xref: /sqlite-3.40.0/src/vdbeaux.c (revision 79d5bc80)
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
14 */
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
17 
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
21 
22 /*
23 ** Create a new virtual database engine.
24 */
25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26   sqlite3 *db = pParse->db;
27   Vdbe *p;
28   p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29   if( p==0 ) return 0;
30   memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31   p->db = db;
32   if( db->pVdbe ){
33     db->pVdbe->pPrev = p;
34   }
35   p->pNext = db->pVdbe;
36   p->pPrev = 0;
37   db->pVdbe = p;
38   p->magic = VDBE_MAGIC_INIT;
39   p->pParse = pParse;
40   pParse->pVdbe = p;
41   assert( pParse->aLabel==0 );
42   assert( pParse->nLabel==0 );
43   assert( p->nOpAlloc==0 );
44   assert( pParse->szOpAlloc==0 );
45   sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46   return p;
47 }
48 
49 /*
50 ** Return the Parse object that owns a Vdbe object.
51 */
52 Parse *sqlite3VdbeParser(Vdbe *p){
53   return p->pParse;
54 }
55 
56 /*
57 ** Change the error string stored in Vdbe.zErrMsg
58 */
59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60   va_list ap;
61   sqlite3DbFree(p->db, p->zErrMsg);
62   va_start(ap, zFormat);
63   p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64   va_end(ap);
65 }
66 
67 /*
68 ** Remember the SQL string for a prepared statement.
69 */
70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71   if( p==0 ) return;
72   p->prepFlags = prepFlags;
73   if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74     p->expmask = 0;
75   }
76   assert( p->zSql==0 );
77   p->zSql = sqlite3DbStrNDup(p->db, z, n);
78 }
79 
80 #ifdef SQLITE_ENABLE_NORMALIZE
81 /*
82 ** Add a new element to the Vdbe->pDblStr list.
83 */
84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85   if( p ){
86     int n = sqlite3Strlen30(z);
87     DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88                             sizeof(*pStr)+n+1-sizeof(pStr->z));
89     if( pStr ){
90       pStr->pNextStr = p->pDblStr;
91       p->pDblStr = pStr;
92       memcpy(pStr->z, z, n+1);
93     }
94   }
95 }
96 #endif
97 
98 #ifdef SQLITE_ENABLE_NORMALIZE
99 /*
100 ** zId of length nId is a double-quoted identifier.  Check to see if
101 ** that identifier is really used as a string literal.
102 */
103 int sqlite3VdbeUsesDoubleQuotedString(
104   Vdbe *pVdbe,            /* The prepared statement */
105   const char *zId         /* The double-quoted identifier, already dequoted */
106 ){
107   DblquoteStr *pStr;
108   assert( zId!=0 );
109   if( pVdbe->pDblStr==0 ) return 0;
110   for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111     if( strcmp(zId, pStr->z)==0 ) return 1;
112   }
113   return 0;
114 }
115 #endif
116 
117 /*
118 ** Swap all content between two VDBE structures.
119 */
120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
121   Vdbe tmp, *pTmp;
122   char *zTmp;
123   assert( pA->db==pB->db );
124   tmp = *pA;
125   *pA = *pB;
126   *pB = tmp;
127   pTmp = pA->pNext;
128   pA->pNext = pB->pNext;
129   pB->pNext = pTmp;
130   pTmp = pA->pPrev;
131   pA->pPrev = pB->pPrev;
132   pB->pPrev = pTmp;
133   zTmp = pA->zSql;
134   pA->zSql = pB->zSql;
135   pB->zSql = zTmp;
136 #ifdef SQLITE_ENABLE_NORMALIZE
137   zTmp = pA->zNormSql;
138   pA->zNormSql = pB->zNormSql;
139   pB->zNormSql = zTmp;
140 #endif
141   pB->expmask = pA->expmask;
142   pB->prepFlags = pA->prepFlags;
143   memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
144   pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
145 }
146 
147 /*
148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
149 ** than its current size. nOp is guaranteed to be less than or equal
150 ** to 1024/sizeof(Op).
151 **
152 ** If an out-of-memory error occurs while resizing the array, return
153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
154 ** unchanged (this is so that any opcodes already allocated can be
155 ** correctly deallocated along with the rest of the Vdbe).
156 */
157 static int growOpArray(Vdbe *v, int nOp){
158   VdbeOp *pNew;
159   Parse *p = v->pParse;
160 
161   /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
162   ** more frequent reallocs and hence provide more opportunities for
163   ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used
164   ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array
165   ** by the minimum* amount required until the size reaches 512.  Normal
166   ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
167   ** size of the op array or add 1KB of space, whichever is smaller. */
168 #ifdef SQLITE_TEST_REALLOC_STRESS
169   sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
170                         : (sqlite3_int64)v->nOpAlloc+nOp);
171 #else
172   sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
173                         : (sqlite3_int64)(1024/sizeof(Op)));
174   UNUSED_PARAMETER(nOp);
175 #endif
176 
177   /* Ensure that the size of a VDBE does not grow too large */
178   if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
179     sqlite3OomFault(p->db);
180     return SQLITE_NOMEM;
181   }
182 
183   assert( nOp<=(1024/sizeof(Op)) );
184   assert( nNew>=(v->nOpAlloc+nOp) );
185   pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
186   if( pNew ){
187     p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
188     v->nOpAlloc = p->szOpAlloc/sizeof(Op);
189     v->aOp = pNew;
190   }
191   return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
192 }
193 
194 #ifdef SQLITE_DEBUG
195 /* This routine is just a convenient place to set a breakpoint that will
196 ** fire after each opcode is inserted and displayed using
197 ** "PRAGMA vdbe_addoptrace=on".  Parameters "pc" (program counter) and
198 ** pOp are available to make the breakpoint conditional.
199 **
200 ** Other useful labels for breakpoints include:
201 **   test_trace_breakpoint(pc,pOp)
202 **   sqlite3CorruptError(lineno)
203 **   sqlite3MisuseError(lineno)
204 **   sqlite3CantopenError(lineno)
205 */
206 static void test_addop_breakpoint(int pc, Op *pOp){
207   static int n = 0;
208   n++;
209 }
210 #endif
211 
212 /*
213 ** Add a new instruction to the list of instructions current in the
214 ** VDBE.  Return the address of the new instruction.
215 **
216 ** Parameters:
217 **
218 **    p               Pointer to the VDBE
219 **
220 **    op              The opcode for this instruction
221 **
222 **    p1, p2, p3      Operands
223 **
224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
225 ** the sqlite3VdbeChangeP4() function to change the value of the P4
226 ** operand.
227 */
228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
229   assert( p->nOpAlloc<=p->nOp );
230   if( growOpArray(p, 1) ) return 1;
231   assert( p->nOpAlloc>p->nOp );
232   return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
233 }
234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
235   int i;
236   VdbeOp *pOp;
237 
238   i = p->nOp;
239   assert( p->magic==VDBE_MAGIC_INIT );
240   assert( op>=0 && op<0xff );
241   if( p->nOpAlloc<=i ){
242     return growOp3(p, op, p1, p2, p3);
243   }
244   p->nOp++;
245   pOp = &p->aOp[i];
246   pOp->opcode = (u8)op;
247   pOp->p5 = 0;
248   pOp->p1 = p1;
249   pOp->p2 = p2;
250   pOp->p3 = p3;
251   pOp->p4.p = 0;
252   pOp->p4type = P4_NOTUSED;
253 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
254   pOp->zComment = 0;
255 #endif
256 #ifdef SQLITE_DEBUG
257   if( p->db->flags & SQLITE_VdbeAddopTrace ){
258     sqlite3VdbePrintOp(0, i, &p->aOp[i]);
259     test_addop_breakpoint(i, &p->aOp[i]);
260   }
261 #endif
262 #ifdef VDBE_PROFILE
263   pOp->cycles = 0;
264   pOp->cnt = 0;
265 #endif
266 #ifdef SQLITE_VDBE_COVERAGE
267   pOp->iSrcLine = 0;
268 #endif
269   return i;
270 }
271 int sqlite3VdbeAddOp0(Vdbe *p, int op){
272   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
273 }
274 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
275   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
276 }
277 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
278   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
279 }
280 
281 /* Generate code for an unconditional jump to instruction iDest
282 */
283 int sqlite3VdbeGoto(Vdbe *p, int iDest){
284   return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
285 }
286 
287 /* Generate code to cause the string zStr to be loaded into
288 ** register iDest
289 */
290 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
291   return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
292 }
293 
294 /*
295 ** Generate code that initializes multiple registers to string or integer
296 ** constants.  The registers begin with iDest and increase consecutively.
297 ** One register is initialized for each characgter in zTypes[].  For each
298 ** "s" character in zTypes[], the register is a string if the argument is
299 ** not NULL, or OP_Null if the value is a null pointer.  For each "i" character
300 ** in zTypes[], the register is initialized to an integer.
301 **
302 ** If the input string does not end with "X" then an OP_ResultRow instruction
303 ** is generated for the values inserted.
304 */
305 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
306   va_list ap;
307   int i;
308   char c;
309   va_start(ap, zTypes);
310   for(i=0; (c = zTypes[i])!=0; i++){
311     if( c=='s' ){
312       const char *z = va_arg(ap, const char*);
313       sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
314     }else if( c=='i' ){
315       sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
316     }else{
317       goto skip_op_resultrow;
318     }
319   }
320   sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
321 skip_op_resultrow:
322   va_end(ap);
323 }
324 
325 /*
326 ** Add an opcode that includes the p4 value as a pointer.
327 */
328 int sqlite3VdbeAddOp4(
329   Vdbe *p,            /* Add the opcode to this VM */
330   int op,             /* The new opcode */
331   int p1,             /* The P1 operand */
332   int p2,             /* The P2 operand */
333   int p3,             /* The P3 operand */
334   const char *zP4,    /* The P4 operand */
335   int p4type          /* P4 operand type */
336 ){
337   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
338   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
339   return addr;
340 }
341 
342 /*
343 ** Add an OP_Function or OP_PureFunc opcode.
344 **
345 ** The eCallCtx argument is information (typically taken from Expr.op2)
346 ** that describes the calling context of the function.  0 means a general
347 ** function call.  NC_IsCheck means called by a check constraint,
348 ** NC_IdxExpr means called as part of an index expression.  NC_PartIdx
349 ** means in the WHERE clause of a partial index.  NC_GenCol means called
350 ** while computing a generated column value.  0 is the usual case.
351 */
352 int sqlite3VdbeAddFunctionCall(
353   Parse *pParse,        /* Parsing context */
354   int p1,               /* Constant argument mask */
355   int p2,               /* First argument register */
356   int p3,               /* Register into which results are written */
357   int nArg,             /* Number of argument */
358   const FuncDef *pFunc, /* The function to be invoked */
359   int eCallCtx          /* Calling context */
360 ){
361   Vdbe *v = pParse->pVdbe;
362   int nByte;
363   int addr;
364   sqlite3_context *pCtx;
365   assert( v );
366   nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
367   pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
368   if( pCtx==0 ){
369     assert( pParse->db->mallocFailed );
370     freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
371     return 0;
372   }
373   pCtx->pOut = 0;
374   pCtx->pFunc = (FuncDef*)pFunc;
375   pCtx->pVdbe = 0;
376   pCtx->isError = 0;
377   pCtx->argc = nArg;
378   pCtx->iOp = sqlite3VdbeCurrentAddr(v);
379   addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
380                            p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
381   sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
382   return addr;
383 }
384 
385 /*
386 ** Add an opcode that includes the p4 value with a P4_INT64 or
387 ** P4_REAL type.
388 */
389 int sqlite3VdbeAddOp4Dup8(
390   Vdbe *p,            /* Add the opcode to this VM */
391   int op,             /* The new opcode */
392   int p1,             /* The P1 operand */
393   int p2,             /* The P2 operand */
394   int p3,             /* The P3 operand */
395   const u8 *zP4,      /* The P4 operand */
396   int p4type          /* P4 operand type */
397 ){
398   char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
399   if( p4copy ) memcpy(p4copy, zP4, 8);
400   return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
401 }
402 
403 #ifndef SQLITE_OMIT_EXPLAIN
404 /*
405 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
406 ** 0 means "none".
407 */
408 int sqlite3VdbeExplainParent(Parse *pParse){
409   VdbeOp *pOp;
410   if( pParse->addrExplain==0 ) return 0;
411   pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
412   return pOp->p2;
413 }
414 
415 /*
416 ** Set a debugger breakpoint on the following routine in order to
417 ** monitor the EXPLAIN QUERY PLAN code generation.
418 */
419 #if defined(SQLITE_DEBUG)
420 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
421   (void)z1;
422   (void)z2;
423 }
424 #endif
425 
426 /*
427 ** Add a new OP_ opcode.
428 **
429 ** If the bPush flag is true, then make this opcode the parent for
430 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
431 */
432 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
433 #ifndef SQLITE_DEBUG
434   /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
435   ** But omit them (for performance) during production builds */
436   if( pParse->explain==2 )
437 #endif
438   {
439     char *zMsg;
440     Vdbe *v;
441     va_list ap;
442     int iThis;
443     va_start(ap, zFmt);
444     zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
445     va_end(ap);
446     v = pParse->pVdbe;
447     iThis = v->nOp;
448     sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
449                       zMsg, P4_DYNAMIC);
450     sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z);
451     if( bPush){
452       pParse->addrExplain = iThis;
453     }
454   }
455 }
456 
457 /*
458 ** Pop the EXPLAIN QUERY PLAN stack one level.
459 */
460 void sqlite3VdbeExplainPop(Parse *pParse){
461   sqlite3ExplainBreakpoint("POP", 0);
462   pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
463 }
464 #endif /* SQLITE_OMIT_EXPLAIN */
465 
466 /*
467 ** Add an OP_ParseSchema opcode.  This routine is broken out from
468 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
469 ** as having been used.
470 **
471 ** The zWhere string must have been obtained from sqlite3_malloc().
472 ** This routine will take ownership of the allocated memory.
473 */
474 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
475   int j;
476   sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
477   for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
478 }
479 
480 /*
481 ** Add an opcode that includes the p4 value as an integer.
482 */
483 int sqlite3VdbeAddOp4Int(
484   Vdbe *p,            /* Add the opcode to this VM */
485   int op,             /* The new opcode */
486   int p1,             /* The P1 operand */
487   int p2,             /* The P2 operand */
488   int p3,             /* The P3 operand */
489   int p4              /* The P4 operand as an integer */
490 ){
491   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
492   if( p->db->mallocFailed==0 ){
493     VdbeOp *pOp = &p->aOp[addr];
494     pOp->p4type = P4_INT32;
495     pOp->p4.i = p4;
496   }
497   return addr;
498 }
499 
500 /* Insert the end of a co-routine
501 */
502 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
503   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
504 
505   /* Clear the temporary register cache, thereby ensuring that each
506   ** co-routine has its own independent set of registers, because co-routines
507   ** might expect their registers to be preserved across an OP_Yield, and
508   ** that could cause problems if two or more co-routines are using the same
509   ** temporary register.
510   */
511   v->pParse->nTempReg = 0;
512   v->pParse->nRangeReg = 0;
513 }
514 
515 /*
516 ** Create a new symbolic label for an instruction that has yet to be
517 ** coded.  The symbolic label is really just a negative number.  The
518 ** label can be used as the P2 value of an operation.  Later, when
519 ** the label is resolved to a specific address, the VDBE will scan
520 ** through its operation list and change all values of P2 which match
521 ** the label into the resolved address.
522 **
523 ** The VDBE knows that a P2 value is a label because labels are
524 ** always negative and P2 values are suppose to be non-negative.
525 ** Hence, a negative P2 value is a label that has yet to be resolved.
526 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
527 ** property.
528 **
529 ** Variable usage notes:
530 **
531 **     Parse.aLabel[x]     Stores the address that the x-th label resolves
532 **                         into.  For testing (SQLITE_DEBUG), unresolved
533 **                         labels stores -1, but that is not required.
534 **     Parse.nLabelAlloc   Number of slots allocated to Parse.aLabel[]
535 **     Parse.nLabel        The *negative* of the number of labels that have
536 **                         been issued.  The negative is stored because
537 **                         that gives a performance improvement over storing
538 **                         the equivalent positive value.
539 */
540 int sqlite3VdbeMakeLabel(Parse *pParse){
541   return --pParse->nLabel;
542 }
543 
544 /*
545 ** Resolve label "x" to be the address of the next instruction to
546 ** be inserted.  The parameter "x" must have been obtained from
547 ** a prior call to sqlite3VdbeMakeLabel().
548 */
549 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
550   int nNewSize = 10 - p->nLabel;
551   p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
552                      nNewSize*sizeof(p->aLabel[0]));
553   if( p->aLabel==0 ){
554     p->nLabelAlloc = 0;
555   }else{
556 #ifdef SQLITE_DEBUG
557     int i;
558     for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
559 #endif
560     p->nLabelAlloc = nNewSize;
561     p->aLabel[j] = v->nOp;
562   }
563 }
564 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
565   Parse *p = v->pParse;
566   int j = ADDR(x);
567   assert( v->magic==VDBE_MAGIC_INIT );
568   assert( j<-p->nLabel );
569   assert( j>=0 );
570 #ifdef SQLITE_DEBUG
571   if( p->db->flags & SQLITE_VdbeAddopTrace ){
572     printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
573   }
574 #endif
575   if( p->nLabelAlloc + p->nLabel < 0 ){
576     resizeResolveLabel(p,v,j);
577   }else{
578     assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
579     p->aLabel[j] = v->nOp;
580   }
581 }
582 
583 /*
584 ** Mark the VDBE as one that can only be run one time.
585 */
586 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
587   p->runOnlyOnce = 1;
588 }
589 
590 /*
591 ** Mark the VDBE as one that can only be run multiple times.
592 */
593 void sqlite3VdbeReusable(Vdbe *p){
594   p->runOnlyOnce = 0;
595 }
596 
597 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
598 
599 /*
600 ** The following type and function are used to iterate through all opcodes
601 ** in a Vdbe main program and each of the sub-programs (triggers) it may
602 ** invoke directly or indirectly. It should be used as follows:
603 **
604 **   Op *pOp;
605 **   VdbeOpIter sIter;
606 **
607 **   memset(&sIter, 0, sizeof(sIter));
608 **   sIter.v = v;                            // v is of type Vdbe*
609 **   while( (pOp = opIterNext(&sIter)) ){
610 **     // Do something with pOp
611 **   }
612 **   sqlite3DbFree(v->db, sIter.apSub);
613 **
614 */
615 typedef struct VdbeOpIter VdbeOpIter;
616 struct VdbeOpIter {
617   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
618   SubProgram **apSub;        /* Array of subprograms */
619   int nSub;                  /* Number of entries in apSub */
620   int iAddr;                 /* Address of next instruction to return */
621   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
622 };
623 static Op *opIterNext(VdbeOpIter *p){
624   Vdbe *v = p->v;
625   Op *pRet = 0;
626   Op *aOp;
627   int nOp;
628 
629   if( p->iSub<=p->nSub ){
630 
631     if( p->iSub==0 ){
632       aOp = v->aOp;
633       nOp = v->nOp;
634     }else{
635       aOp = p->apSub[p->iSub-1]->aOp;
636       nOp = p->apSub[p->iSub-1]->nOp;
637     }
638     assert( p->iAddr<nOp );
639 
640     pRet = &aOp[p->iAddr];
641     p->iAddr++;
642     if( p->iAddr==nOp ){
643       p->iSub++;
644       p->iAddr = 0;
645     }
646 
647     if( pRet->p4type==P4_SUBPROGRAM ){
648       int nByte = (p->nSub+1)*sizeof(SubProgram*);
649       int j;
650       for(j=0; j<p->nSub; j++){
651         if( p->apSub[j]==pRet->p4.pProgram ) break;
652       }
653       if( j==p->nSub ){
654         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
655         if( !p->apSub ){
656           pRet = 0;
657         }else{
658           p->apSub[p->nSub++] = pRet->p4.pProgram;
659         }
660       }
661     }
662   }
663 
664   return pRet;
665 }
666 
667 /*
668 ** Check if the program stored in the VM associated with pParse may
669 ** throw an ABORT exception (causing the statement, but not entire transaction
670 ** to be rolled back). This condition is true if the main program or any
671 ** sub-programs contains any of the following:
672 **
673 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
674 **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
675 **   *  OP_Destroy
676 **   *  OP_VUpdate
677 **   *  OP_VCreate
678 **   *  OP_VRename
679 **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
680 **   *  OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
681 **      (for CREATE TABLE AS SELECT ...)
682 **
683 ** Then check that the value of Parse.mayAbort is true if an
684 ** ABORT may be thrown, or false otherwise. Return true if it does
685 ** match, or false otherwise. This function is intended to be used as
686 ** part of an assert statement in the compiler. Similar to:
687 **
688 **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
689 */
690 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
691   int hasAbort = 0;
692   int hasFkCounter = 0;
693   int hasCreateTable = 0;
694   int hasCreateIndex = 0;
695   int hasInitCoroutine = 0;
696   Op *pOp;
697   VdbeOpIter sIter;
698   memset(&sIter, 0, sizeof(sIter));
699   sIter.v = v;
700 
701   while( (pOp = opIterNext(&sIter))!=0 ){
702     int opcode = pOp->opcode;
703     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
704      || opcode==OP_VDestroy
705      || opcode==OP_VCreate
706      || (opcode==OP_ParseSchema && pOp->p4.z==0)
707      || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
708       && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
709     ){
710       hasAbort = 1;
711       break;
712     }
713     if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
714     if( mayAbort ){
715       /* hasCreateIndex may also be set for some DELETE statements that use
716       ** OP_Clear. So this routine may end up returning true in the case
717       ** where a "DELETE FROM tbl" has a statement-journal but does not
718       ** require one. This is not so bad - it is an inefficiency, not a bug. */
719       if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
720       if( opcode==OP_Clear ) hasCreateIndex = 1;
721     }
722     if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
723 #ifndef SQLITE_OMIT_FOREIGN_KEY
724     if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
725       hasFkCounter = 1;
726     }
727 #endif
728   }
729   sqlite3DbFree(v->db, sIter.apSub);
730 
731   /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
732   ** If malloc failed, then the while() loop above may not have iterated
733   ** through all opcodes and hasAbort may be set incorrectly. Return
734   ** true for this case to prevent the assert() in the callers frame
735   ** from failing.  */
736   return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
737         || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
738   );
739 }
740 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
741 
742 #ifdef SQLITE_DEBUG
743 /*
744 ** Increment the nWrite counter in the VDBE if the cursor is not an
745 ** ephemeral cursor, or if the cursor argument is NULL.
746 */
747 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
748   if( pC==0
749    || (pC->eCurType!=CURTYPE_SORTER
750        && pC->eCurType!=CURTYPE_PSEUDO
751        && !pC->isEphemeral)
752   ){
753     p->nWrite++;
754   }
755 }
756 #endif
757 
758 #ifdef SQLITE_DEBUG
759 /*
760 ** Assert if an Abort at this point in time might result in a corrupt
761 ** database.
762 */
763 void sqlite3VdbeAssertAbortable(Vdbe *p){
764   assert( p->nWrite==0 || p->usesStmtJournal );
765 }
766 #endif
767 
768 /*
769 ** This routine is called after all opcodes have been inserted.  It loops
770 ** through all the opcodes and fixes up some details.
771 **
772 ** (1) For each jump instruction with a negative P2 value (a label)
773 **     resolve the P2 value to an actual address.
774 **
775 ** (2) Compute the maximum number of arguments used by any SQL function
776 **     and store that value in *pMaxFuncArgs.
777 **
778 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
779 **     indicate what the prepared statement actually does.
780 **
781 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
782 **
783 ** (5) Reclaim the memory allocated for storing labels.
784 **
785 ** This routine will only function correctly if the mkopcodeh.tcl generator
786 ** script numbers the opcodes correctly.  Changes to this routine must be
787 ** coordinated with changes to mkopcodeh.tcl.
788 */
789 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
790   int nMaxArgs = *pMaxFuncArgs;
791   Op *pOp;
792   Parse *pParse = p->pParse;
793   int *aLabel = pParse->aLabel;
794   p->readOnly = 1;
795   p->bIsReader = 0;
796   pOp = &p->aOp[p->nOp-1];
797   while(1){
798 
799     /* Only JUMP opcodes and the short list of special opcodes in the switch
800     ** below need to be considered.  The mkopcodeh.tcl generator script groups
801     ** all these opcodes together near the front of the opcode list.  Skip
802     ** any opcode that does not need processing by virtual of the fact that
803     ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
804     */
805     if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
806       /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
807       ** cases from this switch! */
808       switch( pOp->opcode ){
809         case OP_Transaction: {
810           if( pOp->p2!=0 ) p->readOnly = 0;
811           /* fall thru */
812         }
813         case OP_AutoCommit:
814         case OP_Savepoint: {
815           p->bIsReader = 1;
816           break;
817         }
818 #ifndef SQLITE_OMIT_WAL
819         case OP_Checkpoint:
820 #endif
821         case OP_Vacuum:
822         case OP_JournalMode: {
823           p->readOnly = 0;
824           p->bIsReader = 1;
825           break;
826         }
827         case OP_Next:
828         case OP_SorterNext: {
829           pOp->p4.xAdvance = sqlite3BtreeNext;
830           pOp->p4type = P4_ADVANCE;
831           /* The code generator never codes any of these opcodes as a jump
832           ** to a label.  They are always coded as a jump backwards to a
833           ** known address */
834           assert( pOp->p2>=0 );
835           break;
836         }
837         case OP_Prev: {
838           pOp->p4.xAdvance = sqlite3BtreePrevious;
839           pOp->p4type = P4_ADVANCE;
840           /* The code generator never codes any of these opcodes as a jump
841           ** to a label.  They are always coded as a jump backwards to a
842           ** known address */
843           assert( pOp->p2>=0 );
844           break;
845         }
846 #ifndef SQLITE_OMIT_VIRTUALTABLE
847         case OP_VUpdate: {
848           if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
849           break;
850         }
851         case OP_VFilter: {
852           int n;
853           assert( (pOp - p->aOp) >= 3 );
854           assert( pOp[-1].opcode==OP_Integer );
855           n = pOp[-1].p1;
856           if( n>nMaxArgs ) nMaxArgs = n;
857           /* Fall through into the default case */
858         }
859 #endif
860         default: {
861           if( pOp->p2<0 ){
862             /* The mkopcodeh.tcl script has so arranged things that the only
863             ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
864             ** have non-negative values for P2. */
865             assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
866             assert( ADDR(pOp->p2)<-pParse->nLabel );
867             pOp->p2 = aLabel[ADDR(pOp->p2)];
868           }
869           break;
870         }
871       }
872       /* The mkopcodeh.tcl script has so arranged things that the only
873       ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
874       ** have non-negative values for P2. */
875       assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
876     }
877     if( pOp==p->aOp ) break;
878     pOp--;
879   }
880   sqlite3DbFree(p->db, pParse->aLabel);
881   pParse->aLabel = 0;
882   pParse->nLabel = 0;
883   *pMaxFuncArgs = nMaxArgs;
884   assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
885 }
886 
887 /*
888 ** Return the address of the next instruction to be inserted.
889 */
890 int sqlite3VdbeCurrentAddr(Vdbe *p){
891   assert( p->magic==VDBE_MAGIC_INIT );
892   return p->nOp;
893 }
894 
895 /*
896 ** Verify that at least N opcode slots are available in p without
897 ** having to malloc for more space (except when compiled using
898 ** SQLITE_TEST_REALLOC_STRESS).  This interface is used during testing
899 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
900 ** fail due to a OOM fault and hence that the return value from
901 ** sqlite3VdbeAddOpList() will always be non-NULL.
902 */
903 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
904 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
905   assert( p->nOp + N <= p->nOpAlloc );
906 }
907 #endif
908 
909 /*
910 ** Verify that the VM passed as the only argument does not contain
911 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
912 ** by code in pragma.c to ensure that the implementation of certain
913 ** pragmas comports with the flags specified in the mkpragmatab.tcl
914 ** script.
915 */
916 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
917 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
918   int i;
919   for(i=0; i<p->nOp; i++){
920     assert( p->aOp[i].opcode!=OP_ResultRow );
921   }
922 }
923 #endif
924 
925 /*
926 ** Generate code (a single OP_Abortable opcode) that will
927 ** verify that the VDBE program can safely call Abort in the current
928 ** context.
929 */
930 #if defined(SQLITE_DEBUG)
931 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
932   if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
933 }
934 #endif
935 
936 /*
937 ** This function returns a pointer to the array of opcodes associated with
938 ** the Vdbe passed as the first argument. It is the callers responsibility
939 ** to arrange for the returned array to be eventually freed using the
940 ** vdbeFreeOpArray() function.
941 **
942 ** Before returning, *pnOp is set to the number of entries in the returned
943 ** array. Also, *pnMaxArg is set to the larger of its current value and
944 ** the number of entries in the Vdbe.apArg[] array required to execute the
945 ** returned program.
946 */
947 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
948   VdbeOp *aOp = p->aOp;
949   assert( aOp && !p->db->mallocFailed );
950 
951   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
952   assert( DbMaskAllZero(p->btreeMask) );
953 
954   resolveP2Values(p, pnMaxArg);
955   *pnOp = p->nOp;
956   p->aOp = 0;
957   return aOp;
958 }
959 
960 /*
961 ** Add a whole list of operations to the operation stack.  Return a
962 ** pointer to the first operation inserted.
963 **
964 ** Non-zero P2 arguments to jump instructions are automatically adjusted
965 ** so that the jump target is relative to the first operation inserted.
966 */
967 VdbeOp *sqlite3VdbeAddOpList(
968   Vdbe *p,                     /* Add opcodes to the prepared statement */
969   int nOp,                     /* Number of opcodes to add */
970   VdbeOpList const *aOp,       /* The opcodes to be added */
971   int iLineno                  /* Source-file line number of first opcode */
972 ){
973   int i;
974   VdbeOp *pOut, *pFirst;
975   assert( nOp>0 );
976   assert( p->magic==VDBE_MAGIC_INIT );
977   if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
978     return 0;
979   }
980   pFirst = pOut = &p->aOp[p->nOp];
981   for(i=0; i<nOp; i++, aOp++, pOut++){
982     pOut->opcode = aOp->opcode;
983     pOut->p1 = aOp->p1;
984     pOut->p2 = aOp->p2;
985     assert( aOp->p2>=0 );
986     if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
987       pOut->p2 += p->nOp;
988     }
989     pOut->p3 = aOp->p3;
990     pOut->p4type = P4_NOTUSED;
991     pOut->p4.p = 0;
992     pOut->p5 = 0;
993 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
994     pOut->zComment = 0;
995 #endif
996 #ifdef SQLITE_VDBE_COVERAGE
997     pOut->iSrcLine = iLineno+i;
998 #else
999     (void)iLineno;
1000 #endif
1001 #ifdef SQLITE_DEBUG
1002     if( p->db->flags & SQLITE_VdbeAddopTrace ){
1003       sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1004     }
1005 #endif
1006   }
1007   p->nOp += nOp;
1008   return pFirst;
1009 }
1010 
1011 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1012 /*
1013 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1014 */
1015 void sqlite3VdbeScanStatus(
1016   Vdbe *p,                        /* VM to add scanstatus() to */
1017   int addrExplain,                /* Address of OP_Explain (or 0) */
1018   int addrLoop,                   /* Address of loop counter */
1019   int addrVisit,                  /* Address of rows visited counter */
1020   LogEst nEst,                    /* Estimated number of output rows */
1021   const char *zName               /* Name of table or index being scanned */
1022 ){
1023   sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1024   ScanStatus *aNew;
1025   aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1026   if( aNew ){
1027     ScanStatus *pNew = &aNew[p->nScan++];
1028     pNew->addrExplain = addrExplain;
1029     pNew->addrLoop = addrLoop;
1030     pNew->addrVisit = addrVisit;
1031     pNew->nEst = nEst;
1032     pNew->zName = sqlite3DbStrDup(p->db, zName);
1033     p->aScan = aNew;
1034   }
1035 }
1036 #endif
1037 
1038 
1039 /*
1040 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1041 ** for a specific instruction.
1042 */
1043 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1044   sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1045 }
1046 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1047   sqlite3VdbeGetOp(p,addr)->p1 = val;
1048 }
1049 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1050   sqlite3VdbeGetOp(p,addr)->p2 = val;
1051 }
1052 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1053   sqlite3VdbeGetOp(p,addr)->p3 = val;
1054 }
1055 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1056   assert( p->nOp>0 || p->db->mallocFailed );
1057   if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1058 }
1059 
1060 /*
1061 ** Change the P2 operand of instruction addr so that it points to
1062 ** the address of the next instruction to be coded.
1063 */
1064 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1065   sqlite3VdbeChangeP2(p, addr, p->nOp);
1066 }
1067 
1068 
1069 /*
1070 ** If the input FuncDef structure is ephemeral, then free it.  If
1071 ** the FuncDef is not ephermal, then do nothing.
1072 */
1073 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1074   if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1075     sqlite3DbFreeNN(db, pDef);
1076   }
1077 }
1078 
1079 /*
1080 ** Delete a P4 value if necessary.
1081 */
1082 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1083   if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1084   sqlite3DbFreeNN(db, p);
1085 }
1086 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1087   freeEphemeralFunction(db, p->pFunc);
1088   sqlite3DbFreeNN(db, p);
1089 }
1090 static void freeP4(sqlite3 *db, int p4type, void *p4){
1091   assert( db );
1092   switch( p4type ){
1093     case P4_FUNCCTX: {
1094       freeP4FuncCtx(db, (sqlite3_context*)p4);
1095       break;
1096     }
1097     case P4_REAL:
1098     case P4_INT64:
1099     case P4_DYNAMIC:
1100     case P4_DYNBLOB:
1101     case P4_INTARRAY: {
1102       sqlite3DbFree(db, p4);
1103       break;
1104     }
1105     case P4_KEYINFO: {
1106       if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1107       break;
1108     }
1109 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1110     case P4_EXPR: {
1111       sqlite3ExprDelete(db, (Expr*)p4);
1112       break;
1113     }
1114 #endif
1115     case P4_FUNCDEF: {
1116       freeEphemeralFunction(db, (FuncDef*)p4);
1117       break;
1118     }
1119     case P4_MEM: {
1120       if( db->pnBytesFreed==0 ){
1121         sqlite3ValueFree((sqlite3_value*)p4);
1122       }else{
1123         freeP4Mem(db, (Mem*)p4);
1124       }
1125       break;
1126     }
1127     case P4_VTAB : {
1128       if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1129       break;
1130     }
1131   }
1132 }
1133 
1134 /*
1135 ** Free the space allocated for aOp and any p4 values allocated for the
1136 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1137 ** nOp entries.
1138 */
1139 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1140   if( aOp ){
1141     Op *pOp;
1142     for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
1143       if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1144 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1145       sqlite3DbFree(db, pOp->zComment);
1146 #endif
1147     }
1148     sqlite3DbFreeNN(db, aOp);
1149   }
1150 }
1151 
1152 /*
1153 ** Link the SubProgram object passed as the second argument into the linked
1154 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1155 ** objects when the VM is no longer required.
1156 */
1157 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1158   p->pNext = pVdbe->pProgram;
1159   pVdbe->pProgram = p;
1160 }
1161 
1162 /*
1163 ** Return true if the given Vdbe has any SubPrograms.
1164 */
1165 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1166   return pVdbe->pProgram!=0;
1167 }
1168 
1169 /*
1170 ** Change the opcode at addr into OP_Noop
1171 */
1172 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1173   VdbeOp *pOp;
1174   if( p->db->mallocFailed ) return 0;
1175   assert( addr>=0 && addr<p->nOp );
1176   pOp = &p->aOp[addr];
1177   freeP4(p->db, pOp->p4type, pOp->p4.p);
1178   pOp->p4type = P4_NOTUSED;
1179   pOp->p4.z = 0;
1180   pOp->opcode = OP_Noop;
1181   return 1;
1182 }
1183 
1184 /*
1185 ** If the last opcode is "op" and it is not a jump destination,
1186 ** then remove it.  Return true if and only if an opcode was removed.
1187 */
1188 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1189   if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1190     return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1191   }else{
1192     return 0;
1193   }
1194 }
1195 
1196 #ifdef SQLITE_DEBUG
1197 /*
1198 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1199 ** registers, except any identified by mask, are no longer in use.
1200 */
1201 void sqlite3VdbeReleaseRegisters(
1202   Parse *pParse,       /* Parsing context */
1203   int iFirst,          /* Index of first register to be released */
1204   int N,               /* Number of registers to release */
1205   u32 mask,            /* Mask of registers to NOT release */
1206   int bUndefine        /* If true, mark registers as undefined */
1207 ){
1208   if( N==0 ) return;
1209   assert( pParse->pVdbe );
1210   assert( iFirst>=1 );
1211   assert( iFirst+N-1<=pParse->nMem );
1212   while( N>0 && (mask&1)!=0 ){
1213     mask >>= 1;
1214     iFirst++;
1215     N--;
1216   }
1217   while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1218     mask &= ~MASKBIT32(N-1);
1219     N--;
1220   }
1221   if( N>0 ){
1222     sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1223     if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1224   }
1225 }
1226 #endif /* SQLITE_DEBUG */
1227 
1228 
1229 /*
1230 ** Change the value of the P4 operand for a specific instruction.
1231 ** This routine is useful when a large program is loaded from a
1232 ** static array using sqlite3VdbeAddOpList but we want to make a
1233 ** few minor changes to the program.
1234 **
1235 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1236 ** the string is made into memory obtained from sqlite3_malloc().
1237 ** A value of n==0 means copy bytes of zP4 up to and including the
1238 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
1239 **
1240 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1241 ** to a string or structure that is guaranteed to exist for the lifetime of
1242 ** the Vdbe. In these cases we can just copy the pointer.
1243 **
1244 ** If addr<0 then change P4 on the most recently inserted instruction.
1245 */
1246 static void SQLITE_NOINLINE vdbeChangeP4Full(
1247   Vdbe *p,
1248   Op *pOp,
1249   const char *zP4,
1250   int n
1251 ){
1252   if( pOp->p4type ){
1253     freeP4(p->db, pOp->p4type, pOp->p4.p);
1254     pOp->p4type = 0;
1255     pOp->p4.p = 0;
1256   }
1257   if( n<0 ){
1258     sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1259   }else{
1260     if( n==0 ) n = sqlite3Strlen30(zP4);
1261     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1262     pOp->p4type = P4_DYNAMIC;
1263   }
1264 }
1265 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1266   Op *pOp;
1267   sqlite3 *db;
1268   assert( p!=0 );
1269   db = p->db;
1270   assert( p->magic==VDBE_MAGIC_INIT );
1271   assert( p->aOp!=0 || db->mallocFailed );
1272   if( db->mallocFailed ){
1273     if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1274     return;
1275   }
1276   assert( p->nOp>0 );
1277   assert( addr<p->nOp );
1278   if( addr<0 ){
1279     addr = p->nOp - 1;
1280   }
1281   pOp = &p->aOp[addr];
1282   if( n>=0 || pOp->p4type ){
1283     vdbeChangeP4Full(p, pOp, zP4, n);
1284     return;
1285   }
1286   if( n==P4_INT32 ){
1287     /* Note: this cast is safe, because the origin data point was an int
1288     ** that was cast to a (const char *). */
1289     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1290     pOp->p4type = P4_INT32;
1291   }else if( zP4!=0 ){
1292     assert( n<0 );
1293     pOp->p4.p = (void*)zP4;
1294     pOp->p4type = (signed char)n;
1295     if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1296   }
1297 }
1298 
1299 /*
1300 ** Change the P4 operand of the most recently coded instruction
1301 ** to the value defined by the arguments.  This is a high-speed
1302 ** version of sqlite3VdbeChangeP4().
1303 **
1304 ** The P4 operand must not have been previously defined.  And the new
1305 ** P4 must not be P4_INT32.  Use sqlite3VdbeChangeP4() in either of
1306 ** those cases.
1307 */
1308 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1309   VdbeOp *pOp;
1310   assert( n!=P4_INT32 && n!=P4_VTAB );
1311   assert( n<=0 );
1312   if( p->db->mallocFailed ){
1313     freeP4(p->db, n, pP4);
1314   }else{
1315     assert( pP4!=0 );
1316     assert( p->nOp>0 );
1317     pOp = &p->aOp[p->nOp-1];
1318     assert( pOp->p4type==P4_NOTUSED );
1319     pOp->p4type = n;
1320     pOp->p4.p = pP4;
1321   }
1322 }
1323 
1324 /*
1325 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1326 ** index given.
1327 */
1328 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1329   Vdbe *v = pParse->pVdbe;
1330   KeyInfo *pKeyInfo;
1331   assert( v!=0 );
1332   assert( pIdx!=0 );
1333   pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1334   if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1335 }
1336 
1337 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1338 /*
1339 ** Change the comment on the most recently coded instruction.  Or
1340 ** insert a No-op and add the comment to that new instruction.  This
1341 ** makes the code easier to read during debugging.  None of this happens
1342 ** in a production build.
1343 */
1344 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1345   assert( p->nOp>0 || p->aOp==0 );
1346   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed
1347           || p->pParse->nErr>0 );
1348   if( p->nOp ){
1349     assert( p->aOp );
1350     sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1351     p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1352   }
1353 }
1354 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1355   va_list ap;
1356   if( p ){
1357     va_start(ap, zFormat);
1358     vdbeVComment(p, zFormat, ap);
1359     va_end(ap);
1360   }
1361 }
1362 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1363   va_list ap;
1364   if( p ){
1365     sqlite3VdbeAddOp0(p, OP_Noop);
1366     va_start(ap, zFormat);
1367     vdbeVComment(p, zFormat, ap);
1368     va_end(ap);
1369   }
1370 }
1371 #endif  /* NDEBUG */
1372 
1373 #ifdef SQLITE_VDBE_COVERAGE
1374 /*
1375 ** Set the value if the iSrcLine field for the previously coded instruction.
1376 */
1377 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1378   sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1379 }
1380 #endif /* SQLITE_VDBE_COVERAGE */
1381 
1382 /*
1383 ** Return the opcode for a given address.  If the address is -1, then
1384 ** return the most recently inserted opcode.
1385 **
1386 ** If a memory allocation error has occurred prior to the calling of this
1387 ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
1388 ** is readable but not writable, though it is cast to a writable value.
1389 ** The return of a dummy opcode allows the call to continue functioning
1390 ** after an OOM fault without having to check to see if the return from
1391 ** this routine is a valid pointer.  But because the dummy.opcode is 0,
1392 ** dummy will never be written to.  This is verified by code inspection and
1393 ** by running with Valgrind.
1394 */
1395 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1396   /* C89 specifies that the constant "dummy" will be initialized to all
1397   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
1398   static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
1399   assert( p->magic==VDBE_MAGIC_INIT );
1400   if( addr<0 ){
1401     addr = p->nOp - 1;
1402   }
1403   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1404   if( p->db->mallocFailed ){
1405     return (VdbeOp*)&dummy;
1406   }else{
1407     return &p->aOp[addr];
1408   }
1409 }
1410 
1411 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1412 /*
1413 ** Return an integer value for one of the parameters to the opcode pOp
1414 ** determined by character c.
1415 */
1416 static int translateP(char c, const Op *pOp){
1417   if( c=='1' ) return pOp->p1;
1418   if( c=='2' ) return pOp->p2;
1419   if( c=='3' ) return pOp->p3;
1420   if( c=='4' ) return pOp->p4.i;
1421   return pOp->p5;
1422 }
1423 
1424 /*
1425 ** Compute a string for the "comment" field of a VDBE opcode listing.
1426 **
1427 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1428 ** to an extra string that is appended to the sqlite3OpcodeName().  In the
1429 ** absence of other comments, this synopsis becomes the comment on the opcode.
1430 ** Some translation occurs:
1431 **
1432 **       "PX"      ->  "r[X]"
1433 **       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1
1434 **       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0
1435 **       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x
1436 */
1437 static int displayComment(
1438   const Op *pOp,     /* The opcode to be commented */
1439   const char *zP4,   /* Previously obtained value for P4 */
1440   char *zTemp,       /* Write result here */
1441   int nTemp          /* Space available in zTemp[] */
1442 ){
1443   const char *zOpName;
1444   const char *zSynopsis;
1445   int nOpName;
1446   int ii, jj;
1447   char zAlt[50];
1448   zOpName = sqlite3OpcodeName(pOp->opcode);
1449   nOpName = sqlite3Strlen30(zOpName);
1450   if( zOpName[nOpName+1] ){
1451     int seenCom = 0;
1452     char c;
1453     zSynopsis = zOpName += nOpName + 1;
1454     if( strncmp(zSynopsis,"IF ",3)==0 ){
1455       if( pOp->p5 & SQLITE_STOREP2 ){
1456         sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
1457       }else{
1458         sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1459       }
1460       zSynopsis = zAlt;
1461     }
1462     for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1463       if( c=='P' ){
1464         c = zSynopsis[++ii];
1465         if( c=='4' ){
1466           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1467         }else if( c=='X' ){
1468           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1469           seenCom = 1;
1470         }else{
1471           int v1 = translateP(c, pOp);
1472           int v2;
1473           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1474           if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1475             ii += 3;
1476             jj += sqlite3Strlen30(zTemp+jj);
1477             v2 = translateP(zSynopsis[ii], pOp);
1478             if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1479               ii += 2;
1480               v2++;
1481             }
1482             if( v2>1 ){
1483               sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1484             }
1485           }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1486             ii += 4;
1487           }
1488         }
1489         jj += sqlite3Strlen30(zTemp+jj);
1490       }else{
1491         zTemp[jj++] = c;
1492       }
1493     }
1494     if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1495       sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1496       jj += sqlite3Strlen30(zTemp+jj);
1497     }
1498     if( jj<nTemp ) zTemp[jj] = 0;
1499   }else if( pOp->zComment ){
1500     sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1501     jj = sqlite3Strlen30(zTemp);
1502   }else{
1503     zTemp[0] = 0;
1504     jj = 0;
1505   }
1506   return jj;
1507 }
1508 #endif /* SQLITE_DEBUG */
1509 
1510 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1511 /*
1512 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1513 ** that can be displayed in the P4 column of EXPLAIN output.
1514 */
1515 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1516   const char *zOp = 0;
1517   switch( pExpr->op ){
1518     case TK_STRING:
1519       sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1520       break;
1521     case TK_INTEGER:
1522       sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1523       break;
1524     case TK_NULL:
1525       sqlite3_str_appendf(p, "NULL");
1526       break;
1527     case TK_REGISTER: {
1528       sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1529       break;
1530     }
1531     case TK_COLUMN: {
1532       if( pExpr->iColumn<0 ){
1533         sqlite3_str_appendf(p, "rowid");
1534       }else{
1535         sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1536       }
1537       break;
1538     }
1539     case TK_LT:      zOp = "LT";      break;
1540     case TK_LE:      zOp = "LE";      break;
1541     case TK_GT:      zOp = "GT";      break;
1542     case TK_GE:      zOp = "GE";      break;
1543     case TK_NE:      zOp = "NE";      break;
1544     case TK_EQ:      zOp = "EQ";      break;
1545     case TK_IS:      zOp = "IS";      break;
1546     case TK_ISNOT:   zOp = "ISNOT";   break;
1547     case TK_AND:     zOp = "AND";     break;
1548     case TK_OR:      zOp = "OR";      break;
1549     case TK_PLUS:    zOp = "ADD";     break;
1550     case TK_STAR:    zOp = "MUL";     break;
1551     case TK_MINUS:   zOp = "SUB";     break;
1552     case TK_REM:     zOp = "REM";     break;
1553     case TK_BITAND:  zOp = "BITAND";  break;
1554     case TK_BITOR:   zOp = "BITOR";   break;
1555     case TK_SLASH:   zOp = "DIV";     break;
1556     case TK_LSHIFT:  zOp = "LSHIFT";  break;
1557     case TK_RSHIFT:  zOp = "RSHIFT";  break;
1558     case TK_CONCAT:  zOp = "CONCAT";  break;
1559     case TK_UMINUS:  zOp = "MINUS";   break;
1560     case TK_UPLUS:   zOp = "PLUS";    break;
1561     case TK_BITNOT:  zOp = "BITNOT";  break;
1562     case TK_NOT:     zOp = "NOT";     break;
1563     case TK_ISNULL:  zOp = "ISNULL";  break;
1564     case TK_NOTNULL: zOp = "NOTNULL"; break;
1565 
1566     default:
1567       sqlite3_str_appendf(p, "%s", "expr");
1568       break;
1569   }
1570 
1571   if( zOp ){
1572     sqlite3_str_appendf(p, "%s(", zOp);
1573     displayP4Expr(p, pExpr->pLeft);
1574     if( pExpr->pRight ){
1575       sqlite3_str_append(p, ",", 1);
1576       displayP4Expr(p, pExpr->pRight);
1577     }
1578     sqlite3_str_append(p, ")", 1);
1579   }
1580 }
1581 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1582 
1583 
1584 #if VDBE_DISPLAY_P4
1585 /*
1586 ** Compute a string that describes the P4 parameter for an opcode.
1587 ** Use zTemp for any required temporary buffer space.
1588 */
1589 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1590   char *zP4 = zTemp;
1591   StrAccum x;
1592   assert( nTemp>=20 );
1593   sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
1594   switch( pOp->p4type ){
1595     case P4_KEYINFO: {
1596       int j;
1597       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1598       assert( pKeyInfo->aSortFlags!=0 );
1599       sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1600       for(j=0; j<pKeyInfo->nKeyField; j++){
1601         CollSeq *pColl = pKeyInfo->aColl[j];
1602         const char *zColl = pColl ? pColl->zName : "";
1603         if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1604         sqlite3_str_appendf(&x, ",%s%s%s",
1605                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1606                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1607                zColl);
1608       }
1609       sqlite3_str_append(&x, ")", 1);
1610       break;
1611     }
1612 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1613     case P4_EXPR: {
1614       displayP4Expr(&x, pOp->p4.pExpr);
1615       break;
1616     }
1617 #endif
1618     case P4_COLLSEQ: {
1619       CollSeq *pColl = pOp->p4.pColl;
1620       sqlite3_str_appendf(&x, "(%.20s)", pColl->zName);
1621       break;
1622     }
1623     case P4_FUNCDEF: {
1624       FuncDef *pDef = pOp->p4.pFunc;
1625       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1626       break;
1627     }
1628     case P4_FUNCCTX: {
1629       FuncDef *pDef = pOp->p4.pCtx->pFunc;
1630       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1631       break;
1632     }
1633     case P4_INT64: {
1634       sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1635       break;
1636     }
1637     case P4_INT32: {
1638       sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1639       break;
1640     }
1641     case P4_REAL: {
1642       sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1643       break;
1644     }
1645     case P4_MEM: {
1646       Mem *pMem = pOp->p4.pMem;
1647       if( pMem->flags & MEM_Str ){
1648         zP4 = pMem->z;
1649       }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1650         sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1651       }else if( pMem->flags & MEM_Real ){
1652         sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1653       }else if( pMem->flags & MEM_Null ){
1654         zP4 = "NULL";
1655       }else{
1656         assert( pMem->flags & MEM_Blob );
1657         zP4 = "(blob)";
1658       }
1659       break;
1660     }
1661 #ifndef SQLITE_OMIT_VIRTUALTABLE
1662     case P4_VTAB: {
1663       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1664       sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1665       break;
1666     }
1667 #endif
1668     case P4_INTARRAY: {
1669       int i;
1670       int *ai = pOp->p4.ai;
1671       int n = ai[0];   /* The first element of an INTARRAY is always the
1672                        ** count of the number of elements to follow */
1673       for(i=1; i<=n; i++){
1674         sqlite3_str_appendf(&x, ",%d", ai[i]);
1675       }
1676       zTemp[0] = '[';
1677       sqlite3_str_append(&x, "]", 1);
1678       break;
1679     }
1680     case P4_SUBPROGRAM: {
1681       sqlite3_str_appendf(&x, "program");
1682       break;
1683     }
1684     case P4_DYNBLOB:
1685     case P4_ADVANCE: {
1686       zTemp[0] = 0;
1687       break;
1688     }
1689     case P4_TABLE: {
1690       sqlite3_str_appendf(&x, "%s", pOp->p4.pTab->zName);
1691       break;
1692     }
1693     default: {
1694       zP4 = pOp->p4.z;
1695       if( zP4==0 ){
1696         zP4 = zTemp;
1697         zTemp[0] = 0;
1698       }
1699     }
1700   }
1701   sqlite3StrAccumFinish(&x);
1702   assert( zP4!=0 );
1703   return zP4;
1704 }
1705 #endif /* VDBE_DISPLAY_P4 */
1706 
1707 /*
1708 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1709 **
1710 ** The prepared statements need to know in advance the complete set of
1711 ** attached databases that will be use.  A mask of these databases
1712 ** is maintained in p->btreeMask.  The p->lockMask value is the subset of
1713 ** p->btreeMask of databases that will require a lock.
1714 */
1715 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1716   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1717   assert( i<(int)sizeof(p->btreeMask)*8 );
1718   DbMaskSet(p->btreeMask, i);
1719   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1720     DbMaskSet(p->lockMask, i);
1721   }
1722 }
1723 
1724 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1725 /*
1726 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1727 ** this routine obtains the mutex associated with each BtShared structure
1728 ** that may be accessed by the VM passed as an argument. In doing so it also
1729 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1730 ** that the correct busy-handler callback is invoked if required.
1731 **
1732 ** If SQLite is not threadsafe but does support shared-cache mode, then
1733 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1734 ** of all of BtShared structures accessible via the database handle
1735 ** associated with the VM.
1736 **
1737 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1738 ** function is a no-op.
1739 **
1740 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1741 ** statement p will ever use.  Let N be the number of bits in p->btreeMask
1742 ** corresponding to btrees that use shared cache.  Then the runtime of
1743 ** this routine is N*N.  But as N is rarely more than 1, this should not
1744 ** be a problem.
1745 */
1746 void sqlite3VdbeEnter(Vdbe *p){
1747   int i;
1748   sqlite3 *db;
1749   Db *aDb;
1750   int nDb;
1751   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1752   db = p->db;
1753   aDb = db->aDb;
1754   nDb = db->nDb;
1755   for(i=0; i<nDb; i++){
1756     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1757       sqlite3BtreeEnter(aDb[i].pBt);
1758     }
1759   }
1760 }
1761 #endif
1762 
1763 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1764 /*
1765 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1766 */
1767 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1768   int i;
1769   sqlite3 *db;
1770   Db *aDb;
1771   int nDb;
1772   db = p->db;
1773   aDb = db->aDb;
1774   nDb = db->nDb;
1775   for(i=0; i<nDb; i++){
1776     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1777       sqlite3BtreeLeave(aDb[i].pBt);
1778     }
1779   }
1780 }
1781 void sqlite3VdbeLeave(Vdbe *p){
1782   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1783   vdbeLeave(p);
1784 }
1785 #endif
1786 
1787 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1788 /*
1789 ** Print a single opcode.  This routine is used for debugging only.
1790 */
1791 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
1792   char *zP4;
1793   char zPtr[50];
1794   char zCom[100];
1795   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1796   if( pOut==0 ) pOut = stdout;
1797   zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1798 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1799   displayComment(pOp, zP4, zCom, sizeof(zCom));
1800 #else
1801   zCom[0] = 0;
1802 #endif
1803   /* NB:  The sqlite3OpcodeName() function is implemented by code created
1804   ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1805   ** information from the vdbe.c source text */
1806   fprintf(pOut, zFormat1, pc,
1807       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1808       zCom
1809   );
1810   fflush(pOut);
1811 }
1812 #endif
1813 
1814 /*
1815 ** Initialize an array of N Mem element.
1816 */
1817 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1818   while( (N--)>0 ){
1819     p->db = db;
1820     p->flags = flags;
1821     p->szMalloc = 0;
1822 #ifdef SQLITE_DEBUG
1823     p->pScopyFrom = 0;
1824 #endif
1825     p++;
1826   }
1827 }
1828 
1829 /*
1830 ** Release an array of N Mem elements
1831 */
1832 static void releaseMemArray(Mem *p, int N){
1833   if( p && N ){
1834     Mem *pEnd = &p[N];
1835     sqlite3 *db = p->db;
1836     if( db->pnBytesFreed ){
1837       do{
1838         if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1839       }while( (++p)<pEnd );
1840       return;
1841     }
1842     do{
1843       assert( (&p[1])==pEnd || p[0].db==p[1].db );
1844       assert( sqlite3VdbeCheckMemInvariants(p) );
1845 
1846       /* This block is really an inlined version of sqlite3VdbeMemRelease()
1847       ** that takes advantage of the fact that the memory cell value is
1848       ** being set to NULL after releasing any dynamic resources.
1849       **
1850       ** The justification for duplicating code is that according to
1851       ** callgrind, this causes a certain test case to hit the CPU 4.7
1852       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1853       ** sqlite3MemRelease() were called from here. With -O2, this jumps
1854       ** to 6.6 percent. The test case is inserting 1000 rows into a table
1855       ** with no indexes using a single prepared INSERT statement, bind()
1856       ** and reset(). Inserts are grouped into a transaction.
1857       */
1858       testcase( p->flags & MEM_Agg );
1859       testcase( p->flags & MEM_Dyn );
1860       testcase( p->xDel==sqlite3VdbeFrameMemDel );
1861       if( p->flags&(MEM_Agg|MEM_Dyn) ){
1862         sqlite3VdbeMemRelease(p);
1863       }else if( p->szMalloc ){
1864         sqlite3DbFreeNN(db, p->zMalloc);
1865         p->szMalloc = 0;
1866       }
1867 
1868       p->flags = MEM_Undefined;
1869     }while( (++p)<pEnd );
1870   }
1871 }
1872 
1873 #ifdef SQLITE_DEBUG
1874 /*
1875 ** Verify that pFrame is a valid VdbeFrame pointer.  Return true if it is
1876 ** and false if something is wrong.
1877 **
1878 ** This routine is intended for use inside of assert() statements only.
1879 */
1880 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
1881   if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
1882   return 1;
1883 }
1884 #endif
1885 
1886 
1887 /*
1888 ** This is a destructor on a Mem object (which is really an sqlite3_value)
1889 ** that deletes the Frame object that is attached to it as a blob.
1890 **
1891 ** This routine does not delete the Frame right away.  It merely adds the
1892 ** frame to a list of frames to be deleted when the Vdbe halts.
1893 */
1894 void sqlite3VdbeFrameMemDel(void *pArg){
1895   VdbeFrame *pFrame = (VdbeFrame*)pArg;
1896   assert( sqlite3VdbeFrameIsValid(pFrame) );
1897   pFrame->pParent = pFrame->v->pDelFrame;
1898   pFrame->v->pDelFrame = pFrame;
1899 }
1900 
1901 
1902 /*
1903 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1904 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1905 */
1906 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1907   int i;
1908   Mem *aMem = VdbeFrameMem(p);
1909   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1910   assert( sqlite3VdbeFrameIsValid(p) );
1911   for(i=0; i<p->nChildCsr; i++){
1912     sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1913   }
1914   releaseMemArray(aMem, p->nChildMem);
1915   sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
1916   sqlite3DbFree(p->v->db, p);
1917 }
1918 
1919 #ifndef SQLITE_OMIT_EXPLAIN
1920 /*
1921 ** Give a listing of the program in the virtual machine.
1922 **
1923 ** The interface is the same as sqlite3VdbeExec().  But instead of
1924 ** running the code, it invokes the callback once for each instruction.
1925 ** This feature is used to implement "EXPLAIN".
1926 **
1927 ** When p->explain==1, each instruction is listed.  When
1928 ** p->explain==2, only OP_Explain instructions are listed and these
1929 ** are shown in a different format.  p->explain==2 is used to implement
1930 ** EXPLAIN QUERY PLAN.
1931 ** 2018-04-24:  In p->explain==2 mode, the OP_Init opcodes of triggers
1932 ** are also shown, so that the boundaries between the main program and
1933 ** each trigger are clear.
1934 **
1935 ** When p->explain==1, first the main program is listed, then each of
1936 ** the trigger subprograms are listed one by one.
1937 */
1938 int sqlite3VdbeList(
1939   Vdbe *p                   /* The VDBE */
1940 ){
1941   int nRow;                            /* Stop when row count reaches this */
1942   int nSub = 0;                        /* Number of sub-vdbes seen so far */
1943   SubProgram **apSub = 0;              /* Array of sub-vdbes */
1944   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
1945   sqlite3 *db = p->db;                 /* The database connection */
1946   int i;                               /* Loop counter */
1947   int rc = SQLITE_OK;                  /* Return code */
1948   Mem *pMem = &p->aMem[1];             /* First Mem of result set */
1949   int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
1950   Op *pOp = 0;
1951 
1952   assert( p->explain );
1953   assert( p->magic==VDBE_MAGIC_RUN );
1954   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1955 
1956   /* Even though this opcode does not use dynamic strings for
1957   ** the result, result columns may become dynamic if the user calls
1958   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1959   */
1960   releaseMemArray(pMem, 8);
1961   p->pResultSet = 0;
1962 
1963   if( p->rc==SQLITE_NOMEM ){
1964     /* This happens if a malloc() inside a call to sqlite3_column_text() or
1965     ** sqlite3_column_text16() failed.  */
1966     sqlite3OomFault(db);
1967     return SQLITE_ERROR;
1968   }
1969 
1970   /* When the number of output rows reaches nRow, that means the
1971   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1972   ** nRow is the sum of the number of rows in the main program, plus
1973   ** the sum of the number of rows in all trigger subprograms encountered
1974   ** so far.  The nRow value will increase as new trigger subprograms are
1975   ** encountered, but p->pc will eventually catch up to nRow.
1976   */
1977   nRow = p->nOp;
1978   if( bListSubprogs ){
1979     /* The first 8 memory cells are used for the result set.  So we will
1980     ** commandeer the 9th cell to use as storage for an array of pointers
1981     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
1982     ** cells.  */
1983     assert( p->nMem>9 );
1984     pSub = &p->aMem[9];
1985     if( pSub->flags&MEM_Blob ){
1986       /* On the first call to sqlite3_step(), pSub will hold a NULL.  It is
1987       ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1988       nSub = pSub->n/sizeof(Vdbe*);
1989       apSub = (SubProgram **)pSub->z;
1990     }
1991     for(i=0; i<nSub; i++){
1992       nRow += apSub[i]->nOp;
1993     }
1994   }
1995 
1996   while(1){  /* Loop exits via break */
1997     i = p->pc++;
1998     if( i>=nRow ){
1999       p->rc = SQLITE_OK;
2000       rc = SQLITE_DONE;
2001       break;
2002     }
2003     if( i<p->nOp ){
2004       /* The output line number is small enough that we are still in the
2005       ** main program. */
2006       pOp = &p->aOp[i];
2007     }else{
2008       /* We are currently listing subprograms.  Figure out which one and
2009       ** pick up the appropriate opcode. */
2010       int j;
2011       i -= p->nOp;
2012       assert( apSub!=0 );
2013       assert( nSub>0 );
2014       for(j=0; i>=apSub[j]->nOp; j++){
2015         i -= apSub[j]->nOp;
2016         assert( i<apSub[j]->nOp || j+1<nSub );
2017       }
2018       pOp = &apSub[j]->aOp[i];
2019     }
2020 
2021     /* When an OP_Program opcode is encounter (the only opcode that has
2022     ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2023     ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2024     ** has not already been seen.
2025     */
2026     if( bListSubprogs && pOp->p4type==P4_SUBPROGRAM ){
2027       int nByte = (nSub+1)*sizeof(SubProgram*);
2028       int j;
2029       for(j=0; j<nSub; j++){
2030         if( apSub[j]==pOp->p4.pProgram ) break;
2031       }
2032       if( j==nSub ){
2033         p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2034         if( p->rc!=SQLITE_OK ){
2035           rc = SQLITE_ERROR;
2036           break;
2037         }
2038         apSub = (SubProgram **)pSub->z;
2039         apSub[nSub++] = pOp->p4.pProgram;
2040         pSub->flags |= MEM_Blob;
2041         pSub->n = nSub*sizeof(SubProgram*);
2042         nRow += pOp->p4.pProgram->nOp;
2043       }
2044     }
2045     if( p->explain<2 ) break;
2046     if( pOp->opcode==OP_Explain ) break;
2047     if( pOp->opcode==OP_Init && p->pc>1 ) break;
2048   }
2049 
2050   if( rc==SQLITE_OK ){
2051     if( db->u1.isInterrupted ){
2052       p->rc = SQLITE_INTERRUPT;
2053       rc = SQLITE_ERROR;
2054       sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2055     }else{
2056       char *zP4;
2057       if( p->explain==1 ){
2058         pMem->flags = MEM_Int;
2059         pMem->u.i = i;                                /* Program counter */
2060         pMem++;
2061 
2062         pMem->flags = MEM_Static|MEM_Str|MEM_Term;
2063         pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
2064         assert( pMem->z!=0 );
2065         pMem->n = sqlite3Strlen30(pMem->z);
2066         pMem->enc = SQLITE_UTF8;
2067         pMem++;
2068       }
2069 
2070       pMem->flags = MEM_Int;
2071       pMem->u.i = pOp->p1;                          /* P1 */
2072       pMem++;
2073 
2074       pMem->flags = MEM_Int;
2075       pMem->u.i = pOp->p2;                          /* P2 */
2076       pMem++;
2077 
2078       pMem->flags = MEM_Int;
2079       pMem->u.i = pOp->p3;                          /* P3 */
2080       pMem++;
2081 
2082       if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
2083         assert( p->db->mallocFailed );
2084         return SQLITE_ERROR;
2085       }
2086       pMem->flags = MEM_Str|MEM_Term;
2087       zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
2088       if( zP4!=pMem->z ){
2089         pMem->n = 0;
2090         sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
2091       }else{
2092         assert( pMem->z!=0 );
2093         pMem->n = sqlite3Strlen30(pMem->z);
2094         pMem->enc = SQLITE_UTF8;
2095       }
2096       pMem++;
2097 
2098       if( p->explain==1 ){
2099         if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
2100           assert( p->db->mallocFailed );
2101           return SQLITE_ERROR;
2102         }
2103         pMem->flags = MEM_Str|MEM_Term;
2104         pMem->n = 2;
2105         sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
2106         pMem->enc = SQLITE_UTF8;
2107         pMem++;
2108 
2109 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2110         if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
2111           assert( p->db->mallocFailed );
2112           return SQLITE_ERROR;
2113         }
2114         pMem->flags = MEM_Str|MEM_Term;
2115         pMem->n = displayComment(pOp, zP4, pMem->z, 500);
2116         pMem->enc = SQLITE_UTF8;
2117 #else
2118         pMem->flags = MEM_Null;                       /* Comment */
2119 #endif
2120       }
2121 
2122       p->nResColumn = 8 - 4*(p->explain-1);
2123       p->pResultSet = &p->aMem[1];
2124       p->rc = SQLITE_OK;
2125       rc = SQLITE_ROW;
2126     }
2127   }
2128   return rc;
2129 }
2130 #endif /* SQLITE_OMIT_EXPLAIN */
2131 
2132 #ifdef SQLITE_DEBUG
2133 /*
2134 ** Print the SQL that was used to generate a VDBE program.
2135 */
2136 void sqlite3VdbePrintSql(Vdbe *p){
2137   const char *z = 0;
2138   if( p->zSql ){
2139     z = p->zSql;
2140   }else if( p->nOp>=1 ){
2141     const VdbeOp *pOp = &p->aOp[0];
2142     if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2143       z = pOp->p4.z;
2144       while( sqlite3Isspace(*z) ) z++;
2145     }
2146   }
2147   if( z ) printf("SQL: [%s]\n", z);
2148 }
2149 #endif
2150 
2151 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2152 /*
2153 ** Print an IOTRACE message showing SQL content.
2154 */
2155 void sqlite3VdbeIOTraceSql(Vdbe *p){
2156   int nOp = p->nOp;
2157   VdbeOp *pOp;
2158   if( sqlite3IoTrace==0 ) return;
2159   if( nOp<1 ) return;
2160   pOp = &p->aOp[0];
2161   if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2162     int i, j;
2163     char z[1000];
2164     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2165     for(i=0; sqlite3Isspace(z[i]); i++){}
2166     for(j=0; z[i]; i++){
2167       if( sqlite3Isspace(z[i]) ){
2168         if( z[i-1]!=' ' ){
2169           z[j++] = ' ';
2170         }
2171       }else{
2172         z[j++] = z[i];
2173       }
2174     }
2175     z[j] = 0;
2176     sqlite3IoTrace("SQL %s\n", z);
2177   }
2178 }
2179 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2180 
2181 /* An instance of this object describes bulk memory available for use
2182 ** by subcomponents of a prepared statement.  Space is allocated out
2183 ** of a ReusableSpace object by the allocSpace() routine below.
2184 */
2185 struct ReusableSpace {
2186   u8 *pSpace;            /* Available memory */
2187   sqlite3_int64 nFree;   /* Bytes of available memory */
2188   sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2189 };
2190 
2191 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2192 ** from the ReusableSpace object.  Return a pointer to the allocated
2193 ** memory on success.  If insufficient memory is available in the
2194 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2195 ** value by the amount needed and return NULL.
2196 **
2197 ** If pBuf is not initially NULL, that means that the memory has already
2198 ** been allocated by a prior call to this routine, so just return a copy
2199 ** of pBuf and leave ReusableSpace unchanged.
2200 **
2201 ** This allocator is employed to repurpose unused slots at the end of the
2202 ** opcode array of prepared state for other memory needs of the prepared
2203 ** statement.
2204 */
2205 static void *allocSpace(
2206   struct ReusableSpace *p,  /* Bulk memory available for allocation */
2207   void *pBuf,               /* Pointer to a prior allocation */
2208   sqlite3_int64 nByte       /* Bytes of memory needed */
2209 ){
2210   assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2211   if( pBuf==0 ){
2212     nByte = ROUND8(nByte);
2213     if( nByte <= p->nFree ){
2214       p->nFree -= nByte;
2215       pBuf = &p->pSpace[p->nFree];
2216     }else{
2217       p->nNeeded += nByte;
2218     }
2219   }
2220   assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2221   return pBuf;
2222 }
2223 
2224 /*
2225 ** Rewind the VDBE back to the beginning in preparation for
2226 ** running it.
2227 */
2228 void sqlite3VdbeRewind(Vdbe *p){
2229 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2230   int i;
2231 #endif
2232   assert( p!=0 );
2233   assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET );
2234 
2235   /* There should be at least one opcode.
2236   */
2237   assert( p->nOp>0 );
2238 
2239   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
2240   p->magic = VDBE_MAGIC_RUN;
2241 
2242 #ifdef SQLITE_DEBUG
2243   for(i=0; i<p->nMem; i++){
2244     assert( p->aMem[i].db==p->db );
2245   }
2246 #endif
2247   p->pc = -1;
2248   p->rc = SQLITE_OK;
2249   p->errorAction = OE_Abort;
2250   p->nChange = 0;
2251   p->cacheCtr = 1;
2252   p->minWriteFileFormat = 255;
2253   p->iStatement = 0;
2254   p->nFkConstraint = 0;
2255 #ifdef VDBE_PROFILE
2256   for(i=0; i<p->nOp; i++){
2257     p->aOp[i].cnt = 0;
2258     p->aOp[i].cycles = 0;
2259   }
2260 #endif
2261 }
2262 
2263 /*
2264 ** Prepare a virtual machine for execution for the first time after
2265 ** creating the virtual machine.  This involves things such
2266 ** as allocating registers and initializing the program counter.
2267 ** After the VDBE has be prepped, it can be executed by one or more
2268 ** calls to sqlite3VdbeExec().
2269 **
2270 ** This function may be called exactly once on each virtual machine.
2271 ** After this routine is called the VM has been "packaged" and is ready
2272 ** to run.  After this routine is called, further calls to
2273 ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
2274 ** the Vdbe from the Parse object that helped generate it so that the
2275 ** the Vdbe becomes an independent entity and the Parse object can be
2276 ** destroyed.
2277 **
2278 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2279 ** to its initial state after it has been run.
2280 */
2281 void sqlite3VdbeMakeReady(
2282   Vdbe *p,                       /* The VDBE */
2283   Parse *pParse                  /* Parsing context */
2284 ){
2285   sqlite3 *db;                   /* The database connection */
2286   int nVar;                      /* Number of parameters */
2287   int nMem;                      /* Number of VM memory registers */
2288   int nCursor;                   /* Number of cursors required */
2289   int nArg;                      /* Number of arguments in subprograms */
2290   int n;                         /* Loop counter */
2291   struct ReusableSpace x;        /* Reusable bulk memory */
2292 
2293   assert( p!=0 );
2294   assert( p->nOp>0 );
2295   assert( pParse!=0 );
2296   assert( p->magic==VDBE_MAGIC_INIT );
2297   assert( pParse==p->pParse );
2298   db = p->db;
2299   assert( db->mallocFailed==0 );
2300   nVar = pParse->nVar;
2301   nMem = pParse->nMem;
2302   nCursor = pParse->nTab;
2303   nArg = pParse->nMaxArg;
2304 
2305   /* Each cursor uses a memory cell.  The first cursor (cursor 0) can
2306   ** use aMem[0] which is not otherwise used by the VDBE program.  Allocate
2307   ** space at the end of aMem[] for cursors 1 and greater.
2308   ** See also: allocateCursor().
2309   */
2310   nMem += nCursor;
2311   if( nCursor==0 && nMem>0 ) nMem++;  /* Space for aMem[0] even if not used */
2312 
2313   /* Figure out how much reusable memory is available at the end of the
2314   ** opcode array.  This extra memory will be reallocated for other elements
2315   ** of the prepared statement.
2316   */
2317   n = ROUND8(sizeof(Op)*p->nOp);              /* Bytes of opcode memory used */
2318   x.pSpace = &((u8*)p->aOp)[n];               /* Unused opcode memory */
2319   assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2320   x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */
2321   assert( x.nFree>=0 );
2322   assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2323 
2324   resolveP2Values(p, &nArg);
2325   p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2326   if( pParse->explain ){
2327     static const char * const azColName[] = {
2328        "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2329        "id", "parent", "notused", "detail"
2330     };
2331     int iFirst, mx, i;
2332     if( nMem<10 ) nMem = 10;
2333     if( pParse->explain==2 ){
2334       sqlite3VdbeSetNumCols(p, 4);
2335       iFirst = 8;
2336       mx = 12;
2337     }else{
2338       sqlite3VdbeSetNumCols(p, 8);
2339       iFirst = 0;
2340       mx = 8;
2341     }
2342     for(i=iFirst; i<mx; i++){
2343       sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
2344                             azColName[i], SQLITE_STATIC);
2345     }
2346   }
2347   p->expired = 0;
2348 
2349   /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2350   ** passes.  On the first pass, we try to reuse unused memory at the
2351   ** end of the opcode array.  If we are unable to satisfy all memory
2352   ** requirements by reusing the opcode array tail, then the second
2353   ** pass will fill in the remainder using a fresh memory allocation.
2354   **
2355   ** This two-pass approach that reuses as much memory as possible from
2356   ** the leftover memory at the end of the opcode array.  This can significantly
2357   ** reduce the amount of memory held by a prepared statement.
2358   */
2359   x.nNeeded = 0;
2360   p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2361   p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2362   p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2363   p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2364 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2365   p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64));
2366 #endif
2367   if( x.nNeeded ){
2368     x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2369     x.nFree = x.nNeeded;
2370     if( !db->mallocFailed ){
2371       p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2372       p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2373       p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2374       p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2375 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2376       p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2377 #endif
2378     }
2379   }
2380 
2381   p->pVList = pParse->pVList;
2382   pParse->pVList =  0;
2383   p->explain = pParse->explain;
2384   if( db->mallocFailed ){
2385     p->nVar = 0;
2386     p->nCursor = 0;
2387     p->nMem = 0;
2388   }else{
2389     p->nCursor = nCursor;
2390     p->nVar = (ynVar)nVar;
2391     initMemArray(p->aVar, nVar, db, MEM_Null);
2392     p->nMem = nMem;
2393     initMemArray(p->aMem, nMem, db, MEM_Undefined);
2394     memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2395 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2396     memset(p->anExec, 0, p->nOp*sizeof(i64));
2397 #endif
2398   }
2399   sqlite3VdbeRewind(p);
2400 }
2401 
2402 /*
2403 ** Close a VDBE cursor and release all the resources that cursor
2404 ** happens to hold.
2405 */
2406 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2407   if( pCx==0 ){
2408     return;
2409   }
2410   assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2411   switch( pCx->eCurType ){
2412     case CURTYPE_SORTER: {
2413       sqlite3VdbeSorterClose(p->db, pCx);
2414       break;
2415     }
2416     case CURTYPE_BTREE: {
2417       if( pCx->isEphemeral ){
2418         if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx);
2419         /* The pCx->pCursor will be close automatically, if it exists, by
2420         ** the call above. */
2421       }else{
2422         assert( pCx->uc.pCursor!=0 );
2423         sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2424       }
2425       break;
2426     }
2427 #ifndef SQLITE_OMIT_VIRTUALTABLE
2428     case CURTYPE_VTAB: {
2429       sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2430       const sqlite3_module *pModule = pVCur->pVtab->pModule;
2431       assert( pVCur->pVtab->nRef>0 );
2432       pVCur->pVtab->nRef--;
2433       pModule->xClose(pVCur);
2434       break;
2435     }
2436 #endif
2437   }
2438 }
2439 
2440 /*
2441 ** Close all cursors in the current frame.
2442 */
2443 static void closeCursorsInFrame(Vdbe *p){
2444   if( p->apCsr ){
2445     int i;
2446     for(i=0; i<p->nCursor; i++){
2447       VdbeCursor *pC = p->apCsr[i];
2448       if( pC ){
2449         sqlite3VdbeFreeCursor(p, pC);
2450         p->apCsr[i] = 0;
2451       }
2452     }
2453   }
2454 }
2455 
2456 /*
2457 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2458 ** is used, for example, when a trigger sub-program is halted to restore
2459 ** control to the main program.
2460 */
2461 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2462   Vdbe *v = pFrame->v;
2463   closeCursorsInFrame(v);
2464 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2465   v->anExec = pFrame->anExec;
2466 #endif
2467   v->aOp = pFrame->aOp;
2468   v->nOp = pFrame->nOp;
2469   v->aMem = pFrame->aMem;
2470   v->nMem = pFrame->nMem;
2471   v->apCsr = pFrame->apCsr;
2472   v->nCursor = pFrame->nCursor;
2473   v->db->lastRowid = pFrame->lastRowid;
2474   v->nChange = pFrame->nChange;
2475   v->db->nChange = pFrame->nDbChange;
2476   sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2477   v->pAuxData = pFrame->pAuxData;
2478   pFrame->pAuxData = 0;
2479   return pFrame->pc;
2480 }
2481 
2482 /*
2483 ** Close all cursors.
2484 **
2485 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2486 ** cell array. This is necessary as the memory cell array may contain
2487 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2488 ** open cursors.
2489 */
2490 static void closeAllCursors(Vdbe *p){
2491   if( p->pFrame ){
2492     VdbeFrame *pFrame;
2493     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2494     sqlite3VdbeFrameRestore(pFrame);
2495     p->pFrame = 0;
2496     p->nFrame = 0;
2497   }
2498   assert( p->nFrame==0 );
2499   closeCursorsInFrame(p);
2500   if( p->aMem ){
2501     releaseMemArray(p->aMem, p->nMem);
2502   }
2503   while( p->pDelFrame ){
2504     VdbeFrame *pDel = p->pDelFrame;
2505     p->pDelFrame = pDel->pParent;
2506     sqlite3VdbeFrameDelete(pDel);
2507   }
2508 
2509   /* Delete any auxdata allocations made by the VM */
2510   if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2511   assert( p->pAuxData==0 );
2512 }
2513 
2514 /*
2515 ** Set the number of result columns that will be returned by this SQL
2516 ** statement. This is now set at compile time, rather than during
2517 ** execution of the vdbe program so that sqlite3_column_count() can
2518 ** be called on an SQL statement before sqlite3_step().
2519 */
2520 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2521   int n;
2522   sqlite3 *db = p->db;
2523 
2524   if( p->nResColumn ){
2525     releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2526     sqlite3DbFree(db, p->aColName);
2527   }
2528   n = nResColumn*COLNAME_N;
2529   p->nResColumn = (u16)nResColumn;
2530   p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2531   if( p->aColName==0 ) return;
2532   initMemArray(p->aColName, n, db, MEM_Null);
2533 }
2534 
2535 /*
2536 ** Set the name of the idx'th column to be returned by the SQL statement.
2537 ** zName must be a pointer to a nul terminated string.
2538 **
2539 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2540 **
2541 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2542 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2543 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2544 */
2545 int sqlite3VdbeSetColName(
2546   Vdbe *p,                         /* Vdbe being configured */
2547   int idx,                         /* Index of column zName applies to */
2548   int var,                         /* One of the COLNAME_* constants */
2549   const char *zName,               /* Pointer to buffer containing name */
2550   void (*xDel)(void*)              /* Memory management strategy for zName */
2551 ){
2552   int rc;
2553   Mem *pColName;
2554   assert( idx<p->nResColumn );
2555   assert( var<COLNAME_N );
2556   if( p->db->mallocFailed ){
2557     assert( !zName || xDel!=SQLITE_DYNAMIC );
2558     return SQLITE_NOMEM_BKPT;
2559   }
2560   assert( p->aColName!=0 );
2561   pColName = &(p->aColName[idx+var*p->nResColumn]);
2562   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2563   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2564   return rc;
2565 }
2566 
2567 /*
2568 ** A read or write transaction may or may not be active on database handle
2569 ** db. If a transaction is active, commit it. If there is a
2570 ** write-transaction spanning more than one database file, this routine
2571 ** takes care of the master journal trickery.
2572 */
2573 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2574   int i;
2575   int nTrans = 0;  /* Number of databases with an active write-transaction
2576                    ** that are candidates for a two-phase commit using a
2577                    ** master-journal */
2578   int rc = SQLITE_OK;
2579   int needXcommit = 0;
2580 
2581 #ifdef SQLITE_OMIT_VIRTUALTABLE
2582   /* With this option, sqlite3VtabSync() is defined to be simply
2583   ** SQLITE_OK so p is not used.
2584   */
2585   UNUSED_PARAMETER(p);
2586 #endif
2587 
2588   /* Before doing anything else, call the xSync() callback for any
2589   ** virtual module tables written in this transaction. This has to
2590   ** be done before determining whether a master journal file is
2591   ** required, as an xSync() callback may add an attached database
2592   ** to the transaction.
2593   */
2594   rc = sqlite3VtabSync(db, p);
2595 
2596   /* This loop determines (a) if the commit hook should be invoked and
2597   ** (b) how many database files have open write transactions, not
2598   ** including the temp database. (b) is important because if more than
2599   ** one database file has an open write transaction, a master journal
2600   ** file is required for an atomic commit.
2601   */
2602   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2603     Btree *pBt = db->aDb[i].pBt;
2604     if( sqlite3BtreeIsInTrans(pBt) ){
2605       /* Whether or not a database might need a master journal depends upon
2606       ** its journal mode (among other things).  This matrix determines which
2607       ** journal modes use a master journal and which do not */
2608       static const u8 aMJNeeded[] = {
2609         /* DELETE   */  1,
2610         /* PERSIST   */ 1,
2611         /* OFF       */ 0,
2612         /* TRUNCATE  */ 1,
2613         /* MEMORY    */ 0,
2614         /* WAL       */ 0
2615       };
2616       Pager *pPager;   /* Pager associated with pBt */
2617       needXcommit = 1;
2618       sqlite3BtreeEnter(pBt);
2619       pPager = sqlite3BtreePager(pBt);
2620       if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2621        && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2622        && sqlite3PagerIsMemdb(pPager)==0
2623       ){
2624         assert( i!=1 );
2625         nTrans++;
2626       }
2627       rc = sqlite3PagerExclusiveLock(pPager);
2628       sqlite3BtreeLeave(pBt);
2629     }
2630   }
2631   if( rc!=SQLITE_OK ){
2632     return rc;
2633   }
2634 
2635   /* If there are any write-transactions at all, invoke the commit hook */
2636   if( needXcommit && db->xCommitCallback ){
2637     rc = db->xCommitCallback(db->pCommitArg);
2638     if( rc ){
2639       return SQLITE_CONSTRAINT_COMMITHOOK;
2640     }
2641   }
2642 
2643   /* The simple case - no more than one database file (not counting the
2644   ** TEMP database) has a transaction active.   There is no need for the
2645   ** master-journal.
2646   **
2647   ** If the return value of sqlite3BtreeGetFilename() is a zero length
2648   ** string, it means the main database is :memory: or a temp file.  In
2649   ** that case we do not support atomic multi-file commits, so use the
2650   ** simple case then too.
2651   */
2652   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2653    || nTrans<=1
2654   ){
2655     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2656       Btree *pBt = db->aDb[i].pBt;
2657       if( pBt ){
2658         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2659       }
2660     }
2661 
2662     /* Do the commit only if all databases successfully complete phase 1.
2663     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2664     ** IO error while deleting or truncating a journal file. It is unlikely,
2665     ** but could happen. In this case abandon processing and return the error.
2666     */
2667     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2668       Btree *pBt = db->aDb[i].pBt;
2669       if( pBt ){
2670         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2671       }
2672     }
2673     if( rc==SQLITE_OK ){
2674       sqlite3VtabCommit(db);
2675     }
2676   }
2677 
2678   /* The complex case - There is a multi-file write-transaction active.
2679   ** This requires a master journal file to ensure the transaction is
2680   ** committed atomically.
2681   */
2682 #ifndef SQLITE_OMIT_DISKIO
2683   else{
2684     sqlite3_vfs *pVfs = db->pVfs;
2685     char *zMaster = 0;   /* File-name for the master journal */
2686     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2687     sqlite3_file *pMaster = 0;
2688     i64 offset = 0;
2689     int res;
2690     int retryCount = 0;
2691     int nMainFile;
2692 
2693     /* Select a master journal file name */
2694     nMainFile = sqlite3Strlen30(zMainFile);
2695     zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz%c%c", zMainFile, 0, 0);
2696     if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
2697     do {
2698       u32 iRandom;
2699       if( retryCount ){
2700         if( retryCount>100 ){
2701           sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2702           sqlite3OsDelete(pVfs, zMaster, 0);
2703           break;
2704         }else if( retryCount==1 ){
2705           sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2706         }
2707       }
2708       retryCount++;
2709       sqlite3_randomness(sizeof(iRandom), &iRandom);
2710       sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
2711                                (iRandom>>8)&0xffffff, iRandom&0xff);
2712       /* The antipenultimate character of the master journal name must
2713       ** be "9" to avoid name collisions when using 8+3 filenames. */
2714       assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2715       sqlite3FileSuffix3(zMainFile, zMaster);
2716       rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2717     }while( rc==SQLITE_OK && res );
2718     if( rc==SQLITE_OK ){
2719       /* Open the master journal. */
2720       rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2721           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2722           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2723       );
2724     }
2725     if( rc!=SQLITE_OK ){
2726       sqlite3DbFree(db, zMaster);
2727       return rc;
2728     }
2729 
2730     /* Write the name of each database file in the transaction into the new
2731     ** master journal file. If an error occurs at this point close
2732     ** and delete the master journal file. All the individual journal files
2733     ** still have 'null' as the master journal pointer, so they will roll
2734     ** back independently if a failure occurs.
2735     */
2736     for(i=0; i<db->nDb; i++){
2737       Btree *pBt = db->aDb[i].pBt;
2738       if( sqlite3BtreeIsInTrans(pBt) ){
2739         char const *zFile = sqlite3BtreeGetJournalname(pBt);
2740         if( zFile==0 ){
2741           continue;  /* Ignore TEMP and :memory: databases */
2742         }
2743         assert( zFile[0]!=0 );
2744         rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2745         offset += sqlite3Strlen30(zFile)+1;
2746         if( rc!=SQLITE_OK ){
2747           sqlite3OsCloseFree(pMaster);
2748           sqlite3OsDelete(pVfs, zMaster, 0);
2749           sqlite3DbFree(db, zMaster);
2750           return rc;
2751         }
2752       }
2753     }
2754 
2755     /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2756     ** flag is set this is not required.
2757     */
2758     if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2759      && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2760     ){
2761       sqlite3OsCloseFree(pMaster);
2762       sqlite3OsDelete(pVfs, zMaster, 0);
2763       sqlite3DbFree(db, zMaster);
2764       return rc;
2765     }
2766 
2767     /* Sync all the db files involved in the transaction. The same call
2768     ** sets the master journal pointer in each individual journal. If
2769     ** an error occurs here, do not delete the master journal file.
2770     **
2771     ** If the error occurs during the first call to
2772     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2773     ** master journal file will be orphaned. But we cannot delete it,
2774     ** in case the master journal file name was written into the journal
2775     ** file before the failure occurred.
2776     */
2777     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2778       Btree *pBt = db->aDb[i].pBt;
2779       if( pBt ){
2780         rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
2781       }
2782     }
2783     sqlite3OsCloseFree(pMaster);
2784     assert( rc!=SQLITE_BUSY );
2785     if( rc!=SQLITE_OK ){
2786       sqlite3DbFree(db, zMaster);
2787       return rc;
2788     }
2789 
2790     /* Delete the master journal file. This commits the transaction. After
2791     ** doing this the directory is synced again before any individual
2792     ** transaction files are deleted.
2793     */
2794     rc = sqlite3OsDelete(pVfs, zMaster, 1);
2795     sqlite3DbFree(db, zMaster);
2796     zMaster = 0;
2797     if( rc ){
2798       return rc;
2799     }
2800 
2801     /* All files and directories have already been synced, so the following
2802     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2803     ** deleting or truncating journals. If something goes wrong while
2804     ** this is happening we don't really care. The integrity of the
2805     ** transaction is already guaranteed, but some stray 'cold' journals
2806     ** may be lying around. Returning an error code won't help matters.
2807     */
2808     disable_simulated_io_errors();
2809     sqlite3BeginBenignMalloc();
2810     for(i=0; i<db->nDb; i++){
2811       Btree *pBt = db->aDb[i].pBt;
2812       if( pBt ){
2813         sqlite3BtreeCommitPhaseTwo(pBt, 1);
2814       }
2815     }
2816     sqlite3EndBenignMalloc();
2817     enable_simulated_io_errors();
2818 
2819     sqlite3VtabCommit(db);
2820   }
2821 #endif
2822 
2823   return rc;
2824 }
2825 
2826 /*
2827 ** This routine checks that the sqlite3.nVdbeActive count variable
2828 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2829 ** currently active. An assertion fails if the two counts do not match.
2830 ** This is an internal self-check only - it is not an essential processing
2831 ** step.
2832 **
2833 ** This is a no-op if NDEBUG is defined.
2834 */
2835 #ifndef NDEBUG
2836 static void checkActiveVdbeCnt(sqlite3 *db){
2837   Vdbe *p;
2838   int cnt = 0;
2839   int nWrite = 0;
2840   int nRead = 0;
2841   p = db->pVdbe;
2842   while( p ){
2843     if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2844       cnt++;
2845       if( p->readOnly==0 ) nWrite++;
2846       if( p->bIsReader ) nRead++;
2847     }
2848     p = p->pNext;
2849   }
2850   assert( cnt==db->nVdbeActive );
2851   assert( nWrite==db->nVdbeWrite );
2852   assert( nRead==db->nVdbeRead );
2853 }
2854 #else
2855 #define checkActiveVdbeCnt(x)
2856 #endif
2857 
2858 /*
2859 ** If the Vdbe passed as the first argument opened a statement-transaction,
2860 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2861 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2862 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2863 ** statement transaction is committed.
2864 **
2865 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2866 ** Otherwise SQLITE_OK.
2867 */
2868 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2869   sqlite3 *const db = p->db;
2870   int rc = SQLITE_OK;
2871   int i;
2872   const int iSavepoint = p->iStatement-1;
2873 
2874   assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2875   assert( db->nStatement>0 );
2876   assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2877 
2878   for(i=0; i<db->nDb; i++){
2879     int rc2 = SQLITE_OK;
2880     Btree *pBt = db->aDb[i].pBt;
2881     if( pBt ){
2882       if( eOp==SAVEPOINT_ROLLBACK ){
2883         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2884       }
2885       if( rc2==SQLITE_OK ){
2886         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2887       }
2888       if( rc==SQLITE_OK ){
2889         rc = rc2;
2890       }
2891     }
2892   }
2893   db->nStatement--;
2894   p->iStatement = 0;
2895 
2896   if( rc==SQLITE_OK ){
2897     if( eOp==SAVEPOINT_ROLLBACK ){
2898       rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2899     }
2900     if( rc==SQLITE_OK ){
2901       rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2902     }
2903   }
2904 
2905   /* If the statement transaction is being rolled back, also restore the
2906   ** database handles deferred constraint counter to the value it had when
2907   ** the statement transaction was opened.  */
2908   if( eOp==SAVEPOINT_ROLLBACK ){
2909     db->nDeferredCons = p->nStmtDefCons;
2910     db->nDeferredImmCons = p->nStmtDefImmCons;
2911   }
2912   return rc;
2913 }
2914 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2915   if( p->db->nStatement && p->iStatement ){
2916     return vdbeCloseStatement(p, eOp);
2917   }
2918   return SQLITE_OK;
2919 }
2920 
2921 
2922 /*
2923 ** This function is called when a transaction opened by the database
2924 ** handle associated with the VM passed as an argument is about to be
2925 ** committed. If there are outstanding deferred foreign key constraint
2926 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2927 **
2928 ** If there are outstanding FK violations and this function returns
2929 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2930 ** and write an error message to it. Then return SQLITE_ERROR.
2931 */
2932 #ifndef SQLITE_OMIT_FOREIGN_KEY
2933 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2934   sqlite3 *db = p->db;
2935   if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2936    || (!deferred && p->nFkConstraint>0)
2937   ){
2938     p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2939     p->errorAction = OE_Abort;
2940     sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
2941     return SQLITE_ERROR;
2942   }
2943   return SQLITE_OK;
2944 }
2945 #endif
2946 
2947 /*
2948 ** This routine is called the when a VDBE tries to halt.  If the VDBE
2949 ** has made changes and is in autocommit mode, then commit those
2950 ** changes.  If a rollback is needed, then do the rollback.
2951 **
2952 ** This routine is the only way to move the state of a VM from
2953 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
2954 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2955 **
2956 ** Return an error code.  If the commit could not complete because of
2957 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
2958 ** means the close did not happen and needs to be repeated.
2959 */
2960 int sqlite3VdbeHalt(Vdbe *p){
2961   int rc;                         /* Used to store transient return codes */
2962   sqlite3 *db = p->db;
2963 
2964   /* This function contains the logic that determines if a statement or
2965   ** transaction will be committed or rolled back as a result of the
2966   ** execution of this virtual machine.
2967   **
2968   ** If any of the following errors occur:
2969   **
2970   **     SQLITE_NOMEM
2971   **     SQLITE_IOERR
2972   **     SQLITE_FULL
2973   **     SQLITE_INTERRUPT
2974   **
2975   ** Then the internal cache might have been left in an inconsistent
2976   ** state.  We need to rollback the statement transaction, if there is
2977   ** one, or the complete transaction if there is no statement transaction.
2978   */
2979 
2980   if( p->magic!=VDBE_MAGIC_RUN ){
2981     return SQLITE_OK;
2982   }
2983   if( db->mallocFailed ){
2984     p->rc = SQLITE_NOMEM_BKPT;
2985   }
2986   closeAllCursors(p);
2987   checkActiveVdbeCnt(db);
2988 
2989   /* No commit or rollback needed if the program never started or if the
2990   ** SQL statement does not read or write a database file.  */
2991   if( p->pc>=0 && p->bIsReader ){
2992     int mrc;   /* Primary error code from p->rc */
2993     int eStatementOp = 0;
2994     int isSpecialError;            /* Set to true if a 'special' error */
2995 
2996     /* Lock all btrees used by the statement */
2997     sqlite3VdbeEnter(p);
2998 
2999     /* Check for one of the special errors */
3000     mrc = p->rc & 0xff;
3001     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
3002                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
3003     if( isSpecialError ){
3004       /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3005       ** no rollback is necessary. Otherwise, at least a savepoint
3006       ** transaction must be rolled back to restore the database to a
3007       ** consistent state.
3008       **
3009       ** Even if the statement is read-only, it is important to perform
3010       ** a statement or transaction rollback operation. If the error
3011       ** occurred while writing to the journal, sub-journal or database
3012       ** file as part of an effort to free up cache space (see function
3013       ** pagerStress() in pager.c), the rollback is required to restore
3014       ** the pager to a consistent state.
3015       */
3016       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3017         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3018           eStatementOp = SAVEPOINT_ROLLBACK;
3019         }else{
3020           /* We are forced to roll back the active transaction. Before doing
3021           ** so, abort any other statements this handle currently has active.
3022           */
3023           sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3024           sqlite3CloseSavepoints(db);
3025           db->autoCommit = 1;
3026           p->nChange = 0;
3027         }
3028       }
3029     }
3030 
3031     /* Check for immediate foreign key violations. */
3032     if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3033       sqlite3VdbeCheckFk(p, 0);
3034     }
3035 
3036     /* If the auto-commit flag is set and this is the only active writer
3037     ** VM, then we do either a commit or rollback of the current transaction.
3038     **
3039     ** Note: This block also runs if one of the special errors handled
3040     ** above has occurred.
3041     */
3042     if( !sqlite3VtabInSync(db)
3043      && db->autoCommit
3044      && db->nVdbeWrite==(p->readOnly==0)
3045     ){
3046       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3047         rc = sqlite3VdbeCheckFk(p, 1);
3048         if( rc!=SQLITE_OK ){
3049           if( NEVER(p->readOnly) ){
3050             sqlite3VdbeLeave(p);
3051             return SQLITE_ERROR;
3052           }
3053           rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3054         }else{
3055           /* The auto-commit flag is true, the vdbe program was successful
3056           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3057           ** key constraints to hold up the transaction. This means a commit
3058           ** is required. */
3059           rc = vdbeCommit(db, p);
3060         }
3061         if( rc==SQLITE_BUSY && p->readOnly ){
3062           sqlite3VdbeLeave(p);
3063           return SQLITE_BUSY;
3064         }else if( rc!=SQLITE_OK ){
3065           p->rc = rc;
3066           sqlite3RollbackAll(db, SQLITE_OK);
3067           p->nChange = 0;
3068         }else{
3069           db->nDeferredCons = 0;
3070           db->nDeferredImmCons = 0;
3071           db->flags &= ~(u64)SQLITE_DeferFKs;
3072           sqlite3CommitInternalChanges(db);
3073         }
3074       }else{
3075         sqlite3RollbackAll(db, SQLITE_OK);
3076         p->nChange = 0;
3077       }
3078       db->nStatement = 0;
3079     }else if( eStatementOp==0 ){
3080       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3081         eStatementOp = SAVEPOINT_RELEASE;
3082       }else if( p->errorAction==OE_Abort ){
3083         eStatementOp = SAVEPOINT_ROLLBACK;
3084       }else{
3085         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3086         sqlite3CloseSavepoints(db);
3087         db->autoCommit = 1;
3088         p->nChange = 0;
3089       }
3090     }
3091 
3092     /* If eStatementOp is non-zero, then a statement transaction needs to
3093     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3094     ** do so. If this operation returns an error, and the current statement
3095     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3096     ** current statement error code.
3097     */
3098     if( eStatementOp ){
3099       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3100       if( rc ){
3101         if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3102           p->rc = rc;
3103           sqlite3DbFree(db, p->zErrMsg);
3104           p->zErrMsg = 0;
3105         }
3106         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3107         sqlite3CloseSavepoints(db);
3108         db->autoCommit = 1;
3109         p->nChange = 0;
3110       }
3111     }
3112 
3113     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3114     ** has been rolled back, update the database connection change-counter.
3115     */
3116     if( p->changeCntOn ){
3117       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3118         sqlite3VdbeSetChanges(db, p->nChange);
3119       }else{
3120         sqlite3VdbeSetChanges(db, 0);
3121       }
3122       p->nChange = 0;
3123     }
3124 
3125     /* Release the locks */
3126     sqlite3VdbeLeave(p);
3127   }
3128 
3129   /* We have successfully halted and closed the VM.  Record this fact. */
3130   if( p->pc>=0 ){
3131     db->nVdbeActive--;
3132     if( !p->readOnly ) db->nVdbeWrite--;
3133     if( p->bIsReader ) db->nVdbeRead--;
3134     assert( db->nVdbeActive>=db->nVdbeRead );
3135     assert( db->nVdbeRead>=db->nVdbeWrite );
3136     assert( db->nVdbeWrite>=0 );
3137   }
3138   p->magic = VDBE_MAGIC_HALT;
3139   checkActiveVdbeCnt(db);
3140   if( db->mallocFailed ){
3141     p->rc = SQLITE_NOMEM_BKPT;
3142   }
3143 
3144   /* If the auto-commit flag is set to true, then any locks that were held
3145   ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3146   ** to invoke any required unlock-notify callbacks.
3147   */
3148   if( db->autoCommit ){
3149     sqlite3ConnectionUnlocked(db);
3150   }
3151 
3152   assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3153   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3154 }
3155 
3156 
3157 /*
3158 ** Each VDBE holds the result of the most recent sqlite3_step() call
3159 ** in p->rc.  This routine sets that result back to SQLITE_OK.
3160 */
3161 void sqlite3VdbeResetStepResult(Vdbe *p){
3162   p->rc = SQLITE_OK;
3163 }
3164 
3165 /*
3166 ** Copy the error code and error message belonging to the VDBE passed
3167 ** as the first argument to its database handle (so that they will be
3168 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3169 **
3170 ** This function does not clear the VDBE error code or message, just
3171 ** copies them to the database handle.
3172 */
3173 int sqlite3VdbeTransferError(Vdbe *p){
3174   sqlite3 *db = p->db;
3175   int rc = p->rc;
3176   if( p->zErrMsg ){
3177     db->bBenignMalloc++;
3178     sqlite3BeginBenignMalloc();
3179     if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3180     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3181     sqlite3EndBenignMalloc();
3182     db->bBenignMalloc--;
3183   }else if( db->pErr ){
3184     sqlite3ValueSetNull(db->pErr);
3185   }
3186   db->errCode = rc;
3187   return rc;
3188 }
3189 
3190 #ifdef SQLITE_ENABLE_SQLLOG
3191 /*
3192 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3193 ** invoke it.
3194 */
3195 static void vdbeInvokeSqllog(Vdbe *v){
3196   if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3197     char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3198     assert( v->db->init.busy==0 );
3199     if( zExpanded ){
3200       sqlite3GlobalConfig.xSqllog(
3201           sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3202       );
3203       sqlite3DbFree(v->db, zExpanded);
3204     }
3205   }
3206 }
3207 #else
3208 # define vdbeInvokeSqllog(x)
3209 #endif
3210 
3211 /*
3212 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3213 ** Write any error messages into *pzErrMsg.  Return the result code.
3214 **
3215 ** After this routine is run, the VDBE should be ready to be executed
3216 ** again.
3217 **
3218 ** To look at it another way, this routine resets the state of the
3219 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
3220 ** VDBE_MAGIC_INIT.
3221 */
3222 int sqlite3VdbeReset(Vdbe *p){
3223 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3224   int i;
3225 #endif
3226 
3227   sqlite3 *db;
3228   db = p->db;
3229 
3230   /* If the VM did not run to completion or if it encountered an
3231   ** error, then it might not have been halted properly.  So halt
3232   ** it now.
3233   */
3234   sqlite3VdbeHalt(p);
3235 
3236   /* If the VDBE has been run even partially, then transfer the error code
3237   ** and error message from the VDBE into the main database structure.  But
3238   ** if the VDBE has just been set to run but has not actually executed any
3239   ** instructions yet, leave the main database error information unchanged.
3240   */
3241   if( p->pc>=0 ){
3242     vdbeInvokeSqllog(p);
3243     sqlite3VdbeTransferError(p);
3244     if( p->runOnlyOnce ) p->expired = 1;
3245   }else if( p->rc && p->expired ){
3246     /* The expired flag was set on the VDBE before the first call
3247     ** to sqlite3_step(). For consistency (since sqlite3_step() was
3248     ** called), set the database error in this case as well.
3249     */
3250     sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
3251   }
3252 
3253   /* Reset register contents and reclaim error message memory.
3254   */
3255 #ifdef SQLITE_DEBUG
3256   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3257   ** Vdbe.aMem[] arrays have already been cleaned up.  */
3258   if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3259   if( p->aMem ){
3260     for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3261   }
3262 #endif
3263   sqlite3DbFree(db, p->zErrMsg);
3264   p->zErrMsg = 0;
3265   p->pResultSet = 0;
3266 #ifdef SQLITE_DEBUG
3267   p->nWrite = 0;
3268 #endif
3269 
3270   /* Save profiling information from this VDBE run.
3271   */
3272 #ifdef VDBE_PROFILE
3273   {
3274     FILE *out = fopen("vdbe_profile.out", "a");
3275     if( out ){
3276       fprintf(out, "---- ");
3277       for(i=0; i<p->nOp; i++){
3278         fprintf(out, "%02x", p->aOp[i].opcode);
3279       }
3280       fprintf(out, "\n");
3281       if( p->zSql ){
3282         char c, pc = 0;
3283         fprintf(out, "-- ");
3284         for(i=0; (c = p->zSql[i])!=0; i++){
3285           if( pc=='\n' ) fprintf(out, "-- ");
3286           putc(c, out);
3287           pc = c;
3288         }
3289         if( pc!='\n' ) fprintf(out, "\n");
3290       }
3291       for(i=0; i<p->nOp; i++){
3292         char zHdr[100];
3293         sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3294            p->aOp[i].cnt,
3295            p->aOp[i].cycles,
3296            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
3297         );
3298         fprintf(out, "%s", zHdr);
3299         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3300       }
3301       fclose(out);
3302     }
3303   }
3304 #endif
3305   p->magic = VDBE_MAGIC_RESET;
3306   return p->rc & db->errMask;
3307 }
3308 
3309 /*
3310 ** Clean up and delete a VDBE after execution.  Return an integer which is
3311 ** the result code.  Write any error message text into *pzErrMsg.
3312 */
3313 int sqlite3VdbeFinalize(Vdbe *p){
3314   int rc = SQLITE_OK;
3315   if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
3316     rc = sqlite3VdbeReset(p);
3317     assert( (rc & p->db->errMask)==rc );
3318   }
3319   sqlite3VdbeDelete(p);
3320   return rc;
3321 }
3322 
3323 /*
3324 ** If parameter iOp is less than zero, then invoke the destructor for
3325 ** all auxiliary data pointers currently cached by the VM passed as
3326 ** the first argument.
3327 **
3328 ** Or, if iOp is greater than or equal to zero, then the destructor is
3329 ** only invoked for those auxiliary data pointers created by the user
3330 ** function invoked by the OP_Function opcode at instruction iOp of
3331 ** VM pVdbe, and only then if:
3332 **
3333 **    * the associated function parameter is the 32nd or later (counting
3334 **      from left to right), or
3335 **
3336 **    * the corresponding bit in argument mask is clear (where the first
3337 **      function parameter corresponds to bit 0 etc.).
3338 */
3339 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3340   while( *pp ){
3341     AuxData *pAux = *pp;
3342     if( (iOp<0)
3343      || (pAux->iAuxOp==iOp
3344           && pAux->iAuxArg>=0
3345           && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3346     ){
3347       testcase( pAux->iAuxArg==31 );
3348       if( pAux->xDeleteAux ){
3349         pAux->xDeleteAux(pAux->pAux);
3350       }
3351       *pp = pAux->pNextAux;
3352       sqlite3DbFree(db, pAux);
3353     }else{
3354       pp= &pAux->pNextAux;
3355     }
3356   }
3357 }
3358 
3359 /*
3360 ** Free all memory associated with the Vdbe passed as the second argument,
3361 ** except for object itself, which is preserved.
3362 **
3363 ** The difference between this function and sqlite3VdbeDelete() is that
3364 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3365 ** the database connection and frees the object itself.
3366 */
3367 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3368   SubProgram *pSub, *pNext;
3369   assert( p->db==0 || p->db==db );
3370   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3371   for(pSub=p->pProgram; pSub; pSub=pNext){
3372     pNext = pSub->pNext;
3373     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3374     sqlite3DbFree(db, pSub);
3375   }
3376   if( p->magic!=VDBE_MAGIC_INIT ){
3377     releaseMemArray(p->aVar, p->nVar);
3378     sqlite3DbFree(db, p->pVList);
3379     sqlite3DbFree(db, p->pFree);
3380   }
3381   vdbeFreeOpArray(db, p->aOp, p->nOp);
3382   sqlite3DbFree(db, p->aColName);
3383   sqlite3DbFree(db, p->zSql);
3384 #ifdef SQLITE_ENABLE_NORMALIZE
3385   sqlite3DbFree(db, p->zNormSql);
3386   {
3387     DblquoteStr *pThis, *pNext;
3388     for(pThis=p->pDblStr; pThis; pThis=pNext){
3389       pNext = pThis->pNextStr;
3390       sqlite3DbFree(db, pThis);
3391     }
3392   }
3393 #endif
3394 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3395   {
3396     int i;
3397     for(i=0; i<p->nScan; i++){
3398       sqlite3DbFree(db, p->aScan[i].zName);
3399     }
3400     sqlite3DbFree(db, p->aScan);
3401   }
3402 #endif
3403 }
3404 
3405 /*
3406 ** Delete an entire VDBE.
3407 */
3408 void sqlite3VdbeDelete(Vdbe *p){
3409   sqlite3 *db;
3410 
3411   assert( p!=0 );
3412   db = p->db;
3413   assert( sqlite3_mutex_held(db->mutex) );
3414   sqlite3VdbeClearObject(db, p);
3415   if( p->pPrev ){
3416     p->pPrev->pNext = p->pNext;
3417   }else{
3418     assert( db->pVdbe==p );
3419     db->pVdbe = p->pNext;
3420   }
3421   if( p->pNext ){
3422     p->pNext->pPrev = p->pPrev;
3423   }
3424   p->magic = VDBE_MAGIC_DEAD;
3425   p->db = 0;
3426   sqlite3DbFreeNN(db, p);
3427 }
3428 
3429 /*
3430 ** The cursor "p" has a pending seek operation that has not yet been
3431 ** carried out.  Seek the cursor now.  If an error occurs, return
3432 ** the appropriate error code.
3433 */
3434 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3435   int res, rc;
3436 #ifdef SQLITE_TEST
3437   extern int sqlite3_search_count;
3438 #endif
3439   assert( p->deferredMoveto );
3440   assert( p->isTable );
3441   assert( p->eCurType==CURTYPE_BTREE );
3442   rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
3443   if( rc ) return rc;
3444   if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3445 #ifdef SQLITE_TEST
3446   sqlite3_search_count++;
3447 #endif
3448   p->deferredMoveto = 0;
3449   p->cacheStatus = CACHE_STALE;
3450   return SQLITE_OK;
3451 }
3452 
3453 /*
3454 ** Something has moved cursor "p" out of place.  Maybe the row it was
3455 ** pointed to was deleted out from under it.  Or maybe the btree was
3456 ** rebalanced.  Whatever the cause, try to restore "p" to the place it
3457 ** is supposed to be pointing.  If the row was deleted out from under the
3458 ** cursor, set the cursor to point to a NULL row.
3459 */
3460 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3461   int isDifferentRow, rc;
3462   assert( p->eCurType==CURTYPE_BTREE );
3463   assert( p->uc.pCursor!=0 );
3464   assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3465   rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3466   p->cacheStatus = CACHE_STALE;
3467   if( isDifferentRow ) p->nullRow = 1;
3468   return rc;
3469 }
3470 
3471 /*
3472 ** Check to ensure that the cursor is valid.  Restore the cursor
3473 ** if need be.  Return any I/O error from the restore operation.
3474 */
3475 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3476   assert( p->eCurType==CURTYPE_BTREE );
3477   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3478     return handleMovedCursor(p);
3479   }
3480   return SQLITE_OK;
3481 }
3482 
3483 /*
3484 ** Make sure the cursor p is ready to read or write the row to which it
3485 ** was last positioned.  Return an error code if an OOM fault or I/O error
3486 ** prevents us from positioning the cursor to its correct position.
3487 **
3488 ** If a MoveTo operation is pending on the given cursor, then do that
3489 ** MoveTo now.  If no move is pending, check to see if the row has been
3490 ** deleted out from under the cursor and if it has, mark the row as
3491 ** a NULL row.
3492 **
3493 ** If the cursor is already pointing to the correct row and that row has
3494 ** not been deleted out from under the cursor, then this routine is a no-op.
3495 */
3496 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
3497   VdbeCursor *p = *pp;
3498   assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
3499   if( p->deferredMoveto ){
3500     int iMap;
3501     if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
3502       *pp = p->pAltCursor;
3503       *piCol = iMap - 1;
3504       return SQLITE_OK;
3505     }
3506     return sqlite3VdbeFinishMoveto(p);
3507   }
3508   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3509     return handleMovedCursor(p);
3510   }
3511   return SQLITE_OK;
3512 }
3513 
3514 /*
3515 ** The following functions:
3516 **
3517 ** sqlite3VdbeSerialType()
3518 ** sqlite3VdbeSerialTypeLen()
3519 ** sqlite3VdbeSerialLen()
3520 ** sqlite3VdbeSerialPut()
3521 ** sqlite3VdbeSerialGet()
3522 **
3523 ** encapsulate the code that serializes values for storage in SQLite
3524 ** data and index records. Each serialized value consists of a
3525 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3526 ** integer, stored as a varint.
3527 **
3528 ** In an SQLite index record, the serial type is stored directly before
3529 ** the blob of data that it corresponds to. In a table record, all serial
3530 ** types are stored at the start of the record, and the blobs of data at
3531 ** the end. Hence these functions allow the caller to handle the
3532 ** serial-type and data blob separately.
3533 **
3534 ** The following table describes the various storage classes for data:
3535 **
3536 **   serial type        bytes of data      type
3537 **   --------------     ---------------    ---------------
3538 **      0                     0            NULL
3539 **      1                     1            signed integer
3540 **      2                     2            signed integer
3541 **      3                     3            signed integer
3542 **      4                     4            signed integer
3543 **      5                     6            signed integer
3544 **      6                     8            signed integer
3545 **      7                     8            IEEE float
3546 **      8                     0            Integer constant 0
3547 **      9                     0            Integer constant 1
3548 **     10,11                               reserved for expansion
3549 **    N>=12 and even       (N-12)/2        BLOB
3550 **    N>=13 and odd        (N-13)/2        text
3551 **
3552 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
3553 ** of SQLite will not understand those serial types.
3554 */
3555 
3556 #if 0 /* Inlined into the OP_MakeRecord opcode */
3557 /*
3558 ** Return the serial-type for the value stored in pMem.
3559 **
3560 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3561 **
3562 ** 2019-07-11:  The primary user of this subroutine was the OP_MakeRecord
3563 ** opcode in the byte-code engine.  But by moving this routine in-line, we
3564 ** can omit some redundant tests and make that opcode a lot faster.  So
3565 ** this routine is now only used by the STAT3 logic and STAT3 support has
3566 ** ended.  The code is kept here for historical reference only.
3567 */
3568 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3569   int flags = pMem->flags;
3570   u32 n;
3571 
3572   assert( pLen!=0 );
3573   if( flags&MEM_Null ){
3574     *pLen = 0;
3575     return 0;
3576   }
3577   if( flags&(MEM_Int|MEM_IntReal) ){
3578     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3579 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3580     i64 i = pMem->u.i;
3581     u64 u;
3582     testcase( flags & MEM_Int );
3583     testcase( flags & MEM_IntReal );
3584     if( i<0 ){
3585       u = ~i;
3586     }else{
3587       u = i;
3588     }
3589     if( u<=127 ){
3590       if( (i&1)==i && file_format>=4 ){
3591         *pLen = 0;
3592         return 8+(u32)u;
3593       }else{
3594         *pLen = 1;
3595         return 1;
3596       }
3597     }
3598     if( u<=32767 ){ *pLen = 2; return 2; }
3599     if( u<=8388607 ){ *pLen = 3; return 3; }
3600     if( u<=2147483647 ){ *pLen = 4; return 4; }
3601     if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3602     *pLen = 8;
3603     if( flags&MEM_IntReal ){
3604       /* If the value is IntReal and is going to take up 8 bytes to store
3605       ** as an integer, then we might as well make it an 8-byte floating
3606       ** point value */
3607       pMem->u.r = (double)pMem->u.i;
3608       pMem->flags &= ~MEM_IntReal;
3609       pMem->flags |= MEM_Real;
3610       return 7;
3611     }
3612     return 6;
3613   }
3614   if( flags&MEM_Real ){
3615     *pLen = 8;
3616     return 7;
3617   }
3618   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3619   assert( pMem->n>=0 );
3620   n = (u32)pMem->n;
3621   if( flags & MEM_Zero ){
3622     n += pMem->u.nZero;
3623   }
3624   *pLen = n;
3625   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3626 }
3627 #endif /* inlined into OP_MakeRecord */
3628 
3629 /*
3630 ** The sizes for serial types less than 128
3631 */
3632 static const u8 sqlite3SmallTypeSizes[] = {
3633         /*  0   1   2   3   4   5   6   7   8   9 */
3634 /*   0 */   0,  1,  2,  3,  4,  6,  8,  8,  0,  0,
3635 /*  10 */   0,  0,  0,  0,  1,  1,  2,  2,  3,  3,
3636 /*  20 */   4,  4,  5,  5,  6,  6,  7,  7,  8,  8,
3637 /*  30 */   9,  9, 10, 10, 11, 11, 12, 12, 13, 13,
3638 /*  40 */  14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3639 /*  50 */  19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3640 /*  60 */  24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3641 /*  70 */  29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3642 /*  80 */  34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3643 /*  90 */  39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3644 /* 100 */  44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3645 /* 110 */  49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3646 /* 120 */  54, 54, 55, 55, 56, 56, 57, 57
3647 };
3648 
3649 /*
3650 ** Return the length of the data corresponding to the supplied serial-type.
3651 */
3652 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3653   if( serial_type>=128 ){
3654     return (serial_type-12)/2;
3655   }else{
3656     assert( serial_type<12
3657             || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3658     return sqlite3SmallTypeSizes[serial_type];
3659   }
3660 }
3661 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3662   assert( serial_type<128 );
3663   return sqlite3SmallTypeSizes[serial_type];
3664 }
3665 
3666 /*
3667 ** If we are on an architecture with mixed-endian floating
3668 ** points (ex: ARM7) then swap the lower 4 bytes with the
3669 ** upper 4 bytes.  Return the result.
3670 **
3671 ** For most architectures, this is a no-op.
3672 **
3673 ** (later):  It is reported to me that the mixed-endian problem
3674 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
3675 ** that early versions of GCC stored the two words of a 64-bit
3676 ** float in the wrong order.  And that error has been propagated
3677 ** ever since.  The blame is not necessarily with GCC, though.
3678 ** GCC might have just copying the problem from a prior compiler.
3679 ** I am also told that newer versions of GCC that follow a different
3680 ** ABI get the byte order right.
3681 **
3682 ** Developers using SQLite on an ARM7 should compile and run their
3683 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
3684 ** enabled, some asserts below will ensure that the byte order of
3685 ** floating point values is correct.
3686 **
3687 ** (2007-08-30)  Frank van Vugt has studied this problem closely
3688 ** and has send his findings to the SQLite developers.  Frank
3689 ** writes that some Linux kernels offer floating point hardware
3690 ** emulation that uses only 32-bit mantissas instead of a full
3691 ** 48-bits as required by the IEEE standard.  (This is the
3692 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
3693 ** byte swapping becomes very complicated.  To avoid problems,
3694 ** the necessary byte swapping is carried out using a 64-bit integer
3695 ** rather than a 64-bit float.  Frank assures us that the code here
3696 ** works for him.  We, the developers, have no way to independently
3697 ** verify this, but Frank seems to know what he is talking about
3698 ** so we trust him.
3699 */
3700 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3701 static u64 floatSwap(u64 in){
3702   union {
3703     u64 r;
3704     u32 i[2];
3705   } u;
3706   u32 t;
3707 
3708   u.r = in;
3709   t = u.i[0];
3710   u.i[0] = u.i[1];
3711   u.i[1] = t;
3712   return u.r;
3713 }
3714 # define swapMixedEndianFloat(X)  X = floatSwap(X)
3715 #else
3716 # define swapMixedEndianFloat(X)
3717 #endif
3718 
3719 /*
3720 ** Write the serialized data blob for the value stored in pMem into
3721 ** buf. It is assumed that the caller has allocated sufficient space.
3722 ** Return the number of bytes written.
3723 **
3724 ** nBuf is the amount of space left in buf[].  The caller is responsible
3725 ** for allocating enough space to buf[] to hold the entire field, exclusive
3726 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3727 **
3728 ** Return the number of bytes actually written into buf[].  The number
3729 ** of bytes in the zero-filled tail is included in the return value only
3730 ** if those bytes were zeroed in buf[].
3731 */
3732 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3733   u32 len;
3734 
3735   /* Integer and Real */
3736   if( serial_type<=7 && serial_type>0 ){
3737     u64 v;
3738     u32 i;
3739     if( serial_type==7 ){
3740       assert( sizeof(v)==sizeof(pMem->u.r) );
3741       memcpy(&v, &pMem->u.r, sizeof(v));
3742       swapMixedEndianFloat(v);
3743     }else{
3744       v = pMem->u.i;
3745     }
3746     len = i = sqlite3SmallTypeSizes[serial_type];
3747     assert( i>0 );
3748     do{
3749       buf[--i] = (u8)(v&0xFF);
3750       v >>= 8;
3751     }while( i );
3752     return len;
3753   }
3754 
3755   /* String or blob */
3756   if( serial_type>=12 ){
3757     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3758              == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3759     len = pMem->n;
3760     if( len>0 ) memcpy(buf, pMem->z, len);
3761     return len;
3762   }
3763 
3764   /* NULL or constants 0 or 1 */
3765   return 0;
3766 }
3767 
3768 /* Input "x" is a sequence of unsigned characters that represent a
3769 ** big-endian integer.  Return the equivalent native integer
3770 */
3771 #define ONE_BYTE_INT(x)    ((i8)(x)[0])
3772 #define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
3773 #define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3774 #define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3775 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3776 
3777 /*
3778 ** Deserialize the data blob pointed to by buf as serial type serial_type
3779 ** and store the result in pMem.  Return the number of bytes read.
3780 **
3781 ** This function is implemented as two separate routines for performance.
3782 ** The few cases that require local variables are broken out into a separate
3783 ** routine so that in most cases the overhead of moving the stack pointer
3784 ** is avoided.
3785 */
3786 static u32 serialGet(
3787   const unsigned char *buf,     /* Buffer to deserialize from */
3788   u32 serial_type,              /* Serial type to deserialize */
3789   Mem *pMem                     /* Memory cell to write value into */
3790 ){
3791   u64 x = FOUR_BYTE_UINT(buf);
3792   u32 y = FOUR_BYTE_UINT(buf+4);
3793   x = (x<<32) + y;
3794   if( serial_type==6 ){
3795     /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3796     ** twos-complement integer. */
3797     pMem->u.i = *(i64*)&x;
3798     pMem->flags = MEM_Int;
3799     testcase( pMem->u.i<0 );
3800   }else{
3801     /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3802     ** floating point number. */
3803 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3804     /* Verify that integers and floating point values use the same
3805     ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3806     ** defined that 64-bit floating point values really are mixed
3807     ** endian.
3808     */
3809     static const u64 t1 = ((u64)0x3ff00000)<<32;
3810     static const double r1 = 1.0;
3811     u64 t2 = t1;
3812     swapMixedEndianFloat(t2);
3813     assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3814 #endif
3815     assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3816     swapMixedEndianFloat(x);
3817     memcpy(&pMem->u.r, &x, sizeof(x));
3818     pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
3819   }
3820   return 8;
3821 }
3822 u32 sqlite3VdbeSerialGet(
3823   const unsigned char *buf,     /* Buffer to deserialize from */
3824   u32 serial_type,              /* Serial type to deserialize */
3825   Mem *pMem                     /* Memory cell to write value into */
3826 ){
3827   switch( serial_type ){
3828     case 10: { /* Internal use only: NULL with virtual table
3829                ** UPDATE no-change flag set */
3830       pMem->flags = MEM_Null|MEM_Zero;
3831       pMem->n = 0;
3832       pMem->u.nZero = 0;
3833       break;
3834     }
3835     case 11:   /* Reserved for future use */
3836     case 0: {  /* Null */
3837       /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3838       pMem->flags = MEM_Null;
3839       break;
3840     }
3841     case 1: {
3842       /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3843       ** integer. */
3844       pMem->u.i = ONE_BYTE_INT(buf);
3845       pMem->flags = MEM_Int;
3846       testcase( pMem->u.i<0 );
3847       return 1;
3848     }
3849     case 2: { /* 2-byte signed integer */
3850       /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3851       ** twos-complement integer. */
3852       pMem->u.i = TWO_BYTE_INT(buf);
3853       pMem->flags = MEM_Int;
3854       testcase( pMem->u.i<0 );
3855       return 2;
3856     }
3857     case 3: { /* 3-byte signed integer */
3858       /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3859       ** twos-complement integer. */
3860       pMem->u.i = THREE_BYTE_INT(buf);
3861       pMem->flags = MEM_Int;
3862       testcase( pMem->u.i<0 );
3863       return 3;
3864     }
3865     case 4: { /* 4-byte signed integer */
3866       /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3867       ** twos-complement integer. */
3868       pMem->u.i = FOUR_BYTE_INT(buf);
3869 #ifdef __HP_cc
3870       /* Work around a sign-extension bug in the HP compiler for HP/UX */
3871       if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3872 #endif
3873       pMem->flags = MEM_Int;
3874       testcase( pMem->u.i<0 );
3875       return 4;
3876     }
3877     case 5: { /* 6-byte signed integer */
3878       /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3879       ** twos-complement integer. */
3880       pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3881       pMem->flags = MEM_Int;
3882       testcase( pMem->u.i<0 );
3883       return 6;
3884     }
3885     case 6:   /* 8-byte signed integer */
3886     case 7: { /* IEEE floating point */
3887       /* These use local variables, so do them in a separate routine
3888       ** to avoid having to move the frame pointer in the common case */
3889       return serialGet(buf,serial_type,pMem);
3890     }
3891     case 8:    /* Integer 0 */
3892     case 9: {  /* Integer 1 */
3893       /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3894       /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3895       pMem->u.i = serial_type-8;
3896       pMem->flags = MEM_Int;
3897       return 0;
3898     }
3899     default: {
3900       /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3901       ** length.
3902       ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3903       ** (N-13)/2 bytes in length. */
3904       static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3905       pMem->z = (char *)buf;
3906       pMem->n = (serial_type-12)/2;
3907       pMem->flags = aFlag[serial_type&1];
3908       return pMem->n;
3909     }
3910   }
3911   return 0;
3912 }
3913 /*
3914 ** This routine is used to allocate sufficient space for an UnpackedRecord
3915 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3916 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3917 **
3918 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3919 ** the unaligned buffer passed via the second and third arguments (presumably
3920 ** stack space). If the former, then *ppFree is set to a pointer that should
3921 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3922 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3923 ** before returning.
3924 **
3925 ** If an OOM error occurs, NULL is returned.
3926 */
3927 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3928   KeyInfo *pKeyInfo               /* Description of the record */
3929 ){
3930   UnpackedRecord *p;              /* Unpacked record to return */
3931   int nByte;                      /* Number of bytes required for *p */
3932   nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
3933   p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3934   if( !p ) return 0;
3935   p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3936   assert( pKeyInfo->aSortFlags!=0 );
3937   p->pKeyInfo = pKeyInfo;
3938   p->nField = pKeyInfo->nKeyField + 1;
3939   return p;
3940 }
3941 
3942 /*
3943 ** Given the nKey-byte encoding of a record in pKey[], populate the
3944 ** UnpackedRecord structure indicated by the fourth argument with the
3945 ** contents of the decoded record.
3946 */
3947 void sqlite3VdbeRecordUnpack(
3948   KeyInfo *pKeyInfo,     /* Information about the record format */
3949   int nKey,              /* Size of the binary record */
3950   const void *pKey,      /* The binary record */
3951   UnpackedRecord *p      /* Populate this structure before returning. */
3952 ){
3953   const unsigned char *aKey = (const unsigned char *)pKey;
3954   u32 d;
3955   u32 idx;                        /* Offset in aKey[] to read from */
3956   u16 u;                          /* Unsigned loop counter */
3957   u32 szHdr;
3958   Mem *pMem = p->aMem;
3959 
3960   p->default_rc = 0;
3961   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
3962   idx = getVarint32(aKey, szHdr);
3963   d = szHdr;
3964   u = 0;
3965   while( idx<szHdr && d<=(u32)nKey ){
3966     u32 serial_type;
3967 
3968     idx += getVarint32(&aKey[idx], serial_type);
3969     pMem->enc = pKeyInfo->enc;
3970     pMem->db = pKeyInfo->db;
3971     /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
3972     pMem->szMalloc = 0;
3973     pMem->z = 0;
3974     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
3975     pMem++;
3976     if( (++u)>=p->nField ) break;
3977   }
3978   if( d>(u32)nKey && u ){
3979     assert( CORRUPT_DB );
3980     /* In a corrupt record entry, the last pMem might have been set up using
3981     ** uninitialized memory. Overwrite its value with NULL, to prevent
3982     ** warnings from MSAN. */
3983     sqlite3VdbeMemSetNull(pMem-1);
3984   }
3985   assert( u<=pKeyInfo->nKeyField + 1 );
3986   p->nField = u;
3987 }
3988 
3989 #ifdef SQLITE_DEBUG
3990 /*
3991 ** This function compares two index or table record keys in the same way
3992 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3993 ** this function deserializes and compares values using the
3994 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3995 ** in assert() statements to ensure that the optimized code in
3996 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
3997 **
3998 ** Return true if the result of comparison is equivalent to desiredResult.
3999 ** Return false if there is a disagreement.
4000 */
4001 static int vdbeRecordCompareDebug(
4002   int nKey1, const void *pKey1, /* Left key */
4003   const UnpackedRecord *pPKey2, /* Right key */
4004   int desiredResult             /* Correct answer */
4005 ){
4006   u32 d1;            /* Offset into aKey[] of next data element */
4007   u32 idx1;          /* Offset into aKey[] of next header element */
4008   u32 szHdr1;        /* Number of bytes in header */
4009   int i = 0;
4010   int rc = 0;
4011   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4012   KeyInfo *pKeyInfo;
4013   Mem mem1;
4014 
4015   pKeyInfo = pPKey2->pKeyInfo;
4016   if( pKeyInfo->db==0 ) return 1;
4017   mem1.enc = pKeyInfo->enc;
4018   mem1.db = pKeyInfo->db;
4019   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
4020   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4021 
4022   /* Compilers may complain that mem1.u.i is potentially uninitialized.
4023   ** We could initialize it, as shown here, to silence those complaints.
4024   ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4025   ** the unnecessary initialization has a measurable negative performance
4026   ** impact, since this routine is a very high runner.  And so, we choose
4027   ** to ignore the compiler warnings and leave this variable uninitialized.
4028   */
4029   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
4030 
4031   idx1 = getVarint32(aKey1, szHdr1);
4032   if( szHdr1>98307 ) return SQLITE_CORRUPT;
4033   d1 = szHdr1;
4034   assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4035   assert( pKeyInfo->aSortFlags!=0 );
4036   assert( pKeyInfo->nKeyField>0 );
4037   assert( idx1<=szHdr1 || CORRUPT_DB );
4038   do{
4039     u32 serial_type1;
4040 
4041     /* Read the serial types for the next element in each key. */
4042     idx1 += getVarint32( aKey1+idx1, serial_type1 );
4043 
4044     /* Verify that there is enough key space remaining to avoid
4045     ** a buffer overread.  The "d1+serial_type1+2" subexpression will
4046     ** always be greater than or equal to the amount of required key space.
4047     ** Use that approximation to avoid the more expensive call to
4048     ** sqlite3VdbeSerialTypeLen() in the common case.
4049     */
4050     if( d1+(u64)serial_type1+2>(u64)nKey1
4051      && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4052     ){
4053       break;
4054     }
4055 
4056     /* Extract the values to be compared.
4057     */
4058     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4059 
4060     /* Do the comparison
4061     */
4062     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4063                            pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4064     if( rc!=0 ){
4065       assert( mem1.szMalloc==0 );  /* See comment below */
4066       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4067        && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4068       ){
4069         rc = -rc;
4070       }
4071       if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4072         rc = -rc;  /* Invert the result for DESC sort order. */
4073       }
4074       goto debugCompareEnd;
4075     }
4076     i++;
4077   }while( idx1<szHdr1 && i<pPKey2->nField );
4078 
4079   /* No memory allocation is ever used on mem1.  Prove this using
4080   ** the following assert().  If the assert() fails, it indicates a
4081   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4082   */
4083   assert( mem1.szMalloc==0 );
4084 
4085   /* rc==0 here means that one of the keys ran out of fields and
4086   ** all the fields up to that point were equal. Return the default_rc
4087   ** value.  */
4088   rc = pPKey2->default_rc;
4089 
4090 debugCompareEnd:
4091   if( desiredResult==0 && rc==0 ) return 1;
4092   if( desiredResult<0 && rc<0 ) return 1;
4093   if( desiredResult>0 && rc>0 ) return 1;
4094   if( CORRUPT_DB ) return 1;
4095   if( pKeyInfo->db->mallocFailed ) return 1;
4096   return 0;
4097 }
4098 #endif
4099 
4100 #ifdef SQLITE_DEBUG
4101 /*
4102 ** Count the number of fields (a.k.a. columns) in the record given by
4103 ** pKey,nKey.  The verify that this count is less than or equal to the
4104 ** limit given by pKeyInfo->nAllField.
4105 **
4106 ** If this constraint is not satisfied, it means that the high-speed
4107 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4108 ** not work correctly.  If this assert() ever fires, it probably means
4109 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4110 ** incorrectly.
4111 */
4112 static void vdbeAssertFieldCountWithinLimits(
4113   int nKey, const void *pKey,   /* The record to verify */
4114   const KeyInfo *pKeyInfo       /* Compare size with this KeyInfo */
4115 ){
4116   int nField = 0;
4117   u32 szHdr;
4118   u32 idx;
4119   u32 notUsed;
4120   const unsigned char *aKey = (const unsigned char*)pKey;
4121 
4122   if( CORRUPT_DB ) return;
4123   idx = getVarint32(aKey, szHdr);
4124   assert( nKey>=0 );
4125   assert( szHdr<=(u32)nKey );
4126   while( idx<szHdr ){
4127     idx += getVarint32(aKey+idx, notUsed);
4128     nField++;
4129   }
4130   assert( nField <= pKeyInfo->nAllField );
4131 }
4132 #else
4133 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4134 #endif
4135 
4136 /*
4137 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4138 ** using the collation sequence pColl. As usual, return a negative , zero
4139 ** or positive value if *pMem1 is less than, equal to or greater than
4140 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4141 */
4142 static int vdbeCompareMemString(
4143   const Mem *pMem1,
4144   const Mem *pMem2,
4145   const CollSeq *pColl,
4146   u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */
4147 ){
4148   if( pMem1->enc==pColl->enc ){
4149     /* The strings are already in the correct encoding.  Call the
4150      ** comparison function directly */
4151     return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4152   }else{
4153     int rc;
4154     const void *v1, *v2;
4155     Mem c1;
4156     Mem c2;
4157     sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4158     sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4159     sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4160     sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4161     v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4162     v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4163     if( (v1==0 || v2==0) ){
4164       if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4165       rc = 0;
4166     }else{
4167       rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4168     }
4169     sqlite3VdbeMemRelease(&c1);
4170     sqlite3VdbeMemRelease(&c2);
4171     return rc;
4172   }
4173 }
4174 
4175 /*
4176 ** The input pBlob is guaranteed to be a Blob that is not marked
4177 ** with MEM_Zero.  Return true if it could be a zero-blob.
4178 */
4179 static int isAllZero(const char *z, int n){
4180   int i;
4181   for(i=0; i<n; i++){
4182     if( z[i] ) return 0;
4183   }
4184   return 1;
4185 }
4186 
4187 /*
4188 ** Compare two blobs.  Return negative, zero, or positive if the first
4189 ** is less than, equal to, or greater than the second, respectively.
4190 ** If one blob is a prefix of the other, then the shorter is the lessor.
4191 */
4192 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4193   int c;
4194   int n1 = pB1->n;
4195   int n2 = pB2->n;
4196 
4197   /* It is possible to have a Blob value that has some non-zero content
4198   ** followed by zero content.  But that only comes up for Blobs formed
4199   ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4200   ** sqlite3MemCompare(). */
4201   assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4202   assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4203 
4204   if( (pB1->flags|pB2->flags) & MEM_Zero ){
4205     if( pB1->flags & pB2->flags & MEM_Zero ){
4206       return pB1->u.nZero - pB2->u.nZero;
4207     }else if( pB1->flags & MEM_Zero ){
4208       if( !isAllZero(pB2->z, pB2->n) ) return -1;
4209       return pB1->u.nZero - n2;
4210     }else{
4211       if( !isAllZero(pB1->z, pB1->n) ) return +1;
4212       return n1 - pB2->u.nZero;
4213     }
4214   }
4215   c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4216   if( c ) return c;
4217   return n1 - n2;
4218 }
4219 
4220 /*
4221 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4222 ** number.  Return negative, zero, or positive if the first (i64) is less than,
4223 ** equal to, or greater than the second (double).
4224 */
4225 static int sqlite3IntFloatCompare(i64 i, double r){
4226   if( sizeof(LONGDOUBLE_TYPE)>8 ){
4227     LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4228     if( x<r ) return -1;
4229     if( x>r ) return +1;
4230     return 0;
4231   }else{
4232     i64 y;
4233     double s;
4234     if( r<-9223372036854775808.0 ) return +1;
4235     if( r>=9223372036854775808.0 ) return -1;
4236     y = (i64)r;
4237     if( i<y ) return -1;
4238     if( i>y ) return +1;
4239     s = (double)i;
4240     if( s<r ) return -1;
4241     if( s>r ) return +1;
4242     return 0;
4243   }
4244 }
4245 
4246 /*
4247 ** Compare the values contained by the two memory cells, returning
4248 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4249 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4250 ** and reals) sorted numerically, followed by text ordered by the collating
4251 ** sequence pColl and finally blob's ordered by memcmp().
4252 **
4253 ** Two NULL values are considered equal by this function.
4254 */
4255 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4256   int f1, f2;
4257   int combined_flags;
4258 
4259   f1 = pMem1->flags;
4260   f2 = pMem2->flags;
4261   combined_flags = f1|f2;
4262   assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4263 
4264   /* If one value is NULL, it is less than the other. If both values
4265   ** are NULL, return 0.
4266   */
4267   if( combined_flags&MEM_Null ){
4268     return (f2&MEM_Null) - (f1&MEM_Null);
4269   }
4270 
4271   /* At least one of the two values is a number
4272   */
4273   if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4274     testcase( combined_flags & MEM_Int );
4275     testcase( combined_flags & MEM_Real );
4276     testcase( combined_flags & MEM_IntReal );
4277     if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4278       testcase( f1 & f2 & MEM_Int );
4279       testcase( f1 & f2 & MEM_IntReal );
4280       if( pMem1->u.i < pMem2->u.i ) return -1;
4281       if( pMem1->u.i > pMem2->u.i ) return +1;
4282       return 0;
4283     }
4284     if( (f1 & f2 & MEM_Real)!=0 ){
4285       if( pMem1->u.r < pMem2->u.r ) return -1;
4286       if( pMem1->u.r > pMem2->u.r ) return +1;
4287       return 0;
4288     }
4289     if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4290       testcase( f1 & MEM_Int );
4291       testcase( f1 & MEM_IntReal );
4292       if( (f2&MEM_Real)!=0 ){
4293         return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4294       }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4295         if( pMem1->u.i < pMem2->u.i ) return -1;
4296         if( pMem1->u.i > pMem2->u.i ) return +1;
4297         return 0;
4298       }else{
4299         return -1;
4300       }
4301     }
4302     if( (f1&MEM_Real)!=0 ){
4303       if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4304         testcase( f2 & MEM_Int );
4305         testcase( f2 & MEM_IntReal );
4306         return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4307       }else{
4308         return -1;
4309       }
4310     }
4311     return +1;
4312   }
4313 
4314   /* If one value is a string and the other is a blob, the string is less.
4315   ** If both are strings, compare using the collating functions.
4316   */
4317   if( combined_flags&MEM_Str ){
4318     if( (f1 & MEM_Str)==0 ){
4319       return 1;
4320     }
4321     if( (f2 & MEM_Str)==0 ){
4322       return -1;
4323     }
4324 
4325     assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4326     assert( pMem1->enc==SQLITE_UTF8 ||
4327             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4328 
4329     /* The collation sequence must be defined at this point, even if
4330     ** the user deletes the collation sequence after the vdbe program is
4331     ** compiled (this was not always the case).
4332     */
4333     assert( !pColl || pColl->xCmp );
4334 
4335     if( pColl ){
4336       return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4337     }
4338     /* If a NULL pointer was passed as the collate function, fall through
4339     ** to the blob case and use memcmp().  */
4340   }
4341 
4342   /* Both values must be blobs.  Compare using memcmp().  */
4343   return sqlite3BlobCompare(pMem1, pMem2);
4344 }
4345 
4346 
4347 /*
4348 ** The first argument passed to this function is a serial-type that
4349 ** corresponds to an integer - all values between 1 and 9 inclusive
4350 ** except 7. The second points to a buffer containing an integer value
4351 ** serialized according to serial_type. This function deserializes
4352 ** and returns the value.
4353 */
4354 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4355   u32 y;
4356   assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4357   switch( serial_type ){
4358     case 0:
4359     case 1:
4360       testcase( aKey[0]&0x80 );
4361       return ONE_BYTE_INT(aKey);
4362     case 2:
4363       testcase( aKey[0]&0x80 );
4364       return TWO_BYTE_INT(aKey);
4365     case 3:
4366       testcase( aKey[0]&0x80 );
4367       return THREE_BYTE_INT(aKey);
4368     case 4: {
4369       testcase( aKey[0]&0x80 );
4370       y = FOUR_BYTE_UINT(aKey);
4371       return (i64)*(int*)&y;
4372     }
4373     case 5: {
4374       testcase( aKey[0]&0x80 );
4375       return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4376     }
4377     case 6: {
4378       u64 x = FOUR_BYTE_UINT(aKey);
4379       testcase( aKey[0]&0x80 );
4380       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4381       return (i64)*(i64*)&x;
4382     }
4383   }
4384 
4385   return (serial_type - 8);
4386 }
4387 
4388 /*
4389 ** This function compares the two table rows or index records
4390 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
4391 ** or positive integer if key1 is less than, equal to or
4392 ** greater than key2.  The {nKey1, pKey1} key must be a blob
4393 ** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2
4394 ** key must be a parsed key such as obtained from
4395 ** sqlite3VdbeParseRecord.
4396 **
4397 ** If argument bSkip is non-zero, it is assumed that the caller has already
4398 ** determined that the first fields of the keys are equal.
4399 **
4400 ** Key1 and Key2 do not have to contain the same number of fields. If all
4401 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4402 ** returned.
4403 **
4404 ** If database corruption is discovered, set pPKey2->errCode to
4405 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4406 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4407 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4408 */
4409 int sqlite3VdbeRecordCompareWithSkip(
4410   int nKey1, const void *pKey1,   /* Left key */
4411   UnpackedRecord *pPKey2,         /* Right key */
4412   int bSkip                       /* If true, skip the first field */
4413 ){
4414   u32 d1;                         /* Offset into aKey[] of next data element */
4415   int i;                          /* Index of next field to compare */
4416   u32 szHdr1;                     /* Size of record header in bytes */
4417   u32 idx1;                       /* Offset of first type in header */
4418   int rc = 0;                     /* Return value */
4419   Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
4420   KeyInfo *pKeyInfo;
4421   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4422   Mem mem1;
4423 
4424   /* If bSkip is true, then the caller has already determined that the first
4425   ** two elements in the keys are equal. Fix the various stack variables so
4426   ** that this routine begins comparing at the second field. */
4427   if( bSkip ){
4428     u32 s1;
4429     idx1 = 1 + getVarint32(&aKey1[1], s1);
4430     szHdr1 = aKey1[0];
4431     d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4432     i = 1;
4433     pRhs++;
4434   }else{
4435     idx1 = getVarint32(aKey1, szHdr1);
4436     d1 = szHdr1;
4437     i = 0;
4438   }
4439   if( d1>(unsigned)nKey1 ){
4440     pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4441     return 0;  /* Corruption */
4442   }
4443 
4444   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4445   assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4446        || CORRUPT_DB );
4447   assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4448   assert( pPKey2->pKeyInfo->nKeyField>0 );
4449   assert( idx1<=szHdr1 || CORRUPT_DB );
4450   do{
4451     u32 serial_type;
4452 
4453     /* RHS is an integer */
4454     if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4455       testcase( pRhs->flags & MEM_Int );
4456       testcase( pRhs->flags & MEM_IntReal );
4457       serial_type = aKey1[idx1];
4458       testcase( serial_type==12 );
4459       if( serial_type>=10 ){
4460         rc = +1;
4461       }else if( serial_type==0 ){
4462         rc = -1;
4463       }else if( serial_type==7 ){
4464         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4465         rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4466       }else{
4467         i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4468         i64 rhs = pRhs->u.i;
4469         if( lhs<rhs ){
4470           rc = -1;
4471         }else if( lhs>rhs ){
4472           rc = +1;
4473         }
4474       }
4475     }
4476 
4477     /* RHS is real */
4478     else if( pRhs->flags & MEM_Real ){
4479       serial_type = aKey1[idx1];
4480       if( serial_type>=10 ){
4481         /* Serial types 12 or greater are strings and blobs (greater than
4482         ** numbers). Types 10 and 11 are currently "reserved for future
4483         ** use", so it doesn't really matter what the results of comparing
4484         ** them to numberic values are.  */
4485         rc = +1;
4486       }else if( serial_type==0 ){
4487         rc = -1;
4488       }else{
4489         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4490         if( serial_type==7 ){
4491           if( mem1.u.r<pRhs->u.r ){
4492             rc = -1;
4493           }else if( mem1.u.r>pRhs->u.r ){
4494             rc = +1;
4495           }
4496         }else{
4497           rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4498         }
4499       }
4500     }
4501 
4502     /* RHS is a string */
4503     else if( pRhs->flags & MEM_Str ){
4504       getVarint32(&aKey1[idx1], serial_type);
4505       testcase( serial_type==12 );
4506       if( serial_type<12 ){
4507         rc = -1;
4508       }else if( !(serial_type & 0x01) ){
4509         rc = +1;
4510       }else{
4511         mem1.n = (serial_type - 12) / 2;
4512         testcase( (d1+mem1.n)==(unsigned)nKey1 );
4513         testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4514         if( (d1+mem1.n) > (unsigned)nKey1
4515          || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4516         ){
4517           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4518           return 0;                /* Corruption */
4519         }else if( pKeyInfo->aColl[i] ){
4520           mem1.enc = pKeyInfo->enc;
4521           mem1.db = pKeyInfo->db;
4522           mem1.flags = MEM_Str;
4523           mem1.z = (char*)&aKey1[d1];
4524           rc = vdbeCompareMemString(
4525               &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4526           );
4527         }else{
4528           int nCmp = MIN(mem1.n, pRhs->n);
4529           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4530           if( rc==0 ) rc = mem1.n - pRhs->n;
4531         }
4532       }
4533     }
4534 
4535     /* RHS is a blob */
4536     else if( pRhs->flags & MEM_Blob ){
4537       assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4538       getVarint32(&aKey1[idx1], serial_type);
4539       testcase( serial_type==12 );
4540       if( serial_type<12 || (serial_type & 0x01) ){
4541         rc = -1;
4542       }else{
4543         int nStr = (serial_type - 12) / 2;
4544         testcase( (d1+nStr)==(unsigned)nKey1 );
4545         testcase( (d1+nStr+1)==(unsigned)nKey1 );
4546         if( (d1+nStr) > (unsigned)nKey1 ){
4547           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4548           return 0;                /* Corruption */
4549         }else if( pRhs->flags & MEM_Zero ){
4550           if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4551             rc = 1;
4552           }else{
4553             rc = nStr - pRhs->u.nZero;
4554           }
4555         }else{
4556           int nCmp = MIN(nStr, pRhs->n);
4557           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4558           if( rc==0 ) rc = nStr - pRhs->n;
4559         }
4560       }
4561     }
4562 
4563     /* RHS is null */
4564     else{
4565       serial_type = aKey1[idx1];
4566       rc = (serial_type!=0);
4567     }
4568 
4569     if( rc!=0 ){
4570       int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4571       if( sortFlags ){
4572         if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4573          || ((sortFlags & KEYINFO_ORDER_DESC)
4574            !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4575         ){
4576           rc = -rc;
4577         }
4578       }
4579       assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4580       assert( mem1.szMalloc==0 );  /* See comment below */
4581       return rc;
4582     }
4583 
4584     i++;
4585     if( i==pPKey2->nField ) break;
4586     pRhs++;
4587     d1 += sqlite3VdbeSerialTypeLen(serial_type);
4588     idx1 += sqlite3VarintLen(serial_type);
4589   }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 );
4590 
4591   /* No memory allocation is ever used on mem1.  Prove this using
4592   ** the following assert().  If the assert() fails, it indicates a
4593   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
4594   assert( mem1.szMalloc==0 );
4595 
4596   /* rc==0 here means that one or both of the keys ran out of fields and
4597   ** all the fields up to that point were equal. Return the default_rc
4598   ** value.  */
4599   assert( CORRUPT_DB
4600        || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4601        || pPKey2->pKeyInfo->db->mallocFailed
4602   );
4603   pPKey2->eqSeen = 1;
4604   return pPKey2->default_rc;
4605 }
4606 int sqlite3VdbeRecordCompare(
4607   int nKey1, const void *pKey1,   /* Left key */
4608   UnpackedRecord *pPKey2          /* Right key */
4609 ){
4610   return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4611 }
4612 
4613 
4614 /*
4615 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4616 ** that (a) the first field of pPKey2 is an integer, and (b) the
4617 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4618 ** byte (i.e. is less than 128).
4619 **
4620 ** To avoid concerns about buffer overreads, this routine is only used
4621 ** on schemas where the maximum valid header size is 63 bytes or less.
4622 */
4623 static int vdbeRecordCompareInt(
4624   int nKey1, const void *pKey1, /* Left key */
4625   UnpackedRecord *pPKey2        /* Right key */
4626 ){
4627   const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4628   int serial_type = ((const u8*)pKey1)[1];
4629   int res;
4630   u32 y;
4631   u64 x;
4632   i64 v;
4633   i64 lhs;
4634 
4635   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4636   assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4637   switch( serial_type ){
4638     case 1: { /* 1-byte signed integer */
4639       lhs = ONE_BYTE_INT(aKey);
4640       testcase( lhs<0 );
4641       break;
4642     }
4643     case 2: { /* 2-byte signed integer */
4644       lhs = TWO_BYTE_INT(aKey);
4645       testcase( lhs<0 );
4646       break;
4647     }
4648     case 3: { /* 3-byte signed integer */
4649       lhs = THREE_BYTE_INT(aKey);
4650       testcase( lhs<0 );
4651       break;
4652     }
4653     case 4: { /* 4-byte signed integer */
4654       y = FOUR_BYTE_UINT(aKey);
4655       lhs = (i64)*(int*)&y;
4656       testcase( lhs<0 );
4657       break;
4658     }
4659     case 5: { /* 6-byte signed integer */
4660       lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4661       testcase( lhs<0 );
4662       break;
4663     }
4664     case 6: { /* 8-byte signed integer */
4665       x = FOUR_BYTE_UINT(aKey);
4666       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4667       lhs = *(i64*)&x;
4668       testcase( lhs<0 );
4669       break;
4670     }
4671     case 8:
4672       lhs = 0;
4673       break;
4674     case 9:
4675       lhs = 1;
4676       break;
4677 
4678     /* This case could be removed without changing the results of running
4679     ** this code. Including it causes gcc to generate a faster switch
4680     ** statement (since the range of switch targets now starts at zero and
4681     ** is contiguous) but does not cause any duplicate code to be generated
4682     ** (as gcc is clever enough to combine the two like cases). Other
4683     ** compilers might be similar.  */
4684     case 0: case 7:
4685       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4686 
4687     default:
4688       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4689   }
4690 
4691   v = pPKey2->aMem[0].u.i;
4692   if( v>lhs ){
4693     res = pPKey2->r1;
4694   }else if( v<lhs ){
4695     res = pPKey2->r2;
4696   }else if( pPKey2->nField>1 ){
4697     /* The first fields of the two keys are equal. Compare the trailing
4698     ** fields.  */
4699     res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4700   }else{
4701     /* The first fields of the two keys are equal and there are no trailing
4702     ** fields. Return pPKey2->default_rc in this case. */
4703     res = pPKey2->default_rc;
4704     pPKey2->eqSeen = 1;
4705   }
4706 
4707   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4708   return res;
4709 }
4710 
4711 /*
4712 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4713 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4714 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4715 ** at the start of (pKey1/nKey1) fits in a single byte.
4716 */
4717 static int vdbeRecordCompareString(
4718   int nKey1, const void *pKey1, /* Left key */
4719   UnpackedRecord *pPKey2        /* Right key */
4720 ){
4721   const u8 *aKey1 = (const u8*)pKey1;
4722   int serial_type;
4723   int res;
4724 
4725   assert( pPKey2->aMem[0].flags & MEM_Str );
4726   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4727   getVarint32(&aKey1[1], serial_type);
4728   if( serial_type<12 ){
4729     res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
4730   }else if( !(serial_type & 0x01) ){
4731     res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
4732   }else{
4733     int nCmp;
4734     int nStr;
4735     int szHdr = aKey1[0];
4736 
4737     nStr = (serial_type-12) / 2;
4738     if( (szHdr + nStr) > nKey1 ){
4739       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4740       return 0;    /* Corruption */
4741     }
4742     nCmp = MIN( pPKey2->aMem[0].n, nStr );
4743     res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4744 
4745     if( res>0 ){
4746       res = pPKey2->r2;
4747     }else if( res<0 ){
4748       res = pPKey2->r1;
4749     }else{
4750       res = nStr - pPKey2->aMem[0].n;
4751       if( res==0 ){
4752         if( pPKey2->nField>1 ){
4753           res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4754         }else{
4755           res = pPKey2->default_rc;
4756           pPKey2->eqSeen = 1;
4757         }
4758       }else if( res>0 ){
4759         res = pPKey2->r2;
4760       }else{
4761         res = pPKey2->r1;
4762       }
4763     }
4764   }
4765 
4766   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4767        || CORRUPT_DB
4768        || pPKey2->pKeyInfo->db->mallocFailed
4769   );
4770   return res;
4771 }
4772 
4773 /*
4774 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4775 ** suitable for comparing serialized records to the unpacked record passed
4776 ** as the only argument.
4777 */
4778 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4779   /* varintRecordCompareInt() and varintRecordCompareString() both assume
4780   ** that the size-of-header varint that occurs at the start of each record
4781   ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4782   ** also assumes that it is safe to overread a buffer by at least the
4783   ** maximum possible legal header size plus 8 bytes. Because there is
4784   ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4785   ** buffer passed to varintRecordCompareInt() this makes it convenient to
4786   ** limit the size of the header to 64 bytes in cases where the first field
4787   ** is an integer.
4788   **
4789   ** The easiest way to enforce this limit is to consider only records with
4790   ** 13 fields or less. If the first field is an integer, the maximum legal
4791   ** header size is (12*5 + 1 + 1) bytes.  */
4792   if( p->pKeyInfo->nAllField<=13 ){
4793     int flags = p->aMem[0].flags;
4794     if( p->pKeyInfo->aSortFlags[0] ){
4795       if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
4796         return sqlite3VdbeRecordCompare;
4797       }
4798       p->r1 = 1;
4799       p->r2 = -1;
4800     }else{
4801       p->r1 = -1;
4802       p->r2 = 1;
4803     }
4804     if( (flags & MEM_Int) ){
4805       return vdbeRecordCompareInt;
4806     }
4807     testcase( flags & MEM_Real );
4808     testcase( flags & MEM_Null );
4809     testcase( flags & MEM_Blob );
4810     if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
4811      && p->pKeyInfo->aColl[0]==0
4812     ){
4813       assert( flags & MEM_Str );
4814       return vdbeRecordCompareString;
4815     }
4816   }
4817 
4818   return sqlite3VdbeRecordCompare;
4819 }
4820 
4821 /*
4822 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4823 ** Read the rowid (the last field in the record) and store it in *rowid.
4824 ** Return SQLITE_OK if everything works, or an error code otherwise.
4825 **
4826 ** pCur might be pointing to text obtained from a corrupt database file.
4827 ** So the content cannot be trusted.  Do appropriate checks on the content.
4828 */
4829 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4830   i64 nCellKey = 0;
4831   int rc;
4832   u32 szHdr;        /* Size of the header */
4833   u32 typeRowid;    /* Serial type of the rowid */
4834   u32 lenRowid;     /* Size of the rowid */
4835   Mem m, v;
4836 
4837   /* Get the size of the index entry.  Only indices entries of less
4838   ** than 2GiB are support - anything large must be database corruption.
4839   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4840   ** this code can safely assume that nCellKey is 32-bits
4841   */
4842   assert( sqlite3BtreeCursorIsValid(pCur) );
4843   nCellKey = sqlite3BtreePayloadSize(pCur);
4844   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4845 
4846   /* Read in the complete content of the index entry */
4847   sqlite3VdbeMemInit(&m, db, 0);
4848   rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4849   if( rc ){
4850     return rc;
4851   }
4852 
4853   /* The index entry must begin with a header size */
4854   (void)getVarint32((u8*)m.z, szHdr);
4855   testcase( szHdr==3 );
4856   testcase( szHdr==m.n );
4857   testcase( szHdr>0x7fffffff );
4858   assert( m.n>=0 );
4859   if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
4860     goto idx_rowid_corruption;
4861   }
4862 
4863   /* The last field of the index should be an integer - the ROWID.
4864   ** Verify that the last entry really is an integer. */
4865   (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
4866   testcase( typeRowid==1 );
4867   testcase( typeRowid==2 );
4868   testcase( typeRowid==3 );
4869   testcase( typeRowid==4 );
4870   testcase( typeRowid==5 );
4871   testcase( typeRowid==6 );
4872   testcase( typeRowid==8 );
4873   testcase( typeRowid==9 );
4874   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4875     goto idx_rowid_corruption;
4876   }
4877   lenRowid = sqlite3SmallTypeSizes[typeRowid];
4878   testcase( (u32)m.n==szHdr+lenRowid );
4879   if( unlikely((u32)m.n<szHdr+lenRowid) ){
4880     goto idx_rowid_corruption;
4881   }
4882 
4883   /* Fetch the integer off the end of the index record */
4884   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4885   *rowid = v.u.i;
4886   sqlite3VdbeMemRelease(&m);
4887   return SQLITE_OK;
4888 
4889   /* Jump here if database corruption is detected after m has been
4890   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
4891 idx_rowid_corruption:
4892   testcase( m.szMalloc!=0 );
4893   sqlite3VdbeMemRelease(&m);
4894   return SQLITE_CORRUPT_BKPT;
4895 }
4896 
4897 /*
4898 ** Compare the key of the index entry that cursor pC is pointing to against
4899 ** the key string in pUnpacked.  Write into *pRes a number
4900 ** that is negative, zero, or positive if pC is less than, equal to,
4901 ** or greater than pUnpacked.  Return SQLITE_OK on success.
4902 **
4903 ** pUnpacked is either created without a rowid or is truncated so that it
4904 ** omits the rowid at the end.  The rowid at the end of the index entry
4905 ** is ignored as well.  Hence, this routine only compares the prefixes
4906 ** of the keys prior to the final rowid, not the entire key.
4907 */
4908 int sqlite3VdbeIdxKeyCompare(
4909   sqlite3 *db,                     /* Database connection */
4910   VdbeCursor *pC,                  /* The cursor to compare against */
4911   UnpackedRecord *pUnpacked,       /* Unpacked version of key */
4912   int *res                         /* Write the comparison result here */
4913 ){
4914   i64 nCellKey = 0;
4915   int rc;
4916   BtCursor *pCur;
4917   Mem m;
4918 
4919   assert( pC->eCurType==CURTYPE_BTREE );
4920   pCur = pC->uc.pCursor;
4921   assert( sqlite3BtreeCursorIsValid(pCur) );
4922   nCellKey = sqlite3BtreePayloadSize(pCur);
4923   /* nCellKey will always be between 0 and 0xffffffff because of the way
4924   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4925   if( nCellKey<=0 || nCellKey>0x7fffffff ){
4926     *res = 0;
4927     return SQLITE_CORRUPT_BKPT;
4928   }
4929   sqlite3VdbeMemInit(&m, db, 0);
4930   rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4931   if( rc ){
4932     return rc;
4933   }
4934   *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
4935   sqlite3VdbeMemRelease(&m);
4936   return SQLITE_OK;
4937 }
4938 
4939 /*
4940 ** This routine sets the value to be returned by subsequent calls to
4941 ** sqlite3_changes() on the database handle 'db'.
4942 */
4943 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
4944   assert( sqlite3_mutex_held(db->mutex) );
4945   db->nChange = nChange;
4946   db->nTotalChange += nChange;
4947 }
4948 
4949 /*
4950 ** Set a flag in the vdbe to update the change counter when it is finalised
4951 ** or reset.
4952 */
4953 void sqlite3VdbeCountChanges(Vdbe *v){
4954   v->changeCntOn = 1;
4955 }
4956 
4957 /*
4958 ** Mark every prepared statement associated with a database connection
4959 ** as expired.
4960 **
4961 ** An expired statement means that recompilation of the statement is
4962 ** recommend.  Statements expire when things happen that make their
4963 ** programs obsolete.  Removing user-defined functions or collating
4964 ** sequences, or changing an authorization function are the types of
4965 ** things that make prepared statements obsolete.
4966 **
4967 ** If iCode is 1, then expiration is advisory.  The statement should
4968 ** be reprepared before being restarted, but if it is already running
4969 ** it is allowed to run to completion.
4970 **
4971 ** Internally, this function just sets the Vdbe.expired flag on all
4972 ** prepared statements.  The flag is set to 1 for an immediate expiration
4973 ** and set to 2 for an advisory expiration.
4974 */
4975 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
4976   Vdbe *p;
4977   for(p = db->pVdbe; p; p=p->pNext){
4978     p->expired = iCode+1;
4979   }
4980 }
4981 
4982 /*
4983 ** Return the database associated with the Vdbe.
4984 */
4985 sqlite3 *sqlite3VdbeDb(Vdbe *v){
4986   return v->db;
4987 }
4988 
4989 /*
4990 ** Return the SQLITE_PREPARE flags for a Vdbe.
4991 */
4992 u8 sqlite3VdbePrepareFlags(Vdbe *v){
4993   return v->prepFlags;
4994 }
4995 
4996 /*
4997 ** Return a pointer to an sqlite3_value structure containing the value bound
4998 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4999 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5000 ** constants) to the value before returning it.
5001 **
5002 ** The returned value must be freed by the caller using sqlite3ValueFree().
5003 */
5004 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5005   assert( iVar>0 );
5006   if( v ){
5007     Mem *pMem = &v->aVar[iVar-1];
5008     assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5009     if( 0==(pMem->flags & MEM_Null) ){
5010       sqlite3_value *pRet = sqlite3ValueNew(v->db);
5011       if( pRet ){
5012         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5013         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5014       }
5015       return pRet;
5016     }
5017   }
5018   return 0;
5019 }
5020 
5021 /*
5022 ** Configure SQL variable iVar so that binding a new value to it signals
5023 ** to sqlite3_reoptimize() that re-preparing the statement may result
5024 ** in a better query plan.
5025 */
5026 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5027   assert( iVar>0 );
5028   assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5029   if( iVar>=32 ){
5030     v->expmask |= 0x80000000;
5031   }else{
5032     v->expmask |= ((u32)1 << (iVar-1));
5033   }
5034 }
5035 
5036 /*
5037 ** Cause a function to throw an error if it was call from OP_PureFunc
5038 ** rather than OP_Function.
5039 **
5040 ** OP_PureFunc means that the function must be deterministic, and should
5041 ** throw an error if it is given inputs that would make it non-deterministic.
5042 ** This routine is invoked by date/time functions that use non-deterministic
5043 ** features such as 'now'.
5044 */
5045 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5046   const VdbeOp *pOp;
5047 #ifdef SQLITE_ENABLE_STAT4
5048   if( pCtx->pVdbe==0 ) return 1;
5049 #endif
5050   pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5051   if( pOp->opcode==OP_PureFunc ){
5052     const char *zContext;
5053     char *zMsg;
5054     if( pOp->p5 & NC_IsCheck ){
5055       zContext = "a CHECK constraint";
5056     }else if( pOp->p5 & NC_GenCol ){
5057       zContext = "a generated column";
5058     }else{
5059       zContext = "an index";
5060     }
5061     zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5062                            pCtx->pFunc->zName, zContext);
5063     sqlite3_result_error(pCtx, zMsg, -1);
5064     sqlite3_free(zMsg);
5065     return 0;
5066   }
5067   return 1;
5068 }
5069 
5070 #ifndef SQLITE_OMIT_VIRTUALTABLE
5071 /*
5072 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5073 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5074 ** in memory obtained from sqlite3DbMalloc).
5075 */
5076 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5077   if( pVtab->zErrMsg ){
5078     sqlite3 *db = p->db;
5079     sqlite3DbFree(db, p->zErrMsg);
5080     p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5081     sqlite3_free(pVtab->zErrMsg);
5082     pVtab->zErrMsg = 0;
5083   }
5084 }
5085 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5086 
5087 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5088 
5089 /*
5090 ** If the second argument is not NULL, release any allocations associated
5091 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5092 ** structure itself, using sqlite3DbFree().
5093 **
5094 ** This function is used to free UnpackedRecord structures allocated by
5095 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5096 */
5097 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5098   if( p ){
5099     int i;
5100     for(i=0; i<nField; i++){
5101       Mem *pMem = &p->aMem[i];
5102       if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
5103     }
5104     sqlite3DbFreeNN(db, p);
5105   }
5106 }
5107 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5108 
5109 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5110 /*
5111 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5112 ** then cursor passed as the second argument should point to the row about
5113 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5114 ** the required value will be read from the row the cursor points to.
5115 */
5116 void sqlite3VdbePreUpdateHook(
5117   Vdbe *v,                        /* Vdbe pre-update hook is invoked by */
5118   VdbeCursor *pCsr,               /* Cursor to grab old.* values from */
5119   int op,                         /* SQLITE_INSERT, UPDATE or DELETE */
5120   const char *zDb,                /* Database name */
5121   Table *pTab,                    /* Modified table */
5122   i64 iKey1,                      /* Initial key value */
5123   int iReg                        /* Register for new.* record */
5124 ){
5125   sqlite3 *db = v->db;
5126   i64 iKey2;
5127   PreUpdate preupdate;
5128   const char *zTbl = pTab->zName;
5129   static const u8 fakeSortOrder = 0;
5130 
5131   assert( db->pPreUpdate==0 );
5132   memset(&preupdate, 0, sizeof(PreUpdate));
5133   if( HasRowid(pTab)==0 ){
5134     iKey1 = iKey2 = 0;
5135     preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5136   }else{
5137     if( op==SQLITE_UPDATE ){
5138       iKey2 = v->aMem[iReg].u.i;
5139     }else{
5140       iKey2 = iKey1;
5141     }
5142   }
5143 
5144   assert( pCsr->nField==pTab->nCol
5145        || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
5146   );
5147 
5148   preupdate.v = v;
5149   preupdate.pCsr = pCsr;
5150   preupdate.op = op;
5151   preupdate.iNewReg = iReg;
5152   preupdate.keyinfo.db = db;
5153   preupdate.keyinfo.enc = ENC(db);
5154   preupdate.keyinfo.nKeyField = pTab->nCol;
5155   preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5156   preupdate.iKey1 = iKey1;
5157   preupdate.iKey2 = iKey2;
5158   preupdate.pTab = pTab;
5159 
5160   db->pPreUpdate = &preupdate;
5161   db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5162   db->pPreUpdate = 0;
5163   sqlite3DbFree(db, preupdate.aRecord);
5164   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5165   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5166   if( preupdate.aNew ){
5167     int i;
5168     for(i=0; i<pCsr->nField; i++){
5169       sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5170     }
5171     sqlite3DbFreeNN(db, preupdate.aNew);
5172   }
5173 }
5174 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5175