1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* Forward references */ 19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef); 20 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 21 22 /* 23 ** Create a new virtual database engine. 24 */ 25 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 26 sqlite3 *db = pParse->db; 27 Vdbe *p; 28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 29 if( p==0 ) return 0; 30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 31 p->db = db; 32 if( db->pVdbe ){ 33 db->pVdbe->pPrev = p; 34 } 35 p->pNext = db->pVdbe; 36 p->pPrev = 0; 37 db->pVdbe = p; 38 p->magic = VDBE_MAGIC_INIT; 39 p->pParse = pParse; 40 pParse->pVdbe = p; 41 assert( pParse->aLabel==0 ); 42 assert( pParse->nLabel==0 ); 43 assert( p->nOpAlloc==0 ); 44 assert( pParse->szOpAlloc==0 ); 45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1); 46 return p; 47 } 48 49 /* 50 ** Return the Parse object that owns a Vdbe object. 51 */ 52 Parse *sqlite3VdbeParser(Vdbe *p){ 53 return p->pParse; 54 } 55 56 /* 57 ** Change the error string stored in Vdbe.zErrMsg 58 */ 59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 60 va_list ap; 61 sqlite3DbFree(p->db, p->zErrMsg); 62 va_start(ap, zFormat); 63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 64 va_end(ap); 65 } 66 67 /* 68 ** Remember the SQL string for a prepared statement. 69 */ 70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 71 if( p==0 ) return; 72 p->prepFlags = prepFlags; 73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 74 p->expmask = 0; 75 } 76 assert( p->zSql==0 ); 77 p->zSql = sqlite3DbStrNDup(p->db, z, n); 78 } 79 80 #ifdef SQLITE_ENABLE_NORMALIZE 81 /* 82 ** Add a new element to the Vdbe->pDblStr list. 83 */ 84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ 85 if( p ){ 86 int n = sqlite3Strlen30(z); 87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db, 88 sizeof(*pStr)+n+1-sizeof(pStr->z)); 89 if( pStr ){ 90 pStr->pNextStr = p->pDblStr; 91 p->pDblStr = pStr; 92 memcpy(pStr->z, z, n+1); 93 } 94 } 95 } 96 #endif 97 98 #ifdef SQLITE_ENABLE_NORMALIZE 99 /* 100 ** zId of length nId is a double-quoted identifier. Check to see if 101 ** that identifier is really used as a string literal. 102 */ 103 int sqlite3VdbeUsesDoubleQuotedString( 104 Vdbe *pVdbe, /* The prepared statement */ 105 const char *zId /* The double-quoted identifier, already dequoted */ 106 ){ 107 DblquoteStr *pStr; 108 assert( zId!=0 ); 109 if( pVdbe->pDblStr==0 ) return 0; 110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ 111 if( strcmp(zId, pStr->z)==0 ) return 1; 112 } 113 return 0; 114 } 115 #endif 116 117 /* 118 ** Swap all content between two VDBE structures. 119 */ 120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 121 Vdbe tmp, *pTmp; 122 char *zTmp; 123 assert( pA->db==pB->db ); 124 tmp = *pA; 125 *pA = *pB; 126 *pB = tmp; 127 pTmp = pA->pNext; 128 pA->pNext = pB->pNext; 129 pB->pNext = pTmp; 130 pTmp = pA->pPrev; 131 pA->pPrev = pB->pPrev; 132 pB->pPrev = pTmp; 133 zTmp = pA->zSql; 134 pA->zSql = pB->zSql; 135 pB->zSql = zTmp; 136 #ifdef SQLITE_ENABLE_NORMALIZE 137 zTmp = pA->zNormSql; 138 pA->zNormSql = pB->zNormSql; 139 pB->zNormSql = zTmp; 140 #endif 141 pB->expmask = pA->expmask; 142 pB->prepFlags = pA->prepFlags; 143 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 144 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 145 } 146 147 /* 148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 149 ** than its current size. nOp is guaranteed to be less than or equal 150 ** to 1024/sizeof(Op). 151 ** 152 ** If an out-of-memory error occurs while resizing the array, return 153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain 154 ** unchanged (this is so that any opcodes already allocated can be 155 ** correctly deallocated along with the rest of the Vdbe). 156 */ 157 static int growOpArray(Vdbe *v, int nOp){ 158 VdbeOp *pNew; 159 Parse *p = v->pParse; 160 161 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 162 ** more frequent reallocs and hence provide more opportunities for 163 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 164 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 165 ** by the minimum* amount required until the size reaches 512. Normal 166 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 167 ** size of the op array or add 1KB of space, whichever is smaller. */ 168 #ifdef SQLITE_TEST_REALLOC_STRESS 169 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc 170 : (sqlite3_int64)v->nOpAlloc+nOp); 171 #else 172 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc 173 : (sqlite3_int64)(1024/sizeof(Op))); 174 UNUSED_PARAMETER(nOp); 175 #endif 176 177 /* Ensure that the size of a VDBE does not grow too large */ 178 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 179 sqlite3OomFault(p->db); 180 return SQLITE_NOMEM; 181 } 182 183 assert( nOp<=(1024/sizeof(Op)) ); 184 assert( nNew>=(v->nOpAlloc+nOp) ); 185 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 186 if( pNew ){ 187 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 188 v->nOpAlloc = p->szOpAlloc/sizeof(Op); 189 v->aOp = pNew; 190 } 191 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 192 } 193 194 #ifdef SQLITE_DEBUG 195 /* This routine is just a convenient place to set a breakpoint that will 196 ** fire after each opcode is inserted and displayed using 197 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and 198 ** pOp are available to make the breakpoint conditional. 199 ** 200 ** Other useful labels for breakpoints include: 201 ** test_trace_breakpoint(pc,pOp) 202 ** sqlite3CorruptError(lineno) 203 ** sqlite3MisuseError(lineno) 204 ** sqlite3CantopenError(lineno) 205 */ 206 static void test_addop_breakpoint(int pc, Op *pOp){ 207 static int n = 0; 208 n++; 209 } 210 #endif 211 212 /* 213 ** Add a new instruction to the list of instructions current in the 214 ** VDBE. Return the address of the new instruction. 215 ** 216 ** Parameters: 217 ** 218 ** p Pointer to the VDBE 219 ** 220 ** op The opcode for this instruction 221 ** 222 ** p1, p2, p3 Operands 223 ** 224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 225 ** the sqlite3VdbeChangeP4() function to change the value of the P4 226 ** operand. 227 */ 228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 229 assert( p->nOpAlloc<=p->nOp ); 230 if( growOpArray(p, 1) ) return 1; 231 assert( p->nOpAlloc>p->nOp ); 232 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 233 } 234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 235 int i; 236 VdbeOp *pOp; 237 238 i = p->nOp; 239 assert( p->magic==VDBE_MAGIC_INIT ); 240 assert( op>=0 && op<0xff ); 241 if( p->nOpAlloc<=i ){ 242 return growOp3(p, op, p1, p2, p3); 243 } 244 p->nOp++; 245 pOp = &p->aOp[i]; 246 pOp->opcode = (u8)op; 247 pOp->p5 = 0; 248 pOp->p1 = p1; 249 pOp->p2 = p2; 250 pOp->p3 = p3; 251 pOp->p4.p = 0; 252 pOp->p4type = P4_NOTUSED; 253 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 254 pOp->zComment = 0; 255 #endif 256 #ifdef SQLITE_DEBUG 257 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 258 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 259 test_addop_breakpoint(i, &p->aOp[i]); 260 } 261 #endif 262 #ifdef VDBE_PROFILE 263 pOp->cycles = 0; 264 pOp->cnt = 0; 265 #endif 266 #ifdef SQLITE_VDBE_COVERAGE 267 pOp->iSrcLine = 0; 268 #endif 269 return i; 270 } 271 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 272 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 273 } 274 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 275 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 276 } 277 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 278 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 279 } 280 281 /* Generate code for an unconditional jump to instruction iDest 282 */ 283 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 284 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 285 } 286 287 /* Generate code to cause the string zStr to be loaded into 288 ** register iDest 289 */ 290 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 291 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 292 } 293 294 /* 295 ** Generate code that initializes multiple registers to string or integer 296 ** constants. The registers begin with iDest and increase consecutively. 297 ** One register is initialized for each characgter in zTypes[]. For each 298 ** "s" character in zTypes[], the register is a string if the argument is 299 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 300 ** in zTypes[], the register is initialized to an integer. 301 ** 302 ** If the input string does not end with "X" then an OP_ResultRow instruction 303 ** is generated for the values inserted. 304 */ 305 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 306 va_list ap; 307 int i; 308 char c; 309 va_start(ap, zTypes); 310 for(i=0; (c = zTypes[i])!=0; i++){ 311 if( c=='s' ){ 312 const char *z = va_arg(ap, const char*); 313 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 314 }else if( c=='i' ){ 315 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 316 }else{ 317 goto skip_op_resultrow; 318 } 319 } 320 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 321 skip_op_resultrow: 322 va_end(ap); 323 } 324 325 /* 326 ** Add an opcode that includes the p4 value as a pointer. 327 */ 328 int sqlite3VdbeAddOp4( 329 Vdbe *p, /* Add the opcode to this VM */ 330 int op, /* The new opcode */ 331 int p1, /* The P1 operand */ 332 int p2, /* The P2 operand */ 333 int p3, /* The P3 operand */ 334 const char *zP4, /* The P4 operand */ 335 int p4type /* P4 operand type */ 336 ){ 337 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 338 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 339 return addr; 340 } 341 342 /* 343 ** Add an OP_Function or OP_PureFunc opcode. 344 ** 345 ** The eCallCtx argument is information (typically taken from Expr.op2) 346 ** that describes the calling context of the function. 0 means a general 347 ** function call. NC_IsCheck means called by a check constraint, 348 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx 349 ** means in the WHERE clause of a partial index. NC_GenCol means called 350 ** while computing a generated column value. 0 is the usual case. 351 */ 352 int sqlite3VdbeAddFunctionCall( 353 Parse *pParse, /* Parsing context */ 354 int p1, /* Constant argument mask */ 355 int p2, /* First argument register */ 356 int p3, /* Register into which results are written */ 357 int nArg, /* Number of argument */ 358 const FuncDef *pFunc, /* The function to be invoked */ 359 int eCallCtx /* Calling context */ 360 ){ 361 Vdbe *v = pParse->pVdbe; 362 int nByte; 363 int addr; 364 sqlite3_context *pCtx; 365 assert( v ); 366 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*); 367 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte); 368 if( pCtx==0 ){ 369 assert( pParse->db->mallocFailed ); 370 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc); 371 return 0; 372 } 373 pCtx->pOut = 0; 374 pCtx->pFunc = (FuncDef*)pFunc; 375 pCtx->pVdbe = 0; 376 pCtx->isError = 0; 377 pCtx->argc = nArg; 378 pCtx->iOp = sqlite3VdbeCurrentAddr(v); 379 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function, 380 p1, p2, p3, (char*)pCtx, P4_FUNCCTX); 381 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef); 382 return addr; 383 } 384 385 /* 386 ** Add an opcode that includes the p4 value with a P4_INT64 or 387 ** P4_REAL type. 388 */ 389 int sqlite3VdbeAddOp4Dup8( 390 Vdbe *p, /* Add the opcode to this VM */ 391 int op, /* The new opcode */ 392 int p1, /* The P1 operand */ 393 int p2, /* The P2 operand */ 394 int p3, /* The P3 operand */ 395 const u8 *zP4, /* The P4 operand */ 396 int p4type /* P4 operand type */ 397 ){ 398 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 399 if( p4copy ) memcpy(p4copy, zP4, 8); 400 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 401 } 402 403 #ifndef SQLITE_OMIT_EXPLAIN 404 /* 405 ** Return the address of the current EXPLAIN QUERY PLAN baseline. 406 ** 0 means "none". 407 */ 408 int sqlite3VdbeExplainParent(Parse *pParse){ 409 VdbeOp *pOp; 410 if( pParse->addrExplain==0 ) return 0; 411 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); 412 return pOp->p2; 413 } 414 415 /* 416 ** Set a debugger breakpoint on the following routine in order to 417 ** monitor the EXPLAIN QUERY PLAN code generation. 418 */ 419 #if defined(SQLITE_DEBUG) 420 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ 421 (void)z1; 422 (void)z2; 423 } 424 #endif 425 426 /* 427 ** Add a new OP_Explain opcode. 428 ** 429 ** If the bPush flag is true, then make this opcode the parent for 430 ** subsequent Explains until sqlite3VdbeExplainPop() is called. 431 */ 432 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ 433 #ifndef SQLITE_DEBUG 434 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined. 435 ** But omit them (for performance) during production builds */ 436 if( pParse->explain==2 ) 437 #endif 438 { 439 char *zMsg; 440 Vdbe *v; 441 va_list ap; 442 int iThis; 443 va_start(ap, zFmt); 444 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); 445 va_end(ap); 446 v = pParse->pVdbe; 447 iThis = v->nOp; 448 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, 449 zMsg, P4_DYNAMIC); 450 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z); 451 if( bPush){ 452 pParse->addrExplain = iThis; 453 } 454 } 455 } 456 457 /* 458 ** Pop the EXPLAIN QUERY PLAN stack one level. 459 */ 460 void sqlite3VdbeExplainPop(Parse *pParse){ 461 sqlite3ExplainBreakpoint("POP", 0); 462 pParse->addrExplain = sqlite3VdbeExplainParent(pParse); 463 } 464 #endif /* SQLITE_OMIT_EXPLAIN */ 465 466 /* 467 ** Add an OP_ParseSchema opcode. This routine is broken out from 468 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 469 ** as having been used. 470 ** 471 ** The zWhere string must have been obtained from sqlite3_malloc(). 472 ** This routine will take ownership of the allocated memory. 473 */ 474 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 475 int j; 476 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 477 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 478 sqlite3MayAbort(p->pParse); 479 } 480 481 /* 482 ** Add an opcode that includes the p4 value as an integer. 483 */ 484 int sqlite3VdbeAddOp4Int( 485 Vdbe *p, /* Add the opcode to this VM */ 486 int op, /* The new opcode */ 487 int p1, /* The P1 operand */ 488 int p2, /* The P2 operand */ 489 int p3, /* The P3 operand */ 490 int p4 /* The P4 operand as an integer */ 491 ){ 492 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 493 if( p->db->mallocFailed==0 ){ 494 VdbeOp *pOp = &p->aOp[addr]; 495 pOp->p4type = P4_INT32; 496 pOp->p4.i = p4; 497 } 498 return addr; 499 } 500 501 /* Insert the end of a co-routine 502 */ 503 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 504 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 505 506 /* Clear the temporary register cache, thereby ensuring that each 507 ** co-routine has its own independent set of registers, because co-routines 508 ** might expect their registers to be preserved across an OP_Yield, and 509 ** that could cause problems if two or more co-routines are using the same 510 ** temporary register. 511 */ 512 v->pParse->nTempReg = 0; 513 v->pParse->nRangeReg = 0; 514 } 515 516 /* 517 ** Create a new symbolic label for an instruction that has yet to be 518 ** coded. The symbolic label is really just a negative number. The 519 ** label can be used as the P2 value of an operation. Later, when 520 ** the label is resolved to a specific address, the VDBE will scan 521 ** through its operation list and change all values of P2 which match 522 ** the label into the resolved address. 523 ** 524 ** The VDBE knows that a P2 value is a label because labels are 525 ** always negative and P2 values are suppose to be non-negative. 526 ** Hence, a negative P2 value is a label that has yet to be resolved. 527 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP 528 ** property. 529 ** 530 ** Variable usage notes: 531 ** 532 ** Parse.aLabel[x] Stores the address that the x-th label resolves 533 ** into. For testing (SQLITE_DEBUG), unresolved 534 ** labels stores -1, but that is not required. 535 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[] 536 ** Parse.nLabel The *negative* of the number of labels that have 537 ** been issued. The negative is stored because 538 ** that gives a performance improvement over storing 539 ** the equivalent positive value. 540 */ 541 int sqlite3VdbeMakeLabel(Parse *pParse){ 542 return --pParse->nLabel; 543 } 544 545 /* 546 ** Resolve label "x" to be the address of the next instruction to 547 ** be inserted. The parameter "x" must have been obtained from 548 ** a prior call to sqlite3VdbeMakeLabel(). 549 */ 550 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){ 551 int nNewSize = 10 - p->nLabel; 552 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 553 nNewSize*sizeof(p->aLabel[0])); 554 if( p->aLabel==0 ){ 555 p->nLabelAlloc = 0; 556 }else{ 557 #ifdef SQLITE_DEBUG 558 int i; 559 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1; 560 #endif 561 p->nLabelAlloc = nNewSize; 562 p->aLabel[j] = v->nOp; 563 } 564 } 565 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 566 Parse *p = v->pParse; 567 int j = ADDR(x); 568 assert( v->magic==VDBE_MAGIC_INIT ); 569 assert( j<-p->nLabel ); 570 assert( j>=0 ); 571 #ifdef SQLITE_DEBUG 572 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 573 printf("RESOLVE LABEL %d to %d\n", x, v->nOp); 574 } 575 #endif 576 if( p->nLabelAlloc + p->nLabel < 0 ){ 577 resizeResolveLabel(p,v,j); 578 }else{ 579 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ 580 p->aLabel[j] = v->nOp; 581 } 582 } 583 584 /* 585 ** Mark the VDBE as one that can only be run one time. 586 */ 587 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 588 p->runOnlyOnce = 1; 589 } 590 591 /* 592 ** Mark the VDBE as one that can only be run multiple times. 593 */ 594 void sqlite3VdbeReusable(Vdbe *p){ 595 p->runOnlyOnce = 0; 596 } 597 598 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 599 600 /* 601 ** The following type and function are used to iterate through all opcodes 602 ** in a Vdbe main program and each of the sub-programs (triggers) it may 603 ** invoke directly or indirectly. It should be used as follows: 604 ** 605 ** Op *pOp; 606 ** VdbeOpIter sIter; 607 ** 608 ** memset(&sIter, 0, sizeof(sIter)); 609 ** sIter.v = v; // v is of type Vdbe* 610 ** while( (pOp = opIterNext(&sIter)) ){ 611 ** // Do something with pOp 612 ** } 613 ** sqlite3DbFree(v->db, sIter.apSub); 614 ** 615 */ 616 typedef struct VdbeOpIter VdbeOpIter; 617 struct VdbeOpIter { 618 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 619 SubProgram **apSub; /* Array of subprograms */ 620 int nSub; /* Number of entries in apSub */ 621 int iAddr; /* Address of next instruction to return */ 622 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 623 }; 624 static Op *opIterNext(VdbeOpIter *p){ 625 Vdbe *v = p->v; 626 Op *pRet = 0; 627 Op *aOp; 628 int nOp; 629 630 if( p->iSub<=p->nSub ){ 631 632 if( p->iSub==0 ){ 633 aOp = v->aOp; 634 nOp = v->nOp; 635 }else{ 636 aOp = p->apSub[p->iSub-1]->aOp; 637 nOp = p->apSub[p->iSub-1]->nOp; 638 } 639 assert( p->iAddr<nOp ); 640 641 pRet = &aOp[p->iAddr]; 642 p->iAddr++; 643 if( p->iAddr==nOp ){ 644 p->iSub++; 645 p->iAddr = 0; 646 } 647 648 if( pRet->p4type==P4_SUBPROGRAM ){ 649 int nByte = (p->nSub+1)*sizeof(SubProgram*); 650 int j; 651 for(j=0; j<p->nSub; j++){ 652 if( p->apSub[j]==pRet->p4.pProgram ) break; 653 } 654 if( j==p->nSub ){ 655 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 656 if( !p->apSub ){ 657 pRet = 0; 658 }else{ 659 p->apSub[p->nSub++] = pRet->p4.pProgram; 660 } 661 } 662 } 663 } 664 665 return pRet; 666 } 667 668 /* 669 ** Check if the program stored in the VM associated with pParse may 670 ** throw an ABORT exception (causing the statement, but not entire transaction 671 ** to be rolled back). This condition is true if the main program or any 672 ** sub-programs contains any of the following: 673 ** 674 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 675 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 676 ** * OP_Destroy 677 ** * OP_VUpdate 678 ** * OP_VCreate 679 ** * OP_VRename 680 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 681 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 682 ** (for CREATE TABLE AS SELECT ...) 683 ** 684 ** Then check that the value of Parse.mayAbort is true if an 685 ** ABORT may be thrown, or false otherwise. Return true if it does 686 ** match, or false otherwise. This function is intended to be used as 687 ** part of an assert statement in the compiler. Similar to: 688 ** 689 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 690 */ 691 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 692 int hasAbort = 0; 693 int hasFkCounter = 0; 694 int hasCreateTable = 0; 695 int hasCreateIndex = 0; 696 int hasInitCoroutine = 0; 697 Op *pOp; 698 VdbeOpIter sIter; 699 memset(&sIter, 0, sizeof(sIter)); 700 sIter.v = v; 701 702 while( (pOp = opIterNext(&sIter))!=0 ){ 703 int opcode = pOp->opcode; 704 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 705 || opcode==OP_VDestroy 706 || opcode==OP_VCreate 707 || opcode==OP_ParseSchema 708 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 709 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort)) 710 ){ 711 hasAbort = 1; 712 break; 713 } 714 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; 715 if( mayAbort ){ 716 /* hasCreateIndex may also be set for some DELETE statements that use 717 ** OP_Clear. So this routine may end up returning true in the case 718 ** where a "DELETE FROM tbl" has a statement-journal but does not 719 ** require one. This is not so bad - it is an inefficiency, not a bug. */ 720 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1; 721 if( opcode==OP_Clear ) hasCreateIndex = 1; 722 } 723 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 724 #ifndef SQLITE_OMIT_FOREIGN_KEY 725 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 726 hasFkCounter = 1; 727 } 728 #endif 729 } 730 sqlite3DbFree(v->db, sIter.apSub); 731 732 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 733 ** If malloc failed, then the while() loop above may not have iterated 734 ** through all opcodes and hasAbort may be set incorrectly. Return 735 ** true for this case to prevent the assert() in the callers frame 736 ** from failing. */ 737 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 738 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex 739 ); 740 } 741 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 742 743 #ifdef SQLITE_DEBUG 744 /* 745 ** Increment the nWrite counter in the VDBE if the cursor is not an 746 ** ephemeral cursor, or if the cursor argument is NULL. 747 */ 748 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ 749 if( pC==0 750 || (pC->eCurType!=CURTYPE_SORTER 751 && pC->eCurType!=CURTYPE_PSEUDO 752 && !pC->isEphemeral) 753 ){ 754 p->nWrite++; 755 } 756 } 757 #endif 758 759 #ifdef SQLITE_DEBUG 760 /* 761 ** Assert if an Abort at this point in time might result in a corrupt 762 ** database. 763 */ 764 void sqlite3VdbeAssertAbortable(Vdbe *p){ 765 assert( p->nWrite==0 || p->usesStmtJournal ); 766 } 767 #endif 768 769 /* 770 ** This routine is called after all opcodes have been inserted. It loops 771 ** through all the opcodes and fixes up some details. 772 ** 773 ** (1) For each jump instruction with a negative P2 value (a label) 774 ** resolve the P2 value to an actual address. 775 ** 776 ** (2) Compute the maximum number of arguments used by any SQL function 777 ** and store that value in *pMaxFuncArgs. 778 ** 779 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 780 ** indicate what the prepared statement actually does. 781 ** 782 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 783 ** 784 ** (5) Reclaim the memory allocated for storing labels. 785 ** 786 ** This routine will only function correctly if the mkopcodeh.tcl generator 787 ** script numbers the opcodes correctly. Changes to this routine must be 788 ** coordinated with changes to mkopcodeh.tcl. 789 */ 790 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 791 int nMaxArgs = *pMaxFuncArgs; 792 Op *pOp; 793 Parse *pParse = p->pParse; 794 int *aLabel = pParse->aLabel; 795 p->readOnly = 1; 796 p->bIsReader = 0; 797 pOp = &p->aOp[p->nOp-1]; 798 while(1){ 799 800 /* Only JUMP opcodes and the short list of special opcodes in the switch 801 ** below need to be considered. The mkopcodeh.tcl generator script groups 802 ** all these opcodes together near the front of the opcode list. Skip 803 ** any opcode that does not need processing by virtual of the fact that 804 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 805 */ 806 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 807 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 808 ** cases from this switch! */ 809 switch( pOp->opcode ){ 810 case OP_Transaction: { 811 if( pOp->p2!=0 ) p->readOnly = 0; 812 /* no break */ deliberate_fall_through 813 } 814 case OP_AutoCommit: 815 case OP_Savepoint: { 816 p->bIsReader = 1; 817 break; 818 } 819 #ifndef SQLITE_OMIT_WAL 820 case OP_Checkpoint: 821 #endif 822 case OP_Vacuum: 823 case OP_JournalMode: { 824 p->readOnly = 0; 825 p->bIsReader = 1; 826 break; 827 } 828 case OP_Next: 829 case OP_SorterNext: { 830 pOp->p4.xAdvance = sqlite3BtreeNext; 831 pOp->p4type = P4_ADVANCE; 832 /* The code generator never codes any of these opcodes as a jump 833 ** to a label. They are always coded as a jump backwards to a 834 ** known address */ 835 assert( pOp->p2>=0 ); 836 break; 837 } 838 case OP_Prev: { 839 pOp->p4.xAdvance = sqlite3BtreePrevious; 840 pOp->p4type = P4_ADVANCE; 841 /* The code generator never codes any of these opcodes as a jump 842 ** to a label. They are always coded as a jump backwards to a 843 ** known address */ 844 assert( pOp->p2>=0 ); 845 break; 846 } 847 #ifndef SQLITE_OMIT_VIRTUALTABLE 848 case OP_VUpdate: { 849 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 850 break; 851 } 852 case OP_VFilter: { 853 int n; 854 assert( (pOp - p->aOp) >= 3 ); 855 assert( pOp[-1].opcode==OP_Integer ); 856 n = pOp[-1].p1; 857 if( n>nMaxArgs ) nMaxArgs = n; 858 /* Fall through into the default case */ 859 /* no break */ deliberate_fall_through 860 } 861 #endif 862 default: { 863 if( pOp->p2<0 ){ 864 /* The mkopcodeh.tcl script has so arranged things that the only 865 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 866 ** have non-negative values for P2. */ 867 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 868 assert( ADDR(pOp->p2)<-pParse->nLabel ); 869 pOp->p2 = aLabel[ADDR(pOp->p2)]; 870 } 871 break; 872 } 873 } 874 /* The mkopcodeh.tcl script has so arranged things that the only 875 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 876 ** have non-negative values for P2. */ 877 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 878 } 879 if( pOp==p->aOp ) break; 880 pOp--; 881 } 882 sqlite3DbFree(p->db, pParse->aLabel); 883 pParse->aLabel = 0; 884 pParse->nLabel = 0; 885 *pMaxFuncArgs = nMaxArgs; 886 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 887 } 888 889 /* 890 ** Return the address of the next instruction to be inserted. 891 */ 892 int sqlite3VdbeCurrentAddr(Vdbe *p){ 893 assert( p->magic==VDBE_MAGIC_INIT ); 894 return p->nOp; 895 } 896 897 /* 898 ** Verify that at least N opcode slots are available in p without 899 ** having to malloc for more space (except when compiled using 900 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 901 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 902 ** fail due to a OOM fault and hence that the return value from 903 ** sqlite3VdbeAddOpList() will always be non-NULL. 904 */ 905 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 906 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 907 assert( p->nOp + N <= p->nOpAlloc ); 908 } 909 #endif 910 911 /* 912 ** Verify that the VM passed as the only argument does not contain 913 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 914 ** by code in pragma.c to ensure that the implementation of certain 915 ** pragmas comports with the flags specified in the mkpragmatab.tcl 916 ** script. 917 */ 918 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 919 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 920 int i; 921 for(i=0; i<p->nOp; i++){ 922 assert( p->aOp[i].opcode!=OP_ResultRow ); 923 } 924 } 925 #endif 926 927 /* 928 ** Generate code (a single OP_Abortable opcode) that will 929 ** verify that the VDBE program can safely call Abort in the current 930 ** context. 931 */ 932 #if defined(SQLITE_DEBUG) 933 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ 934 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); 935 } 936 #endif 937 938 /* 939 ** This function returns a pointer to the array of opcodes associated with 940 ** the Vdbe passed as the first argument. It is the callers responsibility 941 ** to arrange for the returned array to be eventually freed using the 942 ** vdbeFreeOpArray() function. 943 ** 944 ** Before returning, *pnOp is set to the number of entries in the returned 945 ** array. Also, *pnMaxArg is set to the larger of its current value and 946 ** the number of entries in the Vdbe.apArg[] array required to execute the 947 ** returned program. 948 */ 949 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 950 VdbeOp *aOp = p->aOp; 951 assert( aOp && !p->db->mallocFailed ); 952 953 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 954 assert( DbMaskAllZero(p->btreeMask) ); 955 956 resolveP2Values(p, pnMaxArg); 957 *pnOp = p->nOp; 958 p->aOp = 0; 959 return aOp; 960 } 961 962 /* 963 ** Add a whole list of operations to the operation stack. Return a 964 ** pointer to the first operation inserted. 965 ** 966 ** Non-zero P2 arguments to jump instructions are automatically adjusted 967 ** so that the jump target is relative to the first operation inserted. 968 */ 969 VdbeOp *sqlite3VdbeAddOpList( 970 Vdbe *p, /* Add opcodes to the prepared statement */ 971 int nOp, /* Number of opcodes to add */ 972 VdbeOpList const *aOp, /* The opcodes to be added */ 973 int iLineno /* Source-file line number of first opcode */ 974 ){ 975 int i; 976 VdbeOp *pOut, *pFirst; 977 assert( nOp>0 ); 978 assert( p->magic==VDBE_MAGIC_INIT ); 979 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){ 980 return 0; 981 } 982 pFirst = pOut = &p->aOp[p->nOp]; 983 for(i=0; i<nOp; i++, aOp++, pOut++){ 984 pOut->opcode = aOp->opcode; 985 pOut->p1 = aOp->p1; 986 pOut->p2 = aOp->p2; 987 assert( aOp->p2>=0 ); 988 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 989 pOut->p2 += p->nOp; 990 } 991 pOut->p3 = aOp->p3; 992 pOut->p4type = P4_NOTUSED; 993 pOut->p4.p = 0; 994 pOut->p5 = 0; 995 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 996 pOut->zComment = 0; 997 #endif 998 #ifdef SQLITE_VDBE_COVERAGE 999 pOut->iSrcLine = iLineno+i; 1000 #else 1001 (void)iLineno; 1002 #endif 1003 #ifdef SQLITE_DEBUG 1004 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 1005 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 1006 } 1007 #endif 1008 } 1009 p->nOp += nOp; 1010 return pFirst; 1011 } 1012 1013 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 1014 /* 1015 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 1016 */ 1017 void sqlite3VdbeScanStatus( 1018 Vdbe *p, /* VM to add scanstatus() to */ 1019 int addrExplain, /* Address of OP_Explain (or 0) */ 1020 int addrLoop, /* Address of loop counter */ 1021 int addrVisit, /* Address of rows visited counter */ 1022 LogEst nEst, /* Estimated number of output rows */ 1023 const char *zName /* Name of table or index being scanned */ 1024 ){ 1025 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus); 1026 ScanStatus *aNew; 1027 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 1028 if( aNew ){ 1029 ScanStatus *pNew = &aNew[p->nScan++]; 1030 pNew->addrExplain = addrExplain; 1031 pNew->addrLoop = addrLoop; 1032 pNew->addrVisit = addrVisit; 1033 pNew->nEst = nEst; 1034 pNew->zName = sqlite3DbStrDup(p->db, zName); 1035 p->aScan = aNew; 1036 } 1037 } 1038 #endif 1039 1040 1041 /* 1042 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 1043 ** for a specific instruction. 1044 */ 1045 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){ 1046 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 1047 } 1048 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ 1049 sqlite3VdbeGetOp(p,addr)->p1 = val; 1050 } 1051 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ 1052 sqlite3VdbeGetOp(p,addr)->p2 = val; 1053 } 1054 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ 1055 sqlite3VdbeGetOp(p,addr)->p3 = val; 1056 } 1057 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 1058 assert( p->nOp>0 || p->db->mallocFailed ); 1059 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 1060 } 1061 1062 /* 1063 ** Change the P2 operand of instruction addr so that it points to 1064 ** the address of the next instruction to be coded. 1065 */ 1066 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 1067 sqlite3VdbeChangeP2(p, addr, p->nOp); 1068 } 1069 1070 /* 1071 ** Change the P2 operand of the jump instruction at addr so that 1072 ** the jump lands on the next opcode. Or if the jump instruction was 1073 ** the previous opcode (and is thus a no-op) then simply back up 1074 ** the next instruction counter by one slot so that the jump is 1075 ** overwritten by the next inserted opcode. 1076 ** 1077 ** This routine is an optimization of sqlite3VdbeJumpHere() that 1078 ** strives to omit useless byte-code like this: 1079 ** 1080 ** 7 Once 0 8 0 1081 ** 8 ... 1082 */ 1083 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){ 1084 if( addr==p->nOp-1 ){ 1085 assert( p->aOp[addr].opcode==OP_Once 1086 || p->aOp[addr].opcode==OP_If 1087 || p->aOp[addr].opcode==OP_FkIfZero ); 1088 assert( p->aOp[addr].p4type==0 ); 1089 #ifdef SQLITE_VDBE_COVERAGE 1090 sqlite3VdbeGetOp(p,-1)->iSrcLine = 0; /* Erase VdbeCoverage() macros */ 1091 #endif 1092 p->nOp--; 1093 }else{ 1094 sqlite3VdbeChangeP2(p, addr, p->nOp); 1095 } 1096 } 1097 1098 1099 /* 1100 ** If the input FuncDef structure is ephemeral, then free it. If 1101 ** the FuncDef is not ephermal, then do nothing. 1102 */ 1103 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 1104 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 1105 sqlite3DbFreeNN(db, pDef); 1106 } 1107 } 1108 1109 /* 1110 ** Delete a P4 value if necessary. 1111 */ 1112 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 1113 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1114 sqlite3DbFreeNN(db, p); 1115 } 1116 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 1117 freeEphemeralFunction(db, p->pFunc); 1118 sqlite3DbFreeNN(db, p); 1119 } 1120 static void freeP4(sqlite3 *db, int p4type, void *p4){ 1121 assert( db ); 1122 switch( p4type ){ 1123 case P4_FUNCCTX: { 1124 freeP4FuncCtx(db, (sqlite3_context*)p4); 1125 break; 1126 } 1127 case P4_REAL: 1128 case P4_INT64: 1129 case P4_DYNAMIC: 1130 case P4_DYNBLOB: 1131 case P4_INTARRAY: { 1132 sqlite3DbFree(db, p4); 1133 break; 1134 } 1135 case P4_KEYINFO: { 1136 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 1137 break; 1138 } 1139 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1140 case P4_EXPR: { 1141 sqlite3ExprDelete(db, (Expr*)p4); 1142 break; 1143 } 1144 #endif 1145 case P4_FUNCDEF: { 1146 freeEphemeralFunction(db, (FuncDef*)p4); 1147 break; 1148 } 1149 case P4_MEM: { 1150 if( db->pnBytesFreed==0 ){ 1151 sqlite3ValueFree((sqlite3_value*)p4); 1152 }else{ 1153 freeP4Mem(db, (Mem*)p4); 1154 } 1155 break; 1156 } 1157 case P4_VTAB : { 1158 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 1159 break; 1160 } 1161 } 1162 } 1163 1164 /* 1165 ** Free the space allocated for aOp and any p4 values allocated for the 1166 ** opcodes contained within. If aOp is not NULL it is assumed to contain 1167 ** nOp entries. 1168 */ 1169 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 1170 if( aOp ){ 1171 Op *pOp; 1172 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){ 1173 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 1174 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1175 sqlite3DbFree(db, pOp->zComment); 1176 #endif 1177 } 1178 sqlite3DbFreeNN(db, aOp); 1179 } 1180 } 1181 1182 /* 1183 ** Link the SubProgram object passed as the second argument into the linked 1184 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 1185 ** objects when the VM is no longer required. 1186 */ 1187 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 1188 p->pNext = pVdbe->pProgram; 1189 pVdbe->pProgram = p; 1190 } 1191 1192 /* 1193 ** Return true if the given Vdbe has any SubPrograms. 1194 */ 1195 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){ 1196 return pVdbe->pProgram!=0; 1197 } 1198 1199 /* 1200 ** Change the opcode at addr into OP_Noop 1201 */ 1202 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 1203 VdbeOp *pOp; 1204 if( p->db->mallocFailed ) return 0; 1205 assert( addr>=0 && addr<p->nOp ); 1206 pOp = &p->aOp[addr]; 1207 freeP4(p->db, pOp->p4type, pOp->p4.p); 1208 pOp->p4type = P4_NOTUSED; 1209 pOp->p4.z = 0; 1210 pOp->opcode = OP_Noop; 1211 return 1; 1212 } 1213 1214 /* 1215 ** If the last opcode is "op" and it is not a jump destination, 1216 ** then remove it. Return true if and only if an opcode was removed. 1217 */ 1218 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 1219 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 1220 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 1221 }else{ 1222 return 0; 1223 } 1224 } 1225 1226 #ifdef SQLITE_DEBUG 1227 /* 1228 ** Generate an OP_ReleaseReg opcode to indicate that a range of 1229 ** registers, except any identified by mask, are no longer in use. 1230 */ 1231 void sqlite3VdbeReleaseRegisters( 1232 Parse *pParse, /* Parsing context */ 1233 int iFirst, /* Index of first register to be released */ 1234 int N, /* Number of registers to release */ 1235 u32 mask, /* Mask of registers to NOT release */ 1236 int bUndefine /* If true, mark registers as undefined */ 1237 ){ 1238 if( N==0 ) return; 1239 assert( pParse->pVdbe ); 1240 assert( iFirst>=1 ); 1241 assert( iFirst+N-1<=pParse->nMem ); 1242 if( N<=31 && mask!=0 ){ 1243 while( N>0 && (mask&1)!=0 ){ 1244 mask >>= 1; 1245 iFirst++; 1246 N--; 1247 } 1248 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){ 1249 mask &= ~MASKBIT32(N-1); 1250 N--; 1251 } 1252 } 1253 if( N>0 ){ 1254 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); 1255 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); 1256 } 1257 } 1258 #endif /* SQLITE_DEBUG */ 1259 1260 1261 /* 1262 ** Change the value of the P4 operand for a specific instruction. 1263 ** This routine is useful when a large program is loaded from a 1264 ** static array using sqlite3VdbeAddOpList but we want to make a 1265 ** few minor changes to the program. 1266 ** 1267 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 1268 ** the string is made into memory obtained from sqlite3_malloc(). 1269 ** A value of n==0 means copy bytes of zP4 up to and including the 1270 ** first null byte. If n>0 then copy n+1 bytes of zP4. 1271 ** 1272 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 1273 ** to a string or structure that is guaranteed to exist for the lifetime of 1274 ** the Vdbe. In these cases we can just copy the pointer. 1275 ** 1276 ** If addr<0 then change P4 on the most recently inserted instruction. 1277 */ 1278 static void SQLITE_NOINLINE vdbeChangeP4Full( 1279 Vdbe *p, 1280 Op *pOp, 1281 const char *zP4, 1282 int n 1283 ){ 1284 if( pOp->p4type ){ 1285 freeP4(p->db, pOp->p4type, pOp->p4.p); 1286 pOp->p4type = 0; 1287 pOp->p4.p = 0; 1288 } 1289 if( n<0 ){ 1290 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 1291 }else{ 1292 if( n==0 ) n = sqlite3Strlen30(zP4); 1293 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 1294 pOp->p4type = P4_DYNAMIC; 1295 } 1296 } 1297 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 1298 Op *pOp; 1299 sqlite3 *db; 1300 assert( p!=0 ); 1301 db = p->db; 1302 assert( p->magic==VDBE_MAGIC_INIT ); 1303 assert( p->aOp!=0 || db->mallocFailed ); 1304 if( db->mallocFailed ){ 1305 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 1306 return; 1307 } 1308 assert( p->nOp>0 ); 1309 assert( addr<p->nOp ); 1310 if( addr<0 ){ 1311 addr = p->nOp - 1; 1312 } 1313 pOp = &p->aOp[addr]; 1314 if( n>=0 || pOp->p4type ){ 1315 vdbeChangeP4Full(p, pOp, zP4, n); 1316 return; 1317 } 1318 if( n==P4_INT32 ){ 1319 /* Note: this cast is safe, because the origin data point was an int 1320 ** that was cast to a (const char *). */ 1321 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 1322 pOp->p4type = P4_INT32; 1323 }else if( zP4!=0 ){ 1324 assert( n<0 ); 1325 pOp->p4.p = (void*)zP4; 1326 pOp->p4type = (signed char)n; 1327 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 1328 } 1329 } 1330 1331 /* 1332 ** Change the P4 operand of the most recently coded instruction 1333 ** to the value defined by the arguments. This is a high-speed 1334 ** version of sqlite3VdbeChangeP4(). 1335 ** 1336 ** The P4 operand must not have been previously defined. And the new 1337 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 1338 ** those cases. 1339 */ 1340 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1341 VdbeOp *pOp; 1342 assert( n!=P4_INT32 && n!=P4_VTAB ); 1343 assert( n<=0 ); 1344 if( p->db->mallocFailed ){ 1345 freeP4(p->db, n, pP4); 1346 }else{ 1347 assert( pP4!=0 ); 1348 assert( p->nOp>0 ); 1349 pOp = &p->aOp[p->nOp-1]; 1350 assert( pOp->p4type==P4_NOTUSED ); 1351 pOp->p4type = n; 1352 pOp->p4.p = pP4; 1353 } 1354 } 1355 1356 /* 1357 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1358 ** index given. 1359 */ 1360 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1361 Vdbe *v = pParse->pVdbe; 1362 KeyInfo *pKeyInfo; 1363 assert( v!=0 ); 1364 assert( pIdx!=0 ); 1365 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1366 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1367 } 1368 1369 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1370 /* 1371 ** Change the comment on the most recently coded instruction. Or 1372 ** insert a No-op and add the comment to that new instruction. This 1373 ** makes the code easier to read during debugging. None of this happens 1374 ** in a production build. 1375 */ 1376 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1377 assert( p->nOp>0 || p->aOp==0 ); 1378 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed 1379 || p->pParse->nErr>0 ); 1380 if( p->nOp ){ 1381 assert( p->aOp ); 1382 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1383 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1384 } 1385 } 1386 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1387 va_list ap; 1388 if( p ){ 1389 va_start(ap, zFormat); 1390 vdbeVComment(p, zFormat, ap); 1391 va_end(ap); 1392 } 1393 } 1394 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1395 va_list ap; 1396 if( p ){ 1397 sqlite3VdbeAddOp0(p, OP_Noop); 1398 va_start(ap, zFormat); 1399 vdbeVComment(p, zFormat, ap); 1400 va_end(ap); 1401 } 1402 } 1403 #endif /* NDEBUG */ 1404 1405 #ifdef SQLITE_VDBE_COVERAGE 1406 /* 1407 ** Set the value if the iSrcLine field for the previously coded instruction. 1408 */ 1409 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1410 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1411 } 1412 #endif /* SQLITE_VDBE_COVERAGE */ 1413 1414 /* 1415 ** Return the opcode for a given address. If the address is -1, then 1416 ** return the most recently inserted opcode. 1417 ** 1418 ** If a memory allocation error has occurred prior to the calling of this 1419 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1420 ** is readable but not writable, though it is cast to a writable value. 1421 ** The return of a dummy opcode allows the call to continue functioning 1422 ** after an OOM fault without having to check to see if the return from 1423 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1424 ** dummy will never be written to. This is verified by code inspection and 1425 ** by running with Valgrind. 1426 */ 1427 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1428 /* C89 specifies that the constant "dummy" will be initialized to all 1429 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1430 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1431 assert( p->magic==VDBE_MAGIC_INIT ); 1432 if( addr<0 ){ 1433 addr = p->nOp - 1; 1434 } 1435 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1436 if( p->db->mallocFailed ){ 1437 return (VdbeOp*)&dummy; 1438 }else{ 1439 return &p->aOp[addr]; 1440 } 1441 } 1442 1443 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1444 /* 1445 ** Return an integer value for one of the parameters to the opcode pOp 1446 ** determined by character c. 1447 */ 1448 static int translateP(char c, const Op *pOp){ 1449 if( c=='1' ) return pOp->p1; 1450 if( c=='2' ) return pOp->p2; 1451 if( c=='3' ) return pOp->p3; 1452 if( c=='4' ) return pOp->p4.i; 1453 return pOp->p5; 1454 } 1455 1456 /* 1457 ** Compute a string for the "comment" field of a VDBE opcode listing. 1458 ** 1459 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1460 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1461 ** absence of other comments, this synopsis becomes the comment on the opcode. 1462 ** Some translation occurs: 1463 ** 1464 ** "PX" -> "r[X]" 1465 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1466 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1467 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1468 */ 1469 char *sqlite3VdbeDisplayComment( 1470 sqlite3 *db, /* Optional - Oom error reporting only */ 1471 const Op *pOp, /* The opcode to be commented */ 1472 const char *zP4 /* Previously obtained value for P4 */ 1473 ){ 1474 const char *zOpName; 1475 const char *zSynopsis; 1476 int nOpName; 1477 int ii; 1478 char zAlt[50]; 1479 StrAccum x; 1480 1481 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1482 zOpName = sqlite3OpcodeName(pOp->opcode); 1483 nOpName = sqlite3Strlen30(zOpName); 1484 if( zOpName[nOpName+1] ){ 1485 int seenCom = 0; 1486 char c; 1487 zSynopsis = zOpName += nOpName + 1; 1488 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1489 if( pOp->p5 & SQLITE_STOREP2 ){ 1490 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3); 1491 }else{ 1492 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1493 } 1494 zSynopsis = zAlt; 1495 } 1496 for(ii=0; (c = zSynopsis[ii])!=0; ii++){ 1497 if( c=='P' ){ 1498 c = zSynopsis[++ii]; 1499 if( c=='4' ){ 1500 sqlite3_str_appendall(&x, zP4); 1501 }else if( c=='X' ){ 1502 sqlite3_str_appendall(&x, pOp->zComment); 1503 seenCom = 1; 1504 }else{ 1505 int v1 = translateP(c, pOp); 1506 int v2; 1507 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1508 ii += 3; 1509 v2 = translateP(zSynopsis[ii], pOp); 1510 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1511 ii += 2; 1512 v2++; 1513 } 1514 if( v2<2 ){ 1515 sqlite3_str_appendf(&x, "%d", v1); 1516 }else{ 1517 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1); 1518 } 1519 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){ 1520 sqlite3_context *pCtx = pOp->p4.pCtx; 1521 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){ 1522 sqlite3_str_appendf(&x, "%d", v1); 1523 }else if( pCtx->argc>1 ){ 1524 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1); 1525 }else if( x.accError==0 ){ 1526 assert( x.nChar>2 ); 1527 x.nChar -= 2; 1528 ii++; 1529 } 1530 ii += 3; 1531 }else{ 1532 sqlite3_str_appendf(&x, "%d", v1); 1533 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1534 ii += 4; 1535 } 1536 } 1537 } 1538 }else{ 1539 sqlite3_str_appendchar(&x, 1, c); 1540 } 1541 } 1542 if( !seenCom && pOp->zComment ){ 1543 sqlite3_str_appendf(&x, "; %s", pOp->zComment); 1544 } 1545 }else if( pOp->zComment ){ 1546 sqlite3_str_appendall(&x, pOp->zComment); 1547 } 1548 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){ 1549 sqlite3OomFault(db); 1550 } 1551 return sqlite3StrAccumFinish(&x); 1552 } 1553 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */ 1554 1555 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1556 /* 1557 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1558 ** that can be displayed in the P4 column of EXPLAIN output. 1559 */ 1560 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1561 const char *zOp = 0; 1562 switch( pExpr->op ){ 1563 case TK_STRING: 1564 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); 1565 break; 1566 case TK_INTEGER: 1567 sqlite3_str_appendf(p, "%d", pExpr->u.iValue); 1568 break; 1569 case TK_NULL: 1570 sqlite3_str_appendf(p, "NULL"); 1571 break; 1572 case TK_REGISTER: { 1573 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); 1574 break; 1575 } 1576 case TK_COLUMN: { 1577 if( pExpr->iColumn<0 ){ 1578 sqlite3_str_appendf(p, "rowid"); 1579 }else{ 1580 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); 1581 } 1582 break; 1583 } 1584 case TK_LT: zOp = "LT"; break; 1585 case TK_LE: zOp = "LE"; break; 1586 case TK_GT: zOp = "GT"; break; 1587 case TK_GE: zOp = "GE"; break; 1588 case TK_NE: zOp = "NE"; break; 1589 case TK_EQ: zOp = "EQ"; break; 1590 case TK_IS: zOp = "IS"; break; 1591 case TK_ISNOT: zOp = "ISNOT"; break; 1592 case TK_AND: zOp = "AND"; break; 1593 case TK_OR: zOp = "OR"; break; 1594 case TK_PLUS: zOp = "ADD"; break; 1595 case TK_STAR: zOp = "MUL"; break; 1596 case TK_MINUS: zOp = "SUB"; break; 1597 case TK_REM: zOp = "REM"; break; 1598 case TK_BITAND: zOp = "BITAND"; break; 1599 case TK_BITOR: zOp = "BITOR"; break; 1600 case TK_SLASH: zOp = "DIV"; break; 1601 case TK_LSHIFT: zOp = "LSHIFT"; break; 1602 case TK_RSHIFT: zOp = "RSHIFT"; break; 1603 case TK_CONCAT: zOp = "CONCAT"; break; 1604 case TK_UMINUS: zOp = "MINUS"; break; 1605 case TK_UPLUS: zOp = "PLUS"; break; 1606 case TK_BITNOT: zOp = "BITNOT"; break; 1607 case TK_NOT: zOp = "NOT"; break; 1608 case TK_ISNULL: zOp = "ISNULL"; break; 1609 case TK_NOTNULL: zOp = "NOTNULL"; break; 1610 1611 default: 1612 sqlite3_str_appendf(p, "%s", "expr"); 1613 break; 1614 } 1615 1616 if( zOp ){ 1617 sqlite3_str_appendf(p, "%s(", zOp); 1618 displayP4Expr(p, pExpr->pLeft); 1619 if( pExpr->pRight ){ 1620 sqlite3_str_append(p, ",", 1); 1621 displayP4Expr(p, pExpr->pRight); 1622 } 1623 sqlite3_str_append(p, ")", 1); 1624 } 1625 } 1626 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1627 1628 1629 #if VDBE_DISPLAY_P4 1630 /* 1631 ** Compute a string that describes the P4 parameter for an opcode. 1632 ** Use zTemp for any required temporary buffer space. 1633 */ 1634 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){ 1635 char *zP4 = 0; 1636 StrAccum x; 1637 1638 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1639 switch( pOp->p4type ){ 1640 case P4_KEYINFO: { 1641 int j; 1642 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1643 assert( pKeyInfo->aSortFlags!=0 ); 1644 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); 1645 for(j=0; j<pKeyInfo->nKeyField; j++){ 1646 CollSeq *pColl = pKeyInfo->aColl[j]; 1647 const char *zColl = pColl ? pColl->zName : ""; 1648 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1649 sqlite3_str_appendf(&x, ",%s%s%s", 1650 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "", 1651 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "", 1652 zColl); 1653 } 1654 sqlite3_str_append(&x, ")", 1); 1655 break; 1656 } 1657 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1658 case P4_EXPR: { 1659 displayP4Expr(&x, pOp->p4.pExpr); 1660 break; 1661 } 1662 #endif 1663 case P4_COLLSEQ: { 1664 static const char *const encnames[] = {"?", "8", "16LE", "16BE"}; 1665 CollSeq *pColl = pOp->p4.pColl; 1666 assert( pColl->enc>=0 && pColl->enc<4 ); 1667 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName, 1668 encnames[pColl->enc]); 1669 break; 1670 } 1671 case P4_FUNCDEF: { 1672 FuncDef *pDef = pOp->p4.pFunc; 1673 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1674 break; 1675 } 1676 case P4_FUNCCTX: { 1677 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1678 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1679 break; 1680 } 1681 case P4_INT64: { 1682 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); 1683 break; 1684 } 1685 case P4_INT32: { 1686 sqlite3_str_appendf(&x, "%d", pOp->p4.i); 1687 break; 1688 } 1689 case P4_REAL: { 1690 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); 1691 break; 1692 } 1693 case P4_MEM: { 1694 Mem *pMem = pOp->p4.pMem; 1695 if( pMem->flags & MEM_Str ){ 1696 zP4 = pMem->z; 1697 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1698 sqlite3_str_appendf(&x, "%lld", pMem->u.i); 1699 }else if( pMem->flags & MEM_Real ){ 1700 sqlite3_str_appendf(&x, "%.16g", pMem->u.r); 1701 }else if( pMem->flags & MEM_Null ){ 1702 zP4 = "NULL"; 1703 }else{ 1704 assert( pMem->flags & MEM_Blob ); 1705 zP4 = "(blob)"; 1706 } 1707 break; 1708 } 1709 #ifndef SQLITE_OMIT_VIRTUALTABLE 1710 case P4_VTAB: { 1711 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1712 sqlite3_str_appendf(&x, "vtab:%p", pVtab); 1713 break; 1714 } 1715 #endif 1716 case P4_INTARRAY: { 1717 u32 i; 1718 u32 *ai = pOp->p4.ai; 1719 u32 n = ai[0]; /* The first element of an INTARRAY is always the 1720 ** count of the number of elements to follow */ 1721 for(i=1; i<=n; i++){ 1722 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]); 1723 } 1724 sqlite3_str_append(&x, "]", 1); 1725 break; 1726 } 1727 case P4_SUBPROGRAM: { 1728 zP4 = "program"; 1729 break; 1730 } 1731 case P4_DYNBLOB: 1732 case P4_ADVANCE: { 1733 break; 1734 } 1735 case P4_TABLE: { 1736 zP4 = pOp->p4.pTab->zName; 1737 break; 1738 } 1739 default: { 1740 zP4 = pOp->p4.z; 1741 } 1742 } 1743 if( zP4 ) sqlite3_str_appendall(&x, zP4); 1744 if( (x.accError & SQLITE_NOMEM)!=0 ){ 1745 sqlite3OomFault(db); 1746 } 1747 return sqlite3StrAccumFinish(&x); 1748 } 1749 #endif /* VDBE_DISPLAY_P4 */ 1750 1751 /* 1752 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1753 ** 1754 ** The prepared statements need to know in advance the complete set of 1755 ** attached databases that will be use. A mask of these databases 1756 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1757 ** p->btreeMask of databases that will require a lock. 1758 */ 1759 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1760 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1761 assert( i<(int)sizeof(p->btreeMask)*8 ); 1762 DbMaskSet(p->btreeMask, i); 1763 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1764 DbMaskSet(p->lockMask, i); 1765 } 1766 } 1767 1768 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1769 /* 1770 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1771 ** this routine obtains the mutex associated with each BtShared structure 1772 ** that may be accessed by the VM passed as an argument. In doing so it also 1773 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1774 ** that the correct busy-handler callback is invoked if required. 1775 ** 1776 ** If SQLite is not threadsafe but does support shared-cache mode, then 1777 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1778 ** of all of BtShared structures accessible via the database handle 1779 ** associated with the VM. 1780 ** 1781 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1782 ** function is a no-op. 1783 ** 1784 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1785 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1786 ** corresponding to btrees that use shared cache. Then the runtime of 1787 ** this routine is N*N. But as N is rarely more than 1, this should not 1788 ** be a problem. 1789 */ 1790 void sqlite3VdbeEnter(Vdbe *p){ 1791 int i; 1792 sqlite3 *db; 1793 Db *aDb; 1794 int nDb; 1795 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1796 db = p->db; 1797 aDb = db->aDb; 1798 nDb = db->nDb; 1799 for(i=0; i<nDb; i++){ 1800 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1801 sqlite3BtreeEnter(aDb[i].pBt); 1802 } 1803 } 1804 } 1805 #endif 1806 1807 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1808 /* 1809 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1810 */ 1811 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1812 int i; 1813 sqlite3 *db; 1814 Db *aDb; 1815 int nDb; 1816 db = p->db; 1817 aDb = db->aDb; 1818 nDb = db->nDb; 1819 for(i=0; i<nDb; i++){ 1820 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1821 sqlite3BtreeLeave(aDb[i].pBt); 1822 } 1823 } 1824 } 1825 void sqlite3VdbeLeave(Vdbe *p){ 1826 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1827 vdbeLeave(p); 1828 } 1829 #endif 1830 1831 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1832 /* 1833 ** Print a single opcode. This routine is used for debugging only. 1834 */ 1835 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ 1836 char *zP4; 1837 char *zCom; 1838 sqlite3 dummyDb; 1839 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1840 if( pOut==0 ) pOut = stdout; 1841 sqlite3BeginBenignMalloc(); 1842 dummyDb.mallocFailed = 1; 1843 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp); 1844 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1845 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4); 1846 #else 1847 zCom = 0; 1848 #endif 1849 /* NB: The sqlite3OpcodeName() function is implemented by code created 1850 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1851 ** information from the vdbe.c source text */ 1852 fprintf(pOut, zFormat1, pc, 1853 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, 1854 zP4 ? zP4 : "", pOp->p5, 1855 zCom ? zCom : "" 1856 ); 1857 fflush(pOut); 1858 sqlite3_free(zP4); 1859 sqlite3_free(zCom); 1860 sqlite3EndBenignMalloc(); 1861 } 1862 #endif 1863 1864 /* 1865 ** Initialize an array of N Mem element. 1866 */ 1867 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1868 while( (N--)>0 ){ 1869 p->db = db; 1870 p->flags = flags; 1871 p->szMalloc = 0; 1872 #ifdef SQLITE_DEBUG 1873 p->pScopyFrom = 0; 1874 #endif 1875 p++; 1876 } 1877 } 1878 1879 /* 1880 ** Release an array of N Mem elements 1881 */ 1882 static void releaseMemArray(Mem *p, int N){ 1883 if( p && N ){ 1884 Mem *pEnd = &p[N]; 1885 sqlite3 *db = p->db; 1886 if( db->pnBytesFreed ){ 1887 do{ 1888 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1889 }while( (++p)<pEnd ); 1890 return; 1891 } 1892 do{ 1893 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1894 assert( sqlite3VdbeCheckMemInvariants(p) ); 1895 1896 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1897 ** that takes advantage of the fact that the memory cell value is 1898 ** being set to NULL after releasing any dynamic resources. 1899 ** 1900 ** The justification for duplicating code is that according to 1901 ** callgrind, this causes a certain test case to hit the CPU 4.7 1902 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1903 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1904 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1905 ** with no indexes using a single prepared INSERT statement, bind() 1906 ** and reset(). Inserts are grouped into a transaction. 1907 */ 1908 testcase( p->flags & MEM_Agg ); 1909 testcase( p->flags & MEM_Dyn ); 1910 testcase( p->xDel==sqlite3VdbeFrameMemDel ); 1911 if( p->flags&(MEM_Agg|MEM_Dyn) ){ 1912 sqlite3VdbeMemRelease(p); 1913 }else if( p->szMalloc ){ 1914 sqlite3DbFreeNN(db, p->zMalloc); 1915 p->szMalloc = 0; 1916 } 1917 1918 p->flags = MEM_Undefined; 1919 }while( (++p)<pEnd ); 1920 } 1921 } 1922 1923 #ifdef SQLITE_DEBUG 1924 /* 1925 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is 1926 ** and false if something is wrong. 1927 ** 1928 ** This routine is intended for use inside of assert() statements only. 1929 */ 1930 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){ 1931 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; 1932 return 1; 1933 } 1934 #endif 1935 1936 1937 /* 1938 ** This is a destructor on a Mem object (which is really an sqlite3_value) 1939 ** that deletes the Frame object that is attached to it as a blob. 1940 ** 1941 ** This routine does not delete the Frame right away. It merely adds the 1942 ** frame to a list of frames to be deleted when the Vdbe halts. 1943 */ 1944 void sqlite3VdbeFrameMemDel(void *pArg){ 1945 VdbeFrame *pFrame = (VdbeFrame*)pArg; 1946 assert( sqlite3VdbeFrameIsValid(pFrame) ); 1947 pFrame->pParent = pFrame->v->pDelFrame; 1948 pFrame->v->pDelFrame = pFrame; 1949 } 1950 1951 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN) 1952 /* 1953 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN 1954 ** QUERY PLAN output. 1955 ** 1956 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no 1957 ** more opcodes to be displayed. 1958 */ 1959 int sqlite3VdbeNextOpcode( 1960 Vdbe *p, /* The statement being explained */ 1961 Mem *pSub, /* Storage for keeping track of subprogram nesting */ 1962 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */ 1963 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */ 1964 int *piAddr, /* OUT: Write index into (*paOp)[] here */ 1965 Op **paOp /* OUT: Write the opcode array here */ 1966 ){ 1967 int nRow; /* Stop when row count reaches this */ 1968 int nSub = 0; /* Number of sub-vdbes seen so far */ 1969 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1970 int i; /* Next instruction address */ 1971 int rc = SQLITE_OK; /* Result code */ 1972 Op *aOp = 0; /* Opcode array */ 1973 int iPc; /* Rowid. Copy of value in *piPc */ 1974 1975 /* When the number of output rows reaches nRow, that means the 1976 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1977 ** nRow is the sum of the number of rows in the main program, plus 1978 ** the sum of the number of rows in all trigger subprograms encountered 1979 ** so far. The nRow value will increase as new trigger subprograms are 1980 ** encountered, but p->pc will eventually catch up to nRow. 1981 */ 1982 nRow = p->nOp; 1983 if( pSub!=0 ){ 1984 if( pSub->flags&MEM_Blob ){ 1985 /* pSub is initiallly NULL. It is initialized to a BLOB by 1986 ** the P4_SUBPROGRAM processing logic below */ 1987 nSub = pSub->n/sizeof(Vdbe*); 1988 apSub = (SubProgram **)pSub->z; 1989 } 1990 for(i=0; i<nSub; i++){ 1991 nRow += apSub[i]->nOp; 1992 } 1993 } 1994 iPc = *piPc; 1995 while(1){ /* Loop exits via break */ 1996 i = iPc++; 1997 if( i>=nRow ){ 1998 p->rc = SQLITE_OK; 1999 rc = SQLITE_DONE; 2000 break; 2001 } 2002 if( i<p->nOp ){ 2003 /* The rowid is small enough that we are still in the 2004 ** main program. */ 2005 aOp = p->aOp; 2006 }else{ 2007 /* We are currently listing subprograms. Figure out which one and 2008 ** pick up the appropriate opcode. */ 2009 int j; 2010 i -= p->nOp; 2011 assert( apSub!=0 ); 2012 assert( nSub>0 ); 2013 for(j=0; i>=apSub[j]->nOp; j++){ 2014 i -= apSub[j]->nOp; 2015 assert( i<apSub[j]->nOp || j+1<nSub ); 2016 } 2017 aOp = apSub[j]->aOp; 2018 } 2019 2020 /* When an OP_Program opcode is encounter (the only opcode that has 2021 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 2022 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 2023 ** has not already been seen. 2024 */ 2025 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){ 2026 int nByte = (nSub+1)*sizeof(SubProgram*); 2027 int j; 2028 for(j=0; j<nSub; j++){ 2029 if( apSub[j]==aOp[i].p4.pProgram ) break; 2030 } 2031 if( j==nSub ){ 2032 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); 2033 if( p->rc!=SQLITE_OK ){ 2034 rc = SQLITE_ERROR; 2035 break; 2036 } 2037 apSub = (SubProgram **)pSub->z; 2038 apSub[nSub++] = aOp[i].p4.pProgram; 2039 MemSetTypeFlag(pSub, MEM_Blob); 2040 pSub->n = nSub*sizeof(SubProgram*); 2041 nRow += aOp[i].p4.pProgram->nOp; 2042 } 2043 } 2044 if( eMode==0 ) break; 2045 #ifdef SQLITE_ENABLE_BYTECODE_VTAB 2046 if( eMode==2 ){ 2047 Op *pOp = aOp + i; 2048 if( pOp->opcode==OP_OpenRead ) break; 2049 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break; 2050 if( pOp->opcode==OP_ReopenIdx ) break; 2051 }else 2052 #endif 2053 { 2054 assert( eMode==1 ); 2055 if( aOp[i].opcode==OP_Explain ) break; 2056 if( aOp[i].opcode==OP_Init && iPc>1 ) break; 2057 } 2058 } 2059 *piPc = iPc; 2060 *piAddr = i; 2061 *paOp = aOp; 2062 return rc; 2063 } 2064 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */ 2065 2066 2067 /* 2068 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 2069 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 2070 */ 2071 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 2072 int i; 2073 Mem *aMem = VdbeFrameMem(p); 2074 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 2075 assert( sqlite3VdbeFrameIsValid(p) ); 2076 for(i=0; i<p->nChildCsr; i++){ 2077 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 2078 } 2079 releaseMemArray(aMem, p->nChildMem); 2080 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 2081 sqlite3DbFree(p->v->db, p); 2082 } 2083 2084 #ifndef SQLITE_OMIT_EXPLAIN 2085 /* 2086 ** Give a listing of the program in the virtual machine. 2087 ** 2088 ** The interface is the same as sqlite3VdbeExec(). But instead of 2089 ** running the code, it invokes the callback once for each instruction. 2090 ** This feature is used to implement "EXPLAIN". 2091 ** 2092 ** When p->explain==1, each instruction is listed. When 2093 ** p->explain==2, only OP_Explain instructions are listed and these 2094 ** are shown in a different format. p->explain==2 is used to implement 2095 ** EXPLAIN QUERY PLAN. 2096 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers 2097 ** are also shown, so that the boundaries between the main program and 2098 ** each trigger are clear. 2099 ** 2100 ** When p->explain==1, first the main program is listed, then each of 2101 ** the trigger subprograms are listed one by one. 2102 */ 2103 int sqlite3VdbeList( 2104 Vdbe *p /* The VDBE */ 2105 ){ 2106 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 2107 sqlite3 *db = p->db; /* The database connection */ 2108 int i; /* Loop counter */ 2109 int rc = SQLITE_OK; /* Return code */ 2110 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 2111 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); 2112 Op *aOp; /* Array of opcodes */ 2113 Op *pOp; /* Current opcode */ 2114 2115 assert( p->explain ); 2116 assert( p->magic==VDBE_MAGIC_RUN ); 2117 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 2118 2119 /* Even though this opcode does not use dynamic strings for 2120 ** the result, result columns may become dynamic if the user calls 2121 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 2122 */ 2123 releaseMemArray(pMem, 8); 2124 p->pResultSet = 0; 2125 2126 if( p->rc==SQLITE_NOMEM ){ 2127 /* This happens if a malloc() inside a call to sqlite3_column_text() or 2128 ** sqlite3_column_text16() failed. */ 2129 sqlite3OomFault(db); 2130 return SQLITE_ERROR; 2131 } 2132 2133 if( bListSubprogs ){ 2134 /* The first 8 memory cells are used for the result set. So we will 2135 ** commandeer the 9th cell to use as storage for an array of pointers 2136 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 2137 ** cells. */ 2138 assert( p->nMem>9 ); 2139 pSub = &p->aMem[9]; 2140 }else{ 2141 pSub = 0; 2142 } 2143 2144 /* Figure out which opcode is next to display */ 2145 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp); 2146 2147 if( rc==SQLITE_OK ){ 2148 pOp = aOp + i; 2149 if( AtomicLoad(&db->u1.isInterrupted) ){ 2150 p->rc = SQLITE_INTERRUPT; 2151 rc = SQLITE_ERROR; 2152 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 2153 }else{ 2154 char *zP4 = sqlite3VdbeDisplayP4(db, pOp); 2155 if( p->explain==2 ){ 2156 sqlite3VdbeMemSetInt64(pMem, pOp->p1); 2157 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2); 2158 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3); 2159 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free); 2160 p->nResColumn = 4; 2161 }else{ 2162 sqlite3VdbeMemSetInt64(pMem+0, i); 2163 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode), 2164 -1, SQLITE_UTF8, SQLITE_STATIC); 2165 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1); 2166 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2); 2167 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3); 2168 /* pMem+5 for p4 is done last */ 2169 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5); 2170 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2171 { 2172 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4); 2173 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free); 2174 } 2175 #else 2176 sqlite3VdbeMemSetNull(pMem+7); 2177 #endif 2178 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free); 2179 p->nResColumn = 8; 2180 } 2181 p->pResultSet = pMem; 2182 if( db->mallocFailed ){ 2183 p->rc = SQLITE_NOMEM; 2184 rc = SQLITE_ERROR; 2185 }else{ 2186 p->rc = SQLITE_OK; 2187 rc = SQLITE_ROW; 2188 } 2189 } 2190 } 2191 return rc; 2192 } 2193 #endif /* SQLITE_OMIT_EXPLAIN */ 2194 2195 #ifdef SQLITE_DEBUG 2196 /* 2197 ** Print the SQL that was used to generate a VDBE program. 2198 */ 2199 void sqlite3VdbePrintSql(Vdbe *p){ 2200 const char *z = 0; 2201 if( p->zSql ){ 2202 z = p->zSql; 2203 }else if( p->nOp>=1 ){ 2204 const VdbeOp *pOp = &p->aOp[0]; 2205 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2206 z = pOp->p4.z; 2207 while( sqlite3Isspace(*z) ) z++; 2208 } 2209 } 2210 if( z ) printf("SQL: [%s]\n", z); 2211 } 2212 #endif 2213 2214 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 2215 /* 2216 ** Print an IOTRACE message showing SQL content. 2217 */ 2218 void sqlite3VdbeIOTraceSql(Vdbe *p){ 2219 int nOp = p->nOp; 2220 VdbeOp *pOp; 2221 if( sqlite3IoTrace==0 ) return; 2222 if( nOp<1 ) return; 2223 pOp = &p->aOp[0]; 2224 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2225 int i, j; 2226 char z[1000]; 2227 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 2228 for(i=0; sqlite3Isspace(z[i]); i++){} 2229 for(j=0; z[i]; i++){ 2230 if( sqlite3Isspace(z[i]) ){ 2231 if( z[i-1]!=' ' ){ 2232 z[j++] = ' '; 2233 } 2234 }else{ 2235 z[j++] = z[i]; 2236 } 2237 } 2238 z[j] = 0; 2239 sqlite3IoTrace("SQL %s\n", z); 2240 } 2241 } 2242 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 2243 2244 /* An instance of this object describes bulk memory available for use 2245 ** by subcomponents of a prepared statement. Space is allocated out 2246 ** of a ReusableSpace object by the allocSpace() routine below. 2247 */ 2248 struct ReusableSpace { 2249 u8 *pSpace; /* Available memory */ 2250 sqlite3_int64 nFree; /* Bytes of available memory */ 2251 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */ 2252 }; 2253 2254 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 2255 ** from the ReusableSpace object. Return a pointer to the allocated 2256 ** memory on success. If insufficient memory is available in the 2257 ** ReusableSpace object, increase the ReusableSpace.nNeeded 2258 ** value by the amount needed and return NULL. 2259 ** 2260 ** If pBuf is not initially NULL, that means that the memory has already 2261 ** been allocated by a prior call to this routine, so just return a copy 2262 ** of pBuf and leave ReusableSpace unchanged. 2263 ** 2264 ** This allocator is employed to repurpose unused slots at the end of the 2265 ** opcode array of prepared state for other memory needs of the prepared 2266 ** statement. 2267 */ 2268 static void *allocSpace( 2269 struct ReusableSpace *p, /* Bulk memory available for allocation */ 2270 void *pBuf, /* Pointer to a prior allocation */ 2271 sqlite3_int64 nByte /* Bytes of memory needed */ 2272 ){ 2273 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 2274 if( pBuf==0 ){ 2275 nByte = ROUND8(nByte); 2276 if( nByte <= p->nFree ){ 2277 p->nFree -= nByte; 2278 pBuf = &p->pSpace[p->nFree]; 2279 }else{ 2280 p->nNeeded += nByte; 2281 } 2282 } 2283 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 2284 return pBuf; 2285 } 2286 2287 /* 2288 ** Rewind the VDBE back to the beginning in preparation for 2289 ** running it. 2290 */ 2291 void sqlite3VdbeRewind(Vdbe *p){ 2292 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 2293 int i; 2294 #endif 2295 assert( p!=0 ); 2296 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET ); 2297 2298 /* There should be at least one opcode. 2299 */ 2300 assert( p->nOp>0 ); 2301 2302 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 2303 p->magic = VDBE_MAGIC_RUN; 2304 2305 #ifdef SQLITE_DEBUG 2306 for(i=0; i<p->nMem; i++){ 2307 assert( p->aMem[i].db==p->db ); 2308 } 2309 #endif 2310 p->pc = -1; 2311 p->rc = SQLITE_OK; 2312 p->errorAction = OE_Abort; 2313 p->nChange = 0; 2314 p->cacheCtr = 1; 2315 p->minWriteFileFormat = 255; 2316 p->iStatement = 0; 2317 p->nFkConstraint = 0; 2318 #ifdef VDBE_PROFILE 2319 for(i=0; i<p->nOp; i++){ 2320 p->aOp[i].cnt = 0; 2321 p->aOp[i].cycles = 0; 2322 } 2323 #endif 2324 } 2325 2326 /* 2327 ** Prepare a virtual machine for execution for the first time after 2328 ** creating the virtual machine. This involves things such 2329 ** as allocating registers and initializing the program counter. 2330 ** After the VDBE has be prepped, it can be executed by one or more 2331 ** calls to sqlite3VdbeExec(). 2332 ** 2333 ** This function may be called exactly once on each virtual machine. 2334 ** After this routine is called the VM has been "packaged" and is ready 2335 ** to run. After this routine is called, further calls to 2336 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 2337 ** the Vdbe from the Parse object that helped generate it so that the 2338 ** the Vdbe becomes an independent entity and the Parse object can be 2339 ** destroyed. 2340 ** 2341 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 2342 ** to its initial state after it has been run. 2343 */ 2344 void sqlite3VdbeMakeReady( 2345 Vdbe *p, /* The VDBE */ 2346 Parse *pParse /* Parsing context */ 2347 ){ 2348 sqlite3 *db; /* The database connection */ 2349 int nVar; /* Number of parameters */ 2350 int nMem; /* Number of VM memory registers */ 2351 int nCursor; /* Number of cursors required */ 2352 int nArg; /* Number of arguments in subprograms */ 2353 int n; /* Loop counter */ 2354 struct ReusableSpace x; /* Reusable bulk memory */ 2355 2356 assert( p!=0 ); 2357 assert( p->nOp>0 ); 2358 assert( pParse!=0 ); 2359 assert( p->magic==VDBE_MAGIC_INIT ); 2360 assert( pParse==p->pParse ); 2361 db = p->db; 2362 assert( db->mallocFailed==0 ); 2363 nVar = pParse->nVar; 2364 nMem = pParse->nMem; 2365 nCursor = pParse->nTab; 2366 nArg = pParse->nMaxArg; 2367 2368 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 2369 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 2370 ** space at the end of aMem[] for cursors 1 and greater. 2371 ** See also: allocateCursor(). 2372 */ 2373 nMem += nCursor; 2374 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 2375 2376 /* Figure out how much reusable memory is available at the end of the 2377 ** opcode array. This extra memory will be reallocated for other elements 2378 ** of the prepared statement. 2379 */ 2380 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 2381 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 2382 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 2383 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 2384 assert( x.nFree>=0 ); 2385 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 2386 2387 resolveP2Values(p, &nArg); 2388 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 2389 if( pParse->explain ){ 2390 static const char * const azColName[] = { 2391 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", 2392 "id", "parent", "notused", "detail" 2393 }; 2394 int iFirst, mx, i; 2395 if( nMem<10 ) nMem = 10; 2396 p->explain = pParse->explain; 2397 if( pParse->explain==2 ){ 2398 sqlite3VdbeSetNumCols(p, 4); 2399 iFirst = 8; 2400 mx = 12; 2401 }else{ 2402 sqlite3VdbeSetNumCols(p, 8); 2403 iFirst = 0; 2404 mx = 8; 2405 } 2406 for(i=iFirst; i<mx; i++){ 2407 sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME, 2408 azColName[i], SQLITE_STATIC); 2409 } 2410 } 2411 p->expired = 0; 2412 2413 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 2414 ** passes. On the first pass, we try to reuse unused memory at the 2415 ** end of the opcode array. If we are unable to satisfy all memory 2416 ** requirements by reusing the opcode array tail, then the second 2417 ** pass will fill in the remainder using a fresh memory allocation. 2418 ** 2419 ** This two-pass approach that reuses as much memory as possible from 2420 ** the leftover memory at the end of the opcode array. This can significantly 2421 ** reduce the amount of memory held by a prepared statement. 2422 */ 2423 x.nNeeded = 0; 2424 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem)); 2425 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem)); 2426 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*)); 2427 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*)); 2428 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2429 p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64)); 2430 #endif 2431 if( x.nNeeded ){ 2432 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 2433 x.nFree = x.nNeeded; 2434 if( !db->mallocFailed ){ 2435 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 2436 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 2437 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 2438 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 2439 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2440 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 2441 #endif 2442 } 2443 } 2444 2445 p->pVList = pParse->pVList; 2446 pParse->pVList = 0; 2447 if( db->mallocFailed ){ 2448 p->nVar = 0; 2449 p->nCursor = 0; 2450 p->nMem = 0; 2451 }else{ 2452 p->nCursor = nCursor; 2453 p->nVar = (ynVar)nVar; 2454 initMemArray(p->aVar, nVar, db, MEM_Null); 2455 p->nMem = nMem; 2456 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2457 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2458 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2459 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2460 #endif 2461 } 2462 sqlite3VdbeRewind(p); 2463 } 2464 2465 /* 2466 ** Close a VDBE cursor and release all the resources that cursor 2467 ** happens to hold. 2468 */ 2469 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2470 if( pCx==0 ){ 2471 return; 2472 } 2473 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE ); 2474 switch( pCx->eCurType ){ 2475 case CURTYPE_SORTER: { 2476 sqlite3VdbeSorterClose(p->db, pCx); 2477 break; 2478 } 2479 case CURTYPE_BTREE: { 2480 if( pCx->isEphemeral ){ 2481 if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx); 2482 /* The pCx->pCursor will be close automatically, if it exists, by 2483 ** the call above. */ 2484 }else{ 2485 assert( pCx->uc.pCursor!=0 ); 2486 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2487 } 2488 break; 2489 } 2490 #ifndef SQLITE_OMIT_VIRTUALTABLE 2491 case CURTYPE_VTAB: { 2492 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2493 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2494 assert( pVCur->pVtab->nRef>0 ); 2495 pVCur->pVtab->nRef--; 2496 pModule->xClose(pVCur); 2497 break; 2498 } 2499 #endif 2500 } 2501 } 2502 2503 /* 2504 ** Close all cursors in the current frame. 2505 */ 2506 static void closeCursorsInFrame(Vdbe *p){ 2507 if( p->apCsr ){ 2508 int i; 2509 for(i=0; i<p->nCursor; i++){ 2510 VdbeCursor *pC = p->apCsr[i]; 2511 if( pC ){ 2512 sqlite3VdbeFreeCursor(p, pC); 2513 p->apCsr[i] = 0; 2514 } 2515 } 2516 } 2517 } 2518 2519 /* 2520 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2521 ** is used, for example, when a trigger sub-program is halted to restore 2522 ** control to the main program. 2523 */ 2524 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2525 Vdbe *v = pFrame->v; 2526 closeCursorsInFrame(v); 2527 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2528 v->anExec = pFrame->anExec; 2529 #endif 2530 v->aOp = pFrame->aOp; 2531 v->nOp = pFrame->nOp; 2532 v->aMem = pFrame->aMem; 2533 v->nMem = pFrame->nMem; 2534 v->apCsr = pFrame->apCsr; 2535 v->nCursor = pFrame->nCursor; 2536 v->db->lastRowid = pFrame->lastRowid; 2537 v->nChange = pFrame->nChange; 2538 v->db->nChange = pFrame->nDbChange; 2539 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2540 v->pAuxData = pFrame->pAuxData; 2541 pFrame->pAuxData = 0; 2542 return pFrame->pc; 2543 } 2544 2545 /* 2546 ** Close all cursors. 2547 ** 2548 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2549 ** cell array. This is necessary as the memory cell array may contain 2550 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2551 ** open cursors. 2552 */ 2553 static void closeAllCursors(Vdbe *p){ 2554 if( p->pFrame ){ 2555 VdbeFrame *pFrame; 2556 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2557 sqlite3VdbeFrameRestore(pFrame); 2558 p->pFrame = 0; 2559 p->nFrame = 0; 2560 } 2561 assert( p->nFrame==0 ); 2562 closeCursorsInFrame(p); 2563 if( p->aMem ){ 2564 releaseMemArray(p->aMem, p->nMem); 2565 } 2566 while( p->pDelFrame ){ 2567 VdbeFrame *pDel = p->pDelFrame; 2568 p->pDelFrame = pDel->pParent; 2569 sqlite3VdbeFrameDelete(pDel); 2570 } 2571 2572 /* Delete any auxdata allocations made by the VM */ 2573 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2574 assert( p->pAuxData==0 ); 2575 } 2576 2577 /* 2578 ** Set the number of result columns that will be returned by this SQL 2579 ** statement. This is now set at compile time, rather than during 2580 ** execution of the vdbe program so that sqlite3_column_count() can 2581 ** be called on an SQL statement before sqlite3_step(). 2582 */ 2583 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2584 int n; 2585 sqlite3 *db = p->db; 2586 2587 if( p->nResColumn ){ 2588 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2589 sqlite3DbFree(db, p->aColName); 2590 } 2591 n = nResColumn*COLNAME_N; 2592 p->nResColumn = (u16)nResColumn; 2593 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2594 if( p->aColName==0 ) return; 2595 initMemArray(p->aColName, n, db, MEM_Null); 2596 } 2597 2598 /* 2599 ** Set the name of the idx'th column to be returned by the SQL statement. 2600 ** zName must be a pointer to a nul terminated string. 2601 ** 2602 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2603 ** 2604 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2605 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2606 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2607 */ 2608 int sqlite3VdbeSetColName( 2609 Vdbe *p, /* Vdbe being configured */ 2610 int idx, /* Index of column zName applies to */ 2611 int var, /* One of the COLNAME_* constants */ 2612 const char *zName, /* Pointer to buffer containing name */ 2613 void (*xDel)(void*) /* Memory management strategy for zName */ 2614 ){ 2615 int rc; 2616 Mem *pColName; 2617 assert( idx<p->nResColumn ); 2618 assert( var<COLNAME_N ); 2619 if( p->db->mallocFailed ){ 2620 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2621 return SQLITE_NOMEM_BKPT; 2622 } 2623 assert( p->aColName!=0 ); 2624 pColName = &(p->aColName[idx+var*p->nResColumn]); 2625 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2626 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2627 return rc; 2628 } 2629 2630 /* 2631 ** A read or write transaction may or may not be active on database handle 2632 ** db. If a transaction is active, commit it. If there is a 2633 ** write-transaction spanning more than one database file, this routine 2634 ** takes care of the super-journal trickery. 2635 */ 2636 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2637 int i; 2638 int nTrans = 0; /* Number of databases with an active write-transaction 2639 ** that are candidates for a two-phase commit using a 2640 ** super-journal */ 2641 int rc = SQLITE_OK; 2642 int needXcommit = 0; 2643 2644 #ifdef SQLITE_OMIT_VIRTUALTABLE 2645 /* With this option, sqlite3VtabSync() is defined to be simply 2646 ** SQLITE_OK so p is not used. 2647 */ 2648 UNUSED_PARAMETER(p); 2649 #endif 2650 2651 /* Before doing anything else, call the xSync() callback for any 2652 ** virtual module tables written in this transaction. This has to 2653 ** be done before determining whether a super-journal file is 2654 ** required, as an xSync() callback may add an attached database 2655 ** to the transaction. 2656 */ 2657 rc = sqlite3VtabSync(db, p); 2658 2659 /* This loop determines (a) if the commit hook should be invoked and 2660 ** (b) how many database files have open write transactions, not 2661 ** including the temp database. (b) is important because if more than 2662 ** one database file has an open write transaction, a super-journal 2663 ** file is required for an atomic commit. 2664 */ 2665 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2666 Btree *pBt = db->aDb[i].pBt; 2667 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 2668 /* Whether or not a database might need a super-journal depends upon 2669 ** its journal mode (among other things). This matrix determines which 2670 ** journal modes use a super-journal and which do not */ 2671 static const u8 aMJNeeded[] = { 2672 /* DELETE */ 1, 2673 /* PERSIST */ 1, 2674 /* OFF */ 0, 2675 /* TRUNCATE */ 1, 2676 /* MEMORY */ 0, 2677 /* WAL */ 0 2678 }; 2679 Pager *pPager; /* Pager associated with pBt */ 2680 needXcommit = 1; 2681 sqlite3BtreeEnter(pBt); 2682 pPager = sqlite3BtreePager(pBt); 2683 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2684 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2685 && sqlite3PagerIsMemdb(pPager)==0 2686 ){ 2687 assert( i!=1 ); 2688 nTrans++; 2689 } 2690 rc = sqlite3PagerExclusiveLock(pPager); 2691 sqlite3BtreeLeave(pBt); 2692 } 2693 } 2694 if( rc!=SQLITE_OK ){ 2695 return rc; 2696 } 2697 2698 /* If there are any write-transactions at all, invoke the commit hook */ 2699 if( needXcommit && db->xCommitCallback ){ 2700 rc = db->xCommitCallback(db->pCommitArg); 2701 if( rc ){ 2702 return SQLITE_CONSTRAINT_COMMITHOOK; 2703 } 2704 } 2705 2706 /* The simple case - no more than one database file (not counting the 2707 ** TEMP database) has a transaction active. There is no need for the 2708 ** super-journal. 2709 ** 2710 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2711 ** string, it means the main database is :memory: or a temp file. In 2712 ** that case we do not support atomic multi-file commits, so use the 2713 ** simple case then too. 2714 */ 2715 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2716 || nTrans<=1 2717 ){ 2718 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2719 Btree *pBt = db->aDb[i].pBt; 2720 if( pBt ){ 2721 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2722 } 2723 } 2724 2725 /* Do the commit only if all databases successfully complete phase 1. 2726 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2727 ** IO error while deleting or truncating a journal file. It is unlikely, 2728 ** but could happen. In this case abandon processing and return the error. 2729 */ 2730 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2731 Btree *pBt = db->aDb[i].pBt; 2732 if( pBt ){ 2733 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2734 } 2735 } 2736 if( rc==SQLITE_OK ){ 2737 sqlite3VtabCommit(db); 2738 } 2739 } 2740 2741 /* The complex case - There is a multi-file write-transaction active. 2742 ** This requires a super-journal file to ensure the transaction is 2743 ** committed atomically. 2744 */ 2745 #ifndef SQLITE_OMIT_DISKIO 2746 else{ 2747 sqlite3_vfs *pVfs = db->pVfs; 2748 char *zSuper = 0; /* File-name for the super-journal */ 2749 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2750 sqlite3_file *pSuperJrnl = 0; 2751 i64 offset = 0; 2752 int res; 2753 int retryCount = 0; 2754 int nMainFile; 2755 2756 /* Select a super-journal file name */ 2757 nMainFile = sqlite3Strlen30(zMainFile); 2758 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0); 2759 if( zSuper==0 ) return SQLITE_NOMEM_BKPT; 2760 zSuper += 4; 2761 do { 2762 u32 iRandom; 2763 if( retryCount ){ 2764 if( retryCount>100 ){ 2765 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper); 2766 sqlite3OsDelete(pVfs, zSuper, 0); 2767 break; 2768 }else if( retryCount==1 ){ 2769 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper); 2770 } 2771 } 2772 retryCount++; 2773 sqlite3_randomness(sizeof(iRandom), &iRandom); 2774 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X", 2775 (iRandom>>8)&0xffffff, iRandom&0xff); 2776 /* The antipenultimate character of the super-journal name must 2777 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2778 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' ); 2779 sqlite3FileSuffix3(zMainFile, zSuper); 2780 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); 2781 }while( rc==SQLITE_OK && res ); 2782 if( rc==SQLITE_OK ){ 2783 /* Open the super-journal. */ 2784 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl, 2785 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2786 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0 2787 ); 2788 } 2789 if( rc!=SQLITE_OK ){ 2790 sqlite3DbFree(db, zSuper-4); 2791 return rc; 2792 } 2793 2794 /* Write the name of each database file in the transaction into the new 2795 ** super-journal file. If an error occurs at this point close 2796 ** and delete the super-journal file. All the individual journal files 2797 ** still have 'null' as the super-journal pointer, so they will roll 2798 ** back independently if a failure occurs. 2799 */ 2800 for(i=0; i<db->nDb; i++){ 2801 Btree *pBt = db->aDb[i].pBt; 2802 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 2803 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2804 if( zFile==0 ){ 2805 continue; /* Ignore TEMP and :memory: databases */ 2806 } 2807 assert( zFile[0]!=0 ); 2808 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset); 2809 offset += sqlite3Strlen30(zFile)+1; 2810 if( rc!=SQLITE_OK ){ 2811 sqlite3OsCloseFree(pSuperJrnl); 2812 sqlite3OsDelete(pVfs, zSuper, 0); 2813 sqlite3DbFree(db, zSuper-4); 2814 return rc; 2815 } 2816 } 2817 } 2818 2819 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device 2820 ** flag is set this is not required. 2821 */ 2822 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL) 2823 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL)) 2824 ){ 2825 sqlite3OsCloseFree(pSuperJrnl); 2826 sqlite3OsDelete(pVfs, zSuper, 0); 2827 sqlite3DbFree(db, zSuper-4); 2828 return rc; 2829 } 2830 2831 /* Sync all the db files involved in the transaction. The same call 2832 ** sets the super-journal pointer in each individual journal. If 2833 ** an error occurs here, do not delete the super-journal file. 2834 ** 2835 ** If the error occurs during the first call to 2836 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2837 ** super-journal file will be orphaned. But we cannot delete it, 2838 ** in case the super-journal file name was written into the journal 2839 ** file before the failure occurred. 2840 */ 2841 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2842 Btree *pBt = db->aDb[i].pBt; 2843 if( pBt ){ 2844 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper); 2845 } 2846 } 2847 sqlite3OsCloseFree(pSuperJrnl); 2848 assert( rc!=SQLITE_BUSY ); 2849 if( rc!=SQLITE_OK ){ 2850 sqlite3DbFree(db, zSuper-4); 2851 return rc; 2852 } 2853 2854 /* Delete the super-journal file. This commits the transaction. After 2855 ** doing this the directory is synced again before any individual 2856 ** transaction files are deleted. 2857 */ 2858 rc = sqlite3OsDelete(pVfs, zSuper, 1); 2859 sqlite3DbFree(db, zSuper-4); 2860 zSuper = 0; 2861 if( rc ){ 2862 return rc; 2863 } 2864 2865 /* All files and directories have already been synced, so the following 2866 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2867 ** deleting or truncating journals. If something goes wrong while 2868 ** this is happening we don't really care. The integrity of the 2869 ** transaction is already guaranteed, but some stray 'cold' journals 2870 ** may be lying around. Returning an error code won't help matters. 2871 */ 2872 disable_simulated_io_errors(); 2873 sqlite3BeginBenignMalloc(); 2874 for(i=0; i<db->nDb; i++){ 2875 Btree *pBt = db->aDb[i].pBt; 2876 if( pBt ){ 2877 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2878 } 2879 } 2880 sqlite3EndBenignMalloc(); 2881 enable_simulated_io_errors(); 2882 2883 sqlite3VtabCommit(db); 2884 } 2885 #endif 2886 2887 return rc; 2888 } 2889 2890 /* 2891 ** This routine checks that the sqlite3.nVdbeActive count variable 2892 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2893 ** currently active. An assertion fails if the two counts do not match. 2894 ** This is an internal self-check only - it is not an essential processing 2895 ** step. 2896 ** 2897 ** This is a no-op if NDEBUG is defined. 2898 */ 2899 #ifndef NDEBUG 2900 static void checkActiveVdbeCnt(sqlite3 *db){ 2901 Vdbe *p; 2902 int cnt = 0; 2903 int nWrite = 0; 2904 int nRead = 0; 2905 p = db->pVdbe; 2906 while( p ){ 2907 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2908 cnt++; 2909 if( p->readOnly==0 ) nWrite++; 2910 if( p->bIsReader ) nRead++; 2911 } 2912 p = p->pNext; 2913 } 2914 assert( cnt==db->nVdbeActive ); 2915 assert( nWrite==db->nVdbeWrite ); 2916 assert( nRead==db->nVdbeRead ); 2917 } 2918 #else 2919 #define checkActiveVdbeCnt(x) 2920 #endif 2921 2922 /* 2923 ** If the Vdbe passed as the first argument opened a statement-transaction, 2924 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2925 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2926 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2927 ** statement transaction is committed. 2928 ** 2929 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2930 ** Otherwise SQLITE_OK. 2931 */ 2932 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 2933 sqlite3 *const db = p->db; 2934 int rc = SQLITE_OK; 2935 int i; 2936 const int iSavepoint = p->iStatement-1; 2937 2938 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2939 assert( db->nStatement>0 ); 2940 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2941 2942 for(i=0; i<db->nDb; i++){ 2943 int rc2 = SQLITE_OK; 2944 Btree *pBt = db->aDb[i].pBt; 2945 if( pBt ){ 2946 if( eOp==SAVEPOINT_ROLLBACK ){ 2947 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2948 } 2949 if( rc2==SQLITE_OK ){ 2950 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2951 } 2952 if( rc==SQLITE_OK ){ 2953 rc = rc2; 2954 } 2955 } 2956 } 2957 db->nStatement--; 2958 p->iStatement = 0; 2959 2960 if( rc==SQLITE_OK ){ 2961 if( eOp==SAVEPOINT_ROLLBACK ){ 2962 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2963 } 2964 if( rc==SQLITE_OK ){ 2965 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2966 } 2967 } 2968 2969 /* If the statement transaction is being rolled back, also restore the 2970 ** database handles deferred constraint counter to the value it had when 2971 ** the statement transaction was opened. */ 2972 if( eOp==SAVEPOINT_ROLLBACK ){ 2973 db->nDeferredCons = p->nStmtDefCons; 2974 db->nDeferredImmCons = p->nStmtDefImmCons; 2975 } 2976 return rc; 2977 } 2978 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2979 if( p->db->nStatement && p->iStatement ){ 2980 return vdbeCloseStatement(p, eOp); 2981 } 2982 return SQLITE_OK; 2983 } 2984 2985 2986 /* 2987 ** This function is called when a transaction opened by the database 2988 ** handle associated with the VM passed as an argument is about to be 2989 ** committed. If there are outstanding deferred foreign key constraint 2990 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2991 ** 2992 ** If there are outstanding FK violations and this function returns 2993 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2994 ** and write an error message to it. Then return SQLITE_ERROR. 2995 */ 2996 #ifndef SQLITE_OMIT_FOREIGN_KEY 2997 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2998 sqlite3 *db = p->db; 2999 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 3000 || (!deferred && p->nFkConstraint>0) 3001 ){ 3002 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 3003 p->errorAction = OE_Abort; 3004 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 3005 return SQLITE_ERROR; 3006 } 3007 return SQLITE_OK; 3008 } 3009 #endif 3010 3011 /* 3012 ** This routine is called the when a VDBE tries to halt. If the VDBE 3013 ** has made changes and is in autocommit mode, then commit those 3014 ** changes. If a rollback is needed, then do the rollback. 3015 ** 3016 ** This routine is the only way to move the state of a VM from 3017 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 3018 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 3019 ** 3020 ** Return an error code. If the commit could not complete because of 3021 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 3022 ** means the close did not happen and needs to be repeated. 3023 */ 3024 int sqlite3VdbeHalt(Vdbe *p){ 3025 int rc; /* Used to store transient return codes */ 3026 sqlite3 *db = p->db; 3027 3028 /* This function contains the logic that determines if a statement or 3029 ** transaction will be committed or rolled back as a result of the 3030 ** execution of this virtual machine. 3031 ** 3032 ** If any of the following errors occur: 3033 ** 3034 ** SQLITE_NOMEM 3035 ** SQLITE_IOERR 3036 ** SQLITE_FULL 3037 ** SQLITE_INTERRUPT 3038 ** 3039 ** Then the internal cache might have been left in an inconsistent 3040 ** state. We need to rollback the statement transaction, if there is 3041 ** one, or the complete transaction if there is no statement transaction. 3042 */ 3043 3044 if( p->magic!=VDBE_MAGIC_RUN ){ 3045 return SQLITE_OK; 3046 } 3047 if( db->mallocFailed ){ 3048 p->rc = SQLITE_NOMEM_BKPT; 3049 } 3050 closeAllCursors(p); 3051 checkActiveVdbeCnt(db); 3052 3053 /* No commit or rollback needed if the program never started or if the 3054 ** SQL statement does not read or write a database file. */ 3055 if( p->pc>=0 && p->bIsReader ){ 3056 int mrc; /* Primary error code from p->rc */ 3057 int eStatementOp = 0; 3058 int isSpecialError; /* Set to true if a 'special' error */ 3059 3060 /* Lock all btrees used by the statement */ 3061 sqlite3VdbeEnter(p); 3062 3063 /* Check for one of the special errors */ 3064 mrc = p->rc & 0xff; 3065 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 3066 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 3067 if( isSpecialError ){ 3068 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 3069 ** no rollback is necessary. Otherwise, at least a savepoint 3070 ** transaction must be rolled back to restore the database to a 3071 ** consistent state. 3072 ** 3073 ** Even if the statement is read-only, it is important to perform 3074 ** a statement or transaction rollback operation. If the error 3075 ** occurred while writing to the journal, sub-journal or database 3076 ** file as part of an effort to free up cache space (see function 3077 ** pagerStress() in pager.c), the rollback is required to restore 3078 ** the pager to a consistent state. 3079 */ 3080 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 3081 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 3082 eStatementOp = SAVEPOINT_ROLLBACK; 3083 }else{ 3084 /* We are forced to roll back the active transaction. Before doing 3085 ** so, abort any other statements this handle currently has active. 3086 */ 3087 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3088 sqlite3CloseSavepoints(db); 3089 db->autoCommit = 1; 3090 p->nChange = 0; 3091 } 3092 } 3093 } 3094 3095 /* Check for immediate foreign key violations. */ 3096 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3097 sqlite3VdbeCheckFk(p, 0); 3098 } 3099 3100 /* If the auto-commit flag is set and this is the only active writer 3101 ** VM, then we do either a commit or rollback of the current transaction. 3102 ** 3103 ** Note: This block also runs if one of the special errors handled 3104 ** above has occurred. 3105 */ 3106 if( !sqlite3VtabInSync(db) 3107 && db->autoCommit 3108 && db->nVdbeWrite==(p->readOnly==0) 3109 ){ 3110 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3111 rc = sqlite3VdbeCheckFk(p, 1); 3112 if( rc!=SQLITE_OK ){ 3113 if( NEVER(p->readOnly) ){ 3114 sqlite3VdbeLeave(p); 3115 return SQLITE_ERROR; 3116 } 3117 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 3118 }else{ 3119 /* The auto-commit flag is true, the vdbe program was successful 3120 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 3121 ** key constraints to hold up the transaction. This means a commit 3122 ** is required. */ 3123 rc = vdbeCommit(db, p); 3124 } 3125 if( rc==SQLITE_BUSY && p->readOnly ){ 3126 sqlite3VdbeLeave(p); 3127 return SQLITE_BUSY; 3128 }else if( rc!=SQLITE_OK ){ 3129 p->rc = rc; 3130 sqlite3RollbackAll(db, SQLITE_OK); 3131 p->nChange = 0; 3132 }else{ 3133 db->nDeferredCons = 0; 3134 db->nDeferredImmCons = 0; 3135 db->flags &= ~(u64)SQLITE_DeferFKs; 3136 sqlite3CommitInternalChanges(db); 3137 } 3138 }else{ 3139 sqlite3RollbackAll(db, SQLITE_OK); 3140 p->nChange = 0; 3141 } 3142 db->nStatement = 0; 3143 }else if( eStatementOp==0 ){ 3144 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 3145 eStatementOp = SAVEPOINT_RELEASE; 3146 }else if( p->errorAction==OE_Abort ){ 3147 eStatementOp = SAVEPOINT_ROLLBACK; 3148 }else{ 3149 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3150 sqlite3CloseSavepoints(db); 3151 db->autoCommit = 1; 3152 p->nChange = 0; 3153 } 3154 } 3155 3156 /* If eStatementOp is non-zero, then a statement transaction needs to 3157 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 3158 ** do so. If this operation returns an error, and the current statement 3159 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 3160 ** current statement error code. 3161 */ 3162 if( eStatementOp ){ 3163 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 3164 if( rc ){ 3165 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 3166 p->rc = rc; 3167 sqlite3DbFree(db, p->zErrMsg); 3168 p->zErrMsg = 0; 3169 } 3170 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3171 sqlite3CloseSavepoints(db); 3172 db->autoCommit = 1; 3173 p->nChange = 0; 3174 } 3175 } 3176 3177 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 3178 ** has been rolled back, update the database connection change-counter. 3179 */ 3180 if( p->changeCntOn ){ 3181 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 3182 sqlite3VdbeSetChanges(db, p->nChange); 3183 }else{ 3184 sqlite3VdbeSetChanges(db, 0); 3185 } 3186 p->nChange = 0; 3187 } 3188 3189 /* Release the locks */ 3190 sqlite3VdbeLeave(p); 3191 } 3192 3193 /* We have successfully halted and closed the VM. Record this fact. */ 3194 if( p->pc>=0 ){ 3195 db->nVdbeActive--; 3196 if( !p->readOnly ) db->nVdbeWrite--; 3197 if( p->bIsReader ) db->nVdbeRead--; 3198 assert( db->nVdbeActive>=db->nVdbeRead ); 3199 assert( db->nVdbeRead>=db->nVdbeWrite ); 3200 assert( db->nVdbeWrite>=0 ); 3201 } 3202 p->magic = VDBE_MAGIC_HALT; 3203 checkActiveVdbeCnt(db); 3204 if( db->mallocFailed ){ 3205 p->rc = SQLITE_NOMEM_BKPT; 3206 } 3207 3208 /* If the auto-commit flag is set to true, then any locks that were held 3209 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 3210 ** to invoke any required unlock-notify callbacks. 3211 */ 3212 if( db->autoCommit ){ 3213 sqlite3ConnectionUnlocked(db); 3214 } 3215 3216 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 3217 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 3218 } 3219 3220 3221 /* 3222 ** Each VDBE holds the result of the most recent sqlite3_step() call 3223 ** in p->rc. This routine sets that result back to SQLITE_OK. 3224 */ 3225 void sqlite3VdbeResetStepResult(Vdbe *p){ 3226 p->rc = SQLITE_OK; 3227 } 3228 3229 /* 3230 ** Copy the error code and error message belonging to the VDBE passed 3231 ** as the first argument to its database handle (so that they will be 3232 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 3233 ** 3234 ** This function does not clear the VDBE error code or message, just 3235 ** copies them to the database handle. 3236 */ 3237 int sqlite3VdbeTransferError(Vdbe *p){ 3238 sqlite3 *db = p->db; 3239 int rc = p->rc; 3240 if( p->zErrMsg ){ 3241 db->bBenignMalloc++; 3242 sqlite3BeginBenignMalloc(); 3243 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 3244 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 3245 sqlite3EndBenignMalloc(); 3246 db->bBenignMalloc--; 3247 }else if( db->pErr ){ 3248 sqlite3ValueSetNull(db->pErr); 3249 } 3250 db->errCode = rc; 3251 return rc; 3252 } 3253 3254 #ifdef SQLITE_ENABLE_SQLLOG 3255 /* 3256 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 3257 ** invoke it. 3258 */ 3259 static void vdbeInvokeSqllog(Vdbe *v){ 3260 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 3261 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 3262 assert( v->db->init.busy==0 ); 3263 if( zExpanded ){ 3264 sqlite3GlobalConfig.xSqllog( 3265 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 3266 ); 3267 sqlite3DbFree(v->db, zExpanded); 3268 } 3269 } 3270 } 3271 #else 3272 # define vdbeInvokeSqllog(x) 3273 #endif 3274 3275 /* 3276 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 3277 ** Write any error messages into *pzErrMsg. Return the result code. 3278 ** 3279 ** After this routine is run, the VDBE should be ready to be executed 3280 ** again. 3281 ** 3282 ** To look at it another way, this routine resets the state of the 3283 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 3284 ** VDBE_MAGIC_INIT. 3285 */ 3286 int sqlite3VdbeReset(Vdbe *p){ 3287 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 3288 int i; 3289 #endif 3290 3291 sqlite3 *db; 3292 db = p->db; 3293 3294 /* If the VM did not run to completion or if it encountered an 3295 ** error, then it might not have been halted properly. So halt 3296 ** it now. 3297 */ 3298 sqlite3VdbeHalt(p); 3299 3300 /* If the VDBE has been run even partially, then transfer the error code 3301 ** and error message from the VDBE into the main database structure. But 3302 ** if the VDBE has just been set to run but has not actually executed any 3303 ** instructions yet, leave the main database error information unchanged. 3304 */ 3305 if( p->pc>=0 ){ 3306 vdbeInvokeSqllog(p); 3307 if( db->pErr || p->zErrMsg ){ 3308 sqlite3VdbeTransferError(p); 3309 }else{ 3310 db->errCode = p->rc; 3311 } 3312 if( p->runOnlyOnce ) p->expired = 1; 3313 }else if( p->rc && p->expired ){ 3314 /* The expired flag was set on the VDBE before the first call 3315 ** to sqlite3_step(). For consistency (since sqlite3_step() was 3316 ** called), set the database error in this case as well. 3317 */ 3318 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 3319 } 3320 3321 /* Reset register contents and reclaim error message memory. 3322 */ 3323 #ifdef SQLITE_DEBUG 3324 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 3325 ** Vdbe.aMem[] arrays have already been cleaned up. */ 3326 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 3327 if( p->aMem ){ 3328 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 3329 } 3330 #endif 3331 if( p->zErrMsg ){ 3332 sqlite3DbFree(db, p->zErrMsg); 3333 p->zErrMsg = 0; 3334 } 3335 p->pResultSet = 0; 3336 #ifdef SQLITE_DEBUG 3337 p->nWrite = 0; 3338 #endif 3339 3340 /* Save profiling information from this VDBE run. 3341 */ 3342 #ifdef VDBE_PROFILE 3343 { 3344 FILE *out = fopen("vdbe_profile.out", "a"); 3345 if( out ){ 3346 fprintf(out, "---- "); 3347 for(i=0; i<p->nOp; i++){ 3348 fprintf(out, "%02x", p->aOp[i].opcode); 3349 } 3350 fprintf(out, "\n"); 3351 if( p->zSql ){ 3352 char c, pc = 0; 3353 fprintf(out, "-- "); 3354 for(i=0; (c = p->zSql[i])!=0; i++){ 3355 if( pc=='\n' ) fprintf(out, "-- "); 3356 putc(c, out); 3357 pc = c; 3358 } 3359 if( pc!='\n' ) fprintf(out, "\n"); 3360 } 3361 for(i=0; i<p->nOp; i++){ 3362 char zHdr[100]; 3363 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 3364 p->aOp[i].cnt, 3365 p->aOp[i].cycles, 3366 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 3367 ); 3368 fprintf(out, "%s", zHdr); 3369 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 3370 } 3371 fclose(out); 3372 } 3373 } 3374 #endif 3375 p->magic = VDBE_MAGIC_RESET; 3376 return p->rc & db->errMask; 3377 } 3378 3379 /* 3380 ** Clean up and delete a VDBE after execution. Return an integer which is 3381 ** the result code. Write any error message text into *pzErrMsg. 3382 */ 3383 int sqlite3VdbeFinalize(Vdbe *p){ 3384 int rc = SQLITE_OK; 3385 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 3386 rc = sqlite3VdbeReset(p); 3387 assert( (rc & p->db->errMask)==rc ); 3388 } 3389 sqlite3VdbeDelete(p); 3390 return rc; 3391 } 3392 3393 /* 3394 ** If parameter iOp is less than zero, then invoke the destructor for 3395 ** all auxiliary data pointers currently cached by the VM passed as 3396 ** the first argument. 3397 ** 3398 ** Or, if iOp is greater than or equal to zero, then the destructor is 3399 ** only invoked for those auxiliary data pointers created by the user 3400 ** function invoked by the OP_Function opcode at instruction iOp of 3401 ** VM pVdbe, and only then if: 3402 ** 3403 ** * the associated function parameter is the 32nd or later (counting 3404 ** from left to right), or 3405 ** 3406 ** * the corresponding bit in argument mask is clear (where the first 3407 ** function parameter corresponds to bit 0 etc.). 3408 */ 3409 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 3410 while( *pp ){ 3411 AuxData *pAux = *pp; 3412 if( (iOp<0) 3413 || (pAux->iAuxOp==iOp 3414 && pAux->iAuxArg>=0 3415 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 3416 ){ 3417 testcase( pAux->iAuxArg==31 ); 3418 if( pAux->xDeleteAux ){ 3419 pAux->xDeleteAux(pAux->pAux); 3420 } 3421 *pp = pAux->pNextAux; 3422 sqlite3DbFree(db, pAux); 3423 }else{ 3424 pp= &pAux->pNextAux; 3425 } 3426 } 3427 } 3428 3429 /* 3430 ** Free all memory associated with the Vdbe passed as the second argument, 3431 ** except for object itself, which is preserved. 3432 ** 3433 ** The difference between this function and sqlite3VdbeDelete() is that 3434 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 3435 ** the database connection and frees the object itself. 3436 */ 3437 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 3438 SubProgram *pSub, *pNext; 3439 assert( p->db==0 || p->db==db ); 3440 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 3441 for(pSub=p->pProgram; pSub; pSub=pNext){ 3442 pNext = pSub->pNext; 3443 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 3444 sqlite3DbFree(db, pSub); 3445 } 3446 if( p->magic!=VDBE_MAGIC_INIT ){ 3447 releaseMemArray(p->aVar, p->nVar); 3448 sqlite3DbFree(db, p->pVList); 3449 sqlite3DbFree(db, p->pFree); 3450 } 3451 vdbeFreeOpArray(db, p->aOp, p->nOp); 3452 sqlite3DbFree(db, p->aColName); 3453 sqlite3DbFree(db, p->zSql); 3454 #ifdef SQLITE_ENABLE_NORMALIZE 3455 sqlite3DbFree(db, p->zNormSql); 3456 { 3457 DblquoteStr *pThis, *pNext; 3458 for(pThis=p->pDblStr; pThis; pThis=pNext){ 3459 pNext = pThis->pNextStr; 3460 sqlite3DbFree(db, pThis); 3461 } 3462 } 3463 #endif 3464 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3465 { 3466 int i; 3467 for(i=0; i<p->nScan; i++){ 3468 sqlite3DbFree(db, p->aScan[i].zName); 3469 } 3470 sqlite3DbFree(db, p->aScan); 3471 } 3472 #endif 3473 } 3474 3475 /* 3476 ** Delete an entire VDBE. 3477 */ 3478 void sqlite3VdbeDelete(Vdbe *p){ 3479 sqlite3 *db; 3480 3481 assert( p!=0 ); 3482 db = p->db; 3483 assert( sqlite3_mutex_held(db->mutex) ); 3484 sqlite3VdbeClearObject(db, p); 3485 if( p->pPrev ){ 3486 p->pPrev->pNext = p->pNext; 3487 }else{ 3488 assert( db->pVdbe==p ); 3489 db->pVdbe = p->pNext; 3490 } 3491 if( p->pNext ){ 3492 p->pNext->pPrev = p->pPrev; 3493 } 3494 p->magic = VDBE_MAGIC_DEAD; 3495 p->db = 0; 3496 sqlite3DbFreeNN(db, p); 3497 } 3498 3499 /* 3500 ** The cursor "p" has a pending seek operation that has not yet been 3501 ** carried out. Seek the cursor now. If an error occurs, return 3502 ** the appropriate error code. 3503 */ 3504 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){ 3505 int res, rc; 3506 #ifdef SQLITE_TEST 3507 extern int sqlite3_search_count; 3508 #endif 3509 assert( p->deferredMoveto ); 3510 assert( p->isTable ); 3511 assert( p->eCurType==CURTYPE_BTREE ); 3512 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); 3513 if( rc ) return rc; 3514 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3515 #ifdef SQLITE_TEST 3516 sqlite3_search_count++; 3517 #endif 3518 p->deferredMoveto = 0; 3519 p->cacheStatus = CACHE_STALE; 3520 return SQLITE_OK; 3521 } 3522 3523 /* 3524 ** Something has moved cursor "p" out of place. Maybe the row it was 3525 ** pointed to was deleted out from under it. Or maybe the btree was 3526 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3527 ** is supposed to be pointing. If the row was deleted out from under the 3528 ** cursor, set the cursor to point to a NULL row. 3529 */ 3530 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 3531 int isDifferentRow, rc; 3532 assert( p->eCurType==CURTYPE_BTREE ); 3533 assert( p->uc.pCursor!=0 ); 3534 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3535 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3536 p->cacheStatus = CACHE_STALE; 3537 if( isDifferentRow ) p->nullRow = 1; 3538 return rc; 3539 } 3540 3541 /* 3542 ** Check to ensure that the cursor is valid. Restore the cursor 3543 ** if need be. Return any I/O error from the restore operation. 3544 */ 3545 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3546 assert( p->eCurType==CURTYPE_BTREE ); 3547 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3548 return handleMovedCursor(p); 3549 } 3550 return SQLITE_OK; 3551 } 3552 3553 /* 3554 ** Make sure the cursor p is ready to read or write the row to which it 3555 ** was last positioned. Return an error code if an OOM fault or I/O error 3556 ** prevents us from positioning the cursor to its correct position. 3557 ** 3558 ** If a MoveTo operation is pending on the given cursor, then do that 3559 ** MoveTo now. If no move is pending, check to see if the row has been 3560 ** deleted out from under the cursor and if it has, mark the row as 3561 ** a NULL row. 3562 ** 3563 ** If the cursor is already pointing to the correct row and that row has 3564 ** not been deleted out from under the cursor, then this routine is a no-op. 3565 */ 3566 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, u32 *piCol){ 3567 VdbeCursor *p = *pp; 3568 assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO ); 3569 if( p->deferredMoveto ){ 3570 u32 iMap; 3571 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 && !p->nullRow ){ 3572 *pp = p->pAltCursor; 3573 *piCol = iMap - 1; 3574 return SQLITE_OK; 3575 } 3576 return sqlite3VdbeFinishMoveto(p); 3577 } 3578 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3579 return handleMovedCursor(p); 3580 } 3581 return SQLITE_OK; 3582 } 3583 3584 /* 3585 ** The following functions: 3586 ** 3587 ** sqlite3VdbeSerialType() 3588 ** sqlite3VdbeSerialTypeLen() 3589 ** sqlite3VdbeSerialLen() 3590 ** sqlite3VdbeSerialPut() 3591 ** sqlite3VdbeSerialGet() 3592 ** 3593 ** encapsulate the code that serializes values for storage in SQLite 3594 ** data and index records. Each serialized value consists of a 3595 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3596 ** integer, stored as a varint. 3597 ** 3598 ** In an SQLite index record, the serial type is stored directly before 3599 ** the blob of data that it corresponds to. In a table record, all serial 3600 ** types are stored at the start of the record, and the blobs of data at 3601 ** the end. Hence these functions allow the caller to handle the 3602 ** serial-type and data blob separately. 3603 ** 3604 ** The following table describes the various storage classes for data: 3605 ** 3606 ** serial type bytes of data type 3607 ** -------------- --------------- --------------- 3608 ** 0 0 NULL 3609 ** 1 1 signed integer 3610 ** 2 2 signed integer 3611 ** 3 3 signed integer 3612 ** 4 4 signed integer 3613 ** 5 6 signed integer 3614 ** 6 8 signed integer 3615 ** 7 8 IEEE float 3616 ** 8 0 Integer constant 0 3617 ** 9 0 Integer constant 1 3618 ** 10,11 reserved for expansion 3619 ** N>=12 and even (N-12)/2 BLOB 3620 ** N>=13 and odd (N-13)/2 text 3621 ** 3622 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3623 ** of SQLite will not understand those serial types. 3624 */ 3625 3626 #if 0 /* Inlined into the OP_MakeRecord opcode */ 3627 /* 3628 ** Return the serial-type for the value stored in pMem. 3629 ** 3630 ** This routine might convert a large MEM_IntReal value into MEM_Real. 3631 ** 3632 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord 3633 ** opcode in the byte-code engine. But by moving this routine in-line, we 3634 ** can omit some redundant tests and make that opcode a lot faster. So 3635 ** this routine is now only used by the STAT3 logic and STAT3 support has 3636 ** ended. The code is kept here for historical reference only. 3637 */ 3638 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3639 int flags = pMem->flags; 3640 u32 n; 3641 3642 assert( pLen!=0 ); 3643 if( flags&MEM_Null ){ 3644 *pLen = 0; 3645 return 0; 3646 } 3647 if( flags&(MEM_Int|MEM_IntReal) ){ 3648 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3649 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3650 i64 i = pMem->u.i; 3651 u64 u; 3652 testcase( flags & MEM_Int ); 3653 testcase( flags & MEM_IntReal ); 3654 if( i<0 ){ 3655 u = ~i; 3656 }else{ 3657 u = i; 3658 } 3659 if( u<=127 ){ 3660 if( (i&1)==i && file_format>=4 ){ 3661 *pLen = 0; 3662 return 8+(u32)u; 3663 }else{ 3664 *pLen = 1; 3665 return 1; 3666 } 3667 } 3668 if( u<=32767 ){ *pLen = 2; return 2; } 3669 if( u<=8388607 ){ *pLen = 3; return 3; } 3670 if( u<=2147483647 ){ *pLen = 4; return 4; } 3671 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3672 *pLen = 8; 3673 if( flags&MEM_IntReal ){ 3674 /* If the value is IntReal and is going to take up 8 bytes to store 3675 ** as an integer, then we might as well make it an 8-byte floating 3676 ** point value */ 3677 pMem->u.r = (double)pMem->u.i; 3678 pMem->flags &= ~MEM_IntReal; 3679 pMem->flags |= MEM_Real; 3680 return 7; 3681 } 3682 return 6; 3683 } 3684 if( flags&MEM_Real ){ 3685 *pLen = 8; 3686 return 7; 3687 } 3688 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3689 assert( pMem->n>=0 ); 3690 n = (u32)pMem->n; 3691 if( flags & MEM_Zero ){ 3692 n += pMem->u.nZero; 3693 } 3694 *pLen = n; 3695 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3696 } 3697 #endif /* inlined into OP_MakeRecord */ 3698 3699 /* 3700 ** The sizes for serial types less than 128 3701 */ 3702 static const u8 sqlite3SmallTypeSizes[] = { 3703 /* 0 1 2 3 4 5 6 7 8 9 */ 3704 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3705 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3706 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3707 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3708 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3709 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3710 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3711 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3712 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3713 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3714 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3715 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3716 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3717 }; 3718 3719 /* 3720 ** Return the length of the data corresponding to the supplied serial-type. 3721 */ 3722 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3723 if( serial_type>=128 ){ 3724 return (serial_type-12)/2; 3725 }else{ 3726 assert( serial_type<12 3727 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3728 return sqlite3SmallTypeSizes[serial_type]; 3729 } 3730 } 3731 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3732 assert( serial_type<128 ); 3733 return sqlite3SmallTypeSizes[serial_type]; 3734 } 3735 3736 /* 3737 ** If we are on an architecture with mixed-endian floating 3738 ** points (ex: ARM7) then swap the lower 4 bytes with the 3739 ** upper 4 bytes. Return the result. 3740 ** 3741 ** For most architectures, this is a no-op. 3742 ** 3743 ** (later): It is reported to me that the mixed-endian problem 3744 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3745 ** that early versions of GCC stored the two words of a 64-bit 3746 ** float in the wrong order. And that error has been propagated 3747 ** ever since. The blame is not necessarily with GCC, though. 3748 ** GCC might have just copying the problem from a prior compiler. 3749 ** I am also told that newer versions of GCC that follow a different 3750 ** ABI get the byte order right. 3751 ** 3752 ** Developers using SQLite on an ARM7 should compile and run their 3753 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3754 ** enabled, some asserts below will ensure that the byte order of 3755 ** floating point values is correct. 3756 ** 3757 ** (2007-08-30) Frank van Vugt has studied this problem closely 3758 ** and has send his findings to the SQLite developers. Frank 3759 ** writes that some Linux kernels offer floating point hardware 3760 ** emulation that uses only 32-bit mantissas instead of a full 3761 ** 48-bits as required by the IEEE standard. (This is the 3762 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3763 ** byte swapping becomes very complicated. To avoid problems, 3764 ** the necessary byte swapping is carried out using a 64-bit integer 3765 ** rather than a 64-bit float. Frank assures us that the code here 3766 ** works for him. We, the developers, have no way to independently 3767 ** verify this, but Frank seems to know what he is talking about 3768 ** so we trust him. 3769 */ 3770 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3771 static u64 floatSwap(u64 in){ 3772 union { 3773 u64 r; 3774 u32 i[2]; 3775 } u; 3776 u32 t; 3777 3778 u.r = in; 3779 t = u.i[0]; 3780 u.i[0] = u.i[1]; 3781 u.i[1] = t; 3782 return u.r; 3783 } 3784 # define swapMixedEndianFloat(X) X = floatSwap(X) 3785 #else 3786 # define swapMixedEndianFloat(X) 3787 #endif 3788 3789 /* 3790 ** Write the serialized data blob for the value stored in pMem into 3791 ** buf. It is assumed that the caller has allocated sufficient space. 3792 ** Return the number of bytes written. 3793 ** 3794 ** nBuf is the amount of space left in buf[]. The caller is responsible 3795 ** for allocating enough space to buf[] to hold the entire field, exclusive 3796 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3797 ** 3798 ** Return the number of bytes actually written into buf[]. The number 3799 ** of bytes in the zero-filled tail is included in the return value only 3800 ** if those bytes were zeroed in buf[]. 3801 */ 3802 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3803 u32 len; 3804 3805 /* Integer and Real */ 3806 if( serial_type<=7 && serial_type>0 ){ 3807 u64 v; 3808 u32 i; 3809 if( serial_type==7 ){ 3810 assert( sizeof(v)==sizeof(pMem->u.r) ); 3811 memcpy(&v, &pMem->u.r, sizeof(v)); 3812 swapMixedEndianFloat(v); 3813 }else{ 3814 v = pMem->u.i; 3815 } 3816 len = i = sqlite3SmallTypeSizes[serial_type]; 3817 assert( i>0 ); 3818 do{ 3819 buf[--i] = (u8)(v&0xFF); 3820 v >>= 8; 3821 }while( i ); 3822 return len; 3823 } 3824 3825 /* String or blob */ 3826 if( serial_type>=12 ){ 3827 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3828 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3829 len = pMem->n; 3830 if( len>0 ) memcpy(buf, pMem->z, len); 3831 return len; 3832 } 3833 3834 /* NULL or constants 0 or 1 */ 3835 return 0; 3836 } 3837 3838 /* Input "x" is a sequence of unsigned characters that represent a 3839 ** big-endian integer. Return the equivalent native integer 3840 */ 3841 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3842 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3843 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3844 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3845 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3846 3847 /* 3848 ** Deserialize the data blob pointed to by buf as serial type serial_type 3849 ** and store the result in pMem. Return the number of bytes read. 3850 ** 3851 ** This function is implemented as two separate routines for performance. 3852 ** The few cases that require local variables are broken out into a separate 3853 ** routine so that in most cases the overhead of moving the stack pointer 3854 ** is avoided. 3855 */ 3856 static u32 serialGet( 3857 const unsigned char *buf, /* Buffer to deserialize from */ 3858 u32 serial_type, /* Serial type to deserialize */ 3859 Mem *pMem /* Memory cell to write value into */ 3860 ){ 3861 u64 x = FOUR_BYTE_UINT(buf); 3862 u32 y = FOUR_BYTE_UINT(buf+4); 3863 x = (x<<32) + y; 3864 if( serial_type==6 ){ 3865 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3866 ** twos-complement integer. */ 3867 pMem->u.i = *(i64*)&x; 3868 pMem->flags = MEM_Int; 3869 testcase( pMem->u.i<0 ); 3870 }else{ 3871 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3872 ** floating point number. */ 3873 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3874 /* Verify that integers and floating point values use the same 3875 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3876 ** defined that 64-bit floating point values really are mixed 3877 ** endian. 3878 */ 3879 static const u64 t1 = ((u64)0x3ff00000)<<32; 3880 static const double r1 = 1.0; 3881 u64 t2 = t1; 3882 swapMixedEndianFloat(t2); 3883 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3884 #endif 3885 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3886 swapMixedEndianFloat(x); 3887 memcpy(&pMem->u.r, &x, sizeof(x)); 3888 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real; 3889 } 3890 return 8; 3891 } 3892 u32 sqlite3VdbeSerialGet( 3893 const unsigned char *buf, /* Buffer to deserialize from */ 3894 u32 serial_type, /* Serial type to deserialize */ 3895 Mem *pMem /* Memory cell to write value into */ 3896 ){ 3897 switch( serial_type ){ 3898 case 10: { /* Internal use only: NULL with virtual table 3899 ** UPDATE no-change flag set */ 3900 pMem->flags = MEM_Null|MEM_Zero; 3901 pMem->n = 0; 3902 pMem->u.nZero = 0; 3903 break; 3904 } 3905 case 11: /* Reserved for future use */ 3906 case 0: { /* Null */ 3907 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3908 pMem->flags = MEM_Null; 3909 break; 3910 } 3911 case 1: { 3912 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3913 ** integer. */ 3914 pMem->u.i = ONE_BYTE_INT(buf); 3915 pMem->flags = MEM_Int; 3916 testcase( pMem->u.i<0 ); 3917 return 1; 3918 } 3919 case 2: { /* 2-byte signed integer */ 3920 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3921 ** twos-complement integer. */ 3922 pMem->u.i = TWO_BYTE_INT(buf); 3923 pMem->flags = MEM_Int; 3924 testcase( pMem->u.i<0 ); 3925 return 2; 3926 } 3927 case 3: { /* 3-byte signed integer */ 3928 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3929 ** twos-complement integer. */ 3930 pMem->u.i = THREE_BYTE_INT(buf); 3931 pMem->flags = MEM_Int; 3932 testcase( pMem->u.i<0 ); 3933 return 3; 3934 } 3935 case 4: { /* 4-byte signed integer */ 3936 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3937 ** twos-complement integer. */ 3938 pMem->u.i = FOUR_BYTE_INT(buf); 3939 #ifdef __HP_cc 3940 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3941 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3942 #endif 3943 pMem->flags = MEM_Int; 3944 testcase( pMem->u.i<0 ); 3945 return 4; 3946 } 3947 case 5: { /* 6-byte signed integer */ 3948 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3949 ** twos-complement integer. */ 3950 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3951 pMem->flags = MEM_Int; 3952 testcase( pMem->u.i<0 ); 3953 return 6; 3954 } 3955 case 6: /* 8-byte signed integer */ 3956 case 7: { /* IEEE floating point */ 3957 /* These use local variables, so do them in a separate routine 3958 ** to avoid having to move the frame pointer in the common case */ 3959 return serialGet(buf,serial_type,pMem); 3960 } 3961 case 8: /* Integer 0 */ 3962 case 9: { /* Integer 1 */ 3963 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3964 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3965 pMem->u.i = serial_type-8; 3966 pMem->flags = MEM_Int; 3967 return 0; 3968 } 3969 default: { 3970 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3971 ** length. 3972 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3973 ** (N-13)/2 bytes in length. */ 3974 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3975 pMem->z = (char *)buf; 3976 pMem->n = (serial_type-12)/2; 3977 pMem->flags = aFlag[serial_type&1]; 3978 return pMem->n; 3979 } 3980 } 3981 return 0; 3982 } 3983 /* 3984 ** This routine is used to allocate sufficient space for an UnpackedRecord 3985 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3986 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3987 ** 3988 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3989 ** the unaligned buffer passed via the second and third arguments (presumably 3990 ** stack space). If the former, then *ppFree is set to a pointer that should 3991 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3992 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3993 ** before returning. 3994 ** 3995 ** If an OOM error occurs, NULL is returned. 3996 */ 3997 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3998 KeyInfo *pKeyInfo /* Description of the record */ 3999 ){ 4000 UnpackedRecord *p; /* Unpacked record to return */ 4001 int nByte; /* Number of bytes required for *p */ 4002 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 4003 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 4004 if( !p ) return 0; 4005 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 4006 assert( pKeyInfo->aSortFlags!=0 ); 4007 p->pKeyInfo = pKeyInfo; 4008 p->nField = pKeyInfo->nKeyField + 1; 4009 return p; 4010 } 4011 4012 /* 4013 ** Given the nKey-byte encoding of a record in pKey[], populate the 4014 ** UnpackedRecord structure indicated by the fourth argument with the 4015 ** contents of the decoded record. 4016 */ 4017 void sqlite3VdbeRecordUnpack( 4018 KeyInfo *pKeyInfo, /* Information about the record format */ 4019 int nKey, /* Size of the binary record */ 4020 const void *pKey, /* The binary record */ 4021 UnpackedRecord *p /* Populate this structure before returning. */ 4022 ){ 4023 const unsigned char *aKey = (const unsigned char *)pKey; 4024 u32 d; 4025 u32 idx; /* Offset in aKey[] to read from */ 4026 u16 u; /* Unsigned loop counter */ 4027 u32 szHdr; 4028 Mem *pMem = p->aMem; 4029 4030 p->default_rc = 0; 4031 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 4032 idx = getVarint32(aKey, szHdr); 4033 d = szHdr; 4034 u = 0; 4035 while( idx<szHdr && d<=(u32)nKey ){ 4036 u32 serial_type; 4037 4038 idx += getVarint32(&aKey[idx], serial_type); 4039 pMem->enc = pKeyInfo->enc; 4040 pMem->db = pKeyInfo->db; 4041 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 4042 pMem->szMalloc = 0; 4043 pMem->z = 0; 4044 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 4045 pMem++; 4046 if( (++u)>=p->nField ) break; 4047 } 4048 if( d>(u32)nKey && u ){ 4049 assert( CORRUPT_DB ); 4050 /* In a corrupt record entry, the last pMem might have been set up using 4051 ** uninitialized memory. Overwrite its value with NULL, to prevent 4052 ** warnings from MSAN. */ 4053 sqlite3VdbeMemSetNull(pMem-1); 4054 } 4055 assert( u<=pKeyInfo->nKeyField + 1 ); 4056 p->nField = u; 4057 } 4058 4059 #ifdef SQLITE_DEBUG 4060 /* 4061 ** This function compares two index or table record keys in the same way 4062 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 4063 ** this function deserializes and compares values using the 4064 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 4065 ** in assert() statements to ensure that the optimized code in 4066 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 4067 ** 4068 ** Return true if the result of comparison is equivalent to desiredResult. 4069 ** Return false if there is a disagreement. 4070 */ 4071 static int vdbeRecordCompareDebug( 4072 int nKey1, const void *pKey1, /* Left key */ 4073 const UnpackedRecord *pPKey2, /* Right key */ 4074 int desiredResult /* Correct answer */ 4075 ){ 4076 u32 d1; /* Offset into aKey[] of next data element */ 4077 u32 idx1; /* Offset into aKey[] of next header element */ 4078 u32 szHdr1; /* Number of bytes in header */ 4079 int i = 0; 4080 int rc = 0; 4081 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4082 KeyInfo *pKeyInfo; 4083 Mem mem1; 4084 4085 pKeyInfo = pPKey2->pKeyInfo; 4086 if( pKeyInfo->db==0 ) return 1; 4087 mem1.enc = pKeyInfo->enc; 4088 mem1.db = pKeyInfo->db; 4089 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 4090 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4091 4092 /* Compilers may complain that mem1.u.i is potentially uninitialized. 4093 ** We could initialize it, as shown here, to silence those complaints. 4094 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 4095 ** the unnecessary initialization has a measurable negative performance 4096 ** impact, since this routine is a very high runner. And so, we choose 4097 ** to ignore the compiler warnings and leave this variable uninitialized. 4098 */ 4099 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 4100 4101 idx1 = getVarint32(aKey1, szHdr1); 4102 if( szHdr1>98307 ) return SQLITE_CORRUPT; 4103 d1 = szHdr1; 4104 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 4105 assert( pKeyInfo->aSortFlags!=0 ); 4106 assert( pKeyInfo->nKeyField>0 ); 4107 assert( idx1<=szHdr1 || CORRUPT_DB ); 4108 do{ 4109 u32 serial_type1; 4110 4111 /* Read the serial types for the next element in each key. */ 4112 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 4113 4114 /* Verify that there is enough key space remaining to avoid 4115 ** a buffer overread. The "d1+serial_type1+2" subexpression will 4116 ** always be greater than or equal to the amount of required key space. 4117 ** Use that approximation to avoid the more expensive call to 4118 ** sqlite3VdbeSerialTypeLen() in the common case. 4119 */ 4120 if( d1+(u64)serial_type1+2>(u64)nKey1 4121 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 4122 ){ 4123 break; 4124 } 4125 4126 /* Extract the values to be compared. 4127 */ 4128 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 4129 4130 /* Do the comparison 4131 */ 4132 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], 4133 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0); 4134 if( rc!=0 ){ 4135 assert( mem1.szMalloc==0 ); /* See comment below */ 4136 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 4137 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null)) 4138 ){ 4139 rc = -rc; 4140 } 4141 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){ 4142 rc = -rc; /* Invert the result for DESC sort order. */ 4143 } 4144 goto debugCompareEnd; 4145 } 4146 i++; 4147 }while( idx1<szHdr1 && i<pPKey2->nField ); 4148 4149 /* No memory allocation is ever used on mem1. Prove this using 4150 ** the following assert(). If the assert() fails, it indicates a 4151 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 4152 */ 4153 assert( mem1.szMalloc==0 ); 4154 4155 /* rc==0 here means that one of the keys ran out of fields and 4156 ** all the fields up to that point were equal. Return the default_rc 4157 ** value. */ 4158 rc = pPKey2->default_rc; 4159 4160 debugCompareEnd: 4161 if( desiredResult==0 && rc==0 ) return 1; 4162 if( desiredResult<0 && rc<0 ) return 1; 4163 if( desiredResult>0 && rc>0 ) return 1; 4164 if( CORRUPT_DB ) return 1; 4165 if( pKeyInfo->db->mallocFailed ) return 1; 4166 return 0; 4167 } 4168 #endif 4169 4170 #ifdef SQLITE_DEBUG 4171 /* 4172 ** Count the number of fields (a.k.a. columns) in the record given by 4173 ** pKey,nKey. The verify that this count is less than or equal to the 4174 ** limit given by pKeyInfo->nAllField. 4175 ** 4176 ** If this constraint is not satisfied, it means that the high-speed 4177 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 4178 ** not work correctly. If this assert() ever fires, it probably means 4179 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 4180 ** incorrectly. 4181 */ 4182 static void vdbeAssertFieldCountWithinLimits( 4183 int nKey, const void *pKey, /* The record to verify */ 4184 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 4185 ){ 4186 int nField = 0; 4187 u32 szHdr; 4188 u32 idx; 4189 u32 notUsed; 4190 const unsigned char *aKey = (const unsigned char*)pKey; 4191 4192 if( CORRUPT_DB ) return; 4193 idx = getVarint32(aKey, szHdr); 4194 assert( nKey>=0 ); 4195 assert( szHdr<=(u32)nKey ); 4196 while( idx<szHdr ){ 4197 idx += getVarint32(aKey+idx, notUsed); 4198 nField++; 4199 } 4200 assert( nField <= pKeyInfo->nAllField ); 4201 } 4202 #else 4203 # define vdbeAssertFieldCountWithinLimits(A,B,C) 4204 #endif 4205 4206 /* 4207 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 4208 ** using the collation sequence pColl. As usual, return a negative , zero 4209 ** or positive value if *pMem1 is less than, equal to or greater than 4210 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 4211 */ 4212 static int vdbeCompareMemString( 4213 const Mem *pMem1, 4214 const Mem *pMem2, 4215 const CollSeq *pColl, 4216 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 4217 ){ 4218 if( pMem1->enc==pColl->enc ){ 4219 /* The strings are already in the correct encoding. Call the 4220 ** comparison function directly */ 4221 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 4222 }else{ 4223 int rc; 4224 const void *v1, *v2; 4225 Mem c1; 4226 Mem c2; 4227 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 4228 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 4229 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 4230 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 4231 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 4232 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 4233 if( (v1==0 || v2==0) ){ 4234 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 4235 rc = 0; 4236 }else{ 4237 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 4238 } 4239 sqlite3VdbeMemRelease(&c1); 4240 sqlite3VdbeMemRelease(&c2); 4241 return rc; 4242 } 4243 } 4244 4245 /* 4246 ** The input pBlob is guaranteed to be a Blob that is not marked 4247 ** with MEM_Zero. Return true if it could be a zero-blob. 4248 */ 4249 static int isAllZero(const char *z, int n){ 4250 int i; 4251 for(i=0; i<n; i++){ 4252 if( z[i] ) return 0; 4253 } 4254 return 1; 4255 } 4256 4257 /* 4258 ** Compare two blobs. Return negative, zero, or positive if the first 4259 ** is less than, equal to, or greater than the second, respectively. 4260 ** If one blob is a prefix of the other, then the shorter is the lessor. 4261 */ 4262 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 4263 int c; 4264 int n1 = pB1->n; 4265 int n2 = pB2->n; 4266 4267 /* It is possible to have a Blob value that has some non-zero content 4268 ** followed by zero content. But that only comes up for Blobs formed 4269 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 4270 ** sqlite3MemCompare(). */ 4271 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 4272 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 4273 4274 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 4275 if( pB1->flags & pB2->flags & MEM_Zero ){ 4276 return pB1->u.nZero - pB2->u.nZero; 4277 }else if( pB1->flags & MEM_Zero ){ 4278 if( !isAllZero(pB2->z, pB2->n) ) return -1; 4279 return pB1->u.nZero - n2; 4280 }else{ 4281 if( !isAllZero(pB1->z, pB1->n) ) return +1; 4282 return n1 - pB2->u.nZero; 4283 } 4284 } 4285 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 4286 if( c ) return c; 4287 return n1 - n2; 4288 } 4289 4290 /* 4291 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 4292 ** number. Return negative, zero, or positive if the first (i64) is less than, 4293 ** equal to, or greater than the second (double). 4294 */ 4295 static int sqlite3IntFloatCompare(i64 i, double r){ 4296 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 4297 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 4298 testcase( x<r ); 4299 testcase( x>r ); 4300 testcase( x==r ); 4301 if( x<r ) return -1; 4302 if( x>r ) return +1; /*NO_TEST*/ /* work around bugs in gcov */ 4303 return 0; /*NO_TEST*/ /* work around bugs in gcov */ 4304 }else{ 4305 i64 y; 4306 double s; 4307 if( r<-9223372036854775808.0 ) return +1; 4308 if( r>=9223372036854775808.0 ) return -1; 4309 y = (i64)r; 4310 if( i<y ) return -1; 4311 if( i>y ) return +1; 4312 s = (double)i; 4313 if( s<r ) return -1; 4314 if( s>r ) return +1; 4315 return 0; 4316 } 4317 } 4318 4319 /* 4320 ** Compare the values contained by the two memory cells, returning 4321 ** negative, zero or positive if pMem1 is less than, equal to, or greater 4322 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 4323 ** and reals) sorted numerically, followed by text ordered by the collating 4324 ** sequence pColl and finally blob's ordered by memcmp(). 4325 ** 4326 ** Two NULL values are considered equal by this function. 4327 */ 4328 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 4329 int f1, f2; 4330 int combined_flags; 4331 4332 f1 = pMem1->flags; 4333 f2 = pMem2->flags; 4334 combined_flags = f1|f2; 4335 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); 4336 4337 /* If one value is NULL, it is less than the other. If both values 4338 ** are NULL, return 0. 4339 */ 4340 if( combined_flags&MEM_Null ){ 4341 return (f2&MEM_Null) - (f1&MEM_Null); 4342 } 4343 4344 /* At least one of the two values is a number 4345 */ 4346 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ 4347 testcase( combined_flags & MEM_Int ); 4348 testcase( combined_flags & MEM_Real ); 4349 testcase( combined_flags & MEM_IntReal ); 4350 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ 4351 testcase( f1 & f2 & MEM_Int ); 4352 testcase( f1 & f2 & MEM_IntReal ); 4353 if( pMem1->u.i < pMem2->u.i ) return -1; 4354 if( pMem1->u.i > pMem2->u.i ) return +1; 4355 return 0; 4356 } 4357 if( (f1 & f2 & MEM_Real)!=0 ){ 4358 if( pMem1->u.r < pMem2->u.r ) return -1; 4359 if( pMem1->u.r > pMem2->u.r ) return +1; 4360 return 0; 4361 } 4362 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ 4363 testcase( f1 & MEM_Int ); 4364 testcase( f1 & MEM_IntReal ); 4365 if( (f2&MEM_Real)!=0 ){ 4366 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 4367 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4368 if( pMem1->u.i < pMem2->u.i ) return -1; 4369 if( pMem1->u.i > pMem2->u.i ) return +1; 4370 return 0; 4371 }else{ 4372 return -1; 4373 } 4374 } 4375 if( (f1&MEM_Real)!=0 ){ 4376 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4377 testcase( f2 & MEM_Int ); 4378 testcase( f2 & MEM_IntReal ); 4379 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 4380 }else{ 4381 return -1; 4382 } 4383 } 4384 return +1; 4385 } 4386 4387 /* If one value is a string and the other is a blob, the string is less. 4388 ** If both are strings, compare using the collating functions. 4389 */ 4390 if( combined_flags&MEM_Str ){ 4391 if( (f1 & MEM_Str)==0 ){ 4392 return 1; 4393 } 4394 if( (f2 & MEM_Str)==0 ){ 4395 return -1; 4396 } 4397 4398 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 4399 assert( pMem1->enc==SQLITE_UTF8 || 4400 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 4401 4402 /* The collation sequence must be defined at this point, even if 4403 ** the user deletes the collation sequence after the vdbe program is 4404 ** compiled (this was not always the case). 4405 */ 4406 assert( !pColl || pColl->xCmp ); 4407 4408 if( pColl ){ 4409 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 4410 } 4411 /* If a NULL pointer was passed as the collate function, fall through 4412 ** to the blob case and use memcmp(). */ 4413 } 4414 4415 /* Both values must be blobs. Compare using memcmp(). */ 4416 return sqlite3BlobCompare(pMem1, pMem2); 4417 } 4418 4419 4420 /* 4421 ** The first argument passed to this function is a serial-type that 4422 ** corresponds to an integer - all values between 1 and 9 inclusive 4423 ** except 7. The second points to a buffer containing an integer value 4424 ** serialized according to serial_type. This function deserializes 4425 ** and returns the value. 4426 */ 4427 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 4428 u32 y; 4429 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 4430 switch( serial_type ){ 4431 case 0: 4432 case 1: 4433 testcase( aKey[0]&0x80 ); 4434 return ONE_BYTE_INT(aKey); 4435 case 2: 4436 testcase( aKey[0]&0x80 ); 4437 return TWO_BYTE_INT(aKey); 4438 case 3: 4439 testcase( aKey[0]&0x80 ); 4440 return THREE_BYTE_INT(aKey); 4441 case 4: { 4442 testcase( aKey[0]&0x80 ); 4443 y = FOUR_BYTE_UINT(aKey); 4444 return (i64)*(int*)&y; 4445 } 4446 case 5: { 4447 testcase( aKey[0]&0x80 ); 4448 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4449 } 4450 case 6: { 4451 u64 x = FOUR_BYTE_UINT(aKey); 4452 testcase( aKey[0]&0x80 ); 4453 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4454 return (i64)*(i64*)&x; 4455 } 4456 } 4457 4458 return (serial_type - 8); 4459 } 4460 4461 /* 4462 ** This function compares the two table rows or index records 4463 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 4464 ** or positive integer if key1 is less than, equal to or 4465 ** greater than key2. The {nKey1, pKey1} key must be a blob 4466 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 4467 ** key must be a parsed key such as obtained from 4468 ** sqlite3VdbeParseRecord. 4469 ** 4470 ** If argument bSkip is non-zero, it is assumed that the caller has already 4471 ** determined that the first fields of the keys are equal. 4472 ** 4473 ** Key1 and Key2 do not have to contain the same number of fields. If all 4474 ** fields that appear in both keys are equal, then pPKey2->default_rc is 4475 ** returned. 4476 ** 4477 ** If database corruption is discovered, set pPKey2->errCode to 4478 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 4479 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 4480 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 4481 */ 4482 int sqlite3VdbeRecordCompareWithSkip( 4483 int nKey1, const void *pKey1, /* Left key */ 4484 UnpackedRecord *pPKey2, /* Right key */ 4485 int bSkip /* If true, skip the first field */ 4486 ){ 4487 u32 d1; /* Offset into aKey[] of next data element */ 4488 int i; /* Index of next field to compare */ 4489 u32 szHdr1; /* Size of record header in bytes */ 4490 u32 idx1; /* Offset of first type in header */ 4491 int rc = 0; /* Return value */ 4492 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 4493 KeyInfo *pKeyInfo; 4494 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4495 Mem mem1; 4496 4497 /* If bSkip is true, then the caller has already determined that the first 4498 ** two elements in the keys are equal. Fix the various stack variables so 4499 ** that this routine begins comparing at the second field. */ 4500 if( bSkip ){ 4501 u32 s1; 4502 idx1 = 1 + getVarint32(&aKey1[1], s1); 4503 szHdr1 = aKey1[0]; 4504 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 4505 i = 1; 4506 pRhs++; 4507 }else{ 4508 idx1 = getVarint32(aKey1, szHdr1); 4509 d1 = szHdr1; 4510 i = 0; 4511 } 4512 if( d1>(unsigned)nKey1 ){ 4513 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4514 return 0; /* Corruption */ 4515 } 4516 4517 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4518 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 4519 || CORRUPT_DB ); 4520 assert( pPKey2->pKeyInfo->aSortFlags!=0 ); 4521 assert( pPKey2->pKeyInfo->nKeyField>0 ); 4522 assert( idx1<=szHdr1 || CORRUPT_DB ); 4523 do{ 4524 u32 serial_type; 4525 4526 /* RHS is an integer */ 4527 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ 4528 testcase( pRhs->flags & MEM_Int ); 4529 testcase( pRhs->flags & MEM_IntReal ); 4530 serial_type = aKey1[idx1]; 4531 testcase( serial_type==12 ); 4532 if( serial_type>=10 ){ 4533 rc = +1; 4534 }else if( serial_type==0 ){ 4535 rc = -1; 4536 }else if( serial_type==7 ){ 4537 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4538 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4539 }else{ 4540 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4541 i64 rhs = pRhs->u.i; 4542 if( lhs<rhs ){ 4543 rc = -1; 4544 }else if( lhs>rhs ){ 4545 rc = +1; 4546 } 4547 } 4548 } 4549 4550 /* RHS is real */ 4551 else if( pRhs->flags & MEM_Real ){ 4552 serial_type = aKey1[idx1]; 4553 if( serial_type>=10 ){ 4554 /* Serial types 12 or greater are strings and blobs (greater than 4555 ** numbers). Types 10 and 11 are currently "reserved for future 4556 ** use", so it doesn't really matter what the results of comparing 4557 ** them to numberic values are. */ 4558 rc = +1; 4559 }else if( serial_type==0 ){ 4560 rc = -1; 4561 }else{ 4562 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4563 if( serial_type==7 ){ 4564 if( mem1.u.r<pRhs->u.r ){ 4565 rc = -1; 4566 }else if( mem1.u.r>pRhs->u.r ){ 4567 rc = +1; 4568 } 4569 }else{ 4570 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4571 } 4572 } 4573 } 4574 4575 /* RHS is a string */ 4576 else if( pRhs->flags & MEM_Str ){ 4577 getVarint32NR(&aKey1[idx1], serial_type); 4578 testcase( serial_type==12 ); 4579 if( serial_type<12 ){ 4580 rc = -1; 4581 }else if( !(serial_type & 0x01) ){ 4582 rc = +1; 4583 }else{ 4584 mem1.n = (serial_type - 12) / 2; 4585 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4586 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4587 if( (d1+mem1.n) > (unsigned)nKey1 4588 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i 4589 ){ 4590 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4591 return 0; /* Corruption */ 4592 }else if( pKeyInfo->aColl[i] ){ 4593 mem1.enc = pKeyInfo->enc; 4594 mem1.db = pKeyInfo->db; 4595 mem1.flags = MEM_Str; 4596 mem1.z = (char*)&aKey1[d1]; 4597 rc = vdbeCompareMemString( 4598 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4599 ); 4600 }else{ 4601 int nCmp = MIN(mem1.n, pRhs->n); 4602 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4603 if( rc==0 ) rc = mem1.n - pRhs->n; 4604 } 4605 } 4606 } 4607 4608 /* RHS is a blob */ 4609 else if( pRhs->flags & MEM_Blob ){ 4610 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4611 getVarint32NR(&aKey1[idx1], serial_type); 4612 testcase( serial_type==12 ); 4613 if( serial_type<12 || (serial_type & 0x01) ){ 4614 rc = -1; 4615 }else{ 4616 int nStr = (serial_type - 12) / 2; 4617 testcase( (d1+nStr)==(unsigned)nKey1 ); 4618 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4619 if( (d1+nStr) > (unsigned)nKey1 ){ 4620 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4621 return 0; /* Corruption */ 4622 }else if( pRhs->flags & MEM_Zero ){ 4623 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4624 rc = 1; 4625 }else{ 4626 rc = nStr - pRhs->u.nZero; 4627 } 4628 }else{ 4629 int nCmp = MIN(nStr, pRhs->n); 4630 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4631 if( rc==0 ) rc = nStr - pRhs->n; 4632 } 4633 } 4634 } 4635 4636 /* RHS is null */ 4637 else{ 4638 serial_type = aKey1[idx1]; 4639 rc = (serial_type!=0); 4640 } 4641 4642 if( rc!=0 ){ 4643 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i]; 4644 if( sortFlags ){ 4645 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0 4646 || ((sortFlags & KEYINFO_ORDER_DESC) 4647 !=(serial_type==0 || (pRhs->flags&MEM_Null))) 4648 ){ 4649 rc = -rc; 4650 } 4651 } 4652 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4653 assert( mem1.szMalloc==0 ); /* See comment below */ 4654 return rc; 4655 } 4656 4657 i++; 4658 if( i==pPKey2->nField ) break; 4659 pRhs++; 4660 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4661 idx1 += sqlite3VarintLen(serial_type); 4662 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 ); 4663 4664 /* No memory allocation is ever used on mem1. Prove this using 4665 ** the following assert(). If the assert() fails, it indicates a 4666 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4667 assert( mem1.szMalloc==0 ); 4668 4669 /* rc==0 here means that one or both of the keys ran out of fields and 4670 ** all the fields up to that point were equal. Return the default_rc 4671 ** value. */ 4672 assert( CORRUPT_DB 4673 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4674 || pPKey2->pKeyInfo->db->mallocFailed 4675 ); 4676 pPKey2->eqSeen = 1; 4677 return pPKey2->default_rc; 4678 } 4679 int sqlite3VdbeRecordCompare( 4680 int nKey1, const void *pKey1, /* Left key */ 4681 UnpackedRecord *pPKey2 /* Right key */ 4682 ){ 4683 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4684 } 4685 4686 4687 /* 4688 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4689 ** that (a) the first field of pPKey2 is an integer, and (b) the 4690 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4691 ** byte (i.e. is less than 128). 4692 ** 4693 ** To avoid concerns about buffer overreads, this routine is only used 4694 ** on schemas where the maximum valid header size is 63 bytes or less. 4695 */ 4696 static int vdbeRecordCompareInt( 4697 int nKey1, const void *pKey1, /* Left key */ 4698 UnpackedRecord *pPKey2 /* Right key */ 4699 ){ 4700 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4701 int serial_type = ((const u8*)pKey1)[1]; 4702 int res; 4703 u32 y; 4704 u64 x; 4705 i64 v; 4706 i64 lhs; 4707 4708 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4709 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4710 switch( serial_type ){ 4711 case 1: { /* 1-byte signed integer */ 4712 lhs = ONE_BYTE_INT(aKey); 4713 testcase( lhs<0 ); 4714 break; 4715 } 4716 case 2: { /* 2-byte signed integer */ 4717 lhs = TWO_BYTE_INT(aKey); 4718 testcase( lhs<0 ); 4719 break; 4720 } 4721 case 3: { /* 3-byte signed integer */ 4722 lhs = THREE_BYTE_INT(aKey); 4723 testcase( lhs<0 ); 4724 break; 4725 } 4726 case 4: { /* 4-byte signed integer */ 4727 y = FOUR_BYTE_UINT(aKey); 4728 lhs = (i64)*(int*)&y; 4729 testcase( lhs<0 ); 4730 break; 4731 } 4732 case 5: { /* 6-byte signed integer */ 4733 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4734 testcase( lhs<0 ); 4735 break; 4736 } 4737 case 6: { /* 8-byte signed integer */ 4738 x = FOUR_BYTE_UINT(aKey); 4739 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4740 lhs = *(i64*)&x; 4741 testcase( lhs<0 ); 4742 break; 4743 } 4744 case 8: 4745 lhs = 0; 4746 break; 4747 case 9: 4748 lhs = 1; 4749 break; 4750 4751 /* This case could be removed without changing the results of running 4752 ** this code. Including it causes gcc to generate a faster switch 4753 ** statement (since the range of switch targets now starts at zero and 4754 ** is contiguous) but does not cause any duplicate code to be generated 4755 ** (as gcc is clever enough to combine the two like cases). Other 4756 ** compilers might be similar. */ 4757 case 0: case 7: 4758 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4759 4760 default: 4761 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4762 } 4763 4764 v = pPKey2->aMem[0].u.i; 4765 if( v>lhs ){ 4766 res = pPKey2->r1; 4767 }else if( v<lhs ){ 4768 res = pPKey2->r2; 4769 }else if( pPKey2->nField>1 ){ 4770 /* The first fields of the two keys are equal. Compare the trailing 4771 ** fields. */ 4772 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4773 }else{ 4774 /* The first fields of the two keys are equal and there are no trailing 4775 ** fields. Return pPKey2->default_rc in this case. */ 4776 res = pPKey2->default_rc; 4777 pPKey2->eqSeen = 1; 4778 } 4779 4780 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4781 return res; 4782 } 4783 4784 /* 4785 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4786 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4787 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4788 ** at the start of (pKey1/nKey1) fits in a single byte. 4789 */ 4790 static int vdbeRecordCompareString( 4791 int nKey1, const void *pKey1, /* Left key */ 4792 UnpackedRecord *pPKey2 /* Right key */ 4793 ){ 4794 const u8 *aKey1 = (const u8*)pKey1; 4795 int serial_type; 4796 int res; 4797 4798 assert( pPKey2->aMem[0].flags & MEM_Str ); 4799 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4800 serial_type = (u8)(aKey1[1]); 4801 if( serial_type >= 0x80 ){ 4802 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type); 4803 } 4804 if( serial_type<12 ){ 4805 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4806 }else if( !(serial_type & 0x01) ){ 4807 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4808 }else{ 4809 int nCmp; 4810 int nStr; 4811 int szHdr = aKey1[0]; 4812 4813 nStr = (serial_type-12) / 2; 4814 if( (szHdr + nStr) > nKey1 ){ 4815 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4816 return 0; /* Corruption */ 4817 } 4818 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4819 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4820 4821 if( res>0 ){ 4822 res = pPKey2->r2; 4823 }else if( res<0 ){ 4824 res = pPKey2->r1; 4825 }else{ 4826 res = nStr - pPKey2->aMem[0].n; 4827 if( res==0 ){ 4828 if( pPKey2->nField>1 ){ 4829 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4830 }else{ 4831 res = pPKey2->default_rc; 4832 pPKey2->eqSeen = 1; 4833 } 4834 }else if( res>0 ){ 4835 res = pPKey2->r2; 4836 }else{ 4837 res = pPKey2->r1; 4838 } 4839 } 4840 } 4841 4842 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4843 || CORRUPT_DB 4844 || pPKey2->pKeyInfo->db->mallocFailed 4845 ); 4846 return res; 4847 } 4848 4849 /* 4850 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4851 ** suitable for comparing serialized records to the unpacked record passed 4852 ** as the only argument. 4853 */ 4854 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4855 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4856 ** that the size-of-header varint that occurs at the start of each record 4857 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4858 ** also assumes that it is safe to overread a buffer by at least the 4859 ** maximum possible legal header size plus 8 bytes. Because there is 4860 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4861 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4862 ** limit the size of the header to 64 bytes in cases where the first field 4863 ** is an integer. 4864 ** 4865 ** The easiest way to enforce this limit is to consider only records with 4866 ** 13 fields or less. If the first field is an integer, the maximum legal 4867 ** header size is (12*5 + 1 + 1) bytes. */ 4868 if( p->pKeyInfo->nAllField<=13 ){ 4869 int flags = p->aMem[0].flags; 4870 if( p->pKeyInfo->aSortFlags[0] ){ 4871 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){ 4872 return sqlite3VdbeRecordCompare; 4873 } 4874 p->r1 = 1; 4875 p->r2 = -1; 4876 }else{ 4877 p->r1 = -1; 4878 p->r2 = 1; 4879 } 4880 if( (flags & MEM_Int) ){ 4881 return vdbeRecordCompareInt; 4882 } 4883 testcase( flags & MEM_Real ); 4884 testcase( flags & MEM_Null ); 4885 testcase( flags & MEM_Blob ); 4886 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 4887 && p->pKeyInfo->aColl[0]==0 4888 ){ 4889 assert( flags & MEM_Str ); 4890 return vdbeRecordCompareString; 4891 } 4892 } 4893 4894 return sqlite3VdbeRecordCompare; 4895 } 4896 4897 /* 4898 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4899 ** Read the rowid (the last field in the record) and store it in *rowid. 4900 ** Return SQLITE_OK if everything works, or an error code otherwise. 4901 ** 4902 ** pCur might be pointing to text obtained from a corrupt database file. 4903 ** So the content cannot be trusted. Do appropriate checks on the content. 4904 */ 4905 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4906 i64 nCellKey = 0; 4907 int rc; 4908 u32 szHdr; /* Size of the header */ 4909 u32 typeRowid; /* Serial type of the rowid */ 4910 u32 lenRowid; /* Size of the rowid */ 4911 Mem m, v; 4912 4913 /* Get the size of the index entry. Only indices entries of less 4914 ** than 2GiB are support - anything large must be database corruption. 4915 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4916 ** this code can safely assume that nCellKey is 32-bits 4917 */ 4918 assert( sqlite3BtreeCursorIsValid(pCur) ); 4919 nCellKey = sqlite3BtreePayloadSize(pCur); 4920 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4921 4922 /* Read in the complete content of the index entry */ 4923 sqlite3VdbeMemInit(&m, db, 0); 4924 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 4925 if( rc ){ 4926 return rc; 4927 } 4928 4929 /* The index entry must begin with a header size */ 4930 getVarint32NR((u8*)m.z, szHdr); 4931 testcase( szHdr==3 ); 4932 testcase( szHdr==m.n ); 4933 testcase( szHdr>0x7fffffff ); 4934 assert( m.n>=0 ); 4935 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ 4936 goto idx_rowid_corruption; 4937 } 4938 4939 /* The last field of the index should be an integer - the ROWID. 4940 ** Verify that the last entry really is an integer. */ 4941 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid); 4942 testcase( typeRowid==1 ); 4943 testcase( typeRowid==2 ); 4944 testcase( typeRowid==3 ); 4945 testcase( typeRowid==4 ); 4946 testcase( typeRowid==5 ); 4947 testcase( typeRowid==6 ); 4948 testcase( typeRowid==8 ); 4949 testcase( typeRowid==9 ); 4950 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4951 goto idx_rowid_corruption; 4952 } 4953 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4954 testcase( (u32)m.n==szHdr+lenRowid ); 4955 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4956 goto idx_rowid_corruption; 4957 } 4958 4959 /* Fetch the integer off the end of the index record */ 4960 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4961 *rowid = v.u.i; 4962 sqlite3VdbeMemRelease(&m); 4963 return SQLITE_OK; 4964 4965 /* Jump here if database corruption is detected after m has been 4966 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4967 idx_rowid_corruption: 4968 testcase( m.szMalloc!=0 ); 4969 sqlite3VdbeMemRelease(&m); 4970 return SQLITE_CORRUPT_BKPT; 4971 } 4972 4973 /* 4974 ** Compare the key of the index entry that cursor pC is pointing to against 4975 ** the key string in pUnpacked. Write into *pRes a number 4976 ** that is negative, zero, or positive if pC is less than, equal to, 4977 ** or greater than pUnpacked. Return SQLITE_OK on success. 4978 ** 4979 ** pUnpacked is either created without a rowid or is truncated so that it 4980 ** omits the rowid at the end. The rowid at the end of the index entry 4981 ** is ignored as well. Hence, this routine only compares the prefixes 4982 ** of the keys prior to the final rowid, not the entire key. 4983 */ 4984 int sqlite3VdbeIdxKeyCompare( 4985 sqlite3 *db, /* Database connection */ 4986 VdbeCursor *pC, /* The cursor to compare against */ 4987 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4988 int *res /* Write the comparison result here */ 4989 ){ 4990 i64 nCellKey = 0; 4991 int rc; 4992 BtCursor *pCur; 4993 Mem m; 4994 4995 assert( pC->eCurType==CURTYPE_BTREE ); 4996 pCur = pC->uc.pCursor; 4997 assert( sqlite3BtreeCursorIsValid(pCur) ); 4998 nCellKey = sqlite3BtreePayloadSize(pCur); 4999 /* nCellKey will always be between 0 and 0xffffffff because of the way 5000 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 5001 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 5002 *res = 0; 5003 return SQLITE_CORRUPT_BKPT; 5004 } 5005 sqlite3VdbeMemInit(&m, db, 0); 5006 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 5007 if( rc ){ 5008 return rc; 5009 } 5010 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); 5011 sqlite3VdbeMemRelease(&m); 5012 return SQLITE_OK; 5013 } 5014 5015 /* 5016 ** This routine sets the value to be returned by subsequent calls to 5017 ** sqlite3_changes() on the database handle 'db'. 5018 */ 5019 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 5020 assert( sqlite3_mutex_held(db->mutex) ); 5021 db->nChange = nChange; 5022 db->nTotalChange += nChange; 5023 } 5024 5025 /* 5026 ** Set a flag in the vdbe to update the change counter when it is finalised 5027 ** or reset. 5028 */ 5029 void sqlite3VdbeCountChanges(Vdbe *v){ 5030 v->changeCntOn = 1; 5031 } 5032 5033 /* 5034 ** Mark every prepared statement associated with a database connection 5035 ** as expired. 5036 ** 5037 ** An expired statement means that recompilation of the statement is 5038 ** recommend. Statements expire when things happen that make their 5039 ** programs obsolete. Removing user-defined functions or collating 5040 ** sequences, or changing an authorization function are the types of 5041 ** things that make prepared statements obsolete. 5042 ** 5043 ** If iCode is 1, then expiration is advisory. The statement should 5044 ** be reprepared before being restarted, but if it is already running 5045 ** it is allowed to run to completion. 5046 ** 5047 ** Internally, this function just sets the Vdbe.expired flag on all 5048 ** prepared statements. The flag is set to 1 for an immediate expiration 5049 ** and set to 2 for an advisory expiration. 5050 */ 5051 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ 5052 Vdbe *p; 5053 for(p = db->pVdbe; p; p=p->pNext){ 5054 p->expired = iCode+1; 5055 } 5056 } 5057 5058 /* 5059 ** Return the database associated with the Vdbe. 5060 */ 5061 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 5062 return v->db; 5063 } 5064 5065 /* 5066 ** Return the SQLITE_PREPARE flags for a Vdbe. 5067 */ 5068 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 5069 return v->prepFlags; 5070 } 5071 5072 /* 5073 ** Return a pointer to an sqlite3_value structure containing the value bound 5074 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 5075 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 5076 ** constants) to the value before returning it. 5077 ** 5078 ** The returned value must be freed by the caller using sqlite3ValueFree(). 5079 */ 5080 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 5081 assert( iVar>0 ); 5082 if( v ){ 5083 Mem *pMem = &v->aVar[iVar-1]; 5084 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5085 if( 0==(pMem->flags & MEM_Null) ){ 5086 sqlite3_value *pRet = sqlite3ValueNew(v->db); 5087 if( pRet ){ 5088 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 5089 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 5090 } 5091 return pRet; 5092 } 5093 } 5094 return 0; 5095 } 5096 5097 /* 5098 ** Configure SQL variable iVar so that binding a new value to it signals 5099 ** to sqlite3_reoptimize() that re-preparing the statement may result 5100 ** in a better query plan. 5101 */ 5102 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 5103 assert( iVar>0 ); 5104 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5105 if( iVar>=32 ){ 5106 v->expmask |= 0x80000000; 5107 }else{ 5108 v->expmask |= ((u32)1 << (iVar-1)); 5109 } 5110 } 5111 5112 /* 5113 ** Cause a function to throw an error if it was call from OP_PureFunc 5114 ** rather than OP_Function. 5115 ** 5116 ** OP_PureFunc means that the function must be deterministic, and should 5117 ** throw an error if it is given inputs that would make it non-deterministic. 5118 ** This routine is invoked by date/time functions that use non-deterministic 5119 ** features such as 'now'. 5120 */ 5121 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 5122 const VdbeOp *pOp; 5123 #ifdef SQLITE_ENABLE_STAT4 5124 if( pCtx->pVdbe==0 ) return 1; 5125 #endif 5126 pOp = pCtx->pVdbe->aOp + pCtx->iOp; 5127 if( pOp->opcode==OP_PureFunc ){ 5128 const char *zContext; 5129 char *zMsg; 5130 if( pOp->p5 & NC_IsCheck ){ 5131 zContext = "a CHECK constraint"; 5132 }else if( pOp->p5 & NC_GenCol ){ 5133 zContext = "a generated column"; 5134 }else{ 5135 zContext = "an index"; 5136 } 5137 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s", 5138 pCtx->pFunc->zName, zContext); 5139 sqlite3_result_error(pCtx, zMsg, -1); 5140 sqlite3_free(zMsg); 5141 return 0; 5142 } 5143 return 1; 5144 } 5145 5146 #ifndef SQLITE_OMIT_VIRTUALTABLE 5147 /* 5148 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 5149 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 5150 ** in memory obtained from sqlite3DbMalloc). 5151 */ 5152 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 5153 if( pVtab->zErrMsg ){ 5154 sqlite3 *db = p->db; 5155 sqlite3DbFree(db, p->zErrMsg); 5156 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 5157 sqlite3_free(pVtab->zErrMsg); 5158 pVtab->zErrMsg = 0; 5159 } 5160 } 5161 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5162 5163 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5164 5165 /* 5166 ** If the second argument is not NULL, release any allocations associated 5167 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 5168 ** structure itself, using sqlite3DbFree(). 5169 ** 5170 ** This function is used to free UnpackedRecord structures allocated by 5171 ** the vdbeUnpackRecord() function found in vdbeapi.c. 5172 */ 5173 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 5174 if( p ){ 5175 int i; 5176 for(i=0; i<nField; i++){ 5177 Mem *pMem = &p->aMem[i]; 5178 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem); 5179 } 5180 sqlite3DbFreeNN(db, p); 5181 } 5182 } 5183 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5184 5185 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5186 /* 5187 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 5188 ** then cursor passed as the second argument should point to the row about 5189 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 5190 ** the required value will be read from the row the cursor points to. 5191 */ 5192 void sqlite3VdbePreUpdateHook( 5193 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 5194 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 5195 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 5196 const char *zDb, /* Database name */ 5197 Table *pTab, /* Modified table */ 5198 i64 iKey1, /* Initial key value */ 5199 int iReg /* Register for new.* record */ 5200 ){ 5201 sqlite3 *db = v->db; 5202 i64 iKey2; 5203 PreUpdate preupdate; 5204 const char *zTbl = pTab->zName; 5205 static const u8 fakeSortOrder = 0; 5206 5207 assert( db->pPreUpdate==0 ); 5208 memset(&preupdate, 0, sizeof(PreUpdate)); 5209 if( HasRowid(pTab)==0 ){ 5210 iKey1 = iKey2 = 0; 5211 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 5212 }else{ 5213 if( op==SQLITE_UPDATE ){ 5214 iKey2 = v->aMem[iReg].u.i; 5215 }else{ 5216 iKey2 = iKey1; 5217 } 5218 } 5219 5220 assert( pCsr->nField==pTab->nCol 5221 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 5222 ); 5223 5224 preupdate.v = v; 5225 preupdate.pCsr = pCsr; 5226 preupdate.op = op; 5227 preupdate.iNewReg = iReg; 5228 preupdate.keyinfo.db = db; 5229 preupdate.keyinfo.enc = ENC(db); 5230 preupdate.keyinfo.nKeyField = pTab->nCol; 5231 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder; 5232 preupdate.iKey1 = iKey1; 5233 preupdate.iKey2 = iKey2; 5234 preupdate.pTab = pTab; 5235 5236 db->pPreUpdate = &preupdate; 5237 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 5238 db->pPreUpdate = 0; 5239 sqlite3DbFree(db, preupdate.aRecord); 5240 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 5241 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 5242 if( preupdate.aNew ){ 5243 int i; 5244 for(i=0; i<pCsr->nField; i++){ 5245 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 5246 } 5247 sqlite3DbFreeNN(db, preupdate.aNew); 5248 } 5249 } 5250 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5251