1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* Forward references */ 19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef); 20 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 21 22 /* 23 ** Create a new virtual database engine. 24 */ 25 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 26 sqlite3 *db = pParse->db; 27 Vdbe *p; 28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 29 if( p==0 ) return 0; 30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 31 p->db = db; 32 if( db->pVdbe ){ 33 db->pVdbe->pPrev = p; 34 } 35 p->pNext = db->pVdbe; 36 p->pPrev = 0; 37 db->pVdbe = p; 38 p->iVdbeMagic = VDBE_MAGIC_INIT; 39 p->pParse = pParse; 40 pParse->pVdbe = p; 41 assert( pParse->aLabel==0 ); 42 assert( pParse->nLabel==0 ); 43 assert( p->nOpAlloc==0 ); 44 assert( pParse->szOpAlloc==0 ); 45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1); 46 return p; 47 } 48 49 /* 50 ** Return the Parse object that owns a Vdbe object. 51 */ 52 Parse *sqlite3VdbeParser(Vdbe *p){ 53 return p->pParse; 54 } 55 56 /* 57 ** Change the error string stored in Vdbe.zErrMsg 58 */ 59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 60 va_list ap; 61 sqlite3DbFree(p->db, p->zErrMsg); 62 va_start(ap, zFormat); 63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 64 va_end(ap); 65 } 66 67 /* 68 ** Remember the SQL string for a prepared statement. 69 */ 70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 71 if( p==0 ) return; 72 p->prepFlags = prepFlags; 73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 74 p->expmask = 0; 75 } 76 assert( p->zSql==0 ); 77 p->zSql = sqlite3DbStrNDup(p->db, z, n); 78 } 79 80 #ifdef SQLITE_ENABLE_NORMALIZE 81 /* 82 ** Add a new element to the Vdbe->pDblStr list. 83 */ 84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ 85 if( p ){ 86 int n = sqlite3Strlen30(z); 87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db, 88 sizeof(*pStr)+n+1-sizeof(pStr->z)); 89 if( pStr ){ 90 pStr->pNextStr = p->pDblStr; 91 p->pDblStr = pStr; 92 memcpy(pStr->z, z, n+1); 93 } 94 } 95 } 96 #endif 97 98 #ifdef SQLITE_ENABLE_NORMALIZE 99 /* 100 ** zId of length nId is a double-quoted identifier. Check to see if 101 ** that identifier is really used as a string literal. 102 */ 103 int sqlite3VdbeUsesDoubleQuotedString( 104 Vdbe *pVdbe, /* The prepared statement */ 105 const char *zId /* The double-quoted identifier, already dequoted */ 106 ){ 107 DblquoteStr *pStr; 108 assert( zId!=0 ); 109 if( pVdbe->pDblStr==0 ) return 0; 110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ 111 if( strcmp(zId, pStr->z)==0 ) return 1; 112 } 113 return 0; 114 } 115 #endif 116 117 /* 118 ** Swap all content between two VDBE structures. 119 */ 120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 121 Vdbe tmp, *pTmp; 122 char *zTmp; 123 assert( pA->db==pB->db ); 124 tmp = *pA; 125 *pA = *pB; 126 *pB = tmp; 127 pTmp = pA->pNext; 128 pA->pNext = pB->pNext; 129 pB->pNext = pTmp; 130 pTmp = pA->pPrev; 131 pA->pPrev = pB->pPrev; 132 pB->pPrev = pTmp; 133 zTmp = pA->zSql; 134 pA->zSql = pB->zSql; 135 pB->zSql = zTmp; 136 #ifdef SQLITE_ENABLE_NORMALIZE 137 zTmp = pA->zNormSql; 138 pA->zNormSql = pB->zNormSql; 139 pB->zNormSql = zTmp; 140 #endif 141 pB->expmask = pA->expmask; 142 pB->prepFlags = pA->prepFlags; 143 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 144 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 145 } 146 147 /* 148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 149 ** than its current size. nOp is guaranteed to be less than or equal 150 ** to 1024/sizeof(Op). 151 ** 152 ** If an out-of-memory error occurs while resizing the array, return 153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain 154 ** unchanged (this is so that any opcodes already allocated can be 155 ** correctly deallocated along with the rest of the Vdbe). 156 */ 157 static int growOpArray(Vdbe *v, int nOp){ 158 VdbeOp *pNew; 159 Parse *p = v->pParse; 160 161 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 162 ** more frequent reallocs and hence provide more opportunities for 163 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 164 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 165 ** by the minimum* amount required until the size reaches 512. Normal 166 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 167 ** size of the op array or add 1KB of space, whichever is smaller. */ 168 #ifdef SQLITE_TEST_REALLOC_STRESS 169 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc 170 : (sqlite3_int64)v->nOpAlloc+nOp); 171 #else 172 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc 173 : (sqlite3_int64)(1024/sizeof(Op))); 174 UNUSED_PARAMETER(nOp); 175 #endif 176 177 /* Ensure that the size of a VDBE does not grow too large */ 178 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 179 sqlite3OomFault(p->db); 180 return SQLITE_NOMEM; 181 } 182 183 assert( nOp<=(int)(1024/sizeof(Op)) ); 184 assert( nNew>=(v->nOpAlloc+nOp) ); 185 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 186 if( pNew ){ 187 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 188 v->nOpAlloc = p->szOpAlloc/sizeof(Op); 189 v->aOp = pNew; 190 } 191 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 192 } 193 194 #ifdef SQLITE_DEBUG 195 /* This routine is just a convenient place to set a breakpoint that will 196 ** fire after each opcode is inserted and displayed using 197 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and 198 ** pOp are available to make the breakpoint conditional. 199 ** 200 ** Other useful labels for breakpoints include: 201 ** test_trace_breakpoint(pc,pOp) 202 ** sqlite3CorruptError(lineno) 203 ** sqlite3MisuseError(lineno) 204 ** sqlite3CantopenError(lineno) 205 */ 206 static void test_addop_breakpoint(int pc, Op *pOp){ 207 static int n = 0; 208 n++; 209 } 210 #endif 211 212 /* 213 ** Add a new instruction to the list of instructions current in the 214 ** VDBE. Return the address of the new instruction. 215 ** 216 ** Parameters: 217 ** 218 ** p Pointer to the VDBE 219 ** 220 ** op The opcode for this instruction 221 ** 222 ** p1, p2, p3 Operands 223 ** 224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 225 ** the sqlite3VdbeChangeP4() function to change the value of the P4 226 ** operand. 227 */ 228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 229 assert( p->nOpAlloc<=p->nOp ); 230 if( growOpArray(p, 1) ) return 1; 231 assert( p->nOpAlloc>p->nOp ); 232 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 233 } 234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 235 int i; 236 VdbeOp *pOp; 237 238 i = p->nOp; 239 assert( p->iVdbeMagic==VDBE_MAGIC_INIT ); 240 assert( op>=0 && op<0xff ); 241 if( p->nOpAlloc<=i ){ 242 return growOp3(p, op, p1, p2, p3); 243 } 244 assert( p->aOp!=0 ); 245 p->nOp++; 246 pOp = &p->aOp[i]; 247 assert( pOp!=0 ); 248 pOp->opcode = (u8)op; 249 pOp->p5 = 0; 250 pOp->p1 = p1; 251 pOp->p2 = p2; 252 pOp->p3 = p3; 253 pOp->p4.p = 0; 254 pOp->p4type = P4_NOTUSED; 255 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 256 pOp->zComment = 0; 257 #endif 258 #ifdef SQLITE_DEBUG 259 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 260 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 261 test_addop_breakpoint(i, &p->aOp[i]); 262 } 263 #endif 264 #ifdef VDBE_PROFILE 265 pOp->cycles = 0; 266 pOp->cnt = 0; 267 #endif 268 #ifdef SQLITE_VDBE_COVERAGE 269 pOp->iSrcLine = 0; 270 #endif 271 return i; 272 } 273 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 274 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 275 } 276 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 277 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 278 } 279 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 280 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 281 } 282 283 /* Generate code for an unconditional jump to instruction iDest 284 */ 285 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 286 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 287 } 288 289 /* Generate code to cause the string zStr to be loaded into 290 ** register iDest 291 */ 292 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 293 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 294 } 295 296 /* 297 ** Generate code that initializes multiple registers to string or integer 298 ** constants. The registers begin with iDest and increase consecutively. 299 ** One register is initialized for each characgter in zTypes[]. For each 300 ** "s" character in zTypes[], the register is a string if the argument is 301 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 302 ** in zTypes[], the register is initialized to an integer. 303 ** 304 ** If the input string does not end with "X" then an OP_ResultRow instruction 305 ** is generated for the values inserted. 306 */ 307 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 308 va_list ap; 309 int i; 310 char c; 311 va_start(ap, zTypes); 312 for(i=0; (c = zTypes[i])!=0; i++){ 313 if( c=='s' ){ 314 const char *z = va_arg(ap, const char*); 315 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 316 }else if( c=='i' ){ 317 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 318 }else{ 319 goto skip_op_resultrow; 320 } 321 } 322 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 323 skip_op_resultrow: 324 va_end(ap); 325 } 326 327 /* 328 ** Add an opcode that includes the p4 value as a pointer. 329 */ 330 int sqlite3VdbeAddOp4( 331 Vdbe *p, /* Add the opcode to this VM */ 332 int op, /* The new opcode */ 333 int p1, /* The P1 operand */ 334 int p2, /* The P2 operand */ 335 int p3, /* The P3 operand */ 336 const char *zP4, /* The P4 operand */ 337 int p4type /* P4 operand type */ 338 ){ 339 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 340 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 341 return addr; 342 } 343 344 /* 345 ** Add an OP_Function or OP_PureFunc opcode. 346 ** 347 ** The eCallCtx argument is information (typically taken from Expr.op2) 348 ** that describes the calling context of the function. 0 means a general 349 ** function call. NC_IsCheck means called by a check constraint, 350 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx 351 ** means in the WHERE clause of a partial index. NC_GenCol means called 352 ** while computing a generated column value. 0 is the usual case. 353 */ 354 int sqlite3VdbeAddFunctionCall( 355 Parse *pParse, /* Parsing context */ 356 int p1, /* Constant argument mask */ 357 int p2, /* First argument register */ 358 int p3, /* Register into which results are written */ 359 int nArg, /* Number of argument */ 360 const FuncDef *pFunc, /* The function to be invoked */ 361 int eCallCtx /* Calling context */ 362 ){ 363 Vdbe *v = pParse->pVdbe; 364 int nByte; 365 int addr; 366 sqlite3_context *pCtx; 367 assert( v ); 368 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*); 369 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte); 370 if( pCtx==0 ){ 371 assert( pParse->db->mallocFailed ); 372 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc); 373 return 0; 374 } 375 pCtx->pOut = 0; 376 pCtx->pFunc = (FuncDef*)pFunc; 377 pCtx->pVdbe = 0; 378 pCtx->isError = 0; 379 pCtx->argc = nArg; 380 pCtx->iOp = sqlite3VdbeCurrentAddr(v); 381 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function, 382 p1, p2, p3, (char*)pCtx, P4_FUNCCTX); 383 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef); 384 return addr; 385 } 386 387 /* 388 ** Add an opcode that includes the p4 value with a P4_INT64 or 389 ** P4_REAL type. 390 */ 391 int sqlite3VdbeAddOp4Dup8( 392 Vdbe *p, /* Add the opcode to this VM */ 393 int op, /* The new opcode */ 394 int p1, /* The P1 operand */ 395 int p2, /* The P2 operand */ 396 int p3, /* The P3 operand */ 397 const u8 *zP4, /* The P4 operand */ 398 int p4type /* P4 operand type */ 399 ){ 400 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 401 if( p4copy ) memcpy(p4copy, zP4, 8); 402 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 403 } 404 405 #ifndef SQLITE_OMIT_EXPLAIN 406 /* 407 ** Return the address of the current EXPLAIN QUERY PLAN baseline. 408 ** 0 means "none". 409 */ 410 int sqlite3VdbeExplainParent(Parse *pParse){ 411 VdbeOp *pOp; 412 if( pParse->addrExplain==0 ) return 0; 413 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); 414 return pOp->p2; 415 } 416 417 /* 418 ** Set a debugger breakpoint on the following routine in order to 419 ** monitor the EXPLAIN QUERY PLAN code generation. 420 */ 421 #if defined(SQLITE_DEBUG) 422 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ 423 (void)z1; 424 (void)z2; 425 } 426 #endif 427 428 /* 429 ** Add a new OP_Explain opcode. 430 ** 431 ** If the bPush flag is true, then make this opcode the parent for 432 ** subsequent Explains until sqlite3VdbeExplainPop() is called. 433 */ 434 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ 435 #ifndef SQLITE_DEBUG 436 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined. 437 ** But omit them (for performance) during production builds */ 438 if( pParse->explain==2 ) 439 #endif 440 { 441 char *zMsg; 442 Vdbe *v; 443 va_list ap; 444 int iThis; 445 va_start(ap, zFmt); 446 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); 447 va_end(ap); 448 v = pParse->pVdbe; 449 iThis = v->nOp; 450 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, 451 zMsg, P4_DYNAMIC); 452 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z); 453 if( bPush){ 454 pParse->addrExplain = iThis; 455 } 456 } 457 } 458 459 /* 460 ** Pop the EXPLAIN QUERY PLAN stack one level. 461 */ 462 void sqlite3VdbeExplainPop(Parse *pParse){ 463 sqlite3ExplainBreakpoint("POP", 0); 464 pParse->addrExplain = sqlite3VdbeExplainParent(pParse); 465 } 466 #endif /* SQLITE_OMIT_EXPLAIN */ 467 468 /* 469 ** Add an OP_ParseSchema opcode. This routine is broken out from 470 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 471 ** as having been used. 472 ** 473 ** The zWhere string must have been obtained from sqlite3_malloc(). 474 ** This routine will take ownership of the allocated memory. 475 */ 476 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){ 477 int j; 478 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 479 sqlite3VdbeChangeP5(p, p5); 480 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 481 sqlite3MayAbort(p->pParse); 482 } 483 484 /* 485 ** Add an opcode that includes the p4 value as an integer. 486 */ 487 int sqlite3VdbeAddOp4Int( 488 Vdbe *p, /* Add the opcode to this VM */ 489 int op, /* The new opcode */ 490 int p1, /* The P1 operand */ 491 int p2, /* The P2 operand */ 492 int p3, /* The P3 operand */ 493 int p4 /* The P4 operand as an integer */ 494 ){ 495 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 496 if( p->db->mallocFailed==0 ){ 497 VdbeOp *pOp = &p->aOp[addr]; 498 pOp->p4type = P4_INT32; 499 pOp->p4.i = p4; 500 } 501 return addr; 502 } 503 504 /* Insert the end of a co-routine 505 */ 506 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 507 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 508 509 /* Clear the temporary register cache, thereby ensuring that each 510 ** co-routine has its own independent set of registers, because co-routines 511 ** might expect their registers to be preserved across an OP_Yield, and 512 ** that could cause problems if two or more co-routines are using the same 513 ** temporary register. 514 */ 515 v->pParse->nTempReg = 0; 516 v->pParse->nRangeReg = 0; 517 } 518 519 /* 520 ** Create a new symbolic label for an instruction that has yet to be 521 ** coded. The symbolic label is really just a negative number. The 522 ** label can be used as the P2 value of an operation. Later, when 523 ** the label is resolved to a specific address, the VDBE will scan 524 ** through its operation list and change all values of P2 which match 525 ** the label into the resolved address. 526 ** 527 ** The VDBE knows that a P2 value is a label because labels are 528 ** always negative and P2 values are suppose to be non-negative. 529 ** Hence, a negative P2 value is a label that has yet to be resolved. 530 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP 531 ** property. 532 ** 533 ** Variable usage notes: 534 ** 535 ** Parse.aLabel[x] Stores the address that the x-th label resolves 536 ** into. For testing (SQLITE_DEBUG), unresolved 537 ** labels stores -1, but that is not required. 538 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[] 539 ** Parse.nLabel The *negative* of the number of labels that have 540 ** been issued. The negative is stored because 541 ** that gives a performance improvement over storing 542 ** the equivalent positive value. 543 */ 544 int sqlite3VdbeMakeLabel(Parse *pParse){ 545 return --pParse->nLabel; 546 } 547 548 /* 549 ** Resolve label "x" to be the address of the next instruction to 550 ** be inserted. The parameter "x" must have been obtained from 551 ** a prior call to sqlite3VdbeMakeLabel(). 552 */ 553 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){ 554 int nNewSize = 10 - p->nLabel; 555 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 556 nNewSize*sizeof(p->aLabel[0])); 557 if( p->aLabel==0 ){ 558 p->nLabelAlloc = 0; 559 }else{ 560 #ifdef SQLITE_DEBUG 561 int i; 562 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1; 563 #endif 564 p->nLabelAlloc = nNewSize; 565 p->aLabel[j] = v->nOp; 566 } 567 } 568 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 569 Parse *p = v->pParse; 570 int j = ADDR(x); 571 assert( v->iVdbeMagic==VDBE_MAGIC_INIT ); 572 assert( j<-p->nLabel ); 573 assert( j>=0 ); 574 #ifdef SQLITE_DEBUG 575 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 576 printf("RESOLVE LABEL %d to %d\n", x, v->nOp); 577 } 578 #endif 579 if( p->nLabelAlloc + p->nLabel < 0 ){ 580 resizeResolveLabel(p,v,j); 581 }else{ 582 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ 583 p->aLabel[j] = v->nOp; 584 } 585 } 586 587 /* 588 ** Mark the VDBE as one that can only be run one time. 589 */ 590 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 591 p->runOnlyOnce = 1; 592 } 593 594 /* 595 ** Mark the VDBE as one that can only be run multiple times. 596 */ 597 void sqlite3VdbeReusable(Vdbe *p){ 598 p->runOnlyOnce = 0; 599 } 600 601 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 602 603 /* 604 ** The following type and function are used to iterate through all opcodes 605 ** in a Vdbe main program and each of the sub-programs (triggers) it may 606 ** invoke directly or indirectly. It should be used as follows: 607 ** 608 ** Op *pOp; 609 ** VdbeOpIter sIter; 610 ** 611 ** memset(&sIter, 0, sizeof(sIter)); 612 ** sIter.v = v; // v is of type Vdbe* 613 ** while( (pOp = opIterNext(&sIter)) ){ 614 ** // Do something with pOp 615 ** } 616 ** sqlite3DbFree(v->db, sIter.apSub); 617 ** 618 */ 619 typedef struct VdbeOpIter VdbeOpIter; 620 struct VdbeOpIter { 621 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 622 SubProgram **apSub; /* Array of subprograms */ 623 int nSub; /* Number of entries in apSub */ 624 int iAddr; /* Address of next instruction to return */ 625 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 626 }; 627 static Op *opIterNext(VdbeOpIter *p){ 628 Vdbe *v = p->v; 629 Op *pRet = 0; 630 Op *aOp; 631 int nOp; 632 633 if( p->iSub<=p->nSub ){ 634 635 if( p->iSub==0 ){ 636 aOp = v->aOp; 637 nOp = v->nOp; 638 }else{ 639 aOp = p->apSub[p->iSub-1]->aOp; 640 nOp = p->apSub[p->iSub-1]->nOp; 641 } 642 assert( p->iAddr<nOp ); 643 644 pRet = &aOp[p->iAddr]; 645 p->iAddr++; 646 if( p->iAddr==nOp ){ 647 p->iSub++; 648 p->iAddr = 0; 649 } 650 651 if( pRet->p4type==P4_SUBPROGRAM ){ 652 int nByte = (p->nSub+1)*sizeof(SubProgram*); 653 int j; 654 for(j=0; j<p->nSub; j++){ 655 if( p->apSub[j]==pRet->p4.pProgram ) break; 656 } 657 if( j==p->nSub ){ 658 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 659 if( !p->apSub ){ 660 pRet = 0; 661 }else{ 662 p->apSub[p->nSub++] = pRet->p4.pProgram; 663 } 664 } 665 } 666 } 667 668 return pRet; 669 } 670 671 /* 672 ** Check if the program stored in the VM associated with pParse may 673 ** throw an ABORT exception (causing the statement, but not entire transaction 674 ** to be rolled back). This condition is true if the main program or any 675 ** sub-programs contains any of the following: 676 ** 677 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 678 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 679 ** * OP_Destroy 680 ** * OP_VUpdate 681 ** * OP_VCreate 682 ** * OP_VRename 683 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 684 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 685 ** (for CREATE TABLE AS SELECT ...) 686 ** 687 ** Then check that the value of Parse.mayAbort is true if an 688 ** ABORT may be thrown, or false otherwise. Return true if it does 689 ** match, or false otherwise. This function is intended to be used as 690 ** part of an assert statement in the compiler. Similar to: 691 ** 692 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 693 */ 694 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 695 int hasAbort = 0; 696 int hasFkCounter = 0; 697 int hasCreateTable = 0; 698 int hasCreateIndex = 0; 699 int hasInitCoroutine = 0; 700 Op *pOp; 701 VdbeOpIter sIter; 702 memset(&sIter, 0, sizeof(sIter)); 703 sIter.v = v; 704 705 while( (pOp = opIterNext(&sIter))!=0 ){ 706 int opcode = pOp->opcode; 707 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 708 || opcode==OP_VDestroy 709 || opcode==OP_VCreate 710 || opcode==OP_ParseSchema 711 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 712 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort)) 713 ){ 714 hasAbort = 1; 715 break; 716 } 717 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; 718 if( mayAbort ){ 719 /* hasCreateIndex may also be set for some DELETE statements that use 720 ** OP_Clear. So this routine may end up returning true in the case 721 ** where a "DELETE FROM tbl" has a statement-journal but does not 722 ** require one. This is not so bad - it is an inefficiency, not a bug. */ 723 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1; 724 if( opcode==OP_Clear ) hasCreateIndex = 1; 725 } 726 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 727 #ifndef SQLITE_OMIT_FOREIGN_KEY 728 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 729 hasFkCounter = 1; 730 } 731 #endif 732 } 733 sqlite3DbFree(v->db, sIter.apSub); 734 735 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 736 ** If malloc failed, then the while() loop above may not have iterated 737 ** through all opcodes and hasAbort may be set incorrectly. Return 738 ** true for this case to prevent the assert() in the callers frame 739 ** from failing. */ 740 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 741 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex 742 ); 743 } 744 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 745 746 #ifdef SQLITE_DEBUG 747 /* 748 ** Increment the nWrite counter in the VDBE if the cursor is not an 749 ** ephemeral cursor, or if the cursor argument is NULL. 750 */ 751 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ 752 if( pC==0 753 || (pC->eCurType!=CURTYPE_SORTER 754 && pC->eCurType!=CURTYPE_PSEUDO 755 && !pC->isEphemeral) 756 ){ 757 p->nWrite++; 758 } 759 } 760 #endif 761 762 #ifdef SQLITE_DEBUG 763 /* 764 ** Assert if an Abort at this point in time might result in a corrupt 765 ** database. 766 */ 767 void sqlite3VdbeAssertAbortable(Vdbe *p){ 768 assert( p->nWrite==0 || p->usesStmtJournal ); 769 } 770 #endif 771 772 /* 773 ** This routine is called after all opcodes have been inserted. It loops 774 ** through all the opcodes and fixes up some details. 775 ** 776 ** (1) For each jump instruction with a negative P2 value (a label) 777 ** resolve the P2 value to an actual address. 778 ** 779 ** (2) Compute the maximum number of arguments used by any SQL function 780 ** and store that value in *pMaxFuncArgs. 781 ** 782 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 783 ** indicate what the prepared statement actually does. 784 ** 785 ** (4) (discontinued) 786 ** 787 ** (5) Reclaim the memory allocated for storing labels. 788 ** 789 ** This routine will only function correctly if the mkopcodeh.tcl generator 790 ** script numbers the opcodes correctly. Changes to this routine must be 791 ** coordinated with changes to mkopcodeh.tcl. 792 */ 793 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 794 int nMaxArgs = *pMaxFuncArgs; 795 Op *pOp; 796 Parse *pParse = p->pParse; 797 int *aLabel = pParse->aLabel; 798 p->readOnly = 1; 799 p->bIsReader = 0; 800 pOp = &p->aOp[p->nOp-1]; 801 while(1){ 802 803 /* Only JUMP opcodes and the short list of special opcodes in the switch 804 ** below need to be considered. The mkopcodeh.tcl generator script groups 805 ** all these opcodes together near the front of the opcode list. Skip 806 ** any opcode that does not need processing by virtual of the fact that 807 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 808 */ 809 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 810 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 811 ** cases from this switch! */ 812 switch( pOp->opcode ){ 813 case OP_Transaction: { 814 if( pOp->p2!=0 ) p->readOnly = 0; 815 /* no break */ deliberate_fall_through 816 } 817 case OP_AutoCommit: 818 case OP_Savepoint: { 819 p->bIsReader = 1; 820 break; 821 } 822 #ifndef SQLITE_OMIT_WAL 823 case OP_Checkpoint: 824 #endif 825 case OP_Vacuum: 826 case OP_JournalMode: { 827 p->readOnly = 0; 828 p->bIsReader = 1; 829 break; 830 } 831 #ifndef SQLITE_OMIT_VIRTUALTABLE 832 case OP_VUpdate: { 833 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 834 break; 835 } 836 case OP_VFilter: { 837 int n; 838 assert( (pOp - p->aOp) >= 3 ); 839 assert( pOp[-1].opcode==OP_Integer ); 840 n = pOp[-1].p1; 841 if( n>nMaxArgs ) nMaxArgs = n; 842 /* Fall through into the default case */ 843 /* no break */ deliberate_fall_through 844 } 845 #endif 846 default: { 847 if( pOp->p2<0 ){ 848 /* The mkopcodeh.tcl script has so arranged things that the only 849 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 850 ** have non-negative values for P2. */ 851 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 852 assert( ADDR(pOp->p2)<-pParse->nLabel ); 853 pOp->p2 = aLabel[ADDR(pOp->p2)]; 854 } 855 break; 856 } 857 } 858 /* The mkopcodeh.tcl script has so arranged things that the only 859 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 860 ** have non-negative values for P2. */ 861 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 862 } 863 if( pOp==p->aOp ) break; 864 pOp--; 865 } 866 sqlite3DbFree(p->db, pParse->aLabel); 867 pParse->aLabel = 0; 868 pParse->nLabel = 0; 869 *pMaxFuncArgs = nMaxArgs; 870 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 871 } 872 873 /* 874 ** Return the address of the next instruction to be inserted. 875 */ 876 int sqlite3VdbeCurrentAddr(Vdbe *p){ 877 assert( p->iVdbeMagic==VDBE_MAGIC_INIT ); 878 return p->nOp; 879 } 880 881 /* 882 ** Verify that at least N opcode slots are available in p without 883 ** having to malloc for more space (except when compiled using 884 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 885 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 886 ** fail due to a OOM fault and hence that the return value from 887 ** sqlite3VdbeAddOpList() will always be non-NULL. 888 */ 889 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 890 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 891 assert( p->nOp + N <= p->nOpAlloc ); 892 } 893 #endif 894 895 /* 896 ** Verify that the VM passed as the only argument does not contain 897 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 898 ** by code in pragma.c to ensure that the implementation of certain 899 ** pragmas comports with the flags specified in the mkpragmatab.tcl 900 ** script. 901 */ 902 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 903 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 904 int i; 905 for(i=0; i<p->nOp; i++){ 906 assert( p->aOp[i].opcode!=OP_ResultRow ); 907 } 908 } 909 #endif 910 911 /* 912 ** Generate code (a single OP_Abortable opcode) that will 913 ** verify that the VDBE program can safely call Abort in the current 914 ** context. 915 */ 916 #if defined(SQLITE_DEBUG) 917 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ 918 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); 919 } 920 #endif 921 922 /* 923 ** This function returns a pointer to the array of opcodes associated with 924 ** the Vdbe passed as the first argument. It is the callers responsibility 925 ** to arrange for the returned array to be eventually freed using the 926 ** vdbeFreeOpArray() function. 927 ** 928 ** Before returning, *pnOp is set to the number of entries in the returned 929 ** array. Also, *pnMaxArg is set to the larger of its current value and 930 ** the number of entries in the Vdbe.apArg[] array required to execute the 931 ** returned program. 932 */ 933 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 934 VdbeOp *aOp = p->aOp; 935 assert( aOp && !p->db->mallocFailed ); 936 937 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 938 assert( DbMaskAllZero(p->btreeMask) ); 939 940 resolveP2Values(p, pnMaxArg); 941 *pnOp = p->nOp; 942 p->aOp = 0; 943 return aOp; 944 } 945 946 /* 947 ** Add a whole list of operations to the operation stack. Return a 948 ** pointer to the first operation inserted. 949 ** 950 ** Non-zero P2 arguments to jump instructions are automatically adjusted 951 ** so that the jump target is relative to the first operation inserted. 952 */ 953 VdbeOp *sqlite3VdbeAddOpList( 954 Vdbe *p, /* Add opcodes to the prepared statement */ 955 int nOp, /* Number of opcodes to add */ 956 VdbeOpList const *aOp, /* The opcodes to be added */ 957 int iLineno /* Source-file line number of first opcode */ 958 ){ 959 int i; 960 VdbeOp *pOut, *pFirst; 961 assert( nOp>0 ); 962 assert( p->iVdbeMagic==VDBE_MAGIC_INIT ); 963 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){ 964 return 0; 965 } 966 pFirst = pOut = &p->aOp[p->nOp]; 967 for(i=0; i<nOp; i++, aOp++, pOut++){ 968 pOut->opcode = aOp->opcode; 969 pOut->p1 = aOp->p1; 970 pOut->p2 = aOp->p2; 971 assert( aOp->p2>=0 ); 972 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 973 pOut->p2 += p->nOp; 974 } 975 pOut->p3 = aOp->p3; 976 pOut->p4type = P4_NOTUSED; 977 pOut->p4.p = 0; 978 pOut->p5 = 0; 979 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 980 pOut->zComment = 0; 981 #endif 982 #ifdef SQLITE_VDBE_COVERAGE 983 pOut->iSrcLine = iLineno+i; 984 #else 985 (void)iLineno; 986 #endif 987 #ifdef SQLITE_DEBUG 988 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 989 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 990 } 991 #endif 992 } 993 p->nOp += nOp; 994 return pFirst; 995 } 996 997 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 998 /* 999 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 1000 */ 1001 void sqlite3VdbeScanStatus( 1002 Vdbe *p, /* VM to add scanstatus() to */ 1003 int addrExplain, /* Address of OP_Explain (or 0) */ 1004 int addrLoop, /* Address of loop counter */ 1005 int addrVisit, /* Address of rows visited counter */ 1006 LogEst nEst, /* Estimated number of output rows */ 1007 const char *zName /* Name of table or index being scanned */ 1008 ){ 1009 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus); 1010 ScanStatus *aNew; 1011 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 1012 if( aNew ){ 1013 ScanStatus *pNew = &aNew[p->nScan++]; 1014 pNew->addrExplain = addrExplain; 1015 pNew->addrLoop = addrLoop; 1016 pNew->addrVisit = addrVisit; 1017 pNew->nEst = nEst; 1018 pNew->zName = sqlite3DbStrDup(p->db, zName); 1019 p->aScan = aNew; 1020 } 1021 } 1022 #endif 1023 1024 1025 /* 1026 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 1027 ** for a specific instruction. 1028 */ 1029 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){ 1030 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 1031 } 1032 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ 1033 sqlite3VdbeGetOp(p,addr)->p1 = val; 1034 } 1035 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ 1036 sqlite3VdbeGetOp(p,addr)->p2 = val; 1037 } 1038 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ 1039 sqlite3VdbeGetOp(p,addr)->p3 = val; 1040 } 1041 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 1042 assert( p->nOp>0 || p->db->mallocFailed ); 1043 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 1044 } 1045 1046 /* 1047 ** Change the P2 operand of instruction addr so that it points to 1048 ** the address of the next instruction to be coded. 1049 */ 1050 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 1051 sqlite3VdbeChangeP2(p, addr, p->nOp); 1052 } 1053 1054 /* 1055 ** Change the P2 operand of the jump instruction at addr so that 1056 ** the jump lands on the next opcode. Or if the jump instruction was 1057 ** the previous opcode (and is thus a no-op) then simply back up 1058 ** the next instruction counter by one slot so that the jump is 1059 ** overwritten by the next inserted opcode. 1060 ** 1061 ** This routine is an optimization of sqlite3VdbeJumpHere() that 1062 ** strives to omit useless byte-code like this: 1063 ** 1064 ** 7 Once 0 8 0 1065 ** 8 ... 1066 */ 1067 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){ 1068 if( addr==p->nOp-1 ){ 1069 assert( p->aOp[addr].opcode==OP_Once 1070 || p->aOp[addr].opcode==OP_If 1071 || p->aOp[addr].opcode==OP_FkIfZero ); 1072 assert( p->aOp[addr].p4type==0 ); 1073 #ifdef SQLITE_VDBE_COVERAGE 1074 sqlite3VdbeGetOp(p,-1)->iSrcLine = 0; /* Erase VdbeCoverage() macros */ 1075 #endif 1076 p->nOp--; 1077 }else{ 1078 sqlite3VdbeChangeP2(p, addr, p->nOp); 1079 } 1080 } 1081 1082 1083 /* 1084 ** If the input FuncDef structure is ephemeral, then free it. If 1085 ** the FuncDef is not ephermal, then do nothing. 1086 */ 1087 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 1088 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 1089 sqlite3DbFreeNN(db, pDef); 1090 } 1091 } 1092 1093 /* 1094 ** Delete a P4 value if necessary. 1095 */ 1096 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 1097 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1098 sqlite3DbFreeNN(db, p); 1099 } 1100 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 1101 freeEphemeralFunction(db, p->pFunc); 1102 sqlite3DbFreeNN(db, p); 1103 } 1104 static void freeP4(sqlite3 *db, int p4type, void *p4){ 1105 assert( db ); 1106 switch( p4type ){ 1107 case P4_FUNCCTX: { 1108 freeP4FuncCtx(db, (sqlite3_context*)p4); 1109 break; 1110 } 1111 case P4_REAL: 1112 case P4_INT64: 1113 case P4_DYNAMIC: 1114 case P4_INTARRAY: { 1115 sqlite3DbFree(db, p4); 1116 break; 1117 } 1118 case P4_KEYINFO: { 1119 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 1120 break; 1121 } 1122 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1123 case P4_EXPR: { 1124 sqlite3ExprDelete(db, (Expr*)p4); 1125 break; 1126 } 1127 #endif 1128 case P4_FUNCDEF: { 1129 freeEphemeralFunction(db, (FuncDef*)p4); 1130 break; 1131 } 1132 case P4_MEM: { 1133 if( db->pnBytesFreed==0 ){ 1134 sqlite3ValueFree((sqlite3_value*)p4); 1135 }else{ 1136 freeP4Mem(db, (Mem*)p4); 1137 } 1138 break; 1139 } 1140 case P4_VTAB : { 1141 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 1142 break; 1143 } 1144 } 1145 } 1146 1147 /* 1148 ** Free the space allocated for aOp and any p4 values allocated for the 1149 ** opcodes contained within. If aOp is not NULL it is assumed to contain 1150 ** nOp entries. 1151 */ 1152 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 1153 if( aOp ){ 1154 Op *pOp; 1155 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){ 1156 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 1157 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1158 sqlite3DbFree(db, pOp->zComment); 1159 #endif 1160 } 1161 sqlite3DbFreeNN(db, aOp); 1162 } 1163 } 1164 1165 /* 1166 ** Link the SubProgram object passed as the second argument into the linked 1167 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 1168 ** objects when the VM is no longer required. 1169 */ 1170 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 1171 p->pNext = pVdbe->pProgram; 1172 pVdbe->pProgram = p; 1173 } 1174 1175 /* 1176 ** Return true if the given Vdbe has any SubPrograms. 1177 */ 1178 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){ 1179 return pVdbe->pProgram!=0; 1180 } 1181 1182 /* 1183 ** Change the opcode at addr into OP_Noop 1184 */ 1185 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 1186 VdbeOp *pOp; 1187 if( p->db->mallocFailed ) return 0; 1188 assert( addr>=0 && addr<p->nOp ); 1189 pOp = &p->aOp[addr]; 1190 freeP4(p->db, pOp->p4type, pOp->p4.p); 1191 pOp->p4type = P4_NOTUSED; 1192 pOp->p4.z = 0; 1193 pOp->opcode = OP_Noop; 1194 return 1; 1195 } 1196 1197 /* 1198 ** If the last opcode is "op" and it is not a jump destination, 1199 ** then remove it. Return true if and only if an opcode was removed. 1200 */ 1201 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 1202 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 1203 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 1204 }else{ 1205 return 0; 1206 } 1207 } 1208 1209 #ifdef SQLITE_DEBUG 1210 /* 1211 ** Generate an OP_ReleaseReg opcode to indicate that a range of 1212 ** registers, except any identified by mask, are no longer in use. 1213 */ 1214 void sqlite3VdbeReleaseRegisters( 1215 Parse *pParse, /* Parsing context */ 1216 int iFirst, /* Index of first register to be released */ 1217 int N, /* Number of registers to release */ 1218 u32 mask, /* Mask of registers to NOT release */ 1219 int bUndefine /* If true, mark registers as undefined */ 1220 ){ 1221 if( N==0 ) return; 1222 assert( pParse->pVdbe ); 1223 assert( iFirst>=1 ); 1224 assert( iFirst+N-1<=pParse->nMem ); 1225 if( N<=31 && mask!=0 ){ 1226 while( N>0 && (mask&1)!=0 ){ 1227 mask >>= 1; 1228 iFirst++; 1229 N--; 1230 } 1231 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){ 1232 mask &= ~MASKBIT32(N-1); 1233 N--; 1234 } 1235 } 1236 if( N>0 ){ 1237 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); 1238 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); 1239 } 1240 } 1241 #endif /* SQLITE_DEBUG */ 1242 1243 1244 /* 1245 ** Change the value of the P4 operand for a specific instruction. 1246 ** This routine is useful when a large program is loaded from a 1247 ** static array using sqlite3VdbeAddOpList but we want to make a 1248 ** few minor changes to the program. 1249 ** 1250 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 1251 ** the string is made into memory obtained from sqlite3_malloc(). 1252 ** A value of n==0 means copy bytes of zP4 up to and including the 1253 ** first null byte. If n>0 then copy n+1 bytes of zP4. 1254 ** 1255 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 1256 ** to a string or structure that is guaranteed to exist for the lifetime of 1257 ** the Vdbe. In these cases we can just copy the pointer. 1258 ** 1259 ** If addr<0 then change P4 on the most recently inserted instruction. 1260 */ 1261 static void SQLITE_NOINLINE vdbeChangeP4Full( 1262 Vdbe *p, 1263 Op *pOp, 1264 const char *zP4, 1265 int n 1266 ){ 1267 if( pOp->p4type ){ 1268 freeP4(p->db, pOp->p4type, pOp->p4.p); 1269 pOp->p4type = 0; 1270 pOp->p4.p = 0; 1271 } 1272 if( n<0 ){ 1273 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 1274 }else{ 1275 if( n==0 ) n = sqlite3Strlen30(zP4); 1276 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 1277 pOp->p4type = P4_DYNAMIC; 1278 } 1279 } 1280 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 1281 Op *pOp; 1282 sqlite3 *db; 1283 assert( p!=0 ); 1284 db = p->db; 1285 assert( p->iVdbeMagic==VDBE_MAGIC_INIT ); 1286 assert( p->aOp!=0 || db->mallocFailed ); 1287 if( db->mallocFailed ){ 1288 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 1289 return; 1290 } 1291 assert( p->nOp>0 ); 1292 assert( addr<p->nOp ); 1293 if( addr<0 ){ 1294 addr = p->nOp - 1; 1295 } 1296 pOp = &p->aOp[addr]; 1297 if( n>=0 || pOp->p4type ){ 1298 vdbeChangeP4Full(p, pOp, zP4, n); 1299 return; 1300 } 1301 if( n==P4_INT32 ){ 1302 /* Note: this cast is safe, because the origin data point was an int 1303 ** that was cast to a (const char *). */ 1304 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 1305 pOp->p4type = P4_INT32; 1306 }else if( zP4!=0 ){ 1307 assert( n<0 ); 1308 pOp->p4.p = (void*)zP4; 1309 pOp->p4type = (signed char)n; 1310 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 1311 } 1312 } 1313 1314 /* 1315 ** Change the P4 operand of the most recently coded instruction 1316 ** to the value defined by the arguments. This is a high-speed 1317 ** version of sqlite3VdbeChangeP4(). 1318 ** 1319 ** The P4 operand must not have been previously defined. And the new 1320 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 1321 ** those cases. 1322 */ 1323 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1324 VdbeOp *pOp; 1325 assert( n!=P4_INT32 && n!=P4_VTAB ); 1326 assert( n<=0 ); 1327 if( p->db->mallocFailed ){ 1328 freeP4(p->db, n, pP4); 1329 }else{ 1330 assert( pP4!=0 ); 1331 assert( p->nOp>0 ); 1332 pOp = &p->aOp[p->nOp-1]; 1333 assert( pOp->p4type==P4_NOTUSED ); 1334 pOp->p4type = n; 1335 pOp->p4.p = pP4; 1336 } 1337 } 1338 1339 /* 1340 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1341 ** index given. 1342 */ 1343 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1344 Vdbe *v = pParse->pVdbe; 1345 KeyInfo *pKeyInfo; 1346 assert( v!=0 ); 1347 assert( pIdx!=0 ); 1348 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1349 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1350 } 1351 1352 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1353 /* 1354 ** Change the comment on the most recently coded instruction. Or 1355 ** insert a No-op and add the comment to that new instruction. This 1356 ** makes the code easier to read during debugging. None of this happens 1357 ** in a production build. 1358 */ 1359 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1360 assert( p->nOp>0 || p->aOp==0 ); 1361 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 ); 1362 if( p->nOp ){ 1363 assert( p->aOp ); 1364 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1365 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1366 } 1367 } 1368 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1369 va_list ap; 1370 if( p ){ 1371 va_start(ap, zFormat); 1372 vdbeVComment(p, zFormat, ap); 1373 va_end(ap); 1374 } 1375 } 1376 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1377 va_list ap; 1378 if( p ){ 1379 sqlite3VdbeAddOp0(p, OP_Noop); 1380 va_start(ap, zFormat); 1381 vdbeVComment(p, zFormat, ap); 1382 va_end(ap); 1383 } 1384 } 1385 #endif /* NDEBUG */ 1386 1387 #ifdef SQLITE_VDBE_COVERAGE 1388 /* 1389 ** Set the value if the iSrcLine field for the previously coded instruction. 1390 */ 1391 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1392 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1393 } 1394 #endif /* SQLITE_VDBE_COVERAGE */ 1395 1396 /* 1397 ** Return the opcode for a given address. If the address is -1, then 1398 ** return the most recently inserted opcode. 1399 ** 1400 ** If a memory allocation error has occurred prior to the calling of this 1401 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1402 ** is readable but not writable, though it is cast to a writable value. 1403 ** The return of a dummy opcode allows the call to continue functioning 1404 ** after an OOM fault without having to check to see if the return from 1405 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1406 ** dummy will never be written to. This is verified by code inspection and 1407 ** by running with Valgrind. 1408 */ 1409 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1410 /* C89 specifies that the constant "dummy" will be initialized to all 1411 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1412 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1413 assert( p->iVdbeMagic==VDBE_MAGIC_INIT ); 1414 if( addr<0 ){ 1415 addr = p->nOp - 1; 1416 } 1417 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1418 if( p->db->mallocFailed ){ 1419 return (VdbeOp*)&dummy; 1420 }else{ 1421 return &p->aOp[addr]; 1422 } 1423 } 1424 1425 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1426 /* 1427 ** Return an integer value for one of the parameters to the opcode pOp 1428 ** determined by character c. 1429 */ 1430 static int translateP(char c, const Op *pOp){ 1431 if( c=='1' ) return pOp->p1; 1432 if( c=='2' ) return pOp->p2; 1433 if( c=='3' ) return pOp->p3; 1434 if( c=='4' ) return pOp->p4.i; 1435 return pOp->p5; 1436 } 1437 1438 /* 1439 ** Compute a string for the "comment" field of a VDBE opcode listing. 1440 ** 1441 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1442 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1443 ** absence of other comments, this synopsis becomes the comment on the opcode. 1444 ** Some translation occurs: 1445 ** 1446 ** "PX" -> "r[X]" 1447 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1448 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1449 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1450 */ 1451 char *sqlite3VdbeDisplayComment( 1452 sqlite3 *db, /* Optional - Oom error reporting only */ 1453 const Op *pOp, /* The opcode to be commented */ 1454 const char *zP4 /* Previously obtained value for P4 */ 1455 ){ 1456 const char *zOpName; 1457 const char *zSynopsis; 1458 int nOpName; 1459 int ii; 1460 char zAlt[50]; 1461 StrAccum x; 1462 1463 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1464 zOpName = sqlite3OpcodeName(pOp->opcode); 1465 nOpName = sqlite3Strlen30(zOpName); 1466 if( zOpName[nOpName+1] ){ 1467 int seenCom = 0; 1468 char c; 1469 zSynopsis = zOpName + nOpName + 1; 1470 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1471 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1472 zSynopsis = zAlt; 1473 } 1474 for(ii=0; (c = zSynopsis[ii])!=0; ii++){ 1475 if( c=='P' ){ 1476 c = zSynopsis[++ii]; 1477 if( c=='4' ){ 1478 sqlite3_str_appendall(&x, zP4); 1479 }else if( c=='X' ){ 1480 sqlite3_str_appendall(&x, pOp->zComment); 1481 seenCom = 1; 1482 }else{ 1483 int v1 = translateP(c, pOp); 1484 int v2; 1485 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1486 ii += 3; 1487 v2 = translateP(zSynopsis[ii], pOp); 1488 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1489 ii += 2; 1490 v2++; 1491 } 1492 if( v2<2 ){ 1493 sqlite3_str_appendf(&x, "%d", v1); 1494 }else{ 1495 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1); 1496 } 1497 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){ 1498 sqlite3_context *pCtx = pOp->p4.pCtx; 1499 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){ 1500 sqlite3_str_appendf(&x, "%d", v1); 1501 }else if( pCtx->argc>1 ){ 1502 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1); 1503 }else if( x.accError==0 ){ 1504 assert( x.nChar>2 ); 1505 x.nChar -= 2; 1506 ii++; 1507 } 1508 ii += 3; 1509 }else{ 1510 sqlite3_str_appendf(&x, "%d", v1); 1511 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1512 ii += 4; 1513 } 1514 } 1515 } 1516 }else{ 1517 sqlite3_str_appendchar(&x, 1, c); 1518 } 1519 } 1520 if( !seenCom && pOp->zComment ){ 1521 sqlite3_str_appendf(&x, "; %s", pOp->zComment); 1522 } 1523 }else if( pOp->zComment ){ 1524 sqlite3_str_appendall(&x, pOp->zComment); 1525 } 1526 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){ 1527 sqlite3OomFault(db); 1528 } 1529 return sqlite3StrAccumFinish(&x); 1530 } 1531 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */ 1532 1533 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1534 /* 1535 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1536 ** that can be displayed in the P4 column of EXPLAIN output. 1537 */ 1538 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1539 const char *zOp = 0; 1540 switch( pExpr->op ){ 1541 case TK_STRING: 1542 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1543 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); 1544 break; 1545 case TK_INTEGER: 1546 sqlite3_str_appendf(p, "%d", pExpr->u.iValue); 1547 break; 1548 case TK_NULL: 1549 sqlite3_str_appendf(p, "NULL"); 1550 break; 1551 case TK_REGISTER: { 1552 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); 1553 break; 1554 } 1555 case TK_COLUMN: { 1556 if( pExpr->iColumn<0 ){ 1557 sqlite3_str_appendf(p, "rowid"); 1558 }else{ 1559 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); 1560 } 1561 break; 1562 } 1563 case TK_LT: zOp = "LT"; break; 1564 case TK_LE: zOp = "LE"; break; 1565 case TK_GT: zOp = "GT"; break; 1566 case TK_GE: zOp = "GE"; break; 1567 case TK_NE: zOp = "NE"; break; 1568 case TK_EQ: zOp = "EQ"; break; 1569 case TK_IS: zOp = "IS"; break; 1570 case TK_ISNOT: zOp = "ISNOT"; break; 1571 case TK_AND: zOp = "AND"; break; 1572 case TK_OR: zOp = "OR"; break; 1573 case TK_PLUS: zOp = "ADD"; break; 1574 case TK_STAR: zOp = "MUL"; break; 1575 case TK_MINUS: zOp = "SUB"; break; 1576 case TK_REM: zOp = "REM"; break; 1577 case TK_BITAND: zOp = "BITAND"; break; 1578 case TK_BITOR: zOp = "BITOR"; break; 1579 case TK_SLASH: zOp = "DIV"; break; 1580 case TK_LSHIFT: zOp = "LSHIFT"; break; 1581 case TK_RSHIFT: zOp = "RSHIFT"; break; 1582 case TK_CONCAT: zOp = "CONCAT"; break; 1583 case TK_UMINUS: zOp = "MINUS"; break; 1584 case TK_UPLUS: zOp = "PLUS"; break; 1585 case TK_BITNOT: zOp = "BITNOT"; break; 1586 case TK_NOT: zOp = "NOT"; break; 1587 case TK_ISNULL: zOp = "ISNULL"; break; 1588 case TK_NOTNULL: zOp = "NOTNULL"; break; 1589 1590 default: 1591 sqlite3_str_appendf(p, "%s", "expr"); 1592 break; 1593 } 1594 1595 if( zOp ){ 1596 sqlite3_str_appendf(p, "%s(", zOp); 1597 displayP4Expr(p, pExpr->pLeft); 1598 if( pExpr->pRight ){ 1599 sqlite3_str_append(p, ",", 1); 1600 displayP4Expr(p, pExpr->pRight); 1601 } 1602 sqlite3_str_append(p, ")", 1); 1603 } 1604 } 1605 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1606 1607 1608 #if VDBE_DISPLAY_P4 1609 /* 1610 ** Compute a string that describes the P4 parameter for an opcode. 1611 ** Use zTemp for any required temporary buffer space. 1612 */ 1613 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){ 1614 char *zP4 = 0; 1615 StrAccum x; 1616 1617 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1618 switch( pOp->p4type ){ 1619 case P4_KEYINFO: { 1620 int j; 1621 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1622 assert( pKeyInfo->aSortFlags!=0 ); 1623 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); 1624 for(j=0; j<pKeyInfo->nKeyField; j++){ 1625 CollSeq *pColl = pKeyInfo->aColl[j]; 1626 const char *zColl = pColl ? pColl->zName : ""; 1627 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1628 sqlite3_str_appendf(&x, ",%s%s%s", 1629 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "", 1630 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "", 1631 zColl); 1632 } 1633 sqlite3_str_append(&x, ")", 1); 1634 break; 1635 } 1636 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1637 case P4_EXPR: { 1638 displayP4Expr(&x, pOp->p4.pExpr); 1639 break; 1640 } 1641 #endif 1642 case P4_COLLSEQ: { 1643 static const char *const encnames[] = {"?", "8", "16LE", "16BE"}; 1644 CollSeq *pColl = pOp->p4.pColl; 1645 assert( pColl->enc<4 ); 1646 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName, 1647 encnames[pColl->enc]); 1648 break; 1649 } 1650 case P4_FUNCDEF: { 1651 FuncDef *pDef = pOp->p4.pFunc; 1652 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1653 break; 1654 } 1655 case P4_FUNCCTX: { 1656 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1657 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1658 break; 1659 } 1660 case P4_INT64: { 1661 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); 1662 break; 1663 } 1664 case P4_INT32: { 1665 sqlite3_str_appendf(&x, "%d", pOp->p4.i); 1666 break; 1667 } 1668 case P4_REAL: { 1669 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); 1670 break; 1671 } 1672 case P4_MEM: { 1673 Mem *pMem = pOp->p4.pMem; 1674 if( pMem->flags & MEM_Str ){ 1675 zP4 = pMem->z; 1676 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1677 sqlite3_str_appendf(&x, "%lld", pMem->u.i); 1678 }else if( pMem->flags & MEM_Real ){ 1679 sqlite3_str_appendf(&x, "%.16g", pMem->u.r); 1680 }else if( pMem->flags & MEM_Null ){ 1681 zP4 = "NULL"; 1682 }else{ 1683 assert( pMem->flags & MEM_Blob ); 1684 zP4 = "(blob)"; 1685 } 1686 break; 1687 } 1688 #ifndef SQLITE_OMIT_VIRTUALTABLE 1689 case P4_VTAB: { 1690 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1691 sqlite3_str_appendf(&x, "vtab:%p", pVtab); 1692 break; 1693 } 1694 #endif 1695 case P4_INTARRAY: { 1696 u32 i; 1697 u32 *ai = pOp->p4.ai; 1698 u32 n = ai[0]; /* The first element of an INTARRAY is always the 1699 ** count of the number of elements to follow */ 1700 for(i=1; i<=n; i++){ 1701 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]); 1702 } 1703 sqlite3_str_append(&x, "]", 1); 1704 break; 1705 } 1706 case P4_SUBPROGRAM: { 1707 zP4 = "program"; 1708 break; 1709 } 1710 case P4_TABLE: { 1711 zP4 = pOp->p4.pTab->zName; 1712 break; 1713 } 1714 default: { 1715 zP4 = pOp->p4.z; 1716 } 1717 } 1718 if( zP4 ) sqlite3_str_appendall(&x, zP4); 1719 if( (x.accError & SQLITE_NOMEM)!=0 ){ 1720 sqlite3OomFault(db); 1721 } 1722 return sqlite3StrAccumFinish(&x); 1723 } 1724 #endif /* VDBE_DISPLAY_P4 */ 1725 1726 /* 1727 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1728 ** 1729 ** The prepared statements need to know in advance the complete set of 1730 ** attached databases that will be use. A mask of these databases 1731 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1732 ** p->btreeMask of databases that will require a lock. 1733 */ 1734 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1735 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1736 assert( i<(int)sizeof(p->btreeMask)*8 ); 1737 DbMaskSet(p->btreeMask, i); 1738 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1739 DbMaskSet(p->lockMask, i); 1740 } 1741 } 1742 1743 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1744 /* 1745 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1746 ** this routine obtains the mutex associated with each BtShared structure 1747 ** that may be accessed by the VM passed as an argument. In doing so it also 1748 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1749 ** that the correct busy-handler callback is invoked if required. 1750 ** 1751 ** If SQLite is not threadsafe but does support shared-cache mode, then 1752 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1753 ** of all of BtShared structures accessible via the database handle 1754 ** associated with the VM. 1755 ** 1756 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1757 ** function is a no-op. 1758 ** 1759 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1760 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1761 ** corresponding to btrees that use shared cache. Then the runtime of 1762 ** this routine is N*N. But as N is rarely more than 1, this should not 1763 ** be a problem. 1764 */ 1765 void sqlite3VdbeEnter(Vdbe *p){ 1766 int i; 1767 sqlite3 *db; 1768 Db *aDb; 1769 int nDb; 1770 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1771 db = p->db; 1772 aDb = db->aDb; 1773 nDb = db->nDb; 1774 for(i=0; i<nDb; i++){ 1775 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1776 sqlite3BtreeEnter(aDb[i].pBt); 1777 } 1778 } 1779 } 1780 #endif 1781 1782 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1783 /* 1784 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1785 */ 1786 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1787 int i; 1788 sqlite3 *db; 1789 Db *aDb; 1790 int nDb; 1791 db = p->db; 1792 aDb = db->aDb; 1793 nDb = db->nDb; 1794 for(i=0; i<nDb; i++){ 1795 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1796 sqlite3BtreeLeave(aDb[i].pBt); 1797 } 1798 } 1799 } 1800 void sqlite3VdbeLeave(Vdbe *p){ 1801 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1802 vdbeLeave(p); 1803 } 1804 #endif 1805 1806 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1807 /* 1808 ** Print a single opcode. This routine is used for debugging only. 1809 */ 1810 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ 1811 char *zP4; 1812 char *zCom; 1813 sqlite3 dummyDb; 1814 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1815 if( pOut==0 ) pOut = stdout; 1816 sqlite3BeginBenignMalloc(); 1817 dummyDb.mallocFailed = 1; 1818 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp); 1819 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1820 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4); 1821 #else 1822 zCom = 0; 1823 #endif 1824 /* NB: The sqlite3OpcodeName() function is implemented by code created 1825 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1826 ** information from the vdbe.c source text */ 1827 fprintf(pOut, zFormat1, pc, 1828 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, 1829 zP4 ? zP4 : "", pOp->p5, 1830 zCom ? zCom : "" 1831 ); 1832 fflush(pOut); 1833 sqlite3_free(zP4); 1834 sqlite3_free(zCom); 1835 sqlite3EndBenignMalloc(); 1836 } 1837 #endif 1838 1839 /* 1840 ** Initialize an array of N Mem element. 1841 ** 1842 ** This is a high-runner, so only those fields that really do need to 1843 ** be initialized are set. The Mem structure is organized so that 1844 ** the fields that get initialized are nearby and hopefully on the same 1845 ** cache line. 1846 ** 1847 ** Mem.flags = flags 1848 ** Mem.db = db 1849 ** Mem.szMalloc = 0 1850 ** 1851 ** All other fields of Mem can safely remain uninitialized for now. They 1852 ** will be initialized before use. 1853 */ 1854 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1855 if( N>0 ){ 1856 do{ 1857 p->flags = flags; 1858 p->db = db; 1859 p->szMalloc = 0; 1860 #ifdef SQLITE_DEBUG 1861 p->pScopyFrom = 0; 1862 #endif 1863 p++; 1864 }while( (--N)>0 ); 1865 } 1866 } 1867 1868 /* 1869 ** Release auxiliary memory held in an array of N Mem elements. 1870 ** 1871 ** After this routine returns, all Mem elements in the array will still 1872 ** be valid. Those Mem elements that were not holding auxiliary resources 1873 ** will be unchanged. Mem elements which had something freed will be 1874 ** set to MEM_Undefined. 1875 */ 1876 static void releaseMemArray(Mem *p, int N){ 1877 if( p && N ){ 1878 Mem *pEnd = &p[N]; 1879 sqlite3 *db = p->db; 1880 if( db->pnBytesFreed ){ 1881 do{ 1882 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1883 }while( (++p)<pEnd ); 1884 return; 1885 } 1886 do{ 1887 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1888 assert( sqlite3VdbeCheckMemInvariants(p) ); 1889 1890 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1891 ** that takes advantage of the fact that the memory cell value is 1892 ** being set to NULL after releasing any dynamic resources. 1893 ** 1894 ** The justification for duplicating code is that according to 1895 ** callgrind, this causes a certain test case to hit the CPU 4.7 1896 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1897 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1898 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1899 ** with no indexes using a single prepared INSERT statement, bind() 1900 ** and reset(). Inserts are grouped into a transaction. 1901 */ 1902 testcase( p->flags & MEM_Agg ); 1903 testcase( p->flags & MEM_Dyn ); 1904 if( p->flags&(MEM_Agg|MEM_Dyn) ){ 1905 testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel ); 1906 sqlite3VdbeMemRelease(p); 1907 p->flags = MEM_Undefined; 1908 }else if( p->szMalloc ){ 1909 sqlite3DbFreeNN(db, p->zMalloc); 1910 p->szMalloc = 0; 1911 p->flags = MEM_Undefined; 1912 } 1913 #ifdef SQLITE_DEBUG 1914 else{ 1915 p->flags = MEM_Undefined; 1916 } 1917 #endif 1918 }while( (++p)<pEnd ); 1919 } 1920 } 1921 1922 #ifdef SQLITE_DEBUG 1923 /* 1924 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is 1925 ** and false if something is wrong. 1926 ** 1927 ** This routine is intended for use inside of assert() statements only. 1928 */ 1929 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){ 1930 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; 1931 return 1; 1932 } 1933 #endif 1934 1935 1936 /* 1937 ** This is a destructor on a Mem object (which is really an sqlite3_value) 1938 ** that deletes the Frame object that is attached to it as a blob. 1939 ** 1940 ** This routine does not delete the Frame right away. It merely adds the 1941 ** frame to a list of frames to be deleted when the Vdbe halts. 1942 */ 1943 void sqlite3VdbeFrameMemDel(void *pArg){ 1944 VdbeFrame *pFrame = (VdbeFrame*)pArg; 1945 assert( sqlite3VdbeFrameIsValid(pFrame) ); 1946 pFrame->pParent = pFrame->v->pDelFrame; 1947 pFrame->v->pDelFrame = pFrame; 1948 } 1949 1950 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN) 1951 /* 1952 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN 1953 ** QUERY PLAN output. 1954 ** 1955 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no 1956 ** more opcodes to be displayed. 1957 */ 1958 int sqlite3VdbeNextOpcode( 1959 Vdbe *p, /* The statement being explained */ 1960 Mem *pSub, /* Storage for keeping track of subprogram nesting */ 1961 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */ 1962 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */ 1963 int *piAddr, /* OUT: Write index into (*paOp)[] here */ 1964 Op **paOp /* OUT: Write the opcode array here */ 1965 ){ 1966 int nRow; /* Stop when row count reaches this */ 1967 int nSub = 0; /* Number of sub-vdbes seen so far */ 1968 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1969 int i; /* Next instruction address */ 1970 int rc = SQLITE_OK; /* Result code */ 1971 Op *aOp = 0; /* Opcode array */ 1972 int iPc; /* Rowid. Copy of value in *piPc */ 1973 1974 /* When the number of output rows reaches nRow, that means the 1975 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1976 ** nRow is the sum of the number of rows in the main program, plus 1977 ** the sum of the number of rows in all trigger subprograms encountered 1978 ** so far. The nRow value will increase as new trigger subprograms are 1979 ** encountered, but p->pc will eventually catch up to nRow. 1980 */ 1981 nRow = p->nOp; 1982 if( pSub!=0 ){ 1983 if( pSub->flags&MEM_Blob ){ 1984 /* pSub is initiallly NULL. It is initialized to a BLOB by 1985 ** the P4_SUBPROGRAM processing logic below */ 1986 nSub = pSub->n/sizeof(Vdbe*); 1987 apSub = (SubProgram **)pSub->z; 1988 } 1989 for(i=0; i<nSub; i++){ 1990 nRow += apSub[i]->nOp; 1991 } 1992 } 1993 iPc = *piPc; 1994 while(1){ /* Loop exits via break */ 1995 i = iPc++; 1996 if( i>=nRow ){ 1997 p->rc = SQLITE_OK; 1998 rc = SQLITE_DONE; 1999 break; 2000 } 2001 if( i<p->nOp ){ 2002 /* The rowid is small enough that we are still in the 2003 ** main program. */ 2004 aOp = p->aOp; 2005 }else{ 2006 /* We are currently listing subprograms. Figure out which one and 2007 ** pick up the appropriate opcode. */ 2008 int j; 2009 i -= p->nOp; 2010 assert( apSub!=0 ); 2011 assert( nSub>0 ); 2012 for(j=0; i>=apSub[j]->nOp; j++){ 2013 i -= apSub[j]->nOp; 2014 assert( i<apSub[j]->nOp || j+1<nSub ); 2015 } 2016 aOp = apSub[j]->aOp; 2017 } 2018 2019 /* When an OP_Program opcode is encounter (the only opcode that has 2020 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 2021 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 2022 ** has not already been seen. 2023 */ 2024 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){ 2025 int nByte = (nSub+1)*sizeof(SubProgram*); 2026 int j; 2027 for(j=0; j<nSub; j++){ 2028 if( apSub[j]==aOp[i].p4.pProgram ) break; 2029 } 2030 if( j==nSub ){ 2031 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); 2032 if( p->rc!=SQLITE_OK ){ 2033 rc = SQLITE_ERROR; 2034 break; 2035 } 2036 apSub = (SubProgram **)pSub->z; 2037 apSub[nSub++] = aOp[i].p4.pProgram; 2038 MemSetTypeFlag(pSub, MEM_Blob); 2039 pSub->n = nSub*sizeof(SubProgram*); 2040 nRow += aOp[i].p4.pProgram->nOp; 2041 } 2042 } 2043 if( eMode==0 ) break; 2044 #ifdef SQLITE_ENABLE_BYTECODE_VTAB 2045 if( eMode==2 ){ 2046 Op *pOp = aOp + i; 2047 if( pOp->opcode==OP_OpenRead ) break; 2048 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break; 2049 if( pOp->opcode==OP_ReopenIdx ) break; 2050 }else 2051 #endif 2052 { 2053 assert( eMode==1 ); 2054 if( aOp[i].opcode==OP_Explain ) break; 2055 if( aOp[i].opcode==OP_Init && iPc>1 ) break; 2056 } 2057 } 2058 *piPc = iPc; 2059 *piAddr = i; 2060 *paOp = aOp; 2061 return rc; 2062 } 2063 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */ 2064 2065 2066 /* 2067 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 2068 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 2069 */ 2070 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 2071 int i; 2072 Mem *aMem = VdbeFrameMem(p); 2073 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 2074 assert( sqlite3VdbeFrameIsValid(p) ); 2075 for(i=0; i<p->nChildCsr; i++){ 2076 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 2077 } 2078 releaseMemArray(aMem, p->nChildMem); 2079 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 2080 sqlite3DbFree(p->v->db, p); 2081 } 2082 2083 #ifndef SQLITE_OMIT_EXPLAIN 2084 /* 2085 ** Give a listing of the program in the virtual machine. 2086 ** 2087 ** The interface is the same as sqlite3VdbeExec(). But instead of 2088 ** running the code, it invokes the callback once for each instruction. 2089 ** This feature is used to implement "EXPLAIN". 2090 ** 2091 ** When p->explain==1, each instruction is listed. When 2092 ** p->explain==2, only OP_Explain instructions are listed and these 2093 ** are shown in a different format. p->explain==2 is used to implement 2094 ** EXPLAIN QUERY PLAN. 2095 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers 2096 ** are also shown, so that the boundaries between the main program and 2097 ** each trigger are clear. 2098 ** 2099 ** When p->explain==1, first the main program is listed, then each of 2100 ** the trigger subprograms are listed one by one. 2101 */ 2102 int sqlite3VdbeList( 2103 Vdbe *p /* The VDBE */ 2104 ){ 2105 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 2106 sqlite3 *db = p->db; /* The database connection */ 2107 int i; /* Loop counter */ 2108 int rc = SQLITE_OK; /* Return code */ 2109 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 2110 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); 2111 Op *aOp; /* Array of opcodes */ 2112 Op *pOp; /* Current opcode */ 2113 2114 assert( p->explain ); 2115 assert( p->iVdbeMagic==VDBE_MAGIC_RUN ); 2116 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 2117 2118 /* Even though this opcode does not use dynamic strings for 2119 ** the result, result columns may become dynamic if the user calls 2120 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 2121 */ 2122 releaseMemArray(pMem, 8); 2123 p->pResultSet = 0; 2124 2125 if( p->rc==SQLITE_NOMEM ){ 2126 /* This happens if a malloc() inside a call to sqlite3_column_text() or 2127 ** sqlite3_column_text16() failed. */ 2128 sqlite3OomFault(db); 2129 return SQLITE_ERROR; 2130 } 2131 2132 if( bListSubprogs ){ 2133 /* The first 8 memory cells are used for the result set. So we will 2134 ** commandeer the 9th cell to use as storage for an array of pointers 2135 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 2136 ** cells. */ 2137 assert( p->nMem>9 ); 2138 pSub = &p->aMem[9]; 2139 }else{ 2140 pSub = 0; 2141 } 2142 2143 /* Figure out which opcode is next to display */ 2144 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp); 2145 2146 if( rc==SQLITE_OK ){ 2147 pOp = aOp + i; 2148 if( AtomicLoad(&db->u1.isInterrupted) ){ 2149 p->rc = SQLITE_INTERRUPT; 2150 rc = SQLITE_ERROR; 2151 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 2152 }else{ 2153 char *zP4 = sqlite3VdbeDisplayP4(db, pOp); 2154 if( p->explain==2 ){ 2155 sqlite3VdbeMemSetInt64(pMem, pOp->p1); 2156 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2); 2157 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3); 2158 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free); 2159 p->nResColumn = 4; 2160 }else{ 2161 sqlite3VdbeMemSetInt64(pMem+0, i); 2162 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode), 2163 -1, SQLITE_UTF8, SQLITE_STATIC); 2164 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1); 2165 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2); 2166 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3); 2167 /* pMem+5 for p4 is done last */ 2168 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5); 2169 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2170 { 2171 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4); 2172 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free); 2173 } 2174 #else 2175 sqlite3VdbeMemSetNull(pMem+7); 2176 #endif 2177 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free); 2178 p->nResColumn = 8; 2179 } 2180 p->pResultSet = pMem; 2181 if( db->mallocFailed ){ 2182 p->rc = SQLITE_NOMEM; 2183 rc = SQLITE_ERROR; 2184 }else{ 2185 p->rc = SQLITE_OK; 2186 rc = SQLITE_ROW; 2187 } 2188 } 2189 } 2190 return rc; 2191 } 2192 #endif /* SQLITE_OMIT_EXPLAIN */ 2193 2194 #ifdef SQLITE_DEBUG 2195 /* 2196 ** Print the SQL that was used to generate a VDBE program. 2197 */ 2198 void sqlite3VdbePrintSql(Vdbe *p){ 2199 const char *z = 0; 2200 if( p->zSql ){ 2201 z = p->zSql; 2202 }else if( p->nOp>=1 ){ 2203 const VdbeOp *pOp = &p->aOp[0]; 2204 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2205 z = pOp->p4.z; 2206 while( sqlite3Isspace(*z) ) z++; 2207 } 2208 } 2209 if( z ) printf("SQL: [%s]\n", z); 2210 } 2211 #endif 2212 2213 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 2214 /* 2215 ** Print an IOTRACE message showing SQL content. 2216 */ 2217 void sqlite3VdbeIOTraceSql(Vdbe *p){ 2218 int nOp = p->nOp; 2219 VdbeOp *pOp; 2220 if( sqlite3IoTrace==0 ) return; 2221 if( nOp<1 ) return; 2222 pOp = &p->aOp[0]; 2223 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2224 int i, j; 2225 char z[1000]; 2226 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 2227 for(i=0; sqlite3Isspace(z[i]); i++){} 2228 for(j=0; z[i]; i++){ 2229 if( sqlite3Isspace(z[i]) ){ 2230 if( z[i-1]!=' ' ){ 2231 z[j++] = ' '; 2232 } 2233 }else{ 2234 z[j++] = z[i]; 2235 } 2236 } 2237 z[j] = 0; 2238 sqlite3IoTrace("SQL %s\n", z); 2239 } 2240 } 2241 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 2242 2243 /* An instance of this object describes bulk memory available for use 2244 ** by subcomponents of a prepared statement. Space is allocated out 2245 ** of a ReusableSpace object by the allocSpace() routine below. 2246 */ 2247 struct ReusableSpace { 2248 u8 *pSpace; /* Available memory */ 2249 sqlite3_int64 nFree; /* Bytes of available memory */ 2250 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */ 2251 }; 2252 2253 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 2254 ** from the ReusableSpace object. Return a pointer to the allocated 2255 ** memory on success. If insufficient memory is available in the 2256 ** ReusableSpace object, increase the ReusableSpace.nNeeded 2257 ** value by the amount needed and return NULL. 2258 ** 2259 ** If pBuf is not initially NULL, that means that the memory has already 2260 ** been allocated by a prior call to this routine, so just return a copy 2261 ** of pBuf and leave ReusableSpace unchanged. 2262 ** 2263 ** This allocator is employed to repurpose unused slots at the end of the 2264 ** opcode array of prepared state for other memory needs of the prepared 2265 ** statement. 2266 */ 2267 static void *allocSpace( 2268 struct ReusableSpace *p, /* Bulk memory available for allocation */ 2269 void *pBuf, /* Pointer to a prior allocation */ 2270 sqlite3_int64 nByte /* Bytes of memory needed */ 2271 ){ 2272 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 2273 if( pBuf==0 ){ 2274 nByte = ROUND8(nByte); 2275 if( nByte <= p->nFree ){ 2276 p->nFree -= nByte; 2277 pBuf = &p->pSpace[p->nFree]; 2278 }else{ 2279 p->nNeeded += nByte; 2280 } 2281 } 2282 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 2283 return pBuf; 2284 } 2285 2286 /* 2287 ** Rewind the VDBE back to the beginning in preparation for 2288 ** running it. 2289 */ 2290 void sqlite3VdbeRewind(Vdbe *p){ 2291 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 2292 int i; 2293 #endif 2294 assert( p!=0 ); 2295 assert( p->iVdbeMagic==VDBE_MAGIC_INIT || p->iVdbeMagic==VDBE_MAGIC_RESET ); 2296 2297 /* There should be at least one opcode. 2298 */ 2299 assert( p->nOp>0 ); 2300 2301 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 2302 p->iVdbeMagic = VDBE_MAGIC_RUN; 2303 2304 #ifdef SQLITE_DEBUG 2305 for(i=0; i<p->nMem; i++){ 2306 assert( p->aMem[i].db==p->db ); 2307 } 2308 #endif 2309 p->pc = -1; 2310 p->rc = SQLITE_OK; 2311 p->errorAction = OE_Abort; 2312 p->nChange = 0; 2313 p->cacheCtr = 1; 2314 p->minWriteFileFormat = 255; 2315 p->iStatement = 0; 2316 p->nFkConstraint = 0; 2317 #ifdef VDBE_PROFILE 2318 for(i=0; i<p->nOp; i++){ 2319 p->aOp[i].cnt = 0; 2320 p->aOp[i].cycles = 0; 2321 } 2322 #endif 2323 } 2324 2325 /* 2326 ** Prepare a virtual machine for execution for the first time after 2327 ** creating the virtual machine. This involves things such 2328 ** as allocating registers and initializing the program counter. 2329 ** After the VDBE has be prepped, it can be executed by one or more 2330 ** calls to sqlite3VdbeExec(). 2331 ** 2332 ** This function may be called exactly once on each virtual machine. 2333 ** After this routine is called the VM has been "packaged" and is ready 2334 ** to run. After this routine is called, further calls to 2335 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 2336 ** the Vdbe from the Parse object that helped generate it so that the 2337 ** the Vdbe becomes an independent entity and the Parse object can be 2338 ** destroyed. 2339 ** 2340 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 2341 ** to its initial state after it has been run. 2342 */ 2343 void sqlite3VdbeMakeReady( 2344 Vdbe *p, /* The VDBE */ 2345 Parse *pParse /* Parsing context */ 2346 ){ 2347 sqlite3 *db; /* The database connection */ 2348 int nVar; /* Number of parameters */ 2349 int nMem; /* Number of VM memory registers */ 2350 int nCursor; /* Number of cursors required */ 2351 int nArg; /* Number of arguments in subprograms */ 2352 int n; /* Loop counter */ 2353 struct ReusableSpace x; /* Reusable bulk memory */ 2354 2355 assert( p!=0 ); 2356 assert( p->nOp>0 ); 2357 assert( pParse!=0 ); 2358 assert( p->iVdbeMagic==VDBE_MAGIC_INIT ); 2359 assert( pParse==p->pParse ); 2360 p->pVList = pParse->pVList; 2361 pParse->pVList = 0; 2362 db = p->db; 2363 assert( db->mallocFailed==0 ); 2364 nVar = pParse->nVar; 2365 nMem = pParse->nMem; 2366 nCursor = pParse->nTab; 2367 nArg = pParse->nMaxArg; 2368 2369 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 2370 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 2371 ** space at the end of aMem[] for cursors 1 and greater. 2372 ** See also: allocateCursor(). 2373 */ 2374 nMem += nCursor; 2375 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 2376 2377 /* Figure out how much reusable memory is available at the end of the 2378 ** opcode array. This extra memory will be reallocated for other elements 2379 ** of the prepared statement. 2380 */ 2381 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 2382 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 2383 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 2384 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 2385 assert( x.nFree>=0 ); 2386 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 2387 2388 resolveP2Values(p, &nArg); 2389 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 2390 if( pParse->explain ){ 2391 static const char * const azColName[] = { 2392 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", 2393 "id", "parent", "notused", "detail" 2394 }; 2395 int iFirst, mx, i; 2396 if( nMem<10 ) nMem = 10; 2397 p->explain = pParse->explain; 2398 if( pParse->explain==2 ){ 2399 sqlite3VdbeSetNumCols(p, 4); 2400 iFirst = 8; 2401 mx = 12; 2402 }else{ 2403 sqlite3VdbeSetNumCols(p, 8); 2404 iFirst = 0; 2405 mx = 8; 2406 } 2407 for(i=iFirst; i<mx; i++){ 2408 sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME, 2409 azColName[i], SQLITE_STATIC); 2410 } 2411 } 2412 p->expired = 0; 2413 2414 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 2415 ** passes. On the first pass, we try to reuse unused memory at the 2416 ** end of the opcode array. If we are unable to satisfy all memory 2417 ** requirements by reusing the opcode array tail, then the second 2418 ** pass will fill in the remainder using a fresh memory allocation. 2419 ** 2420 ** This two-pass approach that reuses as much memory as possible from 2421 ** the leftover memory at the end of the opcode array. This can significantly 2422 ** reduce the amount of memory held by a prepared statement. 2423 */ 2424 x.nNeeded = 0; 2425 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem)); 2426 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem)); 2427 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*)); 2428 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*)); 2429 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2430 p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64)); 2431 #endif 2432 if( x.nNeeded ){ 2433 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 2434 x.nFree = x.nNeeded; 2435 if( !db->mallocFailed ){ 2436 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 2437 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 2438 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 2439 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 2440 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2441 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 2442 #endif 2443 } 2444 } 2445 2446 if( db->mallocFailed ){ 2447 p->nVar = 0; 2448 p->nCursor = 0; 2449 p->nMem = 0; 2450 }else{ 2451 p->nCursor = nCursor; 2452 p->nVar = (ynVar)nVar; 2453 initMemArray(p->aVar, nVar, db, MEM_Null); 2454 p->nMem = nMem; 2455 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2456 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2457 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2458 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2459 #endif 2460 } 2461 sqlite3VdbeRewind(p); 2462 } 2463 2464 /* 2465 ** Close a VDBE cursor and release all the resources that cursor 2466 ** happens to hold. 2467 */ 2468 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2469 if( pCx==0 ){ 2470 return; 2471 } 2472 switch( pCx->eCurType ){ 2473 case CURTYPE_SORTER: { 2474 sqlite3VdbeSorterClose(p->db, pCx); 2475 break; 2476 } 2477 case CURTYPE_BTREE: { 2478 assert( pCx->uc.pCursor!=0 ); 2479 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2480 break; 2481 } 2482 #ifndef SQLITE_OMIT_VIRTUALTABLE 2483 case CURTYPE_VTAB: { 2484 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2485 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2486 assert( pVCur->pVtab->nRef>0 ); 2487 pVCur->pVtab->nRef--; 2488 pModule->xClose(pVCur); 2489 break; 2490 } 2491 #endif 2492 } 2493 } 2494 2495 /* 2496 ** Close all cursors in the current frame. 2497 */ 2498 static void closeCursorsInFrame(Vdbe *p){ 2499 if( p->apCsr ){ 2500 int i; 2501 for(i=0; i<p->nCursor; i++){ 2502 VdbeCursor *pC = p->apCsr[i]; 2503 if( pC ){ 2504 sqlite3VdbeFreeCursor(p, pC); 2505 p->apCsr[i] = 0; 2506 } 2507 } 2508 } 2509 } 2510 2511 /* 2512 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2513 ** is used, for example, when a trigger sub-program is halted to restore 2514 ** control to the main program. 2515 */ 2516 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2517 Vdbe *v = pFrame->v; 2518 closeCursorsInFrame(v); 2519 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2520 v->anExec = pFrame->anExec; 2521 #endif 2522 v->aOp = pFrame->aOp; 2523 v->nOp = pFrame->nOp; 2524 v->aMem = pFrame->aMem; 2525 v->nMem = pFrame->nMem; 2526 v->apCsr = pFrame->apCsr; 2527 v->nCursor = pFrame->nCursor; 2528 v->db->lastRowid = pFrame->lastRowid; 2529 v->nChange = pFrame->nChange; 2530 v->db->nChange = pFrame->nDbChange; 2531 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2532 v->pAuxData = pFrame->pAuxData; 2533 pFrame->pAuxData = 0; 2534 return pFrame->pc; 2535 } 2536 2537 /* 2538 ** Close all cursors. 2539 ** 2540 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2541 ** cell array. This is necessary as the memory cell array may contain 2542 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2543 ** open cursors. 2544 */ 2545 static void closeAllCursors(Vdbe *p){ 2546 if( p->pFrame ){ 2547 VdbeFrame *pFrame; 2548 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2549 sqlite3VdbeFrameRestore(pFrame); 2550 p->pFrame = 0; 2551 p->nFrame = 0; 2552 } 2553 assert( p->nFrame==0 ); 2554 closeCursorsInFrame(p); 2555 if( p->aMem ){ 2556 releaseMemArray(p->aMem, p->nMem); 2557 } 2558 while( p->pDelFrame ){ 2559 VdbeFrame *pDel = p->pDelFrame; 2560 p->pDelFrame = pDel->pParent; 2561 sqlite3VdbeFrameDelete(pDel); 2562 } 2563 2564 /* Delete any auxdata allocations made by the VM */ 2565 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2566 assert( p->pAuxData==0 ); 2567 } 2568 2569 /* 2570 ** Set the number of result columns that will be returned by this SQL 2571 ** statement. This is now set at compile time, rather than during 2572 ** execution of the vdbe program so that sqlite3_column_count() can 2573 ** be called on an SQL statement before sqlite3_step(). 2574 */ 2575 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2576 int n; 2577 sqlite3 *db = p->db; 2578 2579 if( p->nResColumn ){ 2580 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2581 sqlite3DbFree(db, p->aColName); 2582 } 2583 n = nResColumn*COLNAME_N; 2584 p->nResColumn = (u16)nResColumn; 2585 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2586 if( p->aColName==0 ) return; 2587 initMemArray(p->aColName, n, db, MEM_Null); 2588 } 2589 2590 /* 2591 ** Set the name of the idx'th column to be returned by the SQL statement. 2592 ** zName must be a pointer to a nul terminated string. 2593 ** 2594 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2595 ** 2596 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2597 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2598 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2599 */ 2600 int sqlite3VdbeSetColName( 2601 Vdbe *p, /* Vdbe being configured */ 2602 int idx, /* Index of column zName applies to */ 2603 int var, /* One of the COLNAME_* constants */ 2604 const char *zName, /* Pointer to buffer containing name */ 2605 void (*xDel)(void*) /* Memory management strategy for zName */ 2606 ){ 2607 int rc; 2608 Mem *pColName; 2609 assert( idx<p->nResColumn ); 2610 assert( var<COLNAME_N ); 2611 if( p->db->mallocFailed ){ 2612 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2613 return SQLITE_NOMEM_BKPT; 2614 } 2615 assert( p->aColName!=0 ); 2616 pColName = &(p->aColName[idx+var*p->nResColumn]); 2617 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2618 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2619 return rc; 2620 } 2621 2622 /* 2623 ** A read or write transaction may or may not be active on database handle 2624 ** db. If a transaction is active, commit it. If there is a 2625 ** write-transaction spanning more than one database file, this routine 2626 ** takes care of the super-journal trickery. 2627 */ 2628 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2629 int i; 2630 int nTrans = 0; /* Number of databases with an active write-transaction 2631 ** that are candidates for a two-phase commit using a 2632 ** super-journal */ 2633 int rc = SQLITE_OK; 2634 int needXcommit = 0; 2635 2636 #ifdef SQLITE_OMIT_VIRTUALTABLE 2637 /* With this option, sqlite3VtabSync() is defined to be simply 2638 ** SQLITE_OK so p is not used. 2639 */ 2640 UNUSED_PARAMETER(p); 2641 #endif 2642 2643 /* Before doing anything else, call the xSync() callback for any 2644 ** virtual module tables written in this transaction. This has to 2645 ** be done before determining whether a super-journal file is 2646 ** required, as an xSync() callback may add an attached database 2647 ** to the transaction. 2648 */ 2649 rc = sqlite3VtabSync(db, p); 2650 2651 /* This loop determines (a) if the commit hook should be invoked and 2652 ** (b) how many database files have open write transactions, not 2653 ** including the temp database. (b) is important because if more than 2654 ** one database file has an open write transaction, a super-journal 2655 ** file is required for an atomic commit. 2656 */ 2657 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2658 Btree *pBt = db->aDb[i].pBt; 2659 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 2660 /* Whether or not a database might need a super-journal depends upon 2661 ** its journal mode (among other things). This matrix determines which 2662 ** journal modes use a super-journal and which do not */ 2663 static const u8 aMJNeeded[] = { 2664 /* DELETE */ 1, 2665 /* PERSIST */ 1, 2666 /* OFF */ 0, 2667 /* TRUNCATE */ 1, 2668 /* MEMORY */ 0, 2669 /* WAL */ 0 2670 }; 2671 Pager *pPager; /* Pager associated with pBt */ 2672 needXcommit = 1; 2673 sqlite3BtreeEnter(pBt); 2674 pPager = sqlite3BtreePager(pBt); 2675 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2676 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2677 && sqlite3PagerIsMemdb(pPager)==0 2678 ){ 2679 assert( i!=1 ); 2680 nTrans++; 2681 } 2682 rc = sqlite3PagerExclusiveLock(pPager); 2683 sqlite3BtreeLeave(pBt); 2684 } 2685 } 2686 if( rc!=SQLITE_OK ){ 2687 return rc; 2688 } 2689 2690 /* If there are any write-transactions at all, invoke the commit hook */ 2691 if( needXcommit && db->xCommitCallback ){ 2692 rc = db->xCommitCallback(db->pCommitArg); 2693 if( rc ){ 2694 return SQLITE_CONSTRAINT_COMMITHOOK; 2695 } 2696 } 2697 2698 /* The simple case - no more than one database file (not counting the 2699 ** TEMP database) has a transaction active. There is no need for the 2700 ** super-journal. 2701 ** 2702 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2703 ** string, it means the main database is :memory: or a temp file. In 2704 ** that case we do not support atomic multi-file commits, so use the 2705 ** simple case then too. 2706 */ 2707 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2708 || nTrans<=1 2709 ){ 2710 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2711 Btree *pBt = db->aDb[i].pBt; 2712 if( pBt ){ 2713 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2714 } 2715 } 2716 2717 /* Do the commit only if all databases successfully complete phase 1. 2718 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2719 ** IO error while deleting or truncating a journal file. It is unlikely, 2720 ** but could happen. In this case abandon processing and return the error. 2721 */ 2722 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2723 Btree *pBt = db->aDb[i].pBt; 2724 if( pBt ){ 2725 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2726 } 2727 } 2728 if( rc==SQLITE_OK ){ 2729 sqlite3VtabCommit(db); 2730 } 2731 } 2732 2733 /* The complex case - There is a multi-file write-transaction active. 2734 ** This requires a super-journal file to ensure the transaction is 2735 ** committed atomically. 2736 */ 2737 #ifndef SQLITE_OMIT_DISKIO 2738 else{ 2739 sqlite3_vfs *pVfs = db->pVfs; 2740 char *zSuper = 0; /* File-name for the super-journal */ 2741 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2742 sqlite3_file *pSuperJrnl = 0; 2743 i64 offset = 0; 2744 int res; 2745 int retryCount = 0; 2746 int nMainFile; 2747 2748 /* Select a super-journal file name */ 2749 nMainFile = sqlite3Strlen30(zMainFile); 2750 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0); 2751 if( zSuper==0 ) return SQLITE_NOMEM_BKPT; 2752 zSuper += 4; 2753 do { 2754 u32 iRandom; 2755 if( retryCount ){ 2756 if( retryCount>100 ){ 2757 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper); 2758 sqlite3OsDelete(pVfs, zSuper, 0); 2759 break; 2760 }else if( retryCount==1 ){ 2761 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper); 2762 } 2763 } 2764 retryCount++; 2765 sqlite3_randomness(sizeof(iRandom), &iRandom); 2766 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X", 2767 (iRandom>>8)&0xffffff, iRandom&0xff); 2768 /* The antipenultimate character of the super-journal name must 2769 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2770 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' ); 2771 sqlite3FileSuffix3(zMainFile, zSuper); 2772 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); 2773 }while( rc==SQLITE_OK && res ); 2774 if( rc==SQLITE_OK ){ 2775 /* Open the super-journal. */ 2776 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl, 2777 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2778 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0 2779 ); 2780 } 2781 if( rc!=SQLITE_OK ){ 2782 sqlite3DbFree(db, zSuper-4); 2783 return rc; 2784 } 2785 2786 /* Write the name of each database file in the transaction into the new 2787 ** super-journal file. If an error occurs at this point close 2788 ** and delete the super-journal file. All the individual journal files 2789 ** still have 'null' as the super-journal pointer, so they will roll 2790 ** back independently if a failure occurs. 2791 */ 2792 for(i=0; i<db->nDb; i++){ 2793 Btree *pBt = db->aDb[i].pBt; 2794 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 2795 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2796 if( zFile==0 ){ 2797 continue; /* Ignore TEMP and :memory: databases */ 2798 } 2799 assert( zFile[0]!=0 ); 2800 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset); 2801 offset += sqlite3Strlen30(zFile)+1; 2802 if( rc!=SQLITE_OK ){ 2803 sqlite3OsCloseFree(pSuperJrnl); 2804 sqlite3OsDelete(pVfs, zSuper, 0); 2805 sqlite3DbFree(db, zSuper-4); 2806 return rc; 2807 } 2808 } 2809 } 2810 2811 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device 2812 ** flag is set this is not required. 2813 */ 2814 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL) 2815 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL)) 2816 ){ 2817 sqlite3OsCloseFree(pSuperJrnl); 2818 sqlite3OsDelete(pVfs, zSuper, 0); 2819 sqlite3DbFree(db, zSuper-4); 2820 return rc; 2821 } 2822 2823 /* Sync all the db files involved in the transaction. The same call 2824 ** sets the super-journal pointer in each individual journal. If 2825 ** an error occurs here, do not delete the super-journal file. 2826 ** 2827 ** If the error occurs during the first call to 2828 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2829 ** super-journal file will be orphaned. But we cannot delete it, 2830 ** in case the super-journal file name was written into the journal 2831 ** file before the failure occurred. 2832 */ 2833 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2834 Btree *pBt = db->aDb[i].pBt; 2835 if( pBt ){ 2836 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper); 2837 } 2838 } 2839 sqlite3OsCloseFree(pSuperJrnl); 2840 assert( rc!=SQLITE_BUSY ); 2841 if( rc!=SQLITE_OK ){ 2842 sqlite3DbFree(db, zSuper-4); 2843 return rc; 2844 } 2845 2846 /* Delete the super-journal file. This commits the transaction. After 2847 ** doing this the directory is synced again before any individual 2848 ** transaction files are deleted. 2849 */ 2850 rc = sqlite3OsDelete(pVfs, zSuper, 1); 2851 sqlite3DbFree(db, zSuper-4); 2852 zSuper = 0; 2853 if( rc ){ 2854 return rc; 2855 } 2856 2857 /* All files and directories have already been synced, so the following 2858 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2859 ** deleting or truncating journals. If something goes wrong while 2860 ** this is happening we don't really care. The integrity of the 2861 ** transaction is already guaranteed, but some stray 'cold' journals 2862 ** may be lying around. Returning an error code won't help matters. 2863 */ 2864 disable_simulated_io_errors(); 2865 sqlite3BeginBenignMalloc(); 2866 for(i=0; i<db->nDb; i++){ 2867 Btree *pBt = db->aDb[i].pBt; 2868 if( pBt ){ 2869 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2870 } 2871 } 2872 sqlite3EndBenignMalloc(); 2873 enable_simulated_io_errors(); 2874 2875 sqlite3VtabCommit(db); 2876 } 2877 #endif 2878 2879 return rc; 2880 } 2881 2882 /* 2883 ** This routine checks that the sqlite3.nVdbeActive count variable 2884 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2885 ** currently active. An assertion fails if the two counts do not match. 2886 ** This is an internal self-check only - it is not an essential processing 2887 ** step. 2888 ** 2889 ** This is a no-op if NDEBUG is defined. 2890 */ 2891 #ifndef NDEBUG 2892 static void checkActiveVdbeCnt(sqlite3 *db){ 2893 Vdbe *p; 2894 int cnt = 0; 2895 int nWrite = 0; 2896 int nRead = 0; 2897 p = db->pVdbe; 2898 while( p ){ 2899 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2900 cnt++; 2901 if( p->readOnly==0 ) nWrite++; 2902 if( p->bIsReader ) nRead++; 2903 } 2904 p = p->pNext; 2905 } 2906 assert( cnt==db->nVdbeActive ); 2907 assert( nWrite==db->nVdbeWrite ); 2908 assert( nRead==db->nVdbeRead ); 2909 } 2910 #else 2911 #define checkActiveVdbeCnt(x) 2912 #endif 2913 2914 /* 2915 ** If the Vdbe passed as the first argument opened a statement-transaction, 2916 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2917 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2918 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2919 ** statement transaction is committed. 2920 ** 2921 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2922 ** Otherwise SQLITE_OK. 2923 */ 2924 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 2925 sqlite3 *const db = p->db; 2926 int rc = SQLITE_OK; 2927 int i; 2928 const int iSavepoint = p->iStatement-1; 2929 2930 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2931 assert( db->nStatement>0 ); 2932 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2933 2934 for(i=0; i<db->nDb; i++){ 2935 int rc2 = SQLITE_OK; 2936 Btree *pBt = db->aDb[i].pBt; 2937 if( pBt ){ 2938 if( eOp==SAVEPOINT_ROLLBACK ){ 2939 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2940 } 2941 if( rc2==SQLITE_OK ){ 2942 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2943 } 2944 if( rc==SQLITE_OK ){ 2945 rc = rc2; 2946 } 2947 } 2948 } 2949 db->nStatement--; 2950 p->iStatement = 0; 2951 2952 if( rc==SQLITE_OK ){ 2953 if( eOp==SAVEPOINT_ROLLBACK ){ 2954 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2955 } 2956 if( rc==SQLITE_OK ){ 2957 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2958 } 2959 } 2960 2961 /* If the statement transaction is being rolled back, also restore the 2962 ** database handles deferred constraint counter to the value it had when 2963 ** the statement transaction was opened. */ 2964 if( eOp==SAVEPOINT_ROLLBACK ){ 2965 db->nDeferredCons = p->nStmtDefCons; 2966 db->nDeferredImmCons = p->nStmtDefImmCons; 2967 } 2968 return rc; 2969 } 2970 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2971 if( p->db->nStatement && p->iStatement ){ 2972 return vdbeCloseStatement(p, eOp); 2973 } 2974 return SQLITE_OK; 2975 } 2976 2977 2978 /* 2979 ** This function is called when a transaction opened by the database 2980 ** handle associated with the VM passed as an argument is about to be 2981 ** committed. If there are outstanding deferred foreign key constraint 2982 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2983 ** 2984 ** If there are outstanding FK violations and this function returns 2985 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2986 ** and write an error message to it. Then return SQLITE_ERROR. 2987 */ 2988 #ifndef SQLITE_OMIT_FOREIGN_KEY 2989 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2990 sqlite3 *db = p->db; 2991 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2992 || (!deferred && p->nFkConstraint>0) 2993 ){ 2994 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2995 p->errorAction = OE_Abort; 2996 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2997 return SQLITE_ERROR; 2998 } 2999 return SQLITE_OK; 3000 } 3001 #endif 3002 3003 /* 3004 ** This routine is called the when a VDBE tries to halt. If the VDBE 3005 ** has made changes and is in autocommit mode, then commit those 3006 ** changes. If a rollback is needed, then do the rollback. 3007 ** 3008 ** This routine is the only way to move the sqlite3eOpenState of a VM from 3009 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to 3010 ** call this on a VM that is in the SQLITE_STATE_HALT state. 3011 ** 3012 ** Return an error code. If the commit could not complete because of 3013 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 3014 ** means the close did not happen and needs to be repeated. 3015 */ 3016 int sqlite3VdbeHalt(Vdbe *p){ 3017 int rc; /* Used to store transient return codes */ 3018 sqlite3 *db = p->db; 3019 3020 /* This function contains the logic that determines if a statement or 3021 ** transaction will be committed or rolled back as a result of the 3022 ** execution of this virtual machine. 3023 ** 3024 ** If any of the following errors occur: 3025 ** 3026 ** SQLITE_NOMEM 3027 ** SQLITE_IOERR 3028 ** SQLITE_FULL 3029 ** SQLITE_INTERRUPT 3030 ** 3031 ** Then the internal cache might have been left in an inconsistent 3032 ** state. We need to rollback the statement transaction, if there is 3033 ** one, or the complete transaction if there is no statement transaction. 3034 */ 3035 3036 if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){ 3037 return SQLITE_OK; 3038 } 3039 if( db->mallocFailed ){ 3040 p->rc = SQLITE_NOMEM_BKPT; 3041 } 3042 closeAllCursors(p); 3043 checkActiveVdbeCnt(db); 3044 3045 /* No commit or rollback needed if the program never started or if the 3046 ** SQL statement does not read or write a database file. */ 3047 if( p->pc>=0 && p->bIsReader ){ 3048 int mrc; /* Primary error code from p->rc */ 3049 int eStatementOp = 0; 3050 int isSpecialError; /* Set to true if a 'special' error */ 3051 3052 /* Lock all btrees used by the statement */ 3053 sqlite3VdbeEnter(p); 3054 3055 /* Check for one of the special errors */ 3056 if( p->rc ){ 3057 mrc = p->rc & 0xff; 3058 isSpecialError = mrc==SQLITE_NOMEM 3059 || mrc==SQLITE_IOERR 3060 || mrc==SQLITE_INTERRUPT 3061 || mrc==SQLITE_FULL; 3062 }else{ 3063 mrc = isSpecialError = 0; 3064 } 3065 if( isSpecialError ){ 3066 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 3067 ** no rollback is necessary. Otherwise, at least a savepoint 3068 ** transaction must be rolled back to restore the database to a 3069 ** consistent state. 3070 ** 3071 ** Even if the statement is read-only, it is important to perform 3072 ** a statement or transaction rollback operation. If the error 3073 ** occurred while writing to the journal, sub-journal or database 3074 ** file as part of an effort to free up cache space (see function 3075 ** pagerStress() in pager.c), the rollback is required to restore 3076 ** the pager to a consistent state. 3077 */ 3078 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 3079 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 3080 eStatementOp = SAVEPOINT_ROLLBACK; 3081 }else{ 3082 /* We are forced to roll back the active transaction. Before doing 3083 ** so, abort any other statements this handle currently has active. 3084 */ 3085 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3086 sqlite3CloseSavepoints(db); 3087 db->autoCommit = 1; 3088 p->nChange = 0; 3089 } 3090 } 3091 } 3092 3093 /* Check for immediate foreign key violations. */ 3094 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3095 sqlite3VdbeCheckFk(p, 0); 3096 } 3097 3098 /* If the auto-commit flag is set and this is the only active writer 3099 ** VM, then we do either a commit or rollback of the current transaction. 3100 ** 3101 ** Note: This block also runs if one of the special errors handled 3102 ** above has occurred. 3103 */ 3104 if( !sqlite3VtabInSync(db) 3105 && db->autoCommit 3106 && db->nVdbeWrite==(p->readOnly==0) 3107 ){ 3108 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3109 rc = sqlite3VdbeCheckFk(p, 1); 3110 if( rc!=SQLITE_OK ){ 3111 if( NEVER(p->readOnly) ){ 3112 sqlite3VdbeLeave(p); 3113 return SQLITE_ERROR; 3114 } 3115 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 3116 }else if( db->flags & SQLITE_CorruptRdOnly ){ 3117 rc = SQLITE_CORRUPT; 3118 db->flags &= ~SQLITE_CorruptRdOnly; 3119 }else{ 3120 /* The auto-commit flag is true, the vdbe program was successful 3121 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 3122 ** key constraints to hold up the transaction. This means a commit 3123 ** is required. */ 3124 rc = vdbeCommit(db, p); 3125 } 3126 if( rc==SQLITE_BUSY && p->readOnly ){ 3127 sqlite3VdbeLeave(p); 3128 return SQLITE_BUSY; 3129 }else if( rc!=SQLITE_OK ){ 3130 p->rc = rc; 3131 sqlite3RollbackAll(db, SQLITE_OK); 3132 p->nChange = 0; 3133 }else{ 3134 db->nDeferredCons = 0; 3135 db->nDeferredImmCons = 0; 3136 db->flags &= ~(u64)SQLITE_DeferFKs; 3137 sqlite3CommitInternalChanges(db); 3138 } 3139 }else{ 3140 sqlite3RollbackAll(db, SQLITE_OK); 3141 p->nChange = 0; 3142 } 3143 db->nStatement = 0; 3144 }else if( eStatementOp==0 ){ 3145 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 3146 eStatementOp = SAVEPOINT_RELEASE; 3147 }else if( p->errorAction==OE_Abort ){ 3148 eStatementOp = SAVEPOINT_ROLLBACK; 3149 }else{ 3150 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3151 sqlite3CloseSavepoints(db); 3152 db->autoCommit = 1; 3153 p->nChange = 0; 3154 } 3155 } 3156 3157 /* If eStatementOp is non-zero, then a statement transaction needs to 3158 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 3159 ** do so. If this operation returns an error, and the current statement 3160 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 3161 ** current statement error code. 3162 */ 3163 if( eStatementOp ){ 3164 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 3165 if( rc ){ 3166 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 3167 p->rc = rc; 3168 sqlite3DbFree(db, p->zErrMsg); 3169 p->zErrMsg = 0; 3170 } 3171 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3172 sqlite3CloseSavepoints(db); 3173 db->autoCommit = 1; 3174 p->nChange = 0; 3175 } 3176 } 3177 3178 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 3179 ** has been rolled back, update the database connection change-counter. 3180 */ 3181 if( p->changeCntOn ){ 3182 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 3183 sqlite3VdbeSetChanges(db, p->nChange); 3184 }else{ 3185 sqlite3VdbeSetChanges(db, 0); 3186 } 3187 p->nChange = 0; 3188 } 3189 3190 /* Release the locks */ 3191 sqlite3VdbeLeave(p); 3192 } 3193 3194 /* We have successfully halted and closed the VM. Record this fact. */ 3195 if( p->pc>=0 ){ 3196 db->nVdbeActive--; 3197 if( !p->readOnly ) db->nVdbeWrite--; 3198 if( p->bIsReader ) db->nVdbeRead--; 3199 assert( db->nVdbeActive>=db->nVdbeRead ); 3200 assert( db->nVdbeRead>=db->nVdbeWrite ); 3201 assert( db->nVdbeWrite>=0 ); 3202 } 3203 p->iVdbeMagic = VDBE_MAGIC_HALT; 3204 checkActiveVdbeCnt(db); 3205 if( db->mallocFailed ){ 3206 p->rc = SQLITE_NOMEM_BKPT; 3207 } 3208 3209 /* If the auto-commit flag is set to true, then any locks that were held 3210 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 3211 ** to invoke any required unlock-notify callbacks. 3212 */ 3213 if( db->autoCommit ){ 3214 sqlite3ConnectionUnlocked(db); 3215 } 3216 3217 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 3218 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 3219 } 3220 3221 3222 /* 3223 ** Each VDBE holds the result of the most recent sqlite3_step() call 3224 ** in p->rc. This routine sets that result back to SQLITE_OK. 3225 */ 3226 void sqlite3VdbeResetStepResult(Vdbe *p){ 3227 p->rc = SQLITE_OK; 3228 } 3229 3230 /* 3231 ** Copy the error code and error message belonging to the VDBE passed 3232 ** as the first argument to its database handle (so that they will be 3233 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 3234 ** 3235 ** This function does not clear the VDBE error code or message, just 3236 ** copies them to the database handle. 3237 */ 3238 int sqlite3VdbeTransferError(Vdbe *p){ 3239 sqlite3 *db = p->db; 3240 int rc = p->rc; 3241 if( p->zErrMsg ){ 3242 db->bBenignMalloc++; 3243 sqlite3BeginBenignMalloc(); 3244 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 3245 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 3246 sqlite3EndBenignMalloc(); 3247 db->bBenignMalloc--; 3248 }else if( db->pErr ){ 3249 sqlite3ValueSetNull(db->pErr); 3250 } 3251 db->errCode = rc; 3252 db->errByteOffset = -1; 3253 return rc; 3254 } 3255 3256 #ifdef SQLITE_ENABLE_SQLLOG 3257 /* 3258 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 3259 ** invoke it. 3260 */ 3261 static void vdbeInvokeSqllog(Vdbe *v){ 3262 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 3263 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 3264 assert( v->db->init.busy==0 ); 3265 if( zExpanded ){ 3266 sqlite3GlobalConfig.xSqllog( 3267 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 3268 ); 3269 sqlite3DbFree(v->db, zExpanded); 3270 } 3271 } 3272 } 3273 #else 3274 # define vdbeInvokeSqllog(x) 3275 #endif 3276 3277 /* 3278 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 3279 ** Write any error messages into *pzErrMsg. Return the result code. 3280 ** 3281 ** After this routine is run, the VDBE should be ready to be executed 3282 ** again. 3283 ** 3284 ** To look at it another way, this routine resets the state of the 3285 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 3286 ** VDBE_MAGIC_INIT. 3287 */ 3288 int sqlite3VdbeReset(Vdbe *p){ 3289 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 3290 int i; 3291 #endif 3292 3293 sqlite3 *db; 3294 db = p->db; 3295 3296 /* If the VM did not run to completion or if it encountered an 3297 ** error, then it might not have been halted properly. So halt 3298 ** it now. 3299 */ 3300 sqlite3VdbeHalt(p); 3301 3302 /* If the VDBE has been run even partially, then transfer the error code 3303 ** and error message from the VDBE into the main database structure. But 3304 ** if the VDBE has just been set to run but has not actually executed any 3305 ** instructions yet, leave the main database error information unchanged. 3306 */ 3307 if( p->pc>=0 ){ 3308 vdbeInvokeSqllog(p); 3309 if( db->pErr || p->zErrMsg ){ 3310 sqlite3VdbeTransferError(p); 3311 }else{ 3312 db->errCode = p->rc; 3313 } 3314 if( p->runOnlyOnce ) p->expired = 1; 3315 }else if( p->rc && p->expired ){ 3316 /* The expired flag was set on the VDBE before the first call 3317 ** to sqlite3_step(). For consistency (since sqlite3_step() was 3318 ** called), set the database error in this case as well. 3319 */ 3320 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 3321 } 3322 3323 /* Reset register contents and reclaim error message memory. 3324 */ 3325 #ifdef SQLITE_DEBUG 3326 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 3327 ** Vdbe.aMem[] arrays have already been cleaned up. */ 3328 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 3329 if( p->aMem ){ 3330 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 3331 } 3332 #endif 3333 if( p->zErrMsg ){ 3334 sqlite3DbFree(db, p->zErrMsg); 3335 p->zErrMsg = 0; 3336 } 3337 p->pResultSet = 0; 3338 #ifdef SQLITE_DEBUG 3339 p->nWrite = 0; 3340 #endif 3341 3342 /* Save profiling information from this VDBE run. 3343 */ 3344 #ifdef VDBE_PROFILE 3345 { 3346 FILE *out = fopen("vdbe_profile.out", "a"); 3347 if( out ){ 3348 fprintf(out, "---- "); 3349 for(i=0; i<p->nOp; i++){ 3350 fprintf(out, "%02x", p->aOp[i].opcode); 3351 } 3352 fprintf(out, "\n"); 3353 if( p->zSql ){ 3354 char c, pc = 0; 3355 fprintf(out, "-- "); 3356 for(i=0; (c = p->zSql[i])!=0; i++){ 3357 if( pc=='\n' ) fprintf(out, "-- "); 3358 putc(c, out); 3359 pc = c; 3360 } 3361 if( pc!='\n' ) fprintf(out, "\n"); 3362 } 3363 for(i=0; i<p->nOp; i++){ 3364 char zHdr[100]; 3365 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 3366 p->aOp[i].cnt, 3367 p->aOp[i].cycles, 3368 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 3369 ); 3370 fprintf(out, "%s", zHdr); 3371 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 3372 } 3373 fclose(out); 3374 } 3375 } 3376 #endif 3377 p->iVdbeMagic = VDBE_MAGIC_RESET; 3378 return p->rc & db->errMask; 3379 } 3380 3381 /* 3382 ** Clean up and delete a VDBE after execution. Return an integer which is 3383 ** the result code. Write any error message text into *pzErrMsg. 3384 */ 3385 int sqlite3VdbeFinalize(Vdbe *p){ 3386 int rc = SQLITE_OK; 3387 if( p->iVdbeMagic==VDBE_MAGIC_RUN || p->iVdbeMagic==VDBE_MAGIC_HALT ){ 3388 rc = sqlite3VdbeReset(p); 3389 assert( (rc & p->db->errMask)==rc ); 3390 } 3391 sqlite3VdbeDelete(p); 3392 return rc; 3393 } 3394 3395 /* 3396 ** If parameter iOp is less than zero, then invoke the destructor for 3397 ** all auxiliary data pointers currently cached by the VM passed as 3398 ** the first argument. 3399 ** 3400 ** Or, if iOp is greater than or equal to zero, then the destructor is 3401 ** only invoked for those auxiliary data pointers created by the user 3402 ** function invoked by the OP_Function opcode at instruction iOp of 3403 ** VM pVdbe, and only then if: 3404 ** 3405 ** * the associated function parameter is the 32nd or later (counting 3406 ** from left to right), or 3407 ** 3408 ** * the corresponding bit in argument mask is clear (where the first 3409 ** function parameter corresponds to bit 0 etc.). 3410 */ 3411 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 3412 while( *pp ){ 3413 AuxData *pAux = *pp; 3414 if( (iOp<0) 3415 || (pAux->iAuxOp==iOp 3416 && pAux->iAuxArg>=0 3417 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 3418 ){ 3419 testcase( pAux->iAuxArg==31 ); 3420 if( pAux->xDeleteAux ){ 3421 pAux->xDeleteAux(pAux->pAux); 3422 } 3423 *pp = pAux->pNextAux; 3424 sqlite3DbFree(db, pAux); 3425 }else{ 3426 pp= &pAux->pNextAux; 3427 } 3428 } 3429 } 3430 3431 /* 3432 ** Free all memory associated with the Vdbe passed as the second argument, 3433 ** except for object itself, which is preserved. 3434 ** 3435 ** The difference between this function and sqlite3VdbeDelete() is that 3436 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 3437 ** the database connection and frees the object itself. 3438 */ 3439 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 3440 SubProgram *pSub, *pNext; 3441 assert( p->db==0 || p->db==db ); 3442 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 3443 for(pSub=p->pProgram; pSub; pSub=pNext){ 3444 pNext = pSub->pNext; 3445 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 3446 sqlite3DbFree(db, pSub); 3447 } 3448 if( p->iVdbeMagic!=VDBE_MAGIC_INIT ){ 3449 releaseMemArray(p->aVar, p->nVar); 3450 sqlite3DbFree(db, p->pVList); 3451 sqlite3DbFree(db, p->pFree); 3452 } 3453 vdbeFreeOpArray(db, p->aOp, p->nOp); 3454 sqlite3DbFree(db, p->aColName); 3455 sqlite3DbFree(db, p->zSql); 3456 #ifdef SQLITE_ENABLE_NORMALIZE 3457 sqlite3DbFree(db, p->zNormSql); 3458 { 3459 DblquoteStr *pThis, *pNext; 3460 for(pThis=p->pDblStr; pThis; pThis=pNext){ 3461 pNext = pThis->pNextStr; 3462 sqlite3DbFree(db, pThis); 3463 } 3464 } 3465 #endif 3466 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3467 { 3468 int i; 3469 for(i=0; i<p->nScan; i++){ 3470 sqlite3DbFree(db, p->aScan[i].zName); 3471 } 3472 sqlite3DbFree(db, p->aScan); 3473 } 3474 #endif 3475 } 3476 3477 /* 3478 ** Delete an entire VDBE. 3479 */ 3480 void sqlite3VdbeDelete(Vdbe *p){ 3481 sqlite3 *db; 3482 3483 assert( p!=0 ); 3484 db = p->db; 3485 assert( sqlite3_mutex_held(db->mutex) ); 3486 sqlite3VdbeClearObject(db, p); 3487 if( p->pPrev ){ 3488 p->pPrev->pNext = p->pNext; 3489 }else{ 3490 assert( db->pVdbe==p ); 3491 db->pVdbe = p->pNext; 3492 } 3493 if( p->pNext ){ 3494 p->pNext->pPrev = p->pPrev; 3495 } 3496 p->iVdbeMagic = VDBE_MAGIC_DEAD; 3497 p->db = 0; 3498 sqlite3DbFreeNN(db, p); 3499 } 3500 3501 /* 3502 ** The cursor "p" has a pending seek operation that has not yet been 3503 ** carried out. Seek the cursor now. If an error occurs, return 3504 ** the appropriate error code. 3505 */ 3506 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){ 3507 int res, rc; 3508 #ifdef SQLITE_TEST 3509 extern int sqlite3_search_count; 3510 #endif 3511 assert( p->deferredMoveto ); 3512 assert( p->isTable ); 3513 assert( p->eCurType==CURTYPE_BTREE ); 3514 rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res); 3515 if( rc ) return rc; 3516 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3517 #ifdef SQLITE_TEST 3518 sqlite3_search_count++; 3519 #endif 3520 p->deferredMoveto = 0; 3521 p->cacheStatus = CACHE_STALE; 3522 return SQLITE_OK; 3523 } 3524 3525 /* 3526 ** Something has moved cursor "p" out of place. Maybe the row it was 3527 ** pointed to was deleted out from under it. Or maybe the btree was 3528 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3529 ** is supposed to be pointing. If the row was deleted out from under the 3530 ** cursor, set the cursor to point to a NULL row. 3531 */ 3532 int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){ 3533 int isDifferentRow, rc; 3534 assert( p->eCurType==CURTYPE_BTREE ); 3535 assert( p->uc.pCursor!=0 ); 3536 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3537 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3538 p->cacheStatus = CACHE_STALE; 3539 if( isDifferentRow ) p->nullRow = 1; 3540 return rc; 3541 } 3542 3543 /* 3544 ** Check to ensure that the cursor is valid. Restore the cursor 3545 ** if need be. Return any I/O error from the restore operation. 3546 */ 3547 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3548 assert( p->eCurType==CURTYPE_BTREE ); 3549 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3550 return sqlite3VdbeHandleMovedCursor(p); 3551 } 3552 return SQLITE_OK; 3553 } 3554 3555 /* 3556 ** The following functions: 3557 ** 3558 ** sqlite3VdbeSerialType() 3559 ** sqlite3VdbeSerialTypeLen() 3560 ** sqlite3VdbeSerialLen() 3561 ** sqlite3VdbeSerialPut() 3562 ** sqlite3VdbeSerialGet() 3563 ** 3564 ** encapsulate the code that serializes values for storage in SQLite 3565 ** data and index records. Each serialized value consists of a 3566 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3567 ** integer, stored as a varint. 3568 ** 3569 ** In an SQLite index record, the serial type is stored directly before 3570 ** the blob of data that it corresponds to. In a table record, all serial 3571 ** types are stored at the start of the record, and the blobs of data at 3572 ** the end. Hence these functions allow the caller to handle the 3573 ** serial-type and data blob separately. 3574 ** 3575 ** The following table describes the various storage classes for data: 3576 ** 3577 ** serial type bytes of data type 3578 ** -------------- --------------- --------------- 3579 ** 0 0 NULL 3580 ** 1 1 signed integer 3581 ** 2 2 signed integer 3582 ** 3 3 signed integer 3583 ** 4 4 signed integer 3584 ** 5 6 signed integer 3585 ** 6 8 signed integer 3586 ** 7 8 IEEE float 3587 ** 8 0 Integer constant 0 3588 ** 9 0 Integer constant 1 3589 ** 10,11 reserved for expansion 3590 ** N>=12 and even (N-12)/2 BLOB 3591 ** N>=13 and odd (N-13)/2 text 3592 ** 3593 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3594 ** of SQLite will not understand those serial types. 3595 */ 3596 3597 #if 0 /* Inlined into the OP_MakeRecord opcode */ 3598 /* 3599 ** Return the serial-type for the value stored in pMem. 3600 ** 3601 ** This routine might convert a large MEM_IntReal value into MEM_Real. 3602 ** 3603 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord 3604 ** opcode in the byte-code engine. But by moving this routine in-line, we 3605 ** can omit some redundant tests and make that opcode a lot faster. So 3606 ** this routine is now only used by the STAT3 logic and STAT3 support has 3607 ** ended. The code is kept here for historical reference only. 3608 */ 3609 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3610 int flags = pMem->flags; 3611 u32 n; 3612 3613 assert( pLen!=0 ); 3614 if( flags&MEM_Null ){ 3615 *pLen = 0; 3616 return 0; 3617 } 3618 if( flags&(MEM_Int|MEM_IntReal) ){ 3619 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3620 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3621 i64 i = pMem->u.i; 3622 u64 u; 3623 testcase( flags & MEM_Int ); 3624 testcase( flags & MEM_IntReal ); 3625 if( i<0 ){ 3626 u = ~i; 3627 }else{ 3628 u = i; 3629 } 3630 if( u<=127 ){ 3631 if( (i&1)==i && file_format>=4 ){ 3632 *pLen = 0; 3633 return 8+(u32)u; 3634 }else{ 3635 *pLen = 1; 3636 return 1; 3637 } 3638 } 3639 if( u<=32767 ){ *pLen = 2; return 2; } 3640 if( u<=8388607 ){ *pLen = 3; return 3; } 3641 if( u<=2147483647 ){ *pLen = 4; return 4; } 3642 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3643 *pLen = 8; 3644 if( flags&MEM_IntReal ){ 3645 /* If the value is IntReal and is going to take up 8 bytes to store 3646 ** as an integer, then we might as well make it an 8-byte floating 3647 ** point value */ 3648 pMem->u.r = (double)pMem->u.i; 3649 pMem->flags &= ~MEM_IntReal; 3650 pMem->flags |= MEM_Real; 3651 return 7; 3652 } 3653 return 6; 3654 } 3655 if( flags&MEM_Real ){ 3656 *pLen = 8; 3657 return 7; 3658 } 3659 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3660 assert( pMem->n>=0 ); 3661 n = (u32)pMem->n; 3662 if( flags & MEM_Zero ){ 3663 n += pMem->u.nZero; 3664 } 3665 *pLen = n; 3666 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3667 } 3668 #endif /* inlined into OP_MakeRecord */ 3669 3670 /* 3671 ** The sizes for serial types less than 128 3672 */ 3673 static const u8 sqlite3SmallTypeSizes[] = { 3674 /* 0 1 2 3 4 5 6 7 8 9 */ 3675 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3676 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3677 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3678 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3679 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3680 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3681 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3682 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3683 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3684 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3685 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3686 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3687 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3688 }; 3689 3690 /* 3691 ** Return the length of the data corresponding to the supplied serial-type. 3692 */ 3693 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3694 if( serial_type>=128 ){ 3695 return (serial_type-12)/2; 3696 }else{ 3697 assert( serial_type<12 3698 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3699 return sqlite3SmallTypeSizes[serial_type]; 3700 } 3701 } 3702 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3703 assert( serial_type<128 ); 3704 return sqlite3SmallTypeSizes[serial_type]; 3705 } 3706 3707 /* 3708 ** If we are on an architecture with mixed-endian floating 3709 ** points (ex: ARM7) then swap the lower 4 bytes with the 3710 ** upper 4 bytes. Return the result. 3711 ** 3712 ** For most architectures, this is a no-op. 3713 ** 3714 ** (later): It is reported to me that the mixed-endian problem 3715 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3716 ** that early versions of GCC stored the two words of a 64-bit 3717 ** float in the wrong order. And that error has been propagated 3718 ** ever since. The blame is not necessarily with GCC, though. 3719 ** GCC might have just copying the problem from a prior compiler. 3720 ** I am also told that newer versions of GCC that follow a different 3721 ** ABI get the byte order right. 3722 ** 3723 ** Developers using SQLite on an ARM7 should compile and run their 3724 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3725 ** enabled, some asserts below will ensure that the byte order of 3726 ** floating point values is correct. 3727 ** 3728 ** (2007-08-30) Frank van Vugt has studied this problem closely 3729 ** and has send his findings to the SQLite developers. Frank 3730 ** writes that some Linux kernels offer floating point hardware 3731 ** emulation that uses only 32-bit mantissas instead of a full 3732 ** 48-bits as required by the IEEE standard. (This is the 3733 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3734 ** byte swapping becomes very complicated. To avoid problems, 3735 ** the necessary byte swapping is carried out using a 64-bit integer 3736 ** rather than a 64-bit float. Frank assures us that the code here 3737 ** works for him. We, the developers, have no way to independently 3738 ** verify this, but Frank seems to know what he is talking about 3739 ** so we trust him. 3740 */ 3741 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3742 static u64 floatSwap(u64 in){ 3743 union { 3744 u64 r; 3745 u32 i[2]; 3746 } u; 3747 u32 t; 3748 3749 u.r = in; 3750 t = u.i[0]; 3751 u.i[0] = u.i[1]; 3752 u.i[1] = t; 3753 return u.r; 3754 } 3755 # define swapMixedEndianFloat(X) X = floatSwap(X) 3756 #else 3757 # define swapMixedEndianFloat(X) 3758 #endif 3759 3760 /* 3761 ** Write the serialized data blob for the value stored in pMem into 3762 ** buf. It is assumed that the caller has allocated sufficient space. 3763 ** Return the number of bytes written. 3764 ** 3765 ** nBuf is the amount of space left in buf[]. The caller is responsible 3766 ** for allocating enough space to buf[] to hold the entire field, exclusive 3767 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3768 ** 3769 ** Return the number of bytes actually written into buf[]. The number 3770 ** of bytes in the zero-filled tail is included in the return value only 3771 ** if those bytes were zeroed in buf[]. 3772 */ 3773 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3774 u32 len; 3775 3776 /* Integer and Real */ 3777 if( serial_type<=7 && serial_type>0 ){ 3778 u64 v; 3779 u32 i; 3780 if( serial_type==7 ){ 3781 assert( sizeof(v)==sizeof(pMem->u.r) ); 3782 memcpy(&v, &pMem->u.r, sizeof(v)); 3783 swapMixedEndianFloat(v); 3784 }else{ 3785 v = pMem->u.i; 3786 } 3787 len = i = sqlite3SmallTypeSizes[serial_type]; 3788 assert( i>0 ); 3789 do{ 3790 buf[--i] = (u8)(v&0xFF); 3791 v >>= 8; 3792 }while( i ); 3793 return len; 3794 } 3795 3796 /* String or blob */ 3797 if( serial_type>=12 ){ 3798 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3799 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3800 len = pMem->n; 3801 if( len>0 ) memcpy(buf, pMem->z, len); 3802 return len; 3803 } 3804 3805 /* NULL or constants 0 or 1 */ 3806 return 0; 3807 } 3808 3809 /* Input "x" is a sequence of unsigned characters that represent a 3810 ** big-endian integer. Return the equivalent native integer 3811 */ 3812 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3813 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3814 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3815 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3816 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3817 3818 /* 3819 ** Deserialize the data blob pointed to by buf as serial type serial_type 3820 ** and store the result in pMem. 3821 ** 3822 ** This function is implemented as two separate routines for performance. 3823 ** The few cases that require local variables are broken out into a separate 3824 ** routine so that in most cases the overhead of moving the stack pointer 3825 ** is avoided. 3826 */ 3827 static void serialGet( 3828 const unsigned char *buf, /* Buffer to deserialize from */ 3829 u32 serial_type, /* Serial type to deserialize */ 3830 Mem *pMem /* Memory cell to write value into */ 3831 ){ 3832 u64 x = FOUR_BYTE_UINT(buf); 3833 u32 y = FOUR_BYTE_UINT(buf+4); 3834 x = (x<<32) + y; 3835 if( serial_type==6 ){ 3836 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3837 ** twos-complement integer. */ 3838 pMem->u.i = *(i64*)&x; 3839 pMem->flags = MEM_Int; 3840 testcase( pMem->u.i<0 ); 3841 }else{ 3842 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3843 ** floating point number. */ 3844 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3845 /* Verify that integers and floating point values use the same 3846 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3847 ** defined that 64-bit floating point values really are mixed 3848 ** endian. 3849 */ 3850 static const u64 t1 = ((u64)0x3ff00000)<<32; 3851 static const double r1 = 1.0; 3852 u64 t2 = t1; 3853 swapMixedEndianFloat(t2); 3854 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3855 #endif 3856 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3857 swapMixedEndianFloat(x); 3858 memcpy(&pMem->u.r, &x, sizeof(x)); 3859 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real; 3860 } 3861 } 3862 void sqlite3VdbeSerialGet( 3863 const unsigned char *buf, /* Buffer to deserialize from */ 3864 u32 serial_type, /* Serial type to deserialize */ 3865 Mem *pMem /* Memory cell to write value into */ 3866 ){ 3867 switch( serial_type ){ 3868 case 10: { /* Internal use only: NULL with virtual table 3869 ** UPDATE no-change flag set */ 3870 pMem->flags = MEM_Null|MEM_Zero; 3871 pMem->n = 0; 3872 pMem->u.nZero = 0; 3873 return; 3874 } 3875 case 11: /* Reserved for future use */ 3876 case 0: { /* Null */ 3877 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3878 pMem->flags = MEM_Null; 3879 return; 3880 } 3881 case 1: { 3882 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3883 ** integer. */ 3884 pMem->u.i = ONE_BYTE_INT(buf); 3885 pMem->flags = MEM_Int; 3886 testcase( pMem->u.i<0 ); 3887 return; 3888 } 3889 case 2: { /* 2-byte signed integer */ 3890 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3891 ** twos-complement integer. */ 3892 pMem->u.i = TWO_BYTE_INT(buf); 3893 pMem->flags = MEM_Int; 3894 testcase( pMem->u.i<0 ); 3895 return; 3896 } 3897 case 3: { /* 3-byte signed integer */ 3898 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3899 ** twos-complement integer. */ 3900 pMem->u.i = THREE_BYTE_INT(buf); 3901 pMem->flags = MEM_Int; 3902 testcase( pMem->u.i<0 ); 3903 return; 3904 } 3905 case 4: { /* 4-byte signed integer */ 3906 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3907 ** twos-complement integer. */ 3908 pMem->u.i = FOUR_BYTE_INT(buf); 3909 #ifdef __HP_cc 3910 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3911 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3912 #endif 3913 pMem->flags = MEM_Int; 3914 testcase( pMem->u.i<0 ); 3915 return; 3916 } 3917 case 5: { /* 6-byte signed integer */ 3918 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3919 ** twos-complement integer. */ 3920 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3921 pMem->flags = MEM_Int; 3922 testcase( pMem->u.i<0 ); 3923 return; 3924 } 3925 case 6: /* 8-byte signed integer */ 3926 case 7: { /* IEEE floating point */ 3927 /* These use local variables, so do them in a separate routine 3928 ** to avoid having to move the frame pointer in the common case */ 3929 serialGet(buf,serial_type,pMem); 3930 return; 3931 } 3932 case 8: /* Integer 0 */ 3933 case 9: { /* Integer 1 */ 3934 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3935 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3936 pMem->u.i = serial_type-8; 3937 pMem->flags = MEM_Int; 3938 return; 3939 } 3940 default: { 3941 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3942 ** length. 3943 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3944 ** (N-13)/2 bytes in length. */ 3945 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3946 pMem->z = (char *)buf; 3947 pMem->n = (serial_type-12)/2; 3948 pMem->flags = aFlag[serial_type&1]; 3949 return; 3950 } 3951 } 3952 return; 3953 } 3954 /* 3955 ** This routine is used to allocate sufficient space for an UnpackedRecord 3956 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3957 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3958 ** 3959 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3960 ** the unaligned buffer passed via the second and third arguments (presumably 3961 ** stack space). If the former, then *ppFree is set to a pointer that should 3962 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3963 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3964 ** before returning. 3965 ** 3966 ** If an OOM error occurs, NULL is returned. 3967 */ 3968 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3969 KeyInfo *pKeyInfo /* Description of the record */ 3970 ){ 3971 UnpackedRecord *p; /* Unpacked record to return */ 3972 int nByte; /* Number of bytes required for *p */ 3973 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 3974 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3975 if( !p ) return 0; 3976 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3977 assert( pKeyInfo->aSortFlags!=0 ); 3978 p->pKeyInfo = pKeyInfo; 3979 p->nField = pKeyInfo->nKeyField + 1; 3980 return p; 3981 } 3982 3983 /* 3984 ** Given the nKey-byte encoding of a record in pKey[], populate the 3985 ** UnpackedRecord structure indicated by the fourth argument with the 3986 ** contents of the decoded record. 3987 */ 3988 void sqlite3VdbeRecordUnpack( 3989 KeyInfo *pKeyInfo, /* Information about the record format */ 3990 int nKey, /* Size of the binary record */ 3991 const void *pKey, /* The binary record */ 3992 UnpackedRecord *p /* Populate this structure before returning. */ 3993 ){ 3994 const unsigned char *aKey = (const unsigned char *)pKey; 3995 u32 d; 3996 u32 idx; /* Offset in aKey[] to read from */ 3997 u16 u; /* Unsigned loop counter */ 3998 u32 szHdr; 3999 Mem *pMem = p->aMem; 4000 4001 p->default_rc = 0; 4002 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 4003 idx = getVarint32(aKey, szHdr); 4004 d = szHdr; 4005 u = 0; 4006 while( idx<szHdr && d<=(u32)nKey ){ 4007 u32 serial_type; 4008 4009 idx += getVarint32(&aKey[idx], serial_type); 4010 pMem->enc = pKeyInfo->enc; 4011 pMem->db = pKeyInfo->db; 4012 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 4013 pMem->szMalloc = 0; 4014 pMem->z = 0; 4015 sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 4016 d += sqlite3VdbeSerialTypeLen(serial_type); 4017 pMem++; 4018 if( (++u)>=p->nField ) break; 4019 } 4020 if( d>(u32)nKey && u ){ 4021 assert( CORRUPT_DB ); 4022 /* In a corrupt record entry, the last pMem might have been set up using 4023 ** uninitialized memory. Overwrite its value with NULL, to prevent 4024 ** warnings from MSAN. */ 4025 sqlite3VdbeMemSetNull(pMem-1); 4026 } 4027 assert( u<=pKeyInfo->nKeyField + 1 ); 4028 p->nField = u; 4029 } 4030 4031 #ifdef SQLITE_DEBUG 4032 /* 4033 ** This function compares two index or table record keys in the same way 4034 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 4035 ** this function deserializes and compares values using the 4036 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 4037 ** in assert() statements to ensure that the optimized code in 4038 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 4039 ** 4040 ** Return true if the result of comparison is equivalent to desiredResult. 4041 ** Return false if there is a disagreement. 4042 */ 4043 static int vdbeRecordCompareDebug( 4044 int nKey1, const void *pKey1, /* Left key */ 4045 const UnpackedRecord *pPKey2, /* Right key */ 4046 int desiredResult /* Correct answer */ 4047 ){ 4048 u32 d1; /* Offset into aKey[] of next data element */ 4049 u32 idx1; /* Offset into aKey[] of next header element */ 4050 u32 szHdr1; /* Number of bytes in header */ 4051 int i = 0; 4052 int rc = 0; 4053 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4054 KeyInfo *pKeyInfo; 4055 Mem mem1; 4056 4057 pKeyInfo = pPKey2->pKeyInfo; 4058 if( pKeyInfo->db==0 ) return 1; 4059 mem1.enc = pKeyInfo->enc; 4060 mem1.db = pKeyInfo->db; 4061 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 4062 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4063 4064 /* Compilers may complain that mem1.u.i is potentially uninitialized. 4065 ** We could initialize it, as shown here, to silence those complaints. 4066 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 4067 ** the unnecessary initialization has a measurable negative performance 4068 ** impact, since this routine is a very high runner. And so, we choose 4069 ** to ignore the compiler warnings and leave this variable uninitialized. 4070 */ 4071 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 4072 4073 idx1 = getVarint32(aKey1, szHdr1); 4074 if( szHdr1>98307 ) return SQLITE_CORRUPT; 4075 d1 = szHdr1; 4076 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 4077 assert( pKeyInfo->aSortFlags!=0 ); 4078 assert( pKeyInfo->nKeyField>0 ); 4079 assert( idx1<=szHdr1 || CORRUPT_DB ); 4080 do{ 4081 u32 serial_type1; 4082 4083 /* Read the serial types for the next element in each key. */ 4084 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 4085 4086 /* Verify that there is enough key space remaining to avoid 4087 ** a buffer overread. The "d1+serial_type1+2" subexpression will 4088 ** always be greater than or equal to the amount of required key space. 4089 ** Use that approximation to avoid the more expensive call to 4090 ** sqlite3VdbeSerialTypeLen() in the common case. 4091 */ 4092 if( d1+(u64)serial_type1+2>(u64)nKey1 4093 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 4094 ){ 4095 break; 4096 } 4097 4098 /* Extract the values to be compared. 4099 */ 4100 sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 4101 d1 += sqlite3VdbeSerialTypeLen(serial_type1); 4102 4103 /* Do the comparison 4104 */ 4105 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], 4106 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0); 4107 if( rc!=0 ){ 4108 assert( mem1.szMalloc==0 ); /* See comment below */ 4109 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 4110 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null)) 4111 ){ 4112 rc = -rc; 4113 } 4114 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){ 4115 rc = -rc; /* Invert the result for DESC sort order. */ 4116 } 4117 goto debugCompareEnd; 4118 } 4119 i++; 4120 }while( idx1<szHdr1 && i<pPKey2->nField ); 4121 4122 /* No memory allocation is ever used on mem1. Prove this using 4123 ** the following assert(). If the assert() fails, it indicates a 4124 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 4125 */ 4126 assert( mem1.szMalloc==0 ); 4127 4128 /* rc==0 here means that one of the keys ran out of fields and 4129 ** all the fields up to that point were equal. Return the default_rc 4130 ** value. */ 4131 rc = pPKey2->default_rc; 4132 4133 debugCompareEnd: 4134 if( desiredResult==0 && rc==0 ) return 1; 4135 if( desiredResult<0 && rc<0 ) return 1; 4136 if( desiredResult>0 && rc>0 ) return 1; 4137 if( CORRUPT_DB ) return 1; 4138 if( pKeyInfo->db->mallocFailed ) return 1; 4139 return 0; 4140 } 4141 #endif 4142 4143 #ifdef SQLITE_DEBUG 4144 /* 4145 ** Count the number of fields (a.k.a. columns) in the record given by 4146 ** pKey,nKey. The verify that this count is less than or equal to the 4147 ** limit given by pKeyInfo->nAllField. 4148 ** 4149 ** If this constraint is not satisfied, it means that the high-speed 4150 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 4151 ** not work correctly. If this assert() ever fires, it probably means 4152 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 4153 ** incorrectly. 4154 */ 4155 static void vdbeAssertFieldCountWithinLimits( 4156 int nKey, const void *pKey, /* The record to verify */ 4157 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 4158 ){ 4159 int nField = 0; 4160 u32 szHdr; 4161 u32 idx; 4162 u32 notUsed; 4163 const unsigned char *aKey = (const unsigned char*)pKey; 4164 4165 if( CORRUPT_DB ) return; 4166 idx = getVarint32(aKey, szHdr); 4167 assert( nKey>=0 ); 4168 assert( szHdr<=(u32)nKey ); 4169 while( idx<szHdr ){ 4170 idx += getVarint32(aKey+idx, notUsed); 4171 nField++; 4172 } 4173 assert( nField <= pKeyInfo->nAllField ); 4174 } 4175 #else 4176 # define vdbeAssertFieldCountWithinLimits(A,B,C) 4177 #endif 4178 4179 /* 4180 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 4181 ** using the collation sequence pColl. As usual, return a negative , zero 4182 ** or positive value if *pMem1 is less than, equal to or greater than 4183 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 4184 */ 4185 static int vdbeCompareMemString( 4186 const Mem *pMem1, 4187 const Mem *pMem2, 4188 const CollSeq *pColl, 4189 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 4190 ){ 4191 if( pMem1->enc==pColl->enc ){ 4192 /* The strings are already in the correct encoding. Call the 4193 ** comparison function directly */ 4194 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 4195 }else{ 4196 int rc; 4197 const void *v1, *v2; 4198 Mem c1; 4199 Mem c2; 4200 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 4201 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 4202 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 4203 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 4204 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 4205 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 4206 if( (v1==0 || v2==0) ){ 4207 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 4208 rc = 0; 4209 }else{ 4210 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 4211 } 4212 sqlite3VdbeMemReleaseMalloc(&c1); 4213 sqlite3VdbeMemReleaseMalloc(&c2); 4214 return rc; 4215 } 4216 } 4217 4218 /* 4219 ** The input pBlob is guaranteed to be a Blob that is not marked 4220 ** with MEM_Zero. Return true if it could be a zero-blob. 4221 */ 4222 static int isAllZero(const char *z, int n){ 4223 int i; 4224 for(i=0; i<n; i++){ 4225 if( z[i] ) return 0; 4226 } 4227 return 1; 4228 } 4229 4230 /* 4231 ** Compare two blobs. Return negative, zero, or positive if the first 4232 ** is less than, equal to, or greater than the second, respectively. 4233 ** If one blob is a prefix of the other, then the shorter is the lessor. 4234 */ 4235 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 4236 int c; 4237 int n1 = pB1->n; 4238 int n2 = pB2->n; 4239 4240 /* It is possible to have a Blob value that has some non-zero content 4241 ** followed by zero content. But that only comes up for Blobs formed 4242 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 4243 ** sqlite3MemCompare(). */ 4244 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 4245 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 4246 4247 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 4248 if( pB1->flags & pB2->flags & MEM_Zero ){ 4249 return pB1->u.nZero - pB2->u.nZero; 4250 }else if( pB1->flags & MEM_Zero ){ 4251 if( !isAllZero(pB2->z, pB2->n) ) return -1; 4252 return pB1->u.nZero - n2; 4253 }else{ 4254 if( !isAllZero(pB1->z, pB1->n) ) return +1; 4255 return n1 - pB2->u.nZero; 4256 } 4257 } 4258 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 4259 if( c ) return c; 4260 return n1 - n2; 4261 } 4262 4263 /* 4264 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 4265 ** number. Return negative, zero, or positive if the first (i64) is less than, 4266 ** equal to, or greater than the second (double). 4267 */ 4268 int sqlite3IntFloatCompare(i64 i, double r){ 4269 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 4270 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 4271 testcase( x<r ); 4272 testcase( x>r ); 4273 testcase( x==r ); 4274 if( x<r ) return -1; 4275 if( x>r ) return +1; /*NO_TEST*/ /* work around bugs in gcov */ 4276 return 0; /*NO_TEST*/ /* work around bugs in gcov */ 4277 }else{ 4278 i64 y; 4279 double s; 4280 if( r<-9223372036854775808.0 ) return +1; 4281 if( r>=9223372036854775808.0 ) return -1; 4282 y = (i64)r; 4283 if( i<y ) return -1; 4284 if( i>y ) return +1; 4285 s = (double)i; 4286 if( s<r ) return -1; 4287 if( s>r ) return +1; 4288 return 0; 4289 } 4290 } 4291 4292 /* 4293 ** Compare the values contained by the two memory cells, returning 4294 ** negative, zero or positive if pMem1 is less than, equal to, or greater 4295 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 4296 ** and reals) sorted numerically, followed by text ordered by the collating 4297 ** sequence pColl and finally blob's ordered by memcmp(). 4298 ** 4299 ** Two NULL values are considered equal by this function. 4300 */ 4301 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 4302 int f1, f2; 4303 int combined_flags; 4304 4305 f1 = pMem1->flags; 4306 f2 = pMem2->flags; 4307 combined_flags = f1|f2; 4308 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); 4309 4310 /* If one value is NULL, it is less than the other. If both values 4311 ** are NULL, return 0. 4312 */ 4313 if( combined_flags&MEM_Null ){ 4314 return (f2&MEM_Null) - (f1&MEM_Null); 4315 } 4316 4317 /* At least one of the two values is a number 4318 */ 4319 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ 4320 testcase( combined_flags & MEM_Int ); 4321 testcase( combined_flags & MEM_Real ); 4322 testcase( combined_flags & MEM_IntReal ); 4323 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ 4324 testcase( f1 & f2 & MEM_Int ); 4325 testcase( f1 & f2 & MEM_IntReal ); 4326 if( pMem1->u.i < pMem2->u.i ) return -1; 4327 if( pMem1->u.i > pMem2->u.i ) return +1; 4328 return 0; 4329 } 4330 if( (f1 & f2 & MEM_Real)!=0 ){ 4331 if( pMem1->u.r < pMem2->u.r ) return -1; 4332 if( pMem1->u.r > pMem2->u.r ) return +1; 4333 return 0; 4334 } 4335 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ 4336 testcase( f1 & MEM_Int ); 4337 testcase( f1 & MEM_IntReal ); 4338 if( (f2&MEM_Real)!=0 ){ 4339 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 4340 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4341 if( pMem1->u.i < pMem2->u.i ) return -1; 4342 if( pMem1->u.i > pMem2->u.i ) return +1; 4343 return 0; 4344 }else{ 4345 return -1; 4346 } 4347 } 4348 if( (f1&MEM_Real)!=0 ){ 4349 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4350 testcase( f2 & MEM_Int ); 4351 testcase( f2 & MEM_IntReal ); 4352 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 4353 }else{ 4354 return -1; 4355 } 4356 } 4357 return +1; 4358 } 4359 4360 /* If one value is a string and the other is a blob, the string is less. 4361 ** If both are strings, compare using the collating functions. 4362 */ 4363 if( combined_flags&MEM_Str ){ 4364 if( (f1 & MEM_Str)==0 ){ 4365 return 1; 4366 } 4367 if( (f2 & MEM_Str)==0 ){ 4368 return -1; 4369 } 4370 4371 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 4372 assert( pMem1->enc==SQLITE_UTF8 || 4373 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 4374 4375 /* The collation sequence must be defined at this point, even if 4376 ** the user deletes the collation sequence after the vdbe program is 4377 ** compiled (this was not always the case). 4378 */ 4379 assert( !pColl || pColl->xCmp ); 4380 4381 if( pColl ){ 4382 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 4383 } 4384 /* If a NULL pointer was passed as the collate function, fall through 4385 ** to the blob case and use memcmp(). */ 4386 } 4387 4388 /* Both values must be blobs. Compare using memcmp(). */ 4389 return sqlite3BlobCompare(pMem1, pMem2); 4390 } 4391 4392 4393 /* 4394 ** The first argument passed to this function is a serial-type that 4395 ** corresponds to an integer - all values between 1 and 9 inclusive 4396 ** except 7. The second points to a buffer containing an integer value 4397 ** serialized according to serial_type. This function deserializes 4398 ** and returns the value. 4399 */ 4400 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 4401 u32 y; 4402 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 4403 switch( serial_type ){ 4404 case 0: 4405 case 1: 4406 testcase( aKey[0]&0x80 ); 4407 return ONE_BYTE_INT(aKey); 4408 case 2: 4409 testcase( aKey[0]&0x80 ); 4410 return TWO_BYTE_INT(aKey); 4411 case 3: 4412 testcase( aKey[0]&0x80 ); 4413 return THREE_BYTE_INT(aKey); 4414 case 4: { 4415 testcase( aKey[0]&0x80 ); 4416 y = FOUR_BYTE_UINT(aKey); 4417 return (i64)*(int*)&y; 4418 } 4419 case 5: { 4420 testcase( aKey[0]&0x80 ); 4421 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4422 } 4423 case 6: { 4424 u64 x = FOUR_BYTE_UINT(aKey); 4425 testcase( aKey[0]&0x80 ); 4426 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4427 return (i64)*(i64*)&x; 4428 } 4429 } 4430 4431 return (serial_type - 8); 4432 } 4433 4434 /* 4435 ** This function compares the two table rows or index records 4436 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 4437 ** or positive integer if key1 is less than, equal to or 4438 ** greater than key2. The {nKey1, pKey1} key must be a blob 4439 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 4440 ** key must be a parsed key such as obtained from 4441 ** sqlite3VdbeParseRecord. 4442 ** 4443 ** If argument bSkip is non-zero, it is assumed that the caller has already 4444 ** determined that the first fields of the keys are equal. 4445 ** 4446 ** Key1 and Key2 do not have to contain the same number of fields. If all 4447 ** fields that appear in both keys are equal, then pPKey2->default_rc is 4448 ** returned. 4449 ** 4450 ** If database corruption is discovered, set pPKey2->errCode to 4451 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 4452 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 4453 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 4454 */ 4455 int sqlite3VdbeRecordCompareWithSkip( 4456 int nKey1, const void *pKey1, /* Left key */ 4457 UnpackedRecord *pPKey2, /* Right key */ 4458 int bSkip /* If true, skip the first field */ 4459 ){ 4460 u32 d1; /* Offset into aKey[] of next data element */ 4461 int i; /* Index of next field to compare */ 4462 u32 szHdr1; /* Size of record header in bytes */ 4463 u32 idx1; /* Offset of first type in header */ 4464 int rc = 0; /* Return value */ 4465 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 4466 KeyInfo *pKeyInfo; 4467 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4468 Mem mem1; 4469 4470 /* If bSkip is true, then the caller has already determined that the first 4471 ** two elements in the keys are equal. Fix the various stack variables so 4472 ** that this routine begins comparing at the second field. */ 4473 if( bSkip ){ 4474 u32 s1; 4475 idx1 = 1 + getVarint32(&aKey1[1], s1); 4476 szHdr1 = aKey1[0]; 4477 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 4478 i = 1; 4479 pRhs++; 4480 }else{ 4481 idx1 = getVarint32(aKey1, szHdr1); 4482 d1 = szHdr1; 4483 i = 0; 4484 } 4485 if( d1>(unsigned)nKey1 ){ 4486 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4487 return 0; /* Corruption */ 4488 } 4489 4490 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4491 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 4492 || CORRUPT_DB ); 4493 assert( pPKey2->pKeyInfo->aSortFlags!=0 ); 4494 assert( pPKey2->pKeyInfo->nKeyField>0 ); 4495 assert( idx1<=szHdr1 || CORRUPT_DB ); 4496 do{ 4497 u32 serial_type; 4498 4499 /* RHS is an integer */ 4500 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ 4501 testcase( pRhs->flags & MEM_Int ); 4502 testcase( pRhs->flags & MEM_IntReal ); 4503 serial_type = aKey1[idx1]; 4504 testcase( serial_type==12 ); 4505 if( serial_type>=10 ){ 4506 rc = +1; 4507 }else if( serial_type==0 ){ 4508 rc = -1; 4509 }else if( serial_type==7 ){ 4510 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4511 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4512 }else{ 4513 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4514 i64 rhs = pRhs->u.i; 4515 if( lhs<rhs ){ 4516 rc = -1; 4517 }else if( lhs>rhs ){ 4518 rc = +1; 4519 } 4520 } 4521 } 4522 4523 /* RHS is real */ 4524 else if( pRhs->flags & MEM_Real ){ 4525 serial_type = aKey1[idx1]; 4526 if( serial_type>=10 ){ 4527 /* Serial types 12 or greater are strings and blobs (greater than 4528 ** numbers). Types 10 and 11 are currently "reserved for future 4529 ** use", so it doesn't really matter what the results of comparing 4530 ** them to numberic values are. */ 4531 rc = +1; 4532 }else if( serial_type==0 ){ 4533 rc = -1; 4534 }else{ 4535 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4536 if( serial_type==7 ){ 4537 if( mem1.u.r<pRhs->u.r ){ 4538 rc = -1; 4539 }else if( mem1.u.r>pRhs->u.r ){ 4540 rc = +1; 4541 } 4542 }else{ 4543 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4544 } 4545 } 4546 } 4547 4548 /* RHS is a string */ 4549 else if( pRhs->flags & MEM_Str ){ 4550 getVarint32NR(&aKey1[idx1], serial_type); 4551 testcase( serial_type==12 ); 4552 if( serial_type<12 ){ 4553 rc = -1; 4554 }else if( !(serial_type & 0x01) ){ 4555 rc = +1; 4556 }else{ 4557 mem1.n = (serial_type - 12) / 2; 4558 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4559 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4560 if( (d1+mem1.n) > (unsigned)nKey1 4561 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i 4562 ){ 4563 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4564 return 0; /* Corruption */ 4565 }else if( pKeyInfo->aColl[i] ){ 4566 mem1.enc = pKeyInfo->enc; 4567 mem1.db = pKeyInfo->db; 4568 mem1.flags = MEM_Str; 4569 mem1.z = (char*)&aKey1[d1]; 4570 rc = vdbeCompareMemString( 4571 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4572 ); 4573 }else{ 4574 int nCmp = MIN(mem1.n, pRhs->n); 4575 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4576 if( rc==0 ) rc = mem1.n - pRhs->n; 4577 } 4578 } 4579 } 4580 4581 /* RHS is a blob */ 4582 else if( pRhs->flags & MEM_Blob ){ 4583 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4584 getVarint32NR(&aKey1[idx1], serial_type); 4585 testcase( serial_type==12 ); 4586 if( serial_type<12 || (serial_type & 0x01) ){ 4587 rc = -1; 4588 }else{ 4589 int nStr = (serial_type - 12) / 2; 4590 testcase( (d1+nStr)==(unsigned)nKey1 ); 4591 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4592 if( (d1+nStr) > (unsigned)nKey1 ){ 4593 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4594 return 0; /* Corruption */ 4595 }else if( pRhs->flags & MEM_Zero ){ 4596 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4597 rc = 1; 4598 }else{ 4599 rc = nStr - pRhs->u.nZero; 4600 } 4601 }else{ 4602 int nCmp = MIN(nStr, pRhs->n); 4603 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4604 if( rc==0 ) rc = nStr - pRhs->n; 4605 } 4606 } 4607 } 4608 4609 /* RHS is null */ 4610 else{ 4611 serial_type = aKey1[idx1]; 4612 rc = (serial_type!=0); 4613 } 4614 4615 if( rc!=0 ){ 4616 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i]; 4617 if( sortFlags ){ 4618 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0 4619 || ((sortFlags & KEYINFO_ORDER_DESC) 4620 !=(serial_type==0 || (pRhs->flags&MEM_Null))) 4621 ){ 4622 rc = -rc; 4623 } 4624 } 4625 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4626 assert( mem1.szMalloc==0 ); /* See comment below */ 4627 return rc; 4628 } 4629 4630 i++; 4631 if( i==pPKey2->nField ) break; 4632 pRhs++; 4633 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4634 idx1 += sqlite3VarintLen(serial_type); 4635 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 ); 4636 4637 /* No memory allocation is ever used on mem1. Prove this using 4638 ** the following assert(). If the assert() fails, it indicates a 4639 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4640 assert( mem1.szMalloc==0 ); 4641 4642 /* rc==0 here means that one or both of the keys ran out of fields and 4643 ** all the fields up to that point were equal. Return the default_rc 4644 ** value. */ 4645 assert( CORRUPT_DB 4646 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4647 || pPKey2->pKeyInfo->db->mallocFailed 4648 ); 4649 pPKey2->eqSeen = 1; 4650 return pPKey2->default_rc; 4651 } 4652 int sqlite3VdbeRecordCompare( 4653 int nKey1, const void *pKey1, /* Left key */ 4654 UnpackedRecord *pPKey2 /* Right key */ 4655 ){ 4656 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4657 } 4658 4659 4660 /* 4661 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4662 ** that (a) the first field of pPKey2 is an integer, and (b) the 4663 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4664 ** byte (i.e. is less than 128). 4665 ** 4666 ** To avoid concerns about buffer overreads, this routine is only used 4667 ** on schemas where the maximum valid header size is 63 bytes or less. 4668 */ 4669 static int vdbeRecordCompareInt( 4670 int nKey1, const void *pKey1, /* Left key */ 4671 UnpackedRecord *pPKey2 /* Right key */ 4672 ){ 4673 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4674 int serial_type = ((const u8*)pKey1)[1]; 4675 int res; 4676 u32 y; 4677 u64 x; 4678 i64 v; 4679 i64 lhs; 4680 4681 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4682 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4683 switch( serial_type ){ 4684 case 1: { /* 1-byte signed integer */ 4685 lhs = ONE_BYTE_INT(aKey); 4686 testcase( lhs<0 ); 4687 break; 4688 } 4689 case 2: { /* 2-byte signed integer */ 4690 lhs = TWO_BYTE_INT(aKey); 4691 testcase( lhs<0 ); 4692 break; 4693 } 4694 case 3: { /* 3-byte signed integer */ 4695 lhs = THREE_BYTE_INT(aKey); 4696 testcase( lhs<0 ); 4697 break; 4698 } 4699 case 4: { /* 4-byte signed integer */ 4700 y = FOUR_BYTE_UINT(aKey); 4701 lhs = (i64)*(int*)&y; 4702 testcase( lhs<0 ); 4703 break; 4704 } 4705 case 5: { /* 6-byte signed integer */ 4706 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4707 testcase( lhs<0 ); 4708 break; 4709 } 4710 case 6: { /* 8-byte signed integer */ 4711 x = FOUR_BYTE_UINT(aKey); 4712 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4713 lhs = *(i64*)&x; 4714 testcase( lhs<0 ); 4715 break; 4716 } 4717 case 8: 4718 lhs = 0; 4719 break; 4720 case 9: 4721 lhs = 1; 4722 break; 4723 4724 /* This case could be removed without changing the results of running 4725 ** this code. Including it causes gcc to generate a faster switch 4726 ** statement (since the range of switch targets now starts at zero and 4727 ** is contiguous) but does not cause any duplicate code to be generated 4728 ** (as gcc is clever enough to combine the two like cases). Other 4729 ** compilers might be similar. */ 4730 case 0: case 7: 4731 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4732 4733 default: 4734 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4735 } 4736 4737 assert( pPKey2->u.i == pPKey2->aMem[0].u.i ); 4738 v = pPKey2->u.i; 4739 if( v>lhs ){ 4740 res = pPKey2->r1; 4741 }else if( v<lhs ){ 4742 res = pPKey2->r2; 4743 }else if( pPKey2->nField>1 ){ 4744 /* The first fields of the two keys are equal. Compare the trailing 4745 ** fields. */ 4746 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4747 }else{ 4748 /* The first fields of the two keys are equal and there are no trailing 4749 ** fields. Return pPKey2->default_rc in this case. */ 4750 res = pPKey2->default_rc; 4751 pPKey2->eqSeen = 1; 4752 } 4753 4754 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4755 return res; 4756 } 4757 4758 /* 4759 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4760 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4761 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4762 ** at the start of (pKey1/nKey1) fits in a single byte. 4763 */ 4764 static int vdbeRecordCompareString( 4765 int nKey1, const void *pKey1, /* Left key */ 4766 UnpackedRecord *pPKey2 /* Right key */ 4767 ){ 4768 const u8 *aKey1 = (const u8*)pKey1; 4769 int serial_type; 4770 int res; 4771 4772 assert( pPKey2->aMem[0].flags & MEM_Str ); 4773 assert( pPKey2->aMem[0].n == pPKey2->n ); 4774 assert( pPKey2->aMem[0].z == pPKey2->u.z ); 4775 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4776 serial_type = (signed char)(aKey1[1]); 4777 4778 vrcs_restart: 4779 if( serial_type<12 ){ 4780 if( serial_type<0 ){ 4781 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type); 4782 if( serial_type>=12 ) goto vrcs_restart; 4783 assert( CORRUPT_DB ); 4784 } 4785 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4786 }else if( !(serial_type & 0x01) ){ 4787 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4788 }else{ 4789 int nCmp; 4790 int nStr; 4791 int szHdr = aKey1[0]; 4792 4793 nStr = (serial_type-12) / 2; 4794 if( (szHdr + nStr) > nKey1 ){ 4795 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4796 return 0; /* Corruption */ 4797 } 4798 nCmp = MIN( pPKey2->n, nStr ); 4799 res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp); 4800 4801 if( res>0 ){ 4802 res = pPKey2->r2; 4803 }else if( res<0 ){ 4804 res = pPKey2->r1; 4805 }else{ 4806 res = nStr - pPKey2->n; 4807 if( res==0 ){ 4808 if( pPKey2->nField>1 ){ 4809 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4810 }else{ 4811 res = pPKey2->default_rc; 4812 pPKey2->eqSeen = 1; 4813 } 4814 }else if( res>0 ){ 4815 res = pPKey2->r2; 4816 }else{ 4817 res = pPKey2->r1; 4818 } 4819 } 4820 } 4821 4822 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4823 || CORRUPT_DB 4824 || pPKey2->pKeyInfo->db->mallocFailed 4825 ); 4826 return res; 4827 } 4828 4829 /* 4830 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4831 ** suitable for comparing serialized records to the unpacked record passed 4832 ** as the only argument. 4833 */ 4834 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4835 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4836 ** that the size-of-header varint that occurs at the start of each record 4837 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4838 ** also assumes that it is safe to overread a buffer by at least the 4839 ** maximum possible legal header size plus 8 bytes. Because there is 4840 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4841 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4842 ** limit the size of the header to 64 bytes in cases where the first field 4843 ** is an integer. 4844 ** 4845 ** The easiest way to enforce this limit is to consider only records with 4846 ** 13 fields or less. If the first field is an integer, the maximum legal 4847 ** header size is (12*5 + 1 + 1) bytes. */ 4848 if( p->pKeyInfo->nAllField<=13 ){ 4849 int flags = p->aMem[0].flags; 4850 if( p->pKeyInfo->aSortFlags[0] ){ 4851 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){ 4852 return sqlite3VdbeRecordCompare; 4853 } 4854 p->r1 = 1; 4855 p->r2 = -1; 4856 }else{ 4857 p->r1 = -1; 4858 p->r2 = 1; 4859 } 4860 if( (flags & MEM_Int) ){ 4861 p->u.i = p->aMem[0].u.i; 4862 return vdbeRecordCompareInt; 4863 } 4864 testcase( flags & MEM_Real ); 4865 testcase( flags & MEM_Null ); 4866 testcase( flags & MEM_Blob ); 4867 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 4868 && p->pKeyInfo->aColl[0]==0 4869 ){ 4870 assert( flags & MEM_Str ); 4871 p->u.z = p->aMem[0].z; 4872 p->n = p->aMem[0].n; 4873 return vdbeRecordCompareString; 4874 } 4875 } 4876 4877 return sqlite3VdbeRecordCompare; 4878 } 4879 4880 /* 4881 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4882 ** Read the rowid (the last field in the record) and store it in *rowid. 4883 ** Return SQLITE_OK if everything works, or an error code otherwise. 4884 ** 4885 ** pCur might be pointing to text obtained from a corrupt database file. 4886 ** So the content cannot be trusted. Do appropriate checks on the content. 4887 */ 4888 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4889 i64 nCellKey = 0; 4890 int rc; 4891 u32 szHdr; /* Size of the header */ 4892 u32 typeRowid; /* Serial type of the rowid */ 4893 u32 lenRowid; /* Size of the rowid */ 4894 Mem m, v; 4895 4896 /* Get the size of the index entry. Only indices entries of less 4897 ** than 2GiB are support - anything large must be database corruption. 4898 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4899 ** this code can safely assume that nCellKey is 32-bits 4900 */ 4901 assert( sqlite3BtreeCursorIsValid(pCur) ); 4902 nCellKey = sqlite3BtreePayloadSize(pCur); 4903 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4904 4905 /* Read in the complete content of the index entry */ 4906 sqlite3VdbeMemInit(&m, db, 0); 4907 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 4908 if( rc ){ 4909 return rc; 4910 } 4911 4912 /* The index entry must begin with a header size */ 4913 getVarint32NR((u8*)m.z, szHdr); 4914 testcase( szHdr==3 ); 4915 testcase( szHdr==(u32)m.n ); 4916 testcase( szHdr>0x7fffffff ); 4917 assert( m.n>=0 ); 4918 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ 4919 goto idx_rowid_corruption; 4920 } 4921 4922 /* The last field of the index should be an integer - the ROWID. 4923 ** Verify that the last entry really is an integer. */ 4924 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid); 4925 testcase( typeRowid==1 ); 4926 testcase( typeRowid==2 ); 4927 testcase( typeRowid==3 ); 4928 testcase( typeRowid==4 ); 4929 testcase( typeRowid==5 ); 4930 testcase( typeRowid==6 ); 4931 testcase( typeRowid==8 ); 4932 testcase( typeRowid==9 ); 4933 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4934 goto idx_rowid_corruption; 4935 } 4936 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4937 testcase( (u32)m.n==szHdr+lenRowid ); 4938 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4939 goto idx_rowid_corruption; 4940 } 4941 4942 /* Fetch the integer off the end of the index record */ 4943 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4944 *rowid = v.u.i; 4945 sqlite3VdbeMemReleaseMalloc(&m); 4946 return SQLITE_OK; 4947 4948 /* Jump here if database corruption is detected after m has been 4949 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4950 idx_rowid_corruption: 4951 testcase( m.szMalloc!=0 ); 4952 sqlite3VdbeMemReleaseMalloc(&m); 4953 return SQLITE_CORRUPT_BKPT; 4954 } 4955 4956 /* 4957 ** Compare the key of the index entry that cursor pC is pointing to against 4958 ** the key string in pUnpacked. Write into *pRes a number 4959 ** that is negative, zero, or positive if pC is less than, equal to, 4960 ** or greater than pUnpacked. Return SQLITE_OK on success. 4961 ** 4962 ** pUnpacked is either created without a rowid or is truncated so that it 4963 ** omits the rowid at the end. The rowid at the end of the index entry 4964 ** is ignored as well. Hence, this routine only compares the prefixes 4965 ** of the keys prior to the final rowid, not the entire key. 4966 */ 4967 int sqlite3VdbeIdxKeyCompare( 4968 sqlite3 *db, /* Database connection */ 4969 VdbeCursor *pC, /* The cursor to compare against */ 4970 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4971 int *res /* Write the comparison result here */ 4972 ){ 4973 i64 nCellKey = 0; 4974 int rc; 4975 BtCursor *pCur; 4976 Mem m; 4977 4978 assert( pC->eCurType==CURTYPE_BTREE ); 4979 pCur = pC->uc.pCursor; 4980 assert( sqlite3BtreeCursorIsValid(pCur) ); 4981 nCellKey = sqlite3BtreePayloadSize(pCur); 4982 /* nCellKey will always be between 0 and 0xffffffff because of the way 4983 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4984 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4985 *res = 0; 4986 return SQLITE_CORRUPT_BKPT; 4987 } 4988 sqlite3VdbeMemInit(&m, db, 0); 4989 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 4990 if( rc ){ 4991 return rc; 4992 } 4993 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); 4994 sqlite3VdbeMemReleaseMalloc(&m); 4995 return SQLITE_OK; 4996 } 4997 4998 /* 4999 ** This routine sets the value to be returned by subsequent calls to 5000 ** sqlite3_changes() on the database handle 'db'. 5001 */ 5002 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){ 5003 assert( sqlite3_mutex_held(db->mutex) ); 5004 db->nChange = nChange; 5005 db->nTotalChange += nChange; 5006 } 5007 5008 /* 5009 ** Set a flag in the vdbe to update the change counter when it is finalised 5010 ** or reset. 5011 */ 5012 void sqlite3VdbeCountChanges(Vdbe *v){ 5013 v->changeCntOn = 1; 5014 } 5015 5016 /* 5017 ** Mark every prepared statement associated with a database connection 5018 ** as expired. 5019 ** 5020 ** An expired statement means that recompilation of the statement is 5021 ** recommend. Statements expire when things happen that make their 5022 ** programs obsolete. Removing user-defined functions or collating 5023 ** sequences, or changing an authorization function are the types of 5024 ** things that make prepared statements obsolete. 5025 ** 5026 ** If iCode is 1, then expiration is advisory. The statement should 5027 ** be reprepared before being restarted, but if it is already running 5028 ** it is allowed to run to completion. 5029 ** 5030 ** Internally, this function just sets the Vdbe.expired flag on all 5031 ** prepared statements. The flag is set to 1 for an immediate expiration 5032 ** and set to 2 for an advisory expiration. 5033 */ 5034 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ 5035 Vdbe *p; 5036 for(p = db->pVdbe; p; p=p->pNext){ 5037 p->expired = iCode+1; 5038 } 5039 } 5040 5041 /* 5042 ** Return the database associated with the Vdbe. 5043 */ 5044 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 5045 return v->db; 5046 } 5047 5048 /* 5049 ** Return the SQLITE_PREPARE flags for a Vdbe. 5050 */ 5051 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 5052 return v->prepFlags; 5053 } 5054 5055 /* 5056 ** Return a pointer to an sqlite3_value structure containing the value bound 5057 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 5058 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 5059 ** constants) to the value before returning it. 5060 ** 5061 ** The returned value must be freed by the caller using sqlite3ValueFree(). 5062 */ 5063 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 5064 assert( iVar>0 ); 5065 if( v ){ 5066 Mem *pMem = &v->aVar[iVar-1]; 5067 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5068 if( 0==(pMem->flags & MEM_Null) ){ 5069 sqlite3_value *pRet = sqlite3ValueNew(v->db); 5070 if( pRet ){ 5071 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 5072 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 5073 } 5074 return pRet; 5075 } 5076 } 5077 return 0; 5078 } 5079 5080 /* 5081 ** Configure SQL variable iVar so that binding a new value to it signals 5082 ** to sqlite3_reoptimize() that re-preparing the statement may result 5083 ** in a better query plan. 5084 */ 5085 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 5086 assert( iVar>0 ); 5087 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5088 if( iVar>=32 ){ 5089 v->expmask |= 0x80000000; 5090 }else{ 5091 v->expmask |= ((u32)1 << (iVar-1)); 5092 } 5093 } 5094 5095 /* 5096 ** Cause a function to throw an error if it was call from OP_PureFunc 5097 ** rather than OP_Function. 5098 ** 5099 ** OP_PureFunc means that the function must be deterministic, and should 5100 ** throw an error if it is given inputs that would make it non-deterministic. 5101 ** This routine is invoked by date/time functions that use non-deterministic 5102 ** features such as 'now'. 5103 */ 5104 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 5105 const VdbeOp *pOp; 5106 #ifdef SQLITE_ENABLE_STAT4 5107 if( pCtx->pVdbe==0 ) return 1; 5108 #endif 5109 pOp = pCtx->pVdbe->aOp + pCtx->iOp; 5110 if( pOp->opcode==OP_PureFunc ){ 5111 const char *zContext; 5112 char *zMsg; 5113 if( pOp->p5 & NC_IsCheck ){ 5114 zContext = "a CHECK constraint"; 5115 }else if( pOp->p5 & NC_GenCol ){ 5116 zContext = "a generated column"; 5117 }else{ 5118 zContext = "an index"; 5119 } 5120 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s", 5121 pCtx->pFunc->zName, zContext); 5122 sqlite3_result_error(pCtx, zMsg, -1); 5123 sqlite3_free(zMsg); 5124 return 0; 5125 } 5126 return 1; 5127 } 5128 5129 #ifndef SQLITE_OMIT_VIRTUALTABLE 5130 /* 5131 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 5132 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 5133 ** in memory obtained from sqlite3DbMalloc). 5134 */ 5135 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 5136 if( pVtab->zErrMsg ){ 5137 sqlite3 *db = p->db; 5138 sqlite3DbFree(db, p->zErrMsg); 5139 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 5140 sqlite3_free(pVtab->zErrMsg); 5141 pVtab->zErrMsg = 0; 5142 } 5143 } 5144 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5145 5146 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5147 5148 /* 5149 ** If the second argument is not NULL, release any allocations associated 5150 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 5151 ** structure itself, using sqlite3DbFree(). 5152 ** 5153 ** This function is used to free UnpackedRecord structures allocated by 5154 ** the vdbeUnpackRecord() function found in vdbeapi.c. 5155 */ 5156 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 5157 if( p ){ 5158 int i; 5159 for(i=0; i<nField; i++){ 5160 Mem *pMem = &p->aMem[i]; 5161 if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem); 5162 } 5163 sqlite3DbFreeNN(db, p); 5164 } 5165 } 5166 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5167 5168 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5169 /* 5170 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 5171 ** then cursor passed as the second argument should point to the row about 5172 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 5173 ** the required value will be read from the row the cursor points to. 5174 */ 5175 void sqlite3VdbePreUpdateHook( 5176 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 5177 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 5178 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 5179 const char *zDb, /* Database name */ 5180 Table *pTab, /* Modified table */ 5181 i64 iKey1, /* Initial key value */ 5182 int iReg, /* Register for new.* record */ 5183 int iBlobWrite 5184 ){ 5185 sqlite3 *db = v->db; 5186 i64 iKey2; 5187 PreUpdate preupdate; 5188 const char *zTbl = pTab->zName; 5189 static const u8 fakeSortOrder = 0; 5190 5191 assert( db->pPreUpdate==0 ); 5192 memset(&preupdate, 0, sizeof(PreUpdate)); 5193 if( HasRowid(pTab)==0 ){ 5194 iKey1 = iKey2 = 0; 5195 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 5196 }else{ 5197 if( op==SQLITE_UPDATE ){ 5198 iKey2 = v->aMem[iReg].u.i; 5199 }else{ 5200 iKey2 = iKey1; 5201 } 5202 } 5203 5204 assert( pCsr!=0 ); 5205 assert( pCsr->eCurType==CURTYPE_BTREE ); 5206 assert( pCsr->nField==pTab->nCol 5207 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 5208 ); 5209 5210 preupdate.v = v; 5211 preupdate.pCsr = pCsr; 5212 preupdate.op = op; 5213 preupdate.iNewReg = iReg; 5214 preupdate.keyinfo.db = db; 5215 preupdate.keyinfo.enc = ENC(db); 5216 preupdate.keyinfo.nKeyField = pTab->nCol; 5217 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder; 5218 preupdate.iKey1 = iKey1; 5219 preupdate.iKey2 = iKey2; 5220 preupdate.pTab = pTab; 5221 preupdate.iBlobWrite = iBlobWrite; 5222 5223 db->pPreUpdate = &preupdate; 5224 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 5225 db->pPreUpdate = 0; 5226 sqlite3DbFree(db, preupdate.aRecord); 5227 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 5228 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 5229 if( preupdate.aNew ){ 5230 int i; 5231 for(i=0; i<pCsr->nField; i++){ 5232 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 5233 } 5234 sqlite3DbFreeNN(db, preupdate.aNew); 5235 } 5236 } 5237 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5238