1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* 19 ** Create a new virtual database engine. 20 */ 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 22 sqlite3 *db = pParse->db; 23 Vdbe *p; 24 p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); 25 if( p==0 ) return 0; 26 p->db = db; 27 if( db->pVdbe ){ 28 db->pVdbe->pPrev = p; 29 } 30 p->pNext = db->pVdbe; 31 p->pPrev = 0; 32 db->pVdbe = p; 33 p->magic = VDBE_MAGIC_INIT; 34 p->pParse = pParse; 35 assert( pParse->aLabel==0 ); 36 assert( pParse->nLabel==0 ); 37 assert( pParse->nOpAlloc==0 ); 38 assert( pParse->szOpAlloc==0 ); 39 return p; 40 } 41 42 /* 43 ** Change the error string stored in Vdbe.zErrMsg 44 */ 45 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 46 va_list ap; 47 sqlite3DbFree(p->db, p->zErrMsg); 48 va_start(ap, zFormat); 49 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 50 va_end(ap); 51 } 52 53 /* 54 ** Remember the SQL string for a prepared statement. 55 */ 56 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ 57 assert( isPrepareV2==1 || isPrepareV2==0 ); 58 if( p==0 ) return; 59 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG) 60 if( !isPrepareV2 ) return; 61 #endif 62 assert( p->zSql==0 ); 63 p->zSql = sqlite3DbStrNDup(p->db, z, n); 64 p->isPrepareV2 = (u8)isPrepareV2; 65 } 66 67 /* 68 ** Return the SQL associated with a prepared statement 69 */ 70 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 71 Vdbe *p = (Vdbe *)pStmt; 72 return p ? p->zSql : 0; 73 } 74 75 /* 76 ** Swap all content between two VDBE structures. 77 */ 78 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 79 Vdbe tmp, *pTmp; 80 char *zTmp; 81 tmp = *pA; 82 *pA = *pB; 83 *pB = tmp; 84 pTmp = pA->pNext; 85 pA->pNext = pB->pNext; 86 pB->pNext = pTmp; 87 pTmp = pA->pPrev; 88 pA->pPrev = pB->pPrev; 89 pB->pPrev = pTmp; 90 zTmp = pA->zSql; 91 pA->zSql = pB->zSql; 92 pB->zSql = zTmp; 93 pB->isPrepareV2 = pA->isPrepareV2; 94 } 95 96 /* 97 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 98 ** than its current size. nOp is guaranteed to be less than or equal 99 ** to 1024/sizeof(Op). 100 ** 101 ** If an out-of-memory error occurs while resizing the array, return 102 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain 103 ** unchanged (this is so that any opcodes already allocated can be 104 ** correctly deallocated along with the rest of the Vdbe). 105 */ 106 static int growOpArray(Vdbe *v, int nOp){ 107 VdbeOp *pNew; 108 Parse *p = v->pParse; 109 110 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 111 ** more frequent reallocs and hence provide more opportunities for 112 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 113 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 114 ** by the minimum* amount required until the size reaches 512. Normal 115 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 116 ** size of the op array or add 1KB of space, whichever is smaller. */ 117 #ifdef SQLITE_TEST_REALLOC_STRESS 118 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); 119 #else 120 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 121 UNUSED_PARAMETER(nOp); 122 #endif 123 124 assert( nOp<=(1024/sizeof(Op)) ); 125 assert( nNew>=(p->nOpAlloc+nOp) ); 126 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 127 if( pNew ){ 128 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 129 p->nOpAlloc = p->szOpAlloc/sizeof(Op); 130 v->aOp = pNew; 131 } 132 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 133 } 134 135 #ifdef SQLITE_DEBUG 136 /* This routine is just a convenient place to set a breakpoint that will 137 ** fire after each opcode is inserted and displayed using 138 ** "PRAGMA vdbe_addoptrace=on". 139 */ 140 static void test_addop_breakpoint(void){ 141 static int n = 0; 142 n++; 143 } 144 #endif 145 146 /* 147 ** Add a new instruction to the list of instructions current in the 148 ** VDBE. Return the address of the new instruction. 149 ** 150 ** Parameters: 151 ** 152 ** p Pointer to the VDBE 153 ** 154 ** op The opcode for this instruction 155 ** 156 ** p1, p2, p3 Operands 157 ** 158 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 159 ** the sqlite3VdbeChangeP4() function to change the value of the P4 160 ** operand. 161 */ 162 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 163 assert( p->pParse->nOpAlloc<=p->nOp ); 164 if( growOpArray(p, 1) ) return 1; 165 assert( p->pParse->nOpAlloc>p->nOp ); 166 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 167 } 168 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 169 int i; 170 VdbeOp *pOp; 171 172 i = p->nOp; 173 assert( p->magic==VDBE_MAGIC_INIT ); 174 assert( op>=0 && op<0xff ); 175 if( p->pParse->nOpAlloc<=i ){ 176 return growOp3(p, op, p1, p2, p3); 177 } 178 p->nOp++; 179 pOp = &p->aOp[i]; 180 pOp->opcode = (u8)op; 181 pOp->p5 = 0; 182 pOp->p1 = p1; 183 pOp->p2 = p2; 184 pOp->p3 = p3; 185 pOp->p4.p = 0; 186 pOp->p4type = P4_NOTUSED; 187 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 188 pOp->zComment = 0; 189 #endif 190 #ifdef SQLITE_DEBUG 191 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 192 int jj, kk; 193 Parse *pParse = p->pParse; 194 for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){ 195 struct yColCache *x = pParse->aColCache + jj; 196 if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue; 197 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); 198 kk++; 199 } 200 if( kk ) printf("\n"); 201 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 202 test_addop_breakpoint(); 203 } 204 #endif 205 #ifdef VDBE_PROFILE 206 pOp->cycles = 0; 207 pOp->cnt = 0; 208 #endif 209 #ifdef SQLITE_VDBE_COVERAGE 210 pOp->iSrcLine = 0; 211 #endif 212 return i; 213 } 214 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 215 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 216 } 217 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 218 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 219 } 220 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 221 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 222 } 223 224 /* Generate code for an unconditional jump to instruction iDest 225 */ 226 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 227 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 228 } 229 230 /* Generate code to cause the string zStr to be loaded into 231 ** register iDest 232 */ 233 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 234 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 235 } 236 237 /* 238 ** Generate code that initializes multiple registers to string or integer 239 ** constants. The registers begin with iDest and increase consecutively. 240 ** One register is initialized for each characgter in zTypes[]. For each 241 ** "s" character in zTypes[], the register is a string if the argument is 242 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 243 ** in zTypes[], the register is initialized to an integer. 244 */ 245 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 246 va_list ap; 247 int i; 248 char c; 249 va_start(ap, zTypes); 250 for(i=0; (c = zTypes[i])!=0; i++){ 251 if( c=='s' ){ 252 const char *z = va_arg(ap, const char*); 253 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0); 254 }else{ 255 assert( c=='i' ); 256 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++); 257 } 258 } 259 va_end(ap); 260 } 261 262 /* 263 ** Add an opcode that includes the p4 value as a pointer. 264 */ 265 int sqlite3VdbeAddOp4( 266 Vdbe *p, /* Add the opcode to this VM */ 267 int op, /* The new opcode */ 268 int p1, /* The P1 operand */ 269 int p2, /* The P2 operand */ 270 int p3, /* The P3 operand */ 271 const char *zP4, /* The P4 operand */ 272 int p4type /* P4 operand type */ 273 ){ 274 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 275 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 276 return addr; 277 } 278 279 /* 280 ** Add an opcode that includes the p4 value with a P4_INT64 or 281 ** P4_REAL type. 282 */ 283 int sqlite3VdbeAddOp4Dup8( 284 Vdbe *p, /* Add the opcode to this VM */ 285 int op, /* The new opcode */ 286 int p1, /* The P1 operand */ 287 int p2, /* The P2 operand */ 288 int p3, /* The P3 operand */ 289 const u8 *zP4, /* The P4 operand */ 290 int p4type /* P4 operand type */ 291 ){ 292 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 293 if( p4copy ) memcpy(p4copy, zP4, 8); 294 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 295 } 296 297 /* 298 ** Add an OP_ParseSchema opcode. This routine is broken out from 299 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 300 ** as having been used. 301 ** 302 ** The zWhere string must have been obtained from sqlite3_malloc(). 303 ** This routine will take ownership of the allocated memory. 304 */ 305 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 306 int j; 307 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 308 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 309 } 310 311 /* 312 ** Add an opcode that includes the p4 value as an integer. 313 */ 314 int sqlite3VdbeAddOp4Int( 315 Vdbe *p, /* Add the opcode to this VM */ 316 int op, /* The new opcode */ 317 int p1, /* The P1 operand */ 318 int p2, /* The P2 operand */ 319 int p3, /* The P3 operand */ 320 int p4 /* The P4 operand as an integer */ 321 ){ 322 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 323 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32); 324 return addr; 325 } 326 327 /* Insert the end of a co-routine 328 */ 329 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 330 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 331 332 /* Clear the temporary register cache, thereby ensuring that each 333 ** co-routine has its own independent set of registers, because co-routines 334 ** might expect their registers to be preserved across an OP_Yield, and 335 ** that could cause problems if two or more co-routines are using the same 336 ** temporary register. 337 */ 338 v->pParse->nTempReg = 0; 339 v->pParse->nRangeReg = 0; 340 } 341 342 /* 343 ** Create a new symbolic label for an instruction that has yet to be 344 ** coded. The symbolic label is really just a negative number. The 345 ** label can be used as the P2 value of an operation. Later, when 346 ** the label is resolved to a specific address, the VDBE will scan 347 ** through its operation list and change all values of P2 which match 348 ** the label into the resolved address. 349 ** 350 ** The VDBE knows that a P2 value is a label because labels are 351 ** always negative and P2 values are suppose to be non-negative. 352 ** Hence, a negative P2 value is a label that has yet to be resolved. 353 ** 354 ** Zero is returned if a malloc() fails. 355 */ 356 int sqlite3VdbeMakeLabel(Vdbe *v){ 357 Parse *p = v->pParse; 358 int i = p->nLabel++; 359 assert( v->magic==VDBE_MAGIC_INIT ); 360 if( (i & (i-1))==0 ){ 361 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 362 (i*2+1)*sizeof(p->aLabel[0])); 363 } 364 if( p->aLabel ){ 365 p->aLabel[i] = -1; 366 } 367 return ADDR(i); 368 } 369 370 /* 371 ** Resolve label "x" to be the address of the next instruction to 372 ** be inserted. The parameter "x" must have been obtained from 373 ** a prior call to sqlite3VdbeMakeLabel(). 374 */ 375 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 376 Parse *p = v->pParse; 377 int j = ADDR(x); 378 assert( v->magic==VDBE_MAGIC_INIT ); 379 assert( j<p->nLabel ); 380 assert( j>=0 ); 381 if( p->aLabel ){ 382 p->aLabel[j] = v->nOp; 383 } 384 p->iFixedOp = v->nOp - 1; 385 } 386 387 /* 388 ** Mark the VDBE as one that can only be run one time. 389 */ 390 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 391 p->runOnlyOnce = 1; 392 } 393 394 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 395 396 /* 397 ** The following type and function are used to iterate through all opcodes 398 ** in a Vdbe main program and each of the sub-programs (triggers) it may 399 ** invoke directly or indirectly. It should be used as follows: 400 ** 401 ** Op *pOp; 402 ** VdbeOpIter sIter; 403 ** 404 ** memset(&sIter, 0, sizeof(sIter)); 405 ** sIter.v = v; // v is of type Vdbe* 406 ** while( (pOp = opIterNext(&sIter)) ){ 407 ** // Do something with pOp 408 ** } 409 ** sqlite3DbFree(v->db, sIter.apSub); 410 ** 411 */ 412 typedef struct VdbeOpIter VdbeOpIter; 413 struct VdbeOpIter { 414 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 415 SubProgram **apSub; /* Array of subprograms */ 416 int nSub; /* Number of entries in apSub */ 417 int iAddr; /* Address of next instruction to return */ 418 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 419 }; 420 static Op *opIterNext(VdbeOpIter *p){ 421 Vdbe *v = p->v; 422 Op *pRet = 0; 423 Op *aOp; 424 int nOp; 425 426 if( p->iSub<=p->nSub ){ 427 428 if( p->iSub==0 ){ 429 aOp = v->aOp; 430 nOp = v->nOp; 431 }else{ 432 aOp = p->apSub[p->iSub-1]->aOp; 433 nOp = p->apSub[p->iSub-1]->nOp; 434 } 435 assert( p->iAddr<nOp ); 436 437 pRet = &aOp[p->iAddr]; 438 p->iAddr++; 439 if( p->iAddr==nOp ){ 440 p->iSub++; 441 p->iAddr = 0; 442 } 443 444 if( pRet->p4type==P4_SUBPROGRAM ){ 445 int nByte = (p->nSub+1)*sizeof(SubProgram*); 446 int j; 447 for(j=0; j<p->nSub; j++){ 448 if( p->apSub[j]==pRet->p4.pProgram ) break; 449 } 450 if( j==p->nSub ){ 451 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 452 if( !p->apSub ){ 453 pRet = 0; 454 }else{ 455 p->apSub[p->nSub++] = pRet->p4.pProgram; 456 } 457 } 458 } 459 } 460 461 return pRet; 462 } 463 464 /* 465 ** Check if the program stored in the VM associated with pParse may 466 ** throw an ABORT exception (causing the statement, but not entire transaction 467 ** to be rolled back). This condition is true if the main program or any 468 ** sub-programs contains any of the following: 469 ** 470 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 471 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 472 ** * OP_Destroy 473 ** * OP_VUpdate 474 ** * OP_VRename 475 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 476 ** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...) 477 ** 478 ** Then check that the value of Parse.mayAbort is true if an 479 ** ABORT may be thrown, or false otherwise. Return true if it does 480 ** match, or false otherwise. This function is intended to be used as 481 ** part of an assert statement in the compiler. Similar to: 482 ** 483 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 484 */ 485 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 486 int hasAbort = 0; 487 int hasFkCounter = 0; 488 int hasCreateTable = 0; 489 int hasInitCoroutine = 0; 490 Op *pOp; 491 VdbeOpIter sIter; 492 memset(&sIter, 0, sizeof(sIter)); 493 sIter.v = v; 494 495 while( (pOp = opIterNext(&sIter))!=0 ){ 496 int opcode = pOp->opcode; 497 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 498 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 499 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 500 ){ 501 hasAbort = 1; 502 break; 503 } 504 if( opcode==OP_CreateTable ) hasCreateTable = 1; 505 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 506 #ifndef SQLITE_OMIT_FOREIGN_KEY 507 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 508 hasFkCounter = 1; 509 } 510 #endif 511 } 512 sqlite3DbFree(v->db, sIter.apSub); 513 514 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 515 ** If malloc failed, then the while() loop above may not have iterated 516 ** through all opcodes and hasAbort may be set incorrectly. Return 517 ** true for this case to prevent the assert() in the callers frame 518 ** from failing. */ 519 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 520 || (hasCreateTable && hasInitCoroutine) ); 521 } 522 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 523 524 /* 525 ** This routine is called after all opcodes have been inserted. It loops 526 ** through all the opcodes and fixes up some details. 527 ** 528 ** (1) For each jump instruction with a negative P2 value (a label) 529 ** resolve the P2 value to an actual address. 530 ** 531 ** (2) Compute the maximum number of arguments used by any SQL function 532 ** and store that value in *pMaxFuncArgs. 533 ** 534 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 535 ** indicate what the prepared statement actually does. 536 ** 537 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 538 ** 539 ** (5) Reclaim the memory allocated for storing labels. 540 */ 541 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 542 int i; 543 int nMaxArgs = *pMaxFuncArgs; 544 Op *pOp; 545 Parse *pParse = p->pParse; 546 int *aLabel = pParse->aLabel; 547 p->readOnly = 1; 548 p->bIsReader = 0; 549 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ 550 u8 opcode = pOp->opcode; 551 552 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 553 ** cases from this switch! */ 554 switch( opcode ){ 555 case OP_Transaction: { 556 if( pOp->p2!=0 ) p->readOnly = 0; 557 /* fall thru */ 558 } 559 case OP_AutoCommit: 560 case OP_Savepoint: { 561 p->bIsReader = 1; 562 break; 563 } 564 #ifndef SQLITE_OMIT_WAL 565 case OP_Checkpoint: 566 #endif 567 case OP_Vacuum: 568 case OP_JournalMode: { 569 p->readOnly = 0; 570 p->bIsReader = 1; 571 break; 572 } 573 #ifndef SQLITE_OMIT_VIRTUALTABLE 574 case OP_VUpdate: { 575 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 576 break; 577 } 578 case OP_VFilter: { 579 int n; 580 assert( p->nOp - i >= 3 ); 581 assert( pOp[-1].opcode==OP_Integer ); 582 n = pOp[-1].p1; 583 if( n>nMaxArgs ) nMaxArgs = n; 584 break; 585 } 586 #endif 587 case OP_Next: 588 case OP_NextIfOpen: 589 case OP_SorterNext: { 590 pOp->p4.xAdvance = sqlite3BtreeNext; 591 pOp->p4type = P4_ADVANCE; 592 break; 593 } 594 case OP_Prev: 595 case OP_PrevIfOpen: { 596 pOp->p4.xAdvance = sqlite3BtreePrevious; 597 pOp->p4type = P4_ADVANCE; 598 break; 599 } 600 } 601 602 pOp->opflags = sqlite3OpcodeProperty[opcode]; 603 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){ 604 assert( ADDR(pOp->p2)<pParse->nLabel ); 605 pOp->p2 = aLabel[ADDR(pOp->p2)]; 606 } 607 } 608 sqlite3DbFree(p->db, pParse->aLabel); 609 pParse->aLabel = 0; 610 pParse->nLabel = 0; 611 *pMaxFuncArgs = nMaxArgs; 612 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 613 } 614 615 /* 616 ** Return the address of the next instruction to be inserted. 617 */ 618 int sqlite3VdbeCurrentAddr(Vdbe *p){ 619 assert( p->magic==VDBE_MAGIC_INIT ); 620 return p->nOp; 621 } 622 623 /* 624 ** Verify that at least N opcode slots are available in p without 625 ** having to malloc for more space (except when compiled using 626 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 627 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 628 ** fail due to a OOM fault and hence that the return value from 629 ** sqlite3VdbeAddOpList() will always be non-NULL. 630 */ 631 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 632 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 633 assert( p->nOp + N <= p->pParse->nOpAlloc ); 634 } 635 #endif 636 637 /* 638 ** This function returns a pointer to the array of opcodes associated with 639 ** the Vdbe passed as the first argument. It is the callers responsibility 640 ** to arrange for the returned array to be eventually freed using the 641 ** vdbeFreeOpArray() function. 642 ** 643 ** Before returning, *pnOp is set to the number of entries in the returned 644 ** array. Also, *pnMaxArg is set to the larger of its current value and 645 ** the number of entries in the Vdbe.apArg[] array required to execute the 646 ** returned program. 647 */ 648 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 649 VdbeOp *aOp = p->aOp; 650 assert( aOp && !p->db->mallocFailed ); 651 652 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 653 assert( DbMaskAllZero(p->btreeMask) ); 654 655 resolveP2Values(p, pnMaxArg); 656 *pnOp = p->nOp; 657 p->aOp = 0; 658 return aOp; 659 } 660 661 /* 662 ** Add a whole list of operations to the operation stack. Return a 663 ** pointer to the first operation inserted. 664 ** 665 ** Non-zero P2 arguments to jump instructions are automatically adjusted 666 ** so that the jump target is relative to the first operation inserted. 667 */ 668 VdbeOp *sqlite3VdbeAddOpList( 669 Vdbe *p, /* Add opcodes to the prepared statement */ 670 int nOp, /* Number of opcodes to add */ 671 VdbeOpList const *aOp, /* The opcodes to be added */ 672 int iLineno /* Source-file line number of first opcode */ 673 ){ 674 int i; 675 VdbeOp *pOut, *pFirst; 676 assert( nOp>0 ); 677 assert( p->magic==VDBE_MAGIC_INIT ); 678 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ 679 return 0; 680 } 681 pFirst = pOut = &p->aOp[p->nOp]; 682 for(i=0; i<nOp; i++, aOp++, pOut++){ 683 pOut->opcode = aOp->opcode; 684 pOut->p1 = aOp->p1; 685 pOut->p2 = aOp->p2; 686 assert( aOp->p2>=0 ); 687 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 688 pOut->p2 += p->nOp; 689 } 690 pOut->p3 = aOp->p3; 691 pOut->p4type = P4_NOTUSED; 692 pOut->p4.p = 0; 693 pOut->p5 = 0; 694 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 695 pOut->zComment = 0; 696 #endif 697 #ifdef SQLITE_VDBE_COVERAGE 698 pOut->iSrcLine = iLineno+i; 699 #else 700 (void)iLineno; 701 #endif 702 #ifdef SQLITE_DEBUG 703 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 704 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 705 } 706 #endif 707 } 708 p->nOp += nOp; 709 return pFirst; 710 } 711 712 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 713 /* 714 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 715 */ 716 void sqlite3VdbeScanStatus( 717 Vdbe *p, /* VM to add scanstatus() to */ 718 int addrExplain, /* Address of OP_Explain (or 0) */ 719 int addrLoop, /* Address of loop counter */ 720 int addrVisit, /* Address of rows visited counter */ 721 LogEst nEst, /* Estimated number of output rows */ 722 const char *zName /* Name of table or index being scanned */ 723 ){ 724 int nByte = (p->nScan+1) * sizeof(ScanStatus); 725 ScanStatus *aNew; 726 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 727 if( aNew ){ 728 ScanStatus *pNew = &aNew[p->nScan++]; 729 pNew->addrExplain = addrExplain; 730 pNew->addrLoop = addrLoop; 731 pNew->addrVisit = addrVisit; 732 pNew->nEst = nEst; 733 pNew->zName = sqlite3DbStrDup(p->db, zName); 734 p->aScan = aNew; 735 } 736 } 737 #endif 738 739 740 /* 741 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 742 ** for a specific instruction. 743 */ 744 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){ 745 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 746 } 747 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ 748 sqlite3VdbeGetOp(p,addr)->p1 = val; 749 } 750 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ 751 sqlite3VdbeGetOp(p,addr)->p2 = val; 752 } 753 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ 754 sqlite3VdbeGetOp(p,addr)->p3 = val; 755 } 756 void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){ 757 if( !p->db->mallocFailed ) p->aOp[p->nOp-1].p5 = p5; 758 } 759 760 /* 761 ** Change the P2 operand of instruction addr so that it points to 762 ** the address of the next instruction to be coded. 763 */ 764 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 765 p->pParse->iFixedOp = p->nOp - 1; 766 sqlite3VdbeChangeP2(p, addr, p->nOp); 767 } 768 769 770 /* 771 ** If the input FuncDef structure is ephemeral, then free it. If 772 ** the FuncDef is not ephermal, then do nothing. 773 */ 774 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 775 if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 776 sqlite3DbFree(db, pDef); 777 } 778 } 779 780 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 781 782 /* 783 ** Delete a P4 value if necessary. 784 */ 785 static void freeP4(sqlite3 *db, int p4type, void *p4){ 786 if( p4 ){ 787 assert( db ); 788 switch( p4type ){ 789 case P4_FUNCCTX: { 790 freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc); 791 /* Fall through into the next case */ 792 } 793 case P4_REAL: 794 case P4_INT64: 795 case P4_DYNAMIC: 796 case P4_INTARRAY: { 797 sqlite3DbFree(db, p4); 798 break; 799 } 800 case P4_KEYINFO: { 801 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 802 break; 803 } 804 #ifdef SQLITE_ENABLE_CURSOR_HINTS 805 case P4_EXPR: { 806 sqlite3ExprDelete(db, (Expr*)p4); 807 break; 808 } 809 #endif 810 case P4_MPRINTF: { 811 if( db->pnBytesFreed==0 ) sqlite3_free(p4); 812 break; 813 } 814 case P4_FUNCDEF: { 815 freeEphemeralFunction(db, (FuncDef*)p4); 816 break; 817 } 818 case P4_MEM: { 819 if( db->pnBytesFreed==0 ){ 820 sqlite3ValueFree((sqlite3_value*)p4); 821 }else{ 822 Mem *p = (Mem*)p4; 823 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 824 sqlite3DbFree(db, p); 825 } 826 break; 827 } 828 case P4_VTAB : { 829 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 830 break; 831 } 832 } 833 } 834 } 835 836 /* 837 ** Free the space allocated for aOp and any p4 values allocated for the 838 ** opcodes contained within. If aOp is not NULL it is assumed to contain 839 ** nOp entries. 840 */ 841 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 842 if( aOp ){ 843 Op *pOp; 844 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ 845 if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p); 846 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 847 sqlite3DbFree(db, pOp->zComment); 848 #endif 849 } 850 } 851 sqlite3DbFree(db, aOp); 852 } 853 854 /* 855 ** Link the SubProgram object passed as the second argument into the linked 856 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 857 ** objects when the VM is no longer required. 858 */ 859 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 860 p->pNext = pVdbe->pProgram; 861 pVdbe->pProgram = p; 862 } 863 864 /* 865 ** Change the opcode at addr into OP_Noop 866 */ 867 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 868 VdbeOp *pOp; 869 if( p->db->mallocFailed ) return 0; 870 assert( addr>=0 && addr<p->nOp ); 871 pOp = &p->aOp[addr]; 872 freeP4(p->db, pOp->p4type, pOp->p4.p); 873 pOp->p4type = P4_NOTUSED; 874 pOp->p4.z = 0; 875 pOp->opcode = OP_Noop; 876 return 1; 877 } 878 879 /* 880 ** If the last opcode is "op" and it is not a jump destination, 881 ** then remove it. Return true if and only if an opcode was removed. 882 */ 883 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 884 if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){ 885 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 886 }else{ 887 return 0; 888 } 889 } 890 891 /* 892 ** Change the value of the P4 operand for a specific instruction. 893 ** This routine is useful when a large program is loaded from a 894 ** static array using sqlite3VdbeAddOpList but we want to make a 895 ** few minor changes to the program. 896 ** 897 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 898 ** the string is made into memory obtained from sqlite3_malloc(). 899 ** A value of n==0 means copy bytes of zP4 up to and including the 900 ** first null byte. If n>0 then copy n+1 bytes of zP4. 901 ** 902 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 903 ** to a string or structure that is guaranteed to exist for the lifetime of 904 ** the Vdbe. In these cases we can just copy the pointer. 905 ** 906 ** If addr<0 then change P4 on the most recently inserted instruction. 907 */ 908 static void SQLITE_NOINLINE vdbeChangeP4Full( 909 Vdbe *p, 910 Op *pOp, 911 const char *zP4, 912 int n 913 ){ 914 if( pOp->p4type ){ 915 freeP4(p->db, pOp->p4type, pOp->p4.p); 916 pOp->p4type = 0; 917 pOp->p4.p = 0; 918 } 919 if( n<0 ){ 920 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 921 }else{ 922 if( n==0 ) n = sqlite3Strlen30(zP4); 923 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 924 pOp->p4type = P4_DYNAMIC; 925 } 926 } 927 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 928 Op *pOp; 929 sqlite3 *db; 930 assert( p!=0 ); 931 db = p->db; 932 assert( p->magic==VDBE_MAGIC_INIT ); 933 assert( p->aOp!=0 || db->mallocFailed ); 934 if( db->mallocFailed ){ 935 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 936 return; 937 } 938 assert( p->nOp>0 ); 939 assert( addr<p->nOp ); 940 if( addr<0 ){ 941 addr = p->nOp - 1; 942 } 943 pOp = &p->aOp[addr]; 944 if( n>=0 || pOp->p4type ){ 945 vdbeChangeP4Full(p, pOp, zP4, n); 946 return; 947 } 948 if( n==P4_INT32 ){ 949 /* Note: this cast is safe, because the origin data point was an int 950 ** that was cast to a (const char *). */ 951 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 952 pOp->p4type = P4_INT32; 953 }else if( zP4!=0 ){ 954 assert( n<0 ); 955 pOp->p4.p = (void*)zP4; 956 pOp->p4type = (signed char)n; 957 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 958 } 959 } 960 961 /* 962 ** Set the P4 on the most recently added opcode to the KeyInfo for the 963 ** index given. 964 */ 965 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 966 Vdbe *v = pParse->pVdbe; 967 assert( v!=0 ); 968 assert( pIdx!=0 ); 969 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx), 970 P4_KEYINFO); 971 } 972 973 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 974 /* 975 ** Change the comment on the most recently coded instruction. Or 976 ** insert a No-op and add the comment to that new instruction. This 977 ** makes the code easier to read during debugging. None of this happens 978 ** in a production build. 979 */ 980 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 981 assert( p->nOp>0 || p->aOp==0 ); 982 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 983 if( p->nOp ){ 984 assert( p->aOp ); 985 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 986 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 987 } 988 } 989 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 990 va_list ap; 991 if( p ){ 992 va_start(ap, zFormat); 993 vdbeVComment(p, zFormat, ap); 994 va_end(ap); 995 } 996 } 997 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 998 va_list ap; 999 if( p ){ 1000 sqlite3VdbeAddOp0(p, OP_Noop); 1001 va_start(ap, zFormat); 1002 vdbeVComment(p, zFormat, ap); 1003 va_end(ap); 1004 } 1005 } 1006 #endif /* NDEBUG */ 1007 1008 #ifdef SQLITE_VDBE_COVERAGE 1009 /* 1010 ** Set the value if the iSrcLine field for the previously coded instruction. 1011 */ 1012 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1013 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1014 } 1015 #endif /* SQLITE_VDBE_COVERAGE */ 1016 1017 /* 1018 ** Return the opcode for a given address. If the address is -1, then 1019 ** return the most recently inserted opcode. 1020 ** 1021 ** If a memory allocation error has occurred prior to the calling of this 1022 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1023 ** is readable but not writable, though it is cast to a writable value. 1024 ** The return of a dummy opcode allows the call to continue functioning 1025 ** after an OOM fault without having to check to see if the return from 1026 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1027 ** dummy will never be written to. This is verified by code inspection and 1028 ** by running with Valgrind. 1029 */ 1030 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1031 /* C89 specifies that the constant "dummy" will be initialized to all 1032 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1033 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1034 assert( p->magic==VDBE_MAGIC_INIT ); 1035 if( addr<0 ){ 1036 addr = p->nOp - 1; 1037 } 1038 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1039 if( p->db->mallocFailed ){ 1040 return (VdbeOp*)&dummy; 1041 }else{ 1042 return &p->aOp[addr]; 1043 } 1044 } 1045 1046 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1047 /* 1048 ** Return an integer value for one of the parameters to the opcode pOp 1049 ** determined by character c. 1050 */ 1051 static int translateP(char c, const Op *pOp){ 1052 if( c=='1' ) return pOp->p1; 1053 if( c=='2' ) return pOp->p2; 1054 if( c=='3' ) return pOp->p3; 1055 if( c=='4' ) return pOp->p4.i; 1056 return pOp->p5; 1057 } 1058 1059 /* 1060 ** Compute a string for the "comment" field of a VDBE opcode listing. 1061 ** 1062 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1063 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1064 ** absence of other comments, this synopsis becomes the comment on the opcode. 1065 ** Some translation occurs: 1066 ** 1067 ** "PX" -> "r[X]" 1068 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1069 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1070 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1071 */ 1072 static int displayComment( 1073 const Op *pOp, /* The opcode to be commented */ 1074 const char *zP4, /* Previously obtained value for P4 */ 1075 char *zTemp, /* Write result here */ 1076 int nTemp /* Space available in zTemp[] */ 1077 ){ 1078 const char *zOpName; 1079 const char *zSynopsis; 1080 int nOpName; 1081 int ii, jj; 1082 zOpName = sqlite3OpcodeName(pOp->opcode); 1083 nOpName = sqlite3Strlen30(zOpName); 1084 if( zOpName[nOpName+1] ){ 1085 int seenCom = 0; 1086 char c; 1087 zSynopsis = zOpName += nOpName + 1; 1088 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 1089 if( c=='P' ){ 1090 c = zSynopsis[++ii]; 1091 if( c=='4' ){ 1092 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 1093 }else if( c=='X' ){ 1094 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 1095 seenCom = 1; 1096 }else{ 1097 int v1 = translateP(c, pOp); 1098 int v2; 1099 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 1100 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1101 ii += 3; 1102 jj += sqlite3Strlen30(zTemp+jj); 1103 v2 = translateP(zSynopsis[ii], pOp); 1104 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1105 ii += 2; 1106 v2++; 1107 } 1108 if( v2>1 ){ 1109 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 1110 } 1111 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1112 ii += 4; 1113 } 1114 } 1115 jj += sqlite3Strlen30(zTemp+jj); 1116 }else{ 1117 zTemp[jj++] = c; 1118 } 1119 } 1120 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 1121 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 1122 jj += sqlite3Strlen30(zTemp+jj); 1123 } 1124 if( jj<nTemp ) zTemp[jj] = 0; 1125 }else if( pOp->zComment ){ 1126 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 1127 jj = sqlite3Strlen30(zTemp); 1128 }else{ 1129 zTemp[0] = 0; 1130 jj = 0; 1131 } 1132 return jj; 1133 } 1134 #endif /* SQLITE_DEBUG */ 1135 1136 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1137 /* 1138 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1139 ** that can be displayed in the P4 column of EXPLAIN output. 1140 */ 1141 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1142 const char *zOp = 0; 1143 switch( pExpr->op ){ 1144 case TK_STRING: 1145 sqlite3XPrintf(p, "%Q", pExpr->u.zToken); 1146 break; 1147 case TK_INTEGER: 1148 sqlite3XPrintf(p, "%d", pExpr->u.iValue); 1149 break; 1150 case TK_NULL: 1151 sqlite3XPrintf(p, "NULL"); 1152 break; 1153 case TK_REGISTER: { 1154 sqlite3XPrintf(p, "r[%d]", pExpr->iTable); 1155 break; 1156 } 1157 case TK_COLUMN: { 1158 if( pExpr->iColumn<0 ){ 1159 sqlite3XPrintf(p, "rowid"); 1160 }else{ 1161 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn); 1162 } 1163 break; 1164 } 1165 case TK_LT: zOp = "LT"; break; 1166 case TK_LE: zOp = "LE"; break; 1167 case TK_GT: zOp = "GT"; break; 1168 case TK_GE: zOp = "GE"; break; 1169 case TK_NE: zOp = "NE"; break; 1170 case TK_EQ: zOp = "EQ"; break; 1171 case TK_IS: zOp = "IS"; break; 1172 case TK_ISNOT: zOp = "ISNOT"; break; 1173 case TK_AND: zOp = "AND"; break; 1174 case TK_OR: zOp = "OR"; break; 1175 case TK_PLUS: zOp = "ADD"; break; 1176 case TK_STAR: zOp = "MUL"; break; 1177 case TK_MINUS: zOp = "SUB"; break; 1178 case TK_REM: zOp = "REM"; break; 1179 case TK_BITAND: zOp = "BITAND"; break; 1180 case TK_BITOR: zOp = "BITOR"; break; 1181 case TK_SLASH: zOp = "DIV"; break; 1182 case TK_LSHIFT: zOp = "LSHIFT"; break; 1183 case TK_RSHIFT: zOp = "RSHIFT"; break; 1184 case TK_CONCAT: zOp = "CONCAT"; break; 1185 case TK_UMINUS: zOp = "MINUS"; break; 1186 case TK_UPLUS: zOp = "PLUS"; break; 1187 case TK_BITNOT: zOp = "BITNOT"; break; 1188 case TK_NOT: zOp = "NOT"; break; 1189 case TK_ISNULL: zOp = "ISNULL"; break; 1190 case TK_NOTNULL: zOp = "NOTNULL"; break; 1191 1192 default: 1193 sqlite3XPrintf(p, "%s", "expr"); 1194 break; 1195 } 1196 1197 if( zOp ){ 1198 sqlite3XPrintf(p, "%s(", zOp); 1199 displayP4Expr(p, pExpr->pLeft); 1200 if( pExpr->pRight ){ 1201 sqlite3StrAccumAppend(p, ",", 1); 1202 displayP4Expr(p, pExpr->pRight); 1203 } 1204 sqlite3StrAccumAppend(p, ")", 1); 1205 } 1206 } 1207 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1208 1209 1210 #if VDBE_DISPLAY_P4 1211 /* 1212 ** Compute a string that describes the P4 parameter for an opcode. 1213 ** Use zTemp for any required temporary buffer space. 1214 */ 1215 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 1216 char *zP4 = zTemp; 1217 StrAccum x; 1218 assert( nTemp>=20 ); 1219 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0); 1220 switch( pOp->p4type ){ 1221 case P4_KEYINFO: { 1222 int j; 1223 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1224 assert( pKeyInfo->aSortOrder!=0 ); 1225 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nField); 1226 for(j=0; j<pKeyInfo->nField; j++){ 1227 CollSeq *pColl = pKeyInfo->aColl[j]; 1228 const char *zColl = pColl ? pColl->zName : ""; 1229 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1230 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl); 1231 } 1232 sqlite3StrAccumAppend(&x, ")", 1); 1233 break; 1234 } 1235 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1236 case P4_EXPR: { 1237 displayP4Expr(&x, pOp->p4.pExpr); 1238 break; 1239 } 1240 #endif 1241 case P4_COLLSEQ: { 1242 CollSeq *pColl = pOp->p4.pColl; 1243 sqlite3XPrintf(&x, "(%.20s)", pColl->zName); 1244 break; 1245 } 1246 case P4_FUNCDEF: { 1247 FuncDef *pDef = pOp->p4.pFunc; 1248 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1249 break; 1250 } 1251 #ifdef SQLITE_DEBUG 1252 case P4_FUNCCTX: { 1253 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1254 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1255 break; 1256 } 1257 #endif 1258 case P4_INT64: { 1259 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64); 1260 break; 1261 } 1262 case P4_INT32: { 1263 sqlite3XPrintf(&x, "%d", pOp->p4.i); 1264 break; 1265 } 1266 case P4_REAL: { 1267 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal); 1268 break; 1269 } 1270 case P4_MEM: { 1271 Mem *pMem = pOp->p4.pMem; 1272 if( pMem->flags & MEM_Str ){ 1273 zP4 = pMem->z; 1274 }else if( pMem->flags & MEM_Int ){ 1275 sqlite3XPrintf(&x, "%lld", pMem->u.i); 1276 }else if( pMem->flags & MEM_Real ){ 1277 sqlite3XPrintf(&x, "%.16g", pMem->u.r); 1278 }else if( pMem->flags & MEM_Null ){ 1279 zP4 = "NULL"; 1280 }else{ 1281 assert( pMem->flags & MEM_Blob ); 1282 zP4 = "(blob)"; 1283 } 1284 break; 1285 } 1286 #ifndef SQLITE_OMIT_VIRTUALTABLE 1287 case P4_VTAB: { 1288 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1289 sqlite3XPrintf(&x, "vtab:%p", pVtab); 1290 break; 1291 } 1292 #endif 1293 case P4_INTARRAY: { 1294 int i; 1295 int *ai = pOp->p4.ai; 1296 int n = ai[0]; /* The first element of an INTARRAY is always the 1297 ** count of the number of elements to follow */ 1298 for(i=1; i<n; i++){ 1299 sqlite3XPrintf(&x, ",%d", ai[i]); 1300 } 1301 zTemp[0] = '['; 1302 sqlite3StrAccumAppend(&x, "]", 1); 1303 break; 1304 } 1305 case P4_SUBPROGRAM: { 1306 sqlite3XPrintf(&x, "program"); 1307 break; 1308 } 1309 case P4_ADVANCE: { 1310 zTemp[0] = 0; 1311 break; 1312 } 1313 default: { 1314 zP4 = pOp->p4.z; 1315 if( zP4==0 ){ 1316 zP4 = zTemp; 1317 zTemp[0] = 0; 1318 } 1319 } 1320 } 1321 sqlite3StrAccumFinish(&x); 1322 assert( zP4!=0 ); 1323 return zP4; 1324 } 1325 #endif /* VDBE_DISPLAY_P4 */ 1326 1327 /* 1328 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1329 ** 1330 ** The prepared statements need to know in advance the complete set of 1331 ** attached databases that will be use. A mask of these databases 1332 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1333 ** p->btreeMask of databases that will require a lock. 1334 */ 1335 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1336 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1337 assert( i<(int)sizeof(p->btreeMask)*8 ); 1338 DbMaskSet(p->btreeMask, i); 1339 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1340 DbMaskSet(p->lockMask, i); 1341 } 1342 } 1343 1344 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1345 /* 1346 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1347 ** this routine obtains the mutex associated with each BtShared structure 1348 ** that may be accessed by the VM passed as an argument. In doing so it also 1349 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1350 ** that the correct busy-handler callback is invoked if required. 1351 ** 1352 ** If SQLite is not threadsafe but does support shared-cache mode, then 1353 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1354 ** of all of BtShared structures accessible via the database handle 1355 ** associated with the VM. 1356 ** 1357 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1358 ** function is a no-op. 1359 ** 1360 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1361 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1362 ** corresponding to btrees that use shared cache. Then the runtime of 1363 ** this routine is N*N. But as N is rarely more than 1, this should not 1364 ** be a problem. 1365 */ 1366 void sqlite3VdbeEnter(Vdbe *p){ 1367 int i; 1368 sqlite3 *db; 1369 Db *aDb; 1370 int nDb; 1371 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1372 db = p->db; 1373 aDb = db->aDb; 1374 nDb = db->nDb; 1375 for(i=0; i<nDb; i++){ 1376 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1377 sqlite3BtreeEnter(aDb[i].pBt); 1378 } 1379 } 1380 } 1381 #endif 1382 1383 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1384 /* 1385 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1386 */ 1387 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1388 int i; 1389 sqlite3 *db; 1390 Db *aDb; 1391 int nDb; 1392 db = p->db; 1393 aDb = db->aDb; 1394 nDb = db->nDb; 1395 for(i=0; i<nDb; i++){ 1396 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1397 sqlite3BtreeLeave(aDb[i].pBt); 1398 } 1399 } 1400 } 1401 void sqlite3VdbeLeave(Vdbe *p){ 1402 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1403 vdbeLeave(p); 1404 } 1405 #endif 1406 1407 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1408 /* 1409 ** Print a single opcode. This routine is used for debugging only. 1410 */ 1411 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ 1412 char *zP4; 1413 char zPtr[50]; 1414 char zCom[100]; 1415 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1416 if( pOut==0 ) pOut = stdout; 1417 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1418 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1419 displayComment(pOp, zP4, zCom, sizeof(zCom)); 1420 #else 1421 zCom[0] = 0; 1422 #endif 1423 /* NB: The sqlite3OpcodeName() function is implemented by code created 1424 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1425 ** information from the vdbe.c source text */ 1426 fprintf(pOut, zFormat1, pc, 1427 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1428 zCom 1429 ); 1430 fflush(pOut); 1431 } 1432 #endif 1433 1434 /* 1435 ** Release an array of N Mem elements 1436 */ 1437 static void releaseMemArray(Mem *p, int N){ 1438 if( p && N ){ 1439 Mem *pEnd = &p[N]; 1440 sqlite3 *db = p->db; 1441 if( db->pnBytesFreed ){ 1442 do{ 1443 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1444 }while( (++p)<pEnd ); 1445 return; 1446 } 1447 do{ 1448 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1449 assert( sqlite3VdbeCheckMemInvariants(p) ); 1450 1451 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1452 ** that takes advantage of the fact that the memory cell value is 1453 ** being set to NULL after releasing any dynamic resources. 1454 ** 1455 ** The justification for duplicating code is that according to 1456 ** callgrind, this causes a certain test case to hit the CPU 4.7 1457 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1458 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1459 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1460 ** with no indexes using a single prepared INSERT statement, bind() 1461 ** and reset(). Inserts are grouped into a transaction. 1462 */ 1463 testcase( p->flags & MEM_Agg ); 1464 testcase( p->flags & MEM_Dyn ); 1465 testcase( p->flags & MEM_Frame ); 1466 testcase( p->flags & MEM_RowSet ); 1467 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ 1468 sqlite3VdbeMemRelease(p); 1469 }else if( p->szMalloc ){ 1470 sqlite3DbFree(db, p->zMalloc); 1471 p->szMalloc = 0; 1472 } 1473 1474 p->flags = MEM_Undefined; 1475 }while( (++p)<pEnd ); 1476 } 1477 } 1478 1479 /* 1480 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1481 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1482 */ 1483 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1484 int i; 1485 Mem *aMem = VdbeFrameMem(p); 1486 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1487 for(i=0; i<p->nChildCsr; i++){ 1488 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1489 } 1490 releaseMemArray(aMem, p->nChildMem); 1491 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 1492 sqlite3DbFree(p->v->db, p); 1493 } 1494 1495 #ifndef SQLITE_OMIT_EXPLAIN 1496 /* 1497 ** Give a listing of the program in the virtual machine. 1498 ** 1499 ** The interface is the same as sqlite3VdbeExec(). But instead of 1500 ** running the code, it invokes the callback once for each instruction. 1501 ** This feature is used to implement "EXPLAIN". 1502 ** 1503 ** When p->explain==1, each instruction is listed. When 1504 ** p->explain==2, only OP_Explain instructions are listed and these 1505 ** are shown in a different format. p->explain==2 is used to implement 1506 ** EXPLAIN QUERY PLAN. 1507 ** 1508 ** When p->explain==1, first the main program is listed, then each of 1509 ** the trigger subprograms are listed one by one. 1510 */ 1511 int sqlite3VdbeList( 1512 Vdbe *p /* The VDBE */ 1513 ){ 1514 int nRow; /* Stop when row count reaches this */ 1515 int nSub = 0; /* Number of sub-vdbes seen so far */ 1516 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1517 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1518 sqlite3 *db = p->db; /* The database connection */ 1519 int i; /* Loop counter */ 1520 int rc = SQLITE_OK; /* Return code */ 1521 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 1522 1523 assert( p->explain ); 1524 assert( p->magic==VDBE_MAGIC_RUN ); 1525 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1526 1527 /* Even though this opcode does not use dynamic strings for 1528 ** the result, result columns may become dynamic if the user calls 1529 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1530 */ 1531 releaseMemArray(pMem, 8); 1532 p->pResultSet = 0; 1533 1534 if( p->rc==SQLITE_NOMEM_BKPT ){ 1535 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1536 ** sqlite3_column_text16() failed. */ 1537 sqlite3OomFault(db); 1538 return SQLITE_ERROR; 1539 } 1540 1541 /* When the number of output rows reaches nRow, that means the 1542 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1543 ** nRow is the sum of the number of rows in the main program, plus 1544 ** the sum of the number of rows in all trigger subprograms encountered 1545 ** so far. The nRow value will increase as new trigger subprograms are 1546 ** encountered, but p->pc will eventually catch up to nRow. 1547 */ 1548 nRow = p->nOp; 1549 if( p->explain==1 ){ 1550 /* The first 8 memory cells are used for the result set. So we will 1551 ** commandeer the 9th cell to use as storage for an array of pointers 1552 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1553 ** cells. */ 1554 assert( p->nMem>9 ); 1555 pSub = &p->aMem[9]; 1556 if( pSub->flags&MEM_Blob ){ 1557 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1558 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1559 nSub = pSub->n/sizeof(Vdbe*); 1560 apSub = (SubProgram **)pSub->z; 1561 } 1562 for(i=0; i<nSub; i++){ 1563 nRow += apSub[i]->nOp; 1564 } 1565 } 1566 1567 do{ 1568 i = p->pc++; 1569 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); 1570 if( i>=nRow ){ 1571 p->rc = SQLITE_OK; 1572 rc = SQLITE_DONE; 1573 }else if( db->u1.isInterrupted ){ 1574 p->rc = SQLITE_INTERRUPT; 1575 rc = SQLITE_ERROR; 1576 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 1577 }else{ 1578 char *zP4; 1579 Op *pOp; 1580 if( i<p->nOp ){ 1581 /* The output line number is small enough that we are still in the 1582 ** main program. */ 1583 pOp = &p->aOp[i]; 1584 }else{ 1585 /* We are currently listing subprograms. Figure out which one and 1586 ** pick up the appropriate opcode. */ 1587 int j; 1588 i -= p->nOp; 1589 for(j=0; i>=apSub[j]->nOp; j++){ 1590 i -= apSub[j]->nOp; 1591 } 1592 pOp = &apSub[j]->aOp[i]; 1593 } 1594 if( p->explain==1 ){ 1595 pMem->flags = MEM_Int; 1596 pMem->u.i = i; /* Program counter */ 1597 pMem++; 1598 1599 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1600 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1601 assert( pMem->z!=0 ); 1602 pMem->n = sqlite3Strlen30(pMem->z); 1603 pMem->enc = SQLITE_UTF8; 1604 pMem++; 1605 1606 /* When an OP_Program opcode is encounter (the only opcode that has 1607 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1608 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1609 ** has not already been seen. 1610 */ 1611 if( pOp->p4type==P4_SUBPROGRAM ){ 1612 int nByte = (nSub+1)*sizeof(SubProgram*); 1613 int j; 1614 for(j=0; j<nSub; j++){ 1615 if( apSub[j]==pOp->p4.pProgram ) break; 1616 } 1617 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){ 1618 apSub = (SubProgram **)pSub->z; 1619 apSub[nSub++] = pOp->p4.pProgram; 1620 pSub->flags |= MEM_Blob; 1621 pSub->n = nSub*sizeof(SubProgram*); 1622 } 1623 } 1624 } 1625 1626 pMem->flags = MEM_Int; 1627 pMem->u.i = pOp->p1; /* P1 */ 1628 pMem++; 1629 1630 pMem->flags = MEM_Int; 1631 pMem->u.i = pOp->p2; /* P2 */ 1632 pMem++; 1633 1634 pMem->flags = MEM_Int; 1635 pMem->u.i = pOp->p3; /* P3 */ 1636 pMem++; 1637 1638 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */ 1639 assert( p->db->mallocFailed ); 1640 return SQLITE_ERROR; 1641 } 1642 pMem->flags = MEM_Str|MEM_Term; 1643 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc); 1644 if( zP4!=pMem->z ){ 1645 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 1646 }else{ 1647 assert( pMem->z!=0 ); 1648 pMem->n = sqlite3Strlen30(pMem->z); 1649 pMem->enc = SQLITE_UTF8; 1650 } 1651 pMem++; 1652 1653 if( p->explain==1 ){ 1654 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ 1655 assert( p->db->mallocFailed ); 1656 return SQLITE_ERROR; 1657 } 1658 pMem->flags = MEM_Str|MEM_Term; 1659 pMem->n = 2; 1660 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1661 pMem->enc = SQLITE_UTF8; 1662 pMem++; 1663 1664 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1665 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ 1666 assert( p->db->mallocFailed ); 1667 return SQLITE_ERROR; 1668 } 1669 pMem->flags = MEM_Str|MEM_Term; 1670 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 1671 pMem->enc = SQLITE_UTF8; 1672 #else 1673 pMem->flags = MEM_Null; /* Comment */ 1674 #endif 1675 } 1676 1677 p->nResColumn = 8 - 4*(p->explain-1); 1678 p->pResultSet = &p->aMem[1]; 1679 p->rc = SQLITE_OK; 1680 rc = SQLITE_ROW; 1681 } 1682 return rc; 1683 } 1684 #endif /* SQLITE_OMIT_EXPLAIN */ 1685 1686 #ifdef SQLITE_DEBUG 1687 /* 1688 ** Print the SQL that was used to generate a VDBE program. 1689 */ 1690 void sqlite3VdbePrintSql(Vdbe *p){ 1691 const char *z = 0; 1692 if( p->zSql ){ 1693 z = p->zSql; 1694 }else if( p->nOp>=1 ){ 1695 const VdbeOp *pOp = &p->aOp[0]; 1696 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1697 z = pOp->p4.z; 1698 while( sqlite3Isspace(*z) ) z++; 1699 } 1700 } 1701 if( z ) printf("SQL: [%s]\n", z); 1702 } 1703 #endif 1704 1705 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 1706 /* 1707 ** Print an IOTRACE message showing SQL content. 1708 */ 1709 void sqlite3VdbeIOTraceSql(Vdbe *p){ 1710 int nOp = p->nOp; 1711 VdbeOp *pOp; 1712 if( sqlite3IoTrace==0 ) return; 1713 if( nOp<1 ) return; 1714 pOp = &p->aOp[0]; 1715 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1716 int i, j; 1717 char z[1000]; 1718 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 1719 for(i=0; sqlite3Isspace(z[i]); i++){} 1720 for(j=0; z[i]; i++){ 1721 if( sqlite3Isspace(z[i]) ){ 1722 if( z[i-1]!=' ' ){ 1723 z[j++] = ' '; 1724 } 1725 }else{ 1726 z[j++] = z[i]; 1727 } 1728 } 1729 z[j] = 0; 1730 sqlite3IoTrace("SQL %s\n", z); 1731 } 1732 } 1733 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 1734 1735 /* An instance of this object describes bulk memory available for use 1736 ** by subcomponents of a prepared statement. Space is allocated out 1737 ** of a ReusableSpace object by the allocSpace() routine below. 1738 */ 1739 struct ReusableSpace { 1740 u8 *pSpace; /* Available memory */ 1741 int nFree; /* Bytes of available memory */ 1742 int nNeeded; /* Total bytes that could not be allocated */ 1743 }; 1744 1745 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 1746 ** from the ReusableSpace object. Return a pointer to the allocated 1747 ** memory on success. If insufficient memory is available in the 1748 ** ReusableSpace object, increase the ReusableSpace.nNeeded 1749 ** value by the amount needed and return NULL. 1750 ** 1751 ** If pBuf is not initially NULL, that means that the memory has already 1752 ** been allocated by a prior call to this routine, so just return a copy 1753 ** of pBuf and leave ReusableSpace unchanged. 1754 ** 1755 ** This allocator is employed to repurpose unused slots at the end of the 1756 ** opcode array of prepared state for other memory needs of the prepared 1757 ** statement. 1758 */ 1759 static void *allocSpace( 1760 struct ReusableSpace *p, /* Bulk memory available for allocation */ 1761 void *pBuf, /* Pointer to a prior allocation */ 1762 int nByte /* Bytes of memory needed */ 1763 ){ 1764 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 1765 if( pBuf==0 ){ 1766 nByte = ROUND8(nByte); 1767 if( nByte <= p->nFree ){ 1768 p->nFree -= nByte; 1769 pBuf = &p->pSpace[p->nFree]; 1770 }else{ 1771 p->nNeeded += nByte; 1772 } 1773 } 1774 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 1775 return pBuf; 1776 } 1777 1778 /* 1779 ** Rewind the VDBE back to the beginning in preparation for 1780 ** running it. 1781 */ 1782 void sqlite3VdbeRewind(Vdbe *p){ 1783 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1784 int i; 1785 #endif 1786 assert( p!=0 ); 1787 assert( p->magic==VDBE_MAGIC_INIT ); 1788 1789 /* There should be at least one opcode. 1790 */ 1791 assert( p->nOp>0 ); 1792 1793 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 1794 p->magic = VDBE_MAGIC_RUN; 1795 1796 #ifdef SQLITE_DEBUG 1797 for(i=1; i<p->nMem; i++){ 1798 assert( p->aMem[i].db==p->db ); 1799 } 1800 #endif 1801 p->pc = -1; 1802 p->rc = SQLITE_OK; 1803 p->errorAction = OE_Abort; 1804 p->nChange = 0; 1805 p->cacheCtr = 1; 1806 p->minWriteFileFormat = 255; 1807 p->iStatement = 0; 1808 p->nFkConstraint = 0; 1809 #ifdef VDBE_PROFILE 1810 for(i=0; i<p->nOp; i++){ 1811 p->aOp[i].cnt = 0; 1812 p->aOp[i].cycles = 0; 1813 } 1814 #endif 1815 } 1816 1817 /* 1818 ** Prepare a virtual machine for execution for the first time after 1819 ** creating the virtual machine. This involves things such 1820 ** as allocating registers and initializing the program counter. 1821 ** After the VDBE has be prepped, it can be executed by one or more 1822 ** calls to sqlite3VdbeExec(). 1823 ** 1824 ** This function may be called exactly once on each virtual machine. 1825 ** After this routine is called the VM has been "packaged" and is ready 1826 ** to run. After this routine is called, further calls to 1827 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 1828 ** the Vdbe from the Parse object that helped generate it so that the 1829 ** the Vdbe becomes an independent entity and the Parse object can be 1830 ** destroyed. 1831 ** 1832 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 1833 ** to its initial state after it has been run. 1834 */ 1835 void sqlite3VdbeMakeReady( 1836 Vdbe *p, /* The VDBE */ 1837 Parse *pParse /* Parsing context */ 1838 ){ 1839 sqlite3 *db; /* The database connection */ 1840 int nVar; /* Number of parameters */ 1841 int nMem; /* Number of VM memory registers */ 1842 int nCursor; /* Number of cursors required */ 1843 int nArg; /* Number of arguments in subprograms */ 1844 int nOnce; /* Number of OP_Once instructions */ 1845 int n; /* Loop counter */ 1846 struct ReusableSpace x; /* Reusable bulk memory */ 1847 1848 assert( p!=0 ); 1849 assert( p->nOp>0 ); 1850 assert( pParse!=0 ); 1851 assert( p->magic==VDBE_MAGIC_INIT ); 1852 assert( pParse==p->pParse ); 1853 db = p->db; 1854 assert( db->mallocFailed==0 ); 1855 nVar = pParse->nVar; 1856 nMem = pParse->nMem; 1857 nCursor = pParse->nTab; 1858 nArg = pParse->nMaxArg; 1859 nOnce = pParse->nOnce; 1860 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */ 1861 1862 /* For each cursor required, also allocate a memory cell. Memory 1863 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by 1864 ** the vdbe program. Instead they are used to allocate memory for 1865 ** VdbeCursor/BtCursor structures. The blob of memory associated with 1866 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) 1867 ** stores the blob of memory associated with cursor 1, etc. 1868 ** 1869 ** See also: allocateCursor(). 1870 */ 1871 nMem += nCursor; 1872 1873 /* Figure out how much reusable memory is available at the end of the 1874 ** opcode array. This extra memory will be reallocated for other elements 1875 ** of the prepared statement. 1876 */ 1877 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 1878 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 1879 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 1880 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 1881 assert( x.nFree>=0 ); 1882 if( x.nFree>0 ){ 1883 memset(x.pSpace, 0, x.nFree); 1884 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 1885 } 1886 1887 resolveP2Values(p, &nArg); 1888 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 1889 if( pParse->explain && nMem<10 ){ 1890 nMem = 10; 1891 } 1892 p->expired = 0; 1893 1894 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 1895 ** passes. On the first pass, we try to reuse unused memory at the 1896 ** end of the opcode array. If we are unable to satisfy all memory 1897 ** requirements by reusing the opcode array tail, then the second 1898 ** pass will fill in the remainder using a fresh memory allocation. 1899 ** 1900 ** This two-pass approach that reuses as much memory as possible from 1901 ** the leftover memory at the end of the opcode array. This can significantly 1902 ** reduce the amount of memory held by a prepared statement. 1903 */ 1904 do { 1905 x.nNeeded = 0; 1906 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 1907 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 1908 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 1909 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 1910 p->aOnceFlag = allocSpace(&x, p->aOnceFlag, nOnce); 1911 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1912 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 1913 #endif 1914 if( x.nNeeded==0 ) break; 1915 x.pSpace = p->pFree = sqlite3DbMallocZero(db, x.nNeeded); 1916 x.nFree = x.nNeeded; 1917 }while( !db->mallocFailed ); 1918 1919 p->nCursor = nCursor; 1920 p->nOnceFlag = nOnce; 1921 if( p->aVar ){ 1922 p->nVar = (ynVar)nVar; 1923 for(n=0; n<nVar; n++){ 1924 p->aVar[n].flags = MEM_Null; 1925 p->aVar[n].db = db; 1926 } 1927 } 1928 p->nzVar = pParse->nzVar; 1929 p->azVar = pParse->azVar; 1930 pParse->nzVar = 0; 1931 pParse->azVar = 0; 1932 if( p->aMem ){ 1933 p->aMem--; /* aMem[] goes from 1..nMem */ 1934 p->nMem = nMem; /* not from 0..nMem-1 */ 1935 for(n=1; n<=nMem; n++){ 1936 p->aMem[n].flags = MEM_Undefined; 1937 p->aMem[n].db = db; 1938 } 1939 } 1940 p->explain = pParse->explain; 1941 sqlite3VdbeRewind(p); 1942 } 1943 1944 /* 1945 ** Close a VDBE cursor and release all the resources that cursor 1946 ** happens to hold. 1947 */ 1948 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 1949 if( pCx==0 ){ 1950 return; 1951 } 1952 assert( pCx->pBt==0 || pCx->eCurType==CURTYPE_BTREE ); 1953 switch( pCx->eCurType ){ 1954 case CURTYPE_SORTER: { 1955 sqlite3VdbeSorterClose(p->db, pCx); 1956 break; 1957 } 1958 case CURTYPE_BTREE: { 1959 if( pCx->pBt ){ 1960 sqlite3BtreeClose(pCx->pBt); 1961 /* The pCx->pCursor will be close automatically, if it exists, by 1962 ** the call above. */ 1963 }else{ 1964 assert( pCx->uc.pCursor!=0 ); 1965 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 1966 } 1967 break; 1968 } 1969 #ifndef SQLITE_OMIT_VIRTUALTABLE 1970 case CURTYPE_VTAB: { 1971 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 1972 const sqlite3_module *pModule = pVCur->pVtab->pModule; 1973 assert( pVCur->pVtab->nRef>0 ); 1974 pVCur->pVtab->nRef--; 1975 pModule->xClose(pVCur); 1976 break; 1977 } 1978 #endif 1979 } 1980 } 1981 1982 /* 1983 ** Close all cursors in the current frame. 1984 */ 1985 static void closeCursorsInFrame(Vdbe *p){ 1986 if( p->apCsr ){ 1987 int i; 1988 for(i=0; i<p->nCursor; i++){ 1989 VdbeCursor *pC = p->apCsr[i]; 1990 if( pC ){ 1991 sqlite3VdbeFreeCursor(p, pC); 1992 p->apCsr[i] = 0; 1993 } 1994 } 1995 } 1996 } 1997 1998 /* 1999 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2000 ** is used, for example, when a trigger sub-program is halted to restore 2001 ** control to the main program. 2002 */ 2003 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2004 Vdbe *v = pFrame->v; 2005 closeCursorsInFrame(v); 2006 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2007 v->anExec = pFrame->anExec; 2008 #endif 2009 v->aOnceFlag = pFrame->aOnceFlag; 2010 v->nOnceFlag = pFrame->nOnceFlag; 2011 v->aOp = pFrame->aOp; 2012 v->nOp = pFrame->nOp; 2013 v->aMem = pFrame->aMem; 2014 v->nMem = pFrame->nMem; 2015 v->apCsr = pFrame->apCsr; 2016 v->nCursor = pFrame->nCursor; 2017 v->db->lastRowid = pFrame->lastRowid; 2018 v->nChange = pFrame->nChange; 2019 v->db->nChange = pFrame->nDbChange; 2020 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2021 v->pAuxData = pFrame->pAuxData; 2022 pFrame->pAuxData = 0; 2023 return pFrame->pc; 2024 } 2025 2026 /* 2027 ** Close all cursors. 2028 ** 2029 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2030 ** cell array. This is necessary as the memory cell array may contain 2031 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2032 ** open cursors. 2033 */ 2034 static void closeAllCursors(Vdbe *p){ 2035 if( p->pFrame ){ 2036 VdbeFrame *pFrame; 2037 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2038 sqlite3VdbeFrameRestore(pFrame); 2039 p->pFrame = 0; 2040 p->nFrame = 0; 2041 } 2042 assert( p->nFrame==0 ); 2043 closeCursorsInFrame(p); 2044 if( p->aMem ){ 2045 releaseMemArray(&p->aMem[1], p->nMem); 2046 } 2047 while( p->pDelFrame ){ 2048 VdbeFrame *pDel = p->pDelFrame; 2049 p->pDelFrame = pDel->pParent; 2050 sqlite3VdbeFrameDelete(pDel); 2051 } 2052 2053 /* Delete any auxdata allocations made by the VM */ 2054 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2055 assert( p->pAuxData==0 ); 2056 } 2057 2058 /* 2059 ** Clean up the VM after a single run. 2060 */ 2061 static void Cleanup(Vdbe *p){ 2062 sqlite3 *db = p->db; 2063 2064 #ifdef SQLITE_DEBUG 2065 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 2066 ** Vdbe.aMem[] arrays have already been cleaned up. */ 2067 int i; 2068 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 2069 if( p->aMem ){ 2070 for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 2071 } 2072 #endif 2073 2074 sqlite3DbFree(db, p->zErrMsg); 2075 p->zErrMsg = 0; 2076 p->pResultSet = 0; 2077 } 2078 2079 /* 2080 ** Set the number of result columns that will be returned by this SQL 2081 ** statement. This is now set at compile time, rather than during 2082 ** execution of the vdbe program so that sqlite3_column_count() can 2083 ** be called on an SQL statement before sqlite3_step(). 2084 */ 2085 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2086 Mem *pColName; 2087 int n; 2088 sqlite3 *db = p->db; 2089 2090 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2091 sqlite3DbFree(db, p->aColName); 2092 n = nResColumn*COLNAME_N; 2093 p->nResColumn = (u16)nResColumn; 2094 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n ); 2095 if( p->aColName==0 ) return; 2096 while( n-- > 0 ){ 2097 pColName->flags = MEM_Null; 2098 pColName->db = p->db; 2099 pColName++; 2100 } 2101 } 2102 2103 /* 2104 ** Set the name of the idx'th column to be returned by the SQL statement. 2105 ** zName must be a pointer to a nul terminated string. 2106 ** 2107 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2108 ** 2109 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2110 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2111 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2112 */ 2113 int sqlite3VdbeSetColName( 2114 Vdbe *p, /* Vdbe being configured */ 2115 int idx, /* Index of column zName applies to */ 2116 int var, /* One of the COLNAME_* constants */ 2117 const char *zName, /* Pointer to buffer containing name */ 2118 void (*xDel)(void*) /* Memory management strategy for zName */ 2119 ){ 2120 int rc; 2121 Mem *pColName; 2122 assert( idx<p->nResColumn ); 2123 assert( var<COLNAME_N ); 2124 if( p->db->mallocFailed ){ 2125 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2126 return SQLITE_NOMEM_BKPT; 2127 } 2128 assert( p->aColName!=0 ); 2129 pColName = &(p->aColName[idx+var*p->nResColumn]); 2130 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2131 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2132 return rc; 2133 } 2134 2135 /* 2136 ** A read or write transaction may or may not be active on database handle 2137 ** db. If a transaction is active, commit it. If there is a 2138 ** write-transaction spanning more than one database file, this routine 2139 ** takes care of the master journal trickery. 2140 */ 2141 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2142 int i; 2143 int nTrans = 0; /* Number of databases with an active write-transaction 2144 ** that are candidates for a two-phase commit using a 2145 ** master-journal */ 2146 int rc = SQLITE_OK; 2147 int needXcommit = 0; 2148 2149 #ifdef SQLITE_OMIT_VIRTUALTABLE 2150 /* With this option, sqlite3VtabSync() is defined to be simply 2151 ** SQLITE_OK so p is not used. 2152 */ 2153 UNUSED_PARAMETER(p); 2154 #endif 2155 2156 /* Before doing anything else, call the xSync() callback for any 2157 ** virtual module tables written in this transaction. This has to 2158 ** be done before determining whether a master journal file is 2159 ** required, as an xSync() callback may add an attached database 2160 ** to the transaction. 2161 */ 2162 rc = sqlite3VtabSync(db, p); 2163 2164 /* This loop determines (a) if the commit hook should be invoked and 2165 ** (b) how many database files have open write transactions, not 2166 ** including the temp database. (b) is important because if more than 2167 ** one database file has an open write transaction, a master journal 2168 ** file is required for an atomic commit. 2169 */ 2170 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2171 Btree *pBt = db->aDb[i].pBt; 2172 if( sqlite3BtreeIsInTrans(pBt) ){ 2173 /* Whether or not a database might need a master journal depends upon 2174 ** its journal mode (among other things). This matrix determines which 2175 ** journal modes use a master journal and which do not */ 2176 static const u8 aMJNeeded[] = { 2177 /* DELETE */ 1, 2178 /* PERSIST */ 1, 2179 /* OFF */ 0, 2180 /* TRUNCATE */ 1, 2181 /* MEMORY */ 0, 2182 /* WAL */ 0 2183 }; 2184 Pager *pPager; /* Pager associated with pBt */ 2185 needXcommit = 1; 2186 sqlite3BtreeEnter(pBt); 2187 pPager = sqlite3BtreePager(pBt); 2188 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2189 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2190 ){ 2191 assert( i!=1 ); 2192 nTrans++; 2193 } 2194 rc = sqlite3PagerExclusiveLock(pPager); 2195 sqlite3BtreeLeave(pBt); 2196 } 2197 } 2198 if( rc!=SQLITE_OK ){ 2199 return rc; 2200 } 2201 2202 /* If there are any write-transactions at all, invoke the commit hook */ 2203 if( needXcommit && db->xCommitCallback ){ 2204 rc = db->xCommitCallback(db->pCommitArg); 2205 if( rc ){ 2206 return SQLITE_CONSTRAINT_COMMITHOOK; 2207 } 2208 } 2209 2210 /* The simple case - no more than one database file (not counting the 2211 ** TEMP database) has a transaction active. There is no need for the 2212 ** master-journal. 2213 ** 2214 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2215 ** string, it means the main database is :memory: or a temp file. In 2216 ** that case we do not support atomic multi-file commits, so use the 2217 ** simple case then too. 2218 */ 2219 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2220 || nTrans<=1 2221 ){ 2222 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2223 Btree *pBt = db->aDb[i].pBt; 2224 if( pBt ){ 2225 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2226 } 2227 } 2228 2229 /* Do the commit only if all databases successfully complete phase 1. 2230 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2231 ** IO error while deleting or truncating a journal file. It is unlikely, 2232 ** but could happen. In this case abandon processing and return the error. 2233 */ 2234 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2235 Btree *pBt = db->aDb[i].pBt; 2236 if( pBt ){ 2237 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2238 } 2239 } 2240 if( rc==SQLITE_OK ){ 2241 sqlite3VtabCommit(db); 2242 } 2243 } 2244 2245 /* The complex case - There is a multi-file write-transaction active. 2246 ** This requires a master journal file to ensure the transaction is 2247 ** committed atomically. 2248 */ 2249 #ifndef SQLITE_OMIT_DISKIO 2250 else{ 2251 sqlite3_vfs *pVfs = db->pVfs; 2252 char *zMaster = 0; /* File-name for the master journal */ 2253 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2254 sqlite3_file *pMaster = 0; 2255 i64 offset = 0; 2256 int res; 2257 int retryCount = 0; 2258 int nMainFile; 2259 2260 /* Select a master journal file name */ 2261 nMainFile = sqlite3Strlen30(zMainFile); 2262 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); 2263 if( zMaster==0 ) return SQLITE_NOMEM_BKPT; 2264 do { 2265 u32 iRandom; 2266 if( retryCount ){ 2267 if( retryCount>100 ){ 2268 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 2269 sqlite3OsDelete(pVfs, zMaster, 0); 2270 break; 2271 }else if( retryCount==1 ){ 2272 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2273 } 2274 } 2275 retryCount++; 2276 sqlite3_randomness(sizeof(iRandom), &iRandom); 2277 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2278 (iRandom>>8)&0xffffff, iRandom&0xff); 2279 /* The antipenultimate character of the master journal name must 2280 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2281 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2282 sqlite3FileSuffix3(zMainFile, zMaster); 2283 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2284 }while( rc==SQLITE_OK && res ); 2285 if( rc==SQLITE_OK ){ 2286 /* Open the master journal. */ 2287 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2288 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2289 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2290 ); 2291 } 2292 if( rc!=SQLITE_OK ){ 2293 sqlite3DbFree(db, zMaster); 2294 return rc; 2295 } 2296 2297 /* Write the name of each database file in the transaction into the new 2298 ** master journal file. If an error occurs at this point close 2299 ** and delete the master journal file. All the individual journal files 2300 ** still have 'null' as the master journal pointer, so they will roll 2301 ** back independently if a failure occurs. 2302 */ 2303 for(i=0; i<db->nDb; i++){ 2304 Btree *pBt = db->aDb[i].pBt; 2305 if( sqlite3BtreeIsInTrans(pBt) ){ 2306 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2307 if( zFile==0 ){ 2308 continue; /* Ignore TEMP and :memory: databases */ 2309 } 2310 assert( zFile[0]!=0 ); 2311 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2312 offset += sqlite3Strlen30(zFile)+1; 2313 if( rc!=SQLITE_OK ){ 2314 sqlite3OsCloseFree(pMaster); 2315 sqlite3OsDelete(pVfs, zMaster, 0); 2316 sqlite3DbFree(db, zMaster); 2317 return rc; 2318 } 2319 } 2320 } 2321 2322 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2323 ** flag is set this is not required. 2324 */ 2325 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2326 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2327 ){ 2328 sqlite3OsCloseFree(pMaster); 2329 sqlite3OsDelete(pVfs, zMaster, 0); 2330 sqlite3DbFree(db, zMaster); 2331 return rc; 2332 } 2333 2334 /* Sync all the db files involved in the transaction. The same call 2335 ** sets the master journal pointer in each individual journal. If 2336 ** an error occurs here, do not delete the master journal file. 2337 ** 2338 ** If the error occurs during the first call to 2339 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2340 ** master journal file will be orphaned. But we cannot delete it, 2341 ** in case the master journal file name was written into the journal 2342 ** file before the failure occurred. 2343 */ 2344 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2345 Btree *pBt = db->aDb[i].pBt; 2346 if( pBt ){ 2347 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2348 } 2349 } 2350 sqlite3OsCloseFree(pMaster); 2351 assert( rc!=SQLITE_BUSY ); 2352 if( rc!=SQLITE_OK ){ 2353 sqlite3DbFree(db, zMaster); 2354 return rc; 2355 } 2356 2357 /* Delete the master journal file. This commits the transaction. After 2358 ** doing this the directory is synced again before any individual 2359 ** transaction files are deleted. 2360 */ 2361 rc = sqlite3OsDelete(pVfs, zMaster, 1); 2362 sqlite3DbFree(db, zMaster); 2363 zMaster = 0; 2364 if( rc ){ 2365 return rc; 2366 } 2367 2368 /* All files and directories have already been synced, so the following 2369 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2370 ** deleting or truncating journals. If something goes wrong while 2371 ** this is happening we don't really care. The integrity of the 2372 ** transaction is already guaranteed, but some stray 'cold' journals 2373 ** may be lying around. Returning an error code won't help matters. 2374 */ 2375 disable_simulated_io_errors(); 2376 sqlite3BeginBenignMalloc(); 2377 for(i=0; i<db->nDb; i++){ 2378 Btree *pBt = db->aDb[i].pBt; 2379 if( pBt ){ 2380 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2381 } 2382 } 2383 sqlite3EndBenignMalloc(); 2384 enable_simulated_io_errors(); 2385 2386 sqlite3VtabCommit(db); 2387 } 2388 #endif 2389 2390 return rc; 2391 } 2392 2393 /* 2394 ** This routine checks that the sqlite3.nVdbeActive count variable 2395 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2396 ** currently active. An assertion fails if the two counts do not match. 2397 ** This is an internal self-check only - it is not an essential processing 2398 ** step. 2399 ** 2400 ** This is a no-op if NDEBUG is defined. 2401 */ 2402 #ifndef NDEBUG 2403 static void checkActiveVdbeCnt(sqlite3 *db){ 2404 Vdbe *p; 2405 int cnt = 0; 2406 int nWrite = 0; 2407 int nRead = 0; 2408 p = db->pVdbe; 2409 while( p ){ 2410 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2411 cnt++; 2412 if( p->readOnly==0 ) nWrite++; 2413 if( p->bIsReader ) nRead++; 2414 } 2415 p = p->pNext; 2416 } 2417 assert( cnt==db->nVdbeActive ); 2418 assert( nWrite==db->nVdbeWrite ); 2419 assert( nRead==db->nVdbeRead ); 2420 } 2421 #else 2422 #define checkActiveVdbeCnt(x) 2423 #endif 2424 2425 /* 2426 ** If the Vdbe passed as the first argument opened a statement-transaction, 2427 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2428 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2429 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2430 ** statement transaction is committed. 2431 ** 2432 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2433 ** Otherwise SQLITE_OK. 2434 */ 2435 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2436 sqlite3 *const db = p->db; 2437 int rc = SQLITE_OK; 2438 2439 /* If p->iStatement is greater than zero, then this Vdbe opened a 2440 ** statement transaction that should be closed here. The only exception 2441 ** is that an IO error may have occurred, causing an emergency rollback. 2442 ** In this case (db->nStatement==0), and there is nothing to do. 2443 */ 2444 if( db->nStatement && p->iStatement ){ 2445 int i; 2446 const int iSavepoint = p->iStatement-1; 2447 2448 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2449 assert( db->nStatement>0 ); 2450 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2451 2452 for(i=0; i<db->nDb; i++){ 2453 int rc2 = SQLITE_OK; 2454 Btree *pBt = db->aDb[i].pBt; 2455 if( pBt ){ 2456 if( eOp==SAVEPOINT_ROLLBACK ){ 2457 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2458 } 2459 if( rc2==SQLITE_OK ){ 2460 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2461 } 2462 if( rc==SQLITE_OK ){ 2463 rc = rc2; 2464 } 2465 } 2466 } 2467 db->nStatement--; 2468 p->iStatement = 0; 2469 2470 if( rc==SQLITE_OK ){ 2471 if( eOp==SAVEPOINT_ROLLBACK ){ 2472 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2473 } 2474 if( rc==SQLITE_OK ){ 2475 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2476 } 2477 } 2478 2479 /* If the statement transaction is being rolled back, also restore the 2480 ** database handles deferred constraint counter to the value it had when 2481 ** the statement transaction was opened. */ 2482 if( eOp==SAVEPOINT_ROLLBACK ){ 2483 db->nDeferredCons = p->nStmtDefCons; 2484 db->nDeferredImmCons = p->nStmtDefImmCons; 2485 } 2486 } 2487 return rc; 2488 } 2489 2490 /* 2491 ** This function is called when a transaction opened by the database 2492 ** handle associated with the VM passed as an argument is about to be 2493 ** committed. If there are outstanding deferred foreign key constraint 2494 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2495 ** 2496 ** If there are outstanding FK violations and this function returns 2497 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2498 ** and write an error message to it. Then return SQLITE_ERROR. 2499 */ 2500 #ifndef SQLITE_OMIT_FOREIGN_KEY 2501 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2502 sqlite3 *db = p->db; 2503 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2504 || (!deferred && p->nFkConstraint>0) 2505 ){ 2506 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2507 p->errorAction = OE_Abort; 2508 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2509 return SQLITE_ERROR; 2510 } 2511 return SQLITE_OK; 2512 } 2513 #endif 2514 2515 /* 2516 ** This routine is called the when a VDBE tries to halt. If the VDBE 2517 ** has made changes and is in autocommit mode, then commit those 2518 ** changes. If a rollback is needed, then do the rollback. 2519 ** 2520 ** This routine is the only way to move the state of a VM from 2521 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2522 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2523 ** 2524 ** Return an error code. If the commit could not complete because of 2525 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2526 ** means the close did not happen and needs to be repeated. 2527 */ 2528 int sqlite3VdbeHalt(Vdbe *p){ 2529 int rc; /* Used to store transient return codes */ 2530 sqlite3 *db = p->db; 2531 2532 /* This function contains the logic that determines if a statement or 2533 ** transaction will be committed or rolled back as a result of the 2534 ** execution of this virtual machine. 2535 ** 2536 ** If any of the following errors occur: 2537 ** 2538 ** SQLITE_NOMEM 2539 ** SQLITE_IOERR 2540 ** SQLITE_FULL 2541 ** SQLITE_INTERRUPT 2542 ** 2543 ** Then the internal cache might have been left in an inconsistent 2544 ** state. We need to rollback the statement transaction, if there is 2545 ** one, or the complete transaction if there is no statement transaction. 2546 */ 2547 2548 if( db->mallocFailed ){ 2549 p->rc = SQLITE_NOMEM_BKPT; 2550 } 2551 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag); 2552 closeAllCursors(p); 2553 if( p->magic!=VDBE_MAGIC_RUN ){ 2554 return SQLITE_OK; 2555 } 2556 checkActiveVdbeCnt(db); 2557 2558 /* No commit or rollback needed if the program never started or if the 2559 ** SQL statement does not read or write a database file. */ 2560 if( p->pc>=0 && p->bIsReader ){ 2561 int mrc; /* Primary error code from p->rc */ 2562 int eStatementOp = 0; 2563 int isSpecialError; /* Set to true if a 'special' error */ 2564 2565 /* Lock all btrees used by the statement */ 2566 sqlite3VdbeEnter(p); 2567 2568 /* Check for one of the special errors */ 2569 mrc = p->rc & 0xff; 2570 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2571 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2572 if( isSpecialError ){ 2573 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2574 ** no rollback is necessary. Otherwise, at least a savepoint 2575 ** transaction must be rolled back to restore the database to a 2576 ** consistent state. 2577 ** 2578 ** Even if the statement is read-only, it is important to perform 2579 ** a statement or transaction rollback operation. If the error 2580 ** occurred while writing to the journal, sub-journal or database 2581 ** file as part of an effort to free up cache space (see function 2582 ** pagerStress() in pager.c), the rollback is required to restore 2583 ** the pager to a consistent state. 2584 */ 2585 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2586 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2587 eStatementOp = SAVEPOINT_ROLLBACK; 2588 }else{ 2589 /* We are forced to roll back the active transaction. Before doing 2590 ** so, abort any other statements this handle currently has active. 2591 */ 2592 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2593 sqlite3CloseSavepoints(db); 2594 db->autoCommit = 1; 2595 p->nChange = 0; 2596 } 2597 } 2598 } 2599 2600 /* Check for immediate foreign key violations. */ 2601 if( p->rc==SQLITE_OK ){ 2602 sqlite3VdbeCheckFk(p, 0); 2603 } 2604 2605 /* If the auto-commit flag is set and this is the only active writer 2606 ** VM, then we do either a commit or rollback of the current transaction. 2607 ** 2608 ** Note: This block also runs if one of the special errors handled 2609 ** above has occurred. 2610 */ 2611 if( !sqlite3VtabInSync(db) 2612 && db->autoCommit 2613 && db->nVdbeWrite==(p->readOnly==0) 2614 ){ 2615 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2616 rc = sqlite3VdbeCheckFk(p, 1); 2617 if( rc!=SQLITE_OK ){ 2618 if( NEVER(p->readOnly) ){ 2619 sqlite3VdbeLeave(p); 2620 return SQLITE_ERROR; 2621 } 2622 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2623 }else{ 2624 /* The auto-commit flag is true, the vdbe program was successful 2625 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2626 ** key constraints to hold up the transaction. This means a commit 2627 ** is required. */ 2628 rc = vdbeCommit(db, p); 2629 } 2630 if( rc==SQLITE_BUSY && p->readOnly ){ 2631 sqlite3VdbeLeave(p); 2632 return SQLITE_BUSY; 2633 }else if( rc!=SQLITE_OK ){ 2634 p->rc = rc; 2635 sqlite3RollbackAll(db, SQLITE_OK); 2636 p->nChange = 0; 2637 }else{ 2638 db->nDeferredCons = 0; 2639 db->nDeferredImmCons = 0; 2640 db->flags &= ~SQLITE_DeferFKs; 2641 sqlite3CommitInternalChanges(db); 2642 } 2643 }else{ 2644 sqlite3RollbackAll(db, SQLITE_OK); 2645 p->nChange = 0; 2646 } 2647 db->nStatement = 0; 2648 }else if( eStatementOp==0 ){ 2649 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2650 eStatementOp = SAVEPOINT_RELEASE; 2651 }else if( p->errorAction==OE_Abort ){ 2652 eStatementOp = SAVEPOINT_ROLLBACK; 2653 }else{ 2654 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2655 sqlite3CloseSavepoints(db); 2656 db->autoCommit = 1; 2657 p->nChange = 0; 2658 } 2659 } 2660 2661 /* If eStatementOp is non-zero, then a statement transaction needs to 2662 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2663 ** do so. If this operation returns an error, and the current statement 2664 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2665 ** current statement error code. 2666 */ 2667 if( eStatementOp ){ 2668 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2669 if( rc ){ 2670 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 2671 p->rc = rc; 2672 sqlite3DbFree(db, p->zErrMsg); 2673 p->zErrMsg = 0; 2674 } 2675 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2676 sqlite3CloseSavepoints(db); 2677 db->autoCommit = 1; 2678 p->nChange = 0; 2679 } 2680 } 2681 2682 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2683 ** has been rolled back, update the database connection change-counter. 2684 */ 2685 if( p->changeCntOn ){ 2686 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2687 sqlite3VdbeSetChanges(db, p->nChange); 2688 }else{ 2689 sqlite3VdbeSetChanges(db, 0); 2690 } 2691 p->nChange = 0; 2692 } 2693 2694 /* Release the locks */ 2695 sqlite3VdbeLeave(p); 2696 } 2697 2698 /* We have successfully halted and closed the VM. Record this fact. */ 2699 if( p->pc>=0 ){ 2700 db->nVdbeActive--; 2701 if( !p->readOnly ) db->nVdbeWrite--; 2702 if( p->bIsReader ) db->nVdbeRead--; 2703 assert( db->nVdbeActive>=db->nVdbeRead ); 2704 assert( db->nVdbeRead>=db->nVdbeWrite ); 2705 assert( db->nVdbeWrite>=0 ); 2706 } 2707 p->magic = VDBE_MAGIC_HALT; 2708 checkActiveVdbeCnt(db); 2709 if( db->mallocFailed ){ 2710 p->rc = SQLITE_NOMEM_BKPT; 2711 } 2712 2713 /* If the auto-commit flag is set to true, then any locks that were held 2714 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2715 ** to invoke any required unlock-notify callbacks. 2716 */ 2717 if( db->autoCommit ){ 2718 sqlite3ConnectionUnlocked(db); 2719 } 2720 2721 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 2722 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 2723 } 2724 2725 2726 /* 2727 ** Each VDBE holds the result of the most recent sqlite3_step() call 2728 ** in p->rc. This routine sets that result back to SQLITE_OK. 2729 */ 2730 void sqlite3VdbeResetStepResult(Vdbe *p){ 2731 p->rc = SQLITE_OK; 2732 } 2733 2734 /* 2735 ** Copy the error code and error message belonging to the VDBE passed 2736 ** as the first argument to its database handle (so that they will be 2737 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 2738 ** 2739 ** This function does not clear the VDBE error code or message, just 2740 ** copies them to the database handle. 2741 */ 2742 int sqlite3VdbeTransferError(Vdbe *p){ 2743 sqlite3 *db = p->db; 2744 int rc = p->rc; 2745 if( p->zErrMsg ){ 2746 db->bBenignMalloc++; 2747 sqlite3BeginBenignMalloc(); 2748 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 2749 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 2750 sqlite3EndBenignMalloc(); 2751 db->bBenignMalloc--; 2752 db->errCode = rc; 2753 }else{ 2754 sqlite3Error(db, rc); 2755 } 2756 return rc; 2757 } 2758 2759 #ifdef SQLITE_ENABLE_SQLLOG 2760 /* 2761 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 2762 ** invoke it. 2763 */ 2764 static void vdbeInvokeSqllog(Vdbe *v){ 2765 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 2766 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 2767 assert( v->db->init.busy==0 ); 2768 if( zExpanded ){ 2769 sqlite3GlobalConfig.xSqllog( 2770 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 2771 ); 2772 sqlite3DbFree(v->db, zExpanded); 2773 } 2774 } 2775 } 2776 #else 2777 # define vdbeInvokeSqllog(x) 2778 #endif 2779 2780 /* 2781 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 2782 ** Write any error messages into *pzErrMsg. Return the result code. 2783 ** 2784 ** After this routine is run, the VDBE should be ready to be executed 2785 ** again. 2786 ** 2787 ** To look at it another way, this routine resets the state of the 2788 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 2789 ** VDBE_MAGIC_INIT. 2790 */ 2791 int sqlite3VdbeReset(Vdbe *p){ 2792 sqlite3 *db; 2793 db = p->db; 2794 2795 /* If the VM did not run to completion or if it encountered an 2796 ** error, then it might not have been halted properly. So halt 2797 ** it now. 2798 */ 2799 sqlite3VdbeHalt(p); 2800 2801 /* If the VDBE has be run even partially, then transfer the error code 2802 ** and error message from the VDBE into the main database structure. But 2803 ** if the VDBE has just been set to run but has not actually executed any 2804 ** instructions yet, leave the main database error information unchanged. 2805 */ 2806 if( p->pc>=0 ){ 2807 vdbeInvokeSqllog(p); 2808 sqlite3VdbeTransferError(p); 2809 sqlite3DbFree(db, p->zErrMsg); 2810 p->zErrMsg = 0; 2811 if( p->runOnlyOnce ) p->expired = 1; 2812 }else if( p->rc && p->expired ){ 2813 /* The expired flag was set on the VDBE before the first call 2814 ** to sqlite3_step(). For consistency (since sqlite3_step() was 2815 ** called), set the database error in this case as well. 2816 */ 2817 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 2818 sqlite3DbFree(db, p->zErrMsg); 2819 p->zErrMsg = 0; 2820 } 2821 2822 /* Reclaim all memory used by the VDBE 2823 */ 2824 Cleanup(p); 2825 2826 /* Save profiling information from this VDBE run. 2827 */ 2828 #ifdef VDBE_PROFILE 2829 { 2830 FILE *out = fopen("vdbe_profile.out", "a"); 2831 if( out ){ 2832 int i; 2833 fprintf(out, "---- "); 2834 for(i=0; i<p->nOp; i++){ 2835 fprintf(out, "%02x", p->aOp[i].opcode); 2836 } 2837 fprintf(out, "\n"); 2838 if( p->zSql ){ 2839 char c, pc = 0; 2840 fprintf(out, "-- "); 2841 for(i=0; (c = p->zSql[i])!=0; i++){ 2842 if( pc=='\n' ) fprintf(out, "-- "); 2843 putc(c, out); 2844 pc = c; 2845 } 2846 if( pc!='\n' ) fprintf(out, "\n"); 2847 } 2848 for(i=0; i<p->nOp; i++){ 2849 char zHdr[100]; 2850 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 2851 p->aOp[i].cnt, 2852 p->aOp[i].cycles, 2853 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 2854 ); 2855 fprintf(out, "%s", zHdr); 2856 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 2857 } 2858 fclose(out); 2859 } 2860 } 2861 #endif 2862 p->iCurrentTime = 0; 2863 p->magic = VDBE_MAGIC_INIT; 2864 return p->rc & db->errMask; 2865 } 2866 2867 /* 2868 ** Clean up and delete a VDBE after execution. Return an integer which is 2869 ** the result code. Write any error message text into *pzErrMsg. 2870 */ 2871 int sqlite3VdbeFinalize(Vdbe *p){ 2872 int rc = SQLITE_OK; 2873 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 2874 rc = sqlite3VdbeReset(p); 2875 assert( (rc & p->db->errMask)==rc ); 2876 } 2877 sqlite3VdbeDelete(p); 2878 return rc; 2879 } 2880 2881 /* 2882 ** If parameter iOp is less than zero, then invoke the destructor for 2883 ** all auxiliary data pointers currently cached by the VM passed as 2884 ** the first argument. 2885 ** 2886 ** Or, if iOp is greater than or equal to zero, then the destructor is 2887 ** only invoked for those auxiliary data pointers created by the user 2888 ** function invoked by the OP_Function opcode at instruction iOp of 2889 ** VM pVdbe, and only then if: 2890 ** 2891 ** * the associated function parameter is the 32nd or later (counting 2892 ** from left to right), or 2893 ** 2894 ** * the corresponding bit in argument mask is clear (where the first 2895 ** function parameter corresponds to bit 0 etc.). 2896 */ 2897 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 2898 while( *pp ){ 2899 AuxData *pAux = *pp; 2900 if( (iOp<0) 2901 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg)))) 2902 ){ 2903 testcase( pAux->iArg==31 ); 2904 if( pAux->xDelete ){ 2905 pAux->xDelete(pAux->pAux); 2906 } 2907 *pp = pAux->pNext; 2908 sqlite3DbFree(db, pAux); 2909 }else{ 2910 pp= &pAux->pNext; 2911 } 2912 } 2913 } 2914 2915 /* 2916 ** Free all memory associated with the Vdbe passed as the second argument, 2917 ** except for object itself, which is preserved. 2918 ** 2919 ** The difference between this function and sqlite3VdbeDelete() is that 2920 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 2921 ** the database connection and frees the object itself. 2922 */ 2923 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 2924 SubProgram *pSub, *pNext; 2925 int i; 2926 assert( p->db==0 || p->db==db ); 2927 releaseMemArray(p->aVar, p->nVar); 2928 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2929 for(pSub=p->pProgram; pSub; pSub=pNext){ 2930 pNext = pSub->pNext; 2931 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 2932 sqlite3DbFree(db, pSub); 2933 } 2934 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); 2935 sqlite3DbFree(db, p->azVar); 2936 vdbeFreeOpArray(db, p->aOp, p->nOp); 2937 sqlite3DbFree(db, p->aColName); 2938 sqlite3DbFree(db, p->zSql); 2939 sqlite3DbFree(db, p->pFree); 2940 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2941 for(i=0; i<p->nScan; i++){ 2942 sqlite3DbFree(db, p->aScan[i].zName); 2943 } 2944 sqlite3DbFree(db, p->aScan); 2945 #endif 2946 } 2947 2948 /* 2949 ** Delete an entire VDBE. 2950 */ 2951 void sqlite3VdbeDelete(Vdbe *p){ 2952 sqlite3 *db; 2953 2954 if( NEVER(p==0) ) return; 2955 db = p->db; 2956 assert( sqlite3_mutex_held(db->mutex) ); 2957 sqlite3VdbeClearObject(db, p); 2958 if( p->pPrev ){ 2959 p->pPrev->pNext = p->pNext; 2960 }else{ 2961 assert( db->pVdbe==p ); 2962 db->pVdbe = p->pNext; 2963 } 2964 if( p->pNext ){ 2965 p->pNext->pPrev = p->pPrev; 2966 } 2967 p->magic = VDBE_MAGIC_DEAD; 2968 p->db = 0; 2969 sqlite3DbFree(db, p); 2970 } 2971 2972 /* 2973 ** The cursor "p" has a pending seek operation that has not yet been 2974 ** carried out. Seek the cursor now. If an error occurs, return 2975 ** the appropriate error code. 2976 */ 2977 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ 2978 int res, rc; 2979 #ifdef SQLITE_TEST 2980 extern int sqlite3_search_count; 2981 #endif 2982 assert( p->deferredMoveto ); 2983 assert( p->isTable ); 2984 assert( p->eCurType==CURTYPE_BTREE ); 2985 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); 2986 if( rc ) return rc; 2987 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 2988 #ifdef SQLITE_TEST 2989 sqlite3_search_count++; 2990 #endif 2991 p->deferredMoveto = 0; 2992 p->cacheStatus = CACHE_STALE; 2993 return SQLITE_OK; 2994 } 2995 2996 /* 2997 ** Something has moved cursor "p" out of place. Maybe the row it was 2998 ** pointed to was deleted out from under it. Or maybe the btree was 2999 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3000 ** is supposed to be pointing. If the row was deleted out from under the 3001 ** cursor, set the cursor to point to a NULL row. 3002 */ 3003 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 3004 int isDifferentRow, rc; 3005 assert( p->eCurType==CURTYPE_BTREE ); 3006 assert( p->uc.pCursor!=0 ); 3007 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3008 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3009 p->cacheStatus = CACHE_STALE; 3010 if( isDifferentRow ) p->nullRow = 1; 3011 return rc; 3012 } 3013 3014 /* 3015 ** Check to ensure that the cursor is valid. Restore the cursor 3016 ** if need be. Return any I/O error from the restore operation. 3017 */ 3018 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3019 assert( p->eCurType==CURTYPE_BTREE ); 3020 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3021 return handleMovedCursor(p); 3022 } 3023 return SQLITE_OK; 3024 } 3025 3026 /* 3027 ** Make sure the cursor p is ready to read or write the row to which it 3028 ** was last positioned. Return an error code if an OOM fault or I/O error 3029 ** prevents us from positioning the cursor to its correct position. 3030 ** 3031 ** If a MoveTo operation is pending on the given cursor, then do that 3032 ** MoveTo now. If no move is pending, check to see if the row has been 3033 ** deleted out from under the cursor and if it has, mark the row as 3034 ** a NULL row. 3035 ** 3036 ** If the cursor is already pointing to the correct row and that row has 3037 ** not been deleted out from under the cursor, then this routine is a no-op. 3038 */ 3039 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){ 3040 VdbeCursor *p = *pp; 3041 if( p->eCurType==CURTYPE_BTREE ){ 3042 if( p->deferredMoveto ){ 3043 int iMap; 3044 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){ 3045 *pp = p->pAltCursor; 3046 *piCol = iMap - 1; 3047 return SQLITE_OK; 3048 } 3049 return handleDeferredMoveto(p); 3050 } 3051 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3052 return handleMovedCursor(p); 3053 } 3054 } 3055 return SQLITE_OK; 3056 } 3057 3058 /* 3059 ** The following functions: 3060 ** 3061 ** sqlite3VdbeSerialType() 3062 ** sqlite3VdbeSerialTypeLen() 3063 ** sqlite3VdbeSerialLen() 3064 ** sqlite3VdbeSerialPut() 3065 ** sqlite3VdbeSerialGet() 3066 ** 3067 ** encapsulate the code that serializes values for storage in SQLite 3068 ** data and index records. Each serialized value consists of a 3069 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3070 ** integer, stored as a varint. 3071 ** 3072 ** In an SQLite index record, the serial type is stored directly before 3073 ** the blob of data that it corresponds to. In a table record, all serial 3074 ** types are stored at the start of the record, and the blobs of data at 3075 ** the end. Hence these functions allow the caller to handle the 3076 ** serial-type and data blob separately. 3077 ** 3078 ** The following table describes the various storage classes for data: 3079 ** 3080 ** serial type bytes of data type 3081 ** -------------- --------------- --------------- 3082 ** 0 0 NULL 3083 ** 1 1 signed integer 3084 ** 2 2 signed integer 3085 ** 3 3 signed integer 3086 ** 4 4 signed integer 3087 ** 5 6 signed integer 3088 ** 6 8 signed integer 3089 ** 7 8 IEEE float 3090 ** 8 0 Integer constant 0 3091 ** 9 0 Integer constant 1 3092 ** 10,11 reserved for expansion 3093 ** N>=12 and even (N-12)/2 BLOB 3094 ** N>=13 and odd (N-13)/2 text 3095 ** 3096 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3097 ** of SQLite will not understand those serial types. 3098 */ 3099 3100 /* 3101 ** Return the serial-type for the value stored in pMem. 3102 */ 3103 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3104 int flags = pMem->flags; 3105 u32 n; 3106 3107 assert( pLen!=0 ); 3108 if( flags&MEM_Null ){ 3109 *pLen = 0; 3110 return 0; 3111 } 3112 if( flags&MEM_Int ){ 3113 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3114 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3115 i64 i = pMem->u.i; 3116 u64 u; 3117 if( i<0 ){ 3118 u = ~i; 3119 }else{ 3120 u = i; 3121 } 3122 if( u<=127 ){ 3123 if( (i&1)==i && file_format>=4 ){ 3124 *pLen = 0; 3125 return 8+(u32)u; 3126 }else{ 3127 *pLen = 1; 3128 return 1; 3129 } 3130 } 3131 if( u<=32767 ){ *pLen = 2; return 2; } 3132 if( u<=8388607 ){ *pLen = 3; return 3; } 3133 if( u<=2147483647 ){ *pLen = 4; return 4; } 3134 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3135 *pLen = 8; 3136 return 6; 3137 } 3138 if( flags&MEM_Real ){ 3139 *pLen = 8; 3140 return 7; 3141 } 3142 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3143 assert( pMem->n>=0 ); 3144 n = (u32)pMem->n; 3145 if( flags & MEM_Zero ){ 3146 n += pMem->u.nZero; 3147 } 3148 *pLen = n; 3149 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3150 } 3151 3152 /* 3153 ** The sizes for serial types less than 128 3154 */ 3155 static const u8 sqlite3SmallTypeSizes[] = { 3156 /* 0 1 2 3 4 5 6 7 8 9 */ 3157 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3158 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3159 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3160 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3161 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3162 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3163 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3164 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3165 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3166 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3167 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3168 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3169 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3170 }; 3171 3172 /* 3173 ** Return the length of the data corresponding to the supplied serial-type. 3174 */ 3175 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3176 if( serial_type>=128 ){ 3177 return (serial_type-12)/2; 3178 }else{ 3179 assert( serial_type<12 3180 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3181 return sqlite3SmallTypeSizes[serial_type]; 3182 } 3183 } 3184 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3185 assert( serial_type<128 ); 3186 return sqlite3SmallTypeSizes[serial_type]; 3187 } 3188 3189 /* 3190 ** If we are on an architecture with mixed-endian floating 3191 ** points (ex: ARM7) then swap the lower 4 bytes with the 3192 ** upper 4 bytes. Return the result. 3193 ** 3194 ** For most architectures, this is a no-op. 3195 ** 3196 ** (later): It is reported to me that the mixed-endian problem 3197 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3198 ** that early versions of GCC stored the two words of a 64-bit 3199 ** float in the wrong order. And that error has been propagated 3200 ** ever since. The blame is not necessarily with GCC, though. 3201 ** GCC might have just copying the problem from a prior compiler. 3202 ** I am also told that newer versions of GCC that follow a different 3203 ** ABI get the byte order right. 3204 ** 3205 ** Developers using SQLite on an ARM7 should compile and run their 3206 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3207 ** enabled, some asserts below will ensure that the byte order of 3208 ** floating point values is correct. 3209 ** 3210 ** (2007-08-30) Frank van Vugt has studied this problem closely 3211 ** and has send his findings to the SQLite developers. Frank 3212 ** writes that some Linux kernels offer floating point hardware 3213 ** emulation that uses only 32-bit mantissas instead of a full 3214 ** 48-bits as required by the IEEE standard. (This is the 3215 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3216 ** byte swapping becomes very complicated. To avoid problems, 3217 ** the necessary byte swapping is carried out using a 64-bit integer 3218 ** rather than a 64-bit float. Frank assures us that the code here 3219 ** works for him. We, the developers, have no way to independently 3220 ** verify this, but Frank seems to know what he is talking about 3221 ** so we trust him. 3222 */ 3223 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3224 static u64 floatSwap(u64 in){ 3225 union { 3226 u64 r; 3227 u32 i[2]; 3228 } u; 3229 u32 t; 3230 3231 u.r = in; 3232 t = u.i[0]; 3233 u.i[0] = u.i[1]; 3234 u.i[1] = t; 3235 return u.r; 3236 } 3237 # define swapMixedEndianFloat(X) X = floatSwap(X) 3238 #else 3239 # define swapMixedEndianFloat(X) 3240 #endif 3241 3242 /* 3243 ** Write the serialized data blob for the value stored in pMem into 3244 ** buf. It is assumed that the caller has allocated sufficient space. 3245 ** Return the number of bytes written. 3246 ** 3247 ** nBuf is the amount of space left in buf[]. The caller is responsible 3248 ** for allocating enough space to buf[] to hold the entire field, exclusive 3249 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3250 ** 3251 ** Return the number of bytes actually written into buf[]. The number 3252 ** of bytes in the zero-filled tail is included in the return value only 3253 ** if those bytes were zeroed in buf[]. 3254 */ 3255 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3256 u32 len; 3257 3258 /* Integer and Real */ 3259 if( serial_type<=7 && serial_type>0 ){ 3260 u64 v; 3261 u32 i; 3262 if( serial_type==7 ){ 3263 assert( sizeof(v)==sizeof(pMem->u.r) ); 3264 memcpy(&v, &pMem->u.r, sizeof(v)); 3265 swapMixedEndianFloat(v); 3266 }else{ 3267 v = pMem->u.i; 3268 } 3269 len = i = sqlite3SmallTypeSizes[serial_type]; 3270 assert( i>0 ); 3271 do{ 3272 buf[--i] = (u8)(v&0xFF); 3273 v >>= 8; 3274 }while( i ); 3275 return len; 3276 } 3277 3278 /* String or blob */ 3279 if( serial_type>=12 ){ 3280 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3281 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3282 len = pMem->n; 3283 if( len>0 ) memcpy(buf, pMem->z, len); 3284 return len; 3285 } 3286 3287 /* NULL or constants 0 or 1 */ 3288 return 0; 3289 } 3290 3291 /* Input "x" is a sequence of unsigned characters that represent a 3292 ** big-endian integer. Return the equivalent native integer 3293 */ 3294 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3295 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3296 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3297 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3298 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3299 3300 /* 3301 ** Deserialize the data blob pointed to by buf as serial type serial_type 3302 ** and store the result in pMem. Return the number of bytes read. 3303 ** 3304 ** This function is implemented as two separate routines for performance. 3305 ** The few cases that require local variables are broken out into a separate 3306 ** routine so that in most cases the overhead of moving the stack pointer 3307 ** is avoided. 3308 */ 3309 static u32 SQLITE_NOINLINE serialGet( 3310 const unsigned char *buf, /* Buffer to deserialize from */ 3311 u32 serial_type, /* Serial type to deserialize */ 3312 Mem *pMem /* Memory cell to write value into */ 3313 ){ 3314 u64 x = FOUR_BYTE_UINT(buf); 3315 u32 y = FOUR_BYTE_UINT(buf+4); 3316 x = (x<<32) + y; 3317 if( serial_type==6 ){ 3318 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3319 ** twos-complement integer. */ 3320 pMem->u.i = *(i64*)&x; 3321 pMem->flags = MEM_Int; 3322 testcase( pMem->u.i<0 ); 3323 }else{ 3324 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3325 ** floating point number. */ 3326 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3327 /* Verify that integers and floating point values use the same 3328 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3329 ** defined that 64-bit floating point values really are mixed 3330 ** endian. 3331 */ 3332 static const u64 t1 = ((u64)0x3ff00000)<<32; 3333 static const double r1 = 1.0; 3334 u64 t2 = t1; 3335 swapMixedEndianFloat(t2); 3336 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3337 #endif 3338 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3339 swapMixedEndianFloat(x); 3340 memcpy(&pMem->u.r, &x, sizeof(x)); 3341 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; 3342 } 3343 return 8; 3344 } 3345 u32 sqlite3VdbeSerialGet( 3346 const unsigned char *buf, /* Buffer to deserialize from */ 3347 u32 serial_type, /* Serial type to deserialize */ 3348 Mem *pMem /* Memory cell to write value into */ 3349 ){ 3350 switch( serial_type ){ 3351 case 10: /* Reserved for future use */ 3352 case 11: /* Reserved for future use */ 3353 case 0: { /* Null */ 3354 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3355 pMem->flags = MEM_Null; 3356 break; 3357 } 3358 case 1: { 3359 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3360 ** integer. */ 3361 pMem->u.i = ONE_BYTE_INT(buf); 3362 pMem->flags = MEM_Int; 3363 testcase( pMem->u.i<0 ); 3364 return 1; 3365 } 3366 case 2: { /* 2-byte signed integer */ 3367 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3368 ** twos-complement integer. */ 3369 pMem->u.i = TWO_BYTE_INT(buf); 3370 pMem->flags = MEM_Int; 3371 testcase( pMem->u.i<0 ); 3372 return 2; 3373 } 3374 case 3: { /* 3-byte signed integer */ 3375 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3376 ** twos-complement integer. */ 3377 pMem->u.i = THREE_BYTE_INT(buf); 3378 pMem->flags = MEM_Int; 3379 testcase( pMem->u.i<0 ); 3380 return 3; 3381 } 3382 case 4: { /* 4-byte signed integer */ 3383 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3384 ** twos-complement integer. */ 3385 pMem->u.i = FOUR_BYTE_INT(buf); 3386 #ifdef __HP_cc 3387 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3388 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3389 #endif 3390 pMem->flags = MEM_Int; 3391 testcase( pMem->u.i<0 ); 3392 return 4; 3393 } 3394 case 5: { /* 6-byte signed integer */ 3395 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3396 ** twos-complement integer. */ 3397 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3398 pMem->flags = MEM_Int; 3399 testcase( pMem->u.i<0 ); 3400 return 6; 3401 } 3402 case 6: /* 8-byte signed integer */ 3403 case 7: { /* IEEE floating point */ 3404 /* These use local variables, so do them in a separate routine 3405 ** to avoid having to move the frame pointer in the common case */ 3406 return serialGet(buf,serial_type,pMem); 3407 } 3408 case 8: /* Integer 0 */ 3409 case 9: { /* Integer 1 */ 3410 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3411 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3412 pMem->u.i = serial_type-8; 3413 pMem->flags = MEM_Int; 3414 return 0; 3415 } 3416 default: { 3417 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3418 ** length. 3419 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3420 ** (N-13)/2 bytes in length. */ 3421 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3422 pMem->z = (char *)buf; 3423 pMem->n = (serial_type-12)/2; 3424 pMem->flags = aFlag[serial_type&1]; 3425 return pMem->n; 3426 } 3427 } 3428 return 0; 3429 } 3430 /* 3431 ** This routine is used to allocate sufficient space for an UnpackedRecord 3432 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3433 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3434 ** 3435 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3436 ** the unaligned buffer passed via the second and third arguments (presumably 3437 ** stack space). If the former, then *ppFree is set to a pointer that should 3438 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3439 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3440 ** before returning. 3441 ** 3442 ** If an OOM error occurs, NULL is returned. 3443 */ 3444 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3445 KeyInfo *pKeyInfo, /* Description of the record */ 3446 char *pSpace, /* Unaligned space available */ 3447 int szSpace, /* Size of pSpace[] in bytes */ 3448 char **ppFree /* OUT: Caller should free this pointer */ 3449 ){ 3450 UnpackedRecord *p; /* Unpacked record to return */ 3451 int nOff; /* Increment pSpace by nOff to align it */ 3452 int nByte; /* Number of bytes required for *p */ 3453 3454 /* We want to shift the pointer pSpace up such that it is 8-byte aligned. 3455 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift 3456 ** it by. If pSpace is already 8-byte aligned, nOff should be zero. 3457 */ 3458 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7; 3459 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); 3460 if( nByte>szSpace+nOff ){ 3461 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3462 *ppFree = (char *)p; 3463 if( !p ) return 0; 3464 }else{ 3465 p = (UnpackedRecord*)&pSpace[nOff]; 3466 *ppFree = 0; 3467 } 3468 3469 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3470 assert( pKeyInfo->aSortOrder!=0 ); 3471 p->pKeyInfo = pKeyInfo; 3472 p->nField = pKeyInfo->nField + 1; 3473 return p; 3474 } 3475 3476 /* 3477 ** Given the nKey-byte encoding of a record in pKey[], populate the 3478 ** UnpackedRecord structure indicated by the fourth argument with the 3479 ** contents of the decoded record. 3480 */ 3481 void sqlite3VdbeRecordUnpack( 3482 KeyInfo *pKeyInfo, /* Information about the record format */ 3483 int nKey, /* Size of the binary record */ 3484 const void *pKey, /* The binary record */ 3485 UnpackedRecord *p /* Populate this structure before returning. */ 3486 ){ 3487 const unsigned char *aKey = (const unsigned char *)pKey; 3488 int d; 3489 u32 idx; /* Offset in aKey[] to read from */ 3490 u16 u; /* Unsigned loop counter */ 3491 u32 szHdr; 3492 Mem *pMem = p->aMem; 3493 3494 p->default_rc = 0; 3495 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3496 idx = getVarint32(aKey, szHdr); 3497 d = szHdr; 3498 u = 0; 3499 while( idx<szHdr && d<=nKey ){ 3500 u32 serial_type; 3501 3502 idx += getVarint32(&aKey[idx], serial_type); 3503 pMem->enc = pKeyInfo->enc; 3504 pMem->db = pKeyInfo->db; 3505 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 3506 pMem->szMalloc = 0; 3507 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3508 pMem++; 3509 if( (++u)>=p->nField ) break; 3510 } 3511 assert( u<=pKeyInfo->nField + 1 ); 3512 p->nField = u; 3513 } 3514 3515 #if SQLITE_DEBUG 3516 /* 3517 ** This function compares two index or table record keys in the same way 3518 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 3519 ** this function deserializes and compares values using the 3520 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 3521 ** in assert() statements to ensure that the optimized code in 3522 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 3523 ** 3524 ** Return true if the result of comparison is equivalent to desiredResult. 3525 ** Return false if there is a disagreement. 3526 */ 3527 static int vdbeRecordCompareDebug( 3528 int nKey1, const void *pKey1, /* Left key */ 3529 const UnpackedRecord *pPKey2, /* Right key */ 3530 int desiredResult /* Correct answer */ 3531 ){ 3532 u32 d1; /* Offset into aKey[] of next data element */ 3533 u32 idx1; /* Offset into aKey[] of next header element */ 3534 u32 szHdr1; /* Number of bytes in header */ 3535 int i = 0; 3536 int rc = 0; 3537 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3538 KeyInfo *pKeyInfo; 3539 Mem mem1; 3540 3541 pKeyInfo = pPKey2->pKeyInfo; 3542 if( pKeyInfo->db==0 ) return 1; 3543 mem1.enc = pKeyInfo->enc; 3544 mem1.db = pKeyInfo->db; 3545 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 3546 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3547 3548 /* Compilers may complain that mem1.u.i is potentially uninitialized. 3549 ** We could initialize it, as shown here, to silence those complaints. 3550 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 3551 ** the unnecessary initialization has a measurable negative performance 3552 ** impact, since this routine is a very high runner. And so, we choose 3553 ** to ignore the compiler warnings and leave this variable uninitialized. 3554 */ 3555 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 3556 3557 idx1 = getVarint32(aKey1, szHdr1); 3558 if( szHdr1>98307 ) return SQLITE_CORRUPT; 3559 d1 = szHdr1; 3560 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB ); 3561 assert( pKeyInfo->aSortOrder!=0 ); 3562 assert( pKeyInfo->nField>0 ); 3563 assert( idx1<=szHdr1 || CORRUPT_DB ); 3564 do{ 3565 u32 serial_type1; 3566 3567 /* Read the serial types for the next element in each key. */ 3568 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 3569 3570 /* Verify that there is enough key space remaining to avoid 3571 ** a buffer overread. The "d1+serial_type1+2" subexpression will 3572 ** always be greater than or equal to the amount of required key space. 3573 ** Use that approximation to avoid the more expensive call to 3574 ** sqlite3VdbeSerialTypeLen() in the common case. 3575 */ 3576 if( d1+serial_type1+2>(u32)nKey1 3577 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 3578 ){ 3579 break; 3580 } 3581 3582 /* Extract the values to be compared. 3583 */ 3584 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 3585 3586 /* Do the comparison 3587 */ 3588 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); 3589 if( rc!=0 ){ 3590 assert( mem1.szMalloc==0 ); /* See comment below */ 3591 if( pKeyInfo->aSortOrder[i] ){ 3592 rc = -rc; /* Invert the result for DESC sort order. */ 3593 } 3594 goto debugCompareEnd; 3595 } 3596 i++; 3597 }while( idx1<szHdr1 && i<pPKey2->nField ); 3598 3599 /* No memory allocation is ever used on mem1. Prove this using 3600 ** the following assert(). If the assert() fails, it indicates a 3601 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 3602 */ 3603 assert( mem1.szMalloc==0 ); 3604 3605 /* rc==0 here means that one of the keys ran out of fields and 3606 ** all the fields up to that point were equal. Return the default_rc 3607 ** value. */ 3608 rc = pPKey2->default_rc; 3609 3610 debugCompareEnd: 3611 if( desiredResult==0 && rc==0 ) return 1; 3612 if( desiredResult<0 && rc<0 ) return 1; 3613 if( desiredResult>0 && rc>0 ) return 1; 3614 if( CORRUPT_DB ) return 1; 3615 if( pKeyInfo->db->mallocFailed ) return 1; 3616 return 0; 3617 } 3618 #endif 3619 3620 #if SQLITE_DEBUG 3621 /* 3622 ** Count the number of fields (a.k.a. columns) in the record given by 3623 ** pKey,nKey. The verify that this count is less than or equal to the 3624 ** limit given by pKeyInfo->nField + pKeyInfo->nXField. 3625 ** 3626 ** If this constraint is not satisfied, it means that the high-speed 3627 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 3628 ** not work correctly. If this assert() ever fires, it probably means 3629 ** that the KeyInfo.nField or KeyInfo.nXField values were computed 3630 ** incorrectly. 3631 */ 3632 static void vdbeAssertFieldCountWithinLimits( 3633 int nKey, const void *pKey, /* The record to verify */ 3634 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 3635 ){ 3636 int nField = 0; 3637 u32 szHdr; 3638 u32 idx; 3639 u32 notUsed; 3640 const unsigned char *aKey = (const unsigned char*)pKey; 3641 3642 if( CORRUPT_DB ) return; 3643 idx = getVarint32(aKey, szHdr); 3644 assert( nKey>=0 ); 3645 assert( szHdr<=(u32)nKey ); 3646 while( idx<szHdr ){ 3647 idx += getVarint32(aKey+idx, notUsed); 3648 nField++; 3649 } 3650 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField ); 3651 } 3652 #else 3653 # define vdbeAssertFieldCountWithinLimits(A,B,C) 3654 #endif 3655 3656 /* 3657 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 3658 ** using the collation sequence pColl. As usual, return a negative , zero 3659 ** or positive value if *pMem1 is less than, equal to or greater than 3660 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 3661 */ 3662 static int vdbeCompareMemString( 3663 const Mem *pMem1, 3664 const Mem *pMem2, 3665 const CollSeq *pColl, 3666 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 3667 ){ 3668 if( pMem1->enc==pColl->enc ){ 3669 /* The strings are already in the correct encoding. Call the 3670 ** comparison function directly */ 3671 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 3672 }else{ 3673 int rc; 3674 const void *v1, *v2; 3675 int n1, n2; 3676 Mem c1; 3677 Mem c2; 3678 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 3679 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 3680 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 3681 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 3682 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 3683 n1 = v1==0 ? 0 : c1.n; 3684 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 3685 n2 = v2==0 ? 0 : c2.n; 3686 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); 3687 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 3688 sqlite3VdbeMemRelease(&c1); 3689 sqlite3VdbeMemRelease(&c2); 3690 return rc; 3691 } 3692 } 3693 3694 /* 3695 ** Compare two blobs. Return negative, zero, or positive if the first 3696 ** is less than, equal to, or greater than the second, respectively. 3697 ** If one blob is a prefix of the other, then the shorter is the lessor. 3698 */ 3699 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 3700 int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n); 3701 if( c ) return c; 3702 return pB1->n - pB2->n; 3703 } 3704 3705 /* 3706 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 3707 ** number. Return negative, zero, or positive if the first (i64) is less than, 3708 ** equal to, or greater than the second (double). 3709 */ 3710 static int sqlite3IntFloatCompare(i64 i, double r){ 3711 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 3712 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 3713 if( x<r ) return -1; 3714 if( x>r ) return +1; 3715 return 0; 3716 }else{ 3717 i64 y; 3718 double s; 3719 if( r<-9223372036854775808.0 ) return +1; 3720 if( r>9223372036854775807.0 ) return -1; 3721 y = (i64)r; 3722 if( i<y ) return -1; 3723 if( i>y ){ 3724 if( y==SMALLEST_INT64 && r>0.0 ) return -1; 3725 return +1; 3726 } 3727 s = (double)i; 3728 if( s<r ) return -1; 3729 if( s>r ) return +1; 3730 return 0; 3731 } 3732 } 3733 3734 /* 3735 ** Compare the values contained by the two memory cells, returning 3736 ** negative, zero or positive if pMem1 is less than, equal to, or greater 3737 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 3738 ** and reals) sorted numerically, followed by text ordered by the collating 3739 ** sequence pColl and finally blob's ordered by memcmp(). 3740 ** 3741 ** Two NULL values are considered equal by this function. 3742 */ 3743 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 3744 int f1, f2; 3745 int combined_flags; 3746 3747 f1 = pMem1->flags; 3748 f2 = pMem2->flags; 3749 combined_flags = f1|f2; 3750 assert( (combined_flags & MEM_RowSet)==0 ); 3751 3752 /* If one value is NULL, it is less than the other. If both values 3753 ** are NULL, return 0. 3754 */ 3755 if( combined_flags&MEM_Null ){ 3756 return (f2&MEM_Null) - (f1&MEM_Null); 3757 } 3758 3759 /* At least one of the two values is a number 3760 */ 3761 if( combined_flags&(MEM_Int|MEM_Real) ){ 3762 if( (f1 & f2 & MEM_Int)!=0 ){ 3763 if( pMem1->u.i < pMem2->u.i ) return -1; 3764 if( pMem1->u.i > pMem2->u.i ) return +1; 3765 return 0; 3766 } 3767 if( (f1 & f2 & MEM_Real)!=0 ){ 3768 if( pMem1->u.r < pMem2->u.r ) return -1; 3769 if( pMem1->u.r > pMem2->u.r ) return +1; 3770 return 0; 3771 } 3772 if( (f1&MEM_Int)!=0 ){ 3773 if( (f2&MEM_Real)!=0 ){ 3774 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 3775 }else{ 3776 return -1; 3777 } 3778 } 3779 if( (f1&MEM_Real)!=0 ){ 3780 if( (f2&MEM_Int)!=0 ){ 3781 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 3782 }else{ 3783 return -1; 3784 } 3785 } 3786 return +1; 3787 } 3788 3789 /* If one value is a string and the other is a blob, the string is less. 3790 ** If both are strings, compare using the collating functions. 3791 */ 3792 if( combined_flags&MEM_Str ){ 3793 if( (f1 & MEM_Str)==0 ){ 3794 return 1; 3795 } 3796 if( (f2 & MEM_Str)==0 ){ 3797 return -1; 3798 } 3799 3800 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 3801 assert( pMem1->enc==SQLITE_UTF8 || 3802 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 3803 3804 /* The collation sequence must be defined at this point, even if 3805 ** the user deletes the collation sequence after the vdbe program is 3806 ** compiled (this was not always the case). 3807 */ 3808 assert( !pColl || pColl->xCmp ); 3809 3810 if( pColl ){ 3811 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 3812 } 3813 /* If a NULL pointer was passed as the collate function, fall through 3814 ** to the blob case and use memcmp(). */ 3815 } 3816 3817 /* Both values must be blobs. Compare using memcmp(). */ 3818 return sqlite3BlobCompare(pMem1, pMem2); 3819 } 3820 3821 3822 /* 3823 ** The first argument passed to this function is a serial-type that 3824 ** corresponds to an integer - all values between 1 and 9 inclusive 3825 ** except 7. The second points to a buffer containing an integer value 3826 ** serialized according to serial_type. This function deserializes 3827 ** and returns the value. 3828 */ 3829 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 3830 u32 y; 3831 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 3832 switch( serial_type ){ 3833 case 0: 3834 case 1: 3835 testcase( aKey[0]&0x80 ); 3836 return ONE_BYTE_INT(aKey); 3837 case 2: 3838 testcase( aKey[0]&0x80 ); 3839 return TWO_BYTE_INT(aKey); 3840 case 3: 3841 testcase( aKey[0]&0x80 ); 3842 return THREE_BYTE_INT(aKey); 3843 case 4: { 3844 testcase( aKey[0]&0x80 ); 3845 y = FOUR_BYTE_UINT(aKey); 3846 return (i64)*(int*)&y; 3847 } 3848 case 5: { 3849 testcase( aKey[0]&0x80 ); 3850 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 3851 } 3852 case 6: { 3853 u64 x = FOUR_BYTE_UINT(aKey); 3854 testcase( aKey[0]&0x80 ); 3855 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 3856 return (i64)*(i64*)&x; 3857 } 3858 } 3859 3860 return (serial_type - 8); 3861 } 3862 3863 /* 3864 ** This function compares the two table rows or index records 3865 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 3866 ** or positive integer if key1 is less than, equal to or 3867 ** greater than key2. The {nKey1, pKey1} key must be a blob 3868 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 3869 ** key must be a parsed key such as obtained from 3870 ** sqlite3VdbeParseRecord. 3871 ** 3872 ** If argument bSkip is non-zero, it is assumed that the caller has already 3873 ** determined that the first fields of the keys are equal. 3874 ** 3875 ** Key1 and Key2 do not have to contain the same number of fields. If all 3876 ** fields that appear in both keys are equal, then pPKey2->default_rc is 3877 ** returned. 3878 ** 3879 ** If database corruption is discovered, set pPKey2->errCode to 3880 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 3881 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 3882 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 3883 */ 3884 int sqlite3VdbeRecordCompareWithSkip( 3885 int nKey1, const void *pKey1, /* Left key */ 3886 UnpackedRecord *pPKey2, /* Right key */ 3887 int bSkip /* If true, skip the first field */ 3888 ){ 3889 u32 d1; /* Offset into aKey[] of next data element */ 3890 int i; /* Index of next field to compare */ 3891 u32 szHdr1; /* Size of record header in bytes */ 3892 u32 idx1; /* Offset of first type in header */ 3893 int rc = 0; /* Return value */ 3894 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 3895 KeyInfo *pKeyInfo = pPKey2->pKeyInfo; 3896 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3897 Mem mem1; 3898 3899 /* If bSkip is true, then the caller has already determined that the first 3900 ** two elements in the keys are equal. Fix the various stack variables so 3901 ** that this routine begins comparing at the second field. */ 3902 if( bSkip ){ 3903 u32 s1; 3904 idx1 = 1 + getVarint32(&aKey1[1], s1); 3905 szHdr1 = aKey1[0]; 3906 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 3907 i = 1; 3908 pRhs++; 3909 }else{ 3910 idx1 = getVarint32(aKey1, szHdr1); 3911 d1 = szHdr1; 3912 if( d1>(unsigned)nKey1 ){ 3913 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3914 return 0; /* Corruption */ 3915 } 3916 i = 0; 3917 } 3918 3919 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3920 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 3921 || CORRUPT_DB ); 3922 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); 3923 assert( pPKey2->pKeyInfo->nField>0 ); 3924 assert( idx1<=szHdr1 || CORRUPT_DB ); 3925 do{ 3926 u32 serial_type; 3927 3928 /* RHS is an integer */ 3929 if( pRhs->flags & MEM_Int ){ 3930 serial_type = aKey1[idx1]; 3931 testcase( serial_type==12 ); 3932 if( serial_type>=10 ){ 3933 rc = +1; 3934 }else if( serial_type==0 ){ 3935 rc = -1; 3936 }else if( serial_type==7 ){ 3937 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 3938 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 3939 }else{ 3940 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 3941 i64 rhs = pRhs->u.i; 3942 if( lhs<rhs ){ 3943 rc = -1; 3944 }else if( lhs>rhs ){ 3945 rc = +1; 3946 } 3947 } 3948 } 3949 3950 /* RHS is real */ 3951 else if( pRhs->flags & MEM_Real ){ 3952 serial_type = aKey1[idx1]; 3953 if( serial_type>=10 ){ 3954 /* Serial types 12 or greater are strings and blobs (greater than 3955 ** numbers). Types 10 and 11 are currently "reserved for future 3956 ** use", so it doesn't really matter what the results of comparing 3957 ** them to numberic values are. */ 3958 rc = +1; 3959 }else if( serial_type==0 ){ 3960 rc = -1; 3961 }else{ 3962 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 3963 if( serial_type==7 ){ 3964 if( mem1.u.r<pRhs->u.r ){ 3965 rc = -1; 3966 }else if( mem1.u.r>pRhs->u.r ){ 3967 rc = +1; 3968 } 3969 }else{ 3970 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 3971 } 3972 } 3973 } 3974 3975 /* RHS is a string */ 3976 else if( pRhs->flags & MEM_Str ){ 3977 getVarint32(&aKey1[idx1], serial_type); 3978 testcase( serial_type==12 ); 3979 if( serial_type<12 ){ 3980 rc = -1; 3981 }else if( !(serial_type & 0x01) ){ 3982 rc = +1; 3983 }else{ 3984 mem1.n = (serial_type - 12) / 2; 3985 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 3986 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 3987 if( (d1+mem1.n) > (unsigned)nKey1 ){ 3988 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3989 return 0; /* Corruption */ 3990 }else if( pKeyInfo->aColl[i] ){ 3991 mem1.enc = pKeyInfo->enc; 3992 mem1.db = pKeyInfo->db; 3993 mem1.flags = MEM_Str; 3994 mem1.z = (char*)&aKey1[d1]; 3995 rc = vdbeCompareMemString( 3996 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 3997 ); 3998 }else{ 3999 int nCmp = MIN(mem1.n, pRhs->n); 4000 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4001 if( rc==0 ) rc = mem1.n - pRhs->n; 4002 } 4003 } 4004 } 4005 4006 /* RHS is a blob */ 4007 else if( pRhs->flags & MEM_Blob ){ 4008 getVarint32(&aKey1[idx1], serial_type); 4009 testcase( serial_type==12 ); 4010 if( serial_type<12 || (serial_type & 0x01) ){ 4011 rc = -1; 4012 }else{ 4013 int nStr = (serial_type - 12) / 2; 4014 testcase( (d1+nStr)==(unsigned)nKey1 ); 4015 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4016 if( (d1+nStr) > (unsigned)nKey1 ){ 4017 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4018 return 0; /* Corruption */ 4019 }else{ 4020 int nCmp = MIN(nStr, pRhs->n); 4021 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4022 if( rc==0 ) rc = nStr - pRhs->n; 4023 } 4024 } 4025 } 4026 4027 /* RHS is null */ 4028 else{ 4029 serial_type = aKey1[idx1]; 4030 rc = (serial_type!=0); 4031 } 4032 4033 if( rc!=0 ){ 4034 if( pKeyInfo->aSortOrder[i] ){ 4035 rc = -rc; 4036 } 4037 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4038 assert( mem1.szMalloc==0 ); /* See comment below */ 4039 return rc; 4040 } 4041 4042 i++; 4043 pRhs++; 4044 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4045 idx1 += sqlite3VarintLen(serial_type); 4046 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); 4047 4048 /* No memory allocation is ever used on mem1. Prove this using 4049 ** the following assert(). If the assert() fails, it indicates a 4050 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4051 assert( mem1.szMalloc==0 ); 4052 4053 /* rc==0 here means that one or both of the keys ran out of fields and 4054 ** all the fields up to that point were equal. Return the default_rc 4055 ** value. */ 4056 assert( CORRUPT_DB 4057 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4058 || pKeyInfo->db->mallocFailed 4059 ); 4060 pPKey2->eqSeen = 1; 4061 return pPKey2->default_rc; 4062 } 4063 int sqlite3VdbeRecordCompare( 4064 int nKey1, const void *pKey1, /* Left key */ 4065 UnpackedRecord *pPKey2 /* Right key */ 4066 ){ 4067 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4068 } 4069 4070 4071 /* 4072 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4073 ** that (a) the first field of pPKey2 is an integer, and (b) the 4074 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4075 ** byte (i.e. is less than 128). 4076 ** 4077 ** To avoid concerns about buffer overreads, this routine is only used 4078 ** on schemas where the maximum valid header size is 63 bytes or less. 4079 */ 4080 static int vdbeRecordCompareInt( 4081 int nKey1, const void *pKey1, /* Left key */ 4082 UnpackedRecord *pPKey2 /* Right key */ 4083 ){ 4084 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4085 int serial_type = ((const u8*)pKey1)[1]; 4086 int res; 4087 u32 y; 4088 u64 x; 4089 i64 v = pPKey2->aMem[0].u.i; 4090 i64 lhs; 4091 4092 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4093 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4094 switch( serial_type ){ 4095 case 1: { /* 1-byte signed integer */ 4096 lhs = ONE_BYTE_INT(aKey); 4097 testcase( lhs<0 ); 4098 break; 4099 } 4100 case 2: { /* 2-byte signed integer */ 4101 lhs = TWO_BYTE_INT(aKey); 4102 testcase( lhs<0 ); 4103 break; 4104 } 4105 case 3: { /* 3-byte signed integer */ 4106 lhs = THREE_BYTE_INT(aKey); 4107 testcase( lhs<0 ); 4108 break; 4109 } 4110 case 4: { /* 4-byte signed integer */ 4111 y = FOUR_BYTE_UINT(aKey); 4112 lhs = (i64)*(int*)&y; 4113 testcase( lhs<0 ); 4114 break; 4115 } 4116 case 5: { /* 6-byte signed integer */ 4117 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4118 testcase( lhs<0 ); 4119 break; 4120 } 4121 case 6: { /* 8-byte signed integer */ 4122 x = FOUR_BYTE_UINT(aKey); 4123 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4124 lhs = *(i64*)&x; 4125 testcase( lhs<0 ); 4126 break; 4127 } 4128 case 8: 4129 lhs = 0; 4130 break; 4131 case 9: 4132 lhs = 1; 4133 break; 4134 4135 /* This case could be removed without changing the results of running 4136 ** this code. Including it causes gcc to generate a faster switch 4137 ** statement (since the range of switch targets now starts at zero and 4138 ** is contiguous) but does not cause any duplicate code to be generated 4139 ** (as gcc is clever enough to combine the two like cases). Other 4140 ** compilers might be similar. */ 4141 case 0: case 7: 4142 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4143 4144 default: 4145 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4146 } 4147 4148 if( v>lhs ){ 4149 res = pPKey2->r1; 4150 }else if( v<lhs ){ 4151 res = pPKey2->r2; 4152 }else if( pPKey2->nField>1 ){ 4153 /* The first fields of the two keys are equal. Compare the trailing 4154 ** fields. */ 4155 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4156 }else{ 4157 /* The first fields of the two keys are equal and there are no trailing 4158 ** fields. Return pPKey2->default_rc in this case. */ 4159 res = pPKey2->default_rc; 4160 pPKey2->eqSeen = 1; 4161 } 4162 4163 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4164 return res; 4165 } 4166 4167 /* 4168 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4169 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4170 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4171 ** at the start of (pKey1/nKey1) fits in a single byte. 4172 */ 4173 static int vdbeRecordCompareString( 4174 int nKey1, const void *pKey1, /* Left key */ 4175 UnpackedRecord *pPKey2 /* Right key */ 4176 ){ 4177 const u8 *aKey1 = (const u8*)pKey1; 4178 int serial_type; 4179 int res; 4180 4181 assert( pPKey2->aMem[0].flags & MEM_Str ); 4182 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4183 getVarint32(&aKey1[1], serial_type); 4184 if( serial_type<12 ){ 4185 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4186 }else if( !(serial_type & 0x01) ){ 4187 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4188 }else{ 4189 int nCmp; 4190 int nStr; 4191 int szHdr = aKey1[0]; 4192 4193 nStr = (serial_type-12) / 2; 4194 if( (szHdr + nStr) > nKey1 ){ 4195 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4196 return 0; /* Corruption */ 4197 } 4198 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4199 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4200 4201 if( res==0 ){ 4202 res = nStr - pPKey2->aMem[0].n; 4203 if( res==0 ){ 4204 if( pPKey2->nField>1 ){ 4205 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4206 }else{ 4207 res = pPKey2->default_rc; 4208 pPKey2->eqSeen = 1; 4209 } 4210 }else if( res>0 ){ 4211 res = pPKey2->r2; 4212 }else{ 4213 res = pPKey2->r1; 4214 } 4215 }else if( res>0 ){ 4216 res = pPKey2->r2; 4217 }else{ 4218 res = pPKey2->r1; 4219 } 4220 } 4221 4222 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4223 || CORRUPT_DB 4224 || pPKey2->pKeyInfo->db->mallocFailed 4225 ); 4226 return res; 4227 } 4228 4229 /* 4230 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4231 ** suitable for comparing serialized records to the unpacked record passed 4232 ** as the only argument. 4233 */ 4234 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4235 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4236 ** that the size-of-header varint that occurs at the start of each record 4237 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4238 ** also assumes that it is safe to overread a buffer by at least the 4239 ** maximum possible legal header size plus 8 bytes. Because there is 4240 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4241 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4242 ** limit the size of the header to 64 bytes in cases where the first field 4243 ** is an integer. 4244 ** 4245 ** The easiest way to enforce this limit is to consider only records with 4246 ** 13 fields or less. If the first field is an integer, the maximum legal 4247 ** header size is (12*5 + 1 + 1) bytes. */ 4248 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){ 4249 int flags = p->aMem[0].flags; 4250 if( p->pKeyInfo->aSortOrder[0] ){ 4251 p->r1 = 1; 4252 p->r2 = -1; 4253 }else{ 4254 p->r1 = -1; 4255 p->r2 = 1; 4256 } 4257 if( (flags & MEM_Int) ){ 4258 return vdbeRecordCompareInt; 4259 } 4260 testcase( flags & MEM_Real ); 4261 testcase( flags & MEM_Null ); 4262 testcase( flags & MEM_Blob ); 4263 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ 4264 assert( flags & MEM_Str ); 4265 return vdbeRecordCompareString; 4266 } 4267 } 4268 4269 return sqlite3VdbeRecordCompare; 4270 } 4271 4272 /* 4273 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4274 ** Read the rowid (the last field in the record) and store it in *rowid. 4275 ** Return SQLITE_OK if everything works, or an error code otherwise. 4276 ** 4277 ** pCur might be pointing to text obtained from a corrupt database file. 4278 ** So the content cannot be trusted. Do appropriate checks on the content. 4279 */ 4280 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4281 i64 nCellKey = 0; 4282 int rc; 4283 u32 szHdr; /* Size of the header */ 4284 u32 typeRowid; /* Serial type of the rowid */ 4285 u32 lenRowid; /* Size of the rowid */ 4286 Mem m, v; 4287 4288 /* Get the size of the index entry. Only indices entries of less 4289 ** than 2GiB are support - anything large must be database corruption. 4290 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4291 ** this code can safely assume that nCellKey is 32-bits 4292 */ 4293 assert( sqlite3BtreeCursorIsValid(pCur) ); 4294 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); 4295 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 4296 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4297 4298 /* Read in the complete content of the index entry */ 4299 sqlite3VdbeMemInit(&m, db, 0); 4300 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m); 4301 if( rc ){ 4302 return rc; 4303 } 4304 4305 /* The index entry must begin with a header size */ 4306 (void)getVarint32((u8*)m.z, szHdr); 4307 testcase( szHdr==3 ); 4308 testcase( szHdr==m.n ); 4309 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ 4310 goto idx_rowid_corruption; 4311 } 4312 4313 /* The last field of the index should be an integer - the ROWID. 4314 ** Verify that the last entry really is an integer. */ 4315 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 4316 testcase( typeRowid==1 ); 4317 testcase( typeRowid==2 ); 4318 testcase( typeRowid==3 ); 4319 testcase( typeRowid==4 ); 4320 testcase( typeRowid==5 ); 4321 testcase( typeRowid==6 ); 4322 testcase( typeRowid==8 ); 4323 testcase( typeRowid==9 ); 4324 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4325 goto idx_rowid_corruption; 4326 } 4327 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4328 testcase( (u32)m.n==szHdr+lenRowid ); 4329 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4330 goto idx_rowid_corruption; 4331 } 4332 4333 /* Fetch the integer off the end of the index record */ 4334 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4335 *rowid = v.u.i; 4336 sqlite3VdbeMemRelease(&m); 4337 return SQLITE_OK; 4338 4339 /* Jump here if database corruption is detected after m has been 4340 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4341 idx_rowid_corruption: 4342 testcase( m.szMalloc!=0 ); 4343 sqlite3VdbeMemRelease(&m); 4344 return SQLITE_CORRUPT_BKPT; 4345 } 4346 4347 /* 4348 ** Compare the key of the index entry that cursor pC is pointing to against 4349 ** the key string in pUnpacked. Write into *pRes a number 4350 ** that is negative, zero, or positive if pC is less than, equal to, 4351 ** or greater than pUnpacked. Return SQLITE_OK on success. 4352 ** 4353 ** pUnpacked is either created without a rowid or is truncated so that it 4354 ** omits the rowid at the end. The rowid at the end of the index entry 4355 ** is ignored as well. Hence, this routine only compares the prefixes 4356 ** of the keys prior to the final rowid, not the entire key. 4357 */ 4358 int sqlite3VdbeIdxKeyCompare( 4359 sqlite3 *db, /* Database connection */ 4360 VdbeCursor *pC, /* The cursor to compare against */ 4361 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4362 int *res /* Write the comparison result here */ 4363 ){ 4364 i64 nCellKey = 0; 4365 int rc; 4366 BtCursor *pCur; 4367 Mem m; 4368 4369 assert( pC->eCurType==CURTYPE_BTREE ); 4370 pCur = pC->uc.pCursor; 4371 assert( sqlite3BtreeCursorIsValid(pCur) ); 4372 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); 4373 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 4374 /* nCellKey will always be between 0 and 0xffffffff because of the way 4375 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4376 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4377 *res = 0; 4378 return SQLITE_CORRUPT_BKPT; 4379 } 4380 sqlite3VdbeMemInit(&m, db, 0); 4381 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m); 4382 if( rc ){ 4383 return rc; 4384 } 4385 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); 4386 sqlite3VdbeMemRelease(&m); 4387 return SQLITE_OK; 4388 } 4389 4390 /* 4391 ** This routine sets the value to be returned by subsequent calls to 4392 ** sqlite3_changes() on the database handle 'db'. 4393 */ 4394 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 4395 assert( sqlite3_mutex_held(db->mutex) ); 4396 db->nChange = nChange; 4397 db->nTotalChange += nChange; 4398 } 4399 4400 /* 4401 ** Set a flag in the vdbe to update the change counter when it is finalised 4402 ** or reset. 4403 */ 4404 void sqlite3VdbeCountChanges(Vdbe *v){ 4405 v->changeCntOn = 1; 4406 } 4407 4408 /* 4409 ** Mark every prepared statement associated with a database connection 4410 ** as expired. 4411 ** 4412 ** An expired statement means that recompilation of the statement is 4413 ** recommend. Statements expire when things happen that make their 4414 ** programs obsolete. Removing user-defined functions or collating 4415 ** sequences, or changing an authorization function are the types of 4416 ** things that make prepared statements obsolete. 4417 */ 4418 void sqlite3ExpirePreparedStatements(sqlite3 *db){ 4419 Vdbe *p; 4420 for(p = db->pVdbe; p; p=p->pNext){ 4421 p->expired = 1; 4422 } 4423 } 4424 4425 /* 4426 ** Return the database associated with the Vdbe. 4427 */ 4428 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 4429 return v->db; 4430 } 4431 4432 /* 4433 ** Return a pointer to an sqlite3_value structure containing the value bound 4434 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 4435 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 4436 ** constants) to the value before returning it. 4437 ** 4438 ** The returned value must be freed by the caller using sqlite3ValueFree(). 4439 */ 4440 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 4441 assert( iVar>0 ); 4442 if( v ){ 4443 Mem *pMem = &v->aVar[iVar-1]; 4444 if( 0==(pMem->flags & MEM_Null) ){ 4445 sqlite3_value *pRet = sqlite3ValueNew(v->db); 4446 if( pRet ){ 4447 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 4448 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 4449 } 4450 return pRet; 4451 } 4452 } 4453 return 0; 4454 } 4455 4456 /* 4457 ** Configure SQL variable iVar so that binding a new value to it signals 4458 ** to sqlite3_reoptimize() that re-preparing the statement may result 4459 ** in a better query plan. 4460 */ 4461 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 4462 assert( iVar>0 ); 4463 if( iVar>32 ){ 4464 v->expmask = 0xffffffff; 4465 }else{ 4466 v->expmask |= ((u32)1 << (iVar-1)); 4467 } 4468 } 4469 4470 #ifndef SQLITE_OMIT_VIRTUALTABLE 4471 /* 4472 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 4473 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 4474 ** in memory obtained from sqlite3DbMalloc). 4475 */ 4476 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 4477 if( pVtab->zErrMsg ){ 4478 sqlite3 *db = p->db; 4479 sqlite3DbFree(db, p->zErrMsg); 4480 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 4481 sqlite3_free(pVtab->zErrMsg); 4482 pVtab->zErrMsg = 0; 4483 } 4484 } 4485 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4486