xref: /sqlite-3.40.0/src/vdbeaux.c (revision 7aa3ebee)
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
14 */
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
17 
18 /*
19 ** Create a new virtual database engine.
20 */
21 Vdbe *sqlite3VdbeCreate(Parse *pParse){
22   sqlite3 *db = pParse->db;
23   Vdbe *p;
24   p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
25   if( p==0 ) return 0;
26   p->db = db;
27   if( db->pVdbe ){
28     db->pVdbe->pPrev = p;
29   }
30   p->pNext = db->pVdbe;
31   p->pPrev = 0;
32   db->pVdbe = p;
33   p->magic = VDBE_MAGIC_INIT;
34   p->pParse = pParse;
35   assert( pParse->aLabel==0 );
36   assert( pParse->nLabel==0 );
37   assert( pParse->nOpAlloc==0 );
38   assert( pParse->szOpAlloc==0 );
39   return p;
40 }
41 
42 /*
43 ** Change the error string stored in Vdbe.zErrMsg
44 */
45 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
46   va_list ap;
47   sqlite3DbFree(p->db, p->zErrMsg);
48   va_start(ap, zFormat);
49   p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
50   va_end(ap);
51 }
52 
53 /*
54 ** Remember the SQL string for a prepared statement.
55 */
56 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
57   assert( isPrepareV2==1 || isPrepareV2==0 );
58   if( p==0 ) return;
59 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
60   if( !isPrepareV2 ) return;
61 #endif
62   assert( p->zSql==0 );
63   p->zSql = sqlite3DbStrNDup(p->db, z, n);
64   p->isPrepareV2 = (u8)isPrepareV2;
65 }
66 
67 /*
68 ** Return the SQL associated with a prepared statement
69 */
70 const char *sqlite3_sql(sqlite3_stmt *pStmt){
71   Vdbe *p = (Vdbe *)pStmt;
72   return p ? p->zSql : 0;
73 }
74 
75 /*
76 ** Swap all content between two VDBE structures.
77 */
78 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
79   Vdbe tmp, *pTmp;
80   char *zTmp;
81   tmp = *pA;
82   *pA = *pB;
83   *pB = tmp;
84   pTmp = pA->pNext;
85   pA->pNext = pB->pNext;
86   pB->pNext = pTmp;
87   pTmp = pA->pPrev;
88   pA->pPrev = pB->pPrev;
89   pB->pPrev = pTmp;
90   zTmp = pA->zSql;
91   pA->zSql = pB->zSql;
92   pB->zSql = zTmp;
93   pB->isPrepareV2 = pA->isPrepareV2;
94 }
95 
96 /*
97 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
98 ** than its current size. nOp is guaranteed to be less than or equal
99 ** to 1024/sizeof(Op).
100 **
101 ** If an out-of-memory error occurs while resizing the array, return
102 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
103 ** unchanged (this is so that any opcodes already allocated can be
104 ** correctly deallocated along with the rest of the Vdbe).
105 */
106 static int growOpArray(Vdbe *v, int nOp){
107   VdbeOp *pNew;
108   Parse *p = v->pParse;
109 
110   /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
111   ** more frequent reallocs and hence provide more opportunities for
112   ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used
113   ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array
114   ** by the minimum* amount required until the size reaches 512.  Normal
115   ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
116   ** size of the op array or add 1KB of space, whichever is smaller. */
117 #ifdef SQLITE_TEST_REALLOC_STRESS
118   int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
119 #else
120   int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
121   UNUSED_PARAMETER(nOp);
122 #endif
123 
124   assert( nOp<=(1024/sizeof(Op)) );
125   assert( nNew>=(p->nOpAlloc+nOp) );
126   pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
127   if( pNew ){
128     p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
129     p->nOpAlloc = p->szOpAlloc/sizeof(Op);
130     v->aOp = pNew;
131   }
132   return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
133 }
134 
135 #ifdef SQLITE_DEBUG
136 /* This routine is just a convenient place to set a breakpoint that will
137 ** fire after each opcode is inserted and displayed using
138 ** "PRAGMA vdbe_addoptrace=on".
139 */
140 static void test_addop_breakpoint(void){
141   static int n = 0;
142   n++;
143 }
144 #endif
145 
146 /*
147 ** Add a new instruction to the list of instructions current in the
148 ** VDBE.  Return the address of the new instruction.
149 **
150 ** Parameters:
151 **
152 **    p               Pointer to the VDBE
153 **
154 **    op              The opcode for this instruction
155 **
156 **    p1, p2, p3      Operands
157 **
158 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
159 ** the sqlite3VdbeChangeP4() function to change the value of the P4
160 ** operand.
161 */
162 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
163   assert( p->pParse->nOpAlloc<=p->nOp );
164   if( growOpArray(p, 1) ) return 1;
165   assert( p->pParse->nOpAlloc>p->nOp );
166   return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
167 }
168 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
169   int i;
170   VdbeOp *pOp;
171 
172   i = p->nOp;
173   assert( p->magic==VDBE_MAGIC_INIT );
174   assert( op>=0 && op<0xff );
175   if( p->pParse->nOpAlloc<=i ){
176     return growOp3(p, op, p1, p2, p3);
177   }
178   p->nOp++;
179   pOp = &p->aOp[i];
180   pOp->opcode = (u8)op;
181   pOp->p5 = 0;
182   pOp->p1 = p1;
183   pOp->p2 = p2;
184   pOp->p3 = p3;
185   pOp->p4.p = 0;
186   pOp->p4type = P4_NOTUSED;
187 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
188   pOp->zComment = 0;
189 #endif
190 #ifdef SQLITE_DEBUG
191   if( p->db->flags & SQLITE_VdbeAddopTrace ){
192     int jj, kk;
193     Parse *pParse = p->pParse;
194     for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){
195       struct yColCache *x = pParse->aColCache + jj;
196       if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue;
197       printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
198       kk++;
199     }
200     if( kk ) printf("\n");
201     sqlite3VdbePrintOp(0, i, &p->aOp[i]);
202     test_addop_breakpoint();
203   }
204 #endif
205 #ifdef VDBE_PROFILE
206   pOp->cycles = 0;
207   pOp->cnt = 0;
208 #endif
209 #ifdef SQLITE_VDBE_COVERAGE
210   pOp->iSrcLine = 0;
211 #endif
212   return i;
213 }
214 int sqlite3VdbeAddOp0(Vdbe *p, int op){
215   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
216 }
217 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
218   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
219 }
220 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
221   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
222 }
223 
224 /* Generate code for an unconditional jump to instruction iDest
225 */
226 int sqlite3VdbeGoto(Vdbe *p, int iDest){
227   return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
228 }
229 
230 /* Generate code to cause the string zStr to be loaded into
231 ** register iDest
232 */
233 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
234   return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
235 }
236 
237 /*
238 ** Generate code that initializes multiple registers to string or integer
239 ** constants.  The registers begin with iDest and increase consecutively.
240 ** One register is initialized for each characgter in zTypes[].  For each
241 ** "s" character in zTypes[], the register is a string if the argument is
242 ** not NULL, or OP_Null if the value is a null pointer.  For each "i" character
243 ** in zTypes[], the register is initialized to an integer.
244 */
245 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
246   va_list ap;
247   int i;
248   char c;
249   va_start(ap, zTypes);
250   for(i=0; (c = zTypes[i])!=0; i++){
251     if( c=='s' ){
252       const char *z = va_arg(ap, const char*);
253       sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0);
254     }else{
255       assert( c=='i' );
256       sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++);
257     }
258   }
259   va_end(ap);
260 }
261 
262 /*
263 ** Add an opcode that includes the p4 value as a pointer.
264 */
265 int sqlite3VdbeAddOp4(
266   Vdbe *p,            /* Add the opcode to this VM */
267   int op,             /* The new opcode */
268   int p1,             /* The P1 operand */
269   int p2,             /* The P2 operand */
270   int p3,             /* The P3 operand */
271   const char *zP4,    /* The P4 operand */
272   int p4type          /* P4 operand type */
273 ){
274   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
275   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
276   return addr;
277 }
278 
279 /*
280 ** Add an opcode that includes the p4 value with a P4_INT64 or
281 ** P4_REAL type.
282 */
283 int sqlite3VdbeAddOp4Dup8(
284   Vdbe *p,            /* Add the opcode to this VM */
285   int op,             /* The new opcode */
286   int p1,             /* The P1 operand */
287   int p2,             /* The P2 operand */
288   int p3,             /* The P3 operand */
289   const u8 *zP4,      /* The P4 operand */
290   int p4type          /* P4 operand type */
291 ){
292   char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
293   if( p4copy ) memcpy(p4copy, zP4, 8);
294   return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
295 }
296 
297 /*
298 ** Add an OP_ParseSchema opcode.  This routine is broken out from
299 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
300 ** as having been used.
301 **
302 ** The zWhere string must have been obtained from sqlite3_malloc().
303 ** This routine will take ownership of the allocated memory.
304 */
305 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
306   int j;
307   sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
308   for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
309 }
310 
311 /*
312 ** Add an opcode that includes the p4 value as an integer.
313 */
314 int sqlite3VdbeAddOp4Int(
315   Vdbe *p,            /* Add the opcode to this VM */
316   int op,             /* The new opcode */
317   int p1,             /* The P1 operand */
318   int p2,             /* The P2 operand */
319   int p3,             /* The P3 operand */
320   int p4              /* The P4 operand as an integer */
321 ){
322   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
323   sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
324   return addr;
325 }
326 
327 /* Insert the end of a co-routine
328 */
329 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
330   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
331 
332   /* Clear the temporary register cache, thereby ensuring that each
333   ** co-routine has its own independent set of registers, because co-routines
334   ** might expect their registers to be preserved across an OP_Yield, and
335   ** that could cause problems if two or more co-routines are using the same
336   ** temporary register.
337   */
338   v->pParse->nTempReg = 0;
339   v->pParse->nRangeReg = 0;
340 }
341 
342 /*
343 ** Create a new symbolic label for an instruction that has yet to be
344 ** coded.  The symbolic label is really just a negative number.  The
345 ** label can be used as the P2 value of an operation.  Later, when
346 ** the label is resolved to a specific address, the VDBE will scan
347 ** through its operation list and change all values of P2 which match
348 ** the label into the resolved address.
349 **
350 ** The VDBE knows that a P2 value is a label because labels are
351 ** always negative and P2 values are suppose to be non-negative.
352 ** Hence, a negative P2 value is a label that has yet to be resolved.
353 **
354 ** Zero is returned if a malloc() fails.
355 */
356 int sqlite3VdbeMakeLabel(Vdbe *v){
357   Parse *p = v->pParse;
358   int i = p->nLabel++;
359   assert( v->magic==VDBE_MAGIC_INIT );
360   if( (i & (i-1))==0 ){
361     p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
362                                        (i*2+1)*sizeof(p->aLabel[0]));
363   }
364   if( p->aLabel ){
365     p->aLabel[i] = -1;
366   }
367   return ADDR(i);
368 }
369 
370 /*
371 ** Resolve label "x" to be the address of the next instruction to
372 ** be inserted.  The parameter "x" must have been obtained from
373 ** a prior call to sqlite3VdbeMakeLabel().
374 */
375 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
376   Parse *p = v->pParse;
377   int j = ADDR(x);
378   assert( v->magic==VDBE_MAGIC_INIT );
379   assert( j<p->nLabel );
380   assert( j>=0 );
381   if( p->aLabel ){
382     p->aLabel[j] = v->nOp;
383   }
384   p->iFixedOp = v->nOp - 1;
385 }
386 
387 /*
388 ** Mark the VDBE as one that can only be run one time.
389 */
390 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
391   p->runOnlyOnce = 1;
392 }
393 
394 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
395 
396 /*
397 ** The following type and function are used to iterate through all opcodes
398 ** in a Vdbe main program and each of the sub-programs (triggers) it may
399 ** invoke directly or indirectly. It should be used as follows:
400 **
401 **   Op *pOp;
402 **   VdbeOpIter sIter;
403 **
404 **   memset(&sIter, 0, sizeof(sIter));
405 **   sIter.v = v;                            // v is of type Vdbe*
406 **   while( (pOp = opIterNext(&sIter)) ){
407 **     // Do something with pOp
408 **   }
409 **   sqlite3DbFree(v->db, sIter.apSub);
410 **
411 */
412 typedef struct VdbeOpIter VdbeOpIter;
413 struct VdbeOpIter {
414   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
415   SubProgram **apSub;        /* Array of subprograms */
416   int nSub;                  /* Number of entries in apSub */
417   int iAddr;                 /* Address of next instruction to return */
418   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
419 };
420 static Op *opIterNext(VdbeOpIter *p){
421   Vdbe *v = p->v;
422   Op *pRet = 0;
423   Op *aOp;
424   int nOp;
425 
426   if( p->iSub<=p->nSub ){
427 
428     if( p->iSub==0 ){
429       aOp = v->aOp;
430       nOp = v->nOp;
431     }else{
432       aOp = p->apSub[p->iSub-1]->aOp;
433       nOp = p->apSub[p->iSub-1]->nOp;
434     }
435     assert( p->iAddr<nOp );
436 
437     pRet = &aOp[p->iAddr];
438     p->iAddr++;
439     if( p->iAddr==nOp ){
440       p->iSub++;
441       p->iAddr = 0;
442     }
443 
444     if( pRet->p4type==P4_SUBPROGRAM ){
445       int nByte = (p->nSub+1)*sizeof(SubProgram*);
446       int j;
447       for(j=0; j<p->nSub; j++){
448         if( p->apSub[j]==pRet->p4.pProgram ) break;
449       }
450       if( j==p->nSub ){
451         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
452         if( !p->apSub ){
453           pRet = 0;
454         }else{
455           p->apSub[p->nSub++] = pRet->p4.pProgram;
456         }
457       }
458     }
459   }
460 
461   return pRet;
462 }
463 
464 /*
465 ** Check if the program stored in the VM associated with pParse may
466 ** throw an ABORT exception (causing the statement, but not entire transaction
467 ** to be rolled back). This condition is true if the main program or any
468 ** sub-programs contains any of the following:
469 **
470 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
471 **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
472 **   *  OP_Destroy
473 **   *  OP_VUpdate
474 **   *  OP_VRename
475 **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
476 **   *  OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...)
477 **
478 ** Then check that the value of Parse.mayAbort is true if an
479 ** ABORT may be thrown, or false otherwise. Return true if it does
480 ** match, or false otherwise. This function is intended to be used as
481 ** part of an assert statement in the compiler. Similar to:
482 **
483 **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
484 */
485 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
486   int hasAbort = 0;
487   int hasFkCounter = 0;
488   int hasCreateTable = 0;
489   int hasInitCoroutine = 0;
490   Op *pOp;
491   VdbeOpIter sIter;
492   memset(&sIter, 0, sizeof(sIter));
493   sIter.v = v;
494 
495   while( (pOp = opIterNext(&sIter))!=0 ){
496     int opcode = pOp->opcode;
497     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
498      || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
499       && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
500     ){
501       hasAbort = 1;
502       break;
503     }
504     if( opcode==OP_CreateTable ) hasCreateTable = 1;
505     if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
506 #ifndef SQLITE_OMIT_FOREIGN_KEY
507     if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
508       hasFkCounter = 1;
509     }
510 #endif
511   }
512   sqlite3DbFree(v->db, sIter.apSub);
513 
514   /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
515   ** If malloc failed, then the while() loop above may not have iterated
516   ** through all opcodes and hasAbort may be set incorrectly. Return
517   ** true for this case to prevent the assert() in the callers frame
518   ** from failing.  */
519   return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
520               || (hasCreateTable && hasInitCoroutine) );
521 }
522 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
523 
524 /*
525 ** This routine is called after all opcodes have been inserted.  It loops
526 ** through all the opcodes and fixes up some details.
527 **
528 ** (1) For each jump instruction with a negative P2 value (a label)
529 **     resolve the P2 value to an actual address.
530 **
531 ** (2) Compute the maximum number of arguments used by any SQL function
532 **     and store that value in *pMaxFuncArgs.
533 **
534 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
535 **     indicate what the prepared statement actually does.
536 **
537 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
538 **
539 ** (5) Reclaim the memory allocated for storing labels.
540 */
541 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
542   int i;
543   int nMaxArgs = *pMaxFuncArgs;
544   Op *pOp;
545   Parse *pParse = p->pParse;
546   int *aLabel = pParse->aLabel;
547   p->readOnly = 1;
548   p->bIsReader = 0;
549   for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
550     u8 opcode = pOp->opcode;
551 
552     /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
553     ** cases from this switch! */
554     switch( opcode ){
555       case OP_Transaction: {
556         if( pOp->p2!=0 ) p->readOnly = 0;
557         /* fall thru */
558       }
559       case OP_AutoCommit:
560       case OP_Savepoint: {
561         p->bIsReader = 1;
562         break;
563       }
564 #ifndef SQLITE_OMIT_WAL
565       case OP_Checkpoint:
566 #endif
567       case OP_Vacuum:
568       case OP_JournalMode: {
569         p->readOnly = 0;
570         p->bIsReader = 1;
571         break;
572       }
573 #ifndef SQLITE_OMIT_VIRTUALTABLE
574       case OP_VUpdate: {
575         if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
576         break;
577       }
578       case OP_VFilter: {
579         int n;
580         assert( p->nOp - i >= 3 );
581         assert( pOp[-1].opcode==OP_Integer );
582         n = pOp[-1].p1;
583         if( n>nMaxArgs ) nMaxArgs = n;
584         break;
585       }
586 #endif
587       case OP_Next:
588       case OP_NextIfOpen:
589       case OP_SorterNext: {
590         pOp->p4.xAdvance = sqlite3BtreeNext;
591         pOp->p4type = P4_ADVANCE;
592         break;
593       }
594       case OP_Prev:
595       case OP_PrevIfOpen: {
596         pOp->p4.xAdvance = sqlite3BtreePrevious;
597         pOp->p4type = P4_ADVANCE;
598         break;
599       }
600     }
601 
602     pOp->opflags = sqlite3OpcodeProperty[opcode];
603     if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
604       assert( ADDR(pOp->p2)<pParse->nLabel );
605       pOp->p2 = aLabel[ADDR(pOp->p2)];
606     }
607   }
608   sqlite3DbFree(p->db, pParse->aLabel);
609   pParse->aLabel = 0;
610   pParse->nLabel = 0;
611   *pMaxFuncArgs = nMaxArgs;
612   assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
613 }
614 
615 /*
616 ** Return the address of the next instruction to be inserted.
617 */
618 int sqlite3VdbeCurrentAddr(Vdbe *p){
619   assert( p->magic==VDBE_MAGIC_INIT );
620   return p->nOp;
621 }
622 
623 /*
624 ** Verify that at least N opcode slots are available in p without
625 ** having to malloc for more space (except when compiled using
626 ** SQLITE_TEST_REALLOC_STRESS).  This interface is used during testing
627 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
628 ** fail due to a OOM fault and hence that the return value from
629 ** sqlite3VdbeAddOpList() will always be non-NULL.
630 */
631 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
632 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
633   assert( p->nOp + N <= p->pParse->nOpAlloc );
634 }
635 #endif
636 
637 /*
638 ** This function returns a pointer to the array of opcodes associated with
639 ** the Vdbe passed as the first argument. It is the callers responsibility
640 ** to arrange for the returned array to be eventually freed using the
641 ** vdbeFreeOpArray() function.
642 **
643 ** Before returning, *pnOp is set to the number of entries in the returned
644 ** array. Also, *pnMaxArg is set to the larger of its current value and
645 ** the number of entries in the Vdbe.apArg[] array required to execute the
646 ** returned program.
647 */
648 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
649   VdbeOp *aOp = p->aOp;
650   assert( aOp && !p->db->mallocFailed );
651 
652   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
653   assert( DbMaskAllZero(p->btreeMask) );
654 
655   resolveP2Values(p, pnMaxArg);
656   *pnOp = p->nOp;
657   p->aOp = 0;
658   return aOp;
659 }
660 
661 /*
662 ** Add a whole list of operations to the operation stack.  Return a
663 ** pointer to the first operation inserted.
664 **
665 ** Non-zero P2 arguments to jump instructions are automatically adjusted
666 ** so that the jump target is relative to the first operation inserted.
667 */
668 VdbeOp *sqlite3VdbeAddOpList(
669   Vdbe *p,                     /* Add opcodes to the prepared statement */
670   int nOp,                     /* Number of opcodes to add */
671   VdbeOpList const *aOp,       /* The opcodes to be added */
672   int iLineno                  /* Source-file line number of first opcode */
673 ){
674   int i;
675   VdbeOp *pOut, *pFirst;
676   assert( nOp>0 );
677   assert( p->magic==VDBE_MAGIC_INIT );
678   if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
679     return 0;
680   }
681   pFirst = pOut = &p->aOp[p->nOp];
682   for(i=0; i<nOp; i++, aOp++, pOut++){
683     pOut->opcode = aOp->opcode;
684     pOut->p1 = aOp->p1;
685     pOut->p2 = aOp->p2;
686     assert( aOp->p2>=0 );
687     if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
688       pOut->p2 += p->nOp;
689     }
690     pOut->p3 = aOp->p3;
691     pOut->p4type = P4_NOTUSED;
692     pOut->p4.p = 0;
693     pOut->p5 = 0;
694 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
695     pOut->zComment = 0;
696 #endif
697 #ifdef SQLITE_VDBE_COVERAGE
698     pOut->iSrcLine = iLineno+i;
699 #else
700     (void)iLineno;
701 #endif
702 #ifdef SQLITE_DEBUG
703     if( p->db->flags & SQLITE_VdbeAddopTrace ){
704       sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
705     }
706 #endif
707   }
708   p->nOp += nOp;
709   return pFirst;
710 }
711 
712 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
713 /*
714 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
715 */
716 void sqlite3VdbeScanStatus(
717   Vdbe *p,                        /* VM to add scanstatus() to */
718   int addrExplain,                /* Address of OP_Explain (or 0) */
719   int addrLoop,                   /* Address of loop counter */
720   int addrVisit,                  /* Address of rows visited counter */
721   LogEst nEst,                    /* Estimated number of output rows */
722   const char *zName               /* Name of table or index being scanned */
723 ){
724   int nByte = (p->nScan+1) * sizeof(ScanStatus);
725   ScanStatus *aNew;
726   aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
727   if( aNew ){
728     ScanStatus *pNew = &aNew[p->nScan++];
729     pNew->addrExplain = addrExplain;
730     pNew->addrLoop = addrLoop;
731     pNew->addrVisit = addrVisit;
732     pNew->nEst = nEst;
733     pNew->zName = sqlite3DbStrDup(p->db, zName);
734     p->aScan = aNew;
735   }
736 }
737 #endif
738 
739 
740 /*
741 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
742 ** for a specific instruction.
743 */
744 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){
745   sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
746 }
747 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
748   sqlite3VdbeGetOp(p,addr)->p1 = val;
749 }
750 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
751   sqlite3VdbeGetOp(p,addr)->p2 = val;
752 }
753 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
754   sqlite3VdbeGetOp(p,addr)->p3 = val;
755 }
756 void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){
757   if( !p->db->mallocFailed ) p->aOp[p->nOp-1].p5 = p5;
758 }
759 
760 /*
761 ** Change the P2 operand of instruction addr so that it points to
762 ** the address of the next instruction to be coded.
763 */
764 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
765   p->pParse->iFixedOp = p->nOp - 1;
766   sqlite3VdbeChangeP2(p, addr, p->nOp);
767 }
768 
769 
770 /*
771 ** If the input FuncDef structure is ephemeral, then free it.  If
772 ** the FuncDef is not ephermal, then do nothing.
773 */
774 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
775   if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
776     sqlite3DbFree(db, pDef);
777   }
778 }
779 
780 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
781 
782 /*
783 ** Delete a P4 value if necessary.
784 */
785 static void freeP4(sqlite3 *db, int p4type, void *p4){
786   if( p4 ){
787     assert( db );
788     switch( p4type ){
789       case P4_FUNCCTX: {
790         freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc);
791         /* Fall through into the next case */
792       }
793       case P4_REAL:
794       case P4_INT64:
795       case P4_DYNAMIC:
796       case P4_INTARRAY: {
797         sqlite3DbFree(db, p4);
798         break;
799       }
800       case P4_KEYINFO: {
801         if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
802         break;
803       }
804 #ifdef SQLITE_ENABLE_CURSOR_HINTS
805       case P4_EXPR: {
806         sqlite3ExprDelete(db, (Expr*)p4);
807         break;
808       }
809 #endif
810       case P4_MPRINTF: {
811         if( db->pnBytesFreed==0 ) sqlite3_free(p4);
812         break;
813       }
814       case P4_FUNCDEF: {
815         freeEphemeralFunction(db, (FuncDef*)p4);
816         break;
817       }
818       case P4_MEM: {
819         if( db->pnBytesFreed==0 ){
820           sqlite3ValueFree((sqlite3_value*)p4);
821         }else{
822           Mem *p = (Mem*)p4;
823           if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
824           sqlite3DbFree(db, p);
825         }
826         break;
827       }
828       case P4_VTAB : {
829         if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
830         break;
831       }
832     }
833   }
834 }
835 
836 /*
837 ** Free the space allocated for aOp and any p4 values allocated for the
838 ** opcodes contained within. If aOp is not NULL it is assumed to contain
839 ** nOp entries.
840 */
841 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
842   if( aOp ){
843     Op *pOp;
844     for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
845       if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p);
846 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
847       sqlite3DbFree(db, pOp->zComment);
848 #endif
849     }
850   }
851   sqlite3DbFree(db, aOp);
852 }
853 
854 /*
855 ** Link the SubProgram object passed as the second argument into the linked
856 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
857 ** objects when the VM is no longer required.
858 */
859 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
860   p->pNext = pVdbe->pProgram;
861   pVdbe->pProgram = p;
862 }
863 
864 /*
865 ** Change the opcode at addr into OP_Noop
866 */
867 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
868   VdbeOp *pOp;
869   if( p->db->mallocFailed ) return 0;
870   assert( addr>=0 && addr<p->nOp );
871   pOp = &p->aOp[addr];
872   freeP4(p->db, pOp->p4type, pOp->p4.p);
873   pOp->p4type = P4_NOTUSED;
874   pOp->p4.z = 0;
875   pOp->opcode = OP_Noop;
876   return 1;
877 }
878 
879 /*
880 ** If the last opcode is "op" and it is not a jump destination,
881 ** then remove it.  Return true if and only if an opcode was removed.
882 */
883 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
884   if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
885     return sqlite3VdbeChangeToNoop(p, p->nOp-1);
886   }else{
887     return 0;
888   }
889 }
890 
891 /*
892 ** Change the value of the P4 operand for a specific instruction.
893 ** This routine is useful when a large program is loaded from a
894 ** static array using sqlite3VdbeAddOpList but we want to make a
895 ** few minor changes to the program.
896 **
897 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
898 ** the string is made into memory obtained from sqlite3_malloc().
899 ** A value of n==0 means copy bytes of zP4 up to and including the
900 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
901 **
902 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
903 ** to a string or structure that is guaranteed to exist for the lifetime of
904 ** the Vdbe. In these cases we can just copy the pointer.
905 **
906 ** If addr<0 then change P4 on the most recently inserted instruction.
907 */
908 static void SQLITE_NOINLINE vdbeChangeP4Full(
909   Vdbe *p,
910   Op *pOp,
911   const char *zP4,
912   int n
913 ){
914   if( pOp->p4type ){
915     freeP4(p->db, pOp->p4type, pOp->p4.p);
916     pOp->p4type = 0;
917     pOp->p4.p = 0;
918   }
919   if( n<0 ){
920     sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
921   }else{
922     if( n==0 ) n = sqlite3Strlen30(zP4);
923     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
924     pOp->p4type = P4_DYNAMIC;
925   }
926 }
927 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
928   Op *pOp;
929   sqlite3 *db;
930   assert( p!=0 );
931   db = p->db;
932   assert( p->magic==VDBE_MAGIC_INIT );
933   assert( p->aOp!=0 || db->mallocFailed );
934   if( db->mallocFailed ){
935     if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
936     return;
937   }
938   assert( p->nOp>0 );
939   assert( addr<p->nOp );
940   if( addr<0 ){
941     addr = p->nOp - 1;
942   }
943   pOp = &p->aOp[addr];
944   if( n>=0 || pOp->p4type ){
945     vdbeChangeP4Full(p, pOp, zP4, n);
946     return;
947   }
948   if( n==P4_INT32 ){
949     /* Note: this cast is safe, because the origin data point was an int
950     ** that was cast to a (const char *). */
951     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
952     pOp->p4type = P4_INT32;
953   }else if( zP4!=0 ){
954     assert( n<0 );
955     pOp->p4.p = (void*)zP4;
956     pOp->p4type = (signed char)n;
957     if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
958   }
959 }
960 
961 /*
962 ** Set the P4 on the most recently added opcode to the KeyInfo for the
963 ** index given.
964 */
965 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
966   Vdbe *v = pParse->pVdbe;
967   assert( v!=0 );
968   assert( pIdx!=0 );
969   sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx),
970                       P4_KEYINFO);
971 }
972 
973 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
974 /*
975 ** Change the comment on the most recently coded instruction.  Or
976 ** insert a No-op and add the comment to that new instruction.  This
977 ** makes the code easier to read during debugging.  None of this happens
978 ** in a production build.
979 */
980 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
981   assert( p->nOp>0 || p->aOp==0 );
982   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
983   if( p->nOp ){
984     assert( p->aOp );
985     sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
986     p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
987   }
988 }
989 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
990   va_list ap;
991   if( p ){
992     va_start(ap, zFormat);
993     vdbeVComment(p, zFormat, ap);
994     va_end(ap);
995   }
996 }
997 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
998   va_list ap;
999   if( p ){
1000     sqlite3VdbeAddOp0(p, OP_Noop);
1001     va_start(ap, zFormat);
1002     vdbeVComment(p, zFormat, ap);
1003     va_end(ap);
1004   }
1005 }
1006 #endif  /* NDEBUG */
1007 
1008 #ifdef SQLITE_VDBE_COVERAGE
1009 /*
1010 ** Set the value if the iSrcLine field for the previously coded instruction.
1011 */
1012 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1013   sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1014 }
1015 #endif /* SQLITE_VDBE_COVERAGE */
1016 
1017 /*
1018 ** Return the opcode for a given address.  If the address is -1, then
1019 ** return the most recently inserted opcode.
1020 **
1021 ** If a memory allocation error has occurred prior to the calling of this
1022 ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
1023 ** is readable but not writable, though it is cast to a writable value.
1024 ** The return of a dummy opcode allows the call to continue functioning
1025 ** after an OOM fault without having to check to see if the return from
1026 ** this routine is a valid pointer.  But because the dummy.opcode is 0,
1027 ** dummy will never be written to.  This is verified by code inspection and
1028 ** by running with Valgrind.
1029 */
1030 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1031   /* C89 specifies that the constant "dummy" will be initialized to all
1032   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
1033   static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
1034   assert( p->magic==VDBE_MAGIC_INIT );
1035   if( addr<0 ){
1036     addr = p->nOp - 1;
1037   }
1038   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1039   if( p->db->mallocFailed ){
1040     return (VdbeOp*)&dummy;
1041   }else{
1042     return &p->aOp[addr];
1043   }
1044 }
1045 
1046 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1047 /*
1048 ** Return an integer value for one of the parameters to the opcode pOp
1049 ** determined by character c.
1050 */
1051 static int translateP(char c, const Op *pOp){
1052   if( c=='1' ) return pOp->p1;
1053   if( c=='2' ) return pOp->p2;
1054   if( c=='3' ) return pOp->p3;
1055   if( c=='4' ) return pOp->p4.i;
1056   return pOp->p5;
1057 }
1058 
1059 /*
1060 ** Compute a string for the "comment" field of a VDBE opcode listing.
1061 **
1062 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1063 ** to an extra string that is appended to the sqlite3OpcodeName().  In the
1064 ** absence of other comments, this synopsis becomes the comment on the opcode.
1065 ** Some translation occurs:
1066 **
1067 **       "PX"      ->  "r[X]"
1068 **       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1
1069 **       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0
1070 **       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x
1071 */
1072 static int displayComment(
1073   const Op *pOp,     /* The opcode to be commented */
1074   const char *zP4,   /* Previously obtained value for P4 */
1075   char *zTemp,       /* Write result here */
1076   int nTemp          /* Space available in zTemp[] */
1077 ){
1078   const char *zOpName;
1079   const char *zSynopsis;
1080   int nOpName;
1081   int ii, jj;
1082   zOpName = sqlite3OpcodeName(pOp->opcode);
1083   nOpName = sqlite3Strlen30(zOpName);
1084   if( zOpName[nOpName+1] ){
1085     int seenCom = 0;
1086     char c;
1087     zSynopsis = zOpName += nOpName + 1;
1088     for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1089       if( c=='P' ){
1090         c = zSynopsis[++ii];
1091         if( c=='4' ){
1092           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1093         }else if( c=='X' ){
1094           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1095           seenCom = 1;
1096         }else{
1097           int v1 = translateP(c, pOp);
1098           int v2;
1099           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1100           if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1101             ii += 3;
1102             jj += sqlite3Strlen30(zTemp+jj);
1103             v2 = translateP(zSynopsis[ii], pOp);
1104             if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1105               ii += 2;
1106               v2++;
1107             }
1108             if( v2>1 ){
1109               sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1110             }
1111           }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1112             ii += 4;
1113           }
1114         }
1115         jj += sqlite3Strlen30(zTemp+jj);
1116       }else{
1117         zTemp[jj++] = c;
1118       }
1119     }
1120     if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1121       sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1122       jj += sqlite3Strlen30(zTemp+jj);
1123     }
1124     if( jj<nTemp ) zTemp[jj] = 0;
1125   }else if( pOp->zComment ){
1126     sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1127     jj = sqlite3Strlen30(zTemp);
1128   }else{
1129     zTemp[0] = 0;
1130     jj = 0;
1131   }
1132   return jj;
1133 }
1134 #endif /* SQLITE_DEBUG */
1135 
1136 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1137 /*
1138 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1139 ** that can be displayed in the P4 column of EXPLAIN output.
1140 */
1141 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1142   const char *zOp = 0;
1143   switch( pExpr->op ){
1144     case TK_STRING:
1145       sqlite3XPrintf(p, "%Q", pExpr->u.zToken);
1146       break;
1147     case TK_INTEGER:
1148       sqlite3XPrintf(p, "%d", pExpr->u.iValue);
1149       break;
1150     case TK_NULL:
1151       sqlite3XPrintf(p, "NULL");
1152       break;
1153     case TK_REGISTER: {
1154       sqlite3XPrintf(p, "r[%d]", pExpr->iTable);
1155       break;
1156     }
1157     case TK_COLUMN: {
1158       if( pExpr->iColumn<0 ){
1159         sqlite3XPrintf(p, "rowid");
1160       }else{
1161         sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn);
1162       }
1163       break;
1164     }
1165     case TK_LT:      zOp = "LT";      break;
1166     case TK_LE:      zOp = "LE";      break;
1167     case TK_GT:      zOp = "GT";      break;
1168     case TK_GE:      zOp = "GE";      break;
1169     case TK_NE:      zOp = "NE";      break;
1170     case TK_EQ:      zOp = "EQ";      break;
1171     case TK_IS:      zOp = "IS";      break;
1172     case TK_ISNOT:   zOp = "ISNOT";   break;
1173     case TK_AND:     zOp = "AND";     break;
1174     case TK_OR:      zOp = "OR";      break;
1175     case TK_PLUS:    zOp = "ADD";     break;
1176     case TK_STAR:    zOp = "MUL";     break;
1177     case TK_MINUS:   zOp = "SUB";     break;
1178     case TK_REM:     zOp = "REM";     break;
1179     case TK_BITAND:  zOp = "BITAND";  break;
1180     case TK_BITOR:   zOp = "BITOR";   break;
1181     case TK_SLASH:   zOp = "DIV";     break;
1182     case TK_LSHIFT:  zOp = "LSHIFT";  break;
1183     case TK_RSHIFT:  zOp = "RSHIFT";  break;
1184     case TK_CONCAT:  zOp = "CONCAT";  break;
1185     case TK_UMINUS:  zOp = "MINUS";   break;
1186     case TK_UPLUS:   zOp = "PLUS";    break;
1187     case TK_BITNOT:  zOp = "BITNOT";  break;
1188     case TK_NOT:     zOp = "NOT";     break;
1189     case TK_ISNULL:  zOp = "ISNULL";  break;
1190     case TK_NOTNULL: zOp = "NOTNULL"; break;
1191 
1192     default:
1193       sqlite3XPrintf(p, "%s", "expr");
1194       break;
1195   }
1196 
1197   if( zOp ){
1198     sqlite3XPrintf(p, "%s(", zOp);
1199     displayP4Expr(p, pExpr->pLeft);
1200     if( pExpr->pRight ){
1201       sqlite3StrAccumAppend(p, ",", 1);
1202       displayP4Expr(p, pExpr->pRight);
1203     }
1204     sqlite3StrAccumAppend(p, ")", 1);
1205   }
1206 }
1207 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1208 
1209 
1210 #if VDBE_DISPLAY_P4
1211 /*
1212 ** Compute a string that describes the P4 parameter for an opcode.
1213 ** Use zTemp for any required temporary buffer space.
1214 */
1215 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1216   char *zP4 = zTemp;
1217   StrAccum x;
1218   assert( nTemp>=20 );
1219   sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
1220   switch( pOp->p4type ){
1221     case P4_KEYINFO: {
1222       int j;
1223       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1224       assert( pKeyInfo->aSortOrder!=0 );
1225       sqlite3XPrintf(&x, "k(%d", pKeyInfo->nField);
1226       for(j=0; j<pKeyInfo->nField; j++){
1227         CollSeq *pColl = pKeyInfo->aColl[j];
1228         const char *zColl = pColl ? pColl->zName : "";
1229         if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1230         sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl);
1231       }
1232       sqlite3StrAccumAppend(&x, ")", 1);
1233       break;
1234     }
1235 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1236     case P4_EXPR: {
1237       displayP4Expr(&x, pOp->p4.pExpr);
1238       break;
1239     }
1240 #endif
1241     case P4_COLLSEQ: {
1242       CollSeq *pColl = pOp->p4.pColl;
1243       sqlite3XPrintf(&x, "(%.20s)", pColl->zName);
1244       break;
1245     }
1246     case P4_FUNCDEF: {
1247       FuncDef *pDef = pOp->p4.pFunc;
1248       sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1249       break;
1250     }
1251 #ifdef SQLITE_DEBUG
1252     case P4_FUNCCTX: {
1253       FuncDef *pDef = pOp->p4.pCtx->pFunc;
1254       sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1255       break;
1256     }
1257 #endif
1258     case P4_INT64: {
1259       sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64);
1260       break;
1261     }
1262     case P4_INT32: {
1263       sqlite3XPrintf(&x, "%d", pOp->p4.i);
1264       break;
1265     }
1266     case P4_REAL: {
1267       sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal);
1268       break;
1269     }
1270     case P4_MEM: {
1271       Mem *pMem = pOp->p4.pMem;
1272       if( pMem->flags & MEM_Str ){
1273         zP4 = pMem->z;
1274       }else if( pMem->flags & MEM_Int ){
1275         sqlite3XPrintf(&x, "%lld", pMem->u.i);
1276       }else if( pMem->flags & MEM_Real ){
1277         sqlite3XPrintf(&x, "%.16g", pMem->u.r);
1278       }else if( pMem->flags & MEM_Null ){
1279         zP4 = "NULL";
1280       }else{
1281         assert( pMem->flags & MEM_Blob );
1282         zP4 = "(blob)";
1283       }
1284       break;
1285     }
1286 #ifndef SQLITE_OMIT_VIRTUALTABLE
1287     case P4_VTAB: {
1288       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1289       sqlite3XPrintf(&x, "vtab:%p", pVtab);
1290       break;
1291     }
1292 #endif
1293     case P4_INTARRAY: {
1294       int i;
1295       int *ai = pOp->p4.ai;
1296       int n = ai[0];   /* The first element of an INTARRAY is always the
1297                        ** count of the number of elements to follow */
1298       for(i=1; i<n; i++){
1299         sqlite3XPrintf(&x, ",%d", ai[i]);
1300       }
1301       zTemp[0] = '[';
1302       sqlite3StrAccumAppend(&x, "]", 1);
1303       break;
1304     }
1305     case P4_SUBPROGRAM: {
1306       sqlite3XPrintf(&x, "program");
1307       break;
1308     }
1309     case P4_ADVANCE: {
1310       zTemp[0] = 0;
1311       break;
1312     }
1313     default: {
1314       zP4 = pOp->p4.z;
1315       if( zP4==0 ){
1316         zP4 = zTemp;
1317         zTemp[0] = 0;
1318       }
1319     }
1320   }
1321   sqlite3StrAccumFinish(&x);
1322   assert( zP4!=0 );
1323   return zP4;
1324 }
1325 #endif /* VDBE_DISPLAY_P4 */
1326 
1327 /*
1328 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1329 **
1330 ** The prepared statements need to know in advance the complete set of
1331 ** attached databases that will be use.  A mask of these databases
1332 ** is maintained in p->btreeMask.  The p->lockMask value is the subset of
1333 ** p->btreeMask of databases that will require a lock.
1334 */
1335 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1336   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1337   assert( i<(int)sizeof(p->btreeMask)*8 );
1338   DbMaskSet(p->btreeMask, i);
1339   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1340     DbMaskSet(p->lockMask, i);
1341   }
1342 }
1343 
1344 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1345 /*
1346 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1347 ** this routine obtains the mutex associated with each BtShared structure
1348 ** that may be accessed by the VM passed as an argument. In doing so it also
1349 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1350 ** that the correct busy-handler callback is invoked if required.
1351 **
1352 ** If SQLite is not threadsafe but does support shared-cache mode, then
1353 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1354 ** of all of BtShared structures accessible via the database handle
1355 ** associated with the VM.
1356 **
1357 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1358 ** function is a no-op.
1359 **
1360 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1361 ** statement p will ever use.  Let N be the number of bits in p->btreeMask
1362 ** corresponding to btrees that use shared cache.  Then the runtime of
1363 ** this routine is N*N.  But as N is rarely more than 1, this should not
1364 ** be a problem.
1365 */
1366 void sqlite3VdbeEnter(Vdbe *p){
1367   int i;
1368   sqlite3 *db;
1369   Db *aDb;
1370   int nDb;
1371   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1372   db = p->db;
1373   aDb = db->aDb;
1374   nDb = db->nDb;
1375   for(i=0; i<nDb; i++){
1376     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1377       sqlite3BtreeEnter(aDb[i].pBt);
1378     }
1379   }
1380 }
1381 #endif
1382 
1383 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1384 /*
1385 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1386 */
1387 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1388   int i;
1389   sqlite3 *db;
1390   Db *aDb;
1391   int nDb;
1392   db = p->db;
1393   aDb = db->aDb;
1394   nDb = db->nDb;
1395   for(i=0; i<nDb; i++){
1396     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1397       sqlite3BtreeLeave(aDb[i].pBt);
1398     }
1399   }
1400 }
1401 void sqlite3VdbeLeave(Vdbe *p){
1402   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1403   vdbeLeave(p);
1404 }
1405 #endif
1406 
1407 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1408 /*
1409 ** Print a single opcode.  This routine is used for debugging only.
1410 */
1411 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
1412   char *zP4;
1413   char zPtr[50];
1414   char zCom[100];
1415   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1416   if( pOut==0 ) pOut = stdout;
1417   zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1418 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1419   displayComment(pOp, zP4, zCom, sizeof(zCom));
1420 #else
1421   zCom[0] = 0;
1422 #endif
1423   /* NB:  The sqlite3OpcodeName() function is implemented by code created
1424   ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1425   ** information from the vdbe.c source text */
1426   fprintf(pOut, zFormat1, pc,
1427       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1428       zCom
1429   );
1430   fflush(pOut);
1431 }
1432 #endif
1433 
1434 /*
1435 ** Release an array of N Mem elements
1436 */
1437 static void releaseMemArray(Mem *p, int N){
1438   if( p && N ){
1439     Mem *pEnd = &p[N];
1440     sqlite3 *db = p->db;
1441     if( db->pnBytesFreed ){
1442       do{
1443         if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1444       }while( (++p)<pEnd );
1445       return;
1446     }
1447     do{
1448       assert( (&p[1])==pEnd || p[0].db==p[1].db );
1449       assert( sqlite3VdbeCheckMemInvariants(p) );
1450 
1451       /* This block is really an inlined version of sqlite3VdbeMemRelease()
1452       ** that takes advantage of the fact that the memory cell value is
1453       ** being set to NULL after releasing any dynamic resources.
1454       **
1455       ** The justification for duplicating code is that according to
1456       ** callgrind, this causes a certain test case to hit the CPU 4.7
1457       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1458       ** sqlite3MemRelease() were called from here. With -O2, this jumps
1459       ** to 6.6 percent. The test case is inserting 1000 rows into a table
1460       ** with no indexes using a single prepared INSERT statement, bind()
1461       ** and reset(). Inserts are grouped into a transaction.
1462       */
1463       testcase( p->flags & MEM_Agg );
1464       testcase( p->flags & MEM_Dyn );
1465       testcase( p->flags & MEM_Frame );
1466       testcase( p->flags & MEM_RowSet );
1467       if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
1468         sqlite3VdbeMemRelease(p);
1469       }else if( p->szMalloc ){
1470         sqlite3DbFree(db, p->zMalloc);
1471         p->szMalloc = 0;
1472       }
1473 
1474       p->flags = MEM_Undefined;
1475     }while( (++p)<pEnd );
1476   }
1477 }
1478 
1479 /*
1480 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1481 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1482 */
1483 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1484   int i;
1485   Mem *aMem = VdbeFrameMem(p);
1486   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1487   for(i=0; i<p->nChildCsr; i++){
1488     sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1489   }
1490   releaseMemArray(aMem, p->nChildMem);
1491   sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
1492   sqlite3DbFree(p->v->db, p);
1493 }
1494 
1495 #ifndef SQLITE_OMIT_EXPLAIN
1496 /*
1497 ** Give a listing of the program in the virtual machine.
1498 **
1499 ** The interface is the same as sqlite3VdbeExec().  But instead of
1500 ** running the code, it invokes the callback once for each instruction.
1501 ** This feature is used to implement "EXPLAIN".
1502 **
1503 ** When p->explain==1, each instruction is listed.  When
1504 ** p->explain==2, only OP_Explain instructions are listed and these
1505 ** are shown in a different format.  p->explain==2 is used to implement
1506 ** EXPLAIN QUERY PLAN.
1507 **
1508 ** When p->explain==1, first the main program is listed, then each of
1509 ** the trigger subprograms are listed one by one.
1510 */
1511 int sqlite3VdbeList(
1512   Vdbe *p                   /* The VDBE */
1513 ){
1514   int nRow;                            /* Stop when row count reaches this */
1515   int nSub = 0;                        /* Number of sub-vdbes seen so far */
1516   SubProgram **apSub = 0;              /* Array of sub-vdbes */
1517   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
1518   sqlite3 *db = p->db;                 /* The database connection */
1519   int i;                               /* Loop counter */
1520   int rc = SQLITE_OK;                  /* Return code */
1521   Mem *pMem = &p->aMem[1];             /* First Mem of result set */
1522 
1523   assert( p->explain );
1524   assert( p->magic==VDBE_MAGIC_RUN );
1525   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1526 
1527   /* Even though this opcode does not use dynamic strings for
1528   ** the result, result columns may become dynamic if the user calls
1529   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1530   */
1531   releaseMemArray(pMem, 8);
1532   p->pResultSet = 0;
1533 
1534   if( p->rc==SQLITE_NOMEM_BKPT ){
1535     /* This happens if a malloc() inside a call to sqlite3_column_text() or
1536     ** sqlite3_column_text16() failed.  */
1537     sqlite3OomFault(db);
1538     return SQLITE_ERROR;
1539   }
1540 
1541   /* When the number of output rows reaches nRow, that means the
1542   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1543   ** nRow is the sum of the number of rows in the main program, plus
1544   ** the sum of the number of rows in all trigger subprograms encountered
1545   ** so far.  The nRow value will increase as new trigger subprograms are
1546   ** encountered, but p->pc will eventually catch up to nRow.
1547   */
1548   nRow = p->nOp;
1549   if( p->explain==1 ){
1550     /* The first 8 memory cells are used for the result set.  So we will
1551     ** commandeer the 9th cell to use as storage for an array of pointers
1552     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
1553     ** cells.  */
1554     assert( p->nMem>9 );
1555     pSub = &p->aMem[9];
1556     if( pSub->flags&MEM_Blob ){
1557       /* On the first call to sqlite3_step(), pSub will hold a NULL.  It is
1558       ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1559       nSub = pSub->n/sizeof(Vdbe*);
1560       apSub = (SubProgram **)pSub->z;
1561     }
1562     for(i=0; i<nSub; i++){
1563       nRow += apSub[i]->nOp;
1564     }
1565   }
1566 
1567   do{
1568     i = p->pc++;
1569   }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1570   if( i>=nRow ){
1571     p->rc = SQLITE_OK;
1572     rc = SQLITE_DONE;
1573   }else if( db->u1.isInterrupted ){
1574     p->rc = SQLITE_INTERRUPT;
1575     rc = SQLITE_ERROR;
1576     sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
1577   }else{
1578     char *zP4;
1579     Op *pOp;
1580     if( i<p->nOp ){
1581       /* The output line number is small enough that we are still in the
1582       ** main program. */
1583       pOp = &p->aOp[i];
1584     }else{
1585       /* We are currently listing subprograms.  Figure out which one and
1586       ** pick up the appropriate opcode. */
1587       int j;
1588       i -= p->nOp;
1589       for(j=0; i>=apSub[j]->nOp; j++){
1590         i -= apSub[j]->nOp;
1591       }
1592       pOp = &apSub[j]->aOp[i];
1593     }
1594     if( p->explain==1 ){
1595       pMem->flags = MEM_Int;
1596       pMem->u.i = i;                                /* Program counter */
1597       pMem++;
1598 
1599       pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1600       pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1601       assert( pMem->z!=0 );
1602       pMem->n = sqlite3Strlen30(pMem->z);
1603       pMem->enc = SQLITE_UTF8;
1604       pMem++;
1605 
1606       /* When an OP_Program opcode is encounter (the only opcode that has
1607       ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1608       ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1609       ** has not already been seen.
1610       */
1611       if( pOp->p4type==P4_SUBPROGRAM ){
1612         int nByte = (nSub+1)*sizeof(SubProgram*);
1613         int j;
1614         for(j=0; j<nSub; j++){
1615           if( apSub[j]==pOp->p4.pProgram ) break;
1616         }
1617         if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
1618           apSub = (SubProgram **)pSub->z;
1619           apSub[nSub++] = pOp->p4.pProgram;
1620           pSub->flags |= MEM_Blob;
1621           pSub->n = nSub*sizeof(SubProgram*);
1622         }
1623       }
1624     }
1625 
1626     pMem->flags = MEM_Int;
1627     pMem->u.i = pOp->p1;                          /* P1 */
1628     pMem++;
1629 
1630     pMem->flags = MEM_Int;
1631     pMem->u.i = pOp->p2;                          /* P2 */
1632     pMem++;
1633 
1634     pMem->flags = MEM_Int;
1635     pMem->u.i = pOp->p3;                          /* P3 */
1636     pMem++;
1637 
1638     if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
1639       assert( p->db->mallocFailed );
1640       return SQLITE_ERROR;
1641     }
1642     pMem->flags = MEM_Str|MEM_Term;
1643     zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
1644     if( zP4!=pMem->z ){
1645       sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
1646     }else{
1647       assert( pMem->z!=0 );
1648       pMem->n = sqlite3Strlen30(pMem->z);
1649       pMem->enc = SQLITE_UTF8;
1650     }
1651     pMem++;
1652 
1653     if( p->explain==1 ){
1654       if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
1655         assert( p->db->mallocFailed );
1656         return SQLITE_ERROR;
1657       }
1658       pMem->flags = MEM_Str|MEM_Term;
1659       pMem->n = 2;
1660       sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
1661       pMem->enc = SQLITE_UTF8;
1662       pMem++;
1663 
1664 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1665       if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
1666         assert( p->db->mallocFailed );
1667         return SQLITE_ERROR;
1668       }
1669       pMem->flags = MEM_Str|MEM_Term;
1670       pMem->n = displayComment(pOp, zP4, pMem->z, 500);
1671       pMem->enc = SQLITE_UTF8;
1672 #else
1673       pMem->flags = MEM_Null;                       /* Comment */
1674 #endif
1675     }
1676 
1677     p->nResColumn = 8 - 4*(p->explain-1);
1678     p->pResultSet = &p->aMem[1];
1679     p->rc = SQLITE_OK;
1680     rc = SQLITE_ROW;
1681   }
1682   return rc;
1683 }
1684 #endif /* SQLITE_OMIT_EXPLAIN */
1685 
1686 #ifdef SQLITE_DEBUG
1687 /*
1688 ** Print the SQL that was used to generate a VDBE program.
1689 */
1690 void sqlite3VdbePrintSql(Vdbe *p){
1691   const char *z = 0;
1692   if( p->zSql ){
1693     z = p->zSql;
1694   }else if( p->nOp>=1 ){
1695     const VdbeOp *pOp = &p->aOp[0];
1696     if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1697       z = pOp->p4.z;
1698       while( sqlite3Isspace(*z) ) z++;
1699     }
1700   }
1701   if( z ) printf("SQL: [%s]\n", z);
1702 }
1703 #endif
1704 
1705 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1706 /*
1707 ** Print an IOTRACE message showing SQL content.
1708 */
1709 void sqlite3VdbeIOTraceSql(Vdbe *p){
1710   int nOp = p->nOp;
1711   VdbeOp *pOp;
1712   if( sqlite3IoTrace==0 ) return;
1713   if( nOp<1 ) return;
1714   pOp = &p->aOp[0];
1715   if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1716     int i, j;
1717     char z[1000];
1718     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1719     for(i=0; sqlite3Isspace(z[i]); i++){}
1720     for(j=0; z[i]; i++){
1721       if( sqlite3Isspace(z[i]) ){
1722         if( z[i-1]!=' ' ){
1723           z[j++] = ' ';
1724         }
1725       }else{
1726         z[j++] = z[i];
1727       }
1728     }
1729     z[j] = 0;
1730     sqlite3IoTrace("SQL %s\n", z);
1731   }
1732 }
1733 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1734 
1735 /* An instance of this object describes bulk memory available for use
1736 ** by subcomponents of a prepared statement.  Space is allocated out
1737 ** of a ReusableSpace object by the allocSpace() routine below.
1738 */
1739 struct ReusableSpace {
1740   u8 *pSpace;          /* Available memory */
1741   int nFree;           /* Bytes of available memory */
1742   int nNeeded;         /* Total bytes that could not be allocated */
1743 };
1744 
1745 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
1746 ** from the ReusableSpace object.  Return a pointer to the allocated
1747 ** memory on success.  If insufficient memory is available in the
1748 ** ReusableSpace object, increase the ReusableSpace.nNeeded
1749 ** value by the amount needed and return NULL.
1750 **
1751 ** If pBuf is not initially NULL, that means that the memory has already
1752 ** been allocated by a prior call to this routine, so just return a copy
1753 ** of pBuf and leave ReusableSpace unchanged.
1754 **
1755 ** This allocator is employed to repurpose unused slots at the end of the
1756 ** opcode array of prepared state for other memory needs of the prepared
1757 ** statement.
1758 */
1759 static void *allocSpace(
1760   struct ReusableSpace *p,  /* Bulk memory available for allocation */
1761   void *pBuf,               /* Pointer to a prior allocation */
1762   int nByte                 /* Bytes of memory needed */
1763 ){
1764   assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
1765   if( pBuf==0 ){
1766     nByte = ROUND8(nByte);
1767     if( nByte <= p->nFree ){
1768       p->nFree -= nByte;
1769       pBuf = &p->pSpace[p->nFree];
1770     }else{
1771       p->nNeeded += nByte;
1772     }
1773   }
1774   assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
1775   return pBuf;
1776 }
1777 
1778 /*
1779 ** Rewind the VDBE back to the beginning in preparation for
1780 ** running it.
1781 */
1782 void sqlite3VdbeRewind(Vdbe *p){
1783 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1784   int i;
1785 #endif
1786   assert( p!=0 );
1787   assert( p->magic==VDBE_MAGIC_INIT );
1788 
1789   /* There should be at least one opcode.
1790   */
1791   assert( p->nOp>0 );
1792 
1793   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
1794   p->magic = VDBE_MAGIC_RUN;
1795 
1796 #ifdef SQLITE_DEBUG
1797   for(i=1; i<p->nMem; i++){
1798     assert( p->aMem[i].db==p->db );
1799   }
1800 #endif
1801   p->pc = -1;
1802   p->rc = SQLITE_OK;
1803   p->errorAction = OE_Abort;
1804   p->nChange = 0;
1805   p->cacheCtr = 1;
1806   p->minWriteFileFormat = 255;
1807   p->iStatement = 0;
1808   p->nFkConstraint = 0;
1809 #ifdef VDBE_PROFILE
1810   for(i=0; i<p->nOp; i++){
1811     p->aOp[i].cnt = 0;
1812     p->aOp[i].cycles = 0;
1813   }
1814 #endif
1815 }
1816 
1817 /*
1818 ** Prepare a virtual machine for execution for the first time after
1819 ** creating the virtual machine.  This involves things such
1820 ** as allocating registers and initializing the program counter.
1821 ** After the VDBE has be prepped, it can be executed by one or more
1822 ** calls to sqlite3VdbeExec().
1823 **
1824 ** This function may be called exactly once on each virtual machine.
1825 ** After this routine is called the VM has been "packaged" and is ready
1826 ** to run.  After this routine is called, further calls to
1827 ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
1828 ** the Vdbe from the Parse object that helped generate it so that the
1829 ** the Vdbe becomes an independent entity and the Parse object can be
1830 ** destroyed.
1831 **
1832 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1833 ** to its initial state after it has been run.
1834 */
1835 void sqlite3VdbeMakeReady(
1836   Vdbe *p,                       /* The VDBE */
1837   Parse *pParse                  /* Parsing context */
1838 ){
1839   sqlite3 *db;                   /* The database connection */
1840   int nVar;                      /* Number of parameters */
1841   int nMem;                      /* Number of VM memory registers */
1842   int nCursor;                   /* Number of cursors required */
1843   int nArg;                      /* Number of arguments in subprograms */
1844   int nOnce;                     /* Number of OP_Once instructions */
1845   int n;                         /* Loop counter */
1846   struct ReusableSpace x;        /* Reusable bulk memory */
1847 
1848   assert( p!=0 );
1849   assert( p->nOp>0 );
1850   assert( pParse!=0 );
1851   assert( p->magic==VDBE_MAGIC_INIT );
1852   assert( pParse==p->pParse );
1853   db = p->db;
1854   assert( db->mallocFailed==0 );
1855   nVar = pParse->nVar;
1856   nMem = pParse->nMem;
1857   nCursor = pParse->nTab;
1858   nArg = pParse->nMaxArg;
1859   nOnce = pParse->nOnce;
1860   if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
1861 
1862   /* For each cursor required, also allocate a memory cell. Memory
1863   ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
1864   ** the vdbe program. Instead they are used to allocate memory for
1865   ** VdbeCursor/BtCursor structures. The blob of memory associated with
1866   ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
1867   ** stores the blob of memory associated with cursor 1, etc.
1868   **
1869   ** See also: allocateCursor().
1870   */
1871   nMem += nCursor;
1872 
1873   /* Figure out how much reusable memory is available at the end of the
1874   ** opcode array.  This extra memory will be reallocated for other elements
1875   ** of the prepared statement.
1876   */
1877   n = ROUND8(sizeof(Op)*p->nOp);              /* Bytes of opcode memory used */
1878   x.pSpace = &((u8*)p->aOp)[n];               /* Unused opcode memory */
1879   assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
1880   x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */
1881   assert( x.nFree>=0 );
1882   if( x.nFree>0 ){
1883     memset(x.pSpace, 0, x.nFree);
1884     assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
1885   }
1886 
1887   resolveP2Values(p, &nArg);
1888   p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1889   if( pParse->explain && nMem<10 ){
1890     nMem = 10;
1891   }
1892   p->expired = 0;
1893 
1894   /* Memory for registers, parameters, cursor, etc, is allocated in one or two
1895   ** passes.  On the first pass, we try to reuse unused memory at the
1896   ** end of the opcode array.  If we are unable to satisfy all memory
1897   ** requirements by reusing the opcode array tail, then the second
1898   ** pass will fill in the remainder using a fresh memory allocation.
1899   **
1900   ** This two-pass approach that reuses as much memory as possible from
1901   ** the leftover memory at the end of the opcode array.  This can significantly
1902   ** reduce the amount of memory held by a prepared statement.
1903   */
1904   do {
1905     x.nNeeded = 0;
1906     p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
1907     p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
1908     p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
1909     p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
1910     p->aOnceFlag = allocSpace(&x, p->aOnceFlag, nOnce);
1911 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1912     p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
1913 #endif
1914     if( x.nNeeded==0 ) break;
1915     x.pSpace = p->pFree = sqlite3DbMallocZero(db, x.nNeeded);
1916     x.nFree = x.nNeeded;
1917   }while( !db->mallocFailed );
1918 
1919   p->nCursor = nCursor;
1920   p->nOnceFlag = nOnce;
1921   if( p->aVar ){
1922     p->nVar = (ynVar)nVar;
1923     for(n=0; n<nVar; n++){
1924       p->aVar[n].flags = MEM_Null;
1925       p->aVar[n].db = db;
1926     }
1927   }
1928   p->nzVar = pParse->nzVar;
1929   p->azVar = pParse->azVar;
1930   pParse->nzVar =  0;
1931   pParse->azVar = 0;
1932   if( p->aMem ){
1933     p->aMem--;                      /* aMem[] goes from 1..nMem */
1934     p->nMem = nMem;                 /*       not from 0..nMem-1 */
1935     for(n=1; n<=nMem; n++){
1936       p->aMem[n].flags = MEM_Undefined;
1937       p->aMem[n].db = db;
1938     }
1939   }
1940   p->explain = pParse->explain;
1941   sqlite3VdbeRewind(p);
1942 }
1943 
1944 /*
1945 ** Close a VDBE cursor and release all the resources that cursor
1946 ** happens to hold.
1947 */
1948 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
1949   if( pCx==0 ){
1950     return;
1951   }
1952   assert( pCx->pBt==0 || pCx->eCurType==CURTYPE_BTREE );
1953   switch( pCx->eCurType ){
1954     case CURTYPE_SORTER: {
1955       sqlite3VdbeSorterClose(p->db, pCx);
1956       break;
1957     }
1958     case CURTYPE_BTREE: {
1959       if( pCx->pBt ){
1960         sqlite3BtreeClose(pCx->pBt);
1961         /* The pCx->pCursor will be close automatically, if it exists, by
1962         ** the call above. */
1963       }else{
1964         assert( pCx->uc.pCursor!=0 );
1965         sqlite3BtreeCloseCursor(pCx->uc.pCursor);
1966       }
1967       break;
1968     }
1969 #ifndef SQLITE_OMIT_VIRTUALTABLE
1970     case CURTYPE_VTAB: {
1971       sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
1972       const sqlite3_module *pModule = pVCur->pVtab->pModule;
1973       assert( pVCur->pVtab->nRef>0 );
1974       pVCur->pVtab->nRef--;
1975       pModule->xClose(pVCur);
1976       break;
1977     }
1978 #endif
1979   }
1980 }
1981 
1982 /*
1983 ** Close all cursors in the current frame.
1984 */
1985 static void closeCursorsInFrame(Vdbe *p){
1986   if( p->apCsr ){
1987     int i;
1988     for(i=0; i<p->nCursor; i++){
1989       VdbeCursor *pC = p->apCsr[i];
1990       if( pC ){
1991         sqlite3VdbeFreeCursor(p, pC);
1992         p->apCsr[i] = 0;
1993       }
1994     }
1995   }
1996 }
1997 
1998 /*
1999 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2000 ** is used, for example, when a trigger sub-program is halted to restore
2001 ** control to the main program.
2002 */
2003 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2004   Vdbe *v = pFrame->v;
2005   closeCursorsInFrame(v);
2006 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2007   v->anExec = pFrame->anExec;
2008 #endif
2009   v->aOnceFlag = pFrame->aOnceFlag;
2010   v->nOnceFlag = pFrame->nOnceFlag;
2011   v->aOp = pFrame->aOp;
2012   v->nOp = pFrame->nOp;
2013   v->aMem = pFrame->aMem;
2014   v->nMem = pFrame->nMem;
2015   v->apCsr = pFrame->apCsr;
2016   v->nCursor = pFrame->nCursor;
2017   v->db->lastRowid = pFrame->lastRowid;
2018   v->nChange = pFrame->nChange;
2019   v->db->nChange = pFrame->nDbChange;
2020   sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2021   v->pAuxData = pFrame->pAuxData;
2022   pFrame->pAuxData = 0;
2023   return pFrame->pc;
2024 }
2025 
2026 /*
2027 ** Close all cursors.
2028 **
2029 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2030 ** cell array. This is necessary as the memory cell array may contain
2031 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2032 ** open cursors.
2033 */
2034 static void closeAllCursors(Vdbe *p){
2035   if( p->pFrame ){
2036     VdbeFrame *pFrame;
2037     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2038     sqlite3VdbeFrameRestore(pFrame);
2039     p->pFrame = 0;
2040     p->nFrame = 0;
2041   }
2042   assert( p->nFrame==0 );
2043   closeCursorsInFrame(p);
2044   if( p->aMem ){
2045     releaseMemArray(&p->aMem[1], p->nMem);
2046   }
2047   while( p->pDelFrame ){
2048     VdbeFrame *pDel = p->pDelFrame;
2049     p->pDelFrame = pDel->pParent;
2050     sqlite3VdbeFrameDelete(pDel);
2051   }
2052 
2053   /* Delete any auxdata allocations made by the VM */
2054   if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2055   assert( p->pAuxData==0 );
2056 }
2057 
2058 /*
2059 ** Clean up the VM after a single run.
2060 */
2061 static void Cleanup(Vdbe *p){
2062   sqlite3 *db = p->db;
2063 
2064 #ifdef SQLITE_DEBUG
2065   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
2066   ** Vdbe.aMem[] arrays have already been cleaned up.  */
2067   int i;
2068   if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
2069   if( p->aMem ){
2070     for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
2071   }
2072 #endif
2073 
2074   sqlite3DbFree(db, p->zErrMsg);
2075   p->zErrMsg = 0;
2076   p->pResultSet = 0;
2077 }
2078 
2079 /*
2080 ** Set the number of result columns that will be returned by this SQL
2081 ** statement. This is now set at compile time, rather than during
2082 ** execution of the vdbe program so that sqlite3_column_count() can
2083 ** be called on an SQL statement before sqlite3_step().
2084 */
2085 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2086   Mem *pColName;
2087   int n;
2088   sqlite3 *db = p->db;
2089 
2090   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2091   sqlite3DbFree(db, p->aColName);
2092   n = nResColumn*COLNAME_N;
2093   p->nResColumn = (u16)nResColumn;
2094   p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
2095   if( p->aColName==0 ) return;
2096   while( n-- > 0 ){
2097     pColName->flags = MEM_Null;
2098     pColName->db = p->db;
2099     pColName++;
2100   }
2101 }
2102 
2103 /*
2104 ** Set the name of the idx'th column to be returned by the SQL statement.
2105 ** zName must be a pointer to a nul terminated string.
2106 **
2107 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2108 **
2109 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2110 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2111 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2112 */
2113 int sqlite3VdbeSetColName(
2114   Vdbe *p,                         /* Vdbe being configured */
2115   int idx,                         /* Index of column zName applies to */
2116   int var,                         /* One of the COLNAME_* constants */
2117   const char *zName,               /* Pointer to buffer containing name */
2118   void (*xDel)(void*)              /* Memory management strategy for zName */
2119 ){
2120   int rc;
2121   Mem *pColName;
2122   assert( idx<p->nResColumn );
2123   assert( var<COLNAME_N );
2124   if( p->db->mallocFailed ){
2125     assert( !zName || xDel!=SQLITE_DYNAMIC );
2126     return SQLITE_NOMEM_BKPT;
2127   }
2128   assert( p->aColName!=0 );
2129   pColName = &(p->aColName[idx+var*p->nResColumn]);
2130   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2131   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2132   return rc;
2133 }
2134 
2135 /*
2136 ** A read or write transaction may or may not be active on database handle
2137 ** db. If a transaction is active, commit it. If there is a
2138 ** write-transaction spanning more than one database file, this routine
2139 ** takes care of the master journal trickery.
2140 */
2141 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2142   int i;
2143   int nTrans = 0;  /* Number of databases with an active write-transaction
2144                    ** that are candidates for a two-phase commit using a
2145                    ** master-journal */
2146   int rc = SQLITE_OK;
2147   int needXcommit = 0;
2148 
2149 #ifdef SQLITE_OMIT_VIRTUALTABLE
2150   /* With this option, sqlite3VtabSync() is defined to be simply
2151   ** SQLITE_OK so p is not used.
2152   */
2153   UNUSED_PARAMETER(p);
2154 #endif
2155 
2156   /* Before doing anything else, call the xSync() callback for any
2157   ** virtual module tables written in this transaction. This has to
2158   ** be done before determining whether a master journal file is
2159   ** required, as an xSync() callback may add an attached database
2160   ** to the transaction.
2161   */
2162   rc = sqlite3VtabSync(db, p);
2163 
2164   /* This loop determines (a) if the commit hook should be invoked and
2165   ** (b) how many database files have open write transactions, not
2166   ** including the temp database. (b) is important because if more than
2167   ** one database file has an open write transaction, a master journal
2168   ** file is required for an atomic commit.
2169   */
2170   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2171     Btree *pBt = db->aDb[i].pBt;
2172     if( sqlite3BtreeIsInTrans(pBt) ){
2173       /* Whether or not a database might need a master journal depends upon
2174       ** its journal mode (among other things).  This matrix determines which
2175       ** journal modes use a master journal and which do not */
2176       static const u8 aMJNeeded[] = {
2177         /* DELETE   */  1,
2178         /* PERSIST   */ 1,
2179         /* OFF       */ 0,
2180         /* TRUNCATE  */ 1,
2181         /* MEMORY    */ 0,
2182         /* WAL       */ 0
2183       };
2184       Pager *pPager;   /* Pager associated with pBt */
2185       needXcommit = 1;
2186       sqlite3BtreeEnter(pBt);
2187       pPager = sqlite3BtreePager(pBt);
2188       if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2189        && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2190       ){
2191         assert( i!=1 );
2192         nTrans++;
2193       }
2194       rc = sqlite3PagerExclusiveLock(pPager);
2195       sqlite3BtreeLeave(pBt);
2196     }
2197   }
2198   if( rc!=SQLITE_OK ){
2199     return rc;
2200   }
2201 
2202   /* If there are any write-transactions at all, invoke the commit hook */
2203   if( needXcommit && db->xCommitCallback ){
2204     rc = db->xCommitCallback(db->pCommitArg);
2205     if( rc ){
2206       return SQLITE_CONSTRAINT_COMMITHOOK;
2207     }
2208   }
2209 
2210   /* The simple case - no more than one database file (not counting the
2211   ** TEMP database) has a transaction active.   There is no need for the
2212   ** master-journal.
2213   **
2214   ** If the return value of sqlite3BtreeGetFilename() is a zero length
2215   ** string, it means the main database is :memory: or a temp file.  In
2216   ** that case we do not support atomic multi-file commits, so use the
2217   ** simple case then too.
2218   */
2219   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2220    || nTrans<=1
2221   ){
2222     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2223       Btree *pBt = db->aDb[i].pBt;
2224       if( pBt ){
2225         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2226       }
2227     }
2228 
2229     /* Do the commit only if all databases successfully complete phase 1.
2230     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2231     ** IO error while deleting or truncating a journal file. It is unlikely,
2232     ** but could happen. In this case abandon processing and return the error.
2233     */
2234     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2235       Btree *pBt = db->aDb[i].pBt;
2236       if( pBt ){
2237         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2238       }
2239     }
2240     if( rc==SQLITE_OK ){
2241       sqlite3VtabCommit(db);
2242     }
2243   }
2244 
2245   /* The complex case - There is a multi-file write-transaction active.
2246   ** This requires a master journal file to ensure the transaction is
2247   ** committed atomically.
2248   */
2249 #ifndef SQLITE_OMIT_DISKIO
2250   else{
2251     sqlite3_vfs *pVfs = db->pVfs;
2252     char *zMaster = 0;   /* File-name for the master journal */
2253     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2254     sqlite3_file *pMaster = 0;
2255     i64 offset = 0;
2256     int res;
2257     int retryCount = 0;
2258     int nMainFile;
2259 
2260     /* Select a master journal file name */
2261     nMainFile = sqlite3Strlen30(zMainFile);
2262     zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
2263     if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
2264     do {
2265       u32 iRandom;
2266       if( retryCount ){
2267         if( retryCount>100 ){
2268           sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2269           sqlite3OsDelete(pVfs, zMaster, 0);
2270           break;
2271         }else if( retryCount==1 ){
2272           sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2273         }
2274       }
2275       retryCount++;
2276       sqlite3_randomness(sizeof(iRandom), &iRandom);
2277       sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
2278                                (iRandom>>8)&0xffffff, iRandom&0xff);
2279       /* The antipenultimate character of the master journal name must
2280       ** be "9" to avoid name collisions when using 8+3 filenames. */
2281       assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2282       sqlite3FileSuffix3(zMainFile, zMaster);
2283       rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2284     }while( rc==SQLITE_OK && res );
2285     if( rc==SQLITE_OK ){
2286       /* Open the master journal. */
2287       rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2288           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2289           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2290       );
2291     }
2292     if( rc!=SQLITE_OK ){
2293       sqlite3DbFree(db, zMaster);
2294       return rc;
2295     }
2296 
2297     /* Write the name of each database file in the transaction into the new
2298     ** master journal file. If an error occurs at this point close
2299     ** and delete the master journal file. All the individual journal files
2300     ** still have 'null' as the master journal pointer, so they will roll
2301     ** back independently if a failure occurs.
2302     */
2303     for(i=0; i<db->nDb; i++){
2304       Btree *pBt = db->aDb[i].pBt;
2305       if( sqlite3BtreeIsInTrans(pBt) ){
2306         char const *zFile = sqlite3BtreeGetJournalname(pBt);
2307         if( zFile==0 ){
2308           continue;  /* Ignore TEMP and :memory: databases */
2309         }
2310         assert( zFile[0]!=0 );
2311         rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2312         offset += sqlite3Strlen30(zFile)+1;
2313         if( rc!=SQLITE_OK ){
2314           sqlite3OsCloseFree(pMaster);
2315           sqlite3OsDelete(pVfs, zMaster, 0);
2316           sqlite3DbFree(db, zMaster);
2317           return rc;
2318         }
2319       }
2320     }
2321 
2322     /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2323     ** flag is set this is not required.
2324     */
2325     if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2326      && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2327     ){
2328       sqlite3OsCloseFree(pMaster);
2329       sqlite3OsDelete(pVfs, zMaster, 0);
2330       sqlite3DbFree(db, zMaster);
2331       return rc;
2332     }
2333 
2334     /* Sync all the db files involved in the transaction. The same call
2335     ** sets the master journal pointer in each individual journal. If
2336     ** an error occurs here, do not delete the master journal file.
2337     **
2338     ** If the error occurs during the first call to
2339     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2340     ** master journal file will be orphaned. But we cannot delete it,
2341     ** in case the master journal file name was written into the journal
2342     ** file before the failure occurred.
2343     */
2344     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2345       Btree *pBt = db->aDb[i].pBt;
2346       if( pBt ){
2347         rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
2348       }
2349     }
2350     sqlite3OsCloseFree(pMaster);
2351     assert( rc!=SQLITE_BUSY );
2352     if( rc!=SQLITE_OK ){
2353       sqlite3DbFree(db, zMaster);
2354       return rc;
2355     }
2356 
2357     /* Delete the master journal file. This commits the transaction. After
2358     ** doing this the directory is synced again before any individual
2359     ** transaction files are deleted.
2360     */
2361     rc = sqlite3OsDelete(pVfs, zMaster, 1);
2362     sqlite3DbFree(db, zMaster);
2363     zMaster = 0;
2364     if( rc ){
2365       return rc;
2366     }
2367 
2368     /* All files and directories have already been synced, so the following
2369     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2370     ** deleting or truncating journals. If something goes wrong while
2371     ** this is happening we don't really care. The integrity of the
2372     ** transaction is already guaranteed, but some stray 'cold' journals
2373     ** may be lying around. Returning an error code won't help matters.
2374     */
2375     disable_simulated_io_errors();
2376     sqlite3BeginBenignMalloc();
2377     for(i=0; i<db->nDb; i++){
2378       Btree *pBt = db->aDb[i].pBt;
2379       if( pBt ){
2380         sqlite3BtreeCommitPhaseTwo(pBt, 1);
2381       }
2382     }
2383     sqlite3EndBenignMalloc();
2384     enable_simulated_io_errors();
2385 
2386     sqlite3VtabCommit(db);
2387   }
2388 #endif
2389 
2390   return rc;
2391 }
2392 
2393 /*
2394 ** This routine checks that the sqlite3.nVdbeActive count variable
2395 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2396 ** currently active. An assertion fails if the two counts do not match.
2397 ** This is an internal self-check only - it is not an essential processing
2398 ** step.
2399 **
2400 ** This is a no-op if NDEBUG is defined.
2401 */
2402 #ifndef NDEBUG
2403 static void checkActiveVdbeCnt(sqlite3 *db){
2404   Vdbe *p;
2405   int cnt = 0;
2406   int nWrite = 0;
2407   int nRead = 0;
2408   p = db->pVdbe;
2409   while( p ){
2410     if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2411       cnt++;
2412       if( p->readOnly==0 ) nWrite++;
2413       if( p->bIsReader ) nRead++;
2414     }
2415     p = p->pNext;
2416   }
2417   assert( cnt==db->nVdbeActive );
2418   assert( nWrite==db->nVdbeWrite );
2419   assert( nRead==db->nVdbeRead );
2420 }
2421 #else
2422 #define checkActiveVdbeCnt(x)
2423 #endif
2424 
2425 /*
2426 ** If the Vdbe passed as the first argument opened a statement-transaction,
2427 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2428 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2429 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2430 ** statement transaction is committed.
2431 **
2432 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2433 ** Otherwise SQLITE_OK.
2434 */
2435 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2436   sqlite3 *const db = p->db;
2437   int rc = SQLITE_OK;
2438 
2439   /* If p->iStatement is greater than zero, then this Vdbe opened a
2440   ** statement transaction that should be closed here. The only exception
2441   ** is that an IO error may have occurred, causing an emergency rollback.
2442   ** In this case (db->nStatement==0), and there is nothing to do.
2443   */
2444   if( db->nStatement && p->iStatement ){
2445     int i;
2446     const int iSavepoint = p->iStatement-1;
2447 
2448     assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2449     assert( db->nStatement>0 );
2450     assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2451 
2452     for(i=0; i<db->nDb; i++){
2453       int rc2 = SQLITE_OK;
2454       Btree *pBt = db->aDb[i].pBt;
2455       if( pBt ){
2456         if( eOp==SAVEPOINT_ROLLBACK ){
2457           rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2458         }
2459         if( rc2==SQLITE_OK ){
2460           rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2461         }
2462         if( rc==SQLITE_OK ){
2463           rc = rc2;
2464         }
2465       }
2466     }
2467     db->nStatement--;
2468     p->iStatement = 0;
2469 
2470     if( rc==SQLITE_OK ){
2471       if( eOp==SAVEPOINT_ROLLBACK ){
2472         rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2473       }
2474       if( rc==SQLITE_OK ){
2475         rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2476       }
2477     }
2478 
2479     /* If the statement transaction is being rolled back, also restore the
2480     ** database handles deferred constraint counter to the value it had when
2481     ** the statement transaction was opened.  */
2482     if( eOp==SAVEPOINT_ROLLBACK ){
2483       db->nDeferredCons = p->nStmtDefCons;
2484       db->nDeferredImmCons = p->nStmtDefImmCons;
2485     }
2486   }
2487   return rc;
2488 }
2489 
2490 /*
2491 ** This function is called when a transaction opened by the database
2492 ** handle associated with the VM passed as an argument is about to be
2493 ** committed. If there are outstanding deferred foreign key constraint
2494 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2495 **
2496 ** If there are outstanding FK violations and this function returns
2497 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2498 ** and write an error message to it. Then return SQLITE_ERROR.
2499 */
2500 #ifndef SQLITE_OMIT_FOREIGN_KEY
2501 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2502   sqlite3 *db = p->db;
2503   if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2504    || (!deferred && p->nFkConstraint>0)
2505   ){
2506     p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2507     p->errorAction = OE_Abort;
2508     sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
2509     return SQLITE_ERROR;
2510   }
2511   return SQLITE_OK;
2512 }
2513 #endif
2514 
2515 /*
2516 ** This routine is called the when a VDBE tries to halt.  If the VDBE
2517 ** has made changes and is in autocommit mode, then commit those
2518 ** changes.  If a rollback is needed, then do the rollback.
2519 **
2520 ** This routine is the only way to move the state of a VM from
2521 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
2522 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2523 **
2524 ** Return an error code.  If the commit could not complete because of
2525 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
2526 ** means the close did not happen and needs to be repeated.
2527 */
2528 int sqlite3VdbeHalt(Vdbe *p){
2529   int rc;                         /* Used to store transient return codes */
2530   sqlite3 *db = p->db;
2531 
2532   /* This function contains the logic that determines if a statement or
2533   ** transaction will be committed or rolled back as a result of the
2534   ** execution of this virtual machine.
2535   **
2536   ** If any of the following errors occur:
2537   **
2538   **     SQLITE_NOMEM
2539   **     SQLITE_IOERR
2540   **     SQLITE_FULL
2541   **     SQLITE_INTERRUPT
2542   **
2543   ** Then the internal cache might have been left in an inconsistent
2544   ** state.  We need to rollback the statement transaction, if there is
2545   ** one, or the complete transaction if there is no statement transaction.
2546   */
2547 
2548   if( db->mallocFailed ){
2549     p->rc = SQLITE_NOMEM_BKPT;
2550   }
2551   if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
2552   closeAllCursors(p);
2553   if( p->magic!=VDBE_MAGIC_RUN ){
2554     return SQLITE_OK;
2555   }
2556   checkActiveVdbeCnt(db);
2557 
2558   /* No commit or rollback needed if the program never started or if the
2559   ** SQL statement does not read or write a database file.  */
2560   if( p->pc>=0 && p->bIsReader ){
2561     int mrc;   /* Primary error code from p->rc */
2562     int eStatementOp = 0;
2563     int isSpecialError;            /* Set to true if a 'special' error */
2564 
2565     /* Lock all btrees used by the statement */
2566     sqlite3VdbeEnter(p);
2567 
2568     /* Check for one of the special errors */
2569     mrc = p->rc & 0xff;
2570     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2571                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2572     if( isSpecialError ){
2573       /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2574       ** no rollback is necessary. Otherwise, at least a savepoint
2575       ** transaction must be rolled back to restore the database to a
2576       ** consistent state.
2577       **
2578       ** Even if the statement is read-only, it is important to perform
2579       ** a statement or transaction rollback operation. If the error
2580       ** occurred while writing to the journal, sub-journal or database
2581       ** file as part of an effort to free up cache space (see function
2582       ** pagerStress() in pager.c), the rollback is required to restore
2583       ** the pager to a consistent state.
2584       */
2585       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2586         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2587           eStatementOp = SAVEPOINT_ROLLBACK;
2588         }else{
2589           /* We are forced to roll back the active transaction. Before doing
2590           ** so, abort any other statements this handle currently has active.
2591           */
2592           sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2593           sqlite3CloseSavepoints(db);
2594           db->autoCommit = 1;
2595           p->nChange = 0;
2596         }
2597       }
2598     }
2599 
2600     /* Check for immediate foreign key violations. */
2601     if( p->rc==SQLITE_OK ){
2602       sqlite3VdbeCheckFk(p, 0);
2603     }
2604 
2605     /* If the auto-commit flag is set and this is the only active writer
2606     ** VM, then we do either a commit or rollback of the current transaction.
2607     **
2608     ** Note: This block also runs if one of the special errors handled
2609     ** above has occurred.
2610     */
2611     if( !sqlite3VtabInSync(db)
2612      && db->autoCommit
2613      && db->nVdbeWrite==(p->readOnly==0)
2614     ){
2615       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2616         rc = sqlite3VdbeCheckFk(p, 1);
2617         if( rc!=SQLITE_OK ){
2618           if( NEVER(p->readOnly) ){
2619             sqlite3VdbeLeave(p);
2620             return SQLITE_ERROR;
2621           }
2622           rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2623         }else{
2624           /* The auto-commit flag is true, the vdbe program was successful
2625           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2626           ** key constraints to hold up the transaction. This means a commit
2627           ** is required. */
2628           rc = vdbeCommit(db, p);
2629         }
2630         if( rc==SQLITE_BUSY && p->readOnly ){
2631           sqlite3VdbeLeave(p);
2632           return SQLITE_BUSY;
2633         }else if( rc!=SQLITE_OK ){
2634           p->rc = rc;
2635           sqlite3RollbackAll(db, SQLITE_OK);
2636           p->nChange = 0;
2637         }else{
2638           db->nDeferredCons = 0;
2639           db->nDeferredImmCons = 0;
2640           db->flags &= ~SQLITE_DeferFKs;
2641           sqlite3CommitInternalChanges(db);
2642         }
2643       }else{
2644         sqlite3RollbackAll(db, SQLITE_OK);
2645         p->nChange = 0;
2646       }
2647       db->nStatement = 0;
2648     }else if( eStatementOp==0 ){
2649       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2650         eStatementOp = SAVEPOINT_RELEASE;
2651       }else if( p->errorAction==OE_Abort ){
2652         eStatementOp = SAVEPOINT_ROLLBACK;
2653       }else{
2654         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2655         sqlite3CloseSavepoints(db);
2656         db->autoCommit = 1;
2657         p->nChange = 0;
2658       }
2659     }
2660 
2661     /* If eStatementOp is non-zero, then a statement transaction needs to
2662     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2663     ** do so. If this operation returns an error, and the current statement
2664     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2665     ** current statement error code.
2666     */
2667     if( eStatementOp ){
2668       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2669       if( rc ){
2670         if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
2671           p->rc = rc;
2672           sqlite3DbFree(db, p->zErrMsg);
2673           p->zErrMsg = 0;
2674         }
2675         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2676         sqlite3CloseSavepoints(db);
2677         db->autoCommit = 1;
2678         p->nChange = 0;
2679       }
2680     }
2681 
2682     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2683     ** has been rolled back, update the database connection change-counter.
2684     */
2685     if( p->changeCntOn ){
2686       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2687         sqlite3VdbeSetChanges(db, p->nChange);
2688       }else{
2689         sqlite3VdbeSetChanges(db, 0);
2690       }
2691       p->nChange = 0;
2692     }
2693 
2694     /* Release the locks */
2695     sqlite3VdbeLeave(p);
2696   }
2697 
2698   /* We have successfully halted and closed the VM.  Record this fact. */
2699   if( p->pc>=0 ){
2700     db->nVdbeActive--;
2701     if( !p->readOnly ) db->nVdbeWrite--;
2702     if( p->bIsReader ) db->nVdbeRead--;
2703     assert( db->nVdbeActive>=db->nVdbeRead );
2704     assert( db->nVdbeRead>=db->nVdbeWrite );
2705     assert( db->nVdbeWrite>=0 );
2706   }
2707   p->magic = VDBE_MAGIC_HALT;
2708   checkActiveVdbeCnt(db);
2709   if( db->mallocFailed ){
2710     p->rc = SQLITE_NOMEM_BKPT;
2711   }
2712 
2713   /* If the auto-commit flag is set to true, then any locks that were held
2714   ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2715   ** to invoke any required unlock-notify callbacks.
2716   */
2717   if( db->autoCommit ){
2718     sqlite3ConnectionUnlocked(db);
2719   }
2720 
2721   assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
2722   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
2723 }
2724 
2725 
2726 /*
2727 ** Each VDBE holds the result of the most recent sqlite3_step() call
2728 ** in p->rc.  This routine sets that result back to SQLITE_OK.
2729 */
2730 void sqlite3VdbeResetStepResult(Vdbe *p){
2731   p->rc = SQLITE_OK;
2732 }
2733 
2734 /*
2735 ** Copy the error code and error message belonging to the VDBE passed
2736 ** as the first argument to its database handle (so that they will be
2737 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2738 **
2739 ** This function does not clear the VDBE error code or message, just
2740 ** copies them to the database handle.
2741 */
2742 int sqlite3VdbeTransferError(Vdbe *p){
2743   sqlite3 *db = p->db;
2744   int rc = p->rc;
2745   if( p->zErrMsg ){
2746     db->bBenignMalloc++;
2747     sqlite3BeginBenignMalloc();
2748     if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
2749     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2750     sqlite3EndBenignMalloc();
2751     db->bBenignMalloc--;
2752     db->errCode = rc;
2753   }else{
2754     sqlite3Error(db, rc);
2755   }
2756   return rc;
2757 }
2758 
2759 #ifdef SQLITE_ENABLE_SQLLOG
2760 /*
2761 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2762 ** invoke it.
2763 */
2764 static void vdbeInvokeSqllog(Vdbe *v){
2765   if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2766     char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2767     assert( v->db->init.busy==0 );
2768     if( zExpanded ){
2769       sqlite3GlobalConfig.xSqllog(
2770           sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2771       );
2772       sqlite3DbFree(v->db, zExpanded);
2773     }
2774   }
2775 }
2776 #else
2777 # define vdbeInvokeSqllog(x)
2778 #endif
2779 
2780 /*
2781 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
2782 ** Write any error messages into *pzErrMsg.  Return the result code.
2783 **
2784 ** After this routine is run, the VDBE should be ready to be executed
2785 ** again.
2786 **
2787 ** To look at it another way, this routine resets the state of the
2788 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2789 ** VDBE_MAGIC_INIT.
2790 */
2791 int sqlite3VdbeReset(Vdbe *p){
2792   sqlite3 *db;
2793   db = p->db;
2794 
2795   /* If the VM did not run to completion or if it encountered an
2796   ** error, then it might not have been halted properly.  So halt
2797   ** it now.
2798   */
2799   sqlite3VdbeHalt(p);
2800 
2801   /* If the VDBE has be run even partially, then transfer the error code
2802   ** and error message from the VDBE into the main database structure.  But
2803   ** if the VDBE has just been set to run but has not actually executed any
2804   ** instructions yet, leave the main database error information unchanged.
2805   */
2806   if( p->pc>=0 ){
2807     vdbeInvokeSqllog(p);
2808     sqlite3VdbeTransferError(p);
2809     sqlite3DbFree(db, p->zErrMsg);
2810     p->zErrMsg = 0;
2811     if( p->runOnlyOnce ) p->expired = 1;
2812   }else if( p->rc && p->expired ){
2813     /* The expired flag was set on the VDBE before the first call
2814     ** to sqlite3_step(). For consistency (since sqlite3_step() was
2815     ** called), set the database error in this case as well.
2816     */
2817     sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
2818     sqlite3DbFree(db, p->zErrMsg);
2819     p->zErrMsg = 0;
2820   }
2821 
2822   /* Reclaim all memory used by the VDBE
2823   */
2824   Cleanup(p);
2825 
2826   /* Save profiling information from this VDBE run.
2827   */
2828 #ifdef VDBE_PROFILE
2829   {
2830     FILE *out = fopen("vdbe_profile.out", "a");
2831     if( out ){
2832       int i;
2833       fprintf(out, "---- ");
2834       for(i=0; i<p->nOp; i++){
2835         fprintf(out, "%02x", p->aOp[i].opcode);
2836       }
2837       fprintf(out, "\n");
2838       if( p->zSql ){
2839         char c, pc = 0;
2840         fprintf(out, "-- ");
2841         for(i=0; (c = p->zSql[i])!=0; i++){
2842           if( pc=='\n' ) fprintf(out, "-- ");
2843           putc(c, out);
2844           pc = c;
2845         }
2846         if( pc!='\n' ) fprintf(out, "\n");
2847       }
2848       for(i=0; i<p->nOp; i++){
2849         char zHdr[100];
2850         sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
2851            p->aOp[i].cnt,
2852            p->aOp[i].cycles,
2853            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2854         );
2855         fprintf(out, "%s", zHdr);
2856         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
2857       }
2858       fclose(out);
2859     }
2860   }
2861 #endif
2862   p->iCurrentTime = 0;
2863   p->magic = VDBE_MAGIC_INIT;
2864   return p->rc & db->errMask;
2865 }
2866 
2867 /*
2868 ** Clean up and delete a VDBE after execution.  Return an integer which is
2869 ** the result code.  Write any error message text into *pzErrMsg.
2870 */
2871 int sqlite3VdbeFinalize(Vdbe *p){
2872   int rc = SQLITE_OK;
2873   if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
2874     rc = sqlite3VdbeReset(p);
2875     assert( (rc & p->db->errMask)==rc );
2876   }
2877   sqlite3VdbeDelete(p);
2878   return rc;
2879 }
2880 
2881 /*
2882 ** If parameter iOp is less than zero, then invoke the destructor for
2883 ** all auxiliary data pointers currently cached by the VM passed as
2884 ** the first argument.
2885 **
2886 ** Or, if iOp is greater than or equal to zero, then the destructor is
2887 ** only invoked for those auxiliary data pointers created by the user
2888 ** function invoked by the OP_Function opcode at instruction iOp of
2889 ** VM pVdbe, and only then if:
2890 **
2891 **    * the associated function parameter is the 32nd or later (counting
2892 **      from left to right), or
2893 **
2894 **    * the corresponding bit in argument mask is clear (where the first
2895 **      function parameter corresponds to bit 0 etc.).
2896 */
2897 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
2898   while( *pp ){
2899     AuxData *pAux = *pp;
2900     if( (iOp<0)
2901      || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
2902     ){
2903       testcase( pAux->iArg==31 );
2904       if( pAux->xDelete ){
2905         pAux->xDelete(pAux->pAux);
2906       }
2907       *pp = pAux->pNext;
2908       sqlite3DbFree(db, pAux);
2909     }else{
2910       pp= &pAux->pNext;
2911     }
2912   }
2913 }
2914 
2915 /*
2916 ** Free all memory associated with the Vdbe passed as the second argument,
2917 ** except for object itself, which is preserved.
2918 **
2919 ** The difference between this function and sqlite3VdbeDelete() is that
2920 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
2921 ** the database connection and frees the object itself.
2922 */
2923 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
2924   SubProgram *pSub, *pNext;
2925   int i;
2926   assert( p->db==0 || p->db==db );
2927   releaseMemArray(p->aVar, p->nVar);
2928   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2929   for(pSub=p->pProgram; pSub; pSub=pNext){
2930     pNext = pSub->pNext;
2931     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2932     sqlite3DbFree(db, pSub);
2933   }
2934   for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
2935   sqlite3DbFree(db, p->azVar);
2936   vdbeFreeOpArray(db, p->aOp, p->nOp);
2937   sqlite3DbFree(db, p->aColName);
2938   sqlite3DbFree(db, p->zSql);
2939   sqlite3DbFree(db, p->pFree);
2940 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2941   for(i=0; i<p->nScan; i++){
2942     sqlite3DbFree(db, p->aScan[i].zName);
2943   }
2944   sqlite3DbFree(db, p->aScan);
2945 #endif
2946 }
2947 
2948 /*
2949 ** Delete an entire VDBE.
2950 */
2951 void sqlite3VdbeDelete(Vdbe *p){
2952   sqlite3 *db;
2953 
2954   if( NEVER(p==0) ) return;
2955   db = p->db;
2956   assert( sqlite3_mutex_held(db->mutex) );
2957   sqlite3VdbeClearObject(db, p);
2958   if( p->pPrev ){
2959     p->pPrev->pNext = p->pNext;
2960   }else{
2961     assert( db->pVdbe==p );
2962     db->pVdbe = p->pNext;
2963   }
2964   if( p->pNext ){
2965     p->pNext->pPrev = p->pPrev;
2966   }
2967   p->magic = VDBE_MAGIC_DEAD;
2968   p->db = 0;
2969   sqlite3DbFree(db, p);
2970 }
2971 
2972 /*
2973 ** The cursor "p" has a pending seek operation that has not yet been
2974 ** carried out.  Seek the cursor now.  If an error occurs, return
2975 ** the appropriate error code.
2976 */
2977 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
2978   int res, rc;
2979 #ifdef SQLITE_TEST
2980   extern int sqlite3_search_count;
2981 #endif
2982   assert( p->deferredMoveto );
2983   assert( p->isTable );
2984   assert( p->eCurType==CURTYPE_BTREE );
2985   rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
2986   if( rc ) return rc;
2987   if( res!=0 ) return SQLITE_CORRUPT_BKPT;
2988 #ifdef SQLITE_TEST
2989   sqlite3_search_count++;
2990 #endif
2991   p->deferredMoveto = 0;
2992   p->cacheStatus = CACHE_STALE;
2993   return SQLITE_OK;
2994 }
2995 
2996 /*
2997 ** Something has moved cursor "p" out of place.  Maybe the row it was
2998 ** pointed to was deleted out from under it.  Or maybe the btree was
2999 ** rebalanced.  Whatever the cause, try to restore "p" to the place it
3000 ** is supposed to be pointing.  If the row was deleted out from under the
3001 ** cursor, set the cursor to point to a NULL row.
3002 */
3003 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3004   int isDifferentRow, rc;
3005   assert( p->eCurType==CURTYPE_BTREE );
3006   assert( p->uc.pCursor!=0 );
3007   assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3008   rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3009   p->cacheStatus = CACHE_STALE;
3010   if( isDifferentRow ) p->nullRow = 1;
3011   return rc;
3012 }
3013 
3014 /*
3015 ** Check to ensure that the cursor is valid.  Restore the cursor
3016 ** if need be.  Return any I/O error from the restore operation.
3017 */
3018 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3019   assert( p->eCurType==CURTYPE_BTREE );
3020   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3021     return handleMovedCursor(p);
3022   }
3023   return SQLITE_OK;
3024 }
3025 
3026 /*
3027 ** Make sure the cursor p is ready to read or write the row to which it
3028 ** was last positioned.  Return an error code if an OOM fault or I/O error
3029 ** prevents us from positioning the cursor to its correct position.
3030 **
3031 ** If a MoveTo operation is pending on the given cursor, then do that
3032 ** MoveTo now.  If no move is pending, check to see if the row has been
3033 ** deleted out from under the cursor and if it has, mark the row as
3034 ** a NULL row.
3035 **
3036 ** If the cursor is already pointing to the correct row and that row has
3037 ** not been deleted out from under the cursor, then this routine is a no-op.
3038 */
3039 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
3040   VdbeCursor *p = *pp;
3041   if( p->eCurType==CURTYPE_BTREE ){
3042     if( p->deferredMoveto ){
3043       int iMap;
3044       if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
3045         *pp = p->pAltCursor;
3046         *piCol = iMap - 1;
3047         return SQLITE_OK;
3048       }
3049       return handleDeferredMoveto(p);
3050     }
3051     if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3052       return handleMovedCursor(p);
3053     }
3054   }
3055   return SQLITE_OK;
3056 }
3057 
3058 /*
3059 ** The following functions:
3060 **
3061 ** sqlite3VdbeSerialType()
3062 ** sqlite3VdbeSerialTypeLen()
3063 ** sqlite3VdbeSerialLen()
3064 ** sqlite3VdbeSerialPut()
3065 ** sqlite3VdbeSerialGet()
3066 **
3067 ** encapsulate the code that serializes values for storage in SQLite
3068 ** data and index records. Each serialized value consists of a
3069 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3070 ** integer, stored as a varint.
3071 **
3072 ** In an SQLite index record, the serial type is stored directly before
3073 ** the blob of data that it corresponds to. In a table record, all serial
3074 ** types are stored at the start of the record, and the blobs of data at
3075 ** the end. Hence these functions allow the caller to handle the
3076 ** serial-type and data blob separately.
3077 **
3078 ** The following table describes the various storage classes for data:
3079 **
3080 **   serial type        bytes of data      type
3081 **   --------------     ---------------    ---------------
3082 **      0                     0            NULL
3083 **      1                     1            signed integer
3084 **      2                     2            signed integer
3085 **      3                     3            signed integer
3086 **      4                     4            signed integer
3087 **      5                     6            signed integer
3088 **      6                     8            signed integer
3089 **      7                     8            IEEE float
3090 **      8                     0            Integer constant 0
3091 **      9                     0            Integer constant 1
3092 **     10,11                               reserved for expansion
3093 **    N>=12 and even       (N-12)/2        BLOB
3094 **    N>=13 and odd        (N-13)/2        text
3095 **
3096 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
3097 ** of SQLite will not understand those serial types.
3098 */
3099 
3100 /*
3101 ** Return the serial-type for the value stored in pMem.
3102 */
3103 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3104   int flags = pMem->flags;
3105   u32 n;
3106 
3107   assert( pLen!=0 );
3108   if( flags&MEM_Null ){
3109     *pLen = 0;
3110     return 0;
3111   }
3112   if( flags&MEM_Int ){
3113     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3114 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3115     i64 i = pMem->u.i;
3116     u64 u;
3117     if( i<0 ){
3118       u = ~i;
3119     }else{
3120       u = i;
3121     }
3122     if( u<=127 ){
3123       if( (i&1)==i && file_format>=4 ){
3124         *pLen = 0;
3125         return 8+(u32)u;
3126       }else{
3127         *pLen = 1;
3128         return 1;
3129       }
3130     }
3131     if( u<=32767 ){ *pLen = 2; return 2; }
3132     if( u<=8388607 ){ *pLen = 3; return 3; }
3133     if( u<=2147483647 ){ *pLen = 4; return 4; }
3134     if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3135     *pLen = 8;
3136     return 6;
3137   }
3138   if( flags&MEM_Real ){
3139     *pLen = 8;
3140     return 7;
3141   }
3142   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3143   assert( pMem->n>=0 );
3144   n = (u32)pMem->n;
3145   if( flags & MEM_Zero ){
3146     n += pMem->u.nZero;
3147   }
3148   *pLen = n;
3149   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3150 }
3151 
3152 /*
3153 ** The sizes for serial types less than 128
3154 */
3155 static const u8 sqlite3SmallTypeSizes[] = {
3156         /*  0   1   2   3   4   5   6   7   8   9 */
3157 /*   0 */   0,  1,  2,  3,  4,  6,  8,  8,  0,  0,
3158 /*  10 */   0,  0,  0,  0,  1,  1,  2,  2,  3,  3,
3159 /*  20 */   4,  4,  5,  5,  6,  6,  7,  7,  8,  8,
3160 /*  30 */   9,  9, 10, 10, 11, 11, 12, 12, 13, 13,
3161 /*  40 */  14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3162 /*  50 */  19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3163 /*  60 */  24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3164 /*  70 */  29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3165 /*  80 */  34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3166 /*  90 */  39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3167 /* 100 */  44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3168 /* 110 */  49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3169 /* 120 */  54, 54, 55, 55, 56, 56, 57, 57
3170 };
3171 
3172 /*
3173 ** Return the length of the data corresponding to the supplied serial-type.
3174 */
3175 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3176   if( serial_type>=128 ){
3177     return (serial_type-12)/2;
3178   }else{
3179     assert( serial_type<12
3180             || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3181     return sqlite3SmallTypeSizes[serial_type];
3182   }
3183 }
3184 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3185   assert( serial_type<128 );
3186   return sqlite3SmallTypeSizes[serial_type];
3187 }
3188 
3189 /*
3190 ** If we are on an architecture with mixed-endian floating
3191 ** points (ex: ARM7) then swap the lower 4 bytes with the
3192 ** upper 4 bytes.  Return the result.
3193 **
3194 ** For most architectures, this is a no-op.
3195 **
3196 ** (later):  It is reported to me that the mixed-endian problem
3197 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
3198 ** that early versions of GCC stored the two words of a 64-bit
3199 ** float in the wrong order.  And that error has been propagated
3200 ** ever since.  The blame is not necessarily with GCC, though.
3201 ** GCC might have just copying the problem from a prior compiler.
3202 ** I am also told that newer versions of GCC that follow a different
3203 ** ABI get the byte order right.
3204 **
3205 ** Developers using SQLite on an ARM7 should compile and run their
3206 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
3207 ** enabled, some asserts below will ensure that the byte order of
3208 ** floating point values is correct.
3209 **
3210 ** (2007-08-30)  Frank van Vugt has studied this problem closely
3211 ** and has send his findings to the SQLite developers.  Frank
3212 ** writes that some Linux kernels offer floating point hardware
3213 ** emulation that uses only 32-bit mantissas instead of a full
3214 ** 48-bits as required by the IEEE standard.  (This is the
3215 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
3216 ** byte swapping becomes very complicated.  To avoid problems,
3217 ** the necessary byte swapping is carried out using a 64-bit integer
3218 ** rather than a 64-bit float.  Frank assures us that the code here
3219 ** works for him.  We, the developers, have no way to independently
3220 ** verify this, but Frank seems to know what he is talking about
3221 ** so we trust him.
3222 */
3223 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3224 static u64 floatSwap(u64 in){
3225   union {
3226     u64 r;
3227     u32 i[2];
3228   } u;
3229   u32 t;
3230 
3231   u.r = in;
3232   t = u.i[0];
3233   u.i[0] = u.i[1];
3234   u.i[1] = t;
3235   return u.r;
3236 }
3237 # define swapMixedEndianFloat(X)  X = floatSwap(X)
3238 #else
3239 # define swapMixedEndianFloat(X)
3240 #endif
3241 
3242 /*
3243 ** Write the serialized data blob for the value stored in pMem into
3244 ** buf. It is assumed that the caller has allocated sufficient space.
3245 ** Return the number of bytes written.
3246 **
3247 ** nBuf is the amount of space left in buf[].  The caller is responsible
3248 ** for allocating enough space to buf[] to hold the entire field, exclusive
3249 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3250 **
3251 ** Return the number of bytes actually written into buf[].  The number
3252 ** of bytes in the zero-filled tail is included in the return value only
3253 ** if those bytes were zeroed in buf[].
3254 */
3255 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3256   u32 len;
3257 
3258   /* Integer and Real */
3259   if( serial_type<=7 && serial_type>0 ){
3260     u64 v;
3261     u32 i;
3262     if( serial_type==7 ){
3263       assert( sizeof(v)==sizeof(pMem->u.r) );
3264       memcpy(&v, &pMem->u.r, sizeof(v));
3265       swapMixedEndianFloat(v);
3266     }else{
3267       v = pMem->u.i;
3268     }
3269     len = i = sqlite3SmallTypeSizes[serial_type];
3270     assert( i>0 );
3271     do{
3272       buf[--i] = (u8)(v&0xFF);
3273       v >>= 8;
3274     }while( i );
3275     return len;
3276   }
3277 
3278   /* String or blob */
3279   if( serial_type>=12 ){
3280     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3281              == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3282     len = pMem->n;
3283     if( len>0 ) memcpy(buf, pMem->z, len);
3284     return len;
3285   }
3286 
3287   /* NULL or constants 0 or 1 */
3288   return 0;
3289 }
3290 
3291 /* Input "x" is a sequence of unsigned characters that represent a
3292 ** big-endian integer.  Return the equivalent native integer
3293 */
3294 #define ONE_BYTE_INT(x)    ((i8)(x)[0])
3295 #define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
3296 #define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3297 #define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3298 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3299 
3300 /*
3301 ** Deserialize the data blob pointed to by buf as serial type serial_type
3302 ** and store the result in pMem.  Return the number of bytes read.
3303 **
3304 ** This function is implemented as two separate routines for performance.
3305 ** The few cases that require local variables are broken out into a separate
3306 ** routine so that in most cases the overhead of moving the stack pointer
3307 ** is avoided.
3308 */
3309 static u32 SQLITE_NOINLINE serialGet(
3310   const unsigned char *buf,     /* Buffer to deserialize from */
3311   u32 serial_type,              /* Serial type to deserialize */
3312   Mem *pMem                     /* Memory cell to write value into */
3313 ){
3314   u64 x = FOUR_BYTE_UINT(buf);
3315   u32 y = FOUR_BYTE_UINT(buf+4);
3316   x = (x<<32) + y;
3317   if( serial_type==6 ){
3318     /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3319     ** twos-complement integer. */
3320     pMem->u.i = *(i64*)&x;
3321     pMem->flags = MEM_Int;
3322     testcase( pMem->u.i<0 );
3323   }else{
3324     /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3325     ** floating point number. */
3326 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3327     /* Verify that integers and floating point values use the same
3328     ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3329     ** defined that 64-bit floating point values really are mixed
3330     ** endian.
3331     */
3332     static const u64 t1 = ((u64)0x3ff00000)<<32;
3333     static const double r1 = 1.0;
3334     u64 t2 = t1;
3335     swapMixedEndianFloat(t2);
3336     assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3337 #endif
3338     assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3339     swapMixedEndianFloat(x);
3340     memcpy(&pMem->u.r, &x, sizeof(x));
3341     pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
3342   }
3343   return 8;
3344 }
3345 u32 sqlite3VdbeSerialGet(
3346   const unsigned char *buf,     /* Buffer to deserialize from */
3347   u32 serial_type,              /* Serial type to deserialize */
3348   Mem *pMem                     /* Memory cell to write value into */
3349 ){
3350   switch( serial_type ){
3351     case 10:   /* Reserved for future use */
3352     case 11:   /* Reserved for future use */
3353     case 0: {  /* Null */
3354       /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3355       pMem->flags = MEM_Null;
3356       break;
3357     }
3358     case 1: {
3359       /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3360       ** integer. */
3361       pMem->u.i = ONE_BYTE_INT(buf);
3362       pMem->flags = MEM_Int;
3363       testcase( pMem->u.i<0 );
3364       return 1;
3365     }
3366     case 2: { /* 2-byte signed integer */
3367       /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3368       ** twos-complement integer. */
3369       pMem->u.i = TWO_BYTE_INT(buf);
3370       pMem->flags = MEM_Int;
3371       testcase( pMem->u.i<0 );
3372       return 2;
3373     }
3374     case 3: { /* 3-byte signed integer */
3375       /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3376       ** twos-complement integer. */
3377       pMem->u.i = THREE_BYTE_INT(buf);
3378       pMem->flags = MEM_Int;
3379       testcase( pMem->u.i<0 );
3380       return 3;
3381     }
3382     case 4: { /* 4-byte signed integer */
3383       /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3384       ** twos-complement integer. */
3385       pMem->u.i = FOUR_BYTE_INT(buf);
3386 #ifdef __HP_cc
3387       /* Work around a sign-extension bug in the HP compiler for HP/UX */
3388       if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3389 #endif
3390       pMem->flags = MEM_Int;
3391       testcase( pMem->u.i<0 );
3392       return 4;
3393     }
3394     case 5: { /* 6-byte signed integer */
3395       /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3396       ** twos-complement integer. */
3397       pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3398       pMem->flags = MEM_Int;
3399       testcase( pMem->u.i<0 );
3400       return 6;
3401     }
3402     case 6:   /* 8-byte signed integer */
3403     case 7: { /* IEEE floating point */
3404       /* These use local variables, so do them in a separate routine
3405       ** to avoid having to move the frame pointer in the common case */
3406       return serialGet(buf,serial_type,pMem);
3407     }
3408     case 8:    /* Integer 0 */
3409     case 9: {  /* Integer 1 */
3410       /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3411       /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3412       pMem->u.i = serial_type-8;
3413       pMem->flags = MEM_Int;
3414       return 0;
3415     }
3416     default: {
3417       /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3418       ** length.
3419       ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3420       ** (N-13)/2 bytes in length. */
3421       static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3422       pMem->z = (char *)buf;
3423       pMem->n = (serial_type-12)/2;
3424       pMem->flags = aFlag[serial_type&1];
3425       return pMem->n;
3426     }
3427   }
3428   return 0;
3429 }
3430 /*
3431 ** This routine is used to allocate sufficient space for an UnpackedRecord
3432 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3433 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3434 **
3435 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3436 ** the unaligned buffer passed via the second and third arguments (presumably
3437 ** stack space). If the former, then *ppFree is set to a pointer that should
3438 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3439 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3440 ** before returning.
3441 **
3442 ** If an OOM error occurs, NULL is returned.
3443 */
3444 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3445   KeyInfo *pKeyInfo,              /* Description of the record */
3446   char *pSpace,                   /* Unaligned space available */
3447   int szSpace,                    /* Size of pSpace[] in bytes */
3448   char **ppFree                   /* OUT: Caller should free this pointer */
3449 ){
3450   UnpackedRecord *p;              /* Unpacked record to return */
3451   int nOff;                       /* Increment pSpace by nOff to align it */
3452   int nByte;                      /* Number of bytes required for *p */
3453 
3454   /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
3455   ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
3456   ** it by.  If pSpace is already 8-byte aligned, nOff should be zero.
3457   */
3458   nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
3459   nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
3460   if( nByte>szSpace+nOff ){
3461     p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3462     *ppFree = (char *)p;
3463     if( !p ) return 0;
3464   }else{
3465     p = (UnpackedRecord*)&pSpace[nOff];
3466     *ppFree = 0;
3467   }
3468 
3469   p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3470   assert( pKeyInfo->aSortOrder!=0 );
3471   p->pKeyInfo = pKeyInfo;
3472   p->nField = pKeyInfo->nField + 1;
3473   return p;
3474 }
3475 
3476 /*
3477 ** Given the nKey-byte encoding of a record in pKey[], populate the
3478 ** UnpackedRecord structure indicated by the fourth argument with the
3479 ** contents of the decoded record.
3480 */
3481 void sqlite3VdbeRecordUnpack(
3482   KeyInfo *pKeyInfo,     /* Information about the record format */
3483   int nKey,              /* Size of the binary record */
3484   const void *pKey,      /* The binary record */
3485   UnpackedRecord *p      /* Populate this structure before returning. */
3486 ){
3487   const unsigned char *aKey = (const unsigned char *)pKey;
3488   int d;
3489   u32 idx;                        /* Offset in aKey[] to read from */
3490   u16 u;                          /* Unsigned loop counter */
3491   u32 szHdr;
3492   Mem *pMem = p->aMem;
3493 
3494   p->default_rc = 0;
3495   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
3496   idx = getVarint32(aKey, szHdr);
3497   d = szHdr;
3498   u = 0;
3499   while( idx<szHdr && d<=nKey ){
3500     u32 serial_type;
3501 
3502     idx += getVarint32(&aKey[idx], serial_type);
3503     pMem->enc = pKeyInfo->enc;
3504     pMem->db = pKeyInfo->db;
3505     /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
3506     pMem->szMalloc = 0;
3507     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
3508     pMem++;
3509     if( (++u)>=p->nField ) break;
3510   }
3511   assert( u<=pKeyInfo->nField + 1 );
3512   p->nField = u;
3513 }
3514 
3515 #if SQLITE_DEBUG
3516 /*
3517 ** This function compares two index or table record keys in the same way
3518 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3519 ** this function deserializes and compares values using the
3520 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3521 ** in assert() statements to ensure that the optimized code in
3522 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
3523 **
3524 ** Return true if the result of comparison is equivalent to desiredResult.
3525 ** Return false if there is a disagreement.
3526 */
3527 static int vdbeRecordCompareDebug(
3528   int nKey1, const void *pKey1, /* Left key */
3529   const UnpackedRecord *pPKey2, /* Right key */
3530   int desiredResult             /* Correct answer */
3531 ){
3532   u32 d1;            /* Offset into aKey[] of next data element */
3533   u32 idx1;          /* Offset into aKey[] of next header element */
3534   u32 szHdr1;        /* Number of bytes in header */
3535   int i = 0;
3536   int rc = 0;
3537   const unsigned char *aKey1 = (const unsigned char *)pKey1;
3538   KeyInfo *pKeyInfo;
3539   Mem mem1;
3540 
3541   pKeyInfo = pPKey2->pKeyInfo;
3542   if( pKeyInfo->db==0 ) return 1;
3543   mem1.enc = pKeyInfo->enc;
3544   mem1.db = pKeyInfo->db;
3545   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
3546   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3547 
3548   /* Compilers may complain that mem1.u.i is potentially uninitialized.
3549   ** We could initialize it, as shown here, to silence those complaints.
3550   ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
3551   ** the unnecessary initialization has a measurable negative performance
3552   ** impact, since this routine is a very high runner.  And so, we choose
3553   ** to ignore the compiler warnings and leave this variable uninitialized.
3554   */
3555   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
3556 
3557   idx1 = getVarint32(aKey1, szHdr1);
3558   if( szHdr1>98307 ) return SQLITE_CORRUPT;
3559   d1 = szHdr1;
3560   assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
3561   assert( pKeyInfo->aSortOrder!=0 );
3562   assert( pKeyInfo->nField>0 );
3563   assert( idx1<=szHdr1 || CORRUPT_DB );
3564   do{
3565     u32 serial_type1;
3566 
3567     /* Read the serial types for the next element in each key. */
3568     idx1 += getVarint32( aKey1+idx1, serial_type1 );
3569 
3570     /* Verify that there is enough key space remaining to avoid
3571     ** a buffer overread.  The "d1+serial_type1+2" subexpression will
3572     ** always be greater than or equal to the amount of required key space.
3573     ** Use that approximation to avoid the more expensive call to
3574     ** sqlite3VdbeSerialTypeLen() in the common case.
3575     */
3576     if( d1+serial_type1+2>(u32)nKey1
3577      && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3578     ){
3579       break;
3580     }
3581 
3582     /* Extract the values to be compared.
3583     */
3584     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3585 
3586     /* Do the comparison
3587     */
3588     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
3589     if( rc!=0 ){
3590       assert( mem1.szMalloc==0 );  /* See comment below */
3591       if( pKeyInfo->aSortOrder[i] ){
3592         rc = -rc;  /* Invert the result for DESC sort order. */
3593       }
3594       goto debugCompareEnd;
3595     }
3596     i++;
3597   }while( idx1<szHdr1 && i<pPKey2->nField );
3598 
3599   /* No memory allocation is ever used on mem1.  Prove this using
3600   ** the following assert().  If the assert() fails, it indicates a
3601   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
3602   */
3603   assert( mem1.szMalloc==0 );
3604 
3605   /* rc==0 here means that one of the keys ran out of fields and
3606   ** all the fields up to that point were equal. Return the default_rc
3607   ** value.  */
3608   rc = pPKey2->default_rc;
3609 
3610 debugCompareEnd:
3611   if( desiredResult==0 && rc==0 ) return 1;
3612   if( desiredResult<0 && rc<0 ) return 1;
3613   if( desiredResult>0 && rc>0 ) return 1;
3614   if( CORRUPT_DB ) return 1;
3615   if( pKeyInfo->db->mallocFailed ) return 1;
3616   return 0;
3617 }
3618 #endif
3619 
3620 #if SQLITE_DEBUG
3621 /*
3622 ** Count the number of fields (a.k.a. columns) in the record given by
3623 ** pKey,nKey.  The verify that this count is less than or equal to the
3624 ** limit given by pKeyInfo->nField + pKeyInfo->nXField.
3625 **
3626 ** If this constraint is not satisfied, it means that the high-speed
3627 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3628 ** not work correctly.  If this assert() ever fires, it probably means
3629 ** that the KeyInfo.nField or KeyInfo.nXField values were computed
3630 ** incorrectly.
3631 */
3632 static void vdbeAssertFieldCountWithinLimits(
3633   int nKey, const void *pKey,   /* The record to verify */
3634   const KeyInfo *pKeyInfo       /* Compare size with this KeyInfo */
3635 ){
3636   int nField = 0;
3637   u32 szHdr;
3638   u32 idx;
3639   u32 notUsed;
3640   const unsigned char *aKey = (const unsigned char*)pKey;
3641 
3642   if( CORRUPT_DB ) return;
3643   idx = getVarint32(aKey, szHdr);
3644   assert( nKey>=0 );
3645   assert( szHdr<=(u32)nKey );
3646   while( idx<szHdr ){
3647     idx += getVarint32(aKey+idx, notUsed);
3648     nField++;
3649   }
3650   assert( nField <= pKeyInfo->nField+pKeyInfo->nXField );
3651 }
3652 #else
3653 # define vdbeAssertFieldCountWithinLimits(A,B,C)
3654 #endif
3655 
3656 /*
3657 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
3658 ** using the collation sequence pColl. As usual, return a negative , zero
3659 ** or positive value if *pMem1 is less than, equal to or greater than
3660 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3661 */
3662 static int vdbeCompareMemString(
3663   const Mem *pMem1,
3664   const Mem *pMem2,
3665   const CollSeq *pColl,
3666   u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */
3667 ){
3668   if( pMem1->enc==pColl->enc ){
3669     /* The strings are already in the correct encoding.  Call the
3670      ** comparison function directly */
3671     return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3672   }else{
3673     int rc;
3674     const void *v1, *v2;
3675     int n1, n2;
3676     Mem c1;
3677     Mem c2;
3678     sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3679     sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
3680     sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3681     sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3682     v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3683     n1 = v1==0 ? 0 : c1.n;
3684     v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3685     n2 = v2==0 ? 0 : c2.n;
3686     rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
3687     if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
3688     sqlite3VdbeMemRelease(&c1);
3689     sqlite3VdbeMemRelease(&c2);
3690     return rc;
3691   }
3692 }
3693 
3694 /*
3695 ** Compare two blobs.  Return negative, zero, or positive if the first
3696 ** is less than, equal to, or greater than the second, respectively.
3697 ** If one blob is a prefix of the other, then the shorter is the lessor.
3698 */
3699 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3700   int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
3701   if( c ) return c;
3702   return pB1->n - pB2->n;
3703 }
3704 
3705 /*
3706 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
3707 ** number.  Return negative, zero, or positive if the first (i64) is less than,
3708 ** equal to, or greater than the second (double).
3709 */
3710 static int sqlite3IntFloatCompare(i64 i, double r){
3711   if( sizeof(LONGDOUBLE_TYPE)>8 ){
3712     LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
3713     if( x<r ) return -1;
3714     if( x>r ) return +1;
3715     return 0;
3716   }else{
3717     i64 y;
3718     double s;
3719     if( r<-9223372036854775808.0 ) return +1;
3720     if( r>9223372036854775807.0 ) return -1;
3721     y = (i64)r;
3722     if( i<y ) return -1;
3723     if( i>y ){
3724       if( y==SMALLEST_INT64 && r>0.0 ) return -1;
3725       return +1;
3726     }
3727     s = (double)i;
3728     if( s<r ) return -1;
3729     if( s>r ) return +1;
3730     return 0;
3731   }
3732 }
3733 
3734 /*
3735 ** Compare the values contained by the two memory cells, returning
3736 ** negative, zero or positive if pMem1 is less than, equal to, or greater
3737 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3738 ** and reals) sorted numerically, followed by text ordered by the collating
3739 ** sequence pColl and finally blob's ordered by memcmp().
3740 **
3741 ** Two NULL values are considered equal by this function.
3742 */
3743 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
3744   int f1, f2;
3745   int combined_flags;
3746 
3747   f1 = pMem1->flags;
3748   f2 = pMem2->flags;
3749   combined_flags = f1|f2;
3750   assert( (combined_flags & MEM_RowSet)==0 );
3751 
3752   /* If one value is NULL, it is less than the other. If both values
3753   ** are NULL, return 0.
3754   */
3755   if( combined_flags&MEM_Null ){
3756     return (f2&MEM_Null) - (f1&MEM_Null);
3757   }
3758 
3759   /* At least one of the two values is a number
3760   */
3761   if( combined_flags&(MEM_Int|MEM_Real) ){
3762     if( (f1 & f2 & MEM_Int)!=0 ){
3763       if( pMem1->u.i < pMem2->u.i ) return -1;
3764       if( pMem1->u.i > pMem2->u.i ) return +1;
3765       return 0;
3766     }
3767     if( (f1 & f2 & MEM_Real)!=0 ){
3768       if( pMem1->u.r < pMem2->u.r ) return -1;
3769       if( pMem1->u.r > pMem2->u.r ) return +1;
3770       return 0;
3771     }
3772     if( (f1&MEM_Int)!=0 ){
3773       if( (f2&MEM_Real)!=0 ){
3774         return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
3775       }else{
3776         return -1;
3777       }
3778     }
3779     if( (f1&MEM_Real)!=0 ){
3780       if( (f2&MEM_Int)!=0 ){
3781         return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
3782       }else{
3783         return -1;
3784       }
3785     }
3786     return +1;
3787   }
3788 
3789   /* If one value is a string and the other is a blob, the string is less.
3790   ** If both are strings, compare using the collating functions.
3791   */
3792   if( combined_flags&MEM_Str ){
3793     if( (f1 & MEM_Str)==0 ){
3794       return 1;
3795     }
3796     if( (f2 & MEM_Str)==0 ){
3797       return -1;
3798     }
3799 
3800     assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
3801     assert( pMem1->enc==SQLITE_UTF8 ||
3802             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3803 
3804     /* The collation sequence must be defined at this point, even if
3805     ** the user deletes the collation sequence after the vdbe program is
3806     ** compiled (this was not always the case).
3807     */
3808     assert( !pColl || pColl->xCmp );
3809 
3810     if( pColl ){
3811       return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
3812     }
3813     /* If a NULL pointer was passed as the collate function, fall through
3814     ** to the blob case and use memcmp().  */
3815   }
3816 
3817   /* Both values must be blobs.  Compare using memcmp().  */
3818   return sqlite3BlobCompare(pMem1, pMem2);
3819 }
3820 
3821 
3822 /*
3823 ** The first argument passed to this function is a serial-type that
3824 ** corresponds to an integer - all values between 1 and 9 inclusive
3825 ** except 7. The second points to a buffer containing an integer value
3826 ** serialized according to serial_type. This function deserializes
3827 ** and returns the value.
3828 */
3829 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
3830   u32 y;
3831   assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
3832   switch( serial_type ){
3833     case 0:
3834     case 1:
3835       testcase( aKey[0]&0x80 );
3836       return ONE_BYTE_INT(aKey);
3837     case 2:
3838       testcase( aKey[0]&0x80 );
3839       return TWO_BYTE_INT(aKey);
3840     case 3:
3841       testcase( aKey[0]&0x80 );
3842       return THREE_BYTE_INT(aKey);
3843     case 4: {
3844       testcase( aKey[0]&0x80 );
3845       y = FOUR_BYTE_UINT(aKey);
3846       return (i64)*(int*)&y;
3847     }
3848     case 5: {
3849       testcase( aKey[0]&0x80 );
3850       return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
3851     }
3852     case 6: {
3853       u64 x = FOUR_BYTE_UINT(aKey);
3854       testcase( aKey[0]&0x80 );
3855       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3856       return (i64)*(i64*)&x;
3857     }
3858   }
3859 
3860   return (serial_type - 8);
3861 }
3862 
3863 /*
3864 ** This function compares the two table rows or index records
3865 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
3866 ** or positive integer if key1 is less than, equal to or
3867 ** greater than key2.  The {nKey1, pKey1} key must be a blob
3868 ** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2
3869 ** key must be a parsed key such as obtained from
3870 ** sqlite3VdbeParseRecord.
3871 **
3872 ** If argument bSkip is non-zero, it is assumed that the caller has already
3873 ** determined that the first fields of the keys are equal.
3874 **
3875 ** Key1 and Key2 do not have to contain the same number of fields. If all
3876 ** fields that appear in both keys are equal, then pPKey2->default_rc is
3877 ** returned.
3878 **
3879 ** If database corruption is discovered, set pPKey2->errCode to
3880 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
3881 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
3882 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
3883 */
3884 int sqlite3VdbeRecordCompareWithSkip(
3885   int nKey1, const void *pKey1,   /* Left key */
3886   UnpackedRecord *pPKey2,         /* Right key */
3887   int bSkip                       /* If true, skip the first field */
3888 ){
3889   u32 d1;                         /* Offset into aKey[] of next data element */
3890   int i;                          /* Index of next field to compare */
3891   u32 szHdr1;                     /* Size of record header in bytes */
3892   u32 idx1;                       /* Offset of first type in header */
3893   int rc = 0;                     /* Return value */
3894   Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
3895   KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
3896   const unsigned char *aKey1 = (const unsigned char *)pKey1;
3897   Mem mem1;
3898 
3899   /* If bSkip is true, then the caller has already determined that the first
3900   ** two elements in the keys are equal. Fix the various stack variables so
3901   ** that this routine begins comparing at the second field. */
3902   if( bSkip ){
3903     u32 s1;
3904     idx1 = 1 + getVarint32(&aKey1[1], s1);
3905     szHdr1 = aKey1[0];
3906     d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
3907     i = 1;
3908     pRhs++;
3909   }else{
3910     idx1 = getVarint32(aKey1, szHdr1);
3911     d1 = szHdr1;
3912     if( d1>(unsigned)nKey1 ){
3913       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3914       return 0;  /* Corruption */
3915     }
3916     i = 0;
3917   }
3918 
3919   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3920   assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
3921        || CORRUPT_DB );
3922   assert( pPKey2->pKeyInfo->aSortOrder!=0 );
3923   assert( pPKey2->pKeyInfo->nField>0 );
3924   assert( idx1<=szHdr1 || CORRUPT_DB );
3925   do{
3926     u32 serial_type;
3927 
3928     /* RHS is an integer */
3929     if( pRhs->flags & MEM_Int ){
3930       serial_type = aKey1[idx1];
3931       testcase( serial_type==12 );
3932       if( serial_type>=10 ){
3933         rc = +1;
3934       }else if( serial_type==0 ){
3935         rc = -1;
3936       }else if( serial_type==7 ){
3937         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3938         rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
3939       }else{
3940         i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
3941         i64 rhs = pRhs->u.i;
3942         if( lhs<rhs ){
3943           rc = -1;
3944         }else if( lhs>rhs ){
3945           rc = +1;
3946         }
3947       }
3948     }
3949 
3950     /* RHS is real */
3951     else if( pRhs->flags & MEM_Real ){
3952       serial_type = aKey1[idx1];
3953       if( serial_type>=10 ){
3954         /* Serial types 12 or greater are strings and blobs (greater than
3955         ** numbers). Types 10 and 11 are currently "reserved for future
3956         ** use", so it doesn't really matter what the results of comparing
3957         ** them to numberic values are.  */
3958         rc = +1;
3959       }else if( serial_type==0 ){
3960         rc = -1;
3961       }else{
3962         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3963         if( serial_type==7 ){
3964           if( mem1.u.r<pRhs->u.r ){
3965             rc = -1;
3966           }else if( mem1.u.r>pRhs->u.r ){
3967             rc = +1;
3968           }
3969         }else{
3970           rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
3971         }
3972       }
3973     }
3974 
3975     /* RHS is a string */
3976     else if( pRhs->flags & MEM_Str ){
3977       getVarint32(&aKey1[idx1], serial_type);
3978       testcase( serial_type==12 );
3979       if( serial_type<12 ){
3980         rc = -1;
3981       }else if( !(serial_type & 0x01) ){
3982         rc = +1;
3983       }else{
3984         mem1.n = (serial_type - 12) / 2;
3985         testcase( (d1+mem1.n)==(unsigned)nKey1 );
3986         testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
3987         if( (d1+mem1.n) > (unsigned)nKey1 ){
3988           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3989           return 0;                /* Corruption */
3990         }else if( pKeyInfo->aColl[i] ){
3991           mem1.enc = pKeyInfo->enc;
3992           mem1.db = pKeyInfo->db;
3993           mem1.flags = MEM_Str;
3994           mem1.z = (char*)&aKey1[d1];
3995           rc = vdbeCompareMemString(
3996               &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
3997           );
3998         }else{
3999           int nCmp = MIN(mem1.n, pRhs->n);
4000           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4001           if( rc==0 ) rc = mem1.n - pRhs->n;
4002         }
4003       }
4004     }
4005 
4006     /* RHS is a blob */
4007     else if( pRhs->flags & MEM_Blob ){
4008       getVarint32(&aKey1[idx1], serial_type);
4009       testcase( serial_type==12 );
4010       if( serial_type<12 || (serial_type & 0x01) ){
4011         rc = -1;
4012       }else{
4013         int nStr = (serial_type - 12) / 2;
4014         testcase( (d1+nStr)==(unsigned)nKey1 );
4015         testcase( (d1+nStr+1)==(unsigned)nKey1 );
4016         if( (d1+nStr) > (unsigned)nKey1 ){
4017           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4018           return 0;                /* Corruption */
4019         }else{
4020           int nCmp = MIN(nStr, pRhs->n);
4021           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4022           if( rc==0 ) rc = nStr - pRhs->n;
4023         }
4024       }
4025     }
4026 
4027     /* RHS is null */
4028     else{
4029       serial_type = aKey1[idx1];
4030       rc = (serial_type!=0);
4031     }
4032 
4033     if( rc!=0 ){
4034       if( pKeyInfo->aSortOrder[i] ){
4035         rc = -rc;
4036       }
4037       assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4038       assert( mem1.szMalloc==0 );  /* See comment below */
4039       return rc;
4040     }
4041 
4042     i++;
4043     pRhs++;
4044     d1 += sqlite3VdbeSerialTypeLen(serial_type);
4045     idx1 += sqlite3VarintLen(serial_type);
4046   }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
4047 
4048   /* No memory allocation is ever used on mem1.  Prove this using
4049   ** the following assert().  If the assert() fails, it indicates a
4050   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
4051   assert( mem1.szMalloc==0 );
4052 
4053   /* rc==0 here means that one or both of the keys ran out of fields and
4054   ** all the fields up to that point were equal. Return the default_rc
4055   ** value.  */
4056   assert( CORRUPT_DB
4057        || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4058        || pKeyInfo->db->mallocFailed
4059   );
4060   pPKey2->eqSeen = 1;
4061   return pPKey2->default_rc;
4062 }
4063 int sqlite3VdbeRecordCompare(
4064   int nKey1, const void *pKey1,   /* Left key */
4065   UnpackedRecord *pPKey2          /* Right key */
4066 ){
4067   return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4068 }
4069 
4070 
4071 /*
4072 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4073 ** that (a) the first field of pPKey2 is an integer, and (b) the
4074 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4075 ** byte (i.e. is less than 128).
4076 **
4077 ** To avoid concerns about buffer overreads, this routine is only used
4078 ** on schemas where the maximum valid header size is 63 bytes or less.
4079 */
4080 static int vdbeRecordCompareInt(
4081   int nKey1, const void *pKey1, /* Left key */
4082   UnpackedRecord *pPKey2        /* Right key */
4083 ){
4084   const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4085   int serial_type = ((const u8*)pKey1)[1];
4086   int res;
4087   u32 y;
4088   u64 x;
4089   i64 v = pPKey2->aMem[0].u.i;
4090   i64 lhs;
4091 
4092   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4093   assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4094   switch( serial_type ){
4095     case 1: { /* 1-byte signed integer */
4096       lhs = ONE_BYTE_INT(aKey);
4097       testcase( lhs<0 );
4098       break;
4099     }
4100     case 2: { /* 2-byte signed integer */
4101       lhs = TWO_BYTE_INT(aKey);
4102       testcase( lhs<0 );
4103       break;
4104     }
4105     case 3: { /* 3-byte signed integer */
4106       lhs = THREE_BYTE_INT(aKey);
4107       testcase( lhs<0 );
4108       break;
4109     }
4110     case 4: { /* 4-byte signed integer */
4111       y = FOUR_BYTE_UINT(aKey);
4112       lhs = (i64)*(int*)&y;
4113       testcase( lhs<0 );
4114       break;
4115     }
4116     case 5: { /* 6-byte signed integer */
4117       lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4118       testcase( lhs<0 );
4119       break;
4120     }
4121     case 6: { /* 8-byte signed integer */
4122       x = FOUR_BYTE_UINT(aKey);
4123       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4124       lhs = *(i64*)&x;
4125       testcase( lhs<0 );
4126       break;
4127     }
4128     case 8:
4129       lhs = 0;
4130       break;
4131     case 9:
4132       lhs = 1;
4133       break;
4134 
4135     /* This case could be removed without changing the results of running
4136     ** this code. Including it causes gcc to generate a faster switch
4137     ** statement (since the range of switch targets now starts at zero and
4138     ** is contiguous) but does not cause any duplicate code to be generated
4139     ** (as gcc is clever enough to combine the two like cases). Other
4140     ** compilers might be similar.  */
4141     case 0: case 7:
4142       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4143 
4144     default:
4145       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4146   }
4147 
4148   if( v>lhs ){
4149     res = pPKey2->r1;
4150   }else if( v<lhs ){
4151     res = pPKey2->r2;
4152   }else if( pPKey2->nField>1 ){
4153     /* The first fields of the two keys are equal. Compare the trailing
4154     ** fields.  */
4155     res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4156   }else{
4157     /* The first fields of the two keys are equal and there are no trailing
4158     ** fields. Return pPKey2->default_rc in this case. */
4159     res = pPKey2->default_rc;
4160     pPKey2->eqSeen = 1;
4161   }
4162 
4163   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4164   return res;
4165 }
4166 
4167 /*
4168 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4169 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4170 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4171 ** at the start of (pKey1/nKey1) fits in a single byte.
4172 */
4173 static int vdbeRecordCompareString(
4174   int nKey1, const void *pKey1, /* Left key */
4175   UnpackedRecord *pPKey2        /* Right key */
4176 ){
4177   const u8 *aKey1 = (const u8*)pKey1;
4178   int serial_type;
4179   int res;
4180 
4181   assert( pPKey2->aMem[0].flags & MEM_Str );
4182   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4183   getVarint32(&aKey1[1], serial_type);
4184   if( serial_type<12 ){
4185     res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
4186   }else if( !(serial_type & 0x01) ){
4187     res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
4188   }else{
4189     int nCmp;
4190     int nStr;
4191     int szHdr = aKey1[0];
4192 
4193     nStr = (serial_type-12) / 2;
4194     if( (szHdr + nStr) > nKey1 ){
4195       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4196       return 0;    /* Corruption */
4197     }
4198     nCmp = MIN( pPKey2->aMem[0].n, nStr );
4199     res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4200 
4201     if( res==0 ){
4202       res = nStr - pPKey2->aMem[0].n;
4203       if( res==0 ){
4204         if( pPKey2->nField>1 ){
4205           res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4206         }else{
4207           res = pPKey2->default_rc;
4208           pPKey2->eqSeen = 1;
4209         }
4210       }else if( res>0 ){
4211         res = pPKey2->r2;
4212       }else{
4213         res = pPKey2->r1;
4214       }
4215     }else if( res>0 ){
4216       res = pPKey2->r2;
4217     }else{
4218       res = pPKey2->r1;
4219     }
4220   }
4221 
4222   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4223        || CORRUPT_DB
4224        || pPKey2->pKeyInfo->db->mallocFailed
4225   );
4226   return res;
4227 }
4228 
4229 /*
4230 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4231 ** suitable for comparing serialized records to the unpacked record passed
4232 ** as the only argument.
4233 */
4234 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4235   /* varintRecordCompareInt() and varintRecordCompareString() both assume
4236   ** that the size-of-header varint that occurs at the start of each record
4237   ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4238   ** also assumes that it is safe to overread a buffer by at least the
4239   ** maximum possible legal header size plus 8 bytes. Because there is
4240   ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4241   ** buffer passed to varintRecordCompareInt() this makes it convenient to
4242   ** limit the size of the header to 64 bytes in cases where the first field
4243   ** is an integer.
4244   **
4245   ** The easiest way to enforce this limit is to consider only records with
4246   ** 13 fields or less. If the first field is an integer, the maximum legal
4247   ** header size is (12*5 + 1 + 1) bytes.  */
4248   if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
4249     int flags = p->aMem[0].flags;
4250     if( p->pKeyInfo->aSortOrder[0] ){
4251       p->r1 = 1;
4252       p->r2 = -1;
4253     }else{
4254       p->r1 = -1;
4255       p->r2 = 1;
4256     }
4257     if( (flags & MEM_Int) ){
4258       return vdbeRecordCompareInt;
4259     }
4260     testcase( flags & MEM_Real );
4261     testcase( flags & MEM_Null );
4262     testcase( flags & MEM_Blob );
4263     if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
4264       assert( flags & MEM_Str );
4265       return vdbeRecordCompareString;
4266     }
4267   }
4268 
4269   return sqlite3VdbeRecordCompare;
4270 }
4271 
4272 /*
4273 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4274 ** Read the rowid (the last field in the record) and store it in *rowid.
4275 ** Return SQLITE_OK if everything works, or an error code otherwise.
4276 **
4277 ** pCur might be pointing to text obtained from a corrupt database file.
4278 ** So the content cannot be trusted.  Do appropriate checks on the content.
4279 */
4280 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4281   i64 nCellKey = 0;
4282   int rc;
4283   u32 szHdr;        /* Size of the header */
4284   u32 typeRowid;    /* Serial type of the rowid */
4285   u32 lenRowid;     /* Size of the rowid */
4286   Mem m, v;
4287 
4288   /* Get the size of the index entry.  Only indices entries of less
4289   ** than 2GiB are support - anything large must be database corruption.
4290   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4291   ** this code can safely assume that nCellKey is 32-bits
4292   */
4293   assert( sqlite3BtreeCursorIsValid(pCur) );
4294   VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
4295   assert( rc==SQLITE_OK );     /* pCur is always valid so KeySize cannot fail */
4296   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4297 
4298   /* Read in the complete content of the index entry */
4299   sqlite3VdbeMemInit(&m, db, 0);
4300   rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
4301   if( rc ){
4302     return rc;
4303   }
4304 
4305   /* The index entry must begin with a header size */
4306   (void)getVarint32((u8*)m.z, szHdr);
4307   testcase( szHdr==3 );
4308   testcase( szHdr==m.n );
4309   if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
4310     goto idx_rowid_corruption;
4311   }
4312 
4313   /* The last field of the index should be an integer - the ROWID.
4314   ** Verify that the last entry really is an integer. */
4315   (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
4316   testcase( typeRowid==1 );
4317   testcase( typeRowid==2 );
4318   testcase( typeRowid==3 );
4319   testcase( typeRowid==4 );
4320   testcase( typeRowid==5 );
4321   testcase( typeRowid==6 );
4322   testcase( typeRowid==8 );
4323   testcase( typeRowid==9 );
4324   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4325     goto idx_rowid_corruption;
4326   }
4327   lenRowid = sqlite3SmallTypeSizes[typeRowid];
4328   testcase( (u32)m.n==szHdr+lenRowid );
4329   if( unlikely((u32)m.n<szHdr+lenRowid) ){
4330     goto idx_rowid_corruption;
4331   }
4332 
4333   /* Fetch the integer off the end of the index record */
4334   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4335   *rowid = v.u.i;
4336   sqlite3VdbeMemRelease(&m);
4337   return SQLITE_OK;
4338 
4339   /* Jump here if database corruption is detected after m has been
4340   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
4341 idx_rowid_corruption:
4342   testcase( m.szMalloc!=0 );
4343   sqlite3VdbeMemRelease(&m);
4344   return SQLITE_CORRUPT_BKPT;
4345 }
4346 
4347 /*
4348 ** Compare the key of the index entry that cursor pC is pointing to against
4349 ** the key string in pUnpacked.  Write into *pRes a number
4350 ** that is negative, zero, or positive if pC is less than, equal to,
4351 ** or greater than pUnpacked.  Return SQLITE_OK on success.
4352 **
4353 ** pUnpacked is either created without a rowid or is truncated so that it
4354 ** omits the rowid at the end.  The rowid at the end of the index entry
4355 ** is ignored as well.  Hence, this routine only compares the prefixes
4356 ** of the keys prior to the final rowid, not the entire key.
4357 */
4358 int sqlite3VdbeIdxKeyCompare(
4359   sqlite3 *db,                     /* Database connection */
4360   VdbeCursor *pC,                  /* The cursor to compare against */
4361   UnpackedRecord *pUnpacked,       /* Unpacked version of key */
4362   int *res                         /* Write the comparison result here */
4363 ){
4364   i64 nCellKey = 0;
4365   int rc;
4366   BtCursor *pCur;
4367   Mem m;
4368 
4369   assert( pC->eCurType==CURTYPE_BTREE );
4370   pCur = pC->uc.pCursor;
4371   assert( sqlite3BtreeCursorIsValid(pCur) );
4372   VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
4373   assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */
4374   /* nCellKey will always be between 0 and 0xffffffff because of the way
4375   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4376   if( nCellKey<=0 || nCellKey>0x7fffffff ){
4377     *res = 0;
4378     return SQLITE_CORRUPT_BKPT;
4379   }
4380   sqlite3VdbeMemInit(&m, db, 0);
4381   rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
4382   if( rc ){
4383     return rc;
4384   }
4385   *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
4386   sqlite3VdbeMemRelease(&m);
4387   return SQLITE_OK;
4388 }
4389 
4390 /*
4391 ** This routine sets the value to be returned by subsequent calls to
4392 ** sqlite3_changes() on the database handle 'db'.
4393 */
4394 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
4395   assert( sqlite3_mutex_held(db->mutex) );
4396   db->nChange = nChange;
4397   db->nTotalChange += nChange;
4398 }
4399 
4400 /*
4401 ** Set a flag in the vdbe to update the change counter when it is finalised
4402 ** or reset.
4403 */
4404 void sqlite3VdbeCountChanges(Vdbe *v){
4405   v->changeCntOn = 1;
4406 }
4407 
4408 /*
4409 ** Mark every prepared statement associated with a database connection
4410 ** as expired.
4411 **
4412 ** An expired statement means that recompilation of the statement is
4413 ** recommend.  Statements expire when things happen that make their
4414 ** programs obsolete.  Removing user-defined functions or collating
4415 ** sequences, or changing an authorization function are the types of
4416 ** things that make prepared statements obsolete.
4417 */
4418 void sqlite3ExpirePreparedStatements(sqlite3 *db){
4419   Vdbe *p;
4420   for(p = db->pVdbe; p; p=p->pNext){
4421     p->expired = 1;
4422   }
4423 }
4424 
4425 /*
4426 ** Return the database associated with the Vdbe.
4427 */
4428 sqlite3 *sqlite3VdbeDb(Vdbe *v){
4429   return v->db;
4430 }
4431 
4432 /*
4433 ** Return a pointer to an sqlite3_value structure containing the value bound
4434 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4435 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4436 ** constants) to the value before returning it.
4437 **
4438 ** The returned value must be freed by the caller using sqlite3ValueFree().
4439 */
4440 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
4441   assert( iVar>0 );
4442   if( v ){
4443     Mem *pMem = &v->aVar[iVar-1];
4444     if( 0==(pMem->flags & MEM_Null) ){
4445       sqlite3_value *pRet = sqlite3ValueNew(v->db);
4446       if( pRet ){
4447         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4448         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
4449       }
4450       return pRet;
4451     }
4452   }
4453   return 0;
4454 }
4455 
4456 /*
4457 ** Configure SQL variable iVar so that binding a new value to it signals
4458 ** to sqlite3_reoptimize() that re-preparing the statement may result
4459 ** in a better query plan.
4460 */
4461 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
4462   assert( iVar>0 );
4463   if( iVar>32 ){
4464     v->expmask = 0xffffffff;
4465   }else{
4466     v->expmask |= ((u32)1 << (iVar-1));
4467   }
4468 }
4469 
4470 #ifndef SQLITE_OMIT_VIRTUALTABLE
4471 /*
4472 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4473 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4474 ** in memory obtained from sqlite3DbMalloc).
4475 */
4476 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4477   if( pVtab->zErrMsg ){
4478     sqlite3 *db = p->db;
4479     sqlite3DbFree(db, p->zErrMsg);
4480     p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4481     sqlite3_free(pVtab->zErrMsg);
4482     pVtab->zErrMsg = 0;
4483   }
4484 }
4485 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4486