1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior 14 ** to version 2.8.7, all this code was combined into the vdbe.c source file. 15 ** But that file was getting too big so this subroutines were split out. 16 */ 17 #include "sqliteInt.h" 18 #include "vdbeInt.h" 19 20 /* 21 ** Create a new virtual database engine. 22 */ 23 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 24 sqlite3 *db = pParse->db; 25 Vdbe *p; 26 p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); 27 if( p==0 ) return 0; 28 p->db = db; 29 if( db->pVdbe ){ 30 db->pVdbe->pPrev = p; 31 } 32 p->pNext = db->pVdbe; 33 p->pPrev = 0; 34 db->pVdbe = p; 35 p->magic = VDBE_MAGIC_INIT; 36 p->pParse = pParse; 37 assert( pParse->aLabel==0 ); 38 assert( pParse->nLabel==0 ); 39 assert( pParse->nOpAlloc==0 ); 40 return p; 41 } 42 43 /* 44 ** Remember the SQL string for a prepared statement. 45 */ 46 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ 47 assert( isPrepareV2==1 || isPrepareV2==0 ); 48 if( p==0 ) return; 49 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG) 50 if( !isPrepareV2 ) return; 51 #endif 52 assert( p->zSql==0 ); 53 p->zSql = sqlite3DbStrNDup(p->db, z, n); 54 p->isPrepareV2 = (u8)isPrepareV2; 55 } 56 57 /* 58 ** Return the SQL associated with a prepared statement 59 */ 60 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 61 Vdbe *p = (Vdbe *)pStmt; 62 return (p && p->isPrepareV2) ? p->zSql : 0; 63 } 64 65 /* 66 ** Swap all content between two VDBE structures. 67 */ 68 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 69 Vdbe tmp, *pTmp; 70 char *zTmp; 71 tmp = *pA; 72 *pA = *pB; 73 *pB = tmp; 74 pTmp = pA->pNext; 75 pA->pNext = pB->pNext; 76 pB->pNext = pTmp; 77 pTmp = pA->pPrev; 78 pA->pPrev = pB->pPrev; 79 pB->pPrev = pTmp; 80 zTmp = pA->zSql; 81 pA->zSql = pB->zSql; 82 pB->zSql = zTmp; 83 pB->isPrepareV2 = pA->isPrepareV2; 84 } 85 86 /* 87 ** Resize the Vdbe.aOp array so that it is at least one op larger than 88 ** it was. 89 ** 90 ** If an out-of-memory error occurs while resizing the array, return 91 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain 92 ** unchanged (this is so that any opcodes already allocated can be 93 ** correctly deallocated along with the rest of the Vdbe). 94 */ 95 static int growOpArray(Vdbe *v){ 96 VdbeOp *pNew; 97 Parse *p = v->pParse; 98 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 99 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 100 if( pNew ){ 101 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op); 102 v->aOp = pNew; 103 } 104 return (pNew ? SQLITE_OK : SQLITE_NOMEM); 105 } 106 107 #ifdef SQLITE_DEBUG 108 /* This routine is just a convenient place to set a breakpoint that will 109 ** fire after each opcode is inserted and displayed using 110 ** "PRAGMA vdbe_addoptrace=on". 111 */ 112 static void test_addop_breakpoint(void){ 113 static int n = 0; 114 n++; 115 } 116 #endif 117 118 /* 119 ** Add a new instruction to the list of instructions current in the 120 ** VDBE. Return the address of the new instruction. 121 ** 122 ** Parameters: 123 ** 124 ** p Pointer to the VDBE 125 ** 126 ** op The opcode for this instruction 127 ** 128 ** p1, p2, p3 Operands 129 ** 130 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 131 ** the sqlite3VdbeChangeP4() function to change the value of the P4 132 ** operand. 133 */ 134 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 135 int i; 136 VdbeOp *pOp; 137 138 i = p->nOp; 139 assert( p->magic==VDBE_MAGIC_INIT ); 140 assert( op>0 && op<0xff ); 141 if( p->pParse->nOpAlloc<=i ){ 142 if( growOpArray(p) ){ 143 return 1; 144 } 145 } 146 p->nOp++; 147 pOp = &p->aOp[i]; 148 pOp->opcode = (u8)op; 149 pOp->p5 = 0; 150 pOp->p1 = p1; 151 pOp->p2 = p2; 152 pOp->p3 = p3; 153 pOp->p4.p = 0; 154 pOp->p4type = P4_NOTUSED; 155 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 156 pOp->zComment = 0; 157 #endif 158 #ifdef SQLITE_DEBUG 159 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 160 int jj, kk; 161 Parse *pParse = p->pParse; 162 for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){ 163 struct yColCache *x = pParse->aColCache + jj; 164 if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue; 165 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); 166 kk++; 167 } 168 if( kk ) printf("\n"); 169 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 170 test_addop_breakpoint(); 171 } 172 #endif 173 #ifdef VDBE_PROFILE 174 pOp->cycles = 0; 175 pOp->cnt = 0; 176 #endif 177 return i; 178 } 179 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 180 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 181 } 182 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 183 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 184 } 185 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 186 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 187 } 188 189 190 /* 191 ** Add an opcode that includes the p4 value as a pointer. 192 */ 193 int sqlite3VdbeAddOp4( 194 Vdbe *p, /* Add the opcode to this VM */ 195 int op, /* The new opcode */ 196 int p1, /* The P1 operand */ 197 int p2, /* The P2 operand */ 198 int p3, /* The P3 operand */ 199 const char *zP4, /* The P4 operand */ 200 int p4type /* P4 operand type */ 201 ){ 202 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 203 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 204 return addr; 205 } 206 207 /* 208 ** Add an OP_ParseSchema opcode. This routine is broken out from 209 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 210 ** as having been used. 211 ** 212 ** The zWhere string must have been obtained from sqlite3_malloc(). 213 ** This routine will take ownership of the allocated memory. 214 */ 215 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 216 int j; 217 int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0); 218 sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC); 219 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 220 } 221 222 /* 223 ** Add an opcode that includes the p4 value as an integer. 224 */ 225 int sqlite3VdbeAddOp4Int( 226 Vdbe *p, /* Add the opcode to this VM */ 227 int op, /* The new opcode */ 228 int p1, /* The P1 operand */ 229 int p2, /* The P2 operand */ 230 int p3, /* The P3 operand */ 231 int p4 /* The P4 operand as an integer */ 232 ){ 233 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 234 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32); 235 return addr; 236 } 237 238 /* 239 ** Create a new symbolic label for an instruction that has yet to be 240 ** coded. The symbolic label is really just a negative number. The 241 ** label can be used as the P2 value of an operation. Later, when 242 ** the label is resolved to a specific address, the VDBE will scan 243 ** through its operation list and change all values of P2 which match 244 ** the label into the resolved address. 245 ** 246 ** The VDBE knows that a P2 value is a label because labels are 247 ** always negative and P2 values are suppose to be non-negative. 248 ** Hence, a negative P2 value is a label that has yet to be resolved. 249 ** 250 ** Zero is returned if a malloc() fails. 251 */ 252 int sqlite3VdbeMakeLabel(Vdbe *v){ 253 Parse *p = v->pParse; 254 int i = p->nLabel++; 255 assert( v->magic==VDBE_MAGIC_INIT ); 256 if( (i & (i-1))==0 ){ 257 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 258 (i*2+1)*sizeof(p->aLabel[0])); 259 } 260 if( p->aLabel ){ 261 p->aLabel[i] = -1; 262 } 263 return -1-i; 264 } 265 266 /* 267 ** Resolve label "x" to be the address of the next instruction to 268 ** be inserted. The parameter "x" must have been obtained from 269 ** a prior call to sqlite3VdbeMakeLabel(). 270 */ 271 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 272 Parse *p = v->pParse; 273 int j = -1-x; 274 assert( v->magic==VDBE_MAGIC_INIT ); 275 assert( j<p->nLabel ); 276 if( j>=0 && p->aLabel ){ 277 p->aLabel[j] = v->nOp; 278 } 279 p->iFixedOp = v->nOp - 1; 280 } 281 282 /* 283 ** Mark the VDBE as one that can only be run one time. 284 */ 285 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 286 p->runOnlyOnce = 1; 287 } 288 289 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 290 291 /* 292 ** The following type and function are used to iterate through all opcodes 293 ** in a Vdbe main program and each of the sub-programs (triggers) it may 294 ** invoke directly or indirectly. It should be used as follows: 295 ** 296 ** Op *pOp; 297 ** VdbeOpIter sIter; 298 ** 299 ** memset(&sIter, 0, sizeof(sIter)); 300 ** sIter.v = v; // v is of type Vdbe* 301 ** while( (pOp = opIterNext(&sIter)) ){ 302 ** // Do something with pOp 303 ** } 304 ** sqlite3DbFree(v->db, sIter.apSub); 305 ** 306 */ 307 typedef struct VdbeOpIter VdbeOpIter; 308 struct VdbeOpIter { 309 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 310 SubProgram **apSub; /* Array of subprograms */ 311 int nSub; /* Number of entries in apSub */ 312 int iAddr; /* Address of next instruction to return */ 313 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 314 }; 315 static Op *opIterNext(VdbeOpIter *p){ 316 Vdbe *v = p->v; 317 Op *pRet = 0; 318 Op *aOp; 319 int nOp; 320 321 if( p->iSub<=p->nSub ){ 322 323 if( p->iSub==0 ){ 324 aOp = v->aOp; 325 nOp = v->nOp; 326 }else{ 327 aOp = p->apSub[p->iSub-1]->aOp; 328 nOp = p->apSub[p->iSub-1]->nOp; 329 } 330 assert( p->iAddr<nOp ); 331 332 pRet = &aOp[p->iAddr]; 333 p->iAddr++; 334 if( p->iAddr==nOp ){ 335 p->iSub++; 336 p->iAddr = 0; 337 } 338 339 if( pRet->p4type==P4_SUBPROGRAM ){ 340 int nByte = (p->nSub+1)*sizeof(SubProgram*); 341 int j; 342 for(j=0; j<p->nSub; j++){ 343 if( p->apSub[j]==pRet->p4.pProgram ) break; 344 } 345 if( j==p->nSub ){ 346 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 347 if( !p->apSub ){ 348 pRet = 0; 349 }else{ 350 p->apSub[p->nSub++] = pRet->p4.pProgram; 351 } 352 } 353 } 354 } 355 356 return pRet; 357 } 358 359 /* 360 ** Check if the program stored in the VM associated with pParse may 361 ** throw an ABORT exception (causing the statement, but not entire transaction 362 ** to be rolled back). This condition is true if the main program or any 363 ** sub-programs contains any of the following: 364 ** 365 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 366 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 367 ** * OP_Destroy 368 ** * OP_VUpdate 369 ** * OP_VRename 370 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 371 ** 372 ** Then check that the value of Parse.mayAbort is true if an 373 ** ABORT may be thrown, or false otherwise. Return true if it does 374 ** match, or false otherwise. This function is intended to be used as 375 ** part of an assert statement in the compiler. Similar to: 376 ** 377 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 378 */ 379 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 380 int hasAbort = 0; 381 Op *pOp; 382 VdbeOpIter sIter; 383 memset(&sIter, 0, sizeof(sIter)); 384 sIter.v = v; 385 386 while( (pOp = opIterNext(&sIter))!=0 ){ 387 int opcode = pOp->opcode; 388 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 389 #ifndef SQLITE_OMIT_FOREIGN_KEY 390 || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1) 391 #endif 392 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 393 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 394 ){ 395 hasAbort = 1; 396 break; 397 } 398 } 399 sqlite3DbFree(v->db, sIter.apSub); 400 401 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 402 ** If malloc failed, then the while() loop above may not have iterated 403 ** through all opcodes and hasAbort may be set incorrectly. Return 404 ** true for this case to prevent the assert() in the callers frame 405 ** from failing. */ 406 return ( v->db->mallocFailed || hasAbort==mayAbort ); 407 } 408 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 409 410 /* 411 ** Loop through the program looking for P2 values that are negative 412 ** on jump instructions. Each such value is a label. Resolve the 413 ** label by setting the P2 value to its correct non-zero value. 414 ** 415 ** This routine is called once after all opcodes have been inserted. 416 ** 417 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 418 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by 419 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array. 420 ** 421 ** The Op.opflags field is set on all opcodes. 422 */ 423 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 424 int i; 425 int nMaxArgs = *pMaxFuncArgs; 426 Op *pOp; 427 Parse *pParse = p->pParse; 428 int *aLabel = pParse->aLabel; 429 p->readOnly = 1; 430 p->bIsReader = 0; 431 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ 432 u8 opcode = pOp->opcode; 433 434 /* NOTE: Be sure to update mkopcodeh.awk when adding or removing 435 ** cases from this switch! */ 436 switch( opcode ){ 437 case OP_Function: 438 case OP_AggStep: { 439 if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5; 440 break; 441 } 442 case OP_Transaction: { 443 if( pOp->p2!=0 ) p->readOnly = 0; 444 /* fall thru */ 445 } 446 case OP_AutoCommit: 447 case OP_Savepoint: { 448 p->bIsReader = 1; 449 break; 450 } 451 #ifndef SQLITE_OMIT_WAL 452 case OP_Checkpoint: 453 #endif 454 case OP_Vacuum: 455 case OP_JournalMode: { 456 p->readOnly = 0; 457 p->bIsReader = 1; 458 break; 459 } 460 #ifndef SQLITE_OMIT_VIRTUALTABLE 461 case OP_VUpdate: { 462 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 463 break; 464 } 465 case OP_VFilter: { 466 int n; 467 assert( p->nOp - i >= 3 ); 468 assert( pOp[-1].opcode==OP_Integer ); 469 n = pOp[-1].p1; 470 if( n>nMaxArgs ) nMaxArgs = n; 471 break; 472 } 473 #endif 474 case OP_Next: 475 case OP_NextIfOpen: 476 case OP_SorterNext: { 477 pOp->p4.xAdvance = sqlite3BtreeNext; 478 pOp->p4type = P4_ADVANCE; 479 break; 480 } 481 case OP_Prev: 482 case OP_PrevIfOpen: { 483 pOp->p4.xAdvance = sqlite3BtreePrevious; 484 pOp->p4type = P4_ADVANCE; 485 break; 486 } 487 } 488 489 pOp->opflags = sqlite3OpcodeProperty[opcode]; 490 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){ 491 assert( -1-pOp->p2<pParse->nLabel ); 492 pOp->p2 = aLabel[-1-pOp->p2]; 493 } 494 } 495 sqlite3DbFree(p->db, pParse->aLabel); 496 pParse->aLabel = 0; 497 pParse->nLabel = 0; 498 *pMaxFuncArgs = nMaxArgs; 499 assert( p->bIsReader!=0 || p->btreeMask==0 ); 500 } 501 502 /* 503 ** Return the address of the next instruction to be inserted. 504 */ 505 int sqlite3VdbeCurrentAddr(Vdbe *p){ 506 assert( p->magic==VDBE_MAGIC_INIT ); 507 return p->nOp; 508 } 509 510 /* 511 ** This function returns a pointer to the array of opcodes associated with 512 ** the Vdbe passed as the first argument. It is the callers responsibility 513 ** to arrange for the returned array to be eventually freed using the 514 ** vdbeFreeOpArray() function. 515 ** 516 ** Before returning, *pnOp is set to the number of entries in the returned 517 ** array. Also, *pnMaxArg is set to the larger of its current value and 518 ** the number of entries in the Vdbe.apArg[] array required to execute the 519 ** returned program. 520 */ 521 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 522 VdbeOp *aOp = p->aOp; 523 assert( aOp && !p->db->mallocFailed ); 524 525 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 526 assert( p->btreeMask==0 ); 527 528 resolveP2Values(p, pnMaxArg); 529 *pnOp = p->nOp; 530 p->aOp = 0; 531 return aOp; 532 } 533 534 /* 535 ** Add a whole list of operations to the operation stack. Return the 536 ** address of the first operation added. 537 */ 538 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ 539 int addr; 540 assert( p->magic==VDBE_MAGIC_INIT ); 541 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p) ){ 542 return 0; 543 } 544 addr = p->nOp; 545 if( ALWAYS(nOp>0) ){ 546 int i; 547 VdbeOpList const *pIn = aOp; 548 for(i=0; i<nOp; i++, pIn++){ 549 int p2 = pIn->p2; 550 VdbeOp *pOut = &p->aOp[i+addr]; 551 pOut->opcode = pIn->opcode; 552 pOut->p1 = pIn->p1; 553 if( p2<0 ){ 554 assert( sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP ); 555 pOut->p2 = addr + ADDR(p2); 556 }else{ 557 pOut->p2 = p2; 558 } 559 pOut->p3 = pIn->p3; 560 pOut->p4type = P4_NOTUSED; 561 pOut->p4.p = 0; 562 pOut->p5 = 0; 563 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 564 pOut->zComment = 0; 565 #endif 566 #ifdef SQLITE_DEBUG 567 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 568 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); 569 } 570 #endif 571 } 572 p->nOp += nOp; 573 } 574 return addr; 575 } 576 577 /* 578 ** Change the value of the P1 operand for a specific instruction. 579 ** This routine is useful when a large program is loaded from a 580 ** static array using sqlite3VdbeAddOpList but we want to make a 581 ** few minor changes to the program. 582 */ 583 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ 584 assert( p!=0 ); 585 if( ((u32)p->nOp)>addr ){ 586 p->aOp[addr].p1 = val; 587 } 588 } 589 590 /* 591 ** Change the value of the P2 operand for a specific instruction. 592 ** This routine is useful for setting a jump destination. 593 */ 594 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ 595 assert( p!=0 ); 596 if( ((u32)p->nOp)>addr ){ 597 p->aOp[addr].p2 = val; 598 } 599 } 600 601 /* 602 ** Change the value of the P3 operand for a specific instruction. 603 */ 604 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ 605 assert( p!=0 ); 606 if( ((u32)p->nOp)>addr ){ 607 p->aOp[addr].p3 = val; 608 } 609 } 610 611 /* 612 ** Change the value of the P5 operand for the most recently 613 ** added operation. 614 */ 615 void sqlite3VdbeChangeP5(Vdbe *p, u8 val){ 616 assert( p!=0 ); 617 if( p->aOp ){ 618 assert( p->nOp>0 ); 619 p->aOp[p->nOp-1].p5 = val; 620 } 621 } 622 623 /* 624 ** Change the P2 operand of instruction addr so that it points to 625 ** the address of the next instruction to be coded. 626 */ 627 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 628 sqlite3VdbeChangeP2(p, addr, p->nOp); 629 p->pParse->iFixedOp = p->nOp - 1; 630 } 631 632 633 /* 634 ** If the input FuncDef structure is ephemeral, then free it. If 635 ** the FuncDef is not ephermal, then do nothing. 636 */ 637 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 638 if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 639 sqlite3DbFree(db, pDef); 640 } 641 } 642 643 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 644 645 /* 646 ** Delete a P4 value if necessary. 647 */ 648 static void freeP4(sqlite3 *db, int p4type, void *p4){ 649 if( p4 ){ 650 assert( db ); 651 switch( p4type ){ 652 case P4_REAL: 653 case P4_INT64: 654 case P4_DYNAMIC: 655 case P4_INTARRAY: { 656 sqlite3DbFree(db, p4); 657 break; 658 } 659 case P4_KEYINFO: { 660 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 661 break; 662 } 663 case P4_MPRINTF: { 664 if( db->pnBytesFreed==0 ) sqlite3_free(p4); 665 break; 666 } 667 case P4_FUNCDEF: { 668 freeEphemeralFunction(db, (FuncDef*)p4); 669 break; 670 } 671 case P4_MEM: { 672 if( db->pnBytesFreed==0 ){ 673 sqlite3ValueFree((sqlite3_value*)p4); 674 }else{ 675 Mem *p = (Mem*)p4; 676 sqlite3DbFree(db, p->zMalloc); 677 sqlite3DbFree(db, p); 678 } 679 break; 680 } 681 case P4_VTAB : { 682 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 683 break; 684 } 685 } 686 } 687 } 688 689 /* 690 ** Free the space allocated for aOp and any p4 values allocated for the 691 ** opcodes contained within. If aOp is not NULL it is assumed to contain 692 ** nOp entries. 693 */ 694 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 695 if( aOp ){ 696 Op *pOp; 697 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ 698 freeP4(db, pOp->p4type, pOp->p4.p); 699 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 700 sqlite3DbFree(db, pOp->zComment); 701 #endif 702 } 703 } 704 sqlite3DbFree(db, aOp); 705 } 706 707 /* 708 ** Link the SubProgram object passed as the second argument into the linked 709 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 710 ** objects when the VM is no longer required. 711 */ 712 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 713 p->pNext = pVdbe->pProgram; 714 pVdbe->pProgram = p; 715 } 716 717 /* 718 ** Change the opcode at addr into OP_Noop 719 */ 720 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 721 if( p->aOp ){ 722 VdbeOp *pOp = &p->aOp[addr]; 723 sqlite3 *db = p->db; 724 freeP4(db, pOp->p4type, pOp->p4.p); 725 memset(pOp, 0, sizeof(pOp[0])); 726 pOp->opcode = OP_Noop; 727 if( addr==p->nOp-1 ) p->nOp--; 728 } 729 } 730 731 /* 732 ** Remove the last opcode inserted 733 */ 734 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 735 if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){ 736 sqlite3VdbeChangeToNoop(p, p->nOp-1); 737 return 1; 738 }else{ 739 return 0; 740 } 741 } 742 743 /* 744 ** Change the value of the P4 operand for a specific instruction. 745 ** This routine is useful when a large program is loaded from a 746 ** static array using sqlite3VdbeAddOpList but we want to make a 747 ** few minor changes to the program. 748 ** 749 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 750 ** the string is made into memory obtained from sqlite3_malloc(). 751 ** A value of n==0 means copy bytes of zP4 up to and including the 752 ** first null byte. If n>0 then copy n+1 bytes of zP4. 753 ** 754 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 755 ** to a string or structure that is guaranteed to exist for the lifetime of 756 ** the Vdbe. In these cases we can just copy the pointer. 757 ** 758 ** If addr<0 then change P4 on the most recently inserted instruction. 759 */ 760 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 761 Op *pOp; 762 sqlite3 *db; 763 assert( p!=0 ); 764 db = p->db; 765 assert( p->magic==VDBE_MAGIC_INIT ); 766 if( p->aOp==0 || db->mallocFailed ){ 767 if( n!=P4_VTAB ){ 768 freeP4(db, n, (void*)*(char**)&zP4); 769 } 770 return; 771 } 772 assert( p->nOp>0 ); 773 assert( addr<p->nOp ); 774 if( addr<0 ){ 775 addr = p->nOp - 1; 776 } 777 pOp = &p->aOp[addr]; 778 assert( pOp->p4type==P4_NOTUSED || pOp->p4type==P4_INT32 ); 779 freeP4(db, pOp->p4type, pOp->p4.p); 780 pOp->p4.p = 0; 781 if( n==P4_INT32 ){ 782 /* Note: this cast is safe, because the origin data point was an int 783 ** that was cast to a (const char *). */ 784 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 785 pOp->p4type = P4_INT32; 786 }else if( zP4==0 ){ 787 pOp->p4.p = 0; 788 pOp->p4type = P4_NOTUSED; 789 }else if( n==P4_KEYINFO ){ 790 pOp->p4.p = (void*)zP4; 791 pOp->p4type = P4_KEYINFO; 792 }else if( n==P4_VTAB ){ 793 pOp->p4.p = (void*)zP4; 794 pOp->p4type = P4_VTAB; 795 sqlite3VtabLock((VTable *)zP4); 796 assert( ((VTable *)zP4)->db==p->db ); 797 }else if( n<0 ){ 798 pOp->p4.p = (void*)zP4; 799 pOp->p4type = (signed char)n; 800 }else{ 801 if( n==0 ) n = sqlite3Strlen30(zP4); 802 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 803 pOp->p4type = P4_DYNAMIC; 804 } 805 } 806 807 /* 808 ** Set the P4 on the most recently added opcode to the KeyInfo for the 809 ** index given. 810 */ 811 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 812 Vdbe *v = pParse->pVdbe; 813 assert( v!=0 ); 814 assert( pIdx!=0 ); 815 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx), 816 P4_KEYINFO); 817 } 818 819 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 820 /* 821 ** Change the comment on the most recently coded instruction. Or 822 ** insert a No-op and add the comment to that new instruction. This 823 ** makes the code easier to read during debugging. None of this happens 824 ** in a production build. 825 */ 826 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 827 assert( p->nOp>0 || p->aOp==0 ); 828 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 829 if( p->nOp ){ 830 assert( p->aOp ); 831 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 832 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 833 } 834 } 835 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 836 va_list ap; 837 if( p ){ 838 va_start(ap, zFormat); 839 vdbeVComment(p, zFormat, ap); 840 va_end(ap); 841 } 842 } 843 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 844 va_list ap; 845 if( p ){ 846 sqlite3VdbeAddOp0(p, OP_Noop); 847 va_start(ap, zFormat); 848 vdbeVComment(p, zFormat, ap); 849 va_end(ap); 850 } 851 } 852 #endif /* NDEBUG */ 853 854 /* 855 ** Return the opcode for a given address. If the address is -1, then 856 ** return the most recently inserted opcode. 857 ** 858 ** If a memory allocation error has occurred prior to the calling of this 859 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 860 ** is readable but not writable, though it is cast to a writable value. 861 ** The return of a dummy opcode allows the call to continue functioning 862 ** after a OOM fault without having to check to see if the return from 863 ** this routine is a valid pointer. But because the dummy.opcode is 0, 864 ** dummy will never be written to. This is verified by code inspection and 865 ** by running with Valgrind. 866 ** 867 ** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called 868 ** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE, 869 ** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as 870 ** a new VDBE is created. So we are free to set addr to p->nOp-1 without 871 ** having to double-check to make sure that the result is non-negative. But 872 ** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to 873 ** check the value of p->nOp-1 before continuing. 874 */ 875 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 876 /* C89 specifies that the constant "dummy" will be initialized to all 877 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 878 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 879 assert( p->magic==VDBE_MAGIC_INIT ); 880 if( addr<0 ){ 881 #ifdef SQLITE_OMIT_TRACE 882 if( p->nOp==0 ) return (VdbeOp*)&dummy; 883 #endif 884 addr = p->nOp - 1; 885 } 886 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 887 if( p->db->mallocFailed ){ 888 return (VdbeOp*)&dummy; 889 }else{ 890 return &p->aOp[addr]; 891 } 892 } 893 894 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 895 /* 896 ** Return an integer value for one of the parameters to the opcode pOp 897 ** determined by character c. 898 */ 899 static int translateP(char c, const Op *pOp){ 900 if( c=='1' ) return pOp->p1; 901 if( c=='2' ) return pOp->p2; 902 if( c=='3' ) return pOp->p3; 903 if( c=='4' ) return pOp->p4.i; 904 return pOp->p5; 905 } 906 907 /* 908 ** Compute a string for the "comment" field of a VDBE opcode listing. 909 ** 910 ** The Synopsis: field in comments in the vdbe.c source file gets converted 911 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 912 ** absence of other comments, this synopsis becomes the comment on the opcode. 913 ** Some translation occurs: 914 ** 915 ** "PX" -> "r[X]" 916 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 917 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 918 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 919 */ 920 static int displayComment( 921 const Op *pOp, /* The opcode to be commented */ 922 const char *zP4, /* Previously obtained value for P4 */ 923 char *zTemp, /* Write result here */ 924 int nTemp /* Space available in zTemp[] */ 925 ){ 926 const char *zOpName; 927 const char *zSynopsis; 928 int nOpName; 929 int ii, jj; 930 zOpName = sqlite3OpcodeName(pOp->opcode); 931 nOpName = sqlite3Strlen30(zOpName); 932 if( zOpName[nOpName+1] ){ 933 int seenCom = 0; 934 char c; 935 zSynopsis = zOpName += nOpName + 1; 936 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 937 if( c=='P' ){ 938 c = zSynopsis[++ii]; 939 if( c=='4' ){ 940 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 941 }else if( c=='X' ){ 942 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 943 seenCom = 1; 944 }else{ 945 int v1 = translateP(c, pOp); 946 int v2; 947 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 948 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 949 ii += 3; 950 jj += sqlite3Strlen30(zTemp+jj); 951 v2 = translateP(zSynopsis[ii], pOp); 952 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 953 ii += 2; 954 v2++; 955 } 956 if( v2>1 ){ 957 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 958 } 959 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 960 ii += 4; 961 } 962 } 963 jj += sqlite3Strlen30(zTemp+jj); 964 }else{ 965 zTemp[jj++] = c; 966 } 967 } 968 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 969 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 970 jj += sqlite3Strlen30(zTemp+jj); 971 } 972 if( jj<nTemp ) zTemp[jj] = 0; 973 }else if( pOp->zComment ){ 974 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 975 jj = sqlite3Strlen30(zTemp); 976 }else{ 977 zTemp[0] = 0; 978 jj = 0; 979 } 980 return jj; 981 } 982 #endif /* SQLITE_DEBUG */ 983 984 985 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ 986 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 987 /* 988 ** Compute a string that describes the P4 parameter for an opcode. 989 ** Use zTemp for any required temporary buffer space. 990 */ 991 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 992 char *zP4 = zTemp; 993 assert( nTemp>=20 ); 994 switch( pOp->p4type ){ 995 case P4_KEYINFO: { 996 int i, j; 997 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 998 assert( pKeyInfo->aSortOrder!=0 ); 999 sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField); 1000 i = sqlite3Strlen30(zTemp); 1001 for(j=0; j<pKeyInfo->nField; j++){ 1002 CollSeq *pColl = pKeyInfo->aColl[j]; 1003 const char *zColl = pColl ? pColl->zName : "nil"; 1004 int n = sqlite3Strlen30(zColl); 1005 if( n==6 && memcmp(zColl,"BINARY",6)==0 ){ 1006 zColl = "B"; 1007 n = 1; 1008 } 1009 if( i+n>nTemp-6 ){ 1010 memcpy(&zTemp[i],",...",4); 1011 break; 1012 } 1013 zTemp[i++] = ','; 1014 if( pKeyInfo->aSortOrder[j] ){ 1015 zTemp[i++] = '-'; 1016 } 1017 memcpy(&zTemp[i], zColl, n+1); 1018 i += n; 1019 } 1020 zTemp[i++] = ')'; 1021 zTemp[i] = 0; 1022 assert( i<nTemp ); 1023 break; 1024 } 1025 case P4_COLLSEQ: { 1026 CollSeq *pColl = pOp->p4.pColl; 1027 sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName); 1028 break; 1029 } 1030 case P4_FUNCDEF: { 1031 FuncDef *pDef = pOp->p4.pFunc; 1032 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); 1033 break; 1034 } 1035 case P4_INT64: { 1036 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); 1037 break; 1038 } 1039 case P4_INT32: { 1040 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); 1041 break; 1042 } 1043 case P4_REAL: { 1044 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal); 1045 break; 1046 } 1047 case P4_MEM: { 1048 Mem *pMem = pOp->p4.pMem; 1049 if( pMem->flags & MEM_Str ){ 1050 zP4 = pMem->z; 1051 }else if( pMem->flags & MEM_Int ){ 1052 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); 1053 }else if( pMem->flags & MEM_Real ){ 1054 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r); 1055 }else if( pMem->flags & MEM_Null ){ 1056 sqlite3_snprintf(nTemp, zTemp, "NULL"); 1057 }else{ 1058 assert( pMem->flags & MEM_Blob ); 1059 zP4 = "(blob)"; 1060 } 1061 break; 1062 } 1063 #ifndef SQLITE_OMIT_VIRTUALTABLE 1064 case P4_VTAB: { 1065 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1066 sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule); 1067 break; 1068 } 1069 #endif 1070 case P4_INTARRAY: { 1071 sqlite3_snprintf(nTemp, zTemp, "intarray"); 1072 break; 1073 } 1074 case P4_SUBPROGRAM: { 1075 sqlite3_snprintf(nTemp, zTemp, "program"); 1076 break; 1077 } 1078 case P4_ADVANCE: { 1079 zTemp[0] = 0; 1080 break; 1081 } 1082 default: { 1083 zP4 = pOp->p4.z; 1084 if( zP4==0 ){ 1085 zP4 = zTemp; 1086 zTemp[0] = 0; 1087 } 1088 } 1089 } 1090 assert( zP4!=0 ); 1091 return zP4; 1092 } 1093 #endif 1094 1095 /* 1096 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1097 ** 1098 ** The prepared statements need to know in advance the complete set of 1099 ** attached databases that will be use. A mask of these databases 1100 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1101 ** p->btreeMask of databases that will require a lock. 1102 */ 1103 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1104 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1105 assert( i<(int)sizeof(p->btreeMask)*8 ); 1106 p->btreeMask |= ((yDbMask)1)<<i; 1107 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1108 p->lockMask |= ((yDbMask)1)<<i; 1109 } 1110 } 1111 1112 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1113 /* 1114 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1115 ** this routine obtains the mutex associated with each BtShared structure 1116 ** that may be accessed by the VM passed as an argument. In doing so it also 1117 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1118 ** that the correct busy-handler callback is invoked if required. 1119 ** 1120 ** If SQLite is not threadsafe but does support shared-cache mode, then 1121 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1122 ** of all of BtShared structures accessible via the database handle 1123 ** associated with the VM. 1124 ** 1125 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1126 ** function is a no-op. 1127 ** 1128 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1129 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1130 ** corresponding to btrees that use shared cache. Then the runtime of 1131 ** this routine is N*N. But as N is rarely more than 1, this should not 1132 ** be a problem. 1133 */ 1134 void sqlite3VdbeEnter(Vdbe *p){ 1135 int i; 1136 yDbMask mask; 1137 sqlite3 *db; 1138 Db *aDb; 1139 int nDb; 1140 if( p->lockMask==0 ) return; /* The common case */ 1141 db = p->db; 1142 aDb = db->aDb; 1143 nDb = db->nDb; 1144 for(i=0, mask=1; i<nDb; i++, mask += mask){ 1145 if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){ 1146 sqlite3BtreeEnter(aDb[i].pBt); 1147 } 1148 } 1149 } 1150 #endif 1151 1152 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1153 /* 1154 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1155 */ 1156 void sqlite3VdbeLeave(Vdbe *p){ 1157 int i; 1158 yDbMask mask; 1159 sqlite3 *db; 1160 Db *aDb; 1161 int nDb; 1162 if( p->lockMask==0 ) return; /* The common case */ 1163 db = p->db; 1164 aDb = db->aDb; 1165 nDb = db->nDb; 1166 for(i=0, mask=1; i<nDb; i++, mask += mask){ 1167 if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){ 1168 sqlite3BtreeLeave(aDb[i].pBt); 1169 } 1170 } 1171 } 1172 #endif 1173 1174 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1175 /* 1176 ** Print a single opcode. This routine is used for debugging only. 1177 */ 1178 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ 1179 char *zP4; 1180 char zPtr[50]; 1181 char zCom[100]; 1182 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1183 if( pOut==0 ) pOut = stdout; 1184 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1185 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1186 displayComment(pOp, zP4, zCom, sizeof(zCom)); 1187 #else 1188 zCom[0] = 0 1189 #endif 1190 /* NB: The sqlite3OpcodeName() function is implemented by code created 1191 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1192 ** information from the vdbe.c source text */ 1193 fprintf(pOut, zFormat1, pc, 1194 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1195 zCom 1196 ); 1197 fflush(pOut); 1198 } 1199 #endif 1200 1201 /* 1202 ** Release an array of N Mem elements 1203 */ 1204 static void releaseMemArray(Mem *p, int N){ 1205 if( p && N ){ 1206 Mem *pEnd; 1207 sqlite3 *db = p->db; 1208 u8 malloc_failed = db->mallocFailed; 1209 if( db->pnBytesFreed ){ 1210 for(pEnd=&p[N]; p<pEnd; p++){ 1211 sqlite3DbFree(db, p->zMalloc); 1212 } 1213 return; 1214 } 1215 for(pEnd=&p[N]; p<pEnd; p++){ 1216 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1217 1218 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1219 ** that takes advantage of the fact that the memory cell value is 1220 ** being set to NULL after releasing any dynamic resources. 1221 ** 1222 ** The justification for duplicating code is that according to 1223 ** callgrind, this causes a certain test case to hit the CPU 4.7 1224 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1225 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1226 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1227 ** with no indexes using a single prepared INSERT statement, bind() 1228 ** and reset(). Inserts are grouped into a transaction. 1229 */ 1230 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ 1231 sqlite3VdbeMemRelease(p); 1232 }else if( p->zMalloc ){ 1233 sqlite3DbFree(db, p->zMalloc); 1234 p->zMalloc = 0; 1235 } 1236 1237 p->flags = MEM_Invalid; 1238 } 1239 db->mallocFailed = malloc_failed; 1240 } 1241 } 1242 1243 /* 1244 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1245 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1246 */ 1247 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1248 int i; 1249 Mem *aMem = VdbeFrameMem(p); 1250 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1251 for(i=0; i<p->nChildCsr; i++){ 1252 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1253 } 1254 releaseMemArray(aMem, p->nChildMem); 1255 sqlite3DbFree(p->v->db, p); 1256 } 1257 1258 #ifndef SQLITE_OMIT_EXPLAIN 1259 /* 1260 ** Give a listing of the program in the virtual machine. 1261 ** 1262 ** The interface is the same as sqlite3VdbeExec(). But instead of 1263 ** running the code, it invokes the callback once for each instruction. 1264 ** This feature is used to implement "EXPLAIN". 1265 ** 1266 ** When p->explain==1, each instruction is listed. When 1267 ** p->explain==2, only OP_Explain instructions are listed and these 1268 ** are shown in a different format. p->explain==2 is used to implement 1269 ** EXPLAIN QUERY PLAN. 1270 ** 1271 ** When p->explain==1, first the main program is listed, then each of 1272 ** the trigger subprograms are listed one by one. 1273 */ 1274 int sqlite3VdbeList( 1275 Vdbe *p /* The VDBE */ 1276 ){ 1277 int nRow; /* Stop when row count reaches this */ 1278 int nSub = 0; /* Number of sub-vdbes seen so far */ 1279 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1280 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1281 sqlite3 *db = p->db; /* The database connection */ 1282 int i; /* Loop counter */ 1283 int rc = SQLITE_OK; /* Return code */ 1284 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 1285 1286 assert( p->explain ); 1287 assert( p->magic==VDBE_MAGIC_RUN ); 1288 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1289 1290 /* Even though this opcode does not use dynamic strings for 1291 ** the result, result columns may become dynamic if the user calls 1292 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1293 */ 1294 releaseMemArray(pMem, 8); 1295 p->pResultSet = 0; 1296 1297 if( p->rc==SQLITE_NOMEM ){ 1298 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1299 ** sqlite3_column_text16() failed. */ 1300 db->mallocFailed = 1; 1301 return SQLITE_ERROR; 1302 } 1303 1304 /* When the number of output rows reaches nRow, that means the 1305 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1306 ** nRow is the sum of the number of rows in the main program, plus 1307 ** the sum of the number of rows in all trigger subprograms encountered 1308 ** so far. The nRow value will increase as new trigger subprograms are 1309 ** encountered, but p->pc will eventually catch up to nRow. 1310 */ 1311 nRow = p->nOp; 1312 if( p->explain==1 ){ 1313 /* The first 8 memory cells are used for the result set. So we will 1314 ** commandeer the 9th cell to use as storage for an array of pointers 1315 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1316 ** cells. */ 1317 assert( p->nMem>9 ); 1318 pSub = &p->aMem[9]; 1319 if( pSub->flags&MEM_Blob ){ 1320 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1321 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1322 nSub = pSub->n/sizeof(Vdbe*); 1323 apSub = (SubProgram **)pSub->z; 1324 } 1325 for(i=0; i<nSub; i++){ 1326 nRow += apSub[i]->nOp; 1327 } 1328 } 1329 1330 do{ 1331 i = p->pc++; 1332 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); 1333 if( i>=nRow ){ 1334 p->rc = SQLITE_OK; 1335 rc = SQLITE_DONE; 1336 }else if( db->u1.isInterrupted ){ 1337 p->rc = SQLITE_INTERRUPT; 1338 rc = SQLITE_ERROR; 1339 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc)); 1340 }else{ 1341 char *zP4; 1342 Op *pOp; 1343 if( i<p->nOp ){ 1344 /* The output line number is small enough that we are still in the 1345 ** main program. */ 1346 pOp = &p->aOp[i]; 1347 }else{ 1348 /* We are currently listing subprograms. Figure out which one and 1349 ** pick up the appropriate opcode. */ 1350 int j; 1351 i -= p->nOp; 1352 for(j=0; i>=apSub[j]->nOp; j++){ 1353 i -= apSub[j]->nOp; 1354 } 1355 pOp = &apSub[j]->aOp[i]; 1356 } 1357 if( p->explain==1 ){ 1358 pMem->flags = MEM_Int; 1359 pMem->type = SQLITE_INTEGER; 1360 pMem->u.i = i; /* Program counter */ 1361 pMem++; 1362 1363 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1364 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1365 assert( pMem->z!=0 ); 1366 pMem->n = sqlite3Strlen30(pMem->z); 1367 pMem->type = SQLITE_TEXT; 1368 pMem->enc = SQLITE_UTF8; 1369 pMem++; 1370 1371 /* When an OP_Program opcode is encounter (the only opcode that has 1372 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1373 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1374 ** has not already been seen. 1375 */ 1376 if( pOp->p4type==P4_SUBPROGRAM ){ 1377 int nByte = (nSub+1)*sizeof(SubProgram*); 1378 int j; 1379 for(j=0; j<nSub; j++){ 1380 if( apSub[j]==pOp->p4.pProgram ) break; 1381 } 1382 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){ 1383 apSub = (SubProgram **)pSub->z; 1384 apSub[nSub++] = pOp->p4.pProgram; 1385 pSub->flags |= MEM_Blob; 1386 pSub->n = nSub*sizeof(SubProgram*); 1387 } 1388 } 1389 } 1390 1391 pMem->flags = MEM_Int; 1392 pMem->u.i = pOp->p1; /* P1 */ 1393 pMem->type = SQLITE_INTEGER; 1394 pMem++; 1395 1396 pMem->flags = MEM_Int; 1397 pMem->u.i = pOp->p2; /* P2 */ 1398 pMem->type = SQLITE_INTEGER; 1399 pMem++; 1400 1401 pMem->flags = MEM_Int; 1402 pMem->u.i = pOp->p3; /* P3 */ 1403 pMem->type = SQLITE_INTEGER; 1404 pMem++; 1405 1406 if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */ 1407 assert( p->db->mallocFailed ); 1408 return SQLITE_ERROR; 1409 } 1410 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; 1411 zP4 = displayP4(pOp, pMem->z, 32); 1412 if( zP4!=pMem->z ){ 1413 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 1414 }else{ 1415 assert( pMem->z!=0 ); 1416 pMem->n = sqlite3Strlen30(pMem->z); 1417 pMem->enc = SQLITE_UTF8; 1418 } 1419 pMem->type = SQLITE_TEXT; 1420 pMem++; 1421 1422 if( p->explain==1 ){ 1423 if( sqlite3VdbeMemGrow(pMem, 4, 0) ){ 1424 assert( p->db->mallocFailed ); 1425 return SQLITE_ERROR; 1426 } 1427 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; 1428 pMem->n = 2; 1429 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1430 pMem->type = SQLITE_TEXT; 1431 pMem->enc = SQLITE_UTF8; 1432 pMem++; 1433 1434 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1435 if( sqlite3VdbeMemGrow(pMem, 500, 0) ){ 1436 assert( p->db->mallocFailed ); 1437 return SQLITE_ERROR; 1438 } 1439 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; 1440 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 1441 pMem->type = SQLITE_TEXT; 1442 pMem->enc = SQLITE_UTF8; 1443 #else 1444 pMem->flags = MEM_Null; /* Comment */ 1445 pMem->type = SQLITE_NULL; 1446 #endif 1447 } 1448 1449 p->nResColumn = 8 - 4*(p->explain-1); 1450 p->pResultSet = &p->aMem[1]; 1451 p->rc = SQLITE_OK; 1452 rc = SQLITE_ROW; 1453 } 1454 return rc; 1455 } 1456 #endif /* SQLITE_OMIT_EXPLAIN */ 1457 1458 #ifdef SQLITE_DEBUG 1459 /* 1460 ** Print the SQL that was used to generate a VDBE program. 1461 */ 1462 void sqlite3VdbePrintSql(Vdbe *p){ 1463 const char *z = 0; 1464 if( p->zSql ){ 1465 z = p->zSql; 1466 }else if( p->nOp>=1 ){ 1467 const VdbeOp *pOp = &p->aOp[0]; 1468 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ 1469 z = pOp->p4.z; 1470 while( sqlite3Isspace(*z) ) z++; 1471 } 1472 } 1473 if( z ) printf("SQL: [%s]\n", z); 1474 } 1475 #endif 1476 1477 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 1478 /* 1479 ** Print an IOTRACE message showing SQL content. 1480 */ 1481 void sqlite3VdbeIOTraceSql(Vdbe *p){ 1482 int nOp = p->nOp; 1483 VdbeOp *pOp; 1484 if( sqlite3IoTrace==0 ) return; 1485 if( nOp<1 ) return; 1486 pOp = &p->aOp[0]; 1487 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ 1488 int i, j; 1489 char z[1000]; 1490 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 1491 for(i=0; sqlite3Isspace(z[i]); i++){} 1492 for(j=0; z[i]; i++){ 1493 if( sqlite3Isspace(z[i]) ){ 1494 if( z[i-1]!=' ' ){ 1495 z[j++] = ' '; 1496 } 1497 }else{ 1498 z[j++] = z[i]; 1499 } 1500 } 1501 z[j] = 0; 1502 sqlite3IoTrace("SQL %s\n", z); 1503 } 1504 } 1505 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 1506 1507 /* 1508 ** Allocate space from a fixed size buffer and return a pointer to 1509 ** that space. If insufficient space is available, return NULL. 1510 ** 1511 ** The pBuf parameter is the initial value of a pointer which will 1512 ** receive the new memory. pBuf is normally NULL. If pBuf is not 1513 ** NULL, it means that memory space has already been allocated and that 1514 ** this routine should not allocate any new memory. When pBuf is not 1515 ** NULL simply return pBuf. Only allocate new memory space when pBuf 1516 ** is NULL. 1517 ** 1518 ** nByte is the number of bytes of space needed. 1519 ** 1520 ** *ppFrom points to available space and pEnd points to the end of the 1521 ** available space. When space is allocated, *ppFrom is advanced past 1522 ** the end of the allocated space. 1523 ** 1524 ** *pnByte is a counter of the number of bytes of space that have failed 1525 ** to allocate. If there is insufficient space in *ppFrom to satisfy the 1526 ** request, then increment *pnByte by the amount of the request. 1527 */ 1528 static void *allocSpace( 1529 void *pBuf, /* Where return pointer will be stored */ 1530 int nByte, /* Number of bytes to allocate */ 1531 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */ 1532 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */ 1533 int *pnByte /* If allocation cannot be made, increment *pnByte */ 1534 ){ 1535 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) ); 1536 if( pBuf ) return pBuf; 1537 nByte = ROUND8(nByte); 1538 if( &(*ppFrom)[nByte] <= pEnd ){ 1539 pBuf = (void*)*ppFrom; 1540 *ppFrom += nByte; 1541 }else{ 1542 *pnByte += nByte; 1543 } 1544 return pBuf; 1545 } 1546 1547 /* 1548 ** Rewind the VDBE back to the beginning in preparation for 1549 ** running it. 1550 */ 1551 void sqlite3VdbeRewind(Vdbe *p){ 1552 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1553 int i; 1554 #endif 1555 assert( p!=0 ); 1556 assert( p->magic==VDBE_MAGIC_INIT ); 1557 1558 /* There should be at least one opcode. 1559 */ 1560 assert( p->nOp>0 ); 1561 1562 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 1563 p->magic = VDBE_MAGIC_RUN; 1564 1565 #ifdef SQLITE_DEBUG 1566 for(i=1; i<p->nMem; i++){ 1567 assert( p->aMem[i].db==p->db ); 1568 } 1569 #endif 1570 p->pc = -1; 1571 p->rc = SQLITE_OK; 1572 p->errorAction = OE_Abort; 1573 p->magic = VDBE_MAGIC_RUN; 1574 p->nChange = 0; 1575 p->cacheCtr = 1; 1576 p->minWriteFileFormat = 255; 1577 p->iStatement = 0; 1578 p->nFkConstraint = 0; 1579 #ifdef VDBE_PROFILE 1580 for(i=0; i<p->nOp; i++){ 1581 p->aOp[i].cnt = 0; 1582 p->aOp[i].cycles = 0; 1583 } 1584 #endif 1585 } 1586 1587 /* 1588 ** Prepare a virtual machine for execution for the first time after 1589 ** creating the virtual machine. This involves things such 1590 ** as allocating stack space and initializing the program counter. 1591 ** After the VDBE has be prepped, it can be executed by one or more 1592 ** calls to sqlite3VdbeExec(). 1593 ** 1594 ** This function may be called exact once on a each virtual machine. 1595 ** After this routine is called the VM has been "packaged" and is ready 1596 ** to run. After this routine is called, futher calls to 1597 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 1598 ** the Vdbe from the Parse object that helped generate it so that the 1599 ** the Vdbe becomes an independent entity and the Parse object can be 1600 ** destroyed. 1601 ** 1602 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 1603 ** to its initial state after it has been run. 1604 */ 1605 void sqlite3VdbeMakeReady( 1606 Vdbe *p, /* The VDBE */ 1607 Parse *pParse /* Parsing context */ 1608 ){ 1609 sqlite3 *db; /* The database connection */ 1610 int nVar; /* Number of parameters */ 1611 int nMem; /* Number of VM memory registers */ 1612 int nCursor; /* Number of cursors required */ 1613 int nArg; /* Number of arguments in subprograms */ 1614 int nOnce; /* Number of OP_Once instructions */ 1615 int n; /* Loop counter */ 1616 u8 *zCsr; /* Memory available for allocation */ 1617 u8 *zEnd; /* First byte past allocated memory */ 1618 int nByte; /* How much extra memory is needed */ 1619 1620 assert( p!=0 ); 1621 assert( p->nOp>0 ); 1622 assert( pParse!=0 ); 1623 assert( p->magic==VDBE_MAGIC_INIT ); 1624 assert( pParse==p->pParse ); 1625 db = p->db; 1626 assert( db->mallocFailed==0 ); 1627 nVar = pParse->nVar; 1628 nMem = pParse->nMem; 1629 nCursor = pParse->nTab; 1630 nArg = pParse->nMaxArg; 1631 nOnce = pParse->nOnce; 1632 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */ 1633 1634 /* For each cursor required, also allocate a memory cell. Memory 1635 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by 1636 ** the vdbe program. Instead they are used to allocate space for 1637 ** VdbeCursor/BtCursor structures. The blob of memory associated with 1638 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) 1639 ** stores the blob of memory associated with cursor 1, etc. 1640 ** 1641 ** See also: allocateCursor(). 1642 */ 1643 nMem += nCursor; 1644 1645 /* Allocate space for memory registers, SQL variables, VDBE cursors and 1646 ** an array to marshal SQL function arguments in. 1647 */ 1648 zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */ 1649 zEnd = (u8*)&p->aOp[pParse->nOpAlloc]; /* First byte past end of zCsr[] */ 1650 1651 resolveP2Values(p, &nArg); 1652 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 1653 if( pParse->explain && nMem<10 ){ 1654 nMem = 10; 1655 } 1656 memset(zCsr, 0, zEnd-zCsr); 1657 zCsr += (zCsr - (u8*)0)&7; 1658 assert( EIGHT_BYTE_ALIGNMENT(zCsr) ); 1659 p->expired = 0; 1660 1661 /* Memory for registers, parameters, cursor, etc, is allocated in two 1662 ** passes. On the first pass, we try to reuse unused space at the 1663 ** end of the opcode array. If we are unable to satisfy all memory 1664 ** requirements by reusing the opcode array tail, then the second 1665 ** pass will fill in the rest using a fresh allocation. 1666 ** 1667 ** This two-pass approach that reuses as much memory as possible from 1668 ** the leftover space at the end of the opcode array can significantly 1669 ** reduce the amount of memory held by a prepared statement. 1670 */ 1671 do { 1672 nByte = 0; 1673 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte); 1674 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte); 1675 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte); 1676 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte); 1677 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*), 1678 &zCsr, zEnd, &nByte); 1679 p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte); 1680 if( nByte ){ 1681 p->pFree = sqlite3DbMallocZero(db, nByte); 1682 } 1683 zCsr = p->pFree; 1684 zEnd = &zCsr[nByte]; 1685 }while( nByte && !db->mallocFailed ); 1686 1687 p->nCursor = nCursor; 1688 p->nOnceFlag = nOnce; 1689 if( p->aVar ){ 1690 p->nVar = (ynVar)nVar; 1691 for(n=0; n<nVar; n++){ 1692 p->aVar[n].flags = MEM_Null; 1693 p->aVar[n].db = db; 1694 } 1695 } 1696 if( p->azVar ){ 1697 p->nzVar = pParse->nzVar; 1698 memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0])); 1699 memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0])); 1700 } 1701 if( p->aMem ){ 1702 p->aMem--; /* aMem[] goes from 1..nMem */ 1703 p->nMem = nMem; /* not from 0..nMem-1 */ 1704 for(n=1; n<=nMem; n++){ 1705 p->aMem[n].flags = MEM_Invalid; 1706 p->aMem[n].db = db; 1707 } 1708 } 1709 p->explain = pParse->explain; 1710 sqlite3VdbeRewind(p); 1711 } 1712 1713 /* 1714 ** Close a VDBE cursor and release all the resources that cursor 1715 ** happens to hold. 1716 */ 1717 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 1718 if( pCx==0 ){ 1719 return; 1720 } 1721 sqlite3VdbeSorterClose(p->db, pCx); 1722 if( pCx->pBt ){ 1723 sqlite3BtreeClose(pCx->pBt); 1724 /* The pCx->pCursor will be close automatically, if it exists, by 1725 ** the call above. */ 1726 }else if( pCx->pCursor ){ 1727 sqlite3BtreeCloseCursor(pCx->pCursor); 1728 } 1729 #ifndef SQLITE_OMIT_VIRTUALTABLE 1730 if( pCx->pVtabCursor ){ 1731 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; 1732 const sqlite3_module *pModule = pVtabCursor->pVtab->pModule; 1733 p->inVtabMethod = 1; 1734 pModule->xClose(pVtabCursor); 1735 p->inVtabMethod = 0; 1736 } 1737 #endif 1738 } 1739 1740 /* 1741 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 1742 ** is used, for example, when a trigger sub-program is halted to restore 1743 ** control to the main program. 1744 */ 1745 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 1746 Vdbe *v = pFrame->v; 1747 v->aOnceFlag = pFrame->aOnceFlag; 1748 v->nOnceFlag = pFrame->nOnceFlag; 1749 v->aOp = pFrame->aOp; 1750 v->nOp = pFrame->nOp; 1751 v->aMem = pFrame->aMem; 1752 v->nMem = pFrame->nMem; 1753 v->apCsr = pFrame->apCsr; 1754 v->nCursor = pFrame->nCursor; 1755 v->db->lastRowid = pFrame->lastRowid; 1756 v->nChange = pFrame->nChange; 1757 return pFrame->pc; 1758 } 1759 1760 /* 1761 ** Close all cursors. 1762 ** 1763 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 1764 ** cell array. This is necessary as the memory cell array may contain 1765 ** pointers to VdbeFrame objects, which may in turn contain pointers to 1766 ** open cursors. 1767 */ 1768 static void closeAllCursors(Vdbe *p){ 1769 if( p->pFrame ){ 1770 VdbeFrame *pFrame; 1771 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 1772 sqlite3VdbeFrameRestore(pFrame); 1773 } 1774 p->pFrame = 0; 1775 p->nFrame = 0; 1776 1777 if( p->apCsr ){ 1778 int i; 1779 for(i=0; i<p->nCursor; i++){ 1780 VdbeCursor *pC = p->apCsr[i]; 1781 if( pC ){ 1782 sqlite3VdbeFreeCursor(p, pC); 1783 p->apCsr[i] = 0; 1784 } 1785 } 1786 } 1787 if( p->aMem ){ 1788 releaseMemArray(&p->aMem[1], p->nMem); 1789 } 1790 while( p->pDelFrame ){ 1791 VdbeFrame *pDel = p->pDelFrame; 1792 p->pDelFrame = pDel->pParent; 1793 sqlite3VdbeFrameDelete(pDel); 1794 } 1795 1796 /* Delete any auxdata allocations made by the VM */ 1797 sqlite3VdbeDeleteAuxData(p, -1, 0); 1798 assert( p->pAuxData==0 ); 1799 } 1800 1801 /* 1802 ** Clean up the VM after execution. 1803 ** 1804 ** This routine will automatically close any cursors, lists, and/or 1805 ** sorters that were left open. It also deletes the values of 1806 ** variables in the aVar[] array. 1807 */ 1808 static void Cleanup(Vdbe *p){ 1809 sqlite3 *db = p->db; 1810 1811 #ifdef SQLITE_DEBUG 1812 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 1813 ** Vdbe.aMem[] arrays have already been cleaned up. */ 1814 int i; 1815 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 1816 if( p->aMem ){ 1817 for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Invalid ); 1818 } 1819 #endif 1820 1821 sqlite3DbFree(db, p->zErrMsg); 1822 p->zErrMsg = 0; 1823 p->pResultSet = 0; 1824 } 1825 1826 /* 1827 ** Set the number of result columns that will be returned by this SQL 1828 ** statement. This is now set at compile time, rather than during 1829 ** execution of the vdbe program so that sqlite3_column_count() can 1830 ** be called on an SQL statement before sqlite3_step(). 1831 */ 1832 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 1833 Mem *pColName; 1834 int n; 1835 sqlite3 *db = p->db; 1836 1837 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 1838 sqlite3DbFree(db, p->aColName); 1839 n = nResColumn*COLNAME_N; 1840 p->nResColumn = (u16)nResColumn; 1841 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n ); 1842 if( p->aColName==0 ) return; 1843 while( n-- > 0 ){ 1844 pColName->flags = MEM_Null; 1845 pColName->db = p->db; 1846 pColName++; 1847 } 1848 } 1849 1850 /* 1851 ** Set the name of the idx'th column to be returned by the SQL statement. 1852 ** zName must be a pointer to a nul terminated string. 1853 ** 1854 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 1855 ** 1856 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 1857 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 1858 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 1859 */ 1860 int sqlite3VdbeSetColName( 1861 Vdbe *p, /* Vdbe being configured */ 1862 int idx, /* Index of column zName applies to */ 1863 int var, /* One of the COLNAME_* constants */ 1864 const char *zName, /* Pointer to buffer containing name */ 1865 void (*xDel)(void*) /* Memory management strategy for zName */ 1866 ){ 1867 int rc; 1868 Mem *pColName; 1869 assert( idx<p->nResColumn ); 1870 assert( var<COLNAME_N ); 1871 if( p->db->mallocFailed ){ 1872 assert( !zName || xDel!=SQLITE_DYNAMIC ); 1873 return SQLITE_NOMEM; 1874 } 1875 assert( p->aColName!=0 ); 1876 pColName = &(p->aColName[idx+var*p->nResColumn]); 1877 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 1878 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 1879 return rc; 1880 } 1881 1882 /* 1883 ** A read or write transaction may or may not be active on database handle 1884 ** db. If a transaction is active, commit it. If there is a 1885 ** write-transaction spanning more than one database file, this routine 1886 ** takes care of the master journal trickery. 1887 */ 1888 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 1889 int i; 1890 int nTrans = 0; /* Number of databases with an active write-transaction */ 1891 int rc = SQLITE_OK; 1892 int needXcommit = 0; 1893 1894 #ifdef SQLITE_OMIT_VIRTUALTABLE 1895 /* With this option, sqlite3VtabSync() is defined to be simply 1896 ** SQLITE_OK so p is not used. 1897 */ 1898 UNUSED_PARAMETER(p); 1899 #endif 1900 1901 /* Before doing anything else, call the xSync() callback for any 1902 ** virtual module tables written in this transaction. This has to 1903 ** be done before determining whether a master journal file is 1904 ** required, as an xSync() callback may add an attached database 1905 ** to the transaction. 1906 */ 1907 rc = sqlite3VtabSync(db, p); 1908 1909 /* This loop determines (a) if the commit hook should be invoked and 1910 ** (b) how many database files have open write transactions, not 1911 ** including the temp database. (b) is important because if more than 1912 ** one database file has an open write transaction, a master journal 1913 ** file is required for an atomic commit. 1914 */ 1915 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 1916 Btree *pBt = db->aDb[i].pBt; 1917 if( sqlite3BtreeIsInTrans(pBt) ){ 1918 needXcommit = 1; 1919 if( i!=1 ) nTrans++; 1920 sqlite3BtreeEnter(pBt); 1921 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt)); 1922 sqlite3BtreeLeave(pBt); 1923 } 1924 } 1925 if( rc!=SQLITE_OK ){ 1926 return rc; 1927 } 1928 1929 /* If there are any write-transactions at all, invoke the commit hook */ 1930 if( needXcommit && db->xCommitCallback ){ 1931 rc = db->xCommitCallback(db->pCommitArg); 1932 if( rc ){ 1933 return SQLITE_CONSTRAINT_COMMITHOOK; 1934 } 1935 } 1936 1937 /* The simple case - no more than one database file (not counting the 1938 ** TEMP database) has a transaction active. There is no need for the 1939 ** master-journal. 1940 ** 1941 ** If the return value of sqlite3BtreeGetFilename() is a zero length 1942 ** string, it means the main database is :memory: or a temp file. In 1943 ** that case we do not support atomic multi-file commits, so use the 1944 ** simple case then too. 1945 */ 1946 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 1947 || nTrans<=1 1948 ){ 1949 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 1950 Btree *pBt = db->aDb[i].pBt; 1951 if( pBt ){ 1952 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 1953 } 1954 } 1955 1956 /* Do the commit only if all databases successfully complete phase 1. 1957 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 1958 ** IO error while deleting or truncating a journal file. It is unlikely, 1959 ** but could happen. In this case abandon processing and return the error. 1960 */ 1961 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 1962 Btree *pBt = db->aDb[i].pBt; 1963 if( pBt ){ 1964 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 1965 } 1966 } 1967 if( rc==SQLITE_OK ){ 1968 sqlite3VtabCommit(db); 1969 } 1970 } 1971 1972 /* The complex case - There is a multi-file write-transaction active. 1973 ** This requires a master journal file to ensure the transaction is 1974 ** committed atomicly. 1975 */ 1976 #ifndef SQLITE_OMIT_DISKIO 1977 else{ 1978 sqlite3_vfs *pVfs = db->pVfs; 1979 int needSync = 0; 1980 char *zMaster = 0; /* File-name for the master journal */ 1981 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 1982 sqlite3_file *pMaster = 0; 1983 i64 offset = 0; 1984 int res; 1985 int retryCount = 0; 1986 int nMainFile; 1987 1988 /* Select a master journal file name */ 1989 nMainFile = sqlite3Strlen30(zMainFile); 1990 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); 1991 if( zMaster==0 ) return SQLITE_NOMEM; 1992 do { 1993 u32 iRandom; 1994 if( retryCount ){ 1995 if( retryCount>100 ){ 1996 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 1997 sqlite3OsDelete(pVfs, zMaster, 0); 1998 break; 1999 }else if( retryCount==1 ){ 2000 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2001 } 2002 } 2003 retryCount++; 2004 sqlite3_randomness(sizeof(iRandom), &iRandom); 2005 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2006 (iRandom>>8)&0xffffff, iRandom&0xff); 2007 /* The antipenultimate character of the master journal name must 2008 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2009 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2010 sqlite3FileSuffix3(zMainFile, zMaster); 2011 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2012 }while( rc==SQLITE_OK && res ); 2013 if( rc==SQLITE_OK ){ 2014 /* Open the master journal. */ 2015 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2016 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2017 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2018 ); 2019 } 2020 if( rc!=SQLITE_OK ){ 2021 sqlite3DbFree(db, zMaster); 2022 return rc; 2023 } 2024 2025 /* Write the name of each database file in the transaction into the new 2026 ** master journal file. If an error occurs at this point close 2027 ** and delete the master journal file. All the individual journal files 2028 ** still have 'null' as the master journal pointer, so they will roll 2029 ** back independently if a failure occurs. 2030 */ 2031 for(i=0; i<db->nDb; i++){ 2032 Btree *pBt = db->aDb[i].pBt; 2033 if( sqlite3BtreeIsInTrans(pBt) ){ 2034 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2035 if( zFile==0 ){ 2036 continue; /* Ignore TEMP and :memory: databases */ 2037 } 2038 assert( zFile[0]!=0 ); 2039 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){ 2040 needSync = 1; 2041 } 2042 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2043 offset += sqlite3Strlen30(zFile)+1; 2044 if( rc!=SQLITE_OK ){ 2045 sqlite3OsCloseFree(pMaster); 2046 sqlite3OsDelete(pVfs, zMaster, 0); 2047 sqlite3DbFree(db, zMaster); 2048 return rc; 2049 } 2050 } 2051 } 2052 2053 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2054 ** flag is set this is not required. 2055 */ 2056 if( needSync 2057 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2058 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2059 ){ 2060 sqlite3OsCloseFree(pMaster); 2061 sqlite3OsDelete(pVfs, zMaster, 0); 2062 sqlite3DbFree(db, zMaster); 2063 return rc; 2064 } 2065 2066 /* Sync all the db files involved in the transaction. The same call 2067 ** sets the master journal pointer in each individual journal. If 2068 ** an error occurs here, do not delete the master journal file. 2069 ** 2070 ** If the error occurs during the first call to 2071 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2072 ** master journal file will be orphaned. But we cannot delete it, 2073 ** in case the master journal file name was written into the journal 2074 ** file before the failure occurred. 2075 */ 2076 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2077 Btree *pBt = db->aDb[i].pBt; 2078 if( pBt ){ 2079 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2080 } 2081 } 2082 sqlite3OsCloseFree(pMaster); 2083 assert( rc!=SQLITE_BUSY ); 2084 if( rc!=SQLITE_OK ){ 2085 sqlite3DbFree(db, zMaster); 2086 return rc; 2087 } 2088 2089 /* Delete the master journal file. This commits the transaction. After 2090 ** doing this the directory is synced again before any individual 2091 ** transaction files are deleted. 2092 */ 2093 rc = sqlite3OsDelete(pVfs, zMaster, 1); 2094 sqlite3DbFree(db, zMaster); 2095 zMaster = 0; 2096 if( rc ){ 2097 return rc; 2098 } 2099 2100 /* All files and directories have already been synced, so the following 2101 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2102 ** deleting or truncating journals. If something goes wrong while 2103 ** this is happening we don't really care. The integrity of the 2104 ** transaction is already guaranteed, but some stray 'cold' journals 2105 ** may be lying around. Returning an error code won't help matters. 2106 */ 2107 disable_simulated_io_errors(); 2108 sqlite3BeginBenignMalloc(); 2109 for(i=0; i<db->nDb; i++){ 2110 Btree *pBt = db->aDb[i].pBt; 2111 if( pBt ){ 2112 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2113 } 2114 } 2115 sqlite3EndBenignMalloc(); 2116 enable_simulated_io_errors(); 2117 2118 sqlite3VtabCommit(db); 2119 } 2120 #endif 2121 2122 return rc; 2123 } 2124 2125 /* 2126 ** This routine checks that the sqlite3.nVdbeActive count variable 2127 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2128 ** currently active. An assertion fails if the two counts do not match. 2129 ** This is an internal self-check only - it is not an essential processing 2130 ** step. 2131 ** 2132 ** This is a no-op if NDEBUG is defined. 2133 */ 2134 #ifndef NDEBUG 2135 static void checkActiveVdbeCnt(sqlite3 *db){ 2136 Vdbe *p; 2137 int cnt = 0; 2138 int nWrite = 0; 2139 int nRead = 0; 2140 p = db->pVdbe; 2141 while( p ){ 2142 if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){ 2143 cnt++; 2144 if( p->readOnly==0 ) nWrite++; 2145 if( p->bIsReader ) nRead++; 2146 } 2147 p = p->pNext; 2148 } 2149 assert( cnt==db->nVdbeActive ); 2150 assert( nWrite==db->nVdbeWrite ); 2151 assert( nRead==db->nVdbeRead ); 2152 } 2153 #else 2154 #define checkActiveVdbeCnt(x) 2155 #endif 2156 2157 /* 2158 ** If the Vdbe passed as the first argument opened a statement-transaction, 2159 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2160 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2161 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2162 ** statement transaction is committed. 2163 ** 2164 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2165 ** Otherwise SQLITE_OK. 2166 */ 2167 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2168 sqlite3 *const db = p->db; 2169 int rc = SQLITE_OK; 2170 2171 /* If p->iStatement is greater than zero, then this Vdbe opened a 2172 ** statement transaction that should be closed here. The only exception 2173 ** is that an IO error may have occurred, causing an emergency rollback. 2174 ** In this case (db->nStatement==0), and there is nothing to do. 2175 */ 2176 if( db->nStatement && p->iStatement ){ 2177 int i; 2178 const int iSavepoint = p->iStatement-1; 2179 2180 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2181 assert( db->nStatement>0 ); 2182 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2183 2184 for(i=0; i<db->nDb; i++){ 2185 int rc2 = SQLITE_OK; 2186 Btree *pBt = db->aDb[i].pBt; 2187 if( pBt ){ 2188 if( eOp==SAVEPOINT_ROLLBACK ){ 2189 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2190 } 2191 if( rc2==SQLITE_OK ){ 2192 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2193 } 2194 if( rc==SQLITE_OK ){ 2195 rc = rc2; 2196 } 2197 } 2198 } 2199 db->nStatement--; 2200 p->iStatement = 0; 2201 2202 if( rc==SQLITE_OK ){ 2203 if( eOp==SAVEPOINT_ROLLBACK ){ 2204 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2205 } 2206 if( rc==SQLITE_OK ){ 2207 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2208 } 2209 } 2210 2211 /* If the statement transaction is being rolled back, also restore the 2212 ** database handles deferred constraint counter to the value it had when 2213 ** the statement transaction was opened. */ 2214 if( eOp==SAVEPOINT_ROLLBACK ){ 2215 db->nDeferredCons = p->nStmtDefCons; 2216 db->nDeferredImmCons = p->nStmtDefImmCons; 2217 } 2218 } 2219 return rc; 2220 } 2221 2222 /* 2223 ** This function is called when a transaction opened by the database 2224 ** handle associated with the VM passed as an argument is about to be 2225 ** committed. If there are outstanding deferred foreign key constraint 2226 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2227 ** 2228 ** If there are outstanding FK violations and this function returns 2229 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2230 ** and write an error message to it. Then return SQLITE_ERROR. 2231 */ 2232 #ifndef SQLITE_OMIT_FOREIGN_KEY 2233 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2234 sqlite3 *db = p->db; 2235 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2236 || (!deferred && p->nFkConstraint>0) 2237 ){ 2238 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2239 p->errorAction = OE_Abort; 2240 sqlite3SetString(&p->zErrMsg, db, "FOREIGN KEY constraint failed"); 2241 return SQLITE_ERROR; 2242 } 2243 return SQLITE_OK; 2244 } 2245 #endif 2246 2247 /* 2248 ** This routine is called the when a VDBE tries to halt. If the VDBE 2249 ** has made changes and is in autocommit mode, then commit those 2250 ** changes. If a rollback is needed, then do the rollback. 2251 ** 2252 ** This routine is the only way to move the state of a VM from 2253 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2254 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2255 ** 2256 ** Return an error code. If the commit could not complete because of 2257 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2258 ** means the close did not happen and needs to be repeated. 2259 */ 2260 int sqlite3VdbeHalt(Vdbe *p){ 2261 int rc; /* Used to store transient return codes */ 2262 sqlite3 *db = p->db; 2263 2264 /* This function contains the logic that determines if a statement or 2265 ** transaction will be committed or rolled back as a result of the 2266 ** execution of this virtual machine. 2267 ** 2268 ** If any of the following errors occur: 2269 ** 2270 ** SQLITE_NOMEM 2271 ** SQLITE_IOERR 2272 ** SQLITE_FULL 2273 ** SQLITE_INTERRUPT 2274 ** 2275 ** Then the internal cache might have been left in an inconsistent 2276 ** state. We need to rollback the statement transaction, if there is 2277 ** one, or the complete transaction if there is no statement transaction. 2278 */ 2279 2280 if( p->db->mallocFailed ){ 2281 p->rc = SQLITE_NOMEM; 2282 } 2283 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag); 2284 closeAllCursors(p); 2285 if( p->magic!=VDBE_MAGIC_RUN ){ 2286 return SQLITE_OK; 2287 } 2288 checkActiveVdbeCnt(db); 2289 2290 /* No commit or rollback needed if the program never started or if the 2291 ** SQL statement does not read or write a database file. */ 2292 if( p->pc>=0 && p->bIsReader ){ 2293 int mrc; /* Primary error code from p->rc */ 2294 int eStatementOp = 0; 2295 int isSpecialError; /* Set to true if a 'special' error */ 2296 2297 /* Lock all btrees used by the statement */ 2298 sqlite3VdbeEnter(p); 2299 2300 /* Check for one of the special errors */ 2301 mrc = p->rc & 0xff; 2302 assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */ 2303 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2304 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2305 if( isSpecialError ){ 2306 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2307 ** no rollback is necessary. Otherwise, at least a savepoint 2308 ** transaction must be rolled back to restore the database to a 2309 ** consistent state. 2310 ** 2311 ** Even if the statement is read-only, it is important to perform 2312 ** a statement or transaction rollback operation. If the error 2313 ** occurred while writing to the journal, sub-journal or database 2314 ** file as part of an effort to free up cache space (see function 2315 ** pagerStress() in pager.c), the rollback is required to restore 2316 ** the pager to a consistent state. 2317 */ 2318 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2319 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2320 eStatementOp = SAVEPOINT_ROLLBACK; 2321 }else{ 2322 /* We are forced to roll back the active transaction. Before doing 2323 ** so, abort any other statements this handle currently has active. 2324 */ 2325 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2326 sqlite3CloseSavepoints(db); 2327 db->autoCommit = 1; 2328 } 2329 } 2330 } 2331 2332 /* Check for immediate foreign key violations. */ 2333 if( p->rc==SQLITE_OK ){ 2334 sqlite3VdbeCheckFk(p, 0); 2335 } 2336 2337 /* If the auto-commit flag is set and this is the only active writer 2338 ** VM, then we do either a commit or rollback of the current transaction. 2339 ** 2340 ** Note: This block also runs if one of the special errors handled 2341 ** above has occurred. 2342 */ 2343 if( !sqlite3VtabInSync(db) 2344 && db->autoCommit 2345 && db->nVdbeWrite==(p->readOnly==0) 2346 ){ 2347 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2348 rc = sqlite3VdbeCheckFk(p, 1); 2349 if( rc!=SQLITE_OK ){ 2350 if( NEVER(p->readOnly) ){ 2351 sqlite3VdbeLeave(p); 2352 return SQLITE_ERROR; 2353 } 2354 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2355 }else{ 2356 /* The auto-commit flag is true, the vdbe program was successful 2357 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2358 ** key constraints to hold up the transaction. This means a commit 2359 ** is required. */ 2360 rc = vdbeCommit(db, p); 2361 } 2362 if( rc==SQLITE_BUSY && p->readOnly ){ 2363 sqlite3VdbeLeave(p); 2364 return SQLITE_BUSY; 2365 }else if( rc!=SQLITE_OK ){ 2366 p->rc = rc; 2367 sqlite3RollbackAll(db, SQLITE_OK); 2368 }else{ 2369 db->nDeferredCons = 0; 2370 db->nDeferredImmCons = 0; 2371 db->flags &= ~SQLITE_DeferFKs; 2372 sqlite3CommitInternalChanges(db); 2373 } 2374 }else{ 2375 sqlite3RollbackAll(db, SQLITE_OK); 2376 } 2377 db->nStatement = 0; 2378 }else if( eStatementOp==0 ){ 2379 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2380 eStatementOp = SAVEPOINT_RELEASE; 2381 }else if( p->errorAction==OE_Abort ){ 2382 eStatementOp = SAVEPOINT_ROLLBACK; 2383 }else{ 2384 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2385 sqlite3CloseSavepoints(db); 2386 db->autoCommit = 1; 2387 } 2388 } 2389 2390 /* If eStatementOp is non-zero, then a statement transaction needs to 2391 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2392 ** do so. If this operation returns an error, and the current statement 2393 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2394 ** current statement error code. 2395 */ 2396 if( eStatementOp ){ 2397 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2398 if( rc ){ 2399 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 2400 p->rc = rc; 2401 sqlite3DbFree(db, p->zErrMsg); 2402 p->zErrMsg = 0; 2403 } 2404 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2405 sqlite3CloseSavepoints(db); 2406 db->autoCommit = 1; 2407 } 2408 } 2409 2410 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2411 ** has been rolled back, update the database connection change-counter. 2412 */ 2413 if( p->changeCntOn ){ 2414 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2415 sqlite3VdbeSetChanges(db, p->nChange); 2416 }else{ 2417 sqlite3VdbeSetChanges(db, 0); 2418 } 2419 p->nChange = 0; 2420 } 2421 2422 /* Release the locks */ 2423 sqlite3VdbeLeave(p); 2424 } 2425 2426 /* We have successfully halted and closed the VM. Record this fact. */ 2427 if( p->pc>=0 ){ 2428 db->nVdbeActive--; 2429 if( !p->readOnly ) db->nVdbeWrite--; 2430 if( p->bIsReader ) db->nVdbeRead--; 2431 assert( db->nVdbeActive>=db->nVdbeRead ); 2432 assert( db->nVdbeRead>=db->nVdbeWrite ); 2433 assert( db->nVdbeWrite>=0 ); 2434 } 2435 p->magic = VDBE_MAGIC_HALT; 2436 checkActiveVdbeCnt(db); 2437 if( p->db->mallocFailed ){ 2438 p->rc = SQLITE_NOMEM; 2439 } 2440 2441 /* If the auto-commit flag is set to true, then any locks that were held 2442 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2443 ** to invoke any required unlock-notify callbacks. 2444 */ 2445 if( db->autoCommit ){ 2446 sqlite3ConnectionUnlocked(db); 2447 } 2448 2449 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 2450 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 2451 } 2452 2453 2454 /* 2455 ** Each VDBE holds the result of the most recent sqlite3_step() call 2456 ** in p->rc. This routine sets that result back to SQLITE_OK. 2457 */ 2458 void sqlite3VdbeResetStepResult(Vdbe *p){ 2459 p->rc = SQLITE_OK; 2460 } 2461 2462 /* 2463 ** Copy the error code and error message belonging to the VDBE passed 2464 ** as the first argument to its database handle (so that they will be 2465 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 2466 ** 2467 ** This function does not clear the VDBE error code or message, just 2468 ** copies them to the database handle. 2469 */ 2470 int sqlite3VdbeTransferError(Vdbe *p){ 2471 sqlite3 *db = p->db; 2472 int rc = p->rc; 2473 if( p->zErrMsg ){ 2474 u8 mallocFailed = db->mallocFailed; 2475 sqlite3BeginBenignMalloc(); 2476 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 2477 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 2478 sqlite3EndBenignMalloc(); 2479 db->mallocFailed = mallocFailed; 2480 db->errCode = rc; 2481 }else{ 2482 sqlite3Error(db, rc, 0); 2483 } 2484 return rc; 2485 } 2486 2487 #ifdef SQLITE_ENABLE_SQLLOG 2488 /* 2489 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 2490 ** invoke it. 2491 */ 2492 static void vdbeInvokeSqllog(Vdbe *v){ 2493 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 2494 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 2495 assert( v->db->init.busy==0 ); 2496 if( zExpanded ){ 2497 sqlite3GlobalConfig.xSqllog( 2498 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 2499 ); 2500 sqlite3DbFree(v->db, zExpanded); 2501 } 2502 } 2503 } 2504 #else 2505 # define vdbeInvokeSqllog(x) 2506 #endif 2507 2508 /* 2509 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 2510 ** Write any error messages into *pzErrMsg. Return the result code. 2511 ** 2512 ** After this routine is run, the VDBE should be ready to be executed 2513 ** again. 2514 ** 2515 ** To look at it another way, this routine resets the state of the 2516 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 2517 ** VDBE_MAGIC_INIT. 2518 */ 2519 int sqlite3VdbeReset(Vdbe *p){ 2520 sqlite3 *db; 2521 db = p->db; 2522 2523 /* If the VM did not run to completion or if it encountered an 2524 ** error, then it might not have been halted properly. So halt 2525 ** it now. 2526 */ 2527 sqlite3VdbeHalt(p); 2528 2529 /* If the VDBE has be run even partially, then transfer the error code 2530 ** and error message from the VDBE into the main database structure. But 2531 ** if the VDBE has just been set to run but has not actually executed any 2532 ** instructions yet, leave the main database error information unchanged. 2533 */ 2534 if( p->pc>=0 ){ 2535 vdbeInvokeSqllog(p); 2536 sqlite3VdbeTransferError(p); 2537 sqlite3DbFree(db, p->zErrMsg); 2538 p->zErrMsg = 0; 2539 if( p->runOnlyOnce ) p->expired = 1; 2540 }else if( p->rc && p->expired ){ 2541 /* The expired flag was set on the VDBE before the first call 2542 ** to sqlite3_step(). For consistency (since sqlite3_step() was 2543 ** called), set the database error in this case as well. 2544 */ 2545 sqlite3Error(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 2546 sqlite3DbFree(db, p->zErrMsg); 2547 p->zErrMsg = 0; 2548 } 2549 2550 /* Reclaim all memory used by the VDBE 2551 */ 2552 Cleanup(p); 2553 2554 /* Save profiling information from this VDBE run. 2555 */ 2556 #ifdef VDBE_PROFILE 2557 { 2558 FILE *out = fopen("vdbe_profile.out", "a"); 2559 if( out ){ 2560 int i; 2561 fprintf(out, "---- "); 2562 for(i=0; i<p->nOp; i++){ 2563 fprintf(out, "%02x", p->aOp[i].opcode); 2564 } 2565 fprintf(out, "\n"); 2566 for(i=0; i<p->nOp; i++){ 2567 fprintf(out, "%6d %10lld %8lld ", 2568 p->aOp[i].cnt, 2569 p->aOp[i].cycles, 2570 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 2571 ); 2572 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 2573 } 2574 fclose(out); 2575 } 2576 } 2577 #endif 2578 p->iCurrentTime = 0; 2579 p->magic = VDBE_MAGIC_INIT; 2580 return p->rc & db->errMask; 2581 } 2582 2583 /* 2584 ** Clean up and delete a VDBE after execution. Return an integer which is 2585 ** the result code. Write any error message text into *pzErrMsg. 2586 */ 2587 int sqlite3VdbeFinalize(Vdbe *p){ 2588 int rc = SQLITE_OK; 2589 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 2590 rc = sqlite3VdbeReset(p); 2591 assert( (rc & p->db->errMask)==rc ); 2592 } 2593 sqlite3VdbeDelete(p); 2594 return rc; 2595 } 2596 2597 /* 2598 ** If parameter iOp is less than zero, then invoke the destructor for 2599 ** all auxiliary data pointers currently cached by the VM passed as 2600 ** the first argument. 2601 ** 2602 ** Or, if iOp is greater than or equal to zero, then the destructor is 2603 ** only invoked for those auxiliary data pointers created by the user 2604 ** function invoked by the OP_Function opcode at instruction iOp of 2605 ** VM pVdbe, and only then if: 2606 ** 2607 ** * the associated function parameter is the 32nd or later (counting 2608 ** from left to right), or 2609 ** 2610 ** * the corresponding bit in argument mask is clear (where the first 2611 ** function parameter corrsponds to bit 0 etc.). 2612 */ 2613 void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){ 2614 AuxData **pp = &pVdbe->pAuxData; 2615 while( *pp ){ 2616 AuxData *pAux = *pp; 2617 if( (iOp<0) 2618 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg)))) 2619 ){ 2620 testcase( pAux->iArg==31 ); 2621 if( pAux->xDelete ){ 2622 pAux->xDelete(pAux->pAux); 2623 } 2624 *pp = pAux->pNext; 2625 sqlite3DbFree(pVdbe->db, pAux); 2626 }else{ 2627 pp= &pAux->pNext; 2628 } 2629 } 2630 } 2631 2632 /* 2633 ** Free all memory associated with the Vdbe passed as the second argument, 2634 ** except for object itself, which is preserved. 2635 ** 2636 ** The difference between this function and sqlite3VdbeDelete() is that 2637 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 2638 ** the database connection and frees the object itself. 2639 */ 2640 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 2641 SubProgram *pSub, *pNext; 2642 int i; 2643 assert( p->db==0 || p->db==db ); 2644 releaseMemArray(p->aVar, p->nVar); 2645 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2646 for(pSub=p->pProgram; pSub; pSub=pNext){ 2647 pNext = pSub->pNext; 2648 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 2649 sqlite3DbFree(db, pSub); 2650 } 2651 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); 2652 vdbeFreeOpArray(db, p->aOp, p->nOp); 2653 sqlite3DbFree(db, p->aColName); 2654 sqlite3DbFree(db, p->zSql); 2655 sqlite3DbFree(db, p->pFree); 2656 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 2657 sqlite3DbFree(db, p->zExplain); 2658 sqlite3DbFree(db, p->pExplain); 2659 #endif 2660 } 2661 2662 /* 2663 ** Delete an entire VDBE. 2664 */ 2665 void sqlite3VdbeDelete(Vdbe *p){ 2666 sqlite3 *db; 2667 2668 if( NEVER(p==0) ) return; 2669 db = p->db; 2670 assert( sqlite3_mutex_held(db->mutex) ); 2671 sqlite3VdbeClearObject(db, p); 2672 if( p->pPrev ){ 2673 p->pPrev->pNext = p->pNext; 2674 }else{ 2675 assert( db->pVdbe==p ); 2676 db->pVdbe = p->pNext; 2677 } 2678 if( p->pNext ){ 2679 p->pNext->pPrev = p->pPrev; 2680 } 2681 p->magic = VDBE_MAGIC_DEAD; 2682 p->db = 0; 2683 sqlite3DbFree(db, p); 2684 } 2685 2686 /* 2687 ** Make sure the cursor p is ready to read or write the row to which it 2688 ** was last positioned. Return an error code if an OOM fault or I/O error 2689 ** prevents us from positioning the cursor to its correct position. 2690 ** 2691 ** If a MoveTo operation is pending on the given cursor, then do that 2692 ** MoveTo now. If no move is pending, check to see if the row has been 2693 ** deleted out from under the cursor and if it has, mark the row as 2694 ** a NULL row. 2695 ** 2696 ** If the cursor is already pointing to the correct row and that row has 2697 ** not been deleted out from under the cursor, then this routine is a no-op. 2698 */ 2699 int sqlite3VdbeCursorMoveto(VdbeCursor *p){ 2700 if( p->deferredMoveto ){ 2701 int res, rc; 2702 #ifdef SQLITE_TEST 2703 extern int sqlite3_search_count; 2704 #endif 2705 assert( p->isTable ); 2706 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res); 2707 if( rc ) return rc; 2708 p->lastRowid = p->movetoTarget; 2709 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 2710 p->rowidIsValid = 1; 2711 #ifdef SQLITE_TEST 2712 sqlite3_search_count++; 2713 #endif 2714 p->deferredMoveto = 0; 2715 p->cacheStatus = CACHE_STALE; 2716 }else if( p->pCursor ){ 2717 int hasMoved; 2718 int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved); 2719 if( rc ) return rc; 2720 if( hasMoved ){ 2721 p->cacheStatus = CACHE_STALE; 2722 p->nullRow = 1; 2723 } 2724 } 2725 return SQLITE_OK; 2726 } 2727 2728 /* 2729 ** The following functions: 2730 ** 2731 ** sqlite3VdbeSerialType() 2732 ** sqlite3VdbeSerialTypeLen() 2733 ** sqlite3VdbeSerialLen() 2734 ** sqlite3VdbeSerialPut() 2735 ** sqlite3VdbeSerialGet() 2736 ** 2737 ** encapsulate the code that serializes values for storage in SQLite 2738 ** data and index records. Each serialized value consists of a 2739 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 2740 ** integer, stored as a varint. 2741 ** 2742 ** In an SQLite index record, the serial type is stored directly before 2743 ** the blob of data that it corresponds to. In a table record, all serial 2744 ** types are stored at the start of the record, and the blobs of data at 2745 ** the end. Hence these functions allow the caller to handle the 2746 ** serial-type and data blob separately. 2747 ** 2748 ** The following table describes the various storage classes for data: 2749 ** 2750 ** serial type bytes of data type 2751 ** -------------- --------------- --------------- 2752 ** 0 0 NULL 2753 ** 1 1 signed integer 2754 ** 2 2 signed integer 2755 ** 3 3 signed integer 2756 ** 4 4 signed integer 2757 ** 5 6 signed integer 2758 ** 6 8 signed integer 2759 ** 7 8 IEEE float 2760 ** 8 0 Integer constant 0 2761 ** 9 0 Integer constant 1 2762 ** 10,11 reserved for expansion 2763 ** N>=12 and even (N-12)/2 BLOB 2764 ** N>=13 and odd (N-13)/2 text 2765 ** 2766 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 2767 ** of SQLite will not understand those serial types. 2768 */ 2769 2770 /* 2771 ** Return the serial-type for the value stored in pMem. 2772 */ 2773 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ 2774 int flags = pMem->flags; 2775 int n; 2776 2777 if( flags&MEM_Null ){ 2778 return 0; 2779 } 2780 if( flags&MEM_Int ){ 2781 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 2782 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 2783 i64 i = pMem->u.i; 2784 u64 u; 2785 if( i<0 ){ 2786 if( i<(-MAX_6BYTE) ) return 6; 2787 /* Previous test prevents: u = -(-9223372036854775808) */ 2788 u = -i; 2789 }else{ 2790 u = i; 2791 } 2792 if( u<=127 ){ 2793 return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1; 2794 } 2795 if( u<=32767 ) return 2; 2796 if( u<=8388607 ) return 3; 2797 if( u<=2147483647 ) return 4; 2798 if( u<=MAX_6BYTE ) return 5; 2799 return 6; 2800 } 2801 if( flags&MEM_Real ){ 2802 return 7; 2803 } 2804 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 2805 n = pMem->n; 2806 if( flags & MEM_Zero ){ 2807 n += pMem->u.nZero; 2808 } 2809 assert( n>=0 ); 2810 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 2811 } 2812 2813 /* 2814 ** Return the length of the data corresponding to the supplied serial-type. 2815 */ 2816 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 2817 if( serial_type>=12 ){ 2818 return (serial_type-12)/2; 2819 }else{ 2820 static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 }; 2821 return aSize[serial_type]; 2822 } 2823 } 2824 2825 /* 2826 ** If we are on an architecture with mixed-endian floating 2827 ** points (ex: ARM7) then swap the lower 4 bytes with the 2828 ** upper 4 bytes. Return the result. 2829 ** 2830 ** For most architectures, this is a no-op. 2831 ** 2832 ** (later): It is reported to me that the mixed-endian problem 2833 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 2834 ** that early versions of GCC stored the two words of a 64-bit 2835 ** float in the wrong order. And that error has been propagated 2836 ** ever since. The blame is not necessarily with GCC, though. 2837 ** GCC might have just copying the problem from a prior compiler. 2838 ** I am also told that newer versions of GCC that follow a different 2839 ** ABI get the byte order right. 2840 ** 2841 ** Developers using SQLite on an ARM7 should compile and run their 2842 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 2843 ** enabled, some asserts below will ensure that the byte order of 2844 ** floating point values is correct. 2845 ** 2846 ** (2007-08-30) Frank van Vugt has studied this problem closely 2847 ** and has send his findings to the SQLite developers. Frank 2848 ** writes that some Linux kernels offer floating point hardware 2849 ** emulation that uses only 32-bit mantissas instead of a full 2850 ** 48-bits as required by the IEEE standard. (This is the 2851 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 2852 ** byte swapping becomes very complicated. To avoid problems, 2853 ** the necessary byte swapping is carried out using a 64-bit integer 2854 ** rather than a 64-bit float. Frank assures us that the code here 2855 ** works for him. We, the developers, have no way to independently 2856 ** verify this, but Frank seems to know what he is talking about 2857 ** so we trust him. 2858 */ 2859 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 2860 static u64 floatSwap(u64 in){ 2861 union { 2862 u64 r; 2863 u32 i[2]; 2864 } u; 2865 u32 t; 2866 2867 u.r = in; 2868 t = u.i[0]; 2869 u.i[0] = u.i[1]; 2870 u.i[1] = t; 2871 return u.r; 2872 } 2873 # define swapMixedEndianFloat(X) X = floatSwap(X) 2874 #else 2875 # define swapMixedEndianFloat(X) 2876 #endif 2877 2878 /* 2879 ** Write the serialized data blob for the value stored in pMem into 2880 ** buf. It is assumed that the caller has allocated sufficient space. 2881 ** Return the number of bytes written. 2882 ** 2883 ** nBuf is the amount of space left in buf[]. The caller is responsible 2884 ** for allocating enough space to buf[] to hold the entire field, exclusive 2885 ** of the pMem->u.nZero bytes for a MEM_Zero value. 2886 ** 2887 ** Return the number of bytes actually written into buf[]. The number 2888 ** of bytes in the zero-filled tail is included in the return value only 2889 ** if those bytes were zeroed in buf[]. 2890 */ 2891 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 2892 u32 len; 2893 2894 /* Integer and Real */ 2895 if( serial_type<=7 && serial_type>0 ){ 2896 u64 v; 2897 u32 i; 2898 if( serial_type==7 ){ 2899 assert( sizeof(v)==sizeof(pMem->r) ); 2900 memcpy(&v, &pMem->r, sizeof(v)); 2901 swapMixedEndianFloat(v); 2902 }else{ 2903 v = pMem->u.i; 2904 } 2905 len = i = sqlite3VdbeSerialTypeLen(serial_type); 2906 while( i-- ){ 2907 buf[i] = (u8)(v&0xFF); 2908 v >>= 8; 2909 } 2910 return len; 2911 } 2912 2913 /* String or blob */ 2914 if( serial_type>=12 ){ 2915 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 2916 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 2917 len = pMem->n; 2918 memcpy(buf, pMem->z, len); 2919 return len; 2920 } 2921 2922 /* NULL or constants 0 or 1 */ 2923 return 0; 2924 } 2925 2926 /* 2927 ** Deserialize the data blob pointed to by buf as serial type serial_type 2928 ** and store the result in pMem. Return the number of bytes read. 2929 */ 2930 u32 sqlite3VdbeSerialGet( 2931 const unsigned char *buf, /* Buffer to deserialize from */ 2932 u32 serial_type, /* Serial type to deserialize */ 2933 Mem *pMem /* Memory cell to write value into */ 2934 ){ 2935 u64 x; 2936 u32 y; 2937 int i; 2938 switch( serial_type ){ 2939 case 10: /* Reserved for future use */ 2940 case 11: /* Reserved for future use */ 2941 case 0: { /* NULL */ 2942 pMem->flags = MEM_Null; 2943 break; 2944 } 2945 case 1: { /* 1-byte signed integer */ 2946 pMem->u.i = (signed char)buf[0]; 2947 pMem->flags = MEM_Int; 2948 return 1; 2949 } 2950 case 2: { /* 2-byte signed integer */ 2951 i = 256*(signed char)buf[0] | buf[1]; 2952 pMem->u.i = (i64)i; 2953 pMem->flags = MEM_Int; 2954 return 2; 2955 } 2956 case 3: { /* 3-byte signed integer */ 2957 i = 65536*(signed char)buf[0] | (buf[1]<<8) | buf[2]; 2958 pMem->u.i = (i64)i; 2959 pMem->flags = MEM_Int; 2960 return 3; 2961 } 2962 case 4: { /* 4-byte signed integer */ 2963 y = ((unsigned)buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; 2964 pMem->u.i = (i64)*(int*)&y; 2965 pMem->flags = MEM_Int; 2966 return 4; 2967 } 2968 case 5: { /* 6-byte signed integer */ 2969 x = 256*(signed char)buf[0] + buf[1]; 2970 y = ((unsigned)buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5]; 2971 x = (x<<32) | y; 2972 pMem->u.i = *(i64*)&x; 2973 pMem->flags = MEM_Int; 2974 return 6; 2975 } 2976 case 6: /* 8-byte signed integer */ 2977 case 7: { /* IEEE floating point */ 2978 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 2979 /* Verify that integers and floating point values use the same 2980 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 2981 ** defined that 64-bit floating point values really are mixed 2982 ** endian. 2983 */ 2984 static const u64 t1 = ((u64)0x3ff00000)<<32; 2985 static const double r1 = 1.0; 2986 u64 t2 = t1; 2987 swapMixedEndianFloat(t2); 2988 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 2989 #endif 2990 x = ((unsigned)buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; 2991 y = ((unsigned)buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7]; 2992 x = (x<<32) | y; 2993 if( serial_type==6 ){ 2994 pMem->u.i = *(i64*)&x; 2995 pMem->flags = MEM_Int; 2996 }else{ 2997 assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); 2998 swapMixedEndianFloat(x); 2999 memcpy(&pMem->r, &x, sizeof(x)); 3000 pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real; 3001 } 3002 return 8; 3003 } 3004 case 8: /* Integer 0 */ 3005 case 9: { /* Integer 1 */ 3006 pMem->u.i = serial_type-8; 3007 pMem->flags = MEM_Int; 3008 return 0; 3009 } 3010 default: { 3011 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3012 u32 len = (serial_type-12)/2; 3013 pMem->z = (char *)buf; 3014 pMem->n = len; 3015 pMem->xDel = 0; 3016 pMem->flags = aFlag[serial_type&1]; 3017 return len; 3018 } 3019 } 3020 return 0; 3021 } 3022 3023 /* 3024 ** This routine is used to allocate sufficient space for an UnpackedRecord 3025 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3026 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3027 ** 3028 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3029 ** the unaligned buffer passed via the second and third arguments (presumably 3030 ** stack space). If the former, then *ppFree is set to a pointer that should 3031 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3032 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3033 ** before returning. 3034 ** 3035 ** If an OOM error occurs, NULL is returned. 3036 */ 3037 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3038 KeyInfo *pKeyInfo, /* Description of the record */ 3039 char *pSpace, /* Unaligned space available */ 3040 int szSpace, /* Size of pSpace[] in bytes */ 3041 char **ppFree /* OUT: Caller should free this pointer */ 3042 ){ 3043 UnpackedRecord *p; /* Unpacked record to return */ 3044 int nOff; /* Increment pSpace by nOff to align it */ 3045 int nByte; /* Number of bytes required for *p */ 3046 3047 /* We want to shift the pointer pSpace up such that it is 8-byte aligned. 3048 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift 3049 ** it by. If pSpace is already 8-byte aligned, nOff should be zero. 3050 */ 3051 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7; 3052 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); 3053 if( nByte>szSpace+nOff ){ 3054 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3055 *ppFree = (char *)p; 3056 if( !p ) return 0; 3057 }else{ 3058 p = (UnpackedRecord*)&pSpace[nOff]; 3059 *ppFree = 0; 3060 } 3061 3062 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3063 assert( pKeyInfo->aSortOrder!=0 ); 3064 p->pKeyInfo = pKeyInfo; 3065 p->nField = pKeyInfo->nField + 1; 3066 return p; 3067 } 3068 3069 /* 3070 ** Given the nKey-byte encoding of a record in pKey[], populate the 3071 ** UnpackedRecord structure indicated by the fourth argument with the 3072 ** contents of the decoded record. 3073 */ 3074 void sqlite3VdbeRecordUnpack( 3075 KeyInfo *pKeyInfo, /* Information about the record format */ 3076 int nKey, /* Size of the binary record */ 3077 const void *pKey, /* The binary record */ 3078 UnpackedRecord *p /* Populate this structure before returning. */ 3079 ){ 3080 const unsigned char *aKey = (const unsigned char *)pKey; 3081 int d; 3082 u32 idx; /* Offset in aKey[] to read from */ 3083 u16 u; /* Unsigned loop counter */ 3084 u32 szHdr; 3085 Mem *pMem = p->aMem; 3086 3087 p->flags = 0; 3088 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3089 idx = getVarint32(aKey, szHdr); 3090 d = szHdr; 3091 u = 0; 3092 while( idx<szHdr && u<p->nField && d<=nKey ){ 3093 u32 serial_type; 3094 3095 idx += getVarint32(&aKey[idx], serial_type); 3096 pMem->enc = pKeyInfo->enc; 3097 pMem->db = pKeyInfo->db; 3098 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 3099 pMem->zMalloc = 0; 3100 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3101 pMem++; 3102 u++; 3103 } 3104 assert( u<=pKeyInfo->nField + 1 ); 3105 p->nField = u; 3106 } 3107 3108 /* 3109 ** This function compares the two table rows or index records 3110 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 3111 ** or positive integer if key1 is less than, equal to or 3112 ** greater than key2. The {nKey1, pKey1} key must be a blob 3113 ** created by th OP_MakeRecord opcode of the VDBE. The pPKey2 3114 ** key must be a parsed key such as obtained from 3115 ** sqlite3VdbeParseRecord. 3116 ** 3117 ** Key1 and Key2 do not have to contain the same number of fields. 3118 ** The key with fewer fields is usually compares less than the 3119 ** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set 3120 ** and the common prefixes are equal, then key1 is less than key2. 3121 ** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are 3122 ** equal, then the keys are considered to be equal and 3123 ** the parts beyond the common prefix are ignored. 3124 */ 3125 int sqlite3VdbeRecordCompare( 3126 int nKey1, const void *pKey1, /* Left key */ 3127 UnpackedRecord *pPKey2 /* Right key */ 3128 ){ 3129 u32 d1; /* Offset into aKey[] of next data element */ 3130 u32 idx1; /* Offset into aKey[] of next header element */ 3131 u32 szHdr1; /* Number of bytes in header */ 3132 int i = 0; 3133 int rc = 0; 3134 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3135 KeyInfo *pKeyInfo; 3136 Mem mem1; 3137 3138 pKeyInfo = pPKey2->pKeyInfo; 3139 mem1.enc = pKeyInfo->enc; 3140 mem1.db = pKeyInfo->db; 3141 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 3142 VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */ 3143 3144 /* Compilers may complain that mem1.u.i is potentially uninitialized. 3145 ** We could initialize it, as shown here, to silence those complaints. 3146 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 3147 ** the unnecessary initialization has a measurable negative performance 3148 ** impact, since this routine is a very high runner. And so, we choose 3149 ** to ignore the compiler warnings and leave this variable uninitialized. 3150 */ 3151 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 3152 3153 idx1 = getVarint32(aKey1, szHdr1); 3154 d1 = szHdr1; 3155 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB ); 3156 assert( pKeyInfo->aSortOrder!=0 ); 3157 assert( pKeyInfo->nField>0 ); 3158 assert( idx1<=szHdr1 || CORRUPT_DB ); 3159 do{ 3160 u32 serial_type1; 3161 3162 /* Read the serial types for the next element in each key. */ 3163 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 3164 3165 /* Verify that there is enough key space remaining to avoid 3166 ** a buffer overread. The "d1+serial_type1+2" subexpression will 3167 ** always be greater than or equal to the amount of required key space. 3168 ** Use that approximation to avoid the more expensive call to 3169 ** sqlite3VdbeSerialTypeLen() in the common case. 3170 */ 3171 if( d1+serial_type1+2>(u32)nKey1 3172 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 3173 ){ 3174 break; 3175 } 3176 3177 /* Extract the values to be compared. 3178 */ 3179 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 3180 3181 /* Do the comparison 3182 */ 3183 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); 3184 if( rc!=0 ){ 3185 assert( mem1.zMalloc==0 ); /* See comment below */ 3186 if( pKeyInfo->aSortOrder[i] ){ 3187 rc = -rc; /* Invert the result for DESC sort order. */ 3188 } 3189 return rc; 3190 } 3191 i++; 3192 }while( idx1<szHdr1 && i<pPKey2->nField ); 3193 3194 /* No memory allocation is ever used on mem1. Prove this using 3195 ** the following assert(). If the assert() fails, it indicates a 3196 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 3197 */ 3198 assert( mem1.zMalloc==0 ); 3199 3200 /* rc==0 here means that one of the keys ran out of fields and 3201 ** all the fields up to that point were equal. If the UNPACKED_INCRKEY 3202 ** flag is set, then break the tie by treating key2 as larger. 3203 ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes 3204 ** are considered to be equal. Otherwise, the longer key is the 3205 ** larger. As it happens, the pPKey2 will always be the longer 3206 ** if there is a difference. 3207 */ 3208 assert( rc==0 ); 3209 if( pPKey2->flags & UNPACKED_INCRKEY ){ 3210 rc = -1; 3211 }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){ 3212 /* Leave rc==0 */ 3213 }else if( idx1<szHdr1 ){ 3214 rc = 1; 3215 } 3216 return rc; 3217 } 3218 3219 3220 /* 3221 ** pCur points at an index entry created using the OP_MakeRecord opcode. 3222 ** Read the rowid (the last field in the record) and store it in *rowid. 3223 ** Return SQLITE_OK if everything works, or an error code otherwise. 3224 ** 3225 ** pCur might be pointing to text obtained from a corrupt database file. 3226 ** So the content cannot be trusted. Do appropriate checks on the content. 3227 */ 3228 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 3229 i64 nCellKey = 0; 3230 int rc; 3231 u32 szHdr; /* Size of the header */ 3232 u32 typeRowid; /* Serial type of the rowid */ 3233 u32 lenRowid; /* Size of the rowid */ 3234 Mem m, v; 3235 3236 UNUSED_PARAMETER(db); 3237 3238 /* Get the size of the index entry. Only indices entries of less 3239 ** than 2GiB are support - anything large must be database corruption. 3240 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 3241 ** this code can safely assume that nCellKey is 32-bits 3242 */ 3243 assert( sqlite3BtreeCursorIsValid(pCur) ); 3244 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); 3245 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 3246 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 3247 3248 /* Read in the complete content of the index entry */ 3249 memset(&m, 0, sizeof(m)); 3250 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m); 3251 if( rc ){ 3252 return rc; 3253 } 3254 3255 /* The index entry must begin with a header size */ 3256 (void)getVarint32((u8*)m.z, szHdr); 3257 testcase( szHdr==3 ); 3258 testcase( szHdr==m.n ); 3259 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ 3260 goto idx_rowid_corruption; 3261 } 3262 3263 /* The last field of the index should be an integer - the ROWID. 3264 ** Verify that the last entry really is an integer. */ 3265 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 3266 testcase( typeRowid==1 ); 3267 testcase( typeRowid==2 ); 3268 testcase( typeRowid==3 ); 3269 testcase( typeRowid==4 ); 3270 testcase( typeRowid==5 ); 3271 testcase( typeRowid==6 ); 3272 testcase( typeRowid==8 ); 3273 testcase( typeRowid==9 ); 3274 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 3275 goto idx_rowid_corruption; 3276 } 3277 lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); 3278 testcase( (u32)m.n==szHdr+lenRowid ); 3279 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 3280 goto idx_rowid_corruption; 3281 } 3282 3283 /* Fetch the integer off the end of the index record */ 3284 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 3285 *rowid = v.u.i; 3286 sqlite3VdbeMemRelease(&m); 3287 return SQLITE_OK; 3288 3289 /* Jump here if database corruption is detected after m has been 3290 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 3291 idx_rowid_corruption: 3292 testcase( m.zMalloc!=0 ); 3293 sqlite3VdbeMemRelease(&m); 3294 return SQLITE_CORRUPT_BKPT; 3295 } 3296 3297 /* 3298 ** Compare the key of the index entry that cursor pC is pointing to against 3299 ** the key string in pUnpacked. Write into *pRes a number 3300 ** that is negative, zero, or positive if pC is less than, equal to, 3301 ** or greater than pUnpacked. Return SQLITE_OK on success. 3302 ** 3303 ** pUnpacked is either created without a rowid or is truncated so that it 3304 ** omits the rowid at the end. The rowid at the end of the index entry 3305 ** is ignored as well. Hence, this routine only compares the prefixes 3306 ** of the keys prior to the final rowid, not the entire key. 3307 */ 3308 int sqlite3VdbeIdxKeyCompare( 3309 VdbeCursor *pC, /* The cursor to compare against */ 3310 UnpackedRecord *pUnpacked, /* Unpacked version of key to compare against */ 3311 int *res /* Write the comparison result here */ 3312 ){ 3313 i64 nCellKey = 0; 3314 int rc; 3315 BtCursor *pCur = pC->pCursor; 3316 Mem m; 3317 3318 assert( sqlite3BtreeCursorIsValid(pCur) ); 3319 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); 3320 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 3321 /* nCellKey will always be between 0 and 0xffffffff because of the say 3322 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 3323 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 3324 *res = 0; 3325 return SQLITE_CORRUPT_BKPT; 3326 } 3327 memset(&m, 0, sizeof(m)); 3328 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m); 3329 if( rc ){ 3330 return rc; 3331 } 3332 assert( pUnpacked->flags & UNPACKED_PREFIX_MATCH ); 3333 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); 3334 sqlite3VdbeMemRelease(&m); 3335 return SQLITE_OK; 3336 } 3337 3338 /* 3339 ** This routine sets the value to be returned by subsequent calls to 3340 ** sqlite3_changes() on the database handle 'db'. 3341 */ 3342 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 3343 assert( sqlite3_mutex_held(db->mutex) ); 3344 db->nChange = nChange; 3345 db->nTotalChange += nChange; 3346 } 3347 3348 /* 3349 ** Set a flag in the vdbe to update the change counter when it is finalised 3350 ** or reset. 3351 */ 3352 void sqlite3VdbeCountChanges(Vdbe *v){ 3353 v->changeCntOn = 1; 3354 } 3355 3356 /* 3357 ** Mark every prepared statement associated with a database connection 3358 ** as expired. 3359 ** 3360 ** An expired statement means that recompilation of the statement is 3361 ** recommend. Statements expire when things happen that make their 3362 ** programs obsolete. Removing user-defined functions or collating 3363 ** sequences, or changing an authorization function are the types of 3364 ** things that make prepared statements obsolete. 3365 */ 3366 void sqlite3ExpirePreparedStatements(sqlite3 *db){ 3367 Vdbe *p; 3368 for(p = db->pVdbe; p; p=p->pNext){ 3369 p->expired = 1; 3370 } 3371 } 3372 3373 /* 3374 ** Return the database associated with the Vdbe. 3375 */ 3376 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 3377 return v->db; 3378 } 3379 3380 /* 3381 ** Return a pointer to an sqlite3_value structure containing the value bound 3382 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 3383 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 3384 ** constants) to the value before returning it. 3385 ** 3386 ** The returned value must be freed by the caller using sqlite3ValueFree(). 3387 */ 3388 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 3389 assert( iVar>0 ); 3390 if( v ){ 3391 Mem *pMem = &v->aVar[iVar-1]; 3392 if( 0==(pMem->flags & MEM_Null) ){ 3393 sqlite3_value *pRet = sqlite3ValueNew(v->db); 3394 if( pRet ){ 3395 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 3396 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 3397 sqlite3VdbeMemStoreType((Mem *)pRet); 3398 } 3399 return pRet; 3400 } 3401 } 3402 return 0; 3403 } 3404 3405 /* 3406 ** Configure SQL variable iVar so that binding a new value to it signals 3407 ** to sqlite3_reoptimize() that re-preparing the statement may result 3408 ** in a better query plan. 3409 */ 3410 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 3411 assert( iVar>0 ); 3412 if( iVar>32 ){ 3413 v->expmask = 0xffffffff; 3414 }else{ 3415 v->expmask |= ((u32)1 << (iVar-1)); 3416 } 3417 } 3418 3419 #ifndef SQLITE_OMIT_VIRTUALTABLE 3420 /* 3421 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 3422 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 3423 ** in memory obtained from sqlite3DbMalloc). 3424 */ 3425 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 3426 sqlite3 *db = p->db; 3427 sqlite3DbFree(db, p->zErrMsg); 3428 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 3429 sqlite3_free(pVtab->zErrMsg); 3430 pVtab->zErrMsg = 0; 3431 } 3432 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3433