMP database) has a transaction active.   There is no need for the
2708   ** super-journal.
2709   **
2710   ** If the return value of sqlite3BtreeGetFilename() is a zero length
2711   ** string, it means the main database is :memory: or a temp file.  In
2712   ** that case we do not support atomic multi-file commits, so use the
2713   ** simple case then too.
2714   */
2715   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2716    || nTrans<=1
2717   ){
2718     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2719       Btree *pBt = db->aDb[i].pBt;
2720       if( pBt ){
2721         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2722       }
2723     }
2724 
2725     /* Do the commit only if all databases successfully complete phase 1.
2726     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2727     ** IO error while deleting or truncating a journal file. It is unlikely,
2728     ** but could happen. In this case abandon processing and return the error.
2729     */
2730     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2731       Btree *pBt = db->aDb[i].pBt;
2732       if( pBt ){
2733         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2734       }
2735     }
2736     if( rc==SQLITE_OK ){
2737       sqlite3VtabCommit(db);
2738     }
2739   }
2740 
2741   /* The complex case - There is a multi-file write-transaction active.
2742   ** This requires a super-journal file to ensure the transaction is
2743   ** committed atomically.
2744   */
2745 #ifndef SQLITE_OMIT_DISKIO
2746   else{
2747     sqlite3_vfs *pVfs = db->pVfs;
2748     char *zSuper = 0;   /* File-name for the super-journal */
2749     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2750     sqlite3_file *pSuperJrnl = 0;
2751     i64 offset = 0;
2752     int res;
2753     int retryCount = 0;
2754     int nMainFile;
2755 
2756     /* Select a super-journal file name */
2757     nMainFile = sqlite3Strlen30(zMainFile);
2758     zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
2759     if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
2760     zSuper += 4;
2761     do {
2762       u32 iRandom;
2763       if( retryCount ){
2764         if( retryCount>100 ){
2765           sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
2766           sqlite3OsDelete(pVfs, zSuper, 0);
2767           break;
2768         }else if( retryCount==1 ){
2769           sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
2770         }
2771       }
2772       retryCount++;
2773       sqlite3_randomness(sizeof(iRandom), &iRandom);
2774       sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
2775                                (iRandom>>8)&0xffffff, iRandom&0xff);
2776       /* The antipenultimate character of the super-journal name must
2777       ** be "9" to avoid name collisions when using 8+3 filenames. */
2778       assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
2779       sqlite3FileSuffix3(zMainFile, zSuper);
2780       rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
2781     }while( rc==SQLITE_OK && res );
2782     if( rc==SQLITE_OK ){
2783       /* Open the super-journal. */
2784       rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl,
2785           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2786           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
2787       );
2788     }
2789     if( rc!=SQLITE_OK ){
2790       sqlite3DbFree(db, zSuper-4);
2791       return rc;
2792     }
2793 
2794     /* Write the name of each database file in the transaction into the new
2795     ** super-journal file. If an error occurs at this point close
2796     ** and delete the super-journal file. All the individual journal files
2797     ** still have 'null' as the super-journal pointer, so they will roll
2798     ** back independently if a failure occurs.
2799     */
2800     for(i=0; i<db->nDb; i++){
2801       Btree *pBt = db->aDb[i].pBt;
2802       if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2803         char const *zFile = sqlite3BtreeGetJournalname(pBt);
2804         if( zFile==0 ){
2805           continue;  /* Ignore TEMP and :memory: databases */
2806         }
2807         assert( zFile[0]!=0 );
2808         rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
2809         offset += sqlite3Strlen30(zFile)+1;
2810         if( rc!=SQLITE_OK ){
2811           sqlite3OsCloseFree(pSuperJrnl);
2812           sqlite3OsDelete(pVfs, zSuper, 0);
2813           sqlite3DbFree(db, zSuper-4);
2814           return rc;
2815         }
2816       }
2817     }
2818 
2819     /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
2820     ** flag is set this is not required.
2821     */
2822     if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
2823      && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
2824     ){
2825       sqlite3OsCloseFree(pSuperJrnl);
2826       sqlite3OsDelete(pVfs, zSuper, 0);
2827       sqlite3DbFree(db, zSuper-4);
2828       return rc;
2829     }
2830 
2831     /* Sync all the db files involved in the transaction. The same call
2832     ** sets the super-journal pointer in each individual journal. If
2833     ** an error occurs here, do not delete the super-journal file.
2834     **
2835     ** If the error occurs during the first call to
2836     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2837     ** super-journal file will be orphaned. But we cannot delete it,
2838     ** in case the super-journal file name was written into the journal
2839     ** file before the failure occurred.
2840     */
2841     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2842       Btree *pBt = db->aDb[i].pBt;
2843       if( pBt ){
2844         rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
2845       }
2846     }
2847     sqlite3OsCloseFree(pSuperJrnl);
2848     assert( rc!=SQLITE_BUSY );
2849     if( rc!=SQLITE_OK ){
2850       sqlite3DbFree(db, zSuper-4);
2851       return rc;
2852     }
2853 
2854     /* Delete the super-journal file. This commits the transaction. After
2855     ** doing this the directory is synced again before any individual
2856     ** transaction files are deleted.
2857     */
2858     rc = sqlite3OsDelete(pVfs, zSuper, 1);
2859     sqlite3DbFree(db, zSuper-4);
2860     zSuper = 0;
2861     if( rc ){
2862       return rc;
2863     }
2864 
2865     /* All files and directories have already been synced, so the following
2866     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2867     ** deleting or truncating journals. If something goes wrong while
2868     ** this is happening we don't really care. The integrity of the
2869     ** transaction is already guaranteed, but some stray 'cold' journals
2870     ** may be lying around. Returning an error code won't help matters.
2871     */
2872     disable_simulated_io_errors();
2873     sqlite3BeginBenignMalloc();
2874     for(i=0; i<db->nDb; i++){
2875       Btree *pBt = db->aDb[i].pBt;
2876       if( pBt ){
2877         sqlite3BtreeCommitPhaseTwo(pBt, 1);
2878       }
2879     }
2880     sqlite3EndBenignMalloc();
2881     enable_simulated_io_errors();
2882 
2883     sqlite3VtabCommit(db);
2884   }
2885 #endif
2886 
2887   return rc;
2888 }
2889 
2890 /*
2891 ** This routine checks that the sqlite3.nVdbeActive count variable
2892 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2893 ** currently active. An assertion fails if the two counts do not match.
2894 ** This is an internal self-check only - it is not an essential processing
2895 ** step.
2896 **
2897 ** This is a no-op if NDEBUG is defined.
2898 */
2899 #ifndef NDEBUG
2900 static void checkActiveVdbeCnt(sqlite3 *db){
2901   Vdbe *p;
2902   int cnt = 0;
2903   int nWrite = 0;
2904   int nRead = 0;
2905   p = db->pVdbe;
2906   while( p ){
2907     if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2908       cnt++;
2909       if( p->readOnly==0 ) nWrite++;
2910       if( p->bIsReader ) nRead++;
2911     }
2912     p = p->pNext;
2913   }
2914   assert( cnt==db->nVdbeActive );
2915   assert( nWrite==db->nVdbeWrite );
2916   assert( nRead==db->nVdbeRead );
2917 }
2918 #else
2919 #define checkActiveVdbeCnt(x)
2920 #endif
2921 
2922 /*
2923 ** If the Vdbe passed as the first argument opened a statement-transaction,
2924 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2925 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2926 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2927 ** statement transaction is committed.
2928 **
2929 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2930 ** Otherwise SQLITE_OK.
2931 */
2932 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2933   sqlite3 *const db = p->db;
2934   int rc = SQLITE_OK;
2935   int i;
2936   const int iSavepoint = p->iStatement-1;
2937 
2938   assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2939   assert( db->nStatement>0 );
2940   assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2941 
2942   for(i=0; i<db->nDb; i++){
2943     int rc2 = SQLITE_OK;
2944     Btree *pBt = db->aDb[i].pBt;
2945     if( pBt ){
2946       if( eOp==SAVEPOINT_ROLLBACK ){
2947         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2948       }
2949       if( rc2==SQLITE_OK ){
2950         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2951       }
2952       if( rc==SQLITE_OK ){
2953         rc = rc2;
2954       }
2955     }
2956   }
2957   db->nStatement--;
2958   p->iStatement = 0;
2959 
2960   if( rc==SQLITE_OK ){
2961     if( eOp==SAVEPOINT_ROLLBACK ){
2962       rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2963     }
2964     if( rc==SQLITE_OK ){
2965       rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2966     }
2967   }
2968 
2969   /* If the statement transaction is being rolled back, also restore the
2970   ** database handles deferred constraint counter to the value it had when
2971   ** the statement transaction was opened.  */
2972   if( eOp==SAVEPOINT_ROLLBACK ){
2973     db->nDeferredCons = p->nStmtDefCons;
2974     db->nDeferredImmCons = p->nStmtDefImmCons;
2975   }
2976   return rc;
2977 }
2978 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2979   if( p->db->nStatement && p->iStatement ){
2980     return vdbeCloseStatement(p, eOp);
2981   }
2982   return SQLITE_OK;
2983 }
2984 
2985 
2986 /*
2987 ** This function is called when a transaction opened by the database
2988 ** handle associated with the VM passed as an argument is about to be
2989 ** committed. If there are outstanding deferred foreign key constraint
2990 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2991 **
2992 ** If there are outstanding FK violations and this function returns
2993 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2994 ** and write an error message to it. Then return SQLITE_ERROR.
2995 */
2996 #ifndef SQLITE_OMIT_FOREIGN_KEY
2997 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2998   sqlite3 *db = p->db;
2999   if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
3000    || (!deferred && p->nFkConstraint>0)
3001   ){
3002     p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3003     p->errorAction = OE_Abort;
3004     sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
3005     return SQLITE_ERROR;
3006   }
3007   return SQLITE_OK;
3008 }
3009 #endif
3010 
3011 /*
3012 ** This routine is called the when a VDBE tries to halt.  If the VDBE
3013 ** has made changes and is in autocommit mode, then commit those
3014 ** changes.  If a rollback is needed, then do the rollback.
3015 **
3016 ** This routine is the only way to move the state of a VM from
3017 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
3018 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
3019 **
3020 ** Return an error code.  If the commit could not complete because of
3021 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
3022 ** means the close did not happen and needs to be repeated.
3023 */
3024 int sqlite3VdbeHalt(Vdbe *p){
3025   int rc;                         /* Used to store transient return codes */
3026   sqlite3 *db = p->db;
3027 
3028   /* This function contains the logic that determines if a statement or
3029   ** transaction will be committed or rolled back as a result of the
3030   ** execution of this virtual machine.
3031   **
3032   ** If any of the following errors occur:
3033   **
3034   **     SQLITE_NOMEM
3035   **     SQLITE_IOERR
3036   **     SQLITE_FULL
3037   **     SQLITE_INTERRUPT
3038   **
3039   ** Then the internal cache might have been left in an inconsistent
3040   ** state.  We need to rollback the statement transaction, if there is
3041   ** one, or the complete transaction if there is no statement transaction.
3042   */
3043 
3044   if( p->magic!=VDBE_MAGIC_RUN ){
3045     return SQLITE_OK;
3046   }
3047   if( db->mallocFailed ){
3048     p->rc = SQLITE_NOMEM_BKPT;
3049   }
3050   closeAllCursors(p);
3051   checkActiveVdbeCnt(db);
3052 
3053   /* No commit or rollback needed if the program never started or if the
3054   ** SQL statement does not read or write a database file.  */
3055   if( p->pc>=0 && p->bIsReader ){
3056     int mrc;   /* Primary error code from p->rc */
3057     int eStatementOp = 0;
3058     int isSpecialError;            /* Set to true if a 'special' error */
3059 
3060     /* Lock all btrees used by the statement */
3061     sqlite3VdbeEnter(p);
3062 
3063     /* Check for one of the special errors */
3064     mrc = p->rc & 0xff;
3065     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
3066                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
3067     if( isSpecialError ){
3068       /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3069       ** no rollback is necessary. Otherwise, at least a savepoint
3070       ** transaction must be rolled back to restore the database to a
3071       ** consistent state.
3072       **
3073       ** Even if the statement is read-only, it is important to perform
3074       ** a statement or transaction rollback operation. If the error
3075       ** occurred while writing to the journal, sub-journal or database
3076       ** file as part of an effort to free up cache space (see function
3077       ** pagerStress() in pager.c), the rollback is required to restore
3078       ** the pager to a consistent state.
3079       */
3080       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3081         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3082           eStatementOp = SAVEPOINT_ROLLBACK;
3083         }else{
3084           /* We are forced to roll back the active transaction. Before doing
3085           ** so, abort any other statements this handle currently has active.
3086           */
3087           sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3088           sqlite3CloseSavepoints(db);
3089           db->autoCommit = 1;
3090           p->nChange = 0;
3091         }
3092       }
3093     }
3094 
3095     /* Check for immediate foreign key violations. */
3096     if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3097       sqlite3VdbeCheckFk(p, 0);
3098     }
3099 
3100     /* If the auto-commit flag is set and this is the only active writer
3101     ** VM, then we do either a commit or rollback of the current transaction.
3102     **
3103     ** Note: This block also runs if one of the special errors handled
3104     ** above has occurred.
3105     */
3106     if( !sqlite3VtabInSync(db)
3107      && db->autoCommit
3108      && db->nVdbeWrite==(p->readOnly==0)
3109     ){
3110       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3111         rc = sqlite3VdbeCheckFk(p, 1);
3112         if( rc!=SQLITE_OK ){
3113           if( NEVER(p->readOnly) ){
3114             sqlite3VdbeLeave(p);
3115             return SQLITE_ERROR;
3116           }
3117           rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3118         }else{
3119           /* The auto-commit flag is true, the vdbe program was successful
3120           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3121           ** key constraints to hold up the transaction. This means a commit
3122           ** is required. */
3123           rc = vdbeCommit(db, p);
3124         }
3125         if( rc==SQLITE_BUSY && p->readOnly ){
3126           sqlite3VdbeLeave(p);
3127           return SQLITE_BUSY;
3128         }else if( rc!=SQLITE_OK ){
3129           p->rc = rc;
3130           sqlite3RollbackAll(db, SQLITE_OK);
3131           p->nChange = 0;
3132         }else{
3133           db->nDeferredCons = 0;
3134           db->nDeferredImmCons = 0;
3135           db->flags &= ~(u64)SQLITE_DeferFKs;
3136           sqlite3CommitInternalChanges(db);
3137         }
3138       }else{
3139         sqlite3RollbackAll(db, SQLITE_OK);
3140         p->nChange = 0;
3141       }
3142       db->nStatement = 0;
3143     }else if( eStatementOp==0 ){
3144       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3145         eStatementOp = SAVEPOINT_RELEASE;
3146       }else if( p->errorAction==OE_Abort ){
3147         eStatementOp = SAVEPOINT_ROLLBACK;
3148       }else{
3149         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3150         sqlite3CloseSavepoints(db);
3151         db->autoCommit = 1;
3152         p->nChange = 0;
3153       }
3154     }
3155 
3156     /* If eStatementOp is non-zero, then a statement transaction needs to
3157     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3158     ** do so. If this operation returns an error, and the current statement
3159     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3160     ** current statement error code.
3161     */
3162     if( eStatementOp ){
3163       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3164       if( rc ){
3165         if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3166           p->rc = rc;
3167           sqlite3DbFree(db, p->zErrMsg);
3168           p->zErrMsg = 0;
3169         }
3170         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3171         sqlite3CloseSavepoints(db);
3172         db->autoCommit = 1;
3173         p->nChange = 0;
3174       }
3175     }
3176 
3177     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3178     ** has been rolled back, update the database connection change-counter.
3179     */
3180     if( p->changeCntOn ){
3181       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3182         sqlite3VdbeSetChanges(db, p->nChange);
3183       }else{
3184         sqlite3VdbeSetChanges(db, 0);
3185       }
3186       p->nChange = 0;
3187     }
3188 
3189     /* Release the locks */
3190     sqlite3VdbeLeave(p);
3191   }
3192 
3193   /* We have successfully halted and closed the VM.  Record this fact. */
3194   if( p->pc>=0 ){
3195     db->nVdbeActive--;
3196     if( !p->readOnly ) db->nVdbeWrite--;
3197     if( p->bIsReader ) db->nVdbeRead--;
3198     assert( db->nVdbeActive>=db->nVdbeRead );
3199     assert( db->nVdbeRead>=db->nVdbeWrite );
3200     assert( db->nVdbeWrite>=0 );
3201   }
3202   p->magic = VDBE_MAGIC_HALT;
3203   checkActiveVdbeCnt(db);
3204   if( db->mallocFailed ){
3205     p->rc = SQLITE_NOMEM_BKPT;
3206   }
3207 
3208   /* If the auto-commit flag is set to true, then any locks that were held
3209   ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3210   ** to invoke any required unlock-notify callbacks.
3211   */
3212   if( db->autoCommit ){
3213     sqlite3ConnectionUnlocked(db);
3214   }
3215 
3216   assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3217   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3218 }
3219 
3220 
3221 /*
3222 ** Each VDBE holds the result of the most recent sqlite3_step() call
3223 ** in p->rc.  This routine sets that result back to SQLITE_OK.
3224 */
3225 void sqlite3VdbeResetStepResult(Vdbe *p){
3226   p->rc = SQLITE_OK;
3227 }
3228 
3229 /*
3230 ** Copy the error code and error message belonging to the VDBE passed
3231 ** as the first argument to its database handle (so that they will be
3232 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3233 **
3234 ** This function does not clear the VDBE error code or message, just
3235 ** copies them to the database handle.
3236 */
3237 int sqlite3VdbeTransferError(Vdbe *p){
3238   sqlite3 *db = p->db;
3239   int rc = p->rc;
3240   if( p->zErrMsg ){
3241     db->bBenignMalloc++;
3242     sqlite3BeginBenignMalloc();
3243     if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3244     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3245     sqlite3EndBenignMalloc();
3246     db->bBenignMalloc--;
3247   }else if( db->pErr ){
3248     sqlite3ValueSetNull(db->pErr);
3249   }
3250   db->errCode = rc;
3251   return rc;
3252 }
3253 
3254 #ifdef SQLITE_ENABLE_SQLLOG
3255 /*
3256 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3257 ** invoke it.
3258 */
3259 static void vdbeInvokeSqllog(Vdbe *v){
3260   if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3261     char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3262     assert( v->db->init.busy==0 );
3263     if( zExpanded ){
3264       sqlite3GlobalConfig.xSqllog(
3265           sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3266       );
3267       sqlite3DbFree(v->db, zExpanded);
3268     }
3269   }
3270 }
3271 #else
3272 # define vdbeInvokeSqllog(x)
3273 #endif
3274 
3275 /*
3276 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3277 ** Write any error messages into *pzErrMsg.  Return the result code.
3278 **
3279 ** After this routine is run, the VDBE should be ready to be executed
3280 ** again.
3281 **
3282 ** To look at it another way, this routine resets the state of the
3283 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
3284 ** VDBE_MAGIC_INIT.
3285 */
3286 int sqlite3VdbeReset(Vdbe *p){
3287 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3288   int i;
3289 #endif
3290 
3291   sqlite3 *db;
3292   db = p->db;
3293 
3294   /* If the VM did not run to completion or if it encountered an
3295   ** error, then it might not have been halted properly.  So halt
3296   ** it now.
3297   */
3298   sqlite3VdbeHalt(p);
3299 
3300   /* If the VDBE has been run even partially, then transfer the error code
3301   ** and error message from the VDBE into the main database structure.  But
3302   ** if the VDBE has just been set to run but has not actually executed any
3303   ** instructions yet, leave the main database error information unchanged.
3304   */
3305   if( p->pc>=0 ){
3306     vdbeInvokeSqllog(p);
3307     if( db->pErr || p->zErrMsg ){
3308       sqlite3VdbeTransferError(p);
3309     }else{
3310       db->errCode = p->rc;
3311     }
3312     if( p->runOnlyOnce ) p->expired = 1;
3313   }else if( p->rc && p->expired ){
3314     /* The expired flag was set on the VDBE before the first call
3315     ** to sqlite3_step(). For consistency (since sqlite3_step() was
3316     ** called), set the database error in this case as well.
3317     */
3318     sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
3319   }
3320 
3321   /* Reset register contents and reclaim error message memory.
3322   */
3323 #ifdef SQLITE_DEBUG
3324   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3325   ** Vdbe.aMem[] arrays have already been cleaned up.  */
3326   if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3327   if( p->aMem ){
3328     for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3329   }
3330 #endif
3331   if( p->zErrMsg ){
3332     sqlite3DbFree(db, p->zErrMsg);
3333     p->zErrMsg = 0;
3334   }
3335   p->pResultSet = 0;
3336 #ifdef SQLITE_DEBUG
3337   p->nWrite = 0;
3338 #endif
3339 
3340   /* Save profiling information from this VDBE run.
3341   */
3342 #ifdef VDBE_PROFILE
3343   {
3344     FILE *out = fopen("vdbe_profile.out", "a");
3345     if( out ){
3346       fprintf(out, "---- ");
3347       for(i=0; i<p->nOp; i++){
3348         fprintf(out, "%02x", p->aOp[i].opcode);
3349       }
3350       fprintf(out, "\n");
3351       if( p->zSql ){
3352         char c, pc = 0;
3353         fprintf(out, "-- ");
3354         for(i=0; (c = p->zSql[i])!=0; i++){
3355           if( pc=='\n' ) fprintf(out, "-- ");
3356           putc(c, out);
3357           pc = c;
3358         }
3359         if( pc!='\n' ) fprintf(out, "\n");
3360       }
3361       for(i=0; i<p->nOp; i++){
3362         char zHdr[100];
3363         sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3364            p->aOp[i].cnt,
3365            p->aOp[i].cycles,
3366            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
3367         );
3368         fprintf(out, "%s", zHdr);
3369         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3370       }
3371       fclose(out);
3372     }
3373   }
3374 #endif
3375   p->magic = VDBE_MAGIC_RESET;
3376   return p->rc & db->errMask;
3377 }
3378 
3379 /*
3380 ** Clean up and delete a VDBE after execution.  Return an integer which is
3381 ** the result code.  Write any error message text into *pzErrMsg.
3382 */
3383 int sqlite3VdbeFinalize(Vdbe *p){
3384   int rc = SQLITE_OK;
3385   if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
3386     rc = sqlite3VdbeReset(p);
3387     assert( (rc & p->db->errMask)==rc );
3388   }
3389   sqlite3VdbeDelete(p);
3390   return rc;
3391 }
3392 
3393 /*
3394 ** If parameter iOp is less than zero, then invoke the destructor for
3395 ** all auxiliary data pointers currently cached by the VM passed as
3396 ** the first argument.
3397 **
3398 ** Or, if iOp is greater than or equal to zero, then the destructor is
3399 ** only invoked for those auxiliary data pointers created by the user
3400 ** function invoked by the OP_Function opcode at instruction iOp of
3401 ** VM pVdbe, and only then if:
3402 **
3403 **    * the associated function parameter is the 32nd or later (counting
3404 **      from left to right), or
3405 **
3406 **    * the corresponding bit in argument mask is clear (where the first
3407 **      function parameter corresponds to bit 0 etc.).
3408 */
3409 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3410   while( *pp ){
3411     AuxData *pAux = *pp;
3412     if( (iOp<0)
3413      || (pAux->iAuxOp==iOp
3414           && pAux->iAuxArg>=0
3415           && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3416     ){
3417       testcase( pAux->iAuxArg==31 );
3418       if( pAux->xDeleteAux ){
3419         pAux->xDeleteAux(pAux->pAux);
3420       }
3421       *pp = pAux->pNextAux;
3422       sqlite3DbFree(db, pAux);
3423     }else{
3424       pp= &pAux->pNextAux;
3425     }
3426   }
3427 }
3428 
3429 /*
3430 ** Free all memory associated with the Vdbe passed as the second argument,
3431 ** except for object itself, which is preserved.
3432 **
3433 ** The difference between this function and sqlite3VdbeDelete() is that
3434 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3435 ** the database connection and frees the object itself.
3436 */
3437 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3438   SubProgram *pSub, *pNext;
3439   assert( p->db==0 || p->db==db );
3440   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3441   for(pSub=p->pProgram; pSub; pSub=pNext){
3442     pNext = pSub->pNext;
3443     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3444     sqlite3DbFree(db, pSub);
3445   }
3446   if( p->magic!=VDBE_MAGIC_INIT ){
3447     releaseMemArray(p->aVar, p->nVar);
3448     sqlite3DbFree(db, p->pVList);
3449     sqlite3DbFree(db, p->pFree);
3450   }
3451   vdbeFreeOpArray(db, p->aOp, p->nOp);
3452   sqlite3DbFree(db, p->aColName);
3453   sqlite3DbFree(db, p->zSql);
3454 #ifdef SQLITE_ENABLE_NORMALIZE
3455   sqlite3DbFree(db, p->zNormSql);
3456   {
3457     DblquoteStr *pThis, *pNext;
3458     for(pThis=p->pDblStr; pThis; pThis=pNext){
3459       pNext = pThis->pNextStr;
3460       sqlite3DbFree(db, pThis);
3461     }
3462   }
3463 #endif
3464 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3465   {
3466     int i;
3467     for(i=0; i<p->nScan; i++){
3468       sqlite3DbFree(db, p->aScan[i].zName);
3469     }
3470     sqlite3DbFree(db, p->aScan);
3471   }
3472 #endif
3473 }
3474 
3475 /*
3476 ** Delete an entire VDBE.
3477 */
3478 void sqlite3VdbeDelete(Vdbe *p){
3479   sqlite3 *db;
3480 
3481   assert( p!=0 );
3482   db = p->db;
3483   assert( sqlite3_mutex_held(db->mutex) );
3484   sqlite3VdbeClearObject(db, p);
3485   if( p->pPrev ){
3486     p->pPrev->pNext = p->pNext;
3487   }else{
3488     assert( db->pVdbe==p );
3489     db->pVdbe = p->pNext;
3490   }
3491   if( p->pNext ){
3492     p->pNext->pPrev = p->pPrev;
3493   }
3494   p->magic = VDBE_MAGIC_DEAD;
3495   p->db = 0;
3496   sqlite3DbFreeNN(db, p);
3497 }
3498 
3499 /*
3500 ** The cursor "p" has a pending seek operation that has not yet been
3501 ** carried out.  Seek the cursor now.  If an error occurs, return
3502 ** the appropriate error code.
3503 */
3504 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3505   int res, rc;
3506 #ifdef SQLITE_TEST
3507   extern int sqlite3_search_count;
3508 #endif
3509   assert( p->deferredMoveto );
3510   assert( p->isTable );
3511   assert( p->eCurType==CURTYPE_BTREE );
3512   rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
3513   if( rc ) return rc;
3514   if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3515 #ifdef SQLITE_TEST
3516   sqlite3_search_count++;
3517 #endif
3518   p->deferredMoveto = 0;
3519   p->cacheStatus = CACHE_STALE;
3520   return SQLITE_OK;
3521 }
3522 
3523 /*
3524 ** Something has moved cursor "p" out of place.  Maybe the row it was
3525 ** pointed to was deleted out from under it.  Or maybe the btree was
3526 ** rebalanced.  Whatever the cause, try to restore "p" to the place it
3527 ** is supposed to be pointing.  If the row was deleted out from under the
3528 ** cursor, set the cursor to point to a NULL row.
3529 */
3530 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3531   int isDifferentRow, rc;
3532   assert( p->eCurType==CURTYPE_BTREE );
3533   assert( p->uc.pCursor!=0 );
3534   assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3535   rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3536   p->cacheStatus = CACHE_STALE;
3537   if( isDifferentRow ) p->nullRow = 1;
3538   return rc;
3539 }
3540 
3541 /*
3542 ** Check to ensure that the cursor is valid.  Restore the cursor
3543 ** if need be.  Return any I/O error from the restore operation.
3544 */
3545 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3546   assert( p->eCurType==CURTYPE_BTREE );
3547   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3548     return handleMovedCursor(p);
3549   }
3550   return SQLITE_OK;
3551 }
3552 
3553 /*
3554 ** Make sure the cursor p is ready to read or write the row to which it
3555 ** was last positioned.  Return an error code if an OOM fault or I/O error
3556 ** prevents us from positioning the cursor to its correct position.
3557 **
3558 ** If a MoveTo operation is pending on the given cursor, then do that
3559 ** MoveTo now.  If no move is pending, check to see if the row has been
3560 ** deleted out from under the cursor and if it has, mark the row as
3561 ** a NULL row.
3562 **
3563 ** If the cursor is already pointing to the correct row and that row has
3564 ** not been deleted out from under the cursor, then this routine is a no-op.
3565 */
3566 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, u32 *piCol){
3567   VdbeCursor *p = *pp;
3568   assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
3569   if( p->deferredMoveto ){
3570     u32 iMap;
3571     if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 && !p->nullRow ){
3572       *pp = p->pAltCursor;
3573       *piCol = iMap - 1;
3574       return SQLITE_OK;
3575     }
3576     return sqlite3VdbeFinishMoveto(p);
3577   }
3578   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3579     return handleMovedCursor(p);
3580   }
3581   return SQLITE_OK;
3582 }
3583 
3584 /*
3585 ** The following functions:
3586 **
3587 ** sqlite3VdbeSerialType()
3588 ** sqlite3VdbeSerialTypeLen()
3589 ** sqlite3VdbeSerialLen()
3590 ** sqlite3VdbeSerialPut()
3591 ** sqlite3VdbeSerialGet()
3592 **
3593 ** encapsulate the code that serializes values for storage in SQLite
3594 ** data and index records. Each serialized value consists of a
3595 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3596 ** integer, stored as a varint.
3597 **
3598 ** In an SQLite index record, the serial type is stored directly before
3599 ** the blob of data that it corresponds to. In a table record, all serial
3600 ** types are stored at the start of the record, and the blobs of data at
3601 ** the end. Hence these functions allow the caller to handle the
3602 ** serial-type and data blob separately.
3603 **
3604 ** The following table describes the various storage classes for data:
3605 **
3606 **   serial type        bytes of data      type
3607 **   --------------     ---------------    ---------------
3608 **      0                     0            NULL
3609 **      1                     1            signed integer
3610 **      2                     2            signed integer
3611 **      3                     3            signed integer
3612 **      4                     4            signed integer
3613 **      5                     6            signed integer
3614 **      6                     8            signed integer
3615 **      7                     8            IEEE float
3616 **      8                     0            Integer constant 0
3617 **      9                     0            Integer constant 1
3618 **     10,11                               reserved for expansion
3619 **    N>=12 and even       (N-12)/2        BLOB
3620 **    N>=13 and odd        (N-13)/2        text
3621 **
3622 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
3623 ** of SQLite will not understand those serial types.
3624 */
3625 
3626 #if 0 /* Inlined into the OP_MakeRecord opcode */
3627 /*
3628 ** Return the serial-type for the value stored in pMem.
3629 **
3630 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3631 **
3632 ** 2019-07-11:  The primary user of this subroutine was the OP_MakeRecord
3633 ** opcode in the byte-code engine.  But by moving this routine in-line, we
3634 ** can omit some redundant tests and make that opcode a lot faster.  So
3635 ** this routine is now only used by the STAT3 logic and STAT3 support has
3636 ** ended.  The code is kept here for historical reference only.
3637 */
3638 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3639   int flags = pMem->flags;
3640   u32 n;
3641 
3642   assert( pLen!=0 );
3643   if( flags&MEM_Null ){
3644     *pLen = 0;
3645     return 0;
3646   }
3647   if( flags&(MEM_Int|MEM_IntReal) ){
3648     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3649 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3650     i64 i = pMem->u.i;
3651     u64 u;
3652     testcase( flags & MEM_Int );
3653     testcase( flags & MEM_IntReal );
3654     if( i<0 ){
3655       u = ~i;
3656     }else{
3657       u = i;
3658     }
3659     if( u<=127 ){
3660       if( (i&1)==i && file_format>=4 ){
3661         *pLen = 0;
3662         return 8+(u32)u;
3663       }else{
3664         *pLen = 1;
3665         return 1;
3666       }
3667     }
3668     if( u<=32767 ){ *pLen = 2; return 2; }
3669     if( u<=8388607 ){ *pLen = 3; return 3; }
3670     if( u<=2147483647 ){ *pLen = 4; return 4; }
3671     if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3672     *pLen = 8;
3673     if( flags&MEM_IntReal ){
3674       /* If the value is IntReal and is going to take up 8 bytes to store
3675       ** as an integer, then we might as well make it an 8-byte floating
3676       ** point value */
3677       pMem->u.r = (double)pMem->u.i;
3678       pMem->flags &= ~MEM_IntReal;
3679       pMem->flags |= MEM_Real;
3680       return 7;
3681     }
3682     return 6;
3683   }
3684   if( flags&MEM_Real ){
3685     *pLen = 8;
3686     return 7;
3687   }
3688   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3689   assert( pMem->n>=0 );
3690   n = (u32)pMem->n;
3691   if( flags & MEM_Zero ){
3692     n += pMem->u.nZero;
3693   }
3694   *pLen = n;
3695   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3696 }
3697 #endif /* inlined into OP_MakeRecord */
3698 
3699 /*
3700 ** The sizes for serial types less than 128
3701 */
3702 static const u8 sqlite3SmallTypeSizes[] = {
3703         /*  0   1   2   3   4   5   6   7   8   9 */
3704 /*   0 */   0,  1,  2,  3,  4,  6,  8,  8,  0,  0,
3705 /*  10 */   0,  0,  0,  0,  1,  1,  2,  2,  3,  3,
3706 /*  20 */   4,  4,  5,  5,  6,  6,  7,  7,  8,  8,
3707 /*  30 */   9,  9, 10, 10, 11, 11, 12, 12, 13, 13,
3708 /*  40 */  14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3709 /*  50 */  19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3710 /*  60 */  24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3711 /*  70 */  29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3712 /*  80 */  34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3713 /*  90 */  39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3714 /* 100 */  44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3715 /* 110 */  49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3716 /* 120 */  54, 54, 55, 55, 56, 56, 57, 57
3717 };
3718 
3719 /*
3720 ** Return the length of the data corresponding to the supplied serial-type.
3721 */
3722 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3723   if( serial_type>=128 ){
3724     return (serial_type-12)/2;
3725   }else{
3726     assert( serial_type<12
3727             || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3728     return sqlite3SmallTypeSizes[serial_type];
3729   }
3730 }
3731 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3732   assert( serial_type<128 );
3733   return sqlite3SmallTypeSizes[serial_type];
3734 }
3735 
3736 /*
3737 ** If we are on an architecture with mixed-endian floating
3738 ** points (ex: ARM7) then swap the lower 4 bytes with the
3739 ** upper 4 bytes.  Return the result.
3740 **
3741 ** For most architectures, this is a no-op.
3742 **
3743 ** (later):  It is reported to me that the mixed-endian problem
3744 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
3745 ** that early versions of GCC stored the two words of a 64-bit
3746 ** float in the wrong order.  And that error has been propagated
3747 ** ever since.  The blame is not necessarily with GCC, though.
3748 ** GCC might have just copying the problem from a prior compiler.
3749 ** I am also told that newer versions of GCC that follow a different
3750 ** ABI get the byte order right.
3751 **
3752 ** Developers using SQLite on an ARM7 should compile and run their
3753 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
3754 ** enabled, some asserts below will ensure that the byte order of
3755 ** floating point values is correct.
3756 **
3757 ** (2007-08-30)  Frank van Vugt has studied this problem closely
3758 ** and has send his findings to the SQLite developers.  Frank
3759 ** writes that some Linux kernels offer floating point hardware
3760 ** emulation that uses only 32-bit mantissas instead of a full
3761 ** 48-bits as required by the IEEE standard.  (This is the
3762 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
3763 ** byte swapping becomes very complicated.  To avoid problems,
3764 ** the necessary byte swapping is carried out using a 64-bit integer
3765 ** rather than a 64-bit float.  Frank assures us that the code here
3766 ** works for him.  We, the developers, have no way to independently
3767 ** verify this, but Frank seems to know what he is talking about
3768 ** so we trust him.
3769 */
3770 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3771 static u64 floatSwap(u64 in){
3772   union {
3773     u64 r;
3774     u32 i[2];
3775   } u;
3776   u32 t;
3777 
3778   u.r = in;
3779   t = u.i[0];
3780   u.i[0] = u.i[1];
3781   u.i[1] = t;
3782   return u.r;
3783 }
3784 # define swapMixedEndianFloat(X)  X = floatSwap(X)
3785 #else
3786 # define swapMixedEndianFloat(X)
3787 #endif
3788 
3789 /*
3790 ** Write the serialized data blob for the value stored in pMem into
3791 ** buf. It is assumed that the caller has allocated sufficient space.
3792 ** Return the number of bytes written.
3793 **
3794 ** nBuf is the amount of space left in buf[].  The caller is responsible
3795 ** for allocating enough space to buf[] to hold the entire field, exclusive
3796 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3797 **
3798 ** Return the number of bytes actually written into buf[].  The number
3799 ** of bytes in the zero-filled tail is included in the return value only
3800 ** if those bytes were zeroed in buf[].
3801 */
3802 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3803   u32 len;
3804 
3805   /* Integer and Real */
3806   if( serial_type<=7 && serial_type>0 ){
3807     u64 v;
3808     u32 i;
3809     if( serial_type==7 ){
3810       assert( sizeof(v)==sizeof(pMem->u.r) );
3811       memcpy(&v, &pMem->u.r, sizeof(v));
3812       swapMixedEndianFloat(v);
3813     }else{
3814       v = pMem->u.i;
3815     }
3816     len = i = sqlite3SmallTypeSizes[serial_type];
3817     assert( i>0 );
3818     do{
3819       buf[--i] = (u8)(v&0xFF);
3820       v >>= 8;
3821     }while( i );
3822     return len;
3823   }
3824 
3825   /* String or blob */
3826   if( serial_type>=12 ){
3827     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3828              == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3829     len = pMem->n;
3830     if( len>0 ) memcpy(buf, pMem->z, len);
3831     return len;
3832   }
3833 
3834   /* NULL or constants 0 or 1 */
3835   return 0;
3836 }
3837 
3838 /* Input "x" is a sequence of unsigned characters that represent a
3839 ** big-endian integer.  Return the equivalent native integer
3840 */
3841 #define ONE_BYTE_INT(x)    ((i8)(x)[0])
3842 #define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
3843 #define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3844 #define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3845 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3846 
3847 /*
3848 ** Deserialize the data blob pointed to by buf as serial type serial_type
3849 ** and store the result in pMem.  Return the number of bytes read.
3850 **
3851 ** This function is implemented as two separate routines for performance.
3852 ** The few cases that require local variables are broken out into a separate
3853 ** routine so that in most cases the overhead of moving the stack pointer
3854 ** is avoided.
3855 */
3856 static u32 serialGet(
3857   const unsigned char *buf,     /* Buffer to deserialize from */
3858   u32 serial_type,              /* Serial type to deserialize */
3859   Mem *pMem                     /* Memory cell to write value into */
3860 ){
3861   u64 x = FOUR_BYTE_UINT(buf);
3862   u32 y = FOUR_BYTE_UINT(buf+4);
3863   x = (x<<32) + y;
3864   if( serial_type==6 ){
3865     /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3866     ** twos-complement integer. */
3867     pMem->u.i = *(i64*)&x;
3868     pMem->flags = MEM_Int;
3869     testcase( pMem->u.i<0 );
3870   }else{
3871     /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3872     ** floating point number. */
3873 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3874     /* Verify that integers and floating point values use the same
3875     ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3876     ** defined that 64-bit floating point values really are mixed
3877     ** endian.
3878     */
3879     static const u64 t1 = ((u64)0x3ff00000)<<32;
3880     static const double r1 = 1.0;
3881     u64 t2 = t1;
3882     swapMixedEndianFloat(t2);
3883     assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3884 #endif
3885     assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3886     swapMixedEndianFloat(x);
3887     memcpy(&pMem->u.r, &x, sizeof(x));
3888     pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
3889   }
3890   return 8;
3891 }
3892 u32 sqlite3VdbeSerialGet(
3893   const unsigned char *buf,     /* Buffer to deserialize from */
3894   u32 serial_type,              /* Serial type to deserialize */
3895   Mem *pMem                     /* Memory cell to write value into */
3896 ){
3897   switch( serial_type ){
3898     case 10: { /* Internal use only: NULL with virtual table
3899                ** UPDATE no-change flag set */
3900       pMem->flags = MEM_Null|MEM_Zero;
3901       pMem->n = 0;
3902       pMem->u.nZero = 0;
3903       break;
3904     }
3905     case 11:   /* Reserved for future use */
3906     case 0: {  /* Null */
3907       /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3908       pMem->flags = MEM_Null;
3909       break;
3910     }
3911     case 1: {
3912       /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3913       ** integer. */
3914       pMem->u.i = ONE_BYTE_INT(buf);
3915       pMem->flags = MEM_Int;
3916       testcase( pMem->u.i<0 );
3917       return 1;
3918     }
3919     case 2: { /* 2-byte signed integer */
3920       /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3921       ** twos-complement integer. */
3922       pMem->u.i = TWO_BYTE_INT(buf);
3923       pMem->flags = MEM_Int;
3924       testcase( pMem->u.i<0 );
3925       return 2;
3926     }
3927     case 3: { /* 3-byte signed integer */
3928       /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3929       ** twos-complement integer. */
3930       pMem->u.i = THREE_BYTE_INT(buf);
3931       pMem->flags = MEM_Int;
3932       testcase( pMem->u.i<0 );
3933       return 3;
3934     }
3935     case 4: { /* 4-byte signed integer */
3936       /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3937       ** twos-complement integer. */
3938       pMem->u.i = FOUR_BYTE_INT(buf);
3939 #ifdef __HP_cc
3940       /* Work around a sign-extension bug in the HP compiler for HP/UX */
3941       if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3942 #endif
3943       pMem->flags = MEM_Int;
3944       testcase( pMem->u.i<0 );
3945       return 4;
3946     }
3947     case 5: { /* 6-byte signed integer */
3948       /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3949       ** twos-complement integer. */
3950       pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3951       pMem->flags = MEM_Int;
3952       testcase( pMem->u.i<0 );
3953       return 6;
3954     }
3955     case 6:   /* 8-byte signed integer */
3956     case 7: { /* IEEE floating point */
3957       /* These use local variables, so do them in a separate routine
3958       ** to avoid having to move the frame pointer in the common case */
3959       return serialGet(buf,serial_type,pMem);
3960     }
3961     case 8:    /* Integer 0 */
3962     case 9: {  /* Integer 1 */
3963       /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3964       /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3965       pMem->u.i = serial_type-8;
3966       pMem->flags = MEM_Int;
3967       return 0;
3968     }
3969     default: {
3970       /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3971       ** length.
3972       ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3973       ** (N-13)/2 bytes in length. */
3974       static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3975       pMem->z = (char *)buf;
3976       pMem->n = (serial_type-12)/2;
3977       pMem->flags = aFlag[serial_type&1];
3978       return pMem->n;
3979     }
3980   }
3981   return 0;
3982 }
3983 /*
3984 ** This routine is used to allocate sufficient space for an UnpackedRecord
3985 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3986 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3987 **
3988 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3989 ** the unaligned buffer passed via the second and third arguments (presumably
3990 ** stack space). If the former, then *ppFree is set to a pointer that should
3991 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3992 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3993 ** before returning.
3994 **
3995 ** If an OOM error occurs, NULL is returned.
3996 */
3997 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3998   KeyInfo *pKeyInfo               /* Description of the record */
3999 ){
4000   UnpackedRecord *p;              /* Unpacked record to return */
4001   int nByte;                      /* Number of bytes required for *p */
4002   nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
4003   p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
4004   if( !p ) return 0;
4005   p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
4006   assert( pKeyInfo->aSortFlags!=0 );
4007   p->pKeyInfo = pKeyInfo;
4008   p->nField = pKeyInfo->nKeyField + 1;
4009   return p;
4010 }
4011 
4012 /*
4013 ** Given the nKey-byte encoding of a record in pKey[], populate the
4014 ** UnpackedRecord structure indicated by the fourth argument with the
4015 ** contents of the decoded record.
4016 */
4017 void sqlite3VdbeRecordUnpack(
4018   KeyInfo *pKeyInfo,     /* Information about the record format */
4019   int nKey,              /* Size of the binary record */
4020   const void *pKey,      /* The binary record */
4021   UnpackedRecord *p      /* Populate this structure before returning. */
4022 ){
4023   const unsigned char *aKey = (const unsigned char *)pKey;
4024   u32 d;
4025   u32 idx;                        /* Offset in aKey[] to read from */
4026   u16 u;                          /* Unsigned loop counter */
4027   u32 szHdr;
4028   Mem *pMem = p->aMem;
4029 
4030   p->default_rc = 0;
4031   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
4032   idx = getVarint32(aKey, szHdr);
4033   d = szHdr;
4034   u = 0;
4035   while( idx<szHdr && d<=(u32)nKey ){
4036     u32 serial_type;
4037 
4038     idx += getVarint32(&aKey[idx], serial_type);
4039     pMem->enc = pKeyInfo->enc;
4040     pMem->db = pKeyInfo->db;
4041     /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4042     pMem->szMalloc = 0;
4043     pMem->z = 0;
4044     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
4045     pMem++;
4046     if( (++u)>=p->nField ) break;
4047   }
4048   if( d>(u32)nKey && u ){
4049     assert( CORRUPT_DB );
4050     /* In a corrupt record entry, the last pMem might have been set up using
4051     ** uninitialized memory. Overwrite its value with NULL, to prevent
4052     ** warnings from MSAN. */
4053     sqlite3VdbeMemSetNull(pMem-1);
4054   }
4055   assert( u<=pKeyInfo->nKeyField + 1 );
4056   p->nField = u;
4057 }
4058 
4059 #ifdef SQLITE_DEBUG
4060 /*
4061 ** This function compares two index or table record keys in the same way
4062 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4063 ** this function deserializes and compares values using the
4064 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4065 ** in assert() statements to ensure that the optimized code in
4066 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4067 **
4068 ** Return true if the result of comparison is equivalent to desiredResult.
4069 ** Return false if there is a disagreement.
4070 */
4071 static int vdbeRecordCompareDebug(
4072   int nKey1, const void *pKey1, /* Left key */
4073   const UnpackedRecord *pPKey2, /* Right key */
4074   int desiredResult             /* Correct answer */
4075 ){
4076   u32 d1;            /* Offset into aKey[] of next data element */
4077   u32 idx1;          /* Offset into aKey[] of next header element */
4078   u32 szHdr1;        /* Number of bytes in header */
4079   int i = 0;
4080   int rc = 0;
4081   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4082   KeyInfo *pKeyInfo;
4083   Mem mem1;
4084 
4085   pKeyInfo = pPKey2->pKeyInfo;
4086   if( pKeyInfo->db==0 ) return 1;
4087   mem1.enc = pKeyInfo->enc;
4088   mem1.db = pKeyInfo->db;
4089   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
4090   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4091 
4092   /* Compilers may complain that mem1.u.i is potentially uninitialized.
4093   ** We could initialize it, as shown here, to silence those complaints.
4094   ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4095   ** the unnecessary initialization has a measurable negative performance
4096   ** impact, since this routine is a very high runner.  And so, we choose
4097   ** to ignore the compiler warnings and leave this variable uninitialized.
4098   */
4099   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
4100 
4101   idx1 = getVarint32(aKey1, szHdr1);
4102   if( szHdr1>98307 ) return SQLITE_CORRUPT;
4103   d1 = szHdr1;
4104   assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4105   assert( pKeyInfo->aSortFlags!=0 );
4106   assert( pKeyInfo->nKeyField>0 );
4107   assert( idx1<=szHdr1 || CORRUPT_DB );
4108   do{
4109     u32 serial_type1;
4110 
4111     /* Read the serial types for the next element in each key. */
4112     idx1 += getVarint32( aKey1+idx1, serial_type1 );
4113 
4114     /* Verify that there is enough key space remaining to avoid
4115     ** a buffer overread.  The "d1+serial_type1+2" subexpression will
4116     ** always be greater than or equal to the amount of required key space.
4117     ** Use that approximation to avoid the more expensive call to
4118     ** sqlite3VdbeSerialTypeLen() in the common case.
4119     */
4120     if( d1+(u64)serial_type1+2>(u64)nKey1
4121      && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4122     ){
4123       break;
4124     }
4125 
4126     /* Extract the values to be compared.
4127     */
4128     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4129 
4130     /* Do the comparison
4131     */
4132     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4133                            pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4134     if( rc!=0 ){
4135       assert( mem1.szMalloc==0 );  /* See comment below */
4136       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4137        && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4138       ){
4139         rc = -rc;
4140       }
4141       if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4142         rc = -rc;  /* Invert the result for DESC sort order. */
4143       }
4144       goto debugCompareEnd;
4145     }
4146     i++;
4147   }while( idx1<szHdr1 && i<pPKey2->nField );
4148 
4149   /* No memory allocation is ever used on mem1.  Prove this using
4150   ** the following assert().  If the assert() fails, it indicates a
4151   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4152   */
4153   assert( mem1.szMalloc==0 );
4154 
4155   /* rc==0 here means that one of the keys ran out of fields and
4156   ** all the fields up to that point were equal. Return the default_rc
4157   ** value.  */
4158   rc = pPKey2->default_rc;
4159 
4160 debugCompareEnd:
4161   if( desiredResult==0 && rc==0 ) return 1;
4162   if( desiredResult<0 && rc<0 ) return 1;
4163   if( desiredResult>0 && rc>0 ) return 1;
4164   if( CORRUPT_DB ) return 1;
4165   if( pKeyInfo->db->mallocFailed ) return 1;
4166   return 0;
4167 }
4168 #endif
4169 
4170 #ifdef SQLITE_DEBUG
4171 /*
4172 ** Count the number of fields (a.k.a. columns) in the record given by
4173 ** pKey,nKey.  The verify that this count is less than or equal to the
4174 ** limit given by pKeyInfo->nAllField.
4175 **
4176 ** If this constraint is not satisfied, it means that the high-speed
4177 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4178 ** not work correctly.  If this assert() ever fires, it probably means
4179 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4180 ** incorrectly.
4181 */
4182 static void vdbeAssertFieldCountWithinLimits(
4183   int nKey, const void *pKey,   /* The record to verify */
4184   const KeyInfo *pKeyInfo       /* Compare size with this KeyInfo */
4185 ){
4186   int nField = 0;
4187   u32 szHdr;
4188   u32 idx;
4189   u32 notUsed;
4190   const unsigned char *aKey = (const unsigned char*)pKey;
4191 
4192   if( CORRUPT_DB ) return;
4193   idx = getVarint32(aKey, szHdr);
4194   assert( nKey>=0 );
4195   assert( szHdr<=(u32)nKey );
4196   while( idx<szHdr ){
4197     idx += getVarint32(aKey+idx, notUsed);
4198     nField++;
4199   }
4200   assert( nField <= pKeyInfo->nAllField );
4201 }
4202 #else
4203 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4204 #endif
4205 
4206 /*
4207 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4208 ** using the collation sequence pColl. As usual, return a negative , zero
4209 ** or positive value if *pMem1 is less than, equal to or greater than
4210 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4211 */
4212 static int vdbeCompareMemString(
4213   const Mem *pMem1,
4214   const Mem *pMem2,
4215   const CollSeq *pColl,
4216   u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */
4217 ){
4218   if( pMem1->enc==pColl->enc ){
4219     /* The strings are already in the correct encoding.  Call the
4220      ** comparison function directly */
4221     return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4222   }else{
4223     int rc;
4224     const void *v1, *v2;
4225     Mem c1;
4226     Mem c2;
4227     sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4228     sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4229     sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4230     sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4231     v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4232     v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4233     if( (v1==0 || v2==0) ){
4234       if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4235       rc = 0;
4236     }else{
4237       rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4238     }
4239     sqlite3VdbeMemRelease(&c1);
4240     sqlite3VdbeMemRelease(&c2);
4241     return rc;
4242   }
4243 }
4244 
4245 /*
4246 ** The input pBlob is guaranteed to be a Blob that is not marked
4247 ** with MEM_Zero.  Return true if it could be a zero-blob.
4248 */
4249 static int isAllZero(const char *z, int n){
4250   int i;
4251   for(i=0; i<n; i++){
4252     if( z[i] ) return 0;
4253   }
4254   return 1;
4255 }
4256 
4257 /*
4258 ** Compare two blobs.  Return negative, zero, or positive if the first
4259 ** is less than, equal to, or greater than the second, respectively.
4260 ** If one blob is a prefix of the other, then the shorter is the lessor.
4261 */
4262 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4263   int c;
4264   int n1 = pB1->n;
4265   int n2 = pB2->n;
4266 
4267   /* It is possible to have a Blob value that has some non-zero content
4268   ** followed by zero content.  But that only comes up for Blobs formed
4269   ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4270   ** sqlite3MemCompare(). */
4271   assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4272   assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4273 
4274   if( (pB1->flags|pB2->flags) & MEM_Zero ){
4275     if( pB1->flags & pB2->flags & MEM_Zero ){
4276       return pB1->u.nZero - pB2->u.nZero;
4277     }else if( pB1->flags & MEM_Zero ){
4278       if( !isAllZero(pB2->z, pB2->n) ) return -1;
4279       return pB1->u.nZero - n2;
4280     }else{
4281       if( !isAllZero(pB1->z, pB1->n) ) return +1;
4282       return n1 - pB2->u.nZero;
4283     }
4284   }
4285   c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4286   if( c ) return c;
4287   return n1 - n2;
4288 }
4289 
4290 /*
4291 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4292 ** number.  Return negative, zero, or positive if the first (i64) is less than,
4293 ** equal to, or greater than the second (double).
4294 */
4295 static int sqlite3IntFloatCompare(i64 i, double r){
4296   if( sizeof(LONGDOUBLE_TYPE)>8 ){
4297     LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4298     testcase( x<r );
4299     testcase( x>r );
4300     testcase( x==r );
4301     if( x<r ) return -1;
4302     if( x>r ) return +1;  /*NO_TEST*/ /* work around bugs in gcov */
4303     return 0;             /*NO_TEST*/ /* work around bugs in gcov */
4304   }else{
4305     i64 y;
4306     double s;
4307     if( r<-9223372036854775808.0 ) return +1;
4308     if( r>=9223372036854775808.0 ) return -1;
4309     y = (i64)r;
4310     if( i<y ) return -1;
4311     if( i>y ) return +1;
4312     s = (double)i;
4313     if( s<r ) return -1;
4314     if( s>r ) return +1;
4315     return 0;
4316   }
4317 }
4318 
4319 /*
4320 ** Compare the values contained by the two memory cells, returning
4321 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4322 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4323 ** and reals) sorted numerically, followed by text ordered by the collating
4324 ** sequence pColl and finally blob's ordered by memcmp().
4325 **
4326 ** Two NULL values are considered equal by this function.
4327 */
4328 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4329   int f1, f2;
4330   int combined_flags;
4331 
4332   f1 = pMem1->flags;
4333   f2 = pMem2->flags;
4334   combined_flags = f1|f2;
4335   assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4336 
4337   /* If one value is NULL, it is less than the other. If both values
4338   ** are NULL, return 0.
4339   */
4340   if( combined_flags&MEM_Null ){
4341     return (f2&MEM_Null) - (f1&MEM_Null);
4342   }
4343 
4344   /* At least one of the two values is a number
4345   */
4346   if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4347     testcase( combined_flags & MEM_Int );
4348     testcase( combined_flags & MEM_Real );
4349     testcase( combined_flags & MEM_IntReal );
4350     if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4351       testcase( f1 & f2 & MEM_Int );
4352       testcase( f1 & f2 & MEM_IntReal );
4353       if( pMem1->u.i < pMem2->u.i ) return -1;
4354       if( pMem1->u.i > pMem2->u.i ) return +1;
4355       return 0;
4356     }
4357     if( (f1 & f2 & MEM_Real)!=0 ){
4358       if( pMem1->u.r < pMem2->u.r ) return -1;
4359       if( pMem1->u.r > pMem2->u.r ) return +1;
4360       return 0;
4361     }
4362     if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4363       testcase( f1 & MEM_Int );
4364       testcase( f1 & MEM_IntReal );
4365       if( (f2&MEM_Real)!=0 ){
4366         return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4367       }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4368         if( pMem1->u.i < pMem2->u.i ) return -1;
4369         if( pMem1->u.i > pMem2->u.i ) return +1;
4370         return 0;
4371       }else{
4372         return -1;
4373       }
4374     }
4375     if( (f1&MEM_Real)!=0 ){
4376       if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4377         testcase( f2 & MEM_Int );
4378         testcase( f2 & MEM_IntReal );
4379         return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4380       }else{
4381         return -1;
4382       }
4383     }
4384     return +1;
4385   }
4386 
4387   /* If one value is a string and the other is a blob, the string is less.
4388   ** If both are strings, compare using the collating functions.
4389   */
4390   if( combined_flags&MEM_Str ){
4391     if( (f1 & MEM_Str)==0 ){
4392       return 1;
4393     }
4394     if( (f2 & MEM_Str)==0 ){
4395       return -1;
4396     }
4397 
4398     assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4399     assert( pMem1->enc==SQLITE_UTF8 ||
4400             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4401 
4402     /* The collation sequence must be defined at this point, even if
4403     ** the user deletes the collation sequence after the vdbe program is
4404     ** compiled (this was not always the case).
4405     */
4406     assert( !pColl || pColl->xCmp );
4407 
4408     if( pColl ){
4409       return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4410     }
4411     /* If a NULL pointer was passed as the collate function, fall through
4412     ** to the blob case and use memcmp().  */
4413   }
4414 
4415   /* Both values must be blobs.  Compare using memcmp().  */
4416   return sqlite3BlobCompare(pMem1, pMem2);
4417 }
4418 
4419 
4420 /*
4421 ** The first argument passed to this function is a serial-type that
4422 ** corresponds to an integer - all values between 1 and 9 inclusive
4423 ** except 7. The second points to a buffer containing an integer value
4424 ** serialized according to serial_type. This function deserializes
4425 ** and returns the value.
4426 */
4427 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4428   u32 y;
4429   assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4430   switch( serial_type ){
4431     case 0:
4432     case 1:
4433       testcase( aKey[0]&0x80 );
4434       return ONE_BYTE_INT(aKey);
4435     case 2:
4436       testcase( aKey[0]&0x80 );
4437       return TWO_BYTE_INT(aKey);
4438     case 3:
4439       testcase( aKey[0]&0x80 );
4440       return THREE_BYTE_INT(aKey);
4441     case 4: {
4442       testcase( aKey[0]&0x80 );
4443       y = FOUR_BYTE_UINT(aKey);
4444       return (i64)*(int*)&y;
4445     }
4446     case 5: {
4447       testcase( aKey[0]&0x80 );
4448       return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4449     }
4450     case 6: {
4451       u64 x = FOUR_BYTE_UINT(aKey);
4452       testcase( aKey[0]&0x80 );
4453       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4454       return (i64)*(i64*)&x;
4455     }
4456   }
4457 
4458   return (serial_type - 8);
4459 }
4460 
4461 /*
4462 ** This function compares the two table rows or index records
4463 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
4464 ** or positive integer if key1 is less than, equal to or
4465 ** greater than key2.  The {nKey1, pKey1} key must be a blob
4466 ** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2
4467 ** key must be a parsed key such as obtained from
4468 ** sqlite3VdbeParseRecord.
4469 **
4470 ** If argument bSkip is non-zero, it is assumed that the caller has already
4471 ** determined that the first fields of the keys are equal.
4472 **
4473 ** Key1 and Key2 do not have to contain the same number of fields. If all
4474 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4475 ** returned.
4476 **
4477 ** If database corruption is discovered, set pPKey2->errCode to
4478 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4479 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4480 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4481 */
4482 int sqlite3VdbeRecordCompareWithSkip(
4483   int nKey1, const void *pKey1,   /* Left key */
4484   UnpackedRecord *pPKey2,         /* Right key */
4485   int bSkip                       /* If true, skip the first field */
4486 ){
4487   u32 d1;                         /* Offset into aKey[] of next data element */
4488   int i;                          /* Index of next field to compare */
4489   u32 szHdr1;                     /* Size of record header in bytes */
4490   u32 idx1;                       /* Offset of first type in header */
4491   int rc = 0;                     /* Return value */
4492   Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
4493   KeyInfo *pKeyInfo;
4494   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4495   Mem mem1;
4496 
4497   /* If bSkip is true, then the caller has already determined that the first
4498   ** two elements in the keys are equal. Fix the various stack variables so
4499   ** that this routine begins comparing at the second field. */
4500   if( bSkip ){
4501     u32 s1;
4502     idx1 = 1 + getVarint32(&aKey1[1], s1);
4503     szHdr1 = aKey1[0];
4504     d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4505     i = 1;
4506     pRhs++;
4507   }else{
4508     idx1 = getVarint32(aKey1, szHdr1);
4509     d1 = szHdr1;
4510     i = 0;
4511   }
4512   if( d1>(unsigned)nKey1 ){
4513     pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4514     return 0;  /* Corruption */
4515   }
4516 
4517   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4518   assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4519        || CORRUPT_DB );
4520   assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4521   assert( pPKey2->pKeyInfo->nKeyField>0 );
4522   assert( idx1<=szHdr1 || CORRUPT_DB );
4523   do{
4524     u32 serial_type;
4525 
4526     /* RHS is an integer */
4527     if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4528       testcase( pRhs->flags & MEM_Int );
4529       testcase( pRhs->flags & MEM_IntReal );
4530       serial_type = aKey1[idx1];
4531       testcase( serial_type==12 );
4532       if( serial_type>=10 ){
4533         rc = +1;
4534       }else if( serial_type==0 ){
4535         rc = -1;
4536       }else if( serial_type==7 ){
4537         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4538         rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4539       }else{
4540         i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4541         i64 rhs = pRhs->u.i;
4542         if( lhs<rhs ){
4543           rc = -1;
4544         }else if( lhs>rhs ){
4545           rc = +1;
4546         }
4547       }
4548     }
4549 
4550     /* RHS is real */
4551     else if( pRhs->flags & MEM_Real ){
4552       serial_type = aKey1[idx1];
4553       if( serial_type>=10 ){
4554         /* Serial types 12 or greater are strings and blobs (greater than
4555         ** numbers). Types 10 and 11 are currently "reserved for future
4556         ** use", so it doesn't really matter what the results of comparing
4557         ** them to numberic values are.  */
4558         rc = +1;
4559       }else if( serial_type==0 ){
4560         rc = -1;
4561       }else{
4562         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4563         if( serial_type==7 ){
4564           if( mem1.u.r<pRhs->u.r ){
4565             rc = -1;
4566           }else if( mem1.u.r>pRhs->u.r ){
4567             rc = +1;
4568           }
4569         }else{
4570           rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4571         }
4572       }
4573     }
4574 
4575     /* RHS is a string */
4576     else if( pRhs->flags & MEM_Str ){
4577       getVarint32NR(&aKey1[idx1], serial_type);
4578       testcase( serial_type==12 );
4579       if( serial_type<12 ){
4580         rc = -1;
4581       }else if( !(serial_type & 0x01) ){
4582         rc = +1;
4583       }else{
4584         mem1.n = (serial_type - 12) / 2;
4585         testcase( (d1+mem1.n)==(unsigned)nKey1 );
4586         testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4587         if( (d1+mem1.n) > (unsigned)nKey1
4588          || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4589         ){
4590           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4591           return 0;                /* Corruption */
4592         }else if( pKeyInfo->aColl[i] ){
4593           mem1.enc = pKeyInfo->enc;
4594           mem1.db = pKeyInfo->db;
4595           mem1.flags = MEM_Str;
4596           mem1.z = (char*)&aKey1[d1];
4597           rc = vdbeCompareMemString(
4598               &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4599           );
4600         }else{
4601           int nCmp = MIN(mem1.n, pRhs->n);
4602           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4603           if( rc==0 ) rc = mem1.n - pRhs->n;
4604         }
4605       }
4606     }
4607 
4608     /* RHS is a blob */
4609     else if( pRhs->flags & MEM_Blob ){
4610       assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4611       getVarint32NR(&aKey1[idx1], serial_type);
4612       testcase( serial_type==12 );
4613       if( serial_type<12 || (serial_type & 0x01) ){
4614         rc = -1;
4615       }else{
4616         int nStr = (serial_type - 12) / 2;
4617         testcase( (d1+nStr)==(unsigned)nKey1 );
4618         testcase( (d1+nStr+1)==(unsigned)nKey1 );
4619         if( (d1+nStr) > (unsigned)nKey1 ){
4620           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4621           return 0;                /* Corruption */
4622         }else if( pRhs->flags & MEM_Zero ){
4623           if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4624             rc = 1;
4625           }else{
4626             rc = nStr - pRhs->u.nZero;
4627           }
4628         }else{
4629           int nCmp = MIN(nStr, pRhs->n);
4630           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4631           if( rc==0 ) rc = nStr - pRhs->n;
4632         }
4633       }
4634     }
4635 
4636     /* RHS is null */
4637     else{
4638       serial_type = aKey1[idx1];
4639       rc = (serial_type!=0);
4640     }
4641 
4642     if( rc!=0 ){
4643       int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4644       if( sortFlags ){
4645         if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4646          || ((sortFlags & KEYINFO_ORDER_DESC)
4647            !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4648         ){
4649           rc = -rc;
4650         }
4651       }
4652       assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4653       assert( mem1.szMalloc==0 );  /* See comment below */
4654       return rc;
4655     }
4656 
4657     i++;
4658     if( i==pPKey2->nField ) break;
4659     pRhs++;
4660     d1 += sqlite3VdbeSerialTypeLen(serial_type);
4661     idx1 += sqlite3VarintLen(serial_type);
4662   }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 );
4663 
4664   /* No memory allocation is ever used on mem1.  Prove this using
4665   ** the following assert().  If the assert() fails, it indicates a
4666   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
4667   assert( mem1.szMalloc==0 );
4668 
4669   /* rc==0 here means that one or both of the keys ran out of fields and
4670   ** all the fields up to that point were equal. Return the default_rc
4671   ** value.  */
4672   assert( CORRUPT_DB
4673        || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4674        || pPKey2->pKeyInfo->db->mallocFailed
4675   );
4676   pPKey2->eqSeen = 1;
4677   return pPKey2->default_rc;
4678 }
4679 int sqlite3VdbeRecordCompare(
4680   int nKey1, const void *pKey1,   /* Left key */
4681   UnpackedRecord *pPKey2          /* Right key */
4682 ){
4683   return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4684 }
4685 
4686 
4687 /*
4688 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4689 ** that (a) the first field of pPKey2 is an integer, and (b) the
4690 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4691 ** byte (i.e. is less than 128).
4692 **
4693 ** To avoid concerns about buffer overreads, this routine is only used
4694 ** on schemas where the maximum valid header size is 63 bytes or less.
4695 */
4696 static int vdbeRecordCompareInt(
4697   int nKey1, const void *pKey1, /* Left key */
4698   UnpackedRecord *pPKey2        /* Right key */
4699 ){
4700   const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4701   int serial_type = ((const u8*)pKey1)[1];
4702   int res;
4703   u32 y;
4704   u64 x;
4705   i64 v;
4706   i64 lhs;
4707 
4708   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4709   assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4710   switch( serial_type ){
4711     case 1: { /* 1-byte signed integer */
4712       lhs = ONE_BYTE_INT(aKey);
4713       testcase( lhs<0 );
4714       break;
4715     }
4716     case 2: { /* 2-byte signed integer */
4717       lhs = TWO_BYTE_INT(aKey);
4718       testcase( lhs<0 );
4719       break;
4720     }
4721     case 3: { /* 3-byte signed integer */
4722       lhs = THREE_BYTE_INT(aKey);
4723       testcase( lhs<0 );
4724       break;
4725     }
4726     case 4: { /* 4-byte signed integer */
4727       y = FOUR_BYTE_UINT(aKey);
4728       lhs = (i64)*(int*)&y;
4729       testcase( lhs<0 );
4730       break;
4731     }
4732     case 5: { /* 6-byte signed integer */
4733       lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4734       testcase( lhs<0 );
4735       break;
4736     }
4737     case 6: { /* 8-byte signed integer */
4738       x = FOUR_BYTE_UINT(aKey);
4739       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4740       lhs = *(i64*)&x;
4741       testcase( lhs<0 );
4742       break;
4743     }
4744     case 8:
4745       lhs = 0;
4746       break;
4747     case 9:
4748       lhs = 1;
4749       break;
4750 
4751     /* This case could be removed without changing the results of running
4752     ** this code. Including it causes gcc to generate a faster switch
4753     ** statement (since the range of switch targets now starts at zero and
4754     ** is contiguous) but does not cause any duplicate code to be generated
4755     ** (as gcc is clever enough to combine the two like cases). Other
4756     ** compilers might be similar.  */
4757     case 0: case 7:
4758       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4759 
4760     default:
4761       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4762   }
4763 
4764   v = pPKey2->aMem[0].u.i;
4765   if( v>lhs ){
4766     res = pPKey2->r1;
4767   }else if( v<lhs ){
4768     res = pPKey2->r2;
4769   }else if( pPKey2->nField>1 ){
4770     /* The first fields of the two keys are equal. Compare the trailing
4771     ** fields.  */
4772     res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4773   }else{
4774     /* The first fields of the two keys are equal and there are no trailing
4775     ** fields. Return pPKey2->default_rc in this case. */
4776     res = pPKey2->default_rc;
4777     pPKey2->eqSeen = 1;
4778   }
4779 
4780   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4781   return res;
4782 }
4783 
4784 /*
4785 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4786 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4787 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4788 ** at the start of (pKey1/nKey1) fits in a single byte.
4789 */
4790 static int vdbeRecordCompareString(
4791   int nKey1, const void *pKey1, /* Left key */
4792   UnpackedRecord *pPKey2        /* Right key */
4793 ){
4794   const u8 *aKey1 = (const u8*)pKey1;
4795   int serial_type;
4796   int res;
4797 
4798   assert( pPKey2->aMem[0].flags & MEM_Str );
4799   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4800   serial_type = (u8)(aKey1[1]);
4801   if( serial_type >= 0x80 ){
4802     sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
4803   }
4804   if( serial_type<12 ){
4805     res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
4806   }else if( !(serial_type & 0x01) ){
4807     res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
4808   }else{
4809     int nCmp;
4810     int nStr;
4811     int szHdr = aKey1[0];
4812 
4813     nStr = (serial_type-12) / 2;
4814     if( (szHdr + nStr) > nKey1 ){
4815       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4816       return 0;    /* Corruption */
4817     }
4818     nCmp = MIN( pPKey2->aMem[0].n, nStr );
4819     res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4820 
4821     if( res>0 ){
4822       res = pPKey2->r2;
4823     }else if( res<0 ){
4824       res = pPKey2->r1;
4825     }else{
4826       res = nStr - pPKey2->aMem[0].n;
4827       if( res==0 ){
4828         if( pPKey2->nField>1 ){
4829           res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4830         }else{
4831           res = pPKey2->default_rc;
4832           pPKey2->eqSeen = 1;
4833         }
4834       }else if( res>0 ){
4835         res = pPKey2->r2;
4836       }else{
4837         res = pPKey2->r1;
4838       }
4839     }
4840   }
4841 
4842   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4843        || CORRUPT_DB
4844        || pPKey2->pKeyInfo->db->mallocFailed
4845   );
4846   return res;
4847 }
4848 
4849 /*
4850 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4851 ** suitable for comparing serialized records to the unpacked record passed
4852 ** as the only argument.
4853 */
4854 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4855   /* varintRecordCompareInt() and varintRecordCompareString() both assume
4856   ** that the size-of-header varint that occurs at the start of each record
4857   ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4858   ** also assumes that it is safe to overread a buffer by at least the
4859   ** maximum possible legal header size plus 8 bytes. Because there is
4860   ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4861   ** buffer passed to varintRecordCompareInt() this makes it convenient to
4862   ** limit the size of the header to 64 bytes in cases where the first field
4863   ** is an integer.
4864   **
4865   ** The easiest way to enforce this limit is to consider only records with
4866   ** 13 fields or less. If the first field is an integer, the maximum legal
4867   ** header size is (12*5 + 1 + 1) bytes.  */
4868   if( p->pKeyInfo->nAllField<=13 ){
4869     int flags = p->aMem[0].flags;
4870     if( p->pKeyInfo->aSortFlags[0] ){
4871       if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
4872         return sqlite3VdbeRecordCompare;
4873       }
4874       p->r1 = 1;
4875       p->r2 = -1;
4876     }else{
4877       p->r1 = -1;
4878       p->r2 = 1;
4879     }
4880     if( (flags & MEM_Int) ){
4881       return vdbeRecordCompareInt;
4882     }
4883     testcase( flags & MEM_Real );
4884     testcase( flags & MEM_Null );
4885     testcase( flags & MEM_Blob );
4886     if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
4887      && p->pKeyInfo->aColl[0]==0
4888     ){
4889       assert( flags & MEM_Str );
4890       return vdbeRecordCompareString;
4891     }
4892   }
4893 
4894   return sqlite3VdbeRecordCompare;
4895 }
4896 
4897 /*
4898 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4899 ** Read the rowid (the last field in the record) and store it in *rowid.
4900 ** Return SQLITE_OK if everything works, or an error code otherwise.
4901 **
4902 ** pCur might be pointing to text obtained from a corrupt database file.
4903 ** So the content cannot be trusted.  Do appropriate checks on the content.
4904 */
4905 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4906   i64 nCellKey = 0;
4907   int rc;
4908   u32 szHdr;        /* Size of the header */
4909   u32 typeRowid;    /* Serial type of the rowid */
4910   u32 lenRowid;     /* Size of the rowid */
4911   Mem m, v;
4912 
4913   /* Get the size of the index entry.  Only indices entries of less
4914   ** than 2GiB are support - anything large must be database corruption.
4915   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4916   ** this code can safely assume that nCellKey is 32-bits
4917   */
4918   assert( sqlite3BtreeCursorIsValid(pCur) );
4919   nCellKey = sqlite3BtreePayloadSize(pCur);
4920   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4921 
4922   /* Read in the complete content of the index entry */
4923   sqlite3VdbeMemInit(&m, db, 0);
4924   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
4925   if( rc ){
4926     return rc;
4927   }
4928 
4929   /* The index entry must begin with a header size */
4930   getVarint32NR((u8*)m.z, szHdr);
4931   testcase( szHdr==3 );
4932   testcase( szHdr==m.n );
4933   testcase( szHdr>0x7fffffff );
4934   assert( m.n>=0 );
4935   if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
4936     goto idx_rowid_corruption;
4937   }
4938 
4939   /* The last field of the index should be an integer - the ROWID.
4940   ** Verify that the last entry really is an integer. */
4941   getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
4942   testcase( typeRowid==1 );
4943   testcase( typeRowid==2 );
4944   testcase( typeRowid==3 );
4945   testcase( typeRowid==4 );
4946   testcase( typeRowid==5 );
4947   testcase( typeRowid==6 );
4948   testcase( typeRowid==8 );
4949   testcase( typeRowid==9 );
4950   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4951     goto idx_rowid_corruption;
4952   }
4953   lenRowid = sqlite3SmallTypeSizes[typeRowid];
4954   testcase( (u32)m.n==szHdr+lenRowid );
4955   if( unlikely((u32)m.n<szHdr+lenRowid) ){
4956     goto idx_rowid_corruption;
4957   }
4958 
4959   /* Fetch the integer off the end of the index record */
4960   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4961   *rowid = v.u.i;
4962   sqlite3VdbeMemRelease(&m);
4963   return SQLITE_OK;
4964 
4965   /* Jump here if database corruption is detected after m has been
4966   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
4967 idx_rowid_corruption:
4968   testcase( m.szMalloc!=0 );
4969   sqlite3VdbeMemRelease(&m);
4970   return SQLITE_CORRUPT_BKPT;
4971 }
4972 
4973 /*
4974 ** Compare the key of the index entry that cursor pC is pointing to against
4975 ** the key string in pUnpacked.  Write into *pRes a number
4976 ** that is negative, zero, or positive if pC is less than, equal to,
4977 ** or greater than pUnpacked.  Return SQLITE_OK on success.
4978 **
4979 ** pUnpacked is either created without a rowid or is truncated so that it
4980 ** omits the rowid at the end.  The rowid at the end of the index entry
4981 ** is ignored as well.  Hence, this routine only compares the prefixes
4982 ** of the keys prior to the final rowid, not the entire key.
4983 */
4984 int sqlite3VdbeIdxKeyCompare(
4985   sqlite3 *db,                     /* Database connection */
4986   VdbeCursor *pC,                  /* The cursor to compare against */
4987   UnpackedRecord *pUnpacked,       /* Unpacked version of key */
4988   int *res                         /* Write the comparison result here */
4989 ){
4990   i64 nCellKey = 0;
4991   int rc;
4992   BtCursor *pCur;
4993   Mem m;
4994 
4995   assert( pC->eCurType==CURTYPE_BTREE );
4996   pCur = pC->uc.pCursor;
4997   assert( sqlite3BtreeCursorIsValid(pCur) );
4998   nCellKey = sqlite3BtreePayloadSize(pCur);
4999   /* nCellKey will always be between 0 and 0xffffffff because of the way
5000   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
5001   if( nCellKey<=0 || nCellKey>0x7fffffff ){
5002     *res = 0;
5003     return SQLITE_CORRUPT_BKPT;
5004   }
5005   sqlite3VdbeMemInit(&m, db, 0);
5006   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5007   if( rc ){
5008     return rc;
5009   }
5010   *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
5011   sqlite3VdbeMemRelease(&m);
5012   return SQLITE_OK;
5013 }
5014 
5015 /*
5016 ** This routine sets the value to be returned by subsequent calls to
5017 ** sqlite3_changes() on the database handle 'db'.
5018 */
5019 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
5020   assert( sqlite3_mutex_held(db->mutex) );
5021   db->nChange = nChange;
5022   db->nTotalChange += nChange;
5023 }
5024 
5025 /*
5026 ** Set a flag in the vdbe to update the change counter when it is finalised
5027 ** or reset.
5028 */
5029 void sqlite3VdbeCountChanges(Vdbe *v){
5030   v->changeCntOn = 1;
5031 }
5032 
5033 /*
5034 ** Mark every prepared statement associated with a database connection
5035 ** as expired.
5036 **
5037 ** An expired statement means that recompilation of the statement is
5038 ** recommend.  Statements expire when things happen that make their
5039 ** programs obsolete.  Removing user-defined functions or collating
5040 ** sequences, or changing an authorization function are the types of
5041 ** things that make prepared statements obsolete.
5042 **
5043 ** If iCode is 1, then expiration is advisory.  The statement should
5044 ** be reprepared before being restarted, but if it is already running
5045 ** it is allowed to run to completion.
5046 **
5047 ** Internally, this function just sets the Vdbe.expired flag on all
5048 ** prepared statements.  The flag is set to 1 for an immediate expiration
5049 ** and set to 2 for an advisory expiration.
5050 */
5051 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
5052   Vdbe *p;
5053   for(p = db->pVdbe; p; p=p->pNext){
5054     p->expired = iCode+1;
5055   }
5056 }
5057 
5058 /*
5059 ** Return the database associated with the Vdbe.
5060 */
5061 sqlite3 *sqlite3VdbeDb(Vdbe *v){
5062   return v->db;
5063 }
5064 
5065 /*
5066 ** Return the SQLITE_PREPARE flags for a Vdbe.
5067 */
5068 u8 sqlite3VdbePrepareFlags(Vdbe *v){
5069   return v->prepFlags;
5070 }
5071 
5072 /*
5073 ** Return a pointer to an sqlite3_value structure containing the value bound
5074 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5075 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5076 ** constants) to the value before returning it.
5077 **
5078 ** The returned value must be freed by the caller using sqlite3ValueFree().
5079 */
5080 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5081   assert( iVar>0 );
5082   if( v ){
5083     Mem *pMem = &v->aVar[iVar-1];
5084     assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5085     if( 0==(pMem->flags & MEM_Null) ){
5086       sqlite3_value *pRet = sqlite3ValueNew(v->db);
5087       if( pRet ){
5088         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5089         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5090       }
5091       return pRet;
5092     }
5093   }
5094   return 0;
5095 }
5096 
5097 /*
5098 ** Configure SQL variable iVar so that binding a new value to it signals
5099 ** to sqlite3_reoptimize() that re-preparing the statement may result
5100 ** in a better query plan.
5101 */
5102 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5103   assert( iVar>0 );
5104   assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5105   if( iVar>=32 ){
5106     v->expmask |= 0x80000000;
5107   }else{
5108     v->expmask |= ((u32)1 << (iVar-1));
5109   }
5110 }
5111 
5112 /*
5113 ** Cause a function to throw an error if it was call from OP_PureFunc
5114 ** rather than OP_Function.
5115 **
5116 ** OP_PureFunc means that the function must be deterministic, and should
5117 ** throw an error if it is given inputs that would make it non-deterministic.
5118 ** This routine is invoked by date/time functions that use non-deterministic
5119 ** features such as 'now'.
5120 */
5121 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5122   const VdbeOp *pOp;
5123 #ifdef SQLITE_ENABLE_STAT4
5124   if( pCtx->pVdbe==0 ) return 1;
5125 #endif
5126   pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5127   if( pOp->opcode==OP_PureFunc ){
5128     const char *zContext;
5129     char *zMsg;
5130     if( pOp->p5 & NC_IsCheck ){
5131       zContext = "a CHECK constraint";
5132     }else if( pOp->p5 & NC_GenCol ){
5133       zContext = "a generated column";
5134     }else{
5135       zContext = "an index";
5136     }
5137     zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5138                            pCtx->pFunc->zName, zContext);
5139     sqlite3_result_error(pCtx, zMsg, -1);
5140     sqlite3_free(zMsg);
5141     return 0;
5142   }
5143   return 1;
5144 }
5145 
5146 #ifndef SQLITE_OMIT_VIRTUALTABLE
5147 /*
5148 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5149 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5150 ** in memory obtained from sqlite3DbMalloc).
5151 */
5152 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5153   if( pVtab->zErrMsg ){
5154     sqlite3 *db = p->db;
5155     sqlite3DbFree(db, p->zErrMsg);
5156     p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5157     sqlite3_free(pVtab->zErrMsg);
5158     pVtab->zErrMsg = 0;
5159   }
5160 }
5161 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5162 
5163 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5164 
5165 /*
5166 ** If the second argument is not NULL, release any allocations associated
5167 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5168 ** structure itself, using sqlite3DbFree().
5169 **
5170 ** This function is used to free UnpackedRecord structures allocated by
5171 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5172 */
5173 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5174   if( p ){
5175     int i;
5176     for(i=0; i<nField; i++){
5177       Mem *pMem = &p->aMem[i];
5178       if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
5179     }
5180     sqlite3DbFreeNN(db, p);
5181   }
5182 }
5183 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5184 
5185 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5186 /*
5187 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5188 ** then cursor passed as the second argument should point to the row about
5189 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5190 ** the required value will be read from the row the cursor points to.
5191 */
5192 void sqlite3VdbePreUpdateHook(
5193   Vdbe *v,                        /* Vdbe pre-update hook is invoked by */
5194   VdbeCursor *pCsr,               /* Cursor to grab old.* values from */
5195   int op,                         /* SQLITE_INSERT, UPDATE or DELETE */
5196   const char *zDb,                /* Database name */
5197   Table *pTab,                    /* Modified table */
5198   i64 iKey1,                      /* Initial key value */
5199   int iReg                        /* Register for new.* record */
5200 ){
5201   sqlite3 *db = v->db;
5202   i64 iKey2;
5203   PreUpdate preupdate;
5204   const char *zTbl = pTab->zName;
5205   static const u8 fakeSortOrder = 0;
5206 
5207   assert( db->pPreUpdate==0 );
5208   memset(&preupdate, 0, sizeof(PreUpdate));
5209   if( HasRowid(pTab)==0 ){
5210     iKey1 = iKey2 = 0;
5211     preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5212   }else{
5213     if( op==SQLITE_UPDATE ){
5214       iKey2 = v->aMem[iReg].u.i;
5215     }else{
5216       iKey2 = iKey1;
5217     }
5218   }
5219 
5220   assert( pCsr->nField==pTab->nCol
5221        || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
5222   );
5223 
5224   preupdate.v = v;
5225   preupdate.pCsr = pCsr;
5226   preupdate.op = op;
5227   preupdate.iNewReg = iReg;
5228   preupdate.keyinfo.db = db;
5229   preupdate.keyinfo.enc = ENC(db);
5230   preupdate.keyinfo.nKeyField = pTab->nCol;
5231   preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5232   preupdate.iKey1 = iKey1;
5233   preupdate.iKey2 = iKey2;
5234   preupdate.pTab = pTab;
5235 
5236   db->pPreUpdate = &preupdate;
5237   db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5238   db->pPreUpdate = 0;
5239   sqlite3DbFree(db, preupdate.aRecord);
5240   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5241   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5242   if( preupdate.aNew ){
5243     int i;
5244     for(i=0; i<pCsr->nField; i++){
5245       sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5246     }
5247     sqlite3DbFreeNN(db, preupdate.aNew);
5248   }
5249 }
5250 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5251