1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* 19 ** Create a new virtual database engine. 20 */ 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 22 sqlite3 *db = pParse->db; 23 Vdbe *p; 24 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 25 if( p==0 ) return 0; 26 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 27 p->db = db; 28 if( db->pVdbe ){ 29 db->pVdbe->pPrev = p; 30 } 31 p->pNext = db->pVdbe; 32 p->pPrev = 0; 33 db->pVdbe = p; 34 p->magic = VDBE_MAGIC_INIT; 35 p->pParse = pParse; 36 assert( pParse->aLabel==0 ); 37 assert( pParse->nLabel==0 ); 38 assert( pParse->nOpAlloc==0 ); 39 assert( pParse->szOpAlloc==0 ); 40 return p; 41 } 42 43 /* 44 ** Change the error string stored in Vdbe.zErrMsg 45 */ 46 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 47 va_list ap; 48 sqlite3DbFree(p->db, p->zErrMsg); 49 va_start(ap, zFormat); 50 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 51 va_end(ap); 52 } 53 54 /* 55 ** Remember the SQL string for a prepared statement. 56 */ 57 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ 58 assert( isPrepareV2==1 || isPrepareV2==0 ); 59 if( p==0 ) return; 60 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG) 61 if( !isPrepareV2 ) return; 62 #endif 63 assert( p->zSql==0 ); 64 p->zSql = sqlite3DbStrNDup(p->db, z, n); 65 p->isPrepareV2 = (u8)isPrepareV2; 66 } 67 68 /* 69 ** Swap all content between two VDBE structures. 70 */ 71 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 72 Vdbe tmp, *pTmp; 73 char *zTmp; 74 assert( pA->db==pB->db ); 75 tmp = *pA; 76 *pA = *pB; 77 *pB = tmp; 78 pTmp = pA->pNext; 79 pA->pNext = pB->pNext; 80 pB->pNext = pTmp; 81 pTmp = pA->pPrev; 82 pA->pPrev = pB->pPrev; 83 pB->pPrev = pTmp; 84 zTmp = pA->zSql; 85 pA->zSql = pB->zSql; 86 pB->zSql = zTmp; 87 pB->isPrepareV2 = pA->isPrepareV2; 88 } 89 90 /* 91 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 92 ** than its current size. nOp is guaranteed to be less than or equal 93 ** to 1024/sizeof(Op). 94 ** 95 ** If an out-of-memory error occurs while resizing the array, return 96 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain 97 ** unchanged (this is so that any opcodes already allocated can be 98 ** correctly deallocated along with the rest of the Vdbe). 99 */ 100 static int growOpArray(Vdbe *v, int nOp){ 101 VdbeOp *pNew; 102 Parse *p = v->pParse; 103 104 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 105 ** more frequent reallocs and hence provide more opportunities for 106 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 107 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 108 ** by the minimum* amount required until the size reaches 512. Normal 109 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 110 ** size of the op array or add 1KB of space, whichever is smaller. */ 111 #ifdef SQLITE_TEST_REALLOC_STRESS 112 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); 113 #else 114 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 115 UNUSED_PARAMETER(nOp); 116 #endif 117 118 assert( nOp<=(1024/sizeof(Op)) ); 119 assert( nNew>=(p->nOpAlloc+nOp) ); 120 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 121 if( pNew ){ 122 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 123 p->nOpAlloc = p->szOpAlloc/sizeof(Op); 124 v->aOp = pNew; 125 } 126 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 127 } 128 129 #ifdef SQLITE_DEBUG 130 /* This routine is just a convenient place to set a breakpoint that will 131 ** fire after each opcode is inserted and displayed using 132 ** "PRAGMA vdbe_addoptrace=on". 133 */ 134 static void test_addop_breakpoint(void){ 135 static int n = 0; 136 n++; 137 } 138 #endif 139 140 /* 141 ** Add a new instruction to the list of instructions current in the 142 ** VDBE. Return the address of the new instruction. 143 ** 144 ** Parameters: 145 ** 146 ** p Pointer to the VDBE 147 ** 148 ** op The opcode for this instruction 149 ** 150 ** p1, p2, p3 Operands 151 ** 152 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 153 ** the sqlite3VdbeChangeP4() function to change the value of the P4 154 ** operand. 155 */ 156 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 157 assert( p->pParse->nOpAlloc<=p->nOp ); 158 if( growOpArray(p, 1) ) return 1; 159 assert( p->pParse->nOpAlloc>p->nOp ); 160 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 161 } 162 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 163 int i; 164 VdbeOp *pOp; 165 166 i = p->nOp; 167 assert( p->magic==VDBE_MAGIC_INIT ); 168 assert( op>=0 && op<0xff ); 169 if( p->pParse->nOpAlloc<=i ){ 170 return growOp3(p, op, p1, p2, p3); 171 } 172 p->nOp++; 173 pOp = &p->aOp[i]; 174 pOp->opcode = (u8)op; 175 pOp->p5 = 0; 176 pOp->p1 = p1; 177 pOp->p2 = p2; 178 pOp->p3 = p3; 179 pOp->p4.p = 0; 180 pOp->p4type = P4_NOTUSED; 181 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 182 pOp->zComment = 0; 183 #endif 184 #ifdef SQLITE_DEBUG 185 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 186 int jj, kk; 187 Parse *pParse = p->pParse; 188 for(jj=kk=0; jj<pParse->nColCache; jj++){ 189 struct yColCache *x = pParse->aColCache + jj; 190 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); 191 kk++; 192 } 193 if( kk ) printf("\n"); 194 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 195 test_addop_breakpoint(); 196 } 197 #endif 198 #ifdef VDBE_PROFILE 199 pOp->cycles = 0; 200 pOp->cnt = 0; 201 #endif 202 #ifdef SQLITE_VDBE_COVERAGE 203 pOp->iSrcLine = 0; 204 #endif 205 return i; 206 } 207 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 208 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 209 } 210 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 211 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 212 } 213 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 214 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 215 } 216 217 /* Generate code for an unconditional jump to instruction iDest 218 */ 219 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 220 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 221 } 222 223 /* Generate code to cause the string zStr to be loaded into 224 ** register iDest 225 */ 226 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 227 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 228 } 229 230 /* 231 ** Generate code that initializes multiple registers to string or integer 232 ** constants. The registers begin with iDest and increase consecutively. 233 ** One register is initialized for each characgter in zTypes[]. For each 234 ** "s" character in zTypes[], the register is a string if the argument is 235 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 236 ** in zTypes[], the register is initialized to an integer. 237 */ 238 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 239 va_list ap; 240 int i; 241 char c; 242 va_start(ap, zTypes); 243 for(i=0; (c = zTypes[i])!=0; i++){ 244 if( c=='s' ){ 245 const char *z = va_arg(ap, const char*); 246 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0); 247 }else{ 248 assert( c=='i' ); 249 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++); 250 } 251 } 252 va_end(ap); 253 } 254 255 /* 256 ** Add an opcode that includes the p4 value as a pointer. 257 */ 258 int sqlite3VdbeAddOp4( 259 Vdbe *p, /* Add the opcode to this VM */ 260 int op, /* The new opcode */ 261 int p1, /* The P1 operand */ 262 int p2, /* The P2 operand */ 263 int p3, /* The P3 operand */ 264 const char *zP4, /* The P4 operand */ 265 int p4type /* P4 operand type */ 266 ){ 267 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 268 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 269 return addr; 270 } 271 272 /* 273 ** Add an opcode that includes the p4 value with a P4_INT64 or 274 ** P4_REAL type. 275 */ 276 int sqlite3VdbeAddOp4Dup8( 277 Vdbe *p, /* Add the opcode to this VM */ 278 int op, /* The new opcode */ 279 int p1, /* The P1 operand */ 280 int p2, /* The P2 operand */ 281 int p3, /* The P3 operand */ 282 const u8 *zP4, /* The P4 operand */ 283 int p4type /* P4 operand type */ 284 ){ 285 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 286 if( p4copy ) memcpy(p4copy, zP4, 8); 287 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 288 } 289 290 /* 291 ** Add an OP_ParseSchema opcode. This routine is broken out from 292 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 293 ** as having been used. 294 ** 295 ** The zWhere string must have been obtained from sqlite3_malloc(). 296 ** This routine will take ownership of the allocated memory. 297 */ 298 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 299 int j; 300 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 301 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 302 } 303 304 /* 305 ** Add an opcode that includes the p4 value as an integer. 306 */ 307 int sqlite3VdbeAddOp4Int( 308 Vdbe *p, /* Add the opcode to this VM */ 309 int op, /* The new opcode */ 310 int p1, /* The P1 operand */ 311 int p2, /* The P2 operand */ 312 int p3, /* The P3 operand */ 313 int p4 /* The P4 operand as an integer */ 314 ){ 315 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 316 if( p->db->mallocFailed==0 ){ 317 VdbeOp *pOp = &p->aOp[addr]; 318 pOp->p4type = P4_INT32; 319 pOp->p4.i = p4; 320 } 321 return addr; 322 } 323 324 /* Insert the end of a co-routine 325 */ 326 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 327 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 328 329 /* Clear the temporary register cache, thereby ensuring that each 330 ** co-routine has its own independent set of registers, because co-routines 331 ** might expect their registers to be preserved across an OP_Yield, and 332 ** that could cause problems if two or more co-routines are using the same 333 ** temporary register. 334 */ 335 v->pParse->nTempReg = 0; 336 v->pParse->nRangeReg = 0; 337 } 338 339 /* 340 ** Create a new symbolic label for an instruction that has yet to be 341 ** coded. The symbolic label is really just a negative number. The 342 ** label can be used as the P2 value of an operation. Later, when 343 ** the label is resolved to a specific address, the VDBE will scan 344 ** through its operation list and change all values of P2 which match 345 ** the label into the resolved address. 346 ** 347 ** The VDBE knows that a P2 value is a label because labels are 348 ** always negative and P2 values are suppose to be non-negative. 349 ** Hence, a negative P2 value is a label that has yet to be resolved. 350 ** 351 ** Zero is returned if a malloc() fails. 352 */ 353 int sqlite3VdbeMakeLabel(Vdbe *v){ 354 Parse *p = v->pParse; 355 int i = p->nLabel++; 356 assert( v->magic==VDBE_MAGIC_INIT ); 357 if( (i & (i-1))==0 ){ 358 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 359 (i*2+1)*sizeof(p->aLabel[0])); 360 } 361 if( p->aLabel ){ 362 p->aLabel[i] = -1; 363 } 364 return ADDR(i); 365 } 366 367 /* 368 ** Resolve label "x" to be the address of the next instruction to 369 ** be inserted. The parameter "x" must have been obtained from 370 ** a prior call to sqlite3VdbeMakeLabel(). 371 */ 372 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 373 Parse *p = v->pParse; 374 int j = ADDR(x); 375 assert( v->magic==VDBE_MAGIC_INIT ); 376 assert( j<p->nLabel ); 377 assert( j>=0 ); 378 if( p->aLabel ){ 379 p->aLabel[j] = v->nOp; 380 } 381 } 382 383 /* 384 ** Mark the VDBE as one that can only be run one time. 385 */ 386 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 387 p->runOnlyOnce = 1; 388 } 389 390 /* 391 ** Mark the VDBE as one that can only be run multiple times. 392 */ 393 void sqlite3VdbeReusable(Vdbe *p){ 394 p->runOnlyOnce = 0; 395 } 396 397 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 398 399 /* 400 ** The following type and function are used to iterate through all opcodes 401 ** in a Vdbe main program and each of the sub-programs (triggers) it may 402 ** invoke directly or indirectly. It should be used as follows: 403 ** 404 ** Op *pOp; 405 ** VdbeOpIter sIter; 406 ** 407 ** memset(&sIter, 0, sizeof(sIter)); 408 ** sIter.v = v; // v is of type Vdbe* 409 ** while( (pOp = opIterNext(&sIter)) ){ 410 ** // Do something with pOp 411 ** } 412 ** sqlite3DbFree(v->db, sIter.apSub); 413 ** 414 */ 415 typedef struct VdbeOpIter VdbeOpIter; 416 struct VdbeOpIter { 417 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 418 SubProgram **apSub; /* Array of subprograms */ 419 int nSub; /* Number of entries in apSub */ 420 int iAddr; /* Address of next instruction to return */ 421 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 422 }; 423 static Op *opIterNext(VdbeOpIter *p){ 424 Vdbe *v = p->v; 425 Op *pRet = 0; 426 Op *aOp; 427 int nOp; 428 429 if( p->iSub<=p->nSub ){ 430 431 if( p->iSub==0 ){ 432 aOp = v->aOp; 433 nOp = v->nOp; 434 }else{ 435 aOp = p->apSub[p->iSub-1]->aOp; 436 nOp = p->apSub[p->iSub-1]->nOp; 437 } 438 assert( p->iAddr<nOp ); 439 440 pRet = &aOp[p->iAddr]; 441 p->iAddr++; 442 if( p->iAddr==nOp ){ 443 p->iSub++; 444 p->iAddr = 0; 445 } 446 447 if( pRet->p4type==P4_SUBPROGRAM ){ 448 int nByte = (p->nSub+1)*sizeof(SubProgram*); 449 int j; 450 for(j=0; j<p->nSub; j++){ 451 if( p->apSub[j]==pRet->p4.pProgram ) break; 452 } 453 if( j==p->nSub ){ 454 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 455 if( !p->apSub ){ 456 pRet = 0; 457 }else{ 458 p->apSub[p->nSub++] = pRet->p4.pProgram; 459 } 460 } 461 } 462 } 463 464 return pRet; 465 } 466 467 /* 468 ** Check if the program stored in the VM associated with pParse may 469 ** throw an ABORT exception (causing the statement, but not entire transaction 470 ** to be rolled back). This condition is true if the main program or any 471 ** sub-programs contains any of the following: 472 ** 473 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 474 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 475 ** * OP_Destroy 476 ** * OP_VUpdate 477 ** * OP_VRename 478 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 479 ** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...) 480 ** 481 ** Then check that the value of Parse.mayAbort is true if an 482 ** ABORT may be thrown, or false otherwise. Return true if it does 483 ** match, or false otherwise. This function is intended to be used as 484 ** part of an assert statement in the compiler. Similar to: 485 ** 486 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 487 */ 488 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 489 int hasAbort = 0; 490 int hasFkCounter = 0; 491 int hasCreateTable = 0; 492 int hasInitCoroutine = 0; 493 Op *pOp; 494 VdbeOpIter sIter; 495 memset(&sIter, 0, sizeof(sIter)); 496 sIter.v = v; 497 498 while( (pOp = opIterNext(&sIter))!=0 ){ 499 int opcode = pOp->opcode; 500 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 501 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 502 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 503 ){ 504 hasAbort = 1; 505 break; 506 } 507 if( opcode==OP_CreateTable ) hasCreateTable = 1; 508 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 509 #ifndef SQLITE_OMIT_FOREIGN_KEY 510 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 511 hasFkCounter = 1; 512 } 513 #endif 514 } 515 sqlite3DbFree(v->db, sIter.apSub); 516 517 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 518 ** If malloc failed, then the while() loop above may not have iterated 519 ** through all opcodes and hasAbort may be set incorrectly. Return 520 ** true for this case to prevent the assert() in the callers frame 521 ** from failing. */ 522 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 523 || (hasCreateTable && hasInitCoroutine) ); 524 } 525 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 526 527 /* 528 ** This routine is called after all opcodes have been inserted. It loops 529 ** through all the opcodes and fixes up some details. 530 ** 531 ** (1) For each jump instruction with a negative P2 value (a label) 532 ** resolve the P2 value to an actual address. 533 ** 534 ** (2) Compute the maximum number of arguments used by any SQL function 535 ** and store that value in *pMaxFuncArgs. 536 ** 537 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 538 ** indicate what the prepared statement actually does. 539 ** 540 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 541 ** 542 ** (5) Reclaim the memory allocated for storing labels. 543 ** 544 ** This routine will only function correctly if the mkopcodeh.tcl generator 545 ** script numbers the opcodes correctly. Changes to this routine must be 546 ** coordinated with changes to mkopcodeh.tcl. 547 */ 548 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 549 int nMaxArgs = *pMaxFuncArgs; 550 Op *pOp; 551 Parse *pParse = p->pParse; 552 int *aLabel = pParse->aLabel; 553 p->readOnly = 1; 554 p->bIsReader = 0; 555 pOp = &p->aOp[p->nOp-1]; 556 while(1){ 557 558 /* Only JUMP opcodes and the short list of special opcodes in the switch 559 ** below need to be considered. The mkopcodeh.tcl generator script groups 560 ** all these opcodes together near the front of the opcode list. Skip 561 ** any opcode that does not need processing by virtual of the fact that 562 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 563 */ 564 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 565 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 566 ** cases from this switch! */ 567 switch( pOp->opcode ){ 568 case OP_Transaction: { 569 if( pOp->p2!=0 ) p->readOnly = 0; 570 /* fall thru */ 571 } 572 case OP_AutoCommit: 573 case OP_Savepoint: { 574 p->bIsReader = 1; 575 break; 576 } 577 #ifndef SQLITE_OMIT_WAL 578 case OP_Checkpoint: 579 #endif 580 case OP_Vacuum: 581 case OP_JournalMode: { 582 p->readOnly = 0; 583 p->bIsReader = 1; 584 break; 585 } 586 #ifndef SQLITE_OMIT_VIRTUALTABLE 587 case OP_VUpdate: { 588 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 589 break; 590 } 591 case OP_VFilter: { 592 int n; 593 assert( (pOp - p->aOp) >= 3 ); 594 assert( pOp[-1].opcode==OP_Integer ); 595 n = pOp[-1].p1; 596 if( n>nMaxArgs ) nMaxArgs = n; 597 break; 598 } 599 #endif 600 case OP_Next: 601 case OP_NextIfOpen: 602 case OP_SorterNext: { 603 pOp->p4.xAdvance = sqlite3BtreeNext; 604 pOp->p4type = P4_ADVANCE; 605 break; 606 } 607 case OP_Prev: 608 case OP_PrevIfOpen: { 609 pOp->p4.xAdvance = sqlite3BtreePrevious; 610 pOp->p4type = P4_ADVANCE; 611 break; 612 } 613 } 614 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 && pOp->p2<0 ){ 615 assert( ADDR(pOp->p2)<pParse->nLabel ); 616 pOp->p2 = aLabel[ADDR(pOp->p2)]; 617 } 618 } 619 if( pOp==p->aOp ) break; 620 pOp--; 621 } 622 sqlite3DbFree(p->db, pParse->aLabel); 623 pParse->aLabel = 0; 624 pParse->nLabel = 0; 625 *pMaxFuncArgs = nMaxArgs; 626 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 627 } 628 629 /* 630 ** Return the address of the next instruction to be inserted. 631 */ 632 int sqlite3VdbeCurrentAddr(Vdbe *p){ 633 assert( p->magic==VDBE_MAGIC_INIT ); 634 return p->nOp; 635 } 636 637 /* 638 ** Verify that at least N opcode slots are available in p without 639 ** having to malloc for more space (except when compiled using 640 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 641 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 642 ** fail due to a OOM fault and hence that the return value from 643 ** sqlite3VdbeAddOpList() will always be non-NULL. 644 */ 645 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 646 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 647 assert( p->nOp + N <= p->pParse->nOpAlloc ); 648 } 649 #endif 650 651 /* 652 ** Verify that the VM passed as the only argument does not contain 653 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 654 ** by code in pragma.c to ensure that the implementation of certain 655 ** pragmas comports with the flags specified in the mkpragmatab.tcl 656 ** script. 657 */ 658 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 659 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 660 int i; 661 for(i=0; i<p->nOp; i++){ 662 assert( p->aOp[i].opcode!=OP_ResultRow ); 663 } 664 } 665 #endif 666 667 /* 668 ** This function returns a pointer to the array of opcodes associated with 669 ** the Vdbe passed as the first argument. It is the callers responsibility 670 ** to arrange for the returned array to be eventually freed using the 671 ** vdbeFreeOpArray() function. 672 ** 673 ** Before returning, *pnOp is set to the number of entries in the returned 674 ** array. Also, *pnMaxArg is set to the larger of its current value and 675 ** the number of entries in the Vdbe.apArg[] array required to execute the 676 ** returned program. 677 */ 678 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 679 VdbeOp *aOp = p->aOp; 680 assert( aOp && !p->db->mallocFailed ); 681 682 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 683 assert( DbMaskAllZero(p->btreeMask) ); 684 685 resolveP2Values(p, pnMaxArg); 686 *pnOp = p->nOp; 687 p->aOp = 0; 688 return aOp; 689 } 690 691 /* 692 ** Add a whole list of operations to the operation stack. Return a 693 ** pointer to the first operation inserted. 694 ** 695 ** Non-zero P2 arguments to jump instructions are automatically adjusted 696 ** so that the jump target is relative to the first operation inserted. 697 */ 698 VdbeOp *sqlite3VdbeAddOpList( 699 Vdbe *p, /* Add opcodes to the prepared statement */ 700 int nOp, /* Number of opcodes to add */ 701 VdbeOpList const *aOp, /* The opcodes to be added */ 702 int iLineno /* Source-file line number of first opcode */ 703 ){ 704 int i; 705 VdbeOp *pOut, *pFirst; 706 assert( nOp>0 ); 707 assert( p->magic==VDBE_MAGIC_INIT ); 708 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ 709 return 0; 710 } 711 pFirst = pOut = &p->aOp[p->nOp]; 712 for(i=0; i<nOp; i++, aOp++, pOut++){ 713 pOut->opcode = aOp->opcode; 714 pOut->p1 = aOp->p1; 715 pOut->p2 = aOp->p2; 716 assert( aOp->p2>=0 ); 717 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 718 pOut->p2 += p->nOp; 719 } 720 pOut->p3 = aOp->p3; 721 pOut->p4type = P4_NOTUSED; 722 pOut->p4.p = 0; 723 pOut->p5 = 0; 724 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 725 pOut->zComment = 0; 726 #endif 727 #ifdef SQLITE_VDBE_COVERAGE 728 pOut->iSrcLine = iLineno+i; 729 #else 730 (void)iLineno; 731 #endif 732 #ifdef SQLITE_DEBUG 733 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 734 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 735 } 736 #endif 737 } 738 p->nOp += nOp; 739 return pFirst; 740 } 741 742 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 743 /* 744 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 745 */ 746 void sqlite3VdbeScanStatus( 747 Vdbe *p, /* VM to add scanstatus() to */ 748 int addrExplain, /* Address of OP_Explain (or 0) */ 749 int addrLoop, /* Address of loop counter */ 750 int addrVisit, /* Address of rows visited counter */ 751 LogEst nEst, /* Estimated number of output rows */ 752 const char *zName /* Name of table or index being scanned */ 753 ){ 754 int nByte = (p->nScan+1) * sizeof(ScanStatus); 755 ScanStatus *aNew; 756 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 757 if( aNew ){ 758 ScanStatus *pNew = &aNew[p->nScan++]; 759 pNew->addrExplain = addrExplain; 760 pNew->addrLoop = addrLoop; 761 pNew->addrVisit = addrVisit; 762 pNew->nEst = nEst; 763 pNew->zName = sqlite3DbStrDup(p->db, zName); 764 p->aScan = aNew; 765 } 766 } 767 #endif 768 769 770 /* 771 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 772 ** for a specific instruction. 773 */ 774 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){ 775 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 776 } 777 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ 778 sqlite3VdbeGetOp(p,addr)->p1 = val; 779 } 780 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ 781 sqlite3VdbeGetOp(p,addr)->p2 = val; 782 } 783 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ 784 sqlite3VdbeGetOp(p,addr)->p3 = val; 785 } 786 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 787 assert( p->nOp>0 || p->db->mallocFailed ); 788 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 789 } 790 791 /* 792 ** Change the P2 operand of instruction addr so that it points to 793 ** the address of the next instruction to be coded. 794 */ 795 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 796 sqlite3VdbeChangeP2(p, addr, p->nOp); 797 } 798 799 800 /* 801 ** If the input FuncDef structure is ephemeral, then free it. If 802 ** the FuncDef is not ephermal, then do nothing. 803 */ 804 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 805 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 806 sqlite3DbFree(db, pDef); 807 } 808 } 809 810 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 811 812 /* 813 ** Delete a P4 value if necessary. 814 */ 815 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 816 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 817 sqlite3DbFree(db, p); 818 } 819 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 820 freeEphemeralFunction(db, p->pFunc); 821 sqlite3DbFree(db, p); 822 } 823 static void freeP4(sqlite3 *db, int p4type, void *p4){ 824 assert( db ); 825 switch( p4type ){ 826 case P4_FUNCCTX: { 827 freeP4FuncCtx(db, (sqlite3_context*)p4); 828 break; 829 } 830 case P4_REAL: 831 case P4_INT64: 832 case P4_DYNAMIC: 833 case P4_INTARRAY: { 834 sqlite3DbFree(db, p4); 835 break; 836 } 837 case P4_KEYINFO: { 838 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 839 break; 840 } 841 #ifdef SQLITE_ENABLE_CURSOR_HINTS 842 case P4_EXPR: { 843 sqlite3ExprDelete(db, (Expr*)p4); 844 break; 845 } 846 #endif 847 case P4_FUNCDEF: { 848 freeEphemeralFunction(db, (FuncDef*)p4); 849 break; 850 } 851 case P4_MEM: { 852 if( db->pnBytesFreed==0 ){ 853 sqlite3ValueFree((sqlite3_value*)p4); 854 }else{ 855 freeP4Mem(db, (Mem*)p4); 856 } 857 break; 858 } 859 case P4_VTAB : { 860 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 861 break; 862 } 863 } 864 } 865 866 /* 867 ** Free the space allocated for aOp and any p4 values allocated for the 868 ** opcodes contained within. If aOp is not NULL it is assumed to contain 869 ** nOp entries. 870 */ 871 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 872 if( aOp ){ 873 Op *pOp; 874 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ 875 if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p); 876 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 877 sqlite3DbFree(db, pOp->zComment); 878 #endif 879 } 880 } 881 sqlite3DbFree(db, aOp); 882 } 883 884 /* 885 ** Link the SubProgram object passed as the second argument into the linked 886 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 887 ** objects when the VM is no longer required. 888 */ 889 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 890 p->pNext = pVdbe->pProgram; 891 pVdbe->pProgram = p; 892 } 893 894 /* 895 ** Change the opcode at addr into OP_Noop 896 */ 897 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 898 VdbeOp *pOp; 899 if( p->db->mallocFailed ) return 0; 900 assert( addr>=0 && addr<p->nOp ); 901 pOp = &p->aOp[addr]; 902 freeP4(p->db, pOp->p4type, pOp->p4.p); 903 pOp->p4type = P4_NOTUSED; 904 pOp->p4.z = 0; 905 pOp->opcode = OP_Noop; 906 return 1; 907 } 908 909 /* 910 ** If the last opcode is "op" and it is not a jump destination, 911 ** then remove it. Return true if and only if an opcode was removed. 912 */ 913 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 914 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 915 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 916 }else{ 917 return 0; 918 } 919 } 920 921 /* 922 ** Change the value of the P4 operand for a specific instruction. 923 ** This routine is useful when a large program is loaded from a 924 ** static array using sqlite3VdbeAddOpList but we want to make a 925 ** few minor changes to the program. 926 ** 927 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 928 ** the string is made into memory obtained from sqlite3_malloc(). 929 ** A value of n==0 means copy bytes of zP4 up to and including the 930 ** first null byte. If n>0 then copy n+1 bytes of zP4. 931 ** 932 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 933 ** to a string or structure that is guaranteed to exist for the lifetime of 934 ** the Vdbe. In these cases we can just copy the pointer. 935 ** 936 ** If addr<0 then change P4 on the most recently inserted instruction. 937 */ 938 static void SQLITE_NOINLINE vdbeChangeP4Full( 939 Vdbe *p, 940 Op *pOp, 941 const char *zP4, 942 int n 943 ){ 944 if( pOp->p4type ){ 945 freeP4(p->db, pOp->p4type, pOp->p4.p); 946 pOp->p4type = 0; 947 pOp->p4.p = 0; 948 } 949 if( n<0 ){ 950 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 951 }else{ 952 if( n==0 ) n = sqlite3Strlen30(zP4); 953 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 954 pOp->p4type = P4_DYNAMIC; 955 } 956 } 957 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 958 Op *pOp; 959 sqlite3 *db; 960 assert( p!=0 ); 961 db = p->db; 962 assert( p->magic==VDBE_MAGIC_INIT ); 963 assert( p->aOp!=0 || db->mallocFailed ); 964 if( db->mallocFailed ){ 965 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 966 return; 967 } 968 assert( p->nOp>0 ); 969 assert( addr<p->nOp ); 970 if( addr<0 ){ 971 addr = p->nOp - 1; 972 } 973 pOp = &p->aOp[addr]; 974 if( n>=0 || pOp->p4type ){ 975 vdbeChangeP4Full(p, pOp, zP4, n); 976 return; 977 } 978 if( n==P4_INT32 ){ 979 /* Note: this cast is safe, because the origin data point was an int 980 ** that was cast to a (const char *). */ 981 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 982 pOp->p4type = P4_INT32; 983 }else if( zP4!=0 ){ 984 assert( n<0 ); 985 pOp->p4.p = (void*)zP4; 986 pOp->p4type = (signed char)n; 987 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 988 } 989 } 990 991 /* 992 ** Change the P4 operand of the most recently coded instruction 993 ** to the value defined by the arguments. This is a high-speed 994 ** version of sqlite3VdbeChangeP4(). 995 ** 996 ** The P4 operand must not have been previously defined. And the new 997 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 998 ** those cases. 999 */ 1000 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1001 VdbeOp *pOp; 1002 assert( n!=P4_INT32 && n!=P4_VTAB ); 1003 assert( n<=0 ); 1004 if( p->db->mallocFailed ){ 1005 freeP4(p->db, n, pP4); 1006 }else{ 1007 assert( pP4!=0 ); 1008 assert( p->nOp>0 ); 1009 pOp = &p->aOp[p->nOp-1]; 1010 assert( pOp->p4type==P4_NOTUSED ); 1011 pOp->p4type = n; 1012 pOp->p4.p = pP4; 1013 } 1014 } 1015 1016 /* 1017 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1018 ** index given. 1019 */ 1020 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1021 Vdbe *v = pParse->pVdbe; 1022 KeyInfo *pKeyInfo; 1023 assert( v!=0 ); 1024 assert( pIdx!=0 ); 1025 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1026 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1027 } 1028 1029 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1030 /* 1031 ** Change the comment on the most recently coded instruction. Or 1032 ** insert a No-op and add the comment to that new instruction. This 1033 ** makes the code easier to read during debugging. None of this happens 1034 ** in a production build. 1035 */ 1036 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1037 assert( p->nOp>0 || p->aOp==0 ); 1038 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 1039 if( p->nOp ){ 1040 assert( p->aOp ); 1041 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1042 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1043 } 1044 } 1045 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1046 va_list ap; 1047 if( p ){ 1048 va_start(ap, zFormat); 1049 vdbeVComment(p, zFormat, ap); 1050 va_end(ap); 1051 } 1052 } 1053 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1054 va_list ap; 1055 if( p ){ 1056 sqlite3VdbeAddOp0(p, OP_Noop); 1057 va_start(ap, zFormat); 1058 vdbeVComment(p, zFormat, ap); 1059 va_end(ap); 1060 } 1061 } 1062 #endif /* NDEBUG */ 1063 1064 #ifdef SQLITE_VDBE_COVERAGE 1065 /* 1066 ** Set the value if the iSrcLine field for the previously coded instruction. 1067 */ 1068 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1069 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1070 } 1071 #endif /* SQLITE_VDBE_COVERAGE */ 1072 1073 /* 1074 ** Return the opcode for a given address. If the address is -1, then 1075 ** return the most recently inserted opcode. 1076 ** 1077 ** If a memory allocation error has occurred prior to the calling of this 1078 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1079 ** is readable but not writable, though it is cast to a writable value. 1080 ** The return of a dummy opcode allows the call to continue functioning 1081 ** after an OOM fault without having to check to see if the return from 1082 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1083 ** dummy will never be written to. This is verified by code inspection and 1084 ** by running with Valgrind. 1085 */ 1086 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1087 /* C89 specifies that the constant "dummy" will be initialized to all 1088 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1089 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1090 assert( p->magic==VDBE_MAGIC_INIT ); 1091 if( addr<0 ){ 1092 addr = p->nOp - 1; 1093 } 1094 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1095 if( p->db->mallocFailed ){ 1096 return (VdbeOp*)&dummy; 1097 }else{ 1098 return &p->aOp[addr]; 1099 } 1100 } 1101 1102 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1103 /* 1104 ** Return an integer value for one of the parameters to the opcode pOp 1105 ** determined by character c. 1106 */ 1107 static int translateP(char c, const Op *pOp){ 1108 if( c=='1' ) return pOp->p1; 1109 if( c=='2' ) return pOp->p2; 1110 if( c=='3' ) return pOp->p3; 1111 if( c=='4' ) return pOp->p4.i; 1112 return pOp->p5; 1113 } 1114 1115 /* 1116 ** Compute a string for the "comment" field of a VDBE opcode listing. 1117 ** 1118 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1119 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1120 ** absence of other comments, this synopsis becomes the comment on the opcode. 1121 ** Some translation occurs: 1122 ** 1123 ** "PX" -> "r[X]" 1124 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1125 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1126 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1127 */ 1128 static int displayComment( 1129 const Op *pOp, /* The opcode to be commented */ 1130 const char *zP4, /* Previously obtained value for P4 */ 1131 char *zTemp, /* Write result here */ 1132 int nTemp /* Space available in zTemp[] */ 1133 ){ 1134 const char *zOpName; 1135 const char *zSynopsis; 1136 int nOpName; 1137 int ii, jj; 1138 char zAlt[50]; 1139 zOpName = sqlite3OpcodeName(pOp->opcode); 1140 nOpName = sqlite3Strlen30(zOpName); 1141 if( zOpName[nOpName+1] ){ 1142 int seenCom = 0; 1143 char c; 1144 zSynopsis = zOpName += nOpName + 1; 1145 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1146 if( pOp->p5 & SQLITE_STOREP2 ){ 1147 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3); 1148 }else{ 1149 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1150 } 1151 zSynopsis = zAlt; 1152 } 1153 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 1154 if( c=='P' ){ 1155 c = zSynopsis[++ii]; 1156 if( c=='4' ){ 1157 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 1158 }else if( c=='X' ){ 1159 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 1160 seenCom = 1; 1161 }else{ 1162 int v1 = translateP(c, pOp); 1163 int v2; 1164 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 1165 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1166 ii += 3; 1167 jj += sqlite3Strlen30(zTemp+jj); 1168 v2 = translateP(zSynopsis[ii], pOp); 1169 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1170 ii += 2; 1171 v2++; 1172 } 1173 if( v2>1 ){ 1174 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 1175 } 1176 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1177 ii += 4; 1178 } 1179 } 1180 jj += sqlite3Strlen30(zTemp+jj); 1181 }else{ 1182 zTemp[jj++] = c; 1183 } 1184 } 1185 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 1186 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 1187 jj += sqlite3Strlen30(zTemp+jj); 1188 } 1189 if( jj<nTemp ) zTemp[jj] = 0; 1190 }else if( pOp->zComment ){ 1191 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 1192 jj = sqlite3Strlen30(zTemp); 1193 }else{ 1194 zTemp[0] = 0; 1195 jj = 0; 1196 } 1197 return jj; 1198 } 1199 #endif /* SQLITE_DEBUG */ 1200 1201 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1202 /* 1203 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1204 ** that can be displayed in the P4 column of EXPLAIN output. 1205 */ 1206 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1207 const char *zOp = 0; 1208 switch( pExpr->op ){ 1209 case TK_STRING: 1210 sqlite3XPrintf(p, "%Q", pExpr->u.zToken); 1211 break; 1212 case TK_INTEGER: 1213 sqlite3XPrintf(p, "%d", pExpr->u.iValue); 1214 break; 1215 case TK_NULL: 1216 sqlite3XPrintf(p, "NULL"); 1217 break; 1218 case TK_REGISTER: { 1219 sqlite3XPrintf(p, "r[%d]", pExpr->iTable); 1220 break; 1221 } 1222 case TK_COLUMN: { 1223 if( pExpr->iColumn<0 ){ 1224 sqlite3XPrintf(p, "rowid"); 1225 }else{ 1226 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn); 1227 } 1228 break; 1229 } 1230 case TK_LT: zOp = "LT"; break; 1231 case TK_LE: zOp = "LE"; break; 1232 case TK_GT: zOp = "GT"; break; 1233 case TK_GE: zOp = "GE"; break; 1234 case TK_NE: zOp = "NE"; break; 1235 case TK_EQ: zOp = "EQ"; break; 1236 case TK_IS: zOp = "IS"; break; 1237 case TK_ISNOT: zOp = "ISNOT"; break; 1238 case TK_AND: zOp = "AND"; break; 1239 case TK_OR: zOp = "OR"; break; 1240 case TK_PLUS: zOp = "ADD"; break; 1241 case TK_STAR: zOp = "MUL"; break; 1242 case TK_MINUS: zOp = "SUB"; break; 1243 case TK_REM: zOp = "REM"; break; 1244 case TK_BITAND: zOp = "BITAND"; break; 1245 case TK_BITOR: zOp = "BITOR"; break; 1246 case TK_SLASH: zOp = "DIV"; break; 1247 case TK_LSHIFT: zOp = "LSHIFT"; break; 1248 case TK_RSHIFT: zOp = "RSHIFT"; break; 1249 case TK_CONCAT: zOp = "CONCAT"; break; 1250 case TK_UMINUS: zOp = "MINUS"; break; 1251 case TK_UPLUS: zOp = "PLUS"; break; 1252 case TK_BITNOT: zOp = "BITNOT"; break; 1253 case TK_NOT: zOp = "NOT"; break; 1254 case TK_ISNULL: zOp = "ISNULL"; break; 1255 case TK_NOTNULL: zOp = "NOTNULL"; break; 1256 1257 default: 1258 sqlite3XPrintf(p, "%s", "expr"); 1259 break; 1260 } 1261 1262 if( zOp ){ 1263 sqlite3XPrintf(p, "%s(", zOp); 1264 displayP4Expr(p, pExpr->pLeft); 1265 if( pExpr->pRight ){ 1266 sqlite3StrAccumAppend(p, ",", 1); 1267 displayP4Expr(p, pExpr->pRight); 1268 } 1269 sqlite3StrAccumAppend(p, ")", 1); 1270 } 1271 } 1272 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1273 1274 1275 #if VDBE_DISPLAY_P4 1276 /* 1277 ** Compute a string that describes the P4 parameter for an opcode. 1278 ** Use zTemp for any required temporary buffer space. 1279 */ 1280 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 1281 char *zP4 = zTemp; 1282 StrAccum x; 1283 assert( nTemp>=20 ); 1284 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0); 1285 switch( pOp->p4type ){ 1286 case P4_KEYINFO: { 1287 int j; 1288 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1289 assert( pKeyInfo->aSortOrder!=0 ); 1290 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nField); 1291 for(j=0; j<pKeyInfo->nField; j++){ 1292 CollSeq *pColl = pKeyInfo->aColl[j]; 1293 const char *zColl = pColl ? pColl->zName : ""; 1294 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1295 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl); 1296 } 1297 sqlite3StrAccumAppend(&x, ")", 1); 1298 break; 1299 } 1300 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1301 case P4_EXPR: { 1302 displayP4Expr(&x, pOp->p4.pExpr); 1303 break; 1304 } 1305 #endif 1306 case P4_COLLSEQ: { 1307 CollSeq *pColl = pOp->p4.pColl; 1308 sqlite3XPrintf(&x, "(%.20s)", pColl->zName); 1309 break; 1310 } 1311 case P4_FUNCDEF: { 1312 FuncDef *pDef = pOp->p4.pFunc; 1313 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1314 break; 1315 } 1316 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1317 case P4_FUNCCTX: { 1318 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1319 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1320 break; 1321 } 1322 #endif 1323 case P4_INT64: { 1324 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64); 1325 break; 1326 } 1327 case P4_INT32: { 1328 sqlite3XPrintf(&x, "%d", pOp->p4.i); 1329 break; 1330 } 1331 case P4_REAL: { 1332 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal); 1333 break; 1334 } 1335 case P4_MEM: { 1336 Mem *pMem = pOp->p4.pMem; 1337 if( pMem->flags & MEM_Str ){ 1338 zP4 = pMem->z; 1339 }else if( pMem->flags & MEM_Int ){ 1340 sqlite3XPrintf(&x, "%lld", pMem->u.i); 1341 }else if( pMem->flags & MEM_Real ){ 1342 sqlite3XPrintf(&x, "%.16g", pMem->u.r); 1343 }else if( pMem->flags & MEM_Null ){ 1344 zP4 = "NULL"; 1345 }else{ 1346 assert( pMem->flags & MEM_Blob ); 1347 zP4 = "(blob)"; 1348 } 1349 break; 1350 } 1351 #ifndef SQLITE_OMIT_VIRTUALTABLE 1352 case P4_VTAB: { 1353 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1354 sqlite3XPrintf(&x, "vtab:%p", pVtab); 1355 break; 1356 } 1357 #endif 1358 case P4_INTARRAY: { 1359 int i; 1360 int *ai = pOp->p4.ai; 1361 int n = ai[0]; /* The first element of an INTARRAY is always the 1362 ** count of the number of elements to follow */ 1363 for(i=1; i<n; i++){ 1364 sqlite3XPrintf(&x, ",%d", ai[i]); 1365 } 1366 zTemp[0] = '['; 1367 sqlite3StrAccumAppend(&x, "]", 1); 1368 break; 1369 } 1370 case P4_SUBPROGRAM: { 1371 sqlite3XPrintf(&x, "program"); 1372 break; 1373 } 1374 case P4_ADVANCE: { 1375 zTemp[0] = 0; 1376 break; 1377 } 1378 case P4_TABLE: { 1379 sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName); 1380 break; 1381 } 1382 default: { 1383 zP4 = pOp->p4.z; 1384 if( zP4==0 ){ 1385 zP4 = zTemp; 1386 zTemp[0] = 0; 1387 } 1388 } 1389 } 1390 sqlite3StrAccumFinish(&x); 1391 assert( zP4!=0 ); 1392 return zP4; 1393 } 1394 #endif /* VDBE_DISPLAY_P4 */ 1395 1396 /* 1397 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1398 ** 1399 ** The prepared statements need to know in advance the complete set of 1400 ** attached databases that will be use. A mask of these databases 1401 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1402 ** p->btreeMask of databases that will require a lock. 1403 */ 1404 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1405 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1406 assert( i<(int)sizeof(p->btreeMask)*8 ); 1407 DbMaskSet(p->btreeMask, i); 1408 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1409 DbMaskSet(p->lockMask, i); 1410 } 1411 } 1412 1413 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1414 /* 1415 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1416 ** this routine obtains the mutex associated with each BtShared structure 1417 ** that may be accessed by the VM passed as an argument. In doing so it also 1418 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1419 ** that the correct busy-handler callback is invoked if required. 1420 ** 1421 ** If SQLite is not threadsafe but does support shared-cache mode, then 1422 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1423 ** of all of BtShared structures accessible via the database handle 1424 ** associated with the VM. 1425 ** 1426 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1427 ** function is a no-op. 1428 ** 1429 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1430 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1431 ** corresponding to btrees that use shared cache. Then the runtime of 1432 ** this routine is N*N. But as N is rarely more than 1, this should not 1433 ** be a problem. 1434 */ 1435 void sqlite3VdbeEnter(Vdbe *p){ 1436 int i; 1437 sqlite3 *db; 1438 Db *aDb; 1439 int nDb; 1440 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1441 db = p->db; 1442 aDb = db->aDb; 1443 nDb = db->nDb; 1444 for(i=0; i<nDb; i++){ 1445 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1446 sqlite3BtreeEnter(aDb[i].pBt); 1447 } 1448 } 1449 } 1450 #endif 1451 1452 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1453 /* 1454 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1455 */ 1456 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1457 int i; 1458 sqlite3 *db; 1459 Db *aDb; 1460 int nDb; 1461 db = p->db; 1462 aDb = db->aDb; 1463 nDb = db->nDb; 1464 for(i=0; i<nDb; i++){ 1465 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1466 sqlite3BtreeLeave(aDb[i].pBt); 1467 } 1468 } 1469 } 1470 void sqlite3VdbeLeave(Vdbe *p){ 1471 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1472 vdbeLeave(p); 1473 } 1474 #endif 1475 1476 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1477 /* 1478 ** Print a single opcode. This routine is used for debugging only. 1479 */ 1480 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ 1481 char *zP4; 1482 char zPtr[50]; 1483 char zCom[100]; 1484 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1485 if( pOut==0 ) pOut = stdout; 1486 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1487 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1488 displayComment(pOp, zP4, zCom, sizeof(zCom)); 1489 #else 1490 zCom[0] = 0; 1491 #endif 1492 /* NB: The sqlite3OpcodeName() function is implemented by code created 1493 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1494 ** information from the vdbe.c source text */ 1495 fprintf(pOut, zFormat1, pc, 1496 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1497 zCom 1498 ); 1499 fflush(pOut); 1500 } 1501 #endif 1502 1503 /* 1504 ** Initialize an array of N Mem element. 1505 */ 1506 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1507 while( (N--)>0 ){ 1508 p->db = db; 1509 p->flags = flags; 1510 p->szMalloc = 0; 1511 #ifdef SQLITE_DEBUG 1512 p->pScopyFrom = 0; 1513 #endif 1514 p++; 1515 } 1516 } 1517 1518 /* 1519 ** Release an array of N Mem elements 1520 */ 1521 static void releaseMemArray(Mem *p, int N){ 1522 if( p && N ){ 1523 Mem *pEnd = &p[N]; 1524 sqlite3 *db = p->db; 1525 if( db->pnBytesFreed ){ 1526 do{ 1527 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1528 }while( (++p)<pEnd ); 1529 return; 1530 } 1531 do{ 1532 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1533 assert( sqlite3VdbeCheckMemInvariants(p) ); 1534 1535 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1536 ** that takes advantage of the fact that the memory cell value is 1537 ** being set to NULL after releasing any dynamic resources. 1538 ** 1539 ** The justification for duplicating code is that according to 1540 ** callgrind, this causes a certain test case to hit the CPU 4.7 1541 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1542 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1543 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1544 ** with no indexes using a single prepared INSERT statement, bind() 1545 ** and reset(). Inserts are grouped into a transaction. 1546 */ 1547 testcase( p->flags & MEM_Agg ); 1548 testcase( p->flags & MEM_Dyn ); 1549 testcase( p->flags & MEM_Frame ); 1550 testcase( p->flags & MEM_RowSet ); 1551 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ 1552 sqlite3VdbeMemRelease(p); 1553 }else if( p->szMalloc ){ 1554 sqlite3DbFree(db, p->zMalloc); 1555 p->szMalloc = 0; 1556 } 1557 1558 p->flags = MEM_Undefined; 1559 }while( (++p)<pEnd ); 1560 } 1561 } 1562 1563 /* 1564 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1565 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1566 */ 1567 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1568 int i; 1569 Mem *aMem = VdbeFrameMem(p); 1570 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1571 for(i=0; i<p->nChildCsr; i++){ 1572 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1573 } 1574 releaseMemArray(aMem, p->nChildMem); 1575 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 1576 sqlite3DbFree(p->v->db, p); 1577 } 1578 1579 #ifndef SQLITE_OMIT_EXPLAIN 1580 /* 1581 ** Give a listing of the program in the virtual machine. 1582 ** 1583 ** The interface is the same as sqlite3VdbeExec(). But instead of 1584 ** running the code, it invokes the callback once for each instruction. 1585 ** This feature is used to implement "EXPLAIN". 1586 ** 1587 ** When p->explain==1, each instruction is listed. When 1588 ** p->explain==2, only OP_Explain instructions are listed and these 1589 ** are shown in a different format. p->explain==2 is used to implement 1590 ** EXPLAIN QUERY PLAN. 1591 ** 1592 ** When p->explain==1, first the main program is listed, then each of 1593 ** the trigger subprograms are listed one by one. 1594 */ 1595 int sqlite3VdbeList( 1596 Vdbe *p /* The VDBE */ 1597 ){ 1598 int nRow; /* Stop when row count reaches this */ 1599 int nSub = 0; /* Number of sub-vdbes seen so far */ 1600 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1601 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1602 sqlite3 *db = p->db; /* The database connection */ 1603 int i; /* Loop counter */ 1604 int rc = SQLITE_OK; /* Return code */ 1605 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 1606 1607 assert( p->explain ); 1608 assert( p->magic==VDBE_MAGIC_RUN ); 1609 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1610 1611 /* Even though this opcode does not use dynamic strings for 1612 ** the result, result columns may become dynamic if the user calls 1613 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1614 */ 1615 releaseMemArray(pMem, 8); 1616 p->pResultSet = 0; 1617 1618 if( p->rc==SQLITE_NOMEM_BKPT ){ 1619 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1620 ** sqlite3_column_text16() failed. */ 1621 sqlite3OomFault(db); 1622 return SQLITE_ERROR; 1623 } 1624 1625 /* When the number of output rows reaches nRow, that means the 1626 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1627 ** nRow is the sum of the number of rows in the main program, plus 1628 ** the sum of the number of rows in all trigger subprograms encountered 1629 ** so far. The nRow value will increase as new trigger subprograms are 1630 ** encountered, but p->pc will eventually catch up to nRow. 1631 */ 1632 nRow = p->nOp; 1633 if( p->explain==1 ){ 1634 /* The first 8 memory cells are used for the result set. So we will 1635 ** commandeer the 9th cell to use as storage for an array of pointers 1636 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1637 ** cells. */ 1638 assert( p->nMem>9 ); 1639 pSub = &p->aMem[9]; 1640 if( pSub->flags&MEM_Blob ){ 1641 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1642 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1643 nSub = pSub->n/sizeof(Vdbe*); 1644 apSub = (SubProgram **)pSub->z; 1645 } 1646 for(i=0; i<nSub; i++){ 1647 nRow += apSub[i]->nOp; 1648 } 1649 } 1650 1651 do{ 1652 i = p->pc++; 1653 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); 1654 if( i>=nRow ){ 1655 p->rc = SQLITE_OK; 1656 rc = SQLITE_DONE; 1657 }else if( db->u1.isInterrupted ){ 1658 p->rc = SQLITE_INTERRUPT; 1659 rc = SQLITE_ERROR; 1660 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 1661 }else{ 1662 char *zP4; 1663 Op *pOp; 1664 if( i<p->nOp ){ 1665 /* The output line number is small enough that we are still in the 1666 ** main program. */ 1667 pOp = &p->aOp[i]; 1668 }else{ 1669 /* We are currently listing subprograms. Figure out which one and 1670 ** pick up the appropriate opcode. */ 1671 int j; 1672 i -= p->nOp; 1673 for(j=0; i>=apSub[j]->nOp; j++){ 1674 i -= apSub[j]->nOp; 1675 } 1676 pOp = &apSub[j]->aOp[i]; 1677 } 1678 if( p->explain==1 ){ 1679 pMem->flags = MEM_Int; 1680 pMem->u.i = i; /* Program counter */ 1681 pMem++; 1682 1683 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1684 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1685 assert( pMem->z!=0 ); 1686 pMem->n = sqlite3Strlen30(pMem->z); 1687 pMem->enc = SQLITE_UTF8; 1688 pMem++; 1689 1690 /* When an OP_Program opcode is encounter (the only opcode that has 1691 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1692 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1693 ** has not already been seen. 1694 */ 1695 if( pOp->p4type==P4_SUBPROGRAM ){ 1696 int nByte = (nSub+1)*sizeof(SubProgram*); 1697 int j; 1698 for(j=0; j<nSub; j++){ 1699 if( apSub[j]==pOp->p4.pProgram ) break; 1700 } 1701 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){ 1702 apSub = (SubProgram **)pSub->z; 1703 apSub[nSub++] = pOp->p4.pProgram; 1704 pSub->flags |= MEM_Blob; 1705 pSub->n = nSub*sizeof(SubProgram*); 1706 } 1707 } 1708 } 1709 1710 pMem->flags = MEM_Int; 1711 pMem->u.i = pOp->p1; /* P1 */ 1712 pMem++; 1713 1714 pMem->flags = MEM_Int; 1715 pMem->u.i = pOp->p2; /* P2 */ 1716 pMem++; 1717 1718 pMem->flags = MEM_Int; 1719 pMem->u.i = pOp->p3; /* P3 */ 1720 pMem++; 1721 1722 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */ 1723 assert( p->db->mallocFailed ); 1724 return SQLITE_ERROR; 1725 } 1726 pMem->flags = MEM_Str|MEM_Term; 1727 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc); 1728 if( zP4!=pMem->z ){ 1729 pMem->n = 0; 1730 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 1731 }else{ 1732 assert( pMem->z!=0 ); 1733 pMem->n = sqlite3Strlen30(pMem->z); 1734 pMem->enc = SQLITE_UTF8; 1735 } 1736 pMem++; 1737 1738 if( p->explain==1 ){ 1739 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ 1740 assert( p->db->mallocFailed ); 1741 return SQLITE_ERROR; 1742 } 1743 pMem->flags = MEM_Str|MEM_Term; 1744 pMem->n = 2; 1745 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1746 pMem->enc = SQLITE_UTF8; 1747 pMem++; 1748 1749 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1750 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ 1751 assert( p->db->mallocFailed ); 1752 return SQLITE_ERROR; 1753 } 1754 pMem->flags = MEM_Str|MEM_Term; 1755 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 1756 pMem->enc = SQLITE_UTF8; 1757 #else 1758 pMem->flags = MEM_Null; /* Comment */ 1759 #endif 1760 } 1761 1762 p->nResColumn = 8 - 4*(p->explain-1); 1763 p->pResultSet = &p->aMem[1]; 1764 p->rc = SQLITE_OK; 1765 rc = SQLITE_ROW; 1766 } 1767 return rc; 1768 } 1769 #endif /* SQLITE_OMIT_EXPLAIN */ 1770 1771 #ifdef SQLITE_DEBUG 1772 /* 1773 ** Print the SQL that was used to generate a VDBE program. 1774 */ 1775 void sqlite3VdbePrintSql(Vdbe *p){ 1776 const char *z = 0; 1777 if( p->zSql ){ 1778 z = p->zSql; 1779 }else if( p->nOp>=1 ){ 1780 const VdbeOp *pOp = &p->aOp[0]; 1781 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1782 z = pOp->p4.z; 1783 while( sqlite3Isspace(*z) ) z++; 1784 } 1785 } 1786 if( z ) printf("SQL: [%s]\n", z); 1787 } 1788 #endif 1789 1790 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 1791 /* 1792 ** Print an IOTRACE message showing SQL content. 1793 */ 1794 void sqlite3VdbeIOTraceSql(Vdbe *p){ 1795 int nOp = p->nOp; 1796 VdbeOp *pOp; 1797 if( sqlite3IoTrace==0 ) return; 1798 if( nOp<1 ) return; 1799 pOp = &p->aOp[0]; 1800 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1801 int i, j; 1802 char z[1000]; 1803 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 1804 for(i=0; sqlite3Isspace(z[i]); i++){} 1805 for(j=0; z[i]; i++){ 1806 if( sqlite3Isspace(z[i]) ){ 1807 if( z[i-1]!=' ' ){ 1808 z[j++] = ' '; 1809 } 1810 }else{ 1811 z[j++] = z[i]; 1812 } 1813 } 1814 z[j] = 0; 1815 sqlite3IoTrace("SQL %s\n", z); 1816 } 1817 } 1818 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 1819 1820 /* An instance of this object describes bulk memory available for use 1821 ** by subcomponents of a prepared statement. Space is allocated out 1822 ** of a ReusableSpace object by the allocSpace() routine below. 1823 */ 1824 struct ReusableSpace { 1825 u8 *pSpace; /* Available memory */ 1826 int nFree; /* Bytes of available memory */ 1827 int nNeeded; /* Total bytes that could not be allocated */ 1828 }; 1829 1830 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 1831 ** from the ReusableSpace object. Return a pointer to the allocated 1832 ** memory on success. If insufficient memory is available in the 1833 ** ReusableSpace object, increase the ReusableSpace.nNeeded 1834 ** value by the amount needed and return NULL. 1835 ** 1836 ** If pBuf is not initially NULL, that means that the memory has already 1837 ** been allocated by a prior call to this routine, so just return a copy 1838 ** of pBuf and leave ReusableSpace unchanged. 1839 ** 1840 ** This allocator is employed to repurpose unused slots at the end of the 1841 ** opcode array of prepared state for other memory needs of the prepared 1842 ** statement. 1843 */ 1844 static void *allocSpace( 1845 struct ReusableSpace *p, /* Bulk memory available for allocation */ 1846 void *pBuf, /* Pointer to a prior allocation */ 1847 int nByte /* Bytes of memory needed */ 1848 ){ 1849 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 1850 if( pBuf==0 ){ 1851 nByte = ROUND8(nByte); 1852 if( nByte <= p->nFree ){ 1853 p->nFree -= nByte; 1854 pBuf = &p->pSpace[p->nFree]; 1855 }else{ 1856 p->nNeeded += nByte; 1857 } 1858 } 1859 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 1860 return pBuf; 1861 } 1862 1863 /* 1864 ** Rewind the VDBE back to the beginning in preparation for 1865 ** running it. 1866 */ 1867 void sqlite3VdbeRewind(Vdbe *p){ 1868 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1869 int i; 1870 #endif 1871 assert( p!=0 ); 1872 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET ); 1873 1874 /* There should be at least one opcode. 1875 */ 1876 assert( p->nOp>0 ); 1877 1878 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 1879 p->magic = VDBE_MAGIC_RUN; 1880 1881 #ifdef SQLITE_DEBUG 1882 for(i=0; i<p->nMem; i++){ 1883 assert( p->aMem[i].db==p->db ); 1884 } 1885 #endif 1886 p->pc = -1; 1887 p->rc = SQLITE_OK; 1888 p->errorAction = OE_Abort; 1889 p->nChange = 0; 1890 p->cacheCtr = 1; 1891 p->minWriteFileFormat = 255; 1892 p->iStatement = 0; 1893 p->nFkConstraint = 0; 1894 #ifdef VDBE_PROFILE 1895 for(i=0; i<p->nOp; i++){ 1896 p->aOp[i].cnt = 0; 1897 p->aOp[i].cycles = 0; 1898 } 1899 #endif 1900 } 1901 1902 /* 1903 ** Prepare a virtual machine for execution for the first time after 1904 ** creating the virtual machine. This involves things such 1905 ** as allocating registers and initializing the program counter. 1906 ** After the VDBE has be prepped, it can be executed by one or more 1907 ** calls to sqlite3VdbeExec(). 1908 ** 1909 ** This function may be called exactly once on each virtual machine. 1910 ** After this routine is called the VM has been "packaged" and is ready 1911 ** to run. After this routine is called, further calls to 1912 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 1913 ** the Vdbe from the Parse object that helped generate it so that the 1914 ** the Vdbe becomes an independent entity and the Parse object can be 1915 ** destroyed. 1916 ** 1917 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 1918 ** to its initial state after it has been run. 1919 */ 1920 void sqlite3VdbeMakeReady( 1921 Vdbe *p, /* The VDBE */ 1922 Parse *pParse /* Parsing context */ 1923 ){ 1924 sqlite3 *db; /* The database connection */ 1925 int nVar; /* Number of parameters */ 1926 int nMem; /* Number of VM memory registers */ 1927 int nCursor; /* Number of cursors required */ 1928 int nArg; /* Number of arguments in subprograms */ 1929 int n; /* Loop counter */ 1930 struct ReusableSpace x; /* Reusable bulk memory */ 1931 1932 assert( p!=0 ); 1933 assert( p->nOp>0 ); 1934 assert( pParse!=0 ); 1935 assert( p->magic==VDBE_MAGIC_INIT ); 1936 assert( pParse==p->pParse ); 1937 db = p->db; 1938 assert( db->mallocFailed==0 ); 1939 nVar = pParse->nVar; 1940 nMem = pParse->nMem; 1941 nCursor = pParse->nTab; 1942 nArg = pParse->nMaxArg; 1943 1944 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 1945 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 1946 ** space at the end of aMem[] for cursors 1 and greater. 1947 ** See also: allocateCursor(). 1948 */ 1949 nMem += nCursor; 1950 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 1951 1952 /* Figure out how much reusable memory is available at the end of the 1953 ** opcode array. This extra memory will be reallocated for other elements 1954 ** of the prepared statement. 1955 */ 1956 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 1957 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 1958 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 1959 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 1960 assert( x.nFree>=0 ); 1961 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 1962 1963 resolveP2Values(p, &nArg); 1964 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 1965 if( pParse->explain && nMem<10 ){ 1966 nMem = 10; 1967 } 1968 p->expired = 0; 1969 1970 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 1971 ** passes. On the first pass, we try to reuse unused memory at the 1972 ** end of the opcode array. If we are unable to satisfy all memory 1973 ** requirements by reusing the opcode array tail, then the second 1974 ** pass will fill in the remainder using a fresh memory allocation. 1975 ** 1976 ** This two-pass approach that reuses as much memory as possible from 1977 ** the leftover memory at the end of the opcode array. This can significantly 1978 ** reduce the amount of memory held by a prepared statement. 1979 */ 1980 do { 1981 x.nNeeded = 0; 1982 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 1983 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 1984 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 1985 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 1986 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1987 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 1988 #endif 1989 if( x.nNeeded==0 ) break; 1990 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 1991 x.nFree = x.nNeeded; 1992 }while( !db->mallocFailed ); 1993 1994 p->pVList = pParse->pVList; 1995 pParse->pVList = 0; 1996 p->explain = pParse->explain; 1997 if( db->mallocFailed ){ 1998 p->nVar = 0; 1999 p->nCursor = 0; 2000 p->nMem = 0; 2001 }else{ 2002 p->nCursor = nCursor; 2003 p->nVar = (ynVar)nVar; 2004 initMemArray(p->aVar, nVar, db, MEM_Null); 2005 p->nMem = nMem; 2006 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2007 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2008 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2009 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2010 #endif 2011 } 2012 sqlite3VdbeRewind(p); 2013 } 2014 2015 /* 2016 ** Close a VDBE cursor and release all the resources that cursor 2017 ** happens to hold. 2018 */ 2019 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2020 if( pCx==0 ){ 2021 return; 2022 } 2023 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE ); 2024 switch( pCx->eCurType ){ 2025 case CURTYPE_SORTER: { 2026 sqlite3VdbeSorterClose(p->db, pCx); 2027 break; 2028 } 2029 case CURTYPE_BTREE: { 2030 if( pCx->pBtx ){ 2031 sqlite3BtreeClose(pCx->pBtx); 2032 /* The pCx->pCursor will be close automatically, if it exists, by 2033 ** the call above. */ 2034 }else{ 2035 assert( pCx->uc.pCursor!=0 ); 2036 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2037 } 2038 break; 2039 } 2040 #ifndef SQLITE_OMIT_VIRTUALTABLE 2041 case CURTYPE_VTAB: { 2042 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2043 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2044 assert( pVCur->pVtab->nRef>0 ); 2045 pVCur->pVtab->nRef--; 2046 pModule->xClose(pVCur); 2047 break; 2048 } 2049 #endif 2050 } 2051 } 2052 2053 /* 2054 ** Close all cursors in the current frame. 2055 */ 2056 static void closeCursorsInFrame(Vdbe *p){ 2057 if( p->apCsr ){ 2058 int i; 2059 for(i=0; i<p->nCursor; i++){ 2060 VdbeCursor *pC = p->apCsr[i]; 2061 if( pC ){ 2062 sqlite3VdbeFreeCursor(p, pC); 2063 p->apCsr[i] = 0; 2064 } 2065 } 2066 } 2067 } 2068 2069 /* 2070 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2071 ** is used, for example, when a trigger sub-program is halted to restore 2072 ** control to the main program. 2073 */ 2074 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2075 Vdbe *v = pFrame->v; 2076 closeCursorsInFrame(v); 2077 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2078 v->anExec = pFrame->anExec; 2079 #endif 2080 v->aOp = pFrame->aOp; 2081 v->nOp = pFrame->nOp; 2082 v->aMem = pFrame->aMem; 2083 v->nMem = pFrame->nMem; 2084 v->apCsr = pFrame->apCsr; 2085 v->nCursor = pFrame->nCursor; 2086 v->db->lastRowid = pFrame->lastRowid; 2087 v->nChange = pFrame->nChange; 2088 v->db->nChange = pFrame->nDbChange; 2089 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2090 v->pAuxData = pFrame->pAuxData; 2091 pFrame->pAuxData = 0; 2092 return pFrame->pc; 2093 } 2094 2095 /* 2096 ** Close all cursors. 2097 ** 2098 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2099 ** cell array. This is necessary as the memory cell array may contain 2100 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2101 ** open cursors. 2102 */ 2103 static void closeAllCursors(Vdbe *p){ 2104 if( p->pFrame ){ 2105 VdbeFrame *pFrame; 2106 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2107 sqlite3VdbeFrameRestore(pFrame); 2108 p->pFrame = 0; 2109 p->nFrame = 0; 2110 } 2111 assert( p->nFrame==0 ); 2112 closeCursorsInFrame(p); 2113 if( p->aMem ){ 2114 releaseMemArray(p->aMem, p->nMem); 2115 } 2116 while( p->pDelFrame ){ 2117 VdbeFrame *pDel = p->pDelFrame; 2118 p->pDelFrame = pDel->pParent; 2119 sqlite3VdbeFrameDelete(pDel); 2120 } 2121 2122 /* Delete any auxdata allocations made by the VM */ 2123 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2124 assert( p->pAuxData==0 ); 2125 } 2126 2127 /* 2128 ** Clean up the VM after a single run. 2129 */ 2130 static void Cleanup(Vdbe *p){ 2131 sqlite3 *db = p->db; 2132 2133 #ifdef SQLITE_DEBUG 2134 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 2135 ** Vdbe.aMem[] arrays have already been cleaned up. */ 2136 int i; 2137 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 2138 if( p->aMem ){ 2139 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 2140 } 2141 #endif 2142 2143 sqlite3DbFree(db, p->zErrMsg); 2144 p->zErrMsg = 0; 2145 p->pResultSet = 0; 2146 } 2147 2148 /* 2149 ** Set the number of result columns that will be returned by this SQL 2150 ** statement. This is now set at compile time, rather than during 2151 ** execution of the vdbe program so that sqlite3_column_count() can 2152 ** be called on an SQL statement before sqlite3_step(). 2153 */ 2154 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2155 Mem *pColName; 2156 int n; 2157 sqlite3 *db = p->db; 2158 2159 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2160 sqlite3DbFree(db, p->aColName); 2161 n = nResColumn*COLNAME_N; 2162 p->nResColumn = (u16)nResColumn; 2163 p->aColName = pColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2164 if( p->aColName==0 ) return; 2165 initMemArray(p->aColName, n, p->db, MEM_Null); 2166 } 2167 2168 /* 2169 ** Set the name of the idx'th column to be returned by the SQL statement. 2170 ** zName must be a pointer to a nul terminated string. 2171 ** 2172 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2173 ** 2174 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2175 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2176 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2177 */ 2178 int sqlite3VdbeSetColName( 2179 Vdbe *p, /* Vdbe being configured */ 2180 int idx, /* Index of column zName applies to */ 2181 int var, /* One of the COLNAME_* constants */ 2182 const char *zName, /* Pointer to buffer containing name */ 2183 void (*xDel)(void*) /* Memory management strategy for zName */ 2184 ){ 2185 int rc; 2186 Mem *pColName; 2187 assert( idx<p->nResColumn ); 2188 assert( var<COLNAME_N ); 2189 if( p->db->mallocFailed ){ 2190 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2191 return SQLITE_NOMEM_BKPT; 2192 } 2193 assert( p->aColName!=0 ); 2194 pColName = &(p->aColName[idx+var*p->nResColumn]); 2195 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2196 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2197 return rc; 2198 } 2199 2200 /* 2201 ** A read or write transaction may or may not be active on database handle 2202 ** db. If a transaction is active, commit it. If there is a 2203 ** write-transaction spanning more than one database file, this routine 2204 ** takes care of the master journal trickery. 2205 */ 2206 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2207 int i; 2208 int nTrans = 0; /* Number of databases with an active write-transaction 2209 ** that are candidates for a two-phase commit using a 2210 ** master-journal */ 2211 int rc = SQLITE_OK; 2212 int needXcommit = 0; 2213 2214 #ifdef SQLITE_OMIT_VIRTUALTABLE 2215 /* With this option, sqlite3VtabSync() is defined to be simply 2216 ** SQLITE_OK so p is not used. 2217 */ 2218 UNUSED_PARAMETER(p); 2219 #endif 2220 2221 /* Before doing anything else, call the xSync() callback for any 2222 ** virtual module tables written in this transaction. This has to 2223 ** be done before determining whether a master journal file is 2224 ** required, as an xSync() callback may add an attached database 2225 ** to the transaction. 2226 */ 2227 rc = sqlite3VtabSync(db, p); 2228 2229 /* This loop determines (a) if the commit hook should be invoked and 2230 ** (b) how many database files have open write transactions, not 2231 ** including the temp database. (b) is important because if more than 2232 ** one database file has an open write transaction, a master journal 2233 ** file is required for an atomic commit. 2234 */ 2235 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2236 Btree *pBt = db->aDb[i].pBt; 2237 if( sqlite3BtreeIsInTrans(pBt) ){ 2238 /* Whether or not a database might need a master journal depends upon 2239 ** its journal mode (among other things). This matrix determines which 2240 ** journal modes use a master journal and which do not */ 2241 static const u8 aMJNeeded[] = { 2242 /* DELETE */ 1, 2243 /* PERSIST */ 1, 2244 /* OFF */ 0, 2245 /* TRUNCATE */ 1, 2246 /* MEMORY */ 0, 2247 /* WAL */ 0 2248 }; 2249 Pager *pPager; /* Pager associated with pBt */ 2250 needXcommit = 1; 2251 sqlite3BtreeEnter(pBt); 2252 pPager = sqlite3BtreePager(pBt); 2253 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2254 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2255 ){ 2256 assert( i!=1 ); 2257 nTrans++; 2258 } 2259 rc = sqlite3PagerExclusiveLock(pPager); 2260 sqlite3BtreeLeave(pBt); 2261 } 2262 } 2263 if( rc!=SQLITE_OK ){ 2264 return rc; 2265 } 2266 2267 /* If there are any write-transactions at all, invoke the commit hook */ 2268 if( needXcommit && db->xCommitCallback ){ 2269 rc = db->xCommitCallback(db->pCommitArg); 2270 if( rc ){ 2271 return SQLITE_CONSTRAINT_COMMITHOOK; 2272 } 2273 } 2274 2275 /* The simple case - no more than one database file (not counting the 2276 ** TEMP database) has a transaction active. There is no need for the 2277 ** master-journal. 2278 ** 2279 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2280 ** string, it means the main database is :memory: or a temp file. In 2281 ** that case we do not support atomic multi-file commits, so use the 2282 ** simple case then too. 2283 */ 2284 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2285 || nTrans<=1 2286 ){ 2287 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2288 Btree *pBt = db->aDb[i].pBt; 2289 if( pBt ){ 2290 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2291 } 2292 } 2293 2294 /* Do the commit only if all databases successfully complete phase 1. 2295 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2296 ** IO error while deleting or truncating a journal file. It is unlikely, 2297 ** but could happen. In this case abandon processing and return the error. 2298 */ 2299 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2300 Btree *pBt = db->aDb[i].pBt; 2301 if( pBt ){ 2302 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2303 } 2304 } 2305 if( rc==SQLITE_OK ){ 2306 sqlite3VtabCommit(db); 2307 } 2308 } 2309 2310 /* The complex case - There is a multi-file write-transaction active. 2311 ** This requires a master journal file to ensure the transaction is 2312 ** committed atomically. 2313 */ 2314 #ifndef SQLITE_OMIT_DISKIO 2315 else{ 2316 sqlite3_vfs *pVfs = db->pVfs; 2317 char *zMaster = 0; /* File-name for the master journal */ 2318 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2319 sqlite3_file *pMaster = 0; 2320 i64 offset = 0; 2321 int res; 2322 int retryCount = 0; 2323 int nMainFile; 2324 2325 /* Select a master journal file name */ 2326 nMainFile = sqlite3Strlen30(zMainFile); 2327 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); 2328 if( zMaster==0 ) return SQLITE_NOMEM_BKPT; 2329 do { 2330 u32 iRandom; 2331 if( retryCount ){ 2332 if( retryCount>100 ){ 2333 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 2334 sqlite3OsDelete(pVfs, zMaster, 0); 2335 break; 2336 }else if( retryCount==1 ){ 2337 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2338 } 2339 } 2340 retryCount++; 2341 sqlite3_randomness(sizeof(iRandom), &iRandom); 2342 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2343 (iRandom>>8)&0xffffff, iRandom&0xff); 2344 /* The antipenultimate character of the master journal name must 2345 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2346 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2347 sqlite3FileSuffix3(zMainFile, zMaster); 2348 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2349 }while( rc==SQLITE_OK && res ); 2350 if( rc==SQLITE_OK ){ 2351 /* Open the master journal. */ 2352 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2353 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2354 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2355 ); 2356 } 2357 if( rc!=SQLITE_OK ){ 2358 sqlite3DbFree(db, zMaster); 2359 return rc; 2360 } 2361 2362 /* Write the name of each database file in the transaction into the new 2363 ** master journal file. If an error occurs at this point close 2364 ** and delete the master journal file. All the individual journal files 2365 ** still have 'null' as the master journal pointer, so they will roll 2366 ** back independently if a failure occurs. 2367 */ 2368 for(i=0; i<db->nDb; i++){ 2369 Btree *pBt = db->aDb[i].pBt; 2370 if( sqlite3BtreeIsInTrans(pBt) ){ 2371 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2372 if( zFile==0 ){ 2373 continue; /* Ignore TEMP and :memory: databases */ 2374 } 2375 assert( zFile[0]!=0 ); 2376 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2377 offset += sqlite3Strlen30(zFile)+1; 2378 if( rc!=SQLITE_OK ){ 2379 sqlite3OsCloseFree(pMaster); 2380 sqlite3OsDelete(pVfs, zMaster, 0); 2381 sqlite3DbFree(db, zMaster); 2382 return rc; 2383 } 2384 } 2385 } 2386 2387 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2388 ** flag is set this is not required. 2389 */ 2390 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2391 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2392 ){ 2393 sqlite3OsCloseFree(pMaster); 2394 sqlite3OsDelete(pVfs, zMaster, 0); 2395 sqlite3DbFree(db, zMaster); 2396 return rc; 2397 } 2398 2399 /* Sync all the db files involved in the transaction. The same call 2400 ** sets the master journal pointer in each individual journal. If 2401 ** an error occurs here, do not delete the master journal file. 2402 ** 2403 ** If the error occurs during the first call to 2404 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2405 ** master journal file will be orphaned. But we cannot delete it, 2406 ** in case the master journal file name was written into the journal 2407 ** file before the failure occurred. 2408 */ 2409 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2410 Btree *pBt = db->aDb[i].pBt; 2411 if( pBt ){ 2412 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2413 } 2414 } 2415 sqlite3OsCloseFree(pMaster); 2416 assert( rc!=SQLITE_BUSY ); 2417 if( rc!=SQLITE_OK ){ 2418 sqlite3DbFree(db, zMaster); 2419 return rc; 2420 } 2421 2422 /* Delete the master journal file. This commits the transaction. After 2423 ** doing this the directory is synced again before any individual 2424 ** transaction files are deleted. 2425 */ 2426 rc = sqlite3OsDelete(pVfs, zMaster, 1); 2427 sqlite3DbFree(db, zMaster); 2428 zMaster = 0; 2429 if( rc ){ 2430 return rc; 2431 } 2432 2433 /* All files and directories have already been synced, so the following 2434 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2435 ** deleting or truncating journals. If something goes wrong while 2436 ** this is happening we don't really care. The integrity of the 2437 ** transaction is already guaranteed, but some stray 'cold' journals 2438 ** may be lying around. Returning an error code won't help matters. 2439 */ 2440 disable_simulated_io_errors(); 2441 sqlite3BeginBenignMalloc(); 2442 for(i=0; i<db->nDb; i++){ 2443 Btree *pBt = db->aDb[i].pBt; 2444 if( pBt ){ 2445 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2446 } 2447 } 2448 sqlite3EndBenignMalloc(); 2449 enable_simulated_io_errors(); 2450 2451 sqlite3VtabCommit(db); 2452 } 2453 #endif 2454 2455 return rc; 2456 } 2457 2458 /* 2459 ** This routine checks that the sqlite3.nVdbeActive count variable 2460 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2461 ** currently active. An assertion fails if the two counts do not match. 2462 ** This is an internal self-check only - it is not an essential processing 2463 ** step. 2464 ** 2465 ** This is a no-op if NDEBUG is defined. 2466 */ 2467 #ifndef NDEBUG 2468 static void checkActiveVdbeCnt(sqlite3 *db){ 2469 Vdbe *p; 2470 int cnt = 0; 2471 int nWrite = 0; 2472 int nRead = 0; 2473 p = db->pVdbe; 2474 while( p ){ 2475 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2476 cnt++; 2477 if( p->readOnly==0 ) nWrite++; 2478 if( p->bIsReader ) nRead++; 2479 } 2480 p = p->pNext; 2481 } 2482 assert( cnt==db->nVdbeActive ); 2483 assert( nWrite==db->nVdbeWrite ); 2484 assert( nRead==db->nVdbeRead ); 2485 } 2486 #else 2487 #define checkActiveVdbeCnt(x) 2488 #endif 2489 2490 /* 2491 ** If the Vdbe passed as the first argument opened a statement-transaction, 2492 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2493 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2494 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2495 ** statement transaction is committed. 2496 ** 2497 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2498 ** Otherwise SQLITE_OK. 2499 */ 2500 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2501 sqlite3 *const db = p->db; 2502 int rc = SQLITE_OK; 2503 2504 /* If p->iStatement is greater than zero, then this Vdbe opened a 2505 ** statement transaction that should be closed here. The only exception 2506 ** is that an IO error may have occurred, causing an emergency rollback. 2507 ** In this case (db->nStatement==0), and there is nothing to do. 2508 */ 2509 if( db->nStatement && p->iStatement ){ 2510 int i; 2511 const int iSavepoint = p->iStatement-1; 2512 2513 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2514 assert( db->nStatement>0 ); 2515 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2516 2517 for(i=0; i<db->nDb; i++){ 2518 int rc2 = SQLITE_OK; 2519 Btree *pBt = db->aDb[i].pBt; 2520 if( pBt ){ 2521 if( eOp==SAVEPOINT_ROLLBACK ){ 2522 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2523 } 2524 if( rc2==SQLITE_OK ){ 2525 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2526 } 2527 if( rc==SQLITE_OK ){ 2528 rc = rc2; 2529 } 2530 } 2531 } 2532 db->nStatement--; 2533 p->iStatement = 0; 2534 2535 if( rc==SQLITE_OK ){ 2536 if( eOp==SAVEPOINT_ROLLBACK ){ 2537 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2538 } 2539 if( rc==SQLITE_OK ){ 2540 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2541 } 2542 } 2543 2544 /* If the statement transaction is being rolled back, also restore the 2545 ** database handles deferred constraint counter to the value it had when 2546 ** the statement transaction was opened. */ 2547 if( eOp==SAVEPOINT_ROLLBACK ){ 2548 db->nDeferredCons = p->nStmtDefCons; 2549 db->nDeferredImmCons = p->nStmtDefImmCons; 2550 } 2551 } 2552 return rc; 2553 } 2554 2555 /* 2556 ** This function is called when a transaction opened by the database 2557 ** handle associated with the VM passed as an argument is about to be 2558 ** committed. If there are outstanding deferred foreign key constraint 2559 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2560 ** 2561 ** If there are outstanding FK violations and this function returns 2562 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2563 ** and write an error message to it. Then return SQLITE_ERROR. 2564 */ 2565 #ifndef SQLITE_OMIT_FOREIGN_KEY 2566 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2567 sqlite3 *db = p->db; 2568 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2569 || (!deferred && p->nFkConstraint>0) 2570 ){ 2571 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2572 p->errorAction = OE_Abort; 2573 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2574 return SQLITE_ERROR; 2575 } 2576 return SQLITE_OK; 2577 } 2578 #endif 2579 2580 /* 2581 ** This routine is called the when a VDBE tries to halt. If the VDBE 2582 ** has made changes and is in autocommit mode, then commit those 2583 ** changes. If a rollback is needed, then do the rollback. 2584 ** 2585 ** This routine is the only way to move the state of a VM from 2586 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2587 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2588 ** 2589 ** Return an error code. If the commit could not complete because of 2590 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2591 ** means the close did not happen and needs to be repeated. 2592 */ 2593 int sqlite3VdbeHalt(Vdbe *p){ 2594 int rc; /* Used to store transient return codes */ 2595 sqlite3 *db = p->db; 2596 2597 /* This function contains the logic that determines if a statement or 2598 ** transaction will be committed or rolled back as a result of the 2599 ** execution of this virtual machine. 2600 ** 2601 ** If any of the following errors occur: 2602 ** 2603 ** SQLITE_NOMEM 2604 ** SQLITE_IOERR 2605 ** SQLITE_FULL 2606 ** SQLITE_INTERRUPT 2607 ** 2608 ** Then the internal cache might have been left in an inconsistent 2609 ** state. We need to rollback the statement transaction, if there is 2610 ** one, or the complete transaction if there is no statement transaction. 2611 */ 2612 2613 if( db->mallocFailed ){ 2614 p->rc = SQLITE_NOMEM_BKPT; 2615 } 2616 closeAllCursors(p); 2617 if( p->magic!=VDBE_MAGIC_RUN ){ 2618 return SQLITE_OK; 2619 } 2620 checkActiveVdbeCnt(db); 2621 2622 /* No commit or rollback needed if the program never started or if the 2623 ** SQL statement does not read or write a database file. */ 2624 if( p->pc>=0 && p->bIsReader ){ 2625 int mrc; /* Primary error code from p->rc */ 2626 int eStatementOp = 0; 2627 int isSpecialError; /* Set to true if a 'special' error */ 2628 2629 /* Lock all btrees used by the statement */ 2630 sqlite3VdbeEnter(p); 2631 2632 /* Check for one of the special errors */ 2633 mrc = p->rc & 0xff; 2634 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2635 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2636 if( isSpecialError ){ 2637 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2638 ** no rollback is necessary. Otherwise, at least a savepoint 2639 ** transaction must be rolled back to restore the database to a 2640 ** consistent state. 2641 ** 2642 ** Even if the statement is read-only, it is important to perform 2643 ** a statement or transaction rollback operation. If the error 2644 ** occurred while writing to the journal, sub-journal or database 2645 ** file as part of an effort to free up cache space (see function 2646 ** pagerStress() in pager.c), the rollback is required to restore 2647 ** the pager to a consistent state. 2648 */ 2649 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2650 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2651 eStatementOp = SAVEPOINT_ROLLBACK; 2652 }else{ 2653 /* We are forced to roll back the active transaction. Before doing 2654 ** so, abort any other statements this handle currently has active. 2655 */ 2656 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2657 sqlite3CloseSavepoints(db); 2658 db->autoCommit = 1; 2659 p->nChange = 0; 2660 } 2661 } 2662 } 2663 2664 /* Check for immediate foreign key violations. */ 2665 if( p->rc==SQLITE_OK ){ 2666 sqlite3VdbeCheckFk(p, 0); 2667 } 2668 2669 /* If the auto-commit flag is set and this is the only active writer 2670 ** VM, then we do either a commit or rollback of the current transaction. 2671 ** 2672 ** Note: This block also runs if one of the special errors handled 2673 ** above has occurred. 2674 */ 2675 if( !sqlite3VtabInSync(db) 2676 && db->autoCommit 2677 && db->nVdbeWrite==(p->readOnly==0) 2678 ){ 2679 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2680 rc = sqlite3VdbeCheckFk(p, 1); 2681 if( rc!=SQLITE_OK ){ 2682 if( NEVER(p->readOnly) ){ 2683 sqlite3VdbeLeave(p); 2684 return SQLITE_ERROR; 2685 } 2686 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2687 }else{ 2688 /* The auto-commit flag is true, the vdbe program was successful 2689 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2690 ** key constraints to hold up the transaction. This means a commit 2691 ** is required. */ 2692 rc = vdbeCommit(db, p); 2693 } 2694 if( rc==SQLITE_BUSY && p->readOnly ){ 2695 sqlite3VdbeLeave(p); 2696 return SQLITE_BUSY; 2697 }else if( rc!=SQLITE_OK ){ 2698 p->rc = rc; 2699 sqlite3RollbackAll(db, SQLITE_OK); 2700 p->nChange = 0; 2701 }else{ 2702 db->nDeferredCons = 0; 2703 db->nDeferredImmCons = 0; 2704 db->flags &= ~SQLITE_DeferFKs; 2705 sqlite3CommitInternalChanges(db); 2706 } 2707 }else{ 2708 sqlite3RollbackAll(db, SQLITE_OK); 2709 p->nChange = 0; 2710 } 2711 db->nStatement = 0; 2712 }else if( eStatementOp==0 ){ 2713 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2714 eStatementOp = SAVEPOINT_RELEASE; 2715 }else if( p->errorAction==OE_Abort ){ 2716 eStatementOp = SAVEPOINT_ROLLBACK; 2717 }else{ 2718 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2719 sqlite3CloseSavepoints(db); 2720 db->autoCommit = 1; 2721 p->nChange = 0; 2722 } 2723 } 2724 2725 /* If eStatementOp is non-zero, then a statement transaction needs to 2726 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2727 ** do so. If this operation returns an error, and the current statement 2728 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2729 ** current statement error code. 2730 */ 2731 if( eStatementOp ){ 2732 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2733 if( rc ){ 2734 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 2735 p->rc = rc; 2736 sqlite3DbFree(db, p->zErrMsg); 2737 p->zErrMsg = 0; 2738 } 2739 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2740 sqlite3CloseSavepoints(db); 2741 db->autoCommit = 1; 2742 p->nChange = 0; 2743 } 2744 } 2745 2746 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2747 ** has been rolled back, update the database connection change-counter. 2748 */ 2749 if( p->changeCntOn ){ 2750 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2751 sqlite3VdbeSetChanges(db, p->nChange); 2752 }else{ 2753 sqlite3VdbeSetChanges(db, 0); 2754 } 2755 p->nChange = 0; 2756 } 2757 2758 /* Release the locks */ 2759 sqlite3VdbeLeave(p); 2760 } 2761 2762 /* We have successfully halted and closed the VM. Record this fact. */ 2763 if( p->pc>=0 ){ 2764 db->nVdbeActive--; 2765 if( !p->readOnly ) db->nVdbeWrite--; 2766 if( p->bIsReader ) db->nVdbeRead--; 2767 assert( db->nVdbeActive>=db->nVdbeRead ); 2768 assert( db->nVdbeRead>=db->nVdbeWrite ); 2769 assert( db->nVdbeWrite>=0 ); 2770 } 2771 p->magic = VDBE_MAGIC_HALT; 2772 checkActiveVdbeCnt(db); 2773 if( db->mallocFailed ){ 2774 p->rc = SQLITE_NOMEM_BKPT; 2775 } 2776 2777 /* If the auto-commit flag is set to true, then any locks that were held 2778 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2779 ** to invoke any required unlock-notify callbacks. 2780 */ 2781 if( db->autoCommit ){ 2782 sqlite3ConnectionUnlocked(db); 2783 } 2784 2785 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 2786 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 2787 } 2788 2789 2790 /* 2791 ** Each VDBE holds the result of the most recent sqlite3_step() call 2792 ** in p->rc. This routine sets that result back to SQLITE_OK. 2793 */ 2794 void sqlite3VdbeResetStepResult(Vdbe *p){ 2795 p->rc = SQLITE_OK; 2796 } 2797 2798 /* 2799 ** Copy the error code and error message belonging to the VDBE passed 2800 ** as the first argument to its database handle (so that they will be 2801 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 2802 ** 2803 ** This function does not clear the VDBE error code or message, just 2804 ** copies them to the database handle. 2805 */ 2806 int sqlite3VdbeTransferError(Vdbe *p){ 2807 sqlite3 *db = p->db; 2808 int rc = p->rc; 2809 if( p->zErrMsg ){ 2810 db->bBenignMalloc++; 2811 sqlite3BeginBenignMalloc(); 2812 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 2813 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 2814 sqlite3EndBenignMalloc(); 2815 db->bBenignMalloc--; 2816 db->errCode = rc; 2817 }else{ 2818 sqlite3Error(db, rc); 2819 } 2820 return rc; 2821 } 2822 2823 #ifdef SQLITE_ENABLE_SQLLOG 2824 /* 2825 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 2826 ** invoke it. 2827 */ 2828 static void vdbeInvokeSqllog(Vdbe *v){ 2829 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 2830 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 2831 assert( v->db->init.busy==0 ); 2832 if( zExpanded ){ 2833 sqlite3GlobalConfig.xSqllog( 2834 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 2835 ); 2836 sqlite3DbFree(v->db, zExpanded); 2837 } 2838 } 2839 } 2840 #else 2841 # define vdbeInvokeSqllog(x) 2842 #endif 2843 2844 /* 2845 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 2846 ** Write any error messages into *pzErrMsg. Return the result code. 2847 ** 2848 ** After this routine is run, the VDBE should be ready to be executed 2849 ** again. 2850 ** 2851 ** To look at it another way, this routine resets the state of the 2852 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 2853 ** VDBE_MAGIC_INIT. 2854 */ 2855 int sqlite3VdbeReset(Vdbe *p){ 2856 sqlite3 *db; 2857 db = p->db; 2858 2859 /* If the VM did not run to completion or if it encountered an 2860 ** error, then it might not have been halted properly. So halt 2861 ** it now. 2862 */ 2863 sqlite3VdbeHalt(p); 2864 2865 /* If the VDBE has be run even partially, then transfer the error code 2866 ** and error message from the VDBE into the main database structure. But 2867 ** if the VDBE has just been set to run but has not actually executed any 2868 ** instructions yet, leave the main database error information unchanged. 2869 */ 2870 if( p->pc>=0 ){ 2871 vdbeInvokeSqllog(p); 2872 sqlite3VdbeTransferError(p); 2873 sqlite3DbFree(db, p->zErrMsg); 2874 p->zErrMsg = 0; 2875 if( p->runOnlyOnce ) p->expired = 1; 2876 }else if( p->rc && p->expired ){ 2877 /* The expired flag was set on the VDBE before the first call 2878 ** to sqlite3_step(). For consistency (since sqlite3_step() was 2879 ** called), set the database error in this case as well. 2880 */ 2881 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 2882 sqlite3DbFree(db, p->zErrMsg); 2883 p->zErrMsg = 0; 2884 } 2885 2886 /* Reclaim all memory used by the VDBE 2887 */ 2888 Cleanup(p); 2889 2890 /* Save profiling information from this VDBE run. 2891 */ 2892 #ifdef VDBE_PROFILE 2893 { 2894 FILE *out = fopen("vdbe_profile.out", "a"); 2895 if( out ){ 2896 int i; 2897 fprintf(out, "---- "); 2898 for(i=0; i<p->nOp; i++){ 2899 fprintf(out, "%02x", p->aOp[i].opcode); 2900 } 2901 fprintf(out, "\n"); 2902 if( p->zSql ){ 2903 char c, pc = 0; 2904 fprintf(out, "-- "); 2905 for(i=0; (c = p->zSql[i])!=0; i++){ 2906 if( pc=='\n' ) fprintf(out, "-- "); 2907 putc(c, out); 2908 pc = c; 2909 } 2910 if( pc!='\n' ) fprintf(out, "\n"); 2911 } 2912 for(i=0; i<p->nOp; i++){ 2913 char zHdr[100]; 2914 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 2915 p->aOp[i].cnt, 2916 p->aOp[i].cycles, 2917 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 2918 ); 2919 fprintf(out, "%s", zHdr); 2920 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 2921 } 2922 fclose(out); 2923 } 2924 } 2925 #endif 2926 p->iCurrentTime = 0; 2927 p->magic = VDBE_MAGIC_RESET; 2928 return p->rc & db->errMask; 2929 } 2930 2931 /* 2932 ** Clean up and delete a VDBE after execution. Return an integer which is 2933 ** the result code. Write any error message text into *pzErrMsg. 2934 */ 2935 int sqlite3VdbeFinalize(Vdbe *p){ 2936 int rc = SQLITE_OK; 2937 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 2938 rc = sqlite3VdbeReset(p); 2939 assert( (rc & p->db->errMask)==rc ); 2940 } 2941 sqlite3VdbeDelete(p); 2942 return rc; 2943 } 2944 2945 /* 2946 ** If parameter iOp is less than zero, then invoke the destructor for 2947 ** all auxiliary data pointers currently cached by the VM passed as 2948 ** the first argument. 2949 ** 2950 ** Or, if iOp is greater than or equal to zero, then the destructor is 2951 ** only invoked for those auxiliary data pointers created by the user 2952 ** function invoked by the OP_Function opcode at instruction iOp of 2953 ** VM pVdbe, and only then if: 2954 ** 2955 ** * the associated function parameter is the 32nd or later (counting 2956 ** from left to right), or 2957 ** 2958 ** * the corresponding bit in argument mask is clear (where the first 2959 ** function parameter corresponds to bit 0 etc.). 2960 */ 2961 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 2962 while( *pp ){ 2963 AuxData *pAux = *pp; 2964 if( (iOp<0) 2965 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg)))) 2966 ){ 2967 testcase( pAux->iArg==31 ); 2968 if( pAux->xDelete ){ 2969 pAux->xDelete(pAux->pAux); 2970 } 2971 *pp = pAux->pNext; 2972 sqlite3DbFree(db, pAux); 2973 }else{ 2974 pp= &pAux->pNext; 2975 } 2976 } 2977 } 2978 2979 /* 2980 ** Free all memory associated with the Vdbe passed as the second argument, 2981 ** except for object itself, which is preserved. 2982 ** 2983 ** The difference between this function and sqlite3VdbeDelete() is that 2984 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 2985 ** the database connection and frees the object itself. 2986 */ 2987 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 2988 SubProgram *pSub, *pNext; 2989 assert( p->db==0 || p->db==db ); 2990 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2991 for(pSub=p->pProgram; pSub; pSub=pNext){ 2992 pNext = pSub->pNext; 2993 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 2994 sqlite3DbFree(db, pSub); 2995 } 2996 if( p->magic!=VDBE_MAGIC_INIT ){ 2997 releaseMemArray(p->aVar, p->nVar); 2998 sqlite3DbFree(db, p->pVList); 2999 sqlite3DbFree(db, p->pFree); 3000 } 3001 vdbeFreeOpArray(db, p->aOp, p->nOp); 3002 sqlite3DbFree(db, p->aColName); 3003 sqlite3DbFree(db, p->zSql); 3004 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3005 { 3006 int i; 3007 for(i=0; i<p->nScan; i++){ 3008 sqlite3DbFree(db, p->aScan[i].zName); 3009 } 3010 sqlite3DbFree(db, p->aScan); 3011 } 3012 #endif 3013 } 3014 3015 /* 3016 ** Delete an entire VDBE. 3017 */ 3018 void sqlite3VdbeDelete(Vdbe *p){ 3019 sqlite3 *db; 3020 3021 if( NEVER(p==0) ) return; 3022 db = p->db; 3023 assert( sqlite3_mutex_held(db->mutex) ); 3024 sqlite3VdbeClearObject(db, p); 3025 if( p->pPrev ){ 3026 p->pPrev->pNext = p->pNext; 3027 }else{ 3028 assert( db->pVdbe==p ); 3029 db->pVdbe = p->pNext; 3030 } 3031 if( p->pNext ){ 3032 p->pNext->pPrev = p->pPrev; 3033 } 3034 p->magic = VDBE_MAGIC_DEAD; 3035 p->db = 0; 3036 sqlite3DbFree(db, p); 3037 } 3038 3039 /* 3040 ** The cursor "p" has a pending seek operation that has not yet been 3041 ** carried out. Seek the cursor now. If an error occurs, return 3042 ** the appropriate error code. 3043 */ 3044 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ 3045 int res, rc; 3046 #ifdef SQLITE_TEST 3047 extern int sqlite3_search_count; 3048 #endif 3049 assert( p->deferredMoveto ); 3050 assert( p->isTable ); 3051 assert( p->eCurType==CURTYPE_BTREE ); 3052 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); 3053 if( rc ) return rc; 3054 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3055 #ifdef SQLITE_TEST 3056 sqlite3_search_count++; 3057 #endif 3058 p->deferredMoveto = 0; 3059 p->cacheStatus = CACHE_STALE; 3060 return SQLITE_OK; 3061 } 3062 3063 /* 3064 ** Something has moved cursor "p" out of place. Maybe the row it was 3065 ** pointed to was deleted out from under it. Or maybe the btree was 3066 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3067 ** is supposed to be pointing. If the row was deleted out from under the 3068 ** cursor, set the cursor to point to a NULL row. 3069 */ 3070 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 3071 int isDifferentRow, rc; 3072 assert( p->eCurType==CURTYPE_BTREE ); 3073 assert( p->uc.pCursor!=0 ); 3074 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3075 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3076 p->cacheStatus = CACHE_STALE; 3077 if( isDifferentRow ) p->nullRow = 1; 3078 return rc; 3079 } 3080 3081 /* 3082 ** Check to ensure that the cursor is valid. Restore the cursor 3083 ** if need be. Return any I/O error from the restore operation. 3084 */ 3085 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3086 assert( p->eCurType==CURTYPE_BTREE ); 3087 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3088 return handleMovedCursor(p); 3089 } 3090 return SQLITE_OK; 3091 } 3092 3093 /* 3094 ** Make sure the cursor p is ready to read or write the row to which it 3095 ** was last positioned. Return an error code if an OOM fault or I/O error 3096 ** prevents us from positioning the cursor to its correct position. 3097 ** 3098 ** If a MoveTo operation is pending on the given cursor, then do that 3099 ** MoveTo now. If no move is pending, check to see if the row has been 3100 ** deleted out from under the cursor and if it has, mark the row as 3101 ** a NULL row. 3102 ** 3103 ** If the cursor is already pointing to the correct row and that row has 3104 ** not been deleted out from under the cursor, then this routine is a no-op. 3105 */ 3106 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){ 3107 VdbeCursor *p = *pp; 3108 if( p->eCurType==CURTYPE_BTREE ){ 3109 if( p->deferredMoveto ){ 3110 int iMap; 3111 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){ 3112 *pp = p->pAltCursor; 3113 *piCol = iMap - 1; 3114 return SQLITE_OK; 3115 } 3116 return handleDeferredMoveto(p); 3117 } 3118 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3119 return handleMovedCursor(p); 3120 } 3121 } 3122 return SQLITE_OK; 3123 } 3124 3125 /* 3126 ** The following functions: 3127 ** 3128 ** sqlite3VdbeSerialType() 3129 ** sqlite3VdbeSerialTypeLen() 3130 ** sqlite3VdbeSerialLen() 3131 ** sqlite3VdbeSerialPut() 3132 ** sqlite3VdbeSerialGet() 3133 ** 3134 ** encapsulate the code that serializes values for storage in SQLite 3135 ** data and index records. Each serialized value consists of a 3136 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3137 ** integer, stored as a varint. 3138 ** 3139 ** In an SQLite index record, the serial type is stored directly before 3140 ** the blob of data that it corresponds to. In a table record, all serial 3141 ** types are stored at the start of the record, and the blobs of data at 3142 ** the end. Hence these functions allow the caller to handle the 3143 ** serial-type and data blob separately. 3144 ** 3145 ** The following table describes the various storage classes for data: 3146 ** 3147 ** serial type bytes of data type 3148 ** -------------- --------------- --------------- 3149 ** 0 0 NULL 3150 ** 1 1 signed integer 3151 ** 2 2 signed integer 3152 ** 3 3 signed integer 3153 ** 4 4 signed integer 3154 ** 5 6 signed integer 3155 ** 6 8 signed integer 3156 ** 7 8 IEEE float 3157 ** 8 0 Integer constant 0 3158 ** 9 0 Integer constant 1 3159 ** 10,11 reserved for expansion 3160 ** N>=12 and even (N-12)/2 BLOB 3161 ** N>=13 and odd (N-13)/2 text 3162 ** 3163 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3164 ** of SQLite will not understand those serial types. 3165 */ 3166 3167 /* 3168 ** Return the serial-type for the value stored in pMem. 3169 */ 3170 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3171 int flags = pMem->flags; 3172 u32 n; 3173 3174 assert( pLen!=0 ); 3175 if( flags&MEM_Null ){ 3176 *pLen = 0; 3177 return 0; 3178 } 3179 if( flags&MEM_Int ){ 3180 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3181 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3182 i64 i = pMem->u.i; 3183 u64 u; 3184 if( i<0 ){ 3185 u = ~i; 3186 }else{ 3187 u = i; 3188 } 3189 if( u<=127 ){ 3190 if( (i&1)==i && file_format>=4 ){ 3191 *pLen = 0; 3192 return 8+(u32)u; 3193 }else{ 3194 *pLen = 1; 3195 return 1; 3196 } 3197 } 3198 if( u<=32767 ){ *pLen = 2; return 2; } 3199 if( u<=8388607 ){ *pLen = 3; return 3; } 3200 if( u<=2147483647 ){ *pLen = 4; return 4; } 3201 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3202 *pLen = 8; 3203 return 6; 3204 } 3205 if( flags&MEM_Real ){ 3206 *pLen = 8; 3207 return 7; 3208 } 3209 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3210 assert( pMem->n>=0 ); 3211 n = (u32)pMem->n; 3212 if( flags & MEM_Zero ){ 3213 n += pMem->u.nZero; 3214 } 3215 *pLen = n; 3216 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3217 } 3218 3219 /* 3220 ** The sizes for serial types less than 128 3221 */ 3222 static const u8 sqlite3SmallTypeSizes[] = { 3223 /* 0 1 2 3 4 5 6 7 8 9 */ 3224 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3225 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3226 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3227 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3228 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3229 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3230 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3231 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3232 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3233 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3234 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3235 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3236 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3237 }; 3238 3239 /* 3240 ** Return the length of the data corresponding to the supplied serial-type. 3241 */ 3242 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3243 if( serial_type>=128 ){ 3244 return (serial_type-12)/2; 3245 }else{ 3246 assert( serial_type<12 3247 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3248 return sqlite3SmallTypeSizes[serial_type]; 3249 } 3250 } 3251 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3252 assert( serial_type<128 ); 3253 return sqlite3SmallTypeSizes[serial_type]; 3254 } 3255 3256 /* 3257 ** If we are on an architecture with mixed-endian floating 3258 ** points (ex: ARM7) then swap the lower 4 bytes with the 3259 ** upper 4 bytes. Return the result. 3260 ** 3261 ** For most architectures, this is a no-op. 3262 ** 3263 ** (later): It is reported to me that the mixed-endian problem 3264 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3265 ** that early versions of GCC stored the two words of a 64-bit 3266 ** float in the wrong order. And that error has been propagated 3267 ** ever since. The blame is not necessarily with GCC, though. 3268 ** GCC might have just copying the problem from a prior compiler. 3269 ** I am also told that newer versions of GCC that follow a different 3270 ** ABI get the byte order right. 3271 ** 3272 ** Developers using SQLite on an ARM7 should compile and run their 3273 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3274 ** enabled, some asserts below will ensure that the byte order of 3275 ** floating point values is correct. 3276 ** 3277 ** (2007-08-30) Frank van Vugt has studied this problem closely 3278 ** and has send his findings to the SQLite developers. Frank 3279 ** writes that some Linux kernels offer floating point hardware 3280 ** emulation that uses only 32-bit mantissas instead of a full 3281 ** 48-bits as required by the IEEE standard. (This is the 3282 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3283 ** byte swapping becomes very complicated. To avoid problems, 3284 ** the necessary byte swapping is carried out using a 64-bit integer 3285 ** rather than a 64-bit float. Frank assures us that the code here 3286 ** works for him. We, the developers, have no way to independently 3287 ** verify this, but Frank seems to know what he is talking about 3288 ** so we trust him. 3289 */ 3290 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3291 static u64 floatSwap(u64 in){ 3292 union { 3293 u64 r; 3294 u32 i[2]; 3295 } u; 3296 u32 t; 3297 3298 u.r = in; 3299 t = u.i[0]; 3300 u.i[0] = u.i[1]; 3301 u.i[1] = t; 3302 return u.r; 3303 } 3304 # define swapMixedEndianFloat(X) X = floatSwap(X) 3305 #else 3306 # define swapMixedEndianFloat(X) 3307 #endif 3308 3309 /* 3310 ** Write the serialized data blob for the value stored in pMem into 3311 ** buf. It is assumed that the caller has allocated sufficient space. 3312 ** Return the number of bytes written. 3313 ** 3314 ** nBuf is the amount of space left in buf[]. The caller is responsible 3315 ** for allocating enough space to buf[] to hold the entire field, exclusive 3316 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3317 ** 3318 ** Return the number of bytes actually written into buf[]. The number 3319 ** of bytes in the zero-filled tail is included in the return value only 3320 ** if those bytes were zeroed in buf[]. 3321 */ 3322 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3323 u32 len; 3324 3325 /* Integer and Real */ 3326 if( serial_type<=7 && serial_type>0 ){ 3327 u64 v; 3328 u32 i; 3329 if( serial_type==7 ){ 3330 assert( sizeof(v)==sizeof(pMem->u.r) ); 3331 memcpy(&v, &pMem->u.r, sizeof(v)); 3332 swapMixedEndianFloat(v); 3333 }else{ 3334 v = pMem->u.i; 3335 } 3336 len = i = sqlite3SmallTypeSizes[serial_type]; 3337 assert( i>0 ); 3338 do{ 3339 buf[--i] = (u8)(v&0xFF); 3340 v >>= 8; 3341 }while( i ); 3342 return len; 3343 } 3344 3345 /* String or blob */ 3346 if( serial_type>=12 ){ 3347 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3348 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3349 len = pMem->n; 3350 if( len>0 ) memcpy(buf, pMem->z, len); 3351 return len; 3352 } 3353 3354 /* NULL or constants 0 or 1 */ 3355 return 0; 3356 } 3357 3358 /* Input "x" is a sequence of unsigned characters that represent a 3359 ** big-endian integer. Return the equivalent native integer 3360 */ 3361 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3362 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3363 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3364 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3365 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3366 3367 /* 3368 ** Deserialize the data blob pointed to by buf as serial type serial_type 3369 ** and store the result in pMem. Return the number of bytes read. 3370 ** 3371 ** This function is implemented as two separate routines for performance. 3372 ** The few cases that require local variables are broken out into a separate 3373 ** routine so that in most cases the overhead of moving the stack pointer 3374 ** is avoided. 3375 */ 3376 static u32 SQLITE_NOINLINE serialGet( 3377 const unsigned char *buf, /* Buffer to deserialize from */ 3378 u32 serial_type, /* Serial type to deserialize */ 3379 Mem *pMem /* Memory cell to write value into */ 3380 ){ 3381 u64 x = FOUR_BYTE_UINT(buf); 3382 u32 y = FOUR_BYTE_UINT(buf+4); 3383 x = (x<<32) + y; 3384 if( serial_type==6 ){ 3385 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3386 ** twos-complement integer. */ 3387 pMem->u.i = *(i64*)&x; 3388 pMem->flags = MEM_Int; 3389 testcase( pMem->u.i<0 ); 3390 }else{ 3391 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3392 ** floating point number. */ 3393 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3394 /* Verify that integers and floating point values use the same 3395 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3396 ** defined that 64-bit floating point values really are mixed 3397 ** endian. 3398 */ 3399 static const u64 t1 = ((u64)0x3ff00000)<<32; 3400 static const double r1 = 1.0; 3401 u64 t2 = t1; 3402 swapMixedEndianFloat(t2); 3403 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3404 #endif 3405 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3406 swapMixedEndianFloat(x); 3407 memcpy(&pMem->u.r, &x, sizeof(x)); 3408 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; 3409 } 3410 return 8; 3411 } 3412 u32 sqlite3VdbeSerialGet( 3413 const unsigned char *buf, /* Buffer to deserialize from */ 3414 u32 serial_type, /* Serial type to deserialize */ 3415 Mem *pMem /* Memory cell to write value into */ 3416 ){ 3417 switch( serial_type ){ 3418 case 10: /* Reserved for future use */ 3419 case 11: /* Reserved for future use */ 3420 case 0: { /* Null */ 3421 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3422 pMem->flags = MEM_Null; 3423 break; 3424 } 3425 case 1: { 3426 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3427 ** integer. */ 3428 pMem->u.i = ONE_BYTE_INT(buf); 3429 pMem->flags = MEM_Int; 3430 testcase( pMem->u.i<0 ); 3431 return 1; 3432 } 3433 case 2: { /* 2-byte signed integer */ 3434 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3435 ** twos-complement integer. */ 3436 pMem->u.i = TWO_BYTE_INT(buf); 3437 pMem->flags = MEM_Int; 3438 testcase( pMem->u.i<0 ); 3439 return 2; 3440 } 3441 case 3: { /* 3-byte signed integer */ 3442 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3443 ** twos-complement integer. */ 3444 pMem->u.i = THREE_BYTE_INT(buf); 3445 pMem->flags = MEM_Int; 3446 testcase( pMem->u.i<0 ); 3447 return 3; 3448 } 3449 case 4: { /* 4-byte signed integer */ 3450 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3451 ** twos-complement integer. */ 3452 pMem->u.i = FOUR_BYTE_INT(buf); 3453 #ifdef __HP_cc 3454 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3455 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3456 #endif 3457 pMem->flags = MEM_Int; 3458 testcase( pMem->u.i<0 ); 3459 return 4; 3460 } 3461 case 5: { /* 6-byte signed integer */ 3462 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3463 ** twos-complement integer. */ 3464 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3465 pMem->flags = MEM_Int; 3466 testcase( pMem->u.i<0 ); 3467 return 6; 3468 } 3469 case 6: /* 8-byte signed integer */ 3470 case 7: { /* IEEE floating point */ 3471 /* These use local variables, so do them in a separate routine 3472 ** to avoid having to move the frame pointer in the common case */ 3473 return serialGet(buf,serial_type,pMem); 3474 } 3475 case 8: /* Integer 0 */ 3476 case 9: { /* Integer 1 */ 3477 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3478 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3479 pMem->u.i = serial_type-8; 3480 pMem->flags = MEM_Int; 3481 return 0; 3482 } 3483 default: { 3484 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3485 ** length. 3486 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3487 ** (N-13)/2 bytes in length. */ 3488 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3489 pMem->z = (char *)buf; 3490 pMem->n = (serial_type-12)/2; 3491 pMem->flags = aFlag[serial_type&1]; 3492 return pMem->n; 3493 } 3494 } 3495 return 0; 3496 } 3497 /* 3498 ** This routine is used to allocate sufficient space for an UnpackedRecord 3499 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3500 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3501 ** 3502 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3503 ** the unaligned buffer passed via the second and third arguments (presumably 3504 ** stack space). If the former, then *ppFree is set to a pointer that should 3505 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3506 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3507 ** before returning. 3508 ** 3509 ** If an OOM error occurs, NULL is returned. 3510 */ 3511 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3512 KeyInfo *pKeyInfo /* Description of the record */ 3513 ){ 3514 UnpackedRecord *p; /* Unpacked record to return */ 3515 int nByte; /* Number of bytes required for *p */ 3516 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); 3517 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3518 if( !p ) return 0; 3519 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3520 assert( pKeyInfo->aSortOrder!=0 ); 3521 p->pKeyInfo = pKeyInfo; 3522 p->nField = pKeyInfo->nField + 1; 3523 return p; 3524 } 3525 3526 /* 3527 ** Given the nKey-byte encoding of a record in pKey[], populate the 3528 ** UnpackedRecord structure indicated by the fourth argument with the 3529 ** contents of the decoded record. 3530 */ 3531 void sqlite3VdbeRecordUnpack( 3532 KeyInfo *pKeyInfo, /* Information about the record format */ 3533 int nKey, /* Size of the binary record */ 3534 const void *pKey, /* The binary record */ 3535 UnpackedRecord *p /* Populate this structure before returning. */ 3536 ){ 3537 const unsigned char *aKey = (const unsigned char *)pKey; 3538 int d; 3539 u32 idx; /* Offset in aKey[] to read from */ 3540 u16 u; /* Unsigned loop counter */ 3541 u32 szHdr; 3542 Mem *pMem = p->aMem; 3543 3544 p->default_rc = 0; 3545 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3546 idx = getVarint32(aKey, szHdr); 3547 d = szHdr; 3548 u = 0; 3549 while( idx<szHdr && d<=nKey ){ 3550 u32 serial_type; 3551 3552 idx += getVarint32(&aKey[idx], serial_type); 3553 pMem->enc = pKeyInfo->enc; 3554 pMem->db = pKeyInfo->db; 3555 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 3556 pMem->szMalloc = 0; 3557 pMem->z = 0; 3558 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3559 pMem++; 3560 if( (++u)>=p->nField ) break; 3561 } 3562 assert( u<=pKeyInfo->nField + 1 ); 3563 p->nField = u; 3564 } 3565 3566 #if SQLITE_DEBUG 3567 /* 3568 ** This function compares two index or table record keys in the same way 3569 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 3570 ** this function deserializes and compares values using the 3571 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 3572 ** in assert() statements to ensure that the optimized code in 3573 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 3574 ** 3575 ** Return true if the result of comparison is equivalent to desiredResult. 3576 ** Return false if there is a disagreement. 3577 */ 3578 static int vdbeRecordCompareDebug( 3579 int nKey1, const void *pKey1, /* Left key */ 3580 const UnpackedRecord *pPKey2, /* Right key */ 3581 int desiredResult /* Correct answer */ 3582 ){ 3583 u32 d1; /* Offset into aKey[] of next data element */ 3584 u32 idx1; /* Offset into aKey[] of next header element */ 3585 u32 szHdr1; /* Number of bytes in header */ 3586 int i = 0; 3587 int rc = 0; 3588 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3589 KeyInfo *pKeyInfo; 3590 Mem mem1; 3591 3592 pKeyInfo = pPKey2->pKeyInfo; 3593 if( pKeyInfo->db==0 ) return 1; 3594 mem1.enc = pKeyInfo->enc; 3595 mem1.db = pKeyInfo->db; 3596 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 3597 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3598 3599 /* Compilers may complain that mem1.u.i is potentially uninitialized. 3600 ** We could initialize it, as shown here, to silence those complaints. 3601 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 3602 ** the unnecessary initialization has a measurable negative performance 3603 ** impact, since this routine is a very high runner. And so, we choose 3604 ** to ignore the compiler warnings and leave this variable uninitialized. 3605 */ 3606 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 3607 3608 idx1 = getVarint32(aKey1, szHdr1); 3609 if( szHdr1>98307 ) return SQLITE_CORRUPT; 3610 d1 = szHdr1; 3611 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB ); 3612 assert( pKeyInfo->aSortOrder!=0 ); 3613 assert( pKeyInfo->nField>0 ); 3614 assert( idx1<=szHdr1 || CORRUPT_DB ); 3615 do{ 3616 u32 serial_type1; 3617 3618 /* Read the serial types for the next element in each key. */ 3619 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 3620 3621 /* Verify that there is enough key space remaining to avoid 3622 ** a buffer overread. The "d1+serial_type1+2" subexpression will 3623 ** always be greater than or equal to the amount of required key space. 3624 ** Use that approximation to avoid the more expensive call to 3625 ** sqlite3VdbeSerialTypeLen() in the common case. 3626 */ 3627 if( d1+serial_type1+2>(u32)nKey1 3628 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 3629 ){ 3630 break; 3631 } 3632 3633 /* Extract the values to be compared. 3634 */ 3635 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 3636 3637 /* Do the comparison 3638 */ 3639 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); 3640 if( rc!=0 ){ 3641 assert( mem1.szMalloc==0 ); /* See comment below */ 3642 if( pKeyInfo->aSortOrder[i] ){ 3643 rc = -rc; /* Invert the result for DESC sort order. */ 3644 } 3645 goto debugCompareEnd; 3646 } 3647 i++; 3648 }while( idx1<szHdr1 && i<pPKey2->nField ); 3649 3650 /* No memory allocation is ever used on mem1. Prove this using 3651 ** the following assert(). If the assert() fails, it indicates a 3652 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 3653 */ 3654 assert( mem1.szMalloc==0 ); 3655 3656 /* rc==0 here means that one of the keys ran out of fields and 3657 ** all the fields up to that point were equal. Return the default_rc 3658 ** value. */ 3659 rc = pPKey2->default_rc; 3660 3661 debugCompareEnd: 3662 if( desiredResult==0 && rc==0 ) return 1; 3663 if( desiredResult<0 && rc<0 ) return 1; 3664 if( desiredResult>0 && rc>0 ) return 1; 3665 if( CORRUPT_DB ) return 1; 3666 if( pKeyInfo->db->mallocFailed ) return 1; 3667 return 0; 3668 } 3669 #endif 3670 3671 #if SQLITE_DEBUG 3672 /* 3673 ** Count the number of fields (a.k.a. columns) in the record given by 3674 ** pKey,nKey. The verify that this count is less than or equal to the 3675 ** limit given by pKeyInfo->nField + pKeyInfo->nXField. 3676 ** 3677 ** If this constraint is not satisfied, it means that the high-speed 3678 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 3679 ** not work correctly. If this assert() ever fires, it probably means 3680 ** that the KeyInfo.nField or KeyInfo.nXField values were computed 3681 ** incorrectly. 3682 */ 3683 static void vdbeAssertFieldCountWithinLimits( 3684 int nKey, const void *pKey, /* The record to verify */ 3685 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 3686 ){ 3687 int nField = 0; 3688 u32 szHdr; 3689 u32 idx; 3690 u32 notUsed; 3691 const unsigned char *aKey = (const unsigned char*)pKey; 3692 3693 if( CORRUPT_DB ) return; 3694 idx = getVarint32(aKey, szHdr); 3695 assert( nKey>=0 ); 3696 assert( szHdr<=(u32)nKey ); 3697 while( idx<szHdr ){ 3698 idx += getVarint32(aKey+idx, notUsed); 3699 nField++; 3700 } 3701 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField ); 3702 } 3703 #else 3704 # define vdbeAssertFieldCountWithinLimits(A,B,C) 3705 #endif 3706 3707 /* 3708 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 3709 ** using the collation sequence pColl. As usual, return a negative , zero 3710 ** or positive value if *pMem1 is less than, equal to or greater than 3711 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 3712 */ 3713 static int vdbeCompareMemString( 3714 const Mem *pMem1, 3715 const Mem *pMem2, 3716 const CollSeq *pColl, 3717 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 3718 ){ 3719 if( pMem1->enc==pColl->enc ){ 3720 /* The strings are already in the correct encoding. Call the 3721 ** comparison function directly */ 3722 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 3723 }else{ 3724 int rc; 3725 const void *v1, *v2; 3726 int n1, n2; 3727 Mem c1; 3728 Mem c2; 3729 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 3730 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 3731 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 3732 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 3733 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 3734 n1 = v1==0 ? 0 : c1.n; 3735 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 3736 n2 = v2==0 ? 0 : c2.n; 3737 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); 3738 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 3739 sqlite3VdbeMemRelease(&c1); 3740 sqlite3VdbeMemRelease(&c2); 3741 return rc; 3742 } 3743 } 3744 3745 /* 3746 ** The input pBlob is guaranteed to be a Blob that is not marked 3747 ** with MEM_Zero. Return true if it could be a zero-blob. 3748 */ 3749 static int isAllZero(const char *z, int n){ 3750 int i; 3751 for(i=0; i<n; i++){ 3752 if( z[i] ) return 0; 3753 } 3754 return 1; 3755 } 3756 3757 /* 3758 ** Compare two blobs. Return negative, zero, or positive if the first 3759 ** is less than, equal to, or greater than the second, respectively. 3760 ** If one blob is a prefix of the other, then the shorter is the lessor. 3761 */ 3762 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 3763 int c; 3764 int n1 = pB1->n; 3765 int n2 = pB2->n; 3766 3767 /* It is possible to have a Blob value that has some non-zero content 3768 ** followed by zero content. But that only comes up for Blobs formed 3769 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 3770 ** sqlite3MemCompare(). */ 3771 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 3772 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 3773 3774 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 3775 if( pB1->flags & pB2->flags & MEM_Zero ){ 3776 return pB1->u.nZero - pB2->u.nZero; 3777 }else if( pB1->flags & MEM_Zero ){ 3778 if( !isAllZero(pB2->z, pB2->n) ) return -1; 3779 return pB1->u.nZero - n2; 3780 }else{ 3781 if( !isAllZero(pB1->z, pB1->n) ) return +1; 3782 return n1 - pB2->u.nZero; 3783 } 3784 } 3785 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 3786 if( c ) return c; 3787 return n1 - n2; 3788 } 3789 3790 /* 3791 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 3792 ** number. Return negative, zero, or positive if the first (i64) is less than, 3793 ** equal to, or greater than the second (double). 3794 */ 3795 static int sqlite3IntFloatCompare(i64 i, double r){ 3796 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 3797 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 3798 if( x<r ) return -1; 3799 if( x>r ) return +1; 3800 return 0; 3801 }else{ 3802 i64 y; 3803 double s; 3804 if( r<-9223372036854775808.0 ) return +1; 3805 if( r>9223372036854775807.0 ) return -1; 3806 y = (i64)r; 3807 if( i<y ) return -1; 3808 if( i>y ){ 3809 if( y==SMALLEST_INT64 && r>0.0 ) return -1; 3810 return +1; 3811 } 3812 s = (double)i; 3813 if( s<r ) return -1; 3814 if( s>r ) return +1; 3815 return 0; 3816 } 3817 } 3818 3819 /* 3820 ** Compare the values contained by the two memory cells, returning 3821 ** negative, zero or positive if pMem1 is less than, equal to, or greater 3822 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 3823 ** and reals) sorted numerically, followed by text ordered by the collating 3824 ** sequence pColl and finally blob's ordered by memcmp(). 3825 ** 3826 ** Two NULL values are considered equal by this function. 3827 */ 3828 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 3829 int f1, f2; 3830 int combined_flags; 3831 3832 f1 = pMem1->flags; 3833 f2 = pMem2->flags; 3834 combined_flags = f1|f2; 3835 assert( (combined_flags & MEM_RowSet)==0 ); 3836 3837 /* If one value is NULL, it is less than the other. If both values 3838 ** are NULL, return 0. 3839 */ 3840 if( combined_flags&MEM_Null ){ 3841 return (f2&MEM_Null) - (f1&MEM_Null); 3842 } 3843 3844 /* At least one of the two values is a number 3845 */ 3846 if( combined_flags&(MEM_Int|MEM_Real) ){ 3847 if( (f1 & f2 & MEM_Int)!=0 ){ 3848 if( pMem1->u.i < pMem2->u.i ) return -1; 3849 if( pMem1->u.i > pMem2->u.i ) return +1; 3850 return 0; 3851 } 3852 if( (f1 & f2 & MEM_Real)!=0 ){ 3853 if( pMem1->u.r < pMem2->u.r ) return -1; 3854 if( pMem1->u.r > pMem2->u.r ) return +1; 3855 return 0; 3856 } 3857 if( (f1&MEM_Int)!=0 ){ 3858 if( (f2&MEM_Real)!=0 ){ 3859 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 3860 }else{ 3861 return -1; 3862 } 3863 } 3864 if( (f1&MEM_Real)!=0 ){ 3865 if( (f2&MEM_Int)!=0 ){ 3866 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 3867 }else{ 3868 return -1; 3869 } 3870 } 3871 return +1; 3872 } 3873 3874 /* If one value is a string and the other is a blob, the string is less. 3875 ** If both are strings, compare using the collating functions. 3876 */ 3877 if( combined_flags&MEM_Str ){ 3878 if( (f1 & MEM_Str)==0 ){ 3879 return 1; 3880 } 3881 if( (f2 & MEM_Str)==0 ){ 3882 return -1; 3883 } 3884 3885 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 3886 assert( pMem1->enc==SQLITE_UTF8 || 3887 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 3888 3889 /* The collation sequence must be defined at this point, even if 3890 ** the user deletes the collation sequence after the vdbe program is 3891 ** compiled (this was not always the case). 3892 */ 3893 assert( !pColl || pColl->xCmp ); 3894 3895 if( pColl ){ 3896 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 3897 } 3898 /* If a NULL pointer was passed as the collate function, fall through 3899 ** to the blob case and use memcmp(). */ 3900 } 3901 3902 /* Both values must be blobs. Compare using memcmp(). */ 3903 return sqlite3BlobCompare(pMem1, pMem2); 3904 } 3905 3906 3907 /* 3908 ** The first argument passed to this function is a serial-type that 3909 ** corresponds to an integer - all values between 1 and 9 inclusive 3910 ** except 7. The second points to a buffer containing an integer value 3911 ** serialized according to serial_type. This function deserializes 3912 ** and returns the value. 3913 */ 3914 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 3915 u32 y; 3916 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 3917 switch( serial_type ){ 3918 case 0: 3919 case 1: 3920 testcase( aKey[0]&0x80 ); 3921 return ONE_BYTE_INT(aKey); 3922 case 2: 3923 testcase( aKey[0]&0x80 ); 3924 return TWO_BYTE_INT(aKey); 3925 case 3: 3926 testcase( aKey[0]&0x80 ); 3927 return THREE_BYTE_INT(aKey); 3928 case 4: { 3929 testcase( aKey[0]&0x80 ); 3930 y = FOUR_BYTE_UINT(aKey); 3931 return (i64)*(int*)&y; 3932 } 3933 case 5: { 3934 testcase( aKey[0]&0x80 ); 3935 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 3936 } 3937 case 6: { 3938 u64 x = FOUR_BYTE_UINT(aKey); 3939 testcase( aKey[0]&0x80 ); 3940 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 3941 return (i64)*(i64*)&x; 3942 } 3943 } 3944 3945 return (serial_type - 8); 3946 } 3947 3948 /* 3949 ** This function compares the two table rows or index records 3950 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 3951 ** or positive integer if key1 is less than, equal to or 3952 ** greater than key2. The {nKey1, pKey1} key must be a blob 3953 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 3954 ** key must be a parsed key such as obtained from 3955 ** sqlite3VdbeParseRecord. 3956 ** 3957 ** If argument bSkip is non-zero, it is assumed that the caller has already 3958 ** determined that the first fields of the keys are equal. 3959 ** 3960 ** Key1 and Key2 do not have to contain the same number of fields. If all 3961 ** fields that appear in both keys are equal, then pPKey2->default_rc is 3962 ** returned. 3963 ** 3964 ** If database corruption is discovered, set pPKey2->errCode to 3965 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 3966 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 3967 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 3968 */ 3969 int sqlite3VdbeRecordCompareWithSkip( 3970 int nKey1, const void *pKey1, /* Left key */ 3971 UnpackedRecord *pPKey2, /* Right key */ 3972 int bSkip /* If true, skip the first field */ 3973 ){ 3974 u32 d1; /* Offset into aKey[] of next data element */ 3975 int i; /* Index of next field to compare */ 3976 u32 szHdr1; /* Size of record header in bytes */ 3977 u32 idx1; /* Offset of first type in header */ 3978 int rc = 0; /* Return value */ 3979 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 3980 KeyInfo *pKeyInfo = pPKey2->pKeyInfo; 3981 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3982 Mem mem1; 3983 3984 /* If bSkip is true, then the caller has already determined that the first 3985 ** two elements in the keys are equal. Fix the various stack variables so 3986 ** that this routine begins comparing at the second field. */ 3987 if( bSkip ){ 3988 u32 s1; 3989 idx1 = 1 + getVarint32(&aKey1[1], s1); 3990 szHdr1 = aKey1[0]; 3991 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 3992 i = 1; 3993 pRhs++; 3994 }else{ 3995 idx1 = getVarint32(aKey1, szHdr1); 3996 d1 = szHdr1; 3997 if( d1>(unsigned)nKey1 ){ 3998 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3999 return 0; /* Corruption */ 4000 } 4001 i = 0; 4002 } 4003 4004 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4005 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 4006 || CORRUPT_DB ); 4007 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); 4008 assert( pPKey2->pKeyInfo->nField>0 ); 4009 assert( idx1<=szHdr1 || CORRUPT_DB ); 4010 do{ 4011 u32 serial_type; 4012 4013 /* RHS is an integer */ 4014 if( pRhs->flags & MEM_Int ){ 4015 serial_type = aKey1[idx1]; 4016 testcase( serial_type==12 ); 4017 if( serial_type>=10 ){ 4018 rc = +1; 4019 }else if( serial_type==0 ){ 4020 rc = -1; 4021 }else if( serial_type==7 ){ 4022 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4023 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4024 }else{ 4025 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4026 i64 rhs = pRhs->u.i; 4027 if( lhs<rhs ){ 4028 rc = -1; 4029 }else if( lhs>rhs ){ 4030 rc = +1; 4031 } 4032 } 4033 } 4034 4035 /* RHS is real */ 4036 else if( pRhs->flags & MEM_Real ){ 4037 serial_type = aKey1[idx1]; 4038 if( serial_type>=10 ){ 4039 /* Serial types 12 or greater are strings and blobs (greater than 4040 ** numbers). Types 10 and 11 are currently "reserved for future 4041 ** use", so it doesn't really matter what the results of comparing 4042 ** them to numberic values are. */ 4043 rc = +1; 4044 }else if( serial_type==0 ){ 4045 rc = -1; 4046 }else{ 4047 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4048 if( serial_type==7 ){ 4049 if( mem1.u.r<pRhs->u.r ){ 4050 rc = -1; 4051 }else if( mem1.u.r>pRhs->u.r ){ 4052 rc = +1; 4053 } 4054 }else{ 4055 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4056 } 4057 } 4058 } 4059 4060 /* RHS is a string */ 4061 else if( pRhs->flags & MEM_Str ){ 4062 getVarint32(&aKey1[idx1], serial_type); 4063 testcase( serial_type==12 ); 4064 if( serial_type<12 ){ 4065 rc = -1; 4066 }else if( !(serial_type & 0x01) ){ 4067 rc = +1; 4068 }else{ 4069 mem1.n = (serial_type - 12) / 2; 4070 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4071 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4072 if( (d1+mem1.n) > (unsigned)nKey1 ){ 4073 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4074 return 0; /* Corruption */ 4075 }else if( pKeyInfo->aColl[i] ){ 4076 mem1.enc = pKeyInfo->enc; 4077 mem1.db = pKeyInfo->db; 4078 mem1.flags = MEM_Str; 4079 mem1.z = (char*)&aKey1[d1]; 4080 rc = vdbeCompareMemString( 4081 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4082 ); 4083 }else{ 4084 int nCmp = MIN(mem1.n, pRhs->n); 4085 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4086 if( rc==0 ) rc = mem1.n - pRhs->n; 4087 } 4088 } 4089 } 4090 4091 /* RHS is a blob */ 4092 else if( pRhs->flags & MEM_Blob ){ 4093 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4094 getVarint32(&aKey1[idx1], serial_type); 4095 testcase( serial_type==12 ); 4096 if( serial_type<12 || (serial_type & 0x01) ){ 4097 rc = -1; 4098 }else{ 4099 int nStr = (serial_type - 12) / 2; 4100 testcase( (d1+nStr)==(unsigned)nKey1 ); 4101 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4102 if( (d1+nStr) > (unsigned)nKey1 ){ 4103 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4104 return 0; /* Corruption */ 4105 }else if( pRhs->flags & MEM_Zero ){ 4106 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4107 rc = 1; 4108 }else{ 4109 rc = nStr - pRhs->u.nZero; 4110 } 4111 }else{ 4112 int nCmp = MIN(nStr, pRhs->n); 4113 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4114 if( rc==0 ) rc = nStr - pRhs->n; 4115 } 4116 } 4117 } 4118 4119 /* RHS is null */ 4120 else{ 4121 serial_type = aKey1[idx1]; 4122 rc = (serial_type!=0); 4123 } 4124 4125 if( rc!=0 ){ 4126 if( pKeyInfo->aSortOrder[i] ){ 4127 rc = -rc; 4128 } 4129 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4130 assert( mem1.szMalloc==0 ); /* See comment below */ 4131 return rc; 4132 } 4133 4134 i++; 4135 pRhs++; 4136 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4137 idx1 += sqlite3VarintLen(serial_type); 4138 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); 4139 4140 /* No memory allocation is ever used on mem1. Prove this using 4141 ** the following assert(). If the assert() fails, it indicates a 4142 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4143 assert( mem1.szMalloc==0 ); 4144 4145 /* rc==0 here means that one or both of the keys ran out of fields and 4146 ** all the fields up to that point were equal. Return the default_rc 4147 ** value. */ 4148 assert( CORRUPT_DB 4149 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4150 || pKeyInfo->db->mallocFailed 4151 ); 4152 pPKey2->eqSeen = 1; 4153 return pPKey2->default_rc; 4154 } 4155 int sqlite3VdbeRecordCompare( 4156 int nKey1, const void *pKey1, /* Left key */ 4157 UnpackedRecord *pPKey2 /* Right key */ 4158 ){ 4159 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4160 } 4161 4162 4163 /* 4164 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4165 ** that (a) the first field of pPKey2 is an integer, and (b) the 4166 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4167 ** byte (i.e. is less than 128). 4168 ** 4169 ** To avoid concerns about buffer overreads, this routine is only used 4170 ** on schemas where the maximum valid header size is 63 bytes or less. 4171 */ 4172 static int vdbeRecordCompareInt( 4173 int nKey1, const void *pKey1, /* Left key */ 4174 UnpackedRecord *pPKey2 /* Right key */ 4175 ){ 4176 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4177 int serial_type = ((const u8*)pKey1)[1]; 4178 int res; 4179 u32 y; 4180 u64 x; 4181 i64 v; 4182 i64 lhs; 4183 4184 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4185 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4186 switch( serial_type ){ 4187 case 1: { /* 1-byte signed integer */ 4188 lhs = ONE_BYTE_INT(aKey); 4189 testcase( lhs<0 ); 4190 break; 4191 } 4192 case 2: { /* 2-byte signed integer */ 4193 lhs = TWO_BYTE_INT(aKey); 4194 testcase( lhs<0 ); 4195 break; 4196 } 4197 case 3: { /* 3-byte signed integer */ 4198 lhs = THREE_BYTE_INT(aKey); 4199 testcase( lhs<0 ); 4200 break; 4201 } 4202 case 4: { /* 4-byte signed integer */ 4203 y = FOUR_BYTE_UINT(aKey); 4204 lhs = (i64)*(int*)&y; 4205 testcase( lhs<0 ); 4206 break; 4207 } 4208 case 5: { /* 6-byte signed integer */ 4209 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4210 testcase( lhs<0 ); 4211 break; 4212 } 4213 case 6: { /* 8-byte signed integer */ 4214 x = FOUR_BYTE_UINT(aKey); 4215 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4216 lhs = *(i64*)&x; 4217 testcase( lhs<0 ); 4218 break; 4219 } 4220 case 8: 4221 lhs = 0; 4222 break; 4223 case 9: 4224 lhs = 1; 4225 break; 4226 4227 /* This case could be removed without changing the results of running 4228 ** this code. Including it causes gcc to generate a faster switch 4229 ** statement (since the range of switch targets now starts at zero and 4230 ** is contiguous) but does not cause any duplicate code to be generated 4231 ** (as gcc is clever enough to combine the two like cases). Other 4232 ** compilers might be similar. */ 4233 case 0: case 7: 4234 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4235 4236 default: 4237 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4238 } 4239 4240 v = pPKey2->aMem[0].u.i; 4241 if( v>lhs ){ 4242 res = pPKey2->r1; 4243 }else if( v<lhs ){ 4244 res = pPKey2->r2; 4245 }else if( pPKey2->nField>1 ){ 4246 /* The first fields of the two keys are equal. Compare the trailing 4247 ** fields. */ 4248 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4249 }else{ 4250 /* The first fields of the two keys are equal and there are no trailing 4251 ** fields. Return pPKey2->default_rc in this case. */ 4252 res = pPKey2->default_rc; 4253 pPKey2->eqSeen = 1; 4254 } 4255 4256 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4257 return res; 4258 } 4259 4260 /* 4261 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4262 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4263 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4264 ** at the start of (pKey1/nKey1) fits in a single byte. 4265 */ 4266 static int vdbeRecordCompareString( 4267 int nKey1, const void *pKey1, /* Left key */ 4268 UnpackedRecord *pPKey2 /* Right key */ 4269 ){ 4270 const u8 *aKey1 = (const u8*)pKey1; 4271 int serial_type; 4272 int res; 4273 4274 assert( pPKey2->aMem[0].flags & MEM_Str ); 4275 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4276 getVarint32(&aKey1[1], serial_type); 4277 if( serial_type<12 ){ 4278 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4279 }else if( !(serial_type & 0x01) ){ 4280 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4281 }else{ 4282 int nCmp; 4283 int nStr; 4284 int szHdr = aKey1[0]; 4285 4286 nStr = (serial_type-12) / 2; 4287 if( (szHdr + nStr) > nKey1 ){ 4288 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4289 return 0; /* Corruption */ 4290 } 4291 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4292 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4293 4294 if( res==0 ){ 4295 res = nStr - pPKey2->aMem[0].n; 4296 if( res==0 ){ 4297 if( pPKey2->nField>1 ){ 4298 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4299 }else{ 4300 res = pPKey2->default_rc; 4301 pPKey2->eqSeen = 1; 4302 } 4303 }else if( res>0 ){ 4304 res = pPKey2->r2; 4305 }else{ 4306 res = pPKey2->r1; 4307 } 4308 }else if( res>0 ){ 4309 res = pPKey2->r2; 4310 }else{ 4311 res = pPKey2->r1; 4312 } 4313 } 4314 4315 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4316 || CORRUPT_DB 4317 || pPKey2->pKeyInfo->db->mallocFailed 4318 ); 4319 return res; 4320 } 4321 4322 /* 4323 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4324 ** suitable for comparing serialized records to the unpacked record passed 4325 ** as the only argument. 4326 */ 4327 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4328 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4329 ** that the size-of-header varint that occurs at the start of each record 4330 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4331 ** also assumes that it is safe to overread a buffer by at least the 4332 ** maximum possible legal header size plus 8 bytes. Because there is 4333 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4334 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4335 ** limit the size of the header to 64 bytes in cases where the first field 4336 ** is an integer. 4337 ** 4338 ** The easiest way to enforce this limit is to consider only records with 4339 ** 13 fields or less. If the first field is an integer, the maximum legal 4340 ** header size is (12*5 + 1 + 1) bytes. */ 4341 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){ 4342 int flags = p->aMem[0].flags; 4343 if( p->pKeyInfo->aSortOrder[0] ){ 4344 p->r1 = 1; 4345 p->r2 = -1; 4346 }else{ 4347 p->r1 = -1; 4348 p->r2 = 1; 4349 } 4350 if( (flags & MEM_Int) ){ 4351 return vdbeRecordCompareInt; 4352 } 4353 testcase( flags & MEM_Real ); 4354 testcase( flags & MEM_Null ); 4355 testcase( flags & MEM_Blob ); 4356 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ 4357 assert( flags & MEM_Str ); 4358 return vdbeRecordCompareString; 4359 } 4360 } 4361 4362 return sqlite3VdbeRecordCompare; 4363 } 4364 4365 /* 4366 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4367 ** Read the rowid (the last field in the record) and store it in *rowid. 4368 ** Return SQLITE_OK if everything works, or an error code otherwise. 4369 ** 4370 ** pCur might be pointing to text obtained from a corrupt database file. 4371 ** So the content cannot be trusted. Do appropriate checks on the content. 4372 */ 4373 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4374 i64 nCellKey = 0; 4375 int rc; 4376 u32 szHdr; /* Size of the header */ 4377 u32 typeRowid; /* Serial type of the rowid */ 4378 u32 lenRowid; /* Size of the rowid */ 4379 Mem m, v; 4380 4381 /* Get the size of the index entry. Only indices entries of less 4382 ** than 2GiB are support - anything large must be database corruption. 4383 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4384 ** this code can safely assume that nCellKey is 32-bits 4385 */ 4386 assert( sqlite3BtreeCursorIsValid(pCur) ); 4387 nCellKey = sqlite3BtreePayloadSize(pCur); 4388 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4389 4390 /* Read in the complete content of the index entry */ 4391 sqlite3VdbeMemInit(&m, db, 0); 4392 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4393 if( rc ){ 4394 return rc; 4395 } 4396 4397 /* The index entry must begin with a header size */ 4398 (void)getVarint32((u8*)m.z, szHdr); 4399 testcase( szHdr==3 ); 4400 testcase( szHdr==m.n ); 4401 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ 4402 goto idx_rowid_corruption; 4403 } 4404 4405 /* The last field of the index should be an integer - the ROWID. 4406 ** Verify that the last entry really is an integer. */ 4407 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 4408 testcase( typeRowid==1 ); 4409 testcase( typeRowid==2 ); 4410 testcase( typeRowid==3 ); 4411 testcase( typeRowid==4 ); 4412 testcase( typeRowid==5 ); 4413 testcase( typeRowid==6 ); 4414 testcase( typeRowid==8 ); 4415 testcase( typeRowid==9 ); 4416 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4417 goto idx_rowid_corruption; 4418 } 4419 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4420 testcase( (u32)m.n==szHdr+lenRowid ); 4421 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4422 goto idx_rowid_corruption; 4423 } 4424 4425 /* Fetch the integer off the end of the index record */ 4426 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4427 *rowid = v.u.i; 4428 sqlite3VdbeMemRelease(&m); 4429 return SQLITE_OK; 4430 4431 /* Jump here if database corruption is detected after m has been 4432 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4433 idx_rowid_corruption: 4434 testcase( m.szMalloc!=0 ); 4435 sqlite3VdbeMemRelease(&m); 4436 return SQLITE_CORRUPT_BKPT; 4437 } 4438 4439 /* 4440 ** Compare the key of the index entry that cursor pC is pointing to against 4441 ** the key string in pUnpacked. Write into *pRes a number 4442 ** that is negative, zero, or positive if pC is less than, equal to, 4443 ** or greater than pUnpacked. Return SQLITE_OK on success. 4444 ** 4445 ** pUnpacked is either created without a rowid or is truncated so that it 4446 ** omits the rowid at the end. The rowid at the end of the index entry 4447 ** is ignored as well. Hence, this routine only compares the prefixes 4448 ** of the keys prior to the final rowid, not the entire key. 4449 */ 4450 int sqlite3VdbeIdxKeyCompare( 4451 sqlite3 *db, /* Database connection */ 4452 VdbeCursor *pC, /* The cursor to compare against */ 4453 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4454 int *res /* Write the comparison result here */ 4455 ){ 4456 i64 nCellKey = 0; 4457 int rc; 4458 BtCursor *pCur; 4459 Mem m; 4460 4461 assert( pC->eCurType==CURTYPE_BTREE ); 4462 pCur = pC->uc.pCursor; 4463 assert( sqlite3BtreeCursorIsValid(pCur) ); 4464 nCellKey = sqlite3BtreePayloadSize(pCur); 4465 /* nCellKey will always be between 0 and 0xffffffff because of the way 4466 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4467 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4468 *res = 0; 4469 return SQLITE_CORRUPT_BKPT; 4470 } 4471 sqlite3VdbeMemInit(&m, db, 0); 4472 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4473 if( rc ){ 4474 return rc; 4475 } 4476 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); 4477 sqlite3VdbeMemRelease(&m); 4478 return SQLITE_OK; 4479 } 4480 4481 /* 4482 ** This routine sets the value to be returned by subsequent calls to 4483 ** sqlite3_changes() on the database handle 'db'. 4484 */ 4485 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 4486 assert( sqlite3_mutex_held(db->mutex) ); 4487 db->nChange = nChange; 4488 db->nTotalChange += nChange; 4489 } 4490 4491 /* 4492 ** Set a flag in the vdbe to update the change counter when it is finalised 4493 ** or reset. 4494 */ 4495 void sqlite3VdbeCountChanges(Vdbe *v){ 4496 v->changeCntOn = 1; 4497 } 4498 4499 /* 4500 ** Mark every prepared statement associated with a database connection 4501 ** as expired. 4502 ** 4503 ** An expired statement means that recompilation of the statement is 4504 ** recommend. Statements expire when things happen that make their 4505 ** programs obsolete. Removing user-defined functions or collating 4506 ** sequences, or changing an authorization function are the types of 4507 ** things that make prepared statements obsolete. 4508 */ 4509 void sqlite3ExpirePreparedStatements(sqlite3 *db){ 4510 Vdbe *p; 4511 for(p = db->pVdbe; p; p=p->pNext){ 4512 p->expired = 1; 4513 } 4514 } 4515 4516 /* 4517 ** Return the database associated with the Vdbe. 4518 */ 4519 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 4520 return v->db; 4521 } 4522 4523 /* 4524 ** Return a pointer to an sqlite3_value structure containing the value bound 4525 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 4526 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 4527 ** constants) to the value before returning it. 4528 ** 4529 ** The returned value must be freed by the caller using sqlite3ValueFree(). 4530 */ 4531 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 4532 assert( iVar>0 ); 4533 if( v ){ 4534 Mem *pMem = &v->aVar[iVar-1]; 4535 if( 0==(pMem->flags & MEM_Null) ){ 4536 sqlite3_value *pRet = sqlite3ValueNew(v->db); 4537 if( pRet ){ 4538 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 4539 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 4540 } 4541 return pRet; 4542 } 4543 } 4544 return 0; 4545 } 4546 4547 /* 4548 ** Configure SQL variable iVar so that binding a new value to it signals 4549 ** to sqlite3_reoptimize() that re-preparing the statement may result 4550 ** in a better query plan. 4551 */ 4552 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 4553 assert( iVar>0 ); 4554 if( iVar>32 ){ 4555 v->expmask = 0xffffffff; 4556 }else{ 4557 v->expmask |= ((u32)1 << (iVar-1)); 4558 } 4559 } 4560 4561 #ifndef SQLITE_OMIT_VIRTUALTABLE 4562 /* 4563 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 4564 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 4565 ** in memory obtained from sqlite3DbMalloc). 4566 */ 4567 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 4568 if( pVtab->zErrMsg ){ 4569 sqlite3 *db = p->db; 4570 sqlite3DbFree(db, p->zErrMsg); 4571 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 4572 sqlite3_free(pVtab->zErrMsg); 4573 pVtab->zErrMsg = 0; 4574 } 4575 } 4576 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4577 4578 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4579 4580 /* 4581 ** If the second argument is not NULL, release any allocations associated 4582 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 4583 ** structure itself, using sqlite3DbFree(). 4584 ** 4585 ** This function is used to free UnpackedRecord structures allocated by 4586 ** the vdbeUnpackRecord() function found in vdbeapi.c. 4587 */ 4588 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 4589 if( p ){ 4590 int i; 4591 for(i=0; i<nField; i++){ 4592 Mem *pMem = &p->aMem[i]; 4593 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem); 4594 } 4595 sqlite3DbFree(db, p); 4596 } 4597 } 4598 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4599 4600 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4601 /* 4602 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 4603 ** then cursor passed as the second argument should point to the row about 4604 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 4605 ** the required value will be read from the row the cursor points to. 4606 */ 4607 void sqlite3VdbePreUpdateHook( 4608 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 4609 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 4610 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 4611 const char *zDb, /* Database name */ 4612 Table *pTab, /* Modified table */ 4613 i64 iKey1, /* Initial key value */ 4614 int iReg /* Register for new.* record */ 4615 ){ 4616 sqlite3 *db = v->db; 4617 i64 iKey2; 4618 PreUpdate preupdate; 4619 const char *zTbl = pTab->zName; 4620 static const u8 fakeSortOrder = 0; 4621 4622 assert( db->pPreUpdate==0 ); 4623 memset(&preupdate, 0, sizeof(PreUpdate)); 4624 if( op==SQLITE_UPDATE ){ 4625 iKey2 = v->aMem[iReg].u.i; 4626 }else{ 4627 iKey2 = iKey1; 4628 } 4629 4630 assert( pCsr->nField==pTab->nCol 4631 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 4632 ); 4633 4634 preupdate.v = v; 4635 preupdate.pCsr = pCsr; 4636 preupdate.op = op; 4637 preupdate.iNewReg = iReg; 4638 preupdate.keyinfo.db = db; 4639 preupdate.keyinfo.enc = ENC(db); 4640 preupdate.keyinfo.nField = pTab->nCol; 4641 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder; 4642 preupdate.iKey1 = iKey1; 4643 preupdate.iKey2 = iKey2; 4644 preupdate.pTab = pTab; 4645 4646 db->pPreUpdate = &preupdate; 4647 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 4648 db->pPreUpdate = 0; 4649 sqlite3DbFree(db, preupdate.aRecord); 4650 vdbeFreeUnpacked(db, preupdate.keyinfo.nField+1, preupdate.pUnpacked); 4651 vdbeFreeUnpacked(db, preupdate.keyinfo.nField+1, preupdate.pNewUnpacked); 4652 if( preupdate.aNew ){ 4653 int i; 4654 for(i=0; i<pCsr->nField; i++){ 4655 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 4656 } 4657 sqlite3DbFree(db, preupdate.aNew); 4658 } 4659 } 4660 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4661