1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* Forward references */ 19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef); 20 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 21 22 /* 23 ** Create a new virtual database engine. 24 */ 25 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 26 sqlite3 *db = pParse->db; 27 Vdbe *p; 28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 29 if( p==0 ) return 0; 30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 31 p->db = db; 32 if( db->pVdbe ){ 33 db->pVdbe->pPrev = p; 34 } 35 p->pNext = db->pVdbe; 36 p->pPrev = 0; 37 db->pVdbe = p; 38 p->magic = VDBE_MAGIC_INIT; 39 p->pParse = pParse; 40 pParse->pVdbe = p; 41 assert( pParse->aLabel==0 ); 42 assert( pParse->nLabel==0 ); 43 assert( p->nOpAlloc==0 ); 44 assert( pParse->szOpAlloc==0 ); 45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1); 46 return p; 47 } 48 49 /* 50 ** Return the Parse object that owns a Vdbe object. 51 */ 52 Parse *sqlite3VdbeParser(Vdbe *p){ 53 return p->pParse; 54 } 55 56 /* 57 ** Change the error string stored in Vdbe.zErrMsg 58 */ 59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 60 va_list ap; 61 sqlite3DbFree(p->db, p->zErrMsg); 62 va_start(ap, zFormat); 63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 64 va_end(ap); 65 } 66 67 /* 68 ** Remember the SQL string for a prepared statement. 69 */ 70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 71 if( p==0 ) return; 72 p->prepFlags = prepFlags; 73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 74 p->expmask = 0; 75 } 76 assert( p->zSql==0 ); 77 p->zSql = sqlite3DbStrNDup(p->db, z, n); 78 } 79 80 #ifdef SQLITE_ENABLE_NORMALIZE 81 /* 82 ** Add a new element to the Vdbe->pDblStr list. 83 */ 84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ 85 if( p ){ 86 int n = sqlite3Strlen30(z); 87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db, 88 sizeof(*pStr)+n+1-sizeof(pStr->z)); 89 if( pStr ){ 90 pStr->pNextStr = p->pDblStr; 91 p->pDblStr = pStr; 92 memcpy(pStr->z, z, n+1); 93 } 94 } 95 } 96 #endif 97 98 #ifdef SQLITE_ENABLE_NORMALIZE 99 /* 100 ** zId of length nId is a double-quoted identifier. Check to see if 101 ** that identifier is really used as a string literal. 102 */ 103 int sqlite3VdbeUsesDoubleQuotedString( 104 Vdbe *pVdbe, /* The prepared statement */ 105 const char *zId /* The double-quoted identifier, already dequoted */ 106 ){ 107 DblquoteStr *pStr; 108 assert( zId!=0 ); 109 if( pVdbe->pDblStr==0 ) return 0; 110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ 111 if( strcmp(zId, pStr->z)==0 ) return 1; 112 } 113 return 0; 114 } 115 #endif 116 117 /* 118 ** Swap all content between two VDBE structures. 119 */ 120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 121 Vdbe tmp, *pTmp; 122 char *zTmp; 123 assert( pA->db==pB->db ); 124 tmp = *pA; 125 *pA = *pB; 126 *pB = tmp; 127 pTmp = pA->pNext; 128 pA->pNext = pB->pNext; 129 pB->pNext = pTmp; 130 pTmp = pA->pPrev; 131 pA->pPrev = pB->pPrev; 132 pB->pPrev = pTmp; 133 zTmp = pA->zSql; 134 pA->zSql = pB->zSql; 135 pB->zSql = zTmp; 136 #ifdef SQLITE_ENABLE_NORMALIZE 137 zTmp = pA->zNormSql; 138 pA->zNormSql = pB->zNormSql; 139 pB->zNormSql = zTmp; 140 #endif 141 pB->expmask = pA->expmask; 142 pB->prepFlags = pA->prepFlags; 143 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 144 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 145 } 146 147 /* 148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 149 ** than its current size. nOp is guaranteed to be less than or equal 150 ** to 1024/sizeof(Op). 151 ** 152 ** If an out-of-memory error occurs while resizing the array, return 153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain 154 ** unchanged (this is so that any opcodes already allocated can be 155 ** correctly deallocated along with the rest of the Vdbe). 156 */ 157 static int growOpArray(Vdbe *v, int nOp){ 158 VdbeOp *pNew; 159 Parse *p = v->pParse; 160 161 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 162 ** more frequent reallocs and hence provide more opportunities for 163 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 164 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 165 ** by the minimum* amount required until the size reaches 512. Normal 166 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 167 ** size of the op array or add 1KB of space, whichever is smaller. */ 168 #ifdef SQLITE_TEST_REALLOC_STRESS 169 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc 170 : (sqlite3_int64)v->nOpAlloc+nOp); 171 #else 172 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc 173 : (sqlite3_int64)(1024/sizeof(Op))); 174 UNUSED_PARAMETER(nOp); 175 #endif 176 177 /* Ensure that the size of a VDBE does not grow too large */ 178 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 179 sqlite3OomFault(p->db); 180 return SQLITE_NOMEM; 181 } 182 183 assert( nOp<=(1024/sizeof(Op)) ); 184 assert( nNew>=(v->nOpAlloc+nOp) ); 185 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 186 if( pNew ){ 187 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 188 v->nOpAlloc = p->szOpAlloc/sizeof(Op); 189 v->aOp = pNew; 190 } 191 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 192 } 193 194 #ifdef SQLITE_DEBUG 195 /* This routine is just a convenient place to set a breakpoint that will 196 ** fire after each opcode is inserted and displayed using 197 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and 198 ** pOp are available to make the breakpoint conditional. 199 ** 200 ** Other useful labels for breakpoints include: 201 ** test_trace_breakpoint(pc,pOp) 202 ** sqlite3CorruptError(lineno) 203 ** sqlite3MisuseError(lineno) 204 ** sqlite3CantopenError(lineno) 205 */ 206 static void test_addop_breakpoint(int pc, Op *pOp){ 207 static int n = 0; 208 n++; 209 } 210 #endif 211 212 /* 213 ** Add a new instruction to the list of instructions current in the 214 ** VDBE. Return the address of the new instruction. 215 ** 216 ** Parameters: 217 ** 218 ** p Pointer to the VDBE 219 ** 220 ** op The opcode for this instruction 221 ** 222 ** p1, p2, p3 Operands 223 ** 224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 225 ** the sqlite3VdbeChangeP4() function to change the value of the P4 226 ** operand. 227 */ 228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 229 assert( p->nOpAlloc<=p->nOp ); 230 if( growOpArray(p, 1) ) return 1; 231 assert( p->nOpAlloc>p->nOp ); 232 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 233 } 234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 235 int i; 236 VdbeOp *pOp; 237 238 i = p->nOp; 239 assert( p->magic==VDBE_MAGIC_INIT ); 240 assert( op>=0 && op<0xff ); 241 if( p->nOpAlloc<=i ){ 242 return growOp3(p, op, p1, p2, p3); 243 } 244 p->nOp++; 245 pOp = &p->aOp[i]; 246 pOp->opcode = (u8)op; 247 pOp->p5 = 0; 248 pOp->p1 = p1; 249 pOp->p2 = p2; 250 pOp->p3 = p3; 251 pOp->p4.p = 0; 252 pOp->p4type = P4_NOTUSED; 253 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 254 pOp->zComment = 0; 255 #endif 256 #ifdef SQLITE_DEBUG 257 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 258 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 259 test_addop_breakpoint(i, &p->aOp[i]); 260 } 261 #endif 262 #ifdef VDBE_PROFILE 263 pOp->cycles = 0; 264 pOp->cnt = 0; 265 #endif 266 #ifdef SQLITE_VDBE_COVERAGE 267 pOp->iSrcLine = 0; 268 #endif 269 return i; 270 } 271 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 272 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 273 } 274 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 275 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 276 } 277 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 278 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 279 } 280 281 /* Generate code for an unconditional jump to instruction iDest 282 */ 283 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 284 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 285 } 286 287 /* Generate code to cause the string zStr to be loaded into 288 ** register iDest 289 */ 290 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 291 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 292 } 293 294 /* 295 ** Generate code that initializes multiple registers to string or integer 296 ** constants. The registers begin with iDest and increase consecutively. 297 ** One register is initialized for each characgter in zTypes[]. For each 298 ** "s" character in zTypes[], the register is a string if the argument is 299 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 300 ** in zTypes[], the register is initialized to an integer. 301 ** 302 ** If the input string does not end with "X" then an OP_ResultRow instruction 303 ** is generated for the values inserted. 304 */ 305 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 306 va_list ap; 307 int i; 308 char c; 309 va_start(ap, zTypes); 310 for(i=0; (c = zTypes[i])!=0; i++){ 311 if( c=='s' ){ 312 const char *z = va_arg(ap, const char*); 313 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 314 }else if( c=='i' ){ 315 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 316 }else{ 317 goto skip_op_resultrow; 318 } 319 } 320 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 321 skip_op_resultrow: 322 va_end(ap); 323 } 324 325 /* 326 ** Add an opcode that includes the p4 value as a pointer. 327 */ 328 int sqlite3VdbeAddOp4( 329 Vdbe *p, /* Add the opcode to this VM */ 330 int op, /* The new opcode */ 331 int p1, /* The P1 operand */ 332 int p2, /* The P2 operand */ 333 int p3, /* The P3 operand */ 334 const char *zP4, /* The P4 operand */ 335 int p4type /* P4 operand type */ 336 ){ 337 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 338 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 339 return addr; 340 } 341 342 /* 343 ** Add an OP_Function or OP_PureFunc opcode. 344 ** 345 ** The eCallCtx argument is information (typically taken from Expr.op2) 346 ** that describes the calling context of the function. 0 means a general 347 ** function call. NC_IsCheck means called by a check constraint, 348 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx 349 ** means in the WHERE clause of a partial index. NC_GenCol means called 350 ** while computing a generated column value. 0 is the usual case. 351 */ 352 int sqlite3VdbeAddFunctionCall( 353 Parse *pParse, /* Parsing context */ 354 int p1, /* Constant argument mask */ 355 int p2, /* First argument register */ 356 int p3, /* Register into which results are written */ 357 int nArg, /* Number of argument */ 358 const FuncDef *pFunc, /* The function to be invoked */ 359 int eCallCtx /* Calling context */ 360 ){ 361 Vdbe *v = pParse->pVdbe; 362 int nByte; 363 int addr; 364 sqlite3_context *pCtx; 365 assert( v ); 366 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*); 367 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte); 368 if( pCtx==0 ){ 369 assert( pParse->db->mallocFailed ); 370 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc); 371 return 0; 372 } 373 pCtx->pOut = 0; 374 pCtx->pFunc = (FuncDef*)pFunc; 375 pCtx->pVdbe = 0; 376 pCtx->isError = 0; 377 pCtx->argc = nArg; 378 pCtx->iOp = sqlite3VdbeCurrentAddr(v); 379 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function, 380 p1, p2, p3, (char*)pCtx, P4_FUNCCTX); 381 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef); 382 return addr; 383 } 384 385 /* 386 ** Add an opcode that includes the p4 value with a P4_INT64 or 387 ** P4_REAL type. 388 */ 389 int sqlite3VdbeAddOp4Dup8( 390 Vdbe *p, /* Add the opcode to this VM */ 391 int op, /* The new opcode */ 392 int p1, /* The P1 operand */ 393 int p2, /* The P2 operand */ 394 int p3, /* The P3 operand */ 395 const u8 *zP4, /* The P4 operand */ 396 int p4type /* P4 operand type */ 397 ){ 398 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 399 if( p4copy ) memcpy(p4copy, zP4, 8); 400 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 401 } 402 403 #ifndef SQLITE_OMIT_EXPLAIN 404 /* 405 ** Return the address of the current EXPLAIN QUERY PLAN baseline. 406 ** 0 means "none". 407 */ 408 int sqlite3VdbeExplainParent(Parse *pParse){ 409 VdbeOp *pOp; 410 if( pParse->addrExplain==0 ) return 0; 411 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); 412 return pOp->p2; 413 } 414 415 /* 416 ** Set a debugger breakpoint on the following routine in order to 417 ** monitor the EXPLAIN QUERY PLAN code generation. 418 */ 419 #if defined(SQLITE_DEBUG) 420 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ 421 (void)z1; 422 (void)z2; 423 } 424 #endif 425 426 /* 427 ** Add a new OP_ opcode. 428 ** 429 ** If the bPush flag is true, then make this opcode the parent for 430 ** subsequent Explains until sqlite3VdbeExplainPop() is called. 431 */ 432 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ 433 #ifndef SQLITE_DEBUG 434 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined. 435 ** But omit them (for performance) during production builds */ 436 if( pParse->explain==2 ) 437 #endif 438 { 439 char *zMsg; 440 Vdbe *v; 441 va_list ap; 442 int iThis; 443 va_start(ap, zFmt); 444 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); 445 va_end(ap); 446 v = pParse->pVdbe; 447 iThis = v->nOp; 448 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, 449 zMsg, P4_DYNAMIC); 450 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z); 451 if( bPush){ 452 pParse->addrExplain = iThis; 453 } 454 } 455 } 456 457 /* 458 ** Pop the EXPLAIN QUERY PLAN stack one level. 459 */ 460 void sqlite3VdbeExplainPop(Parse *pParse){ 461 sqlite3ExplainBreakpoint("POP", 0); 462 pParse->addrExplain = sqlite3VdbeExplainParent(pParse); 463 } 464 #endif /* SQLITE_OMIT_EXPLAIN */ 465 466 /* 467 ** Add an OP_ParseSchema opcode. This routine is broken out from 468 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 469 ** as having been used. 470 ** 471 ** The zWhere string must have been obtained from sqlite3_malloc(). 472 ** This routine will take ownership of the allocated memory. 473 */ 474 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 475 int j; 476 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 477 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 478 } 479 480 /* 481 ** Add an opcode that includes the p4 value as an integer. 482 */ 483 int sqlite3VdbeAddOp4Int( 484 Vdbe *p, /* Add the opcode to this VM */ 485 int op, /* The new opcode */ 486 int p1, /* The P1 operand */ 487 int p2, /* The P2 operand */ 488 int p3, /* The P3 operand */ 489 int p4 /* The P4 operand as an integer */ 490 ){ 491 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 492 if( p->db->mallocFailed==0 ){ 493 VdbeOp *pOp = &p->aOp[addr]; 494 pOp->p4type = P4_INT32; 495 pOp->p4.i = p4; 496 } 497 return addr; 498 } 499 500 /* Insert the end of a co-routine 501 */ 502 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 503 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 504 505 /* Clear the temporary register cache, thereby ensuring that each 506 ** co-routine has its own independent set of registers, because co-routines 507 ** might expect their registers to be preserved across an OP_Yield, and 508 ** that could cause problems if two or more co-routines are using the same 509 ** temporary register. 510 */ 511 v->pParse->nTempReg = 0; 512 v->pParse->nRangeReg = 0; 513 } 514 515 /* 516 ** Create a new symbolic label for an instruction that has yet to be 517 ** coded. The symbolic label is really just a negative number. The 518 ** label can be used as the P2 value of an operation. Later, when 519 ** the label is resolved to a specific address, the VDBE will scan 520 ** through its operation list and change all values of P2 which match 521 ** the label into the resolved address. 522 ** 523 ** The VDBE knows that a P2 value is a label because labels are 524 ** always negative and P2 values are suppose to be non-negative. 525 ** Hence, a negative P2 value is a label that has yet to be resolved. 526 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP 527 ** property. 528 ** 529 ** Variable usage notes: 530 ** 531 ** Parse.aLabel[x] Stores the address that the x-th label resolves 532 ** into. For testing (SQLITE_DEBUG), unresolved 533 ** labels stores -1, but that is not required. 534 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[] 535 ** Parse.nLabel The *negative* of the number of labels that have 536 ** been issued. The negative is stored because 537 ** that gives a performance improvement over storing 538 ** the equivalent positive value. 539 */ 540 int sqlite3VdbeMakeLabel(Parse *pParse){ 541 return --pParse->nLabel; 542 } 543 544 /* 545 ** Resolve label "x" to be the address of the next instruction to 546 ** be inserted. The parameter "x" must have been obtained from 547 ** a prior call to sqlite3VdbeMakeLabel(). 548 */ 549 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){ 550 int nNewSize = 10 - p->nLabel; 551 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 552 nNewSize*sizeof(p->aLabel[0])); 553 if( p->aLabel==0 ){ 554 p->nLabelAlloc = 0; 555 }else{ 556 #ifdef SQLITE_DEBUG 557 int i; 558 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1; 559 #endif 560 p->nLabelAlloc = nNewSize; 561 p->aLabel[j] = v->nOp; 562 } 563 } 564 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 565 Parse *p = v->pParse; 566 int j = ADDR(x); 567 assert( v->magic==VDBE_MAGIC_INIT ); 568 assert( j<-p->nLabel ); 569 assert( j>=0 ); 570 #ifdef SQLITE_DEBUG 571 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 572 printf("RESOLVE LABEL %d to %d\n", x, v->nOp); 573 } 574 #endif 575 if( p->nLabelAlloc + p->nLabel < 0 ){ 576 resizeResolveLabel(p,v,j); 577 }else{ 578 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ 579 p->aLabel[j] = v->nOp; 580 } 581 } 582 583 /* 584 ** Mark the VDBE as one that can only be run one time. 585 */ 586 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 587 p->runOnlyOnce = 1; 588 } 589 590 /* 591 ** Mark the VDBE as one that can only be run multiple times. 592 */ 593 void sqlite3VdbeReusable(Vdbe *p){ 594 p->runOnlyOnce = 0; 595 } 596 597 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 598 599 /* 600 ** The following type and function are used to iterate through all opcodes 601 ** in a Vdbe main program and each of the sub-programs (triggers) it may 602 ** invoke directly or indirectly. It should be used as follows: 603 ** 604 ** Op *pOp; 605 ** VdbeOpIter sIter; 606 ** 607 ** memset(&sIter, 0, sizeof(sIter)); 608 ** sIter.v = v; // v is of type Vdbe* 609 ** while( (pOp = opIterNext(&sIter)) ){ 610 ** // Do something with pOp 611 ** } 612 ** sqlite3DbFree(v->db, sIter.apSub); 613 ** 614 */ 615 typedef struct VdbeOpIter VdbeOpIter; 616 struct VdbeOpIter { 617 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 618 SubProgram **apSub; /* Array of subprograms */ 619 int nSub; /* Number of entries in apSub */ 620 int iAddr; /* Address of next instruction to return */ 621 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 622 }; 623 static Op *opIterNext(VdbeOpIter *p){ 624 Vdbe *v = p->v; 625 Op *pRet = 0; 626 Op *aOp; 627 int nOp; 628 629 if( p->iSub<=p->nSub ){ 630 631 if( p->iSub==0 ){ 632 aOp = v->aOp; 633 nOp = v->nOp; 634 }else{ 635 aOp = p->apSub[p->iSub-1]->aOp; 636 nOp = p->apSub[p->iSub-1]->nOp; 637 } 638 assert( p->iAddr<nOp ); 639 640 pRet = &aOp[p->iAddr]; 641 p->iAddr++; 642 if( p->iAddr==nOp ){ 643 p->iSub++; 644 p->iAddr = 0; 645 } 646 647 if( pRet->p4type==P4_SUBPROGRAM ){ 648 int nByte = (p->nSub+1)*sizeof(SubProgram*); 649 int j; 650 for(j=0; j<p->nSub; j++){ 651 if( p->apSub[j]==pRet->p4.pProgram ) break; 652 } 653 if( j==p->nSub ){ 654 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 655 if( !p->apSub ){ 656 pRet = 0; 657 }else{ 658 p->apSub[p->nSub++] = pRet->p4.pProgram; 659 } 660 } 661 } 662 } 663 664 return pRet; 665 } 666 667 /* 668 ** Check if the program stored in the VM associated with pParse may 669 ** throw an ABORT exception (causing the statement, but not entire transaction 670 ** to be rolled back). This condition is true if the main program or any 671 ** sub-programs contains any of the following: 672 ** 673 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 674 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 675 ** * OP_Destroy 676 ** * OP_VUpdate 677 ** * OP_VCreate 678 ** * OP_VRename 679 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 680 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 681 ** (for CREATE TABLE AS SELECT ...) 682 ** 683 ** Then check that the value of Parse.mayAbort is true if an 684 ** ABORT may be thrown, or false otherwise. Return true if it does 685 ** match, or false otherwise. This function is intended to be used as 686 ** part of an assert statement in the compiler. Similar to: 687 ** 688 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 689 */ 690 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 691 int hasAbort = 0; 692 int hasFkCounter = 0; 693 int hasCreateTable = 0; 694 int hasCreateIndex = 0; 695 int hasInitCoroutine = 0; 696 Op *pOp; 697 VdbeOpIter sIter; 698 memset(&sIter, 0, sizeof(sIter)); 699 sIter.v = v; 700 701 while( (pOp = opIterNext(&sIter))!=0 ){ 702 int opcode = pOp->opcode; 703 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 704 || opcode==OP_VDestroy 705 || opcode==OP_VCreate 706 || (opcode==OP_ParseSchema && pOp->p4.z==0) 707 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 708 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort)) 709 ){ 710 hasAbort = 1; 711 break; 712 } 713 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; 714 if( mayAbort ){ 715 /* hasCreateIndex may also be set for some DELETE statements that use 716 ** OP_Clear. So this routine may end up returning true in the case 717 ** where a "DELETE FROM tbl" has a statement-journal but does not 718 ** require one. This is not so bad - it is an inefficiency, not a bug. */ 719 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1; 720 if( opcode==OP_Clear ) hasCreateIndex = 1; 721 } 722 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 723 #ifndef SQLITE_OMIT_FOREIGN_KEY 724 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 725 hasFkCounter = 1; 726 } 727 #endif 728 } 729 sqlite3DbFree(v->db, sIter.apSub); 730 731 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 732 ** If malloc failed, then the while() loop above may not have iterated 733 ** through all opcodes and hasAbort may be set incorrectly. Return 734 ** true for this case to prevent the assert() in the callers frame 735 ** from failing. */ 736 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 737 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex 738 ); 739 } 740 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 741 742 #ifdef SQLITE_DEBUG 743 /* 744 ** Increment the nWrite counter in the VDBE if the cursor is not an 745 ** ephemeral cursor, or if the cursor argument is NULL. 746 */ 747 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ 748 if( pC==0 749 || (pC->eCurType!=CURTYPE_SORTER 750 && pC->eCurType!=CURTYPE_PSEUDO 751 && !pC->isEphemeral) 752 ){ 753 p->nWrite++; 754 } 755 } 756 #endif 757 758 #ifdef SQLITE_DEBUG 759 /* 760 ** Assert if an Abort at this point in time might result in a corrupt 761 ** database. 762 */ 763 void sqlite3VdbeAssertAbortable(Vdbe *p){ 764 assert( p->nWrite==0 || p->usesStmtJournal ); 765 } 766 #endif 767 768 /* 769 ** This routine is called after all opcodes have been inserted. It loops 770 ** through all the opcodes and fixes up some details. 771 ** 772 ** (1) For each jump instruction with a negative P2 value (a label) 773 ** resolve the P2 value to an actual address. 774 ** 775 ** (2) Compute the maximum number of arguments used by any SQL function 776 ** and store that value in *pMaxFuncArgs. 777 ** 778 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 779 ** indicate what the prepared statement actually does. 780 ** 781 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 782 ** 783 ** (5) Reclaim the memory allocated for storing labels. 784 ** 785 ** This routine will only function correctly if the mkopcodeh.tcl generator 786 ** script numbers the opcodes correctly. Changes to this routine must be 787 ** coordinated with changes to mkopcodeh.tcl. 788 */ 789 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 790 int nMaxArgs = *pMaxFuncArgs; 791 Op *pOp; 792 Parse *pParse = p->pParse; 793 int *aLabel = pParse->aLabel; 794 p->readOnly = 1; 795 p->bIsReader = 0; 796 pOp = &p->aOp[p->nOp-1]; 797 while(1){ 798 799 /* Only JUMP opcodes and the short list of special opcodes in the switch 800 ** below need to be considered. The mkopcodeh.tcl generator script groups 801 ** all these opcodes together near the front of the opcode list. Skip 802 ** any opcode that does not need processing by virtual of the fact that 803 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 804 */ 805 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 806 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 807 ** cases from this switch! */ 808 switch( pOp->opcode ){ 809 case OP_Transaction: { 810 if( pOp->p2!=0 ) p->readOnly = 0; 811 /* fall thru */ 812 } 813 case OP_AutoCommit: 814 case OP_Savepoint: { 815 p->bIsReader = 1; 816 break; 817 } 818 #ifndef SQLITE_OMIT_WAL 819 case OP_Checkpoint: 820 #endif 821 case OP_Vacuum: 822 case OP_JournalMode: { 823 p->readOnly = 0; 824 p->bIsReader = 1; 825 break; 826 } 827 case OP_Next: 828 case OP_SorterNext: { 829 pOp->p4.xAdvance = sqlite3BtreeNext; 830 pOp->p4type = P4_ADVANCE; 831 /* The code generator never codes any of these opcodes as a jump 832 ** to a label. They are always coded as a jump backwards to a 833 ** known address */ 834 assert( pOp->p2>=0 ); 835 break; 836 } 837 case OP_Prev: { 838 pOp->p4.xAdvance = sqlite3BtreePrevious; 839 pOp->p4type = P4_ADVANCE; 840 /* The code generator never codes any of these opcodes as a jump 841 ** to a label. They are always coded as a jump backwards to a 842 ** known address */ 843 assert( pOp->p2>=0 ); 844 break; 845 } 846 #ifndef SQLITE_OMIT_VIRTUALTABLE 847 case OP_VUpdate: { 848 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 849 break; 850 } 851 case OP_VFilter: { 852 int n; 853 assert( (pOp - p->aOp) >= 3 ); 854 assert( pOp[-1].opcode==OP_Integer ); 855 n = pOp[-1].p1; 856 if( n>nMaxArgs ) nMaxArgs = n; 857 /* Fall through into the default case */ 858 } 859 #endif 860 default: { 861 if( pOp->p2<0 ){ 862 /* The mkopcodeh.tcl script has so arranged things that the only 863 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 864 ** have non-negative values for P2. */ 865 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 866 assert( ADDR(pOp->p2)<-pParse->nLabel ); 867 pOp->p2 = aLabel[ADDR(pOp->p2)]; 868 } 869 break; 870 } 871 } 872 /* The mkopcodeh.tcl script has so arranged things that the only 873 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 874 ** have non-negative values for P2. */ 875 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 876 } 877 if( pOp==p->aOp ) break; 878 pOp--; 879 } 880 sqlite3DbFree(p->db, pParse->aLabel); 881 pParse->aLabel = 0; 882 pParse->nLabel = 0; 883 *pMaxFuncArgs = nMaxArgs; 884 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 885 } 886 887 /* 888 ** Return the address of the next instruction to be inserted. 889 */ 890 int sqlite3VdbeCurrentAddr(Vdbe *p){ 891 assert( p->magic==VDBE_MAGIC_INIT ); 892 return p->nOp; 893 } 894 895 /* 896 ** Verify that at least N opcode slots are available in p without 897 ** having to malloc for more space (except when compiled using 898 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 899 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 900 ** fail due to a OOM fault and hence that the return value from 901 ** sqlite3VdbeAddOpList() will always be non-NULL. 902 */ 903 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 904 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 905 assert( p->nOp + N <= p->nOpAlloc ); 906 } 907 #endif 908 909 /* 910 ** Verify that the VM passed as the only argument does not contain 911 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 912 ** by code in pragma.c to ensure that the implementation of certain 913 ** pragmas comports with the flags specified in the mkpragmatab.tcl 914 ** script. 915 */ 916 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 917 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 918 int i; 919 for(i=0; i<p->nOp; i++){ 920 assert( p->aOp[i].opcode!=OP_ResultRow ); 921 } 922 } 923 #endif 924 925 /* 926 ** Generate code (a single OP_Abortable opcode) that will 927 ** verify that the VDBE program can safely call Abort in the current 928 ** context. 929 */ 930 #if defined(SQLITE_DEBUG) 931 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ 932 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); 933 } 934 #endif 935 936 /* 937 ** This function returns a pointer to the array of opcodes associated with 938 ** the Vdbe passed as the first argument. It is the callers responsibility 939 ** to arrange for the returned array to be eventually freed using the 940 ** vdbeFreeOpArray() function. 941 ** 942 ** Before returning, *pnOp is set to the number of entries in the returned 943 ** array. Also, *pnMaxArg is set to the larger of its current value and 944 ** the number of entries in the Vdbe.apArg[] array required to execute the 945 ** returned program. 946 */ 947 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 948 VdbeOp *aOp = p->aOp; 949 assert( aOp && !p->db->mallocFailed ); 950 951 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 952 assert( DbMaskAllZero(p->btreeMask) ); 953 954 resolveP2Values(p, pnMaxArg); 955 *pnOp = p->nOp; 956 p->aOp = 0; 957 return aOp; 958 } 959 960 /* 961 ** Add a whole list of operations to the operation stack. Return a 962 ** pointer to the first operation inserted. 963 ** 964 ** Non-zero P2 arguments to jump instructions are automatically adjusted 965 ** so that the jump target is relative to the first operation inserted. 966 */ 967 VdbeOp *sqlite3VdbeAddOpList( 968 Vdbe *p, /* Add opcodes to the prepared statement */ 969 int nOp, /* Number of opcodes to add */ 970 VdbeOpList const *aOp, /* The opcodes to be added */ 971 int iLineno /* Source-file line number of first opcode */ 972 ){ 973 int i; 974 VdbeOp *pOut, *pFirst; 975 assert( nOp>0 ); 976 assert( p->magic==VDBE_MAGIC_INIT ); 977 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){ 978 return 0; 979 } 980 pFirst = pOut = &p->aOp[p->nOp]; 981 for(i=0; i<nOp; i++, aOp++, pOut++){ 982 pOut->opcode = aOp->opcode; 983 pOut->p1 = aOp->p1; 984 pOut->p2 = aOp->p2; 985 assert( aOp->p2>=0 ); 986 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 987 pOut->p2 += p->nOp; 988 } 989 pOut->p3 = aOp->p3; 990 pOut->p4type = P4_NOTUSED; 991 pOut->p4.p = 0; 992 pOut->p5 = 0; 993 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 994 pOut->zComment = 0; 995 #endif 996 #ifdef SQLITE_VDBE_COVERAGE 997 pOut->iSrcLine = iLineno+i; 998 #else 999 (void)iLineno; 1000 #endif 1001 #ifdef SQLITE_DEBUG 1002 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 1003 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 1004 } 1005 #endif 1006 } 1007 p->nOp += nOp; 1008 return pFirst; 1009 } 1010 1011 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 1012 /* 1013 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 1014 */ 1015 void sqlite3VdbeScanStatus( 1016 Vdbe *p, /* VM to add scanstatus() to */ 1017 int addrExplain, /* Address of OP_Explain (or 0) */ 1018 int addrLoop, /* Address of loop counter */ 1019 int addrVisit, /* Address of rows visited counter */ 1020 LogEst nEst, /* Estimated number of output rows */ 1021 const char *zName /* Name of table or index being scanned */ 1022 ){ 1023 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus); 1024 ScanStatus *aNew; 1025 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 1026 if( aNew ){ 1027 ScanStatus *pNew = &aNew[p->nScan++]; 1028 pNew->addrExplain = addrExplain; 1029 pNew->addrLoop = addrLoop; 1030 pNew->addrVisit = addrVisit; 1031 pNew->nEst = nEst; 1032 pNew->zName = sqlite3DbStrDup(p->db, zName); 1033 p->aScan = aNew; 1034 } 1035 } 1036 #endif 1037 1038 1039 /* 1040 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 1041 ** for a specific instruction. 1042 */ 1043 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){ 1044 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 1045 } 1046 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ 1047 sqlite3VdbeGetOp(p,addr)->p1 = val; 1048 } 1049 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ 1050 sqlite3VdbeGetOp(p,addr)->p2 = val; 1051 } 1052 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ 1053 sqlite3VdbeGetOp(p,addr)->p3 = val; 1054 } 1055 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 1056 assert( p->nOp>0 || p->db->mallocFailed ); 1057 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 1058 } 1059 1060 /* 1061 ** Change the P2 operand of instruction addr so that it points to 1062 ** the address of the next instruction to be coded. 1063 */ 1064 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 1065 sqlite3VdbeChangeP2(p, addr, p->nOp); 1066 } 1067 1068 1069 /* 1070 ** If the input FuncDef structure is ephemeral, then free it. If 1071 ** the FuncDef is not ephermal, then do nothing. 1072 */ 1073 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 1074 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 1075 sqlite3DbFreeNN(db, pDef); 1076 } 1077 } 1078 1079 /* 1080 ** Delete a P4 value if necessary. 1081 */ 1082 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 1083 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1084 sqlite3DbFreeNN(db, p); 1085 } 1086 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 1087 freeEphemeralFunction(db, p->pFunc); 1088 sqlite3DbFreeNN(db, p); 1089 } 1090 static void freeP4(sqlite3 *db, int p4type, void *p4){ 1091 assert( db ); 1092 switch( p4type ){ 1093 case P4_FUNCCTX: { 1094 freeP4FuncCtx(db, (sqlite3_context*)p4); 1095 break; 1096 } 1097 case P4_REAL: 1098 case P4_INT64: 1099 case P4_DYNAMIC: 1100 case P4_DYNBLOB: 1101 case P4_INTARRAY: { 1102 sqlite3DbFree(db, p4); 1103 break; 1104 } 1105 case P4_KEYINFO: { 1106 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 1107 break; 1108 } 1109 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1110 case P4_EXPR: { 1111 sqlite3ExprDelete(db, (Expr*)p4); 1112 break; 1113 } 1114 #endif 1115 case P4_FUNCDEF: { 1116 freeEphemeralFunction(db, (FuncDef*)p4); 1117 break; 1118 } 1119 case P4_MEM: { 1120 if( db->pnBytesFreed==0 ){ 1121 sqlite3ValueFree((sqlite3_value*)p4); 1122 }else{ 1123 freeP4Mem(db, (Mem*)p4); 1124 } 1125 break; 1126 } 1127 case P4_VTAB : { 1128 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 1129 break; 1130 } 1131 } 1132 } 1133 1134 /* 1135 ** Free the space allocated for aOp and any p4 values allocated for the 1136 ** opcodes contained within. If aOp is not NULL it is assumed to contain 1137 ** nOp entries. 1138 */ 1139 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 1140 if( aOp ){ 1141 Op *pOp; 1142 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){ 1143 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 1144 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1145 sqlite3DbFree(db, pOp->zComment); 1146 #endif 1147 } 1148 sqlite3DbFreeNN(db, aOp); 1149 } 1150 } 1151 1152 /* 1153 ** Link the SubProgram object passed as the second argument into the linked 1154 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 1155 ** objects when the VM is no longer required. 1156 */ 1157 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 1158 p->pNext = pVdbe->pProgram; 1159 pVdbe->pProgram = p; 1160 } 1161 1162 /* 1163 ** Return true if the given Vdbe has any SubPrograms. 1164 */ 1165 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){ 1166 return pVdbe->pProgram!=0; 1167 } 1168 1169 /* 1170 ** Change the opcode at addr into OP_Noop 1171 */ 1172 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 1173 VdbeOp *pOp; 1174 if( p->db->mallocFailed ) return 0; 1175 assert( addr>=0 && addr<p->nOp ); 1176 pOp = &p->aOp[addr]; 1177 freeP4(p->db, pOp->p4type, pOp->p4.p); 1178 pOp->p4type = P4_NOTUSED; 1179 pOp->p4.z = 0; 1180 pOp->opcode = OP_Noop; 1181 return 1; 1182 } 1183 1184 /* 1185 ** If the last opcode is "op" and it is not a jump destination, 1186 ** then remove it. Return true if and only if an opcode was removed. 1187 */ 1188 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 1189 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 1190 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 1191 }else{ 1192 return 0; 1193 } 1194 } 1195 1196 #ifdef SQLITE_DEBUG 1197 /* 1198 ** Generate an OP_ReleaseReg opcode to indicate that a range of 1199 ** registers, except any identified by mask, are no longer in use. 1200 */ 1201 void sqlite3VdbeReleaseRegisters( 1202 Parse *pParse, /* Parsing context */ 1203 int iFirst, /* Index of first register to be released */ 1204 int N, /* Number of registers to release */ 1205 u32 mask, /* Mask of registers to NOT release */ 1206 int bUndefine /* If true, mark registers as undefined */ 1207 ){ 1208 if( N==0 ) return; 1209 assert( pParse->pVdbe ); 1210 assert( iFirst>=1 ); 1211 assert( iFirst+N-1<=pParse->nMem ); 1212 while( N>0 && (mask&1)!=0 ){ 1213 mask >>= 1; 1214 iFirst++; 1215 N--; 1216 } 1217 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){ 1218 mask &= ~MASKBIT32(N-1); 1219 N--; 1220 } 1221 if( N>0 ){ 1222 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); 1223 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); 1224 } 1225 } 1226 #endif /* SQLITE_DEBUG */ 1227 1228 1229 /* 1230 ** Change the value of the P4 operand for a specific instruction. 1231 ** This routine is useful when a large program is loaded from a 1232 ** static array using sqlite3VdbeAddOpList but we want to make a 1233 ** few minor changes to the program. 1234 ** 1235 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 1236 ** the string is made into memory obtained from sqlite3_malloc(). 1237 ** A value of n==0 means copy bytes of zP4 up to and including the 1238 ** first null byte. If n>0 then copy n+1 bytes of zP4. 1239 ** 1240 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 1241 ** to a string or structure that is guaranteed to exist for the lifetime of 1242 ** the Vdbe. In these cases we can just copy the pointer. 1243 ** 1244 ** If addr<0 then change P4 on the most recently inserted instruction. 1245 */ 1246 static void SQLITE_NOINLINE vdbeChangeP4Full( 1247 Vdbe *p, 1248 Op *pOp, 1249 const char *zP4, 1250 int n 1251 ){ 1252 if( pOp->p4type ){ 1253 freeP4(p->db, pOp->p4type, pOp->p4.p); 1254 pOp->p4type = 0; 1255 pOp->p4.p = 0; 1256 } 1257 if( n<0 ){ 1258 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 1259 }else{ 1260 if( n==0 ) n = sqlite3Strlen30(zP4); 1261 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 1262 pOp->p4type = P4_DYNAMIC; 1263 } 1264 } 1265 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 1266 Op *pOp; 1267 sqlite3 *db; 1268 assert( p!=0 ); 1269 db = p->db; 1270 assert( p->magic==VDBE_MAGIC_INIT ); 1271 assert( p->aOp!=0 || db->mallocFailed ); 1272 if( db->mallocFailed ){ 1273 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 1274 return; 1275 } 1276 assert( p->nOp>0 ); 1277 assert( addr<p->nOp ); 1278 if( addr<0 ){ 1279 addr = p->nOp - 1; 1280 } 1281 pOp = &p->aOp[addr]; 1282 if( n>=0 || pOp->p4type ){ 1283 vdbeChangeP4Full(p, pOp, zP4, n); 1284 return; 1285 } 1286 if( n==P4_INT32 ){ 1287 /* Note: this cast is safe, because the origin data point was an int 1288 ** that was cast to a (const char *). */ 1289 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 1290 pOp->p4type = P4_INT32; 1291 }else if( zP4!=0 ){ 1292 assert( n<0 ); 1293 pOp->p4.p = (void*)zP4; 1294 pOp->p4type = (signed char)n; 1295 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 1296 } 1297 } 1298 1299 /* 1300 ** Change the P4 operand of the most recently coded instruction 1301 ** to the value defined by the arguments. This is a high-speed 1302 ** version of sqlite3VdbeChangeP4(). 1303 ** 1304 ** The P4 operand must not have been previously defined. And the new 1305 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 1306 ** those cases. 1307 */ 1308 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1309 VdbeOp *pOp; 1310 assert( n!=P4_INT32 && n!=P4_VTAB ); 1311 assert( n<=0 ); 1312 if( p->db->mallocFailed ){ 1313 freeP4(p->db, n, pP4); 1314 }else{ 1315 assert( pP4!=0 ); 1316 assert( p->nOp>0 ); 1317 pOp = &p->aOp[p->nOp-1]; 1318 assert( pOp->p4type==P4_NOTUSED ); 1319 pOp->p4type = n; 1320 pOp->p4.p = pP4; 1321 } 1322 } 1323 1324 /* 1325 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1326 ** index given. 1327 */ 1328 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1329 Vdbe *v = pParse->pVdbe; 1330 KeyInfo *pKeyInfo; 1331 assert( v!=0 ); 1332 assert( pIdx!=0 ); 1333 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1334 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1335 } 1336 1337 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1338 /* 1339 ** Change the comment on the most recently coded instruction. Or 1340 ** insert a No-op and add the comment to that new instruction. This 1341 ** makes the code easier to read during debugging. None of this happens 1342 ** in a production build. 1343 */ 1344 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1345 assert( p->nOp>0 || p->aOp==0 ); 1346 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed 1347 || p->pParse->nErr>0 ); 1348 if( p->nOp ){ 1349 assert( p->aOp ); 1350 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1351 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1352 } 1353 } 1354 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1355 va_list ap; 1356 if( p ){ 1357 va_start(ap, zFormat); 1358 vdbeVComment(p, zFormat, ap); 1359 va_end(ap); 1360 } 1361 } 1362 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1363 va_list ap; 1364 if( p ){ 1365 sqlite3VdbeAddOp0(p, OP_Noop); 1366 va_start(ap, zFormat); 1367 vdbeVComment(p, zFormat, ap); 1368 va_end(ap); 1369 } 1370 } 1371 #endif /* NDEBUG */ 1372 1373 #ifdef SQLITE_VDBE_COVERAGE 1374 /* 1375 ** Set the value if the iSrcLine field for the previously coded instruction. 1376 */ 1377 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1378 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1379 } 1380 #endif /* SQLITE_VDBE_COVERAGE */ 1381 1382 /* 1383 ** Return the opcode for a given address. If the address is -1, then 1384 ** return the most recently inserted opcode. 1385 ** 1386 ** If a memory allocation error has occurred prior to the calling of this 1387 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1388 ** is readable but not writable, though it is cast to a writable value. 1389 ** The return of a dummy opcode allows the call to continue functioning 1390 ** after an OOM fault without having to check to see if the return from 1391 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1392 ** dummy will never be written to. This is verified by code inspection and 1393 ** by running with Valgrind. 1394 */ 1395 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1396 /* C89 specifies that the constant "dummy" will be initialized to all 1397 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1398 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1399 assert( p->magic==VDBE_MAGIC_INIT ); 1400 if( addr<0 ){ 1401 addr = p->nOp - 1; 1402 } 1403 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1404 if( p->db->mallocFailed ){ 1405 return (VdbeOp*)&dummy; 1406 }else{ 1407 return &p->aOp[addr]; 1408 } 1409 } 1410 1411 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1412 /* 1413 ** Return an integer value for one of the parameters to the opcode pOp 1414 ** determined by character c. 1415 */ 1416 static int translateP(char c, const Op *pOp){ 1417 if( c=='1' ) return pOp->p1; 1418 if( c=='2' ) return pOp->p2; 1419 if( c=='3' ) return pOp->p3; 1420 if( c=='4' ) return pOp->p4.i; 1421 return pOp->p5; 1422 } 1423 1424 /* 1425 ** Compute a string for the "comment" field of a VDBE opcode listing. 1426 ** 1427 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1428 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1429 ** absence of other comments, this synopsis becomes the comment on the opcode. 1430 ** Some translation occurs: 1431 ** 1432 ** "PX" -> "r[X]" 1433 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1434 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1435 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1436 */ 1437 static int displayComment( 1438 const Op *pOp, /* The opcode to be commented */ 1439 const char *zP4, /* Previously obtained value for P4 */ 1440 char *zTemp, /* Write result here */ 1441 int nTemp /* Space available in zTemp[] */ 1442 ){ 1443 const char *zOpName; 1444 const char *zSynopsis; 1445 int nOpName; 1446 int ii, jj; 1447 char zAlt[50]; 1448 zOpName = sqlite3OpcodeName(pOp->opcode); 1449 nOpName = sqlite3Strlen30(zOpName); 1450 if( zOpName[nOpName+1] ){ 1451 int seenCom = 0; 1452 char c; 1453 zSynopsis = zOpName += nOpName + 1; 1454 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1455 if( pOp->p5 & SQLITE_STOREP2 ){ 1456 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3); 1457 }else{ 1458 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1459 } 1460 zSynopsis = zAlt; 1461 } 1462 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 1463 if( c=='P' ){ 1464 c = zSynopsis[++ii]; 1465 if( c=='4' ){ 1466 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 1467 }else if( c=='X' ){ 1468 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 1469 seenCom = 1; 1470 }else{ 1471 int v1 = translateP(c, pOp); 1472 int v2; 1473 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 1474 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1475 ii += 3; 1476 jj += sqlite3Strlen30(zTemp+jj); 1477 v2 = translateP(zSynopsis[ii], pOp); 1478 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1479 ii += 2; 1480 v2++; 1481 } 1482 if( v2>1 ){ 1483 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 1484 } 1485 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1486 ii += 4; 1487 } 1488 } 1489 jj += sqlite3Strlen30(zTemp+jj); 1490 }else{ 1491 zTemp[jj++] = c; 1492 } 1493 } 1494 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 1495 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 1496 jj += sqlite3Strlen30(zTemp+jj); 1497 } 1498 if( jj<nTemp ) zTemp[jj] = 0; 1499 }else if( pOp->zComment ){ 1500 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 1501 jj = sqlite3Strlen30(zTemp); 1502 }else{ 1503 zTemp[0] = 0; 1504 jj = 0; 1505 } 1506 return jj; 1507 } 1508 #endif /* SQLITE_DEBUG */ 1509 1510 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1511 /* 1512 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1513 ** that can be displayed in the P4 column of EXPLAIN output. 1514 */ 1515 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1516 const char *zOp = 0; 1517 switch( pExpr->op ){ 1518 case TK_STRING: 1519 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); 1520 break; 1521 case TK_INTEGER: 1522 sqlite3_str_appendf(p, "%d", pExpr->u.iValue); 1523 break; 1524 case TK_NULL: 1525 sqlite3_str_appendf(p, "NULL"); 1526 break; 1527 case TK_REGISTER: { 1528 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); 1529 break; 1530 } 1531 case TK_COLUMN: { 1532 if( pExpr->iColumn<0 ){ 1533 sqlite3_str_appendf(p, "rowid"); 1534 }else{ 1535 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); 1536 } 1537 break; 1538 } 1539 case TK_LT: zOp = "LT"; break; 1540 case TK_LE: zOp = "LE"; break; 1541 case TK_GT: zOp = "GT"; break; 1542 case TK_GE: zOp = "GE"; break; 1543 case TK_NE: zOp = "NE"; break; 1544 case TK_EQ: zOp = "EQ"; break; 1545 case TK_IS: zOp = "IS"; break; 1546 case TK_ISNOT: zOp = "ISNOT"; break; 1547 case TK_AND: zOp = "AND"; break; 1548 case TK_OR: zOp = "OR"; break; 1549 case TK_PLUS: zOp = "ADD"; break; 1550 case TK_STAR: zOp = "MUL"; break; 1551 case TK_MINUS: zOp = "SUB"; break; 1552 case TK_REM: zOp = "REM"; break; 1553 case TK_BITAND: zOp = "BITAND"; break; 1554 case TK_BITOR: zOp = "BITOR"; break; 1555 case TK_SLASH: zOp = "DIV"; break; 1556 case TK_LSHIFT: zOp = "LSHIFT"; break; 1557 case TK_RSHIFT: zOp = "RSHIFT"; break; 1558 case TK_CONCAT: zOp = "CONCAT"; break; 1559 case TK_UMINUS: zOp = "MINUS"; break; 1560 case TK_UPLUS: zOp = "PLUS"; break; 1561 case TK_BITNOT: zOp = "BITNOT"; break; 1562 case TK_NOT: zOp = "NOT"; break; 1563 case TK_ISNULL: zOp = "ISNULL"; break; 1564 case TK_NOTNULL: zOp = "NOTNULL"; break; 1565 1566 default: 1567 sqlite3_str_appendf(p, "%s", "expr"); 1568 break; 1569 } 1570 1571 if( zOp ){ 1572 sqlite3_str_appendf(p, "%s(", zOp); 1573 displayP4Expr(p, pExpr->pLeft); 1574 if( pExpr->pRight ){ 1575 sqlite3_str_append(p, ",", 1); 1576 displayP4Expr(p, pExpr->pRight); 1577 } 1578 sqlite3_str_append(p, ")", 1); 1579 } 1580 } 1581 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1582 1583 1584 #if VDBE_DISPLAY_P4 1585 /* 1586 ** Compute a string that describes the P4 parameter for an opcode. 1587 ** Use zTemp for any required temporary buffer space. 1588 */ 1589 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 1590 char *zP4 = zTemp; 1591 StrAccum x; 1592 assert( nTemp>=20 ); 1593 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0); 1594 switch( pOp->p4type ){ 1595 case P4_KEYINFO: { 1596 int j; 1597 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1598 assert( pKeyInfo->aSortFlags!=0 ); 1599 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); 1600 for(j=0; j<pKeyInfo->nKeyField; j++){ 1601 CollSeq *pColl = pKeyInfo->aColl[j]; 1602 const char *zColl = pColl ? pColl->zName : ""; 1603 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1604 sqlite3_str_appendf(&x, ",%s%s%s", 1605 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "", 1606 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "", 1607 zColl); 1608 } 1609 sqlite3_str_append(&x, ")", 1); 1610 break; 1611 } 1612 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1613 case P4_EXPR: { 1614 displayP4Expr(&x, pOp->p4.pExpr); 1615 break; 1616 } 1617 #endif 1618 case P4_COLLSEQ: { 1619 CollSeq *pColl = pOp->p4.pColl; 1620 sqlite3_str_appendf(&x, "(%.20s)", pColl->zName); 1621 break; 1622 } 1623 case P4_FUNCDEF: { 1624 FuncDef *pDef = pOp->p4.pFunc; 1625 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1626 break; 1627 } 1628 case P4_FUNCCTX: { 1629 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1630 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1631 break; 1632 } 1633 case P4_INT64: { 1634 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); 1635 break; 1636 } 1637 case P4_INT32: { 1638 sqlite3_str_appendf(&x, "%d", pOp->p4.i); 1639 break; 1640 } 1641 case P4_REAL: { 1642 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); 1643 break; 1644 } 1645 case P4_MEM: { 1646 Mem *pMem = pOp->p4.pMem; 1647 if( pMem->flags & MEM_Str ){ 1648 zP4 = pMem->z; 1649 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1650 sqlite3_str_appendf(&x, "%lld", pMem->u.i); 1651 }else if( pMem->flags & MEM_Real ){ 1652 sqlite3_str_appendf(&x, "%.16g", pMem->u.r); 1653 }else if( pMem->flags & MEM_Null ){ 1654 zP4 = "NULL"; 1655 }else{ 1656 assert( pMem->flags & MEM_Blob ); 1657 zP4 = "(blob)"; 1658 } 1659 break; 1660 } 1661 #ifndef SQLITE_OMIT_VIRTUALTABLE 1662 case P4_VTAB: { 1663 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1664 sqlite3_str_appendf(&x, "vtab:%p", pVtab); 1665 break; 1666 } 1667 #endif 1668 case P4_INTARRAY: { 1669 int i; 1670 int *ai = pOp->p4.ai; 1671 int n = ai[0]; /* The first element of an INTARRAY is always the 1672 ** count of the number of elements to follow */ 1673 for(i=1; i<=n; i++){ 1674 sqlite3_str_appendf(&x, ",%d", ai[i]); 1675 } 1676 zTemp[0] = '['; 1677 sqlite3_str_append(&x, "]", 1); 1678 break; 1679 } 1680 case P4_SUBPROGRAM: { 1681 sqlite3_str_appendf(&x, "program"); 1682 break; 1683 } 1684 case P4_DYNBLOB: 1685 case P4_ADVANCE: { 1686 zTemp[0] = 0; 1687 break; 1688 } 1689 case P4_TABLE: { 1690 sqlite3_str_appendf(&x, "%s", pOp->p4.pTab->zName); 1691 break; 1692 } 1693 default: { 1694 zP4 = pOp->p4.z; 1695 if( zP4==0 ){ 1696 zP4 = zTemp; 1697 zTemp[0] = 0; 1698 } 1699 } 1700 } 1701 sqlite3StrAccumFinish(&x); 1702 assert( zP4!=0 ); 1703 return zP4; 1704 } 1705 #endif /* VDBE_DISPLAY_P4 */ 1706 1707 /* 1708 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1709 ** 1710 ** The prepared statements need to know in advance the complete set of 1711 ** attached databases that will be use. A mask of these databases 1712 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1713 ** p->btreeMask of databases that will require a lock. 1714 */ 1715 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1716 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1717 assert( i<(int)sizeof(p->btreeMask)*8 ); 1718 DbMaskSet(p->btreeMask, i); 1719 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1720 DbMaskSet(p->lockMask, i); 1721 } 1722 } 1723 1724 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1725 /* 1726 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1727 ** this routine obtains the mutex associated with each BtShared structure 1728 ** that may be accessed by the VM passed as an argument. In doing so it also 1729 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1730 ** that the correct busy-handler callback is invoked if required. 1731 ** 1732 ** If SQLite is not threadsafe but does support shared-cache mode, then 1733 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1734 ** of all of BtShared structures accessible via the database handle 1735 ** associated with the VM. 1736 ** 1737 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1738 ** function is a no-op. 1739 ** 1740 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1741 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1742 ** corresponding to btrees that use shared cache. Then the runtime of 1743 ** this routine is N*N. But as N is rarely more than 1, this should not 1744 ** be a problem. 1745 */ 1746 void sqlite3VdbeEnter(Vdbe *p){ 1747 int i; 1748 sqlite3 *db; 1749 Db *aDb; 1750 int nDb; 1751 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1752 db = p->db; 1753 aDb = db->aDb; 1754 nDb = db->nDb; 1755 for(i=0; i<nDb; i++){ 1756 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1757 sqlite3BtreeEnter(aDb[i].pBt); 1758 } 1759 } 1760 } 1761 #endif 1762 1763 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1764 /* 1765 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1766 */ 1767 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1768 int i; 1769 sqlite3 *db; 1770 Db *aDb; 1771 int nDb; 1772 db = p->db; 1773 aDb = db->aDb; 1774 nDb = db->nDb; 1775 for(i=0; i<nDb; i++){ 1776 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1777 sqlite3BtreeLeave(aDb[i].pBt); 1778 } 1779 } 1780 } 1781 void sqlite3VdbeLeave(Vdbe *p){ 1782 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1783 vdbeLeave(p); 1784 } 1785 #endif 1786 1787 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1788 /* 1789 ** Print a single opcode. This routine is used for debugging only. 1790 */ 1791 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ 1792 char *zP4; 1793 char zPtr[50]; 1794 char zCom[100]; 1795 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1796 if( pOut==0 ) pOut = stdout; 1797 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1798 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1799 displayComment(pOp, zP4, zCom, sizeof(zCom)); 1800 #else 1801 zCom[0] = 0; 1802 #endif 1803 /* NB: The sqlite3OpcodeName() function is implemented by code created 1804 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1805 ** information from the vdbe.c source text */ 1806 fprintf(pOut, zFormat1, pc, 1807 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1808 zCom 1809 ); 1810 fflush(pOut); 1811 } 1812 #endif 1813 1814 /* 1815 ** Initialize an array of N Mem element. 1816 */ 1817 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1818 while( (N--)>0 ){ 1819 p->db = db; 1820 p->flags = flags; 1821 p->szMalloc = 0; 1822 #ifdef SQLITE_DEBUG 1823 p->pScopyFrom = 0; 1824 #endif 1825 p++; 1826 } 1827 } 1828 1829 /* 1830 ** Release an array of N Mem elements 1831 */ 1832 static void releaseMemArray(Mem *p, int N){ 1833 if( p && N ){ 1834 Mem *pEnd = &p[N]; 1835 sqlite3 *db = p->db; 1836 if( db->pnBytesFreed ){ 1837 do{ 1838 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1839 }while( (++p)<pEnd ); 1840 return; 1841 } 1842 do{ 1843 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1844 assert( sqlite3VdbeCheckMemInvariants(p) ); 1845 1846 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1847 ** that takes advantage of the fact that the memory cell value is 1848 ** being set to NULL after releasing any dynamic resources. 1849 ** 1850 ** The justification for duplicating code is that according to 1851 ** callgrind, this causes a certain test case to hit the CPU 4.7 1852 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1853 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1854 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1855 ** with no indexes using a single prepared INSERT statement, bind() 1856 ** and reset(). Inserts are grouped into a transaction. 1857 */ 1858 testcase( p->flags & MEM_Agg ); 1859 testcase( p->flags & MEM_Dyn ); 1860 testcase( p->xDel==sqlite3VdbeFrameMemDel ); 1861 if( p->flags&(MEM_Agg|MEM_Dyn) ){ 1862 sqlite3VdbeMemRelease(p); 1863 }else if( p->szMalloc ){ 1864 sqlite3DbFreeNN(db, p->zMalloc); 1865 p->szMalloc = 0; 1866 } 1867 1868 p->flags = MEM_Undefined; 1869 }while( (++p)<pEnd ); 1870 } 1871 } 1872 1873 #ifdef SQLITE_DEBUG 1874 /* 1875 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is 1876 ** and false if something is wrong. 1877 ** 1878 ** This routine is intended for use inside of assert() statements only. 1879 */ 1880 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){ 1881 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; 1882 return 1; 1883 } 1884 #endif 1885 1886 1887 /* 1888 ** This is a destructor on a Mem object (which is really an sqlite3_value) 1889 ** that deletes the Frame object that is attached to it as a blob. 1890 ** 1891 ** This routine does not delete the Frame right away. It merely adds the 1892 ** frame to a list of frames to be deleted when the Vdbe halts. 1893 */ 1894 void sqlite3VdbeFrameMemDel(void *pArg){ 1895 VdbeFrame *pFrame = (VdbeFrame*)pArg; 1896 assert( sqlite3VdbeFrameIsValid(pFrame) ); 1897 pFrame->pParent = pFrame->v->pDelFrame; 1898 pFrame->v->pDelFrame = pFrame; 1899 } 1900 1901 1902 /* 1903 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1904 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1905 */ 1906 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1907 int i; 1908 Mem *aMem = VdbeFrameMem(p); 1909 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1910 assert( sqlite3VdbeFrameIsValid(p) ); 1911 for(i=0; i<p->nChildCsr; i++){ 1912 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1913 } 1914 releaseMemArray(aMem, p->nChildMem); 1915 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 1916 sqlite3DbFree(p->v->db, p); 1917 } 1918 1919 #ifndef SQLITE_OMIT_EXPLAIN 1920 /* 1921 ** Give a listing of the program in the virtual machine. 1922 ** 1923 ** The interface is the same as sqlite3VdbeExec(). But instead of 1924 ** running the code, it invokes the callback once for each instruction. 1925 ** This feature is used to implement "EXPLAIN". 1926 ** 1927 ** When p->explain==1, each instruction is listed. When 1928 ** p->explain==2, only OP_Explain instructions are listed and these 1929 ** are shown in a different format. p->explain==2 is used to implement 1930 ** EXPLAIN QUERY PLAN. 1931 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers 1932 ** are also shown, so that the boundaries between the main program and 1933 ** each trigger are clear. 1934 ** 1935 ** When p->explain==1, first the main program is listed, then each of 1936 ** the trigger subprograms are listed one by one. 1937 */ 1938 int sqlite3VdbeList( 1939 Vdbe *p /* The VDBE */ 1940 ){ 1941 int nRow; /* Stop when row count reaches this */ 1942 int nSub = 0; /* Number of sub-vdbes seen so far */ 1943 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1944 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1945 sqlite3 *db = p->db; /* The database connection */ 1946 int i; /* Loop counter */ 1947 int rc = SQLITE_OK; /* Return code */ 1948 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 1949 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); 1950 Op *pOp = 0; 1951 1952 assert( p->explain ); 1953 assert( p->magic==VDBE_MAGIC_RUN ); 1954 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1955 1956 /* Even though this opcode does not use dynamic strings for 1957 ** the result, result columns may become dynamic if the user calls 1958 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1959 */ 1960 releaseMemArray(pMem, 8); 1961 p->pResultSet = 0; 1962 1963 if( p->rc==SQLITE_NOMEM ){ 1964 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1965 ** sqlite3_column_text16() failed. */ 1966 sqlite3OomFault(db); 1967 return SQLITE_ERROR; 1968 } 1969 1970 /* When the number of output rows reaches nRow, that means the 1971 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1972 ** nRow is the sum of the number of rows in the main program, plus 1973 ** the sum of the number of rows in all trigger subprograms encountered 1974 ** so far. The nRow value will increase as new trigger subprograms are 1975 ** encountered, but p->pc will eventually catch up to nRow. 1976 */ 1977 nRow = p->nOp; 1978 if( bListSubprogs ){ 1979 /* The first 8 memory cells are used for the result set. So we will 1980 ** commandeer the 9th cell to use as storage for an array of pointers 1981 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1982 ** cells. */ 1983 assert( p->nMem>9 ); 1984 pSub = &p->aMem[9]; 1985 if( pSub->flags&MEM_Blob ){ 1986 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1987 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1988 nSub = pSub->n/sizeof(Vdbe*); 1989 apSub = (SubProgram **)pSub->z; 1990 } 1991 for(i=0; i<nSub; i++){ 1992 nRow += apSub[i]->nOp; 1993 } 1994 } 1995 1996 while(1){ /* Loop exits via break */ 1997 i = p->pc++; 1998 if( i>=nRow ){ 1999 p->rc = SQLITE_OK; 2000 rc = SQLITE_DONE; 2001 break; 2002 } 2003 if( i<p->nOp ){ 2004 /* The output line number is small enough that we are still in the 2005 ** main program. */ 2006 pOp = &p->aOp[i]; 2007 }else{ 2008 /* We are currently listing subprograms. Figure out which one and 2009 ** pick up the appropriate opcode. */ 2010 int j; 2011 i -= p->nOp; 2012 assert( apSub!=0 ); 2013 assert( nSub>0 ); 2014 for(j=0; i>=apSub[j]->nOp; j++){ 2015 i -= apSub[j]->nOp; 2016 assert( i<apSub[j]->nOp || j+1<nSub ); 2017 } 2018 pOp = &apSub[j]->aOp[i]; 2019 } 2020 2021 /* When an OP_Program opcode is encounter (the only opcode that has 2022 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 2023 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 2024 ** has not already been seen. 2025 */ 2026 if( bListSubprogs && pOp->p4type==P4_SUBPROGRAM ){ 2027 int nByte = (nSub+1)*sizeof(SubProgram*); 2028 int j; 2029 for(j=0; j<nSub; j++){ 2030 if( apSub[j]==pOp->p4.pProgram ) break; 2031 } 2032 if( j==nSub ){ 2033 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); 2034 if( p->rc!=SQLITE_OK ){ 2035 rc = SQLITE_ERROR; 2036 break; 2037 } 2038 apSub = (SubProgram **)pSub->z; 2039 apSub[nSub++] = pOp->p4.pProgram; 2040 pSub->flags |= MEM_Blob; 2041 pSub->n = nSub*sizeof(SubProgram*); 2042 nRow += pOp->p4.pProgram->nOp; 2043 } 2044 } 2045 if( p->explain<2 ) break; 2046 if( pOp->opcode==OP_Explain ) break; 2047 if( pOp->opcode==OP_Init && p->pc>1 ) break; 2048 } 2049 2050 if( rc==SQLITE_OK ){ 2051 if( db->u1.isInterrupted ){ 2052 p->rc = SQLITE_INTERRUPT; 2053 rc = SQLITE_ERROR; 2054 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 2055 }else{ 2056 char *zP4; 2057 if( p->explain==1 ){ 2058 pMem->flags = MEM_Int; 2059 pMem->u.i = i; /* Program counter */ 2060 pMem++; 2061 2062 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 2063 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 2064 assert( pMem->z!=0 ); 2065 pMem->n = sqlite3Strlen30(pMem->z); 2066 pMem->enc = SQLITE_UTF8; 2067 pMem++; 2068 } 2069 2070 pMem->flags = MEM_Int; 2071 pMem->u.i = pOp->p1; /* P1 */ 2072 pMem++; 2073 2074 pMem->flags = MEM_Int; 2075 pMem->u.i = pOp->p2; /* P2 */ 2076 pMem++; 2077 2078 pMem->flags = MEM_Int; 2079 pMem->u.i = pOp->p3; /* P3 */ 2080 pMem++; 2081 2082 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */ 2083 assert( p->db->mallocFailed ); 2084 return SQLITE_ERROR; 2085 } 2086 pMem->flags = MEM_Str|MEM_Term; 2087 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc); 2088 if( zP4!=pMem->z ){ 2089 pMem->n = 0; 2090 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 2091 }else{ 2092 assert( pMem->z!=0 ); 2093 pMem->n = sqlite3Strlen30(pMem->z); 2094 pMem->enc = SQLITE_UTF8; 2095 } 2096 pMem++; 2097 2098 if( p->explain==1 ){ 2099 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ 2100 assert( p->db->mallocFailed ); 2101 return SQLITE_ERROR; 2102 } 2103 pMem->flags = MEM_Str|MEM_Term; 2104 pMem->n = 2; 2105 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 2106 pMem->enc = SQLITE_UTF8; 2107 pMem++; 2108 2109 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2110 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ 2111 assert( p->db->mallocFailed ); 2112 return SQLITE_ERROR; 2113 } 2114 pMem->flags = MEM_Str|MEM_Term; 2115 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 2116 pMem->enc = SQLITE_UTF8; 2117 #else 2118 pMem->flags = MEM_Null; /* Comment */ 2119 #endif 2120 } 2121 2122 p->nResColumn = 8 - 4*(p->explain-1); 2123 p->pResultSet = &p->aMem[1]; 2124 p->rc = SQLITE_OK; 2125 rc = SQLITE_ROW; 2126 } 2127 } 2128 return rc; 2129 } 2130 #endif /* SQLITE_OMIT_EXPLAIN */ 2131 2132 #ifdef SQLITE_DEBUG 2133 /* 2134 ** Print the SQL that was used to generate a VDBE program. 2135 */ 2136 void sqlite3VdbePrintSql(Vdbe *p){ 2137 const char *z = 0; 2138 if( p->zSql ){ 2139 z = p->zSql; 2140 }else if( p->nOp>=1 ){ 2141 const VdbeOp *pOp = &p->aOp[0]; 2142 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2143 z = pOp->p4.z; 2144 while( sqlite3Isspace(*z) ) z++; 2145 } 2146 } 2147 if( z ) printf("SQL: [%s]\n", z); 2148 } 2149 #endif 2150 2151 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 2152 /* 2153 ** Print an IOTRACE message showing SQL content. 2154 */ 2155 void sqlite3VdbeIOTraceSql(Vdbe *p){ 2156 int nOp = p->nOp; 2157 VdbeOp *pOp; 2158 if( sqlite3IoTrace==0 ) return; 2159 if( nOp<1 ) return; 2160 pOp = &p->aOp[0]; 2161 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2162 int i, j; 2163 char z[1000]; 2164 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 2165 for(i=0; sqlite3Isspace(z[i]); i++){} 2166 for(j=0; z[i]; i++){ 2167 if( sqlite3Isspace(z[i]) ){ 2168 if( z[i-1]!=' ' ){ 2169 z[j++] = ' '; 2170 } 2171 }else{ 2172 z[j++] = z[i]; 2173 } 2174 } 2175 z[j] = 0; 2176 sqlite3IoTrace("SQL %s\n", z); 2177 } 2178 } 2179 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 2180 2181 /* An instance of this object describes bulk memory available for use 2182 ** by subcomponents of a prepared statement. Space is allocated out 2183 ** of a ReusableSpace object by the allocSpace() routine below. 2184 */ 2185 struct ReusableSpace { 2186 u8 *pSpace; /* Available memory */ 2187 sqlite3_int64 nFree; /* Bytes of available memory */ 2188 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */ 2189 }; 2190 2191 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 2192 ** from the ReusableSpace object. Return a pointer to the allocated 2193 ** memory on success. If insufficient memory is available in the 2194 ** ReusableSpace object, increase the ReusableSpace.nNeeded 2195 ** value by the amount needed and return NULL. 2196 ** 2197 ** If pBuf is not initially NULL, that means that the memory has already 2198 ** been allocated by a prior call to this routine, so just return a copy 2199 ** of pBuf and leave ReusableSpace unchanged. 2200 ** 2201 ** This allocator is employed to repurpose unused slots at the end of the 2202 ** opcode array of prepared state for other memory needs of the prepared 2203 ** statement. 2204 */ 2205 static void *allocSpace( 2206 struct ReusableSpace *p, /* Bulk memory available for allocation */ 2207 void *pBuf, /* Pointer to a prior allocation */ 2208 sqlite3_int64 nByte /* Bytes of memory needed */ 2209 ){ 2210 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 2211 if( pBuf==0 ){ 2212 nByte = ROUND8(nByte); 2213 if( nByte <= p->nFree ){ 2214 p->nFree -= nByte; 2215 pBuf = &p->pSpace[p->nFree]; 2216 }else{ 2217 p->nNeeded += nByte; 2218 } 2219 } 2220 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 2221 return pBuf; 2222 } 2223 2224 /* 2225 ** Rewind the VDBE back to the beginning in preparation for 2226 ** running it. 2227 */ 2228 void sqlite3VdbeRewind(Vdbe *p){ 2229 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 2230 int i; 2231 #endif 2232 assert( p!=0 ); 2233 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET ); 2234 2235 /* There should be at least one opcode. 2236 */ 2237 assert( p->nOp>0 ); 2238 2239 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 2240 p->magic = VDBE_MAGIC_RUN; 2241 2242 #ifdef SQLITE_DEBUG 2243 for(i=0; i<p->nMem; i++){ 2244 assert( p->aMem[i].db==p->db ); 2245 } 2246 #endif 2247 p->pc = -1; 2248 p->rc = SQLITE_OK; 2249 p->errorAction = OE_Abort; 2250 p->nChange = 0; 2251 p->cacheCtr = 1; 2252 p->minWriteFileFormat = 255; 2253 p->iStatement = 0; 2254 p->nFkConstraint = 0; 2255 #ifdef VDBE_PROFILE 2256 for(i=0; i<p->nOp; i++){ 2257 p->aOp[i].cnt = 0; 2258 p->aOp[i].cycles = 0; 2259 } 2260 #endif 2261 } 2262 2263 /* 2264 ** Prepare a virtual machine for execution for the first time after 2265 ** creating the virtual machine. This involves things such 2266 ** as allocating registers and initializing the program counter. 2267 ** After the VDBE has be prepped, it can be executed by one or more 2268 ** calls to sqlite3VdbeExec(). 2269 ** 2270 ** This function may be called exactly once on each virtual machine. 2271 ** After this routine is called the VM has been "packaged" and is ready 2272 ** to run. After this routine is called, further calls to 2273 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 2274 ** the Vdbe from the Parse object that helped generate it so that the 2275 ** the Vdbe becomes an independent entity and the Parse object can be 2276 ** destroyed. 2277 ** 2278 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 2279 ** to its initial state after it has been run. 2280 */ 2281 void sqlite3VdbeMakeReady( 2282 Vdbe *p, /* The VDBE */ 2283 Parse *pParse /* Parsing context */ 2284 ){ 2285 sqlite3 *db; /* The database connection */ 2286 int nVar; /* Number of parameters */ 2287 int nMem; /* Number of VM memory registers */ 2288 int nCursor; /* Number of cursors required */ 2289 int nArg; /* Number of arguments in subprograms */ 2290 int n; /* Loop counter */ 2291 struct ReusableSpace x; /* Reusable bulk memory */ 2292 2293 assert( p!=0 ); 2294 assert( p->nOp>0 ); 2295 assert( pParse!=0 ); 2296 assert( p->magic==VDBE_MAGIC_INIT ); 2297 assert( pParse==p->pParse ); 2298 db = p->db; 2299 assert( db->mallocFailed==0 ); 2300 nVar = pParse->nVar; 2301 nMem = pParse->nMem; 2302 nCursor = pParse->nTab; 2303 nArg = pParse->nMaxArg; 2304 2305 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 2306 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 2307 ** space at the end of aMem[] for cursors 1 and greater. 2308 ** See also: allocateCursor(). 2309 */ 2310 nMem += nCursor; 2311 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 2312 2313 /* Figure out how much reusable memory is available at the end of the 2314 ** opcode array. This extra memory will be reallocated for other elements 2315 ** of the prepared statement. 2316 */ 2317 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 2318 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 2319 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 2320 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 2321 assert( x.nFree>=0 ); 2322 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 2323 2324 resolveP2Values(p, &nArg); 2325 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 2326 if( pParse->explain ){ 2327 static const char * const azColName[] = { 2328 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", 2329 "id", "parent", "notused", "detail" 2330 }; 2331 int iFirst, mx, i; 2332 if( nMem<10 ) nMem = 10; 2333 if( pParse->explain==2 ){ 2334 sqlite3VdbeSetNumCols(p, 4); 2335 iFirst = 8; 2336 mx = 12; 2337 }else{ 2338 sqlite3VdbeSetNumCols(p, 8); 2339 iFirst = 0; 2340 mx = 8; 2341 } 2342 for(i=iFirst; i<mx; i++){ 2343 sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME, 2344 azColName[i], SQLITE_STATIC); 2345 } 2346 } 2347 p->expired = 0; 2348 2349 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 2350 ** passes. On the first pass, we try to reuse unused memory at the 2351 ** end of the opcode array. If we are unable to satisfy all memory 2352 ** requirements by reusing the opcode array tail, then the second 2353 ** pass will fill in the remainder using a fresh memory allocation. 2354 ** 2355 ** This two-pass approach that reuses as much memory as possible from 2356 ** the leftover memory at the end of the opcode array. This can significantly 2357 ** reduce the amount of memory held by a prepared statement. 2358 */ 2359 x.nNeeded = 0; 2360 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem)); 2361 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem)); 2362 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*)); 2363 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*)); 2364 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2365 p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64)); 2366 #endif 2367 if( x.nNeeded ){ 2368 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 2369 x.nFree = x.nNeeded; 2370 if( !db->mallocFailed ){ 2371 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 2372 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 2373 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 2374 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 2375 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2376 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 2377 #endif 2378 } 2379 } 2380 2381 p->pVList = pParse->pVList; 2382 pParse->pVList = 0; 2383 p->explain = pParse->explain; 2384 if( db->mallocFailed ){ 2385 p->nVar = 0; 2386 p->nCursor = 0; 2387 p->nMem = 0; 2388 }else{ 2389 p->nCursor = nCursor; 2390 p->nVar = (ynVar)nVar; 2391 initMemArray(p->aVar, nVar, db, MEM_Null); 2392 p->nMem = nMem; 2393 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2394 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2395 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2396 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2397 #endif 2398 } 2399 sqlite3VdbeRewind(p); 2400 } 2401 2402 /* 2403 ** Close a VDBE cursor and release all the resources that cursor 2404 ** happens to hold. 2405 */ 2406 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2407 if( pCx==0 ){ 2408 return; 2409 } 2410 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE ); 2411 switch( pCx->eCurType ){ 2412 case CURTYPE_SORTER: { 2413 sqlite3VdbeSorterClose(p->db, pCx); 2414 break; 2415 } 2416 case CURTYPE_BTREE: { 2417 if( pCx->isEphemeral ){ 2418 if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx); 2419 /* The pCx->pCursor will be close automatically, if it exists, by 2420 ** the call above. */ 2421 }else{ 2422 assert( pCx->uc.pCursor!=0 ); 2423 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2424 } 2425 break; 2426 } 2427 #ifndef SQLITE_OMIT_VIRTUALTABLE 2428 case CURTYPE_VTAB: { 2429 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2430 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2431 assert( pVCur->pVtab->nRef>0 ); 2432 pVCur->pVtab->nRef--; 2433 pModule->xClose(pVCur); 2434 break; 2435 } 2436 #endif 2437 } 2438 } 2439 2440 /* 2441 ** Close all cursors in the current frame. 2442 */ 2443 static void closeCursorsInFrame(Vdbe *p){ 2444 if( p->apCsr ){ 2445 int i; 2446 for(i=0; i<p->nCursor; i++){ 2447 VdbeCursor *pC = p->apCsr[i]; 2448 if( pC ){ 2449 sqlite3VdbeFreeCursor(p, pC); 2450 p->apCsr[i] = 0; 2451 } 2452 } 2453 } 2454 } 2455 2456 /* 2457 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2458 ** is used, for example, when a trigger sub-program is halted to restore 2459 ** control to the main program. 2460 */ 2461 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2462 Vdbe *v = pFrame->v; 2463 closeCursorsInFrame(v); 2464 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2465 v->anExec = pFrame->anExec; 2466 #endif 2467 v->aOp = pFrame->aOp; 2468 v->nOp = pFrame->nOp; 2469 v->aMem = pFrame->aMem; 2470 v->nMem = pFrame->nMem; 2471 v->apCsr = pFrame->apCsr; 2472 v->nCursor = pFrame->nCursor; 2473 v->db->lastRowid = pFrame->lastRowid; 2474 v->nChange = pFrame->nChange; 2475 v->db->nChange = pFrame->nDbChange; 2476 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2477 v->pAuxData = pFrame->pAuxData; 2478 pFrame->pAuxData = 0; 2479 return pFrame->pc; 2480 } 2481 2482 /* 2483 ** Close all cursors. 2484 ** 2485 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2486 ** cell array. This is necessary as the memory cell array may contain 2487 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2488 ** open cursors. 2489 */ 2490 static void closeAllCursors(Vdbe *p){ 2491 if( p->pFrame ){ 2492 VdbeFrame *pFrame; 2493 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2494 sqlite3VdbeFrameRestore(pFrame); 2495 p->pFrame = 0; 2496 p->nFrame = 0; 2497 } 2498 assert( p->nFrame==0 ); 2499 closeCursorsInFrame(p); 2500 if( p->aMem ){ 2501 releaseMemArray(p->aMem, p->nMem); 2502 } 2503 while( p->pDelFrame ){ 2504 VdbeFrame *pDel = p->pDelFrame; 2505 p->pDelFrame = pDel->pParent; 2506 sqlite3VdbeFrameDelete(pDel); 2507 } 2508 2509 /* Delete any auxdata allocations made by the VM */ 2510 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2511 assert( p->pAuxData==0 ); 2512 } 2513 2514 /* 2515 ** Set the number of result columns that will be returned by this SQL 2516 ** statement. This is now set at compile time, rather than during 2517 ** execution of the vdbe program so that sqlite3_column_count() can 2518 ** be called on an SQL statement before sqlite3_step(). 2519 */ 2520 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2521 int n; 2522 sqlite3 *db = p->db; 2523 2524 if( p->nResColumn ){ 2525 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2526 sqlite3DbFree(db, p->aColName); 2527 } 2528 n = nResColumn*COLNAME_N; 2529 p->nResColumn = (u16)nResColumn; 2530 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2531 if( p->aColName==0 ) return; 2532 initMemArray(p->aColName, n, db, MEM_Null); 2533 } 2534 2535 /* 2536 ** Set the name of the idx'th column to be returned by the SQL statement. 2537 ** zName must be a pointer to a nul terminated string. 2538 ** 2539 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2540 ** 2541 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2542 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2543 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2544 */ 2545 int sqlite3VdbeSetColName( 2546 Vdbe *p, /* Vdbe being configured */ 2547 int idx, /* Index of column zName applies to */ 2548 int var, /* One of the COLNAME_* constants */ 2549 const char *zName, /* Pointer to buffer containing name */ 2550 void (*xDel)(void*) /* Memory management strategy for zName */ 2551 ){ 2552 int rc; 2553 Mem *pColName; 2554 assert( idx<p->nResColumn ); 2555 assert( var<COLNAME_N ); 2556 if( p->db->mallocFailed ){ 2557 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2558 return SQLITE_NOMEM_BKPT; 2559 } 2560 assert( p->aColName!=0 ); 2561 pColName = &(p->aColName[idx+var*p->nResColumn]); 2562 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2563 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2564 return rc; 2565 } 2566 2567 /* 2568 ** A read or write transaction may or may not be active on database handle 2569 ** db. If a transaction is active, commit it. If there is a 2570 ** write-transaction spanning more than one database file, this routine 2571 ** takes care of the master journal trickery. 2572 */ 2573 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2574 int i; 2575 int nTrans = 0; /* Number of databases with an active write-transaction 2576 ** that are candidates for a two-phase commit using a 2577 ** master-journal */ 2578 int rc = SQLITE_OK; 2579 int needXcommit = 0; 2580 2581 #ifdef SQLITE_OMIT_VIRTUALTABLE 2582 /* With this option, sqlite3VtabSync() is defined to be simply 2583 ** SQLITE_OK so p is not used. 2584 */ 2585 UNUSED_PARAMETER(p); 2586 #endif 2587 2588 /* Before doing anything else, call the xSync() callback for any 2589 ** virtual module tables written in this transaction. This has to 2590 ** be done before determining whether a master journal file is 2591 ** required, as an xSync() callback may add an attached database 2592 ** to the transaction. 2593 */ 2594 rc = sqlite3VtabSync(db, p); 2595 2596 /* This loop determines (a) if the commit hook should be invoked and 2597 ** (b) how many database files have open write transactions, not 2598 ** including the temp database. (b) is important because if more than 2599 ** one database file has an open write transaction, a master journal 2600 ** file is required for an atomic commit. 2601 */ 2602 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2603 Btree *pBt = db->aDb[i].pBt; 2604 if( sqlite3BtreeIsInTrans(pBt) ){ 2605 /* Whether or not a database might need a master journal depends upon 2606 ** its journal mode (among other things). This matrix determines which 2607 ** journal modes use a master journal and which do not */ 2608 static const u8 aMJNeeded[] = { 2609 /* DELETE */ 1, 2610 /* PERSIST */ 1, 2611 /* OFF */ 0, 2612 /* TRUNCATE */ 1, 2613 /* MEMORY */ 0, 2614 /* WAL */ 0 2615 }; 2616 Pager *pPager; /* Pager associated with pBt */ 2617 needXcommit = 1; 2618 sqlite3BtreeEnter(pBt); 2619 pPager = sqlite3BtreePager(pBt); 2620 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2621 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2622 && sqlite3PagerIsMemdb(pPager)==0 2623 ){ 2624 assert( i!=1 ); 2625 nTrans++; 2626 } 2627 rc = sqlite3PagerExclusiveLock(pPager); 2628 sqlite3BtreeLeave(pBt); 2629 } 2630 } 2631 if( rc!=SQLITE_OK ){ 2632 return rc; 2633 } 2634 2635 /* If there are any write-transactions at all, invoke the commit hook */ 2636 if( needXcommit && db->xCommitCallback ){ 2637 rc = db->xCommitCallback(db->pCommitArg); 2638 if( rc ){ 2639 return SQLITE_CONSTRAINT_COMMITHOOK; 2640 } 2641 } 2642 2643 /* The simple case - no more than one database file (not counting the 2644 ** TEMP database) has a transaction active. There is no need for the 2645 ** master-journal. 2646 ** 2647 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2648 ** string, it means the main database is :memory: or a temp file. In 2649 ** that case we do not support atomic multi-file commits, so use the 2650 ** simple case then too. 2651 */ 2652 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2653 || nTrans<=1 2654 ){ 2655 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2656 Btree *pBt = db->aDb[i].pBt; 2657 if( pBt ){ 2658 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2659 } 2660 } 2661 2662 /* Do the commit only if all databases successfully complete phase 1. 2663 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2664 ** IO error while deleting or truncating a journal file. It is unlikely, 2665 ** but could happen. In this case abandon processing and return the error. 2666 */ 2667 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2668 Btree *pBt = db->aDb[i].pBt; 2669 if( pBt ){ 2670 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2671 } 2672 } 2673 if( rc==SQLITE_OK ){ 2674 sqlite3VtabCommit(db); 2675 } 2676 } 2677 2678 /* The complex case - There is a multi-file write-transaction active. 2679 ** This requires a master journal file to ensure the transaction is 2680 ** committed atomically. 2681 */ 2682 #ifndef SQLITE_OMIT_DISKIO 2683 else{ 2684 sqlite3_vfs *pVfs = db->pVfs; 2685 char *zMaster = 0; /* File-name for the master journal */ 2686 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2687 sqlite3_file *pMaster = 0; 2688 i64 offset = 0; 2689 int res; 2690 int retryCount = 0; 2691 int nMainFile; 2692 2693 /* Select a master journal file name */ 2694 nMainFile = sqlite3Strlen30(zMainFile); 2695 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz%c%c", zMainFile, 0, 0); 2696 if( zMaster==0 ) return SQLITE_NOMEM_BKPT; 2697 do { 2698 u32 iRandom; 2699 if( retryCount ){ 2700 if( retryCount>100 ){ 2701 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 2702 sqlite3OsDelete(pVfs, zMaster, 0); 2703 break; 2704 }else if( retryCount==1 ){ 2705 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2706 } 2707 } 2708 retryCount++; 2709 sqlite3_randomness(sizeof(iRandom), &iRandom); 2710 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2711 (iRandom>>8)&0xffffff, iRandom&0xff); 2712 /* The antipenultimate character of the master journal name must 2713 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2714 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2715 sqlite3FileSuffix3(zMainFile, zMaster); 2716 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2717 }while( rc==SQLITE_OK && res ); 2718 if( rc==SQLITE_OK ){ 2719 /* Open the master journal. */ 2720 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2721 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2722 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2723 ); 2724 } 2725 if( rc!=SQLITE_OK ){ 2726 sqlite3DbFree(db, zMaster); 2727 return rc; 2728 } 2729 2730 /* Write the name of each database file in the transaction into the new 2731 ** master journal file. If an error occurs at this point close 2732 ** and delete the master journal file. All the individual journal files 2733 ** still have 'null' as the master journal pointer, so they will roll 2734 ** back independently if a failure occurs. 2735 */ 2736 for(i=0; i<db->nDb; i++){ 2737 Btree *pBt = db->aDb[i].pBt; 2738 if( sqlite3BtreeIsInTrans(pBt) ){ 2739 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2740 if( zFile==0 ){ 2741 continue; /* Ignore TEMP and :memory: databases */ 2742 } 2743 assert( zFile[0]!=0 ); 2744 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2745 offset += sqlite3Strlen30(zFile)+1; 2746 if( rc!=SQLITE_OK ){ 2747 sqlite3OsCloseFree(pMaster); 2748 sqlite3OsDelete(pVfs, zMaster, 0); 2749 sqlite3DbFree(db, zMaster); 2750 return rc; 2751 } 2752 } 2753 } 2754 2755 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2756 ** flag is set this is not required. 2757 */ 2758 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2759 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2760 ){ 2761 sqlite3OsCloseFree(pMaster); 2762 sqlite3OsDelete(pVfs, zMaster, 0); 2763 sqlite3DbFree(db, zMaster); 2764 return rc; 2765 } 2766 2767 /* Sync all the db files involved in the transaction. The same call 2768 ** sets the master journal pointer in each individual journal. If 2769 ** an error occurs here, do not delete the master journal file. 2770 ** 2771 ** If the error occurs during the first call to 2772 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2773 ** master journal file will be orphaned. But we cannot delete it, 2774 ** in case the master journal file name was written into the journal 2775 ** file before the failure occurred. 2776 */ 2777 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2778 Btree *pBt = db->aDb[i].pBt; 2779 if( pBt ){ 2780 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2781 } 2782 } 2783 sqlite3OsCloseFree(pMaster); 2784 assert( rc!=SQLITE_BUSY ); 2785 if( rc!=SQLITE_OK ){ 2786 sqlite3DbFree(db, zMaster); 2787 return rc; 2788 } 2789 2790 /* Delete the master journal file. This commits the transaction. After 2791 ** doing this the directory is synced again before any individual 2792 ** transaction files are deleted. 2793 */ 2794 rc = sqlite3OsDelete(pVfs, zMaster, 1); 2795 sqlite3DbFree(db, zMaster); 2796 zMaster = 0; 2797 if( rc ){ 2798 return rc; 2799 } 2800 2801 /* All files and directories have already been synced, so the following 2802 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2803 ** deleting or truncating journals. If something goes wrong while 2804 ** this is happening we don't really care. The integrity of the 2805 ** transaction is already guaranteed, but some stray 'cold' journals 2806 ** may be lying around. Returning an error code won't help matters. 2807 */ 2808 disable_simulated_io_errors(); 2809 sqlite3BeginBenignMalloc(); 2810 for(i=0; i<db->nDb; i++){ 2811 Btree *pBt = db->aDb[i].pBt; 2812 if( pBt ){ 2813 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2814 } 2815 } 2816 sqlite3EndBenignMalloc(); 2817 enable_simulated_io_errors(); 2818 2819 sqlite3VtabCommit(db); 2820 } 2821 #endif 2822 2823 return rc; 2824 } 2825 2826 /* 2827 ** This routine checks that the sqlite3.nVdbeActive count variable 2828 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2829 ** currently active. An assertion fails if the two counts do not match. 2830 ** This is an internal self-check only - it is not an essential processing 2831 ** step. 2832 ** 2833 ** This is a no-op if NDEBUG is defined. 2834 */ 2835 #ifndef NDEBUG 2836 static void checkActiveVdbeCnt(sqlite3 *db){ 2837 Vdbe *p; 2838 int cnt = 0; 2839 int nWrite = 0; 2840 int nRead = 0; 2841 p = db->pVdbe; 2842 while( p ){ 2843 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2844 cnt++; 2845 if( p->readOnly==0 ) nWrite++; 2846 if( p->bIsReader ) nRead++; 2847 } 2848 p = p->pNext; 2849 } 2850 assert( cnt==db->nVdbeActive ); 2851 assert( nWrite==db->nVdbeWrite ); 2852 assert( nRead==db->nVdbeRead ); 2853 } 2854 #else 2855 #define checkActiveVdbeCnt(x) 2856 #endif 2857 2858 /* 2859 ** If the Vdbe passed as the first argument opened a statement-transaction, 2860 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2861 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2862 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2863 ** statement transaction is committed. 2864 ** 2865 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2866 ** Otherwise SQLITE_OK. 2867 */ 2868 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 2869 sqlite3 *const db = p->db; 2870 int rc = SQLITE_OK; 2871 int i; 2872 const int iSavepoint = p->iStatement-1; 2873 2874 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2875 assert( db->nStatement>0 ); 2876 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2877 2878 for(i=0; i<db->nDb; i++){ 2879 int rc2 = SQLITE_OK; 2880 Btree *pBt = db->aDb[i].pBt; 2881 if( pBt ){ 2882 if( eOp==SAVEPOINT_ROLLBACK ){ 2883 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2884 } 2885 if( rc2==SQLITE_OK ){ 2886 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2887 } 2888 if( rc==SQLITE_OK ){ 2889 rc = rc2; 2890 } 2891 } 2892 } 2893 db->nStatement--; 2894 p->iStatement = 0; 2895 2896 if( rc==SQLITE_OK ){ 2897 if( eOp==SAVEPOINT_ROLLBACK ){ 2898 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2899 } 2900 if( rc==SQLITE_OK ){ 2901 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2902 } 2903 } 2904 2905 /* If the statement transaction is being rolled back, also restore the 2906 ** database handles deferred constraint counter to the value it had when 2907 ** the statement transaction was opened. */ 2908 if( eOp==SAVEPOINT_ROLLBACK ){ 2909 db->nDeferredCons = p->nStmtDefCons; 2910 db->nDeferredImmCons = p->nStmtDefImmCons; 2911 } 2912 return rc; 2913 } 2914 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2915 if( p->db->nStatement && p->iStatement ){ 2916 return vdbeCloseStatement(p, eOp); 2917 } 2918 return SQLITE_OK; 2919 } 2920 2921 2922 /* 2923 ** This function is called when a transaction opened by the database 2924 ** handle associated with the VM passed as an argument is about to be 2925 ** committed. If there are outstanding deferred foreign key constraint 2926 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2927 ** 2928 ** If there are outstanding FK violations and this function returns 2929 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2930 ** and write an error message to it. Then return SQLITE_ERROR. 2931 */ 2932 #ifndef SQLITE_OMIT_FOREIGN_KEY 2933 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2934 sqlite3 *db = p->db; 2935 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2936 || (!deferred && p->nFkConstraint>0) 2937 ){ 2938 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2939 p->errorAction = OE_Abort; 2940 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2941 return SQLITE_ERROR; 2942 } 2943 return SQLITE_OK; 2944 } 2945 #endif 2946 2947 /* 2948 ** This routine is called the when a VDBE tries to halt. If the VDBE 2949 ** has made changes and is in autocommit mode, then commit those 2950 ** changes. If a rollback is needed, then do the rollback. 2951 ** 2952 ** This routine is the only way to move the state of a VM from 2953 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2954 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2955 ** 2956 ** Return an error code. If the commit could not complete because of 2957 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2958 ** means the close did not happen and needs to be repeated. 2959 */ 2960 int sqlite3VdbeHalt(Vdbe *p){ 2961 int rc; /* Used to store transient return codes */ 2962 sqlite3 *db = p->db; 2963 2964 /* This function contains the logic that determines if a statement or 2965 ** transaction will be committed or rolled back as a result of the 2966 ** execution of this virtual machine. 2967 ** 2968 ** If any of the following errors occur: 2969 ** 2970 ** SQLITE_NOMEM 2971 ** SQLITE_IOERR 2972 ** SQLITE_FULL 2973 ** SQLITE_INTERRUPT 2974 ** 2975 ** Then the internal cache might have been left in an inconsistent 2976 ** state. We need to rollback the statement transaction, if there is 2977 ** one, or the complete transaction if there is no statement transaction. 2978 */ 2979 2980 if( p->magic!=VDBE_MAGIC_RUN ){ 2981 return SQLITE_OK; 2982 } 2983 if( db->mallocFailed ){ 2984 p->rc = SQLITE_NOMEM_BKPT; 2985 } 2986 closeAllCursors(p); 2987 checkActiveVdbeCnt(db); 2988 2989 /* No commit or rollback needed if the program never started or if the 2990 ** SQL statement does not read or write a database file. */ 2991 if( p->pc>=0 && p->bIsReader ){ 2992 int mrc; /* Primary error code from p->rc */ 2993 int eStatementOp = 0; 2994 int isSpecialError; /* Set to true if a 'special' error */ 2995 2996 /* Lock all btrees used by the statement */ 2997 sqlite3VdbeEnter(p); 2998 2999 /* Check for one of the special errors */ 3000 mrc = p->rc & 0xff; 3001 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 3002 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 3003 if( isSpecialError ){ 3004 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 3005 ** no rollback is necessary. Otherwise, at least a savepoint 3006 ** transaction must be rolled back to restore the database to a 3007 ** consistent state. 3008 ** 3009 ** Even if the statement is read-only, it is important to perform 3010 ** a statement or transaction rollback operation. If the error 3011 ** occurred while writing to the journal, sub-journal or database 3012 ** file as part of an effort to free up cache space (see function 3013 ** pagerStress() in pager.c), the rollback is required to restore 3014 ** the pager to a consistent state. 3015 */ 3016 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 3017 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 3018 eStatementOp = SAVEPOINT_ROLLBACK; 3019 }else{ 3020 /* We are forced to roll back the active transaction. Before doing 3021 ** so, abort any other statements this handle currently has active. 3022 */ 3023 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3024 sqlite3CloseSavepoints(db); 3025 db->autoCommit = 1; 3026 p->nChange = 0; 3027 } 3028 } 3029 } 3030 3031 /* Check for immediate foreign key violations. */ 3032 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3033 sqlite3VdbeCheckFk(p, 0); 3034 } 3035 3036 /* If the auto-commit flag is set and this is the only active writer 3037 ** VM, then we do either a commit or rollback of the current transaction. 3038 ** 3039 ** Note: This block also runs if one of the special errors handled 3040 ** above has occurred. 3041 */ 3042 if( !sqlite3VtabInSync(db) 3043 && db->autoCommit 3044 && db->nVdbeWrite==(p->readOnly==0) 3045 ){ 3046 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3047 rc = sqlite3VdbeCheckFk(p, 1); 3048 if( rc!=SQLITE_OK ){ 3049 if( NEVER(p->readOnly) ){ 3050 sqlite3VdbeLeave(p); 3051 return SQLITE_ERROR; 3052 } 3053 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 3054 }else{ 3055 /* The auto-commit flag is true, the vdbe program was successful 3056 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 3057 ** key constraints to hold up the transaction. This means a commit 3058 ** is required. */ 3059 rc = vdbeCommit(db, p); 3060 } 3061 if( rc==SQLITE_BUSY && p->readOnly ){ 3062 sqlite3VdbeLeave(p); 3063 return SQLITE_BUSY; 3064 }else if( rc!=SQLITE_OK ){ 3065 p->rc = rc; 3066 sqlite3RollbackAll(db, SQLITE_OK); 3067 p->nChange = 0; 3068 }else{ 3069 db->nDeferredCons = 0; 3070 db->nDeferredImmCons = 0; 3071 db->flags &= ~(u64)SQLITE_DeferFKs; 3072 sqlite3CommitInternalChanges(db); 3073 } 3074 }else{ 3075 sqlite3RollbackAll(db, SQLITE_OK); 3076 p->nChange = 0; 3077 } 3078 db->nStatement = 0; 3079 }else if( eStatementOp==0 ){ 3080 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 3081 eStatementOp = SAVEPOINT_RELEASE; 3082 }else if( p->errorAction==OE_Abort ){ 3083 eStatementOp = SAVEPOINT_ROLLBACK; 3084 }else{ 3085 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3086 sqlite3CloseSavepoints(db); 3087 db->autoCommit = 1; 3088 p->nChange = 0; 3089 } 3090 } 3091 3092 /* If eStatementOp is non-zero, then a statement transaction needs to 3093 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 3094 ** do so. If this operation returns an error, and the current statement 3095 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 3096 ** current statement error code. 3097 */ 3098 if( eStatementOp ){ 3099 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 3100 if( rc ){ 3101 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 3102 p->rc = rc; 3103 sqlite3DbFree(db, p->zErrMsg); 3104 p->zErrMsg = 0; 3105 } 3106 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3107 sqlite3CloseSavepoints(db); 3108 db->autoCommit = 1; 3109 p->nChange = 0; 3110 } 3111 } 3112 3113 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 3114 ** has been rolled back, update the database connection change-counter. 3115 */ 3116 if( p->changeCntOn ){ 3117 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 3118 sqlite3VdbeSetChanges(db, p->nChange); 3119 }else{ 3120 sqlite3VdbeSetChanges(db, 0); 3121 } 3122 p->nChange = 0; 3123 } 3124 3125 /* Release the locks */ 3126 sqlite3VdbeLeave(p); 3127 } 3128 3129 /* We have successfully halted and closed the VM. Record this fact. */ 3130 if( p->pc>=0 ){ 3131 db->nVdbeActive--; 3132 if( !p->readOnly ) db->nVdbeWrite--; 3133 if( p->bIsReader ) db->nVdbeRead--; 3134 assert( db->nVdbeActive>=db->nVdbeRead ); 3135 assert( db->nVdbeRead>=db->nVdbeWrite ); 3136 assert( db->nVdbeWrite>=0 ); 3137 } 3138 p->magic = VDBE_MAGIC_HALT; 3139 checkActiveVdbeCnt(db); 3140 if( db->mallocFailed ){ 3141 p->rc = SQLITE_NOMEM_BKPT; 3142 } 3143 3144 /* If the auto-commit flag is set to true, then any locks that were held 3145 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 3146 ** to invoke any required unlock-notify callbacks. 3147 */ 3148 if( db->autoCommit ){ 3149 sqlite3ConnectionUnlocked(db); 3150 } 3151 3152 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 3153 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 3154 } 3155 3156 3157 /* 3158 ** Each VDBE holds the result of the most recent sqlite3_step() call 3159 ** in p->rc. This routine sets that result back to SQLITE_OK. 3160 */ 3161 void sqlite3VdbeResetStepResult(Vdbe *p){ 3162 p->rc = SQLITE_OK; 3163 } 3164 3165 /* 3166 ** Copy the error code and error message belonging to the VDBE passed 3167 ** as the first argument to its database handle (so that they will be 3168 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 3169 ** 3170 ** This function does not clear the VDBE error code or message, just 3171 ** copies them to the database handle. 3172 */ 3173 int sqlite3VdbeTransferError(Vdbe *p){ 3174 sqlite3 *db = p->db; 3175 int rc = p->rc; 3176 if( p->zErrMsg ){ 3177 db->bBenignMalloc++; 3178 sqlite3BeginBenignMalloc(); 3179 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 3180 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 3181 sqlite3EndBenignMalloc(); 3182 db->bBenignMalloc--; 3183 }else if( db->pErr ){ 3184 sqlite3ValueSetNull(db->pErr); 3185 } 3186 db->errCode = rc; 3187 return rc; 3188 } 3189 3190 #ifdef SQLITE_ENABLE_SQLLOG 3191 /* 3192 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 3193 ** invoke it. 3194 */ 3195 static void vdbeInvokeSqllog(Vdbe *v){ 3196 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 3197 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 3198 assert( v->db->init.busy==0 ); 3199 if( zExpanded ){ 3200 sqlite3GlobalConfig.xSqllog( 3201 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 3202 ); 3203 sqlite3DbFree(v->db, zExpanded); 3204 } 3205 } 3206 } 3207 #else 3208 # define vdbeInvokeSqllog(x) 3209 #endif 3210 3211 /* 3212 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 3213 ** Write any error messages into *pzErrMsg. Return the result code. 3214 ** 3215 ** After this routine is run, the VDBE should be ready to be executed 3216 ** again. 3217 ** 3218 ** To look at it another way, this routine resets the state of the 3219 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 3220 ** VDBE_MAGIC_INIT. 3221 */ 3222 int sqlite3VdbeReset(Vdbe *p){ 3223 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 3224 int i; 3225 #endif 3226 3227 sqlite3 *db; 3228 db = p->db; 3229 3230 /* If the VM did not run to completion or if it encountered an 3231 ** error, then it might not have been halted properly. So halt 3232 ** it now. 3233 */ 3234 sqlite3VdbeHalt(p); 3235 3236 /* If the VDBE has been run even partially, then transfer the error code 3237 ** and error message from the VDBE into the main database structure. But 3238 ** if the VDBE has just been set to run but has not actually executed any 3239 ** instructions yet, leave the main database error information unchanged. 3240 */ 3241 if( p->pc>=0 ){ 3242 vdbeInvokeSqllog(p); 3243 sqlite3VdbeTransferError(p); 3244 if( p->runOnlyOnce ) p->expired = 1; 3245 }else if( p->rc && p->expired ){ 3246 /* The expired flag was set on the VDBE before the first call 3247 ** to sqlite3_step(). For consistency (since sqlite3_step() was 3248 ** called), set the database error in this case as well. 3249 */ 3250 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 3251 } 3252 3253 /* Reset register contents and reclaim error message memory. 3254 */ 3255 #ifdef SQLITE_DEBUG 3256 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 3257 ** Vdbe.aMem[] arrays have already been cleaned up. */ 3258 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 3259 if( p->aMem ){ 3260 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 3261 } 3262 #endif 3263 sqlite3DbFree(db, p->zErrMsg); 3264 p->zErrMsg = 0; 3265 p->pResultSet = 0; 3266 #ifdef SQLITE_DEBUG 3267 p->nWrite = 0; 3268 #endif 3269 3270 /* Save profiling information from this VDBE run. 3271 */ 3272 #ifdef VDBE_PROFILE 3273 { 3274 FILE *out = fopen("vdbe_profile.out", "a"); 3275 if( out ){ 3276 fprintf(out, "---- "); 3277 for(i=0; i<p->nOp; i++){ 3278 fprintf(out, "%02x", p->aOp[i].opcode); 3279 } 3280 fprintf(out, "\n"); 3281 if( p->zSql ){ 3282 char c, pc = 0; 3283 fprintf(out, "-- "); 3284 for(i=0; (c = p->zSql[i])!=0; i++){ 3285 if( pc=='\n' ) fprintf(out, "-- "); 3286 putc(c, out); 3287 pc = c; 3288 } 3289 if( pc!='\n' ) fprintf(out, "\n"); 3290 } 3291 for(i=0; i<p->nOp; i++){ 3292 char zHdr[100]; 3293 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 3294 p->aOp[i].cnt, 3295 p->aOp[i].cycles, 3296 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 3297 ); 3298 fprintf(out, "%s", zHdr); 3299 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 3300 } 3301 fclose(out); 3302 } 3303 } 3304 #endif 3305 p->magic = VDBE_MAGIC_RESET; 3306 return p->rc & db->errMask; 3307 } 3308 3309 /* 3310 ** Clean up and delete a VDBE after execution. Return an integer which is 3311 ** the result code. Write any error message text into *pzErrMsg. 3312 */ 3313 int sqlite3VdbeFinalize(Vdbe *p){ 3314 int rc = SQLITE_OK; 3315 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 3316 rc = sqlite3VdbeReset(p); 3317 assert( (rc & p->db->errMask)==rc ); 3318 } 3319 sqlite3VdbeDelete(p); 3320 return rc; 3321 } 3322 3323 /* 3324 ** If parameter iOp is less than zero, then invoke the destructor for 3325 ** all auxiliary data pointers currently cached by the VM passed as 3326 ** the first argument. 3327 ** 3328 ** Or, if iOp is greater than or equal to zero, then the destructor is 3329 ** only invoked for those auxiliary data pointers created by the user 3330 ** function invoked by the OP_Function opcode at instruction iOp of 3331 ** VM pVdbe, and only then if: 3332 ** 3333 ** * the associated function parameter is the 32nd or later (counting 3334 ** from left to right), or 3335 ** 3336 ** * the corresponding bit in argument mask is clear (where the first 3337 ** function parameter corresponds to bit 0 etc.). 3338 */ 3339 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 3340 while( *pp ){ 3341 AuxData *pAux = *pp; 3342 if( (iOp<0) 3343 || (pAux->iAuxOp==iOp 3344 && pAux->iAuxArg>=0 3345 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 3346 ){ 3347 testcase( pAux->iAuxArg==31 ); 3348 if( pAux->xDeleteAux ){ 3349 pAux->xDeleteAux(pAux->pAux); 3350 } 3351 *pp = pAux->pNextAux; 3352 sqlite3DbFree(db, pAux); 3353 }else{ 3354 pp= &pAux->pNextAux; 3355 } 3356 } 3357 } 3358 3359 /* 3360 ** Free all memory associated with the Vdbe passed as the second argument, 3361 ** except for object itself, which is preserved. 3362 ** 3363 ** The difference between this function and sqlite3VdbeDelete() is that 3364 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 3365 ** the database connection and frees the object itself. 3366 */ 3367 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 3368 SubProgram *pSub, *pNext; 3369 assert( p->db==0 || p->db==db ); 3370 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 3371 for(pSub=p->pProgram; pSub; pSub=pNext){ 3372 pNext = pSub->pNext; 3373 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 3374 sqlite3DbFree(db, pSub); 3375 } 3376 if( p->magic!=VDBE_MAGIC_INIT ){ 3377 releaseMemArray(p->aVar, p->nVar); 3378 sqlite3DbFree(db, p->pVList); 3379 sqlite3DbFree(db, p->pFree); 3380 } 3381 vdbeFreeOpArray(db, p->aOp, p->nOp); 3382 sqlite3DbFree(db, p->aColName); 3383 sqlite3DbFree(db, p->zSql); 3384 #ifdef SQLITE_ENABLE_NORMALIZE 3385 sqlite3DbFree(db, p->zNormSql); 3386 { 3387 DblquoteStr *pThis, *pNext; 3388 for(pThis=p->pDblStr; pThis; pThis=pNext){ 3389 pNext = pThis->pNextStr; 3390 sqlite3DbFree(db, pThis); 3391 } 3392 } 3393 #endif 3394 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3395 { 3396 int i; 3397 for(i=0; i<p->nScan; i++){ 3398 sqlite3DbFree(db, p->aScan[i].zName); 3399 } 3400 sqlite3DbFree(db, p->aScan); 3401 } 3402 #endif 3403 } 3404 3405 /* 3406 ** Delete an entire VDBE. 3407 */ 3408 void sqlite3VdbeDelete(Vdbe *p){ 3409 sqlite3 *db; 3410 3411 assert( p!=0 ); 3412 db = p->db; 3413 assert( sqlite3_mutex_held(db->mutex) ); 3414 sqlite3VdbeClearObject(db, p); 3415 if( p->pPrev ){ 3416 p->pPrev->pNext = p->pNext; 3417 }else{ 3418 assert( db->pVdbe==p ); 3419 db->pVdbe = p->pNext; 3420 } 3421 if( p->pNext ){ 3422 p->pNext->pPrev = p->pPrev; 3423 } 3424 p->magic = VDBE_MAGIC_DEAD; 3425 p->db = 0; 3426 sqlite3DbFreeNN(db, p); 3427 } 3428 3429 /* 3430 ** The cursor "p" has a pending seek operation that has not yet been 3431 ** carried out. Seek the cursor now. If an error occurs, return 3432 ** the appropriate error code. 3433 */ 3434 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){ 3435 int res, rc; 3436 #ifdef SQLITE_TEST 3437 extern int sqlite3_search_count; 3438 #endif 3439 assert( p->deferredMoveto ); 3440 assert( p->isTable ); 3441 assert( p->eCurType==CURTYPE_BTREE ); 3442 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); 3443 if( rc ) return rc; 3444 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3445 #ifdef SQLITE_TEST 3446 sqlite3_search_count++; 3447 #endif 3448 p->deferredMoveto = 0; 3449 p->cacheStatus = CACHE_STALE; 3450 return SQLITE_OK; 3451 } 3452 3453 /* 3454 ** Something has moved cursor "p" out of place. Maybe the row it was 3455 ** pointed to was deleted out from under it. Or maybe the btree was 3456 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3457 ** is supposed to be pointing. If the row was deleted out from under the 3458 ** cursor, set the cursor to point to a NULL row. 3459 */ 3460 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 3461 int isDifferentRow, rc; 3462 assert( p->eCurType==CURTYPE_BTREE ); 3463 assert( p->uc.pCursor!=0 ); 3464 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3465 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3466 p->cacheStatus = CACHE_STALE; 3467 if( isDifferentRow ) p->nullRow = 1; 3468 return rc; 3469 } 3470 3471 /* 3472 ** Check to ensure that the cursor is valid. Restore the cursor 3473 ** if need be. Return any I/O error from the restore operation. 3474 */ 3475 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3476 assert( p->eCurType==CURTYPE_BTREE ); 3477 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3478 return handleMovedCursor(p); 3479 } 3480 return SQLITE_OK; 3481 } 3482 3483 /* 3484 ** Make sure the cursor p is ready to read or write the row to which it 3485 ** was last positioned. Return an error code if an OOM fault or I/O error 3486 ** prevents us from positioning the cursor to its correct position. 3487 ** 3488 ** If a MoveTo operation is pending on the given cursor, then do that 3489 ** MoveTo now. If no move is pending, check to see if the row has been 3490 ** deleted out from under the cursor and if it has, mark the row as 3491 ** a NULL row. 3492 ** 3493 ** If the cursor is already pointing to the correct row and that row has 3494 ** not been deleted out from under the cursor, then this routine is a no-op. 3495 */ 3496 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){ 3497 VdbeCursor *p = *pp; 3498 assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO ); 3499 if( p->deferredMoveto ){ 3500 int iMap; 3501 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){ 3502 *pp = p->pAltCursor; 3503 *piCol = iMap - 1; 3504 return SQLITE_OK; 3505 } 3506 return sqlite3VdbeFinishMoveto(p); 3507 } 3508 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3509 return handleMovedCursor(p); 3510 } 3511 return SQLITE_OK; 3512 } 3513 3514 /* 3515 ** The following functions: 3516 ** 3517 ** sqlite3VdbeSerialType() 3518 ** sqlite3VdbeSerialTypeLen() 3519 ** sqlite3VdbeSerialLen() 3520 ** sqlite3VdbeSerialPut() 3521 ** sqlite3VdbeSerialGet() 3522 ** 3523 ** encapsulate the code that serializes values for storage in SQLite 3524 ** data and index records. Each serialized value consists of a 3525 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3526 ** integer, stored as a varint. 3527 ** 3528 ** In an SQLite index record, the serial type is stored directly before 3529 ** the blob of data that it corresponds to. In a table record, all serial 3530 ** types are stored at the start of the record, and the blobs of data at 3531 ** the end. Hence these functions allow the caller to handle the 3532 ** serial-type and data blob separately. 3533 ** 3534 ** The following table describes the various storage classes for data: 3535 ** 3536 ** serial type bytes of data type 3537 ** -------------- --------------- --------------- 3538 ** 0 0 NULL 3539 ** 1 1 signed integer 3540 ** 2 2 signed integer 3541 ** 3 3 signed integer 3542 ** 4 4 signed integer 3543 ** 5 6 signed integer 3544 ** 6 8 signed integer 3545 ** 7 8 IEEE float 3546 ** 8 0 Integer constant 0 3547 ** 9 0 Integer constant 1 3548 ** 10,11 reserved for expansion 3549 ** N>=12 and even (N-12)/2 BLOB 3550 ** N>=13 and odd (N-13)/2 text 3551 ** 3552 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3553 ** of SQLite will not understand those serial types. 3554 */ 3555 3556 #if 0 /* Inlined into the OP_MakeRecord opcode */ 3557 /* 3558 ** Return the serial-type for the value stored in pMem. 3559 ** 3560 ** This routine might convert a large MEM_IntReal value into MEM_Real. 3561 ** 3562 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord 3563 ** opcode in the byte-code engine. But by moving this routine in-line, we 3564 ** can omit some redundant tests and make that opcode a lot faster. So 3565 ** this routine is now only used by the STAT3 logic and STAT3 support has 3566 ** ended. The code is kept here for historical reference only. 3567 */ 3568 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3569 int flags = pMem->flags; 3570 u32 n; 3571 3572 assert( pLen!=0 ); 3573 if( flags&MEM_Null ){ 3574 *pLen = 0; 3575 return 0; 3576 } 3577 if( flags&(MEM_Int|MEM_IntReal) ){ 3578 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3579 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3580 i64 i = pMem->u.i; 3581 u64 u; 3582 testcase( flags & MEM_Int ); 3583 testcase( flags & MEM_IntReal ); 3584 if( i<0 ){ 3585 u = ~i; 3586 }else{ 3587 u = i; 3588 } 3589 if( u<=127 ){ 3590 if( (i&1)==i && file_format>=4 ){ 3591 *pLen = 0; 3592 return 8+(u32)u; 3593 }else{ 3594 *pLen = 1; 3595 return 1; 3596 } 3597 } 3598 if( u<=32767 ){ *pLen = 2; return 2; } 3599 if( u<=8388607 ){ *pLen = 3; return 3; } 3600 if( u<=2147483647 ){ *pLen = 4; return 4; } 3601 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3602 *pLen = 8; 3603 if( flags&MEM_IntReal ){ 3604 /* If the value is IntReal and is going to take up 8 bytes to store 3605 ** as an integer, then we might as well make it an 8-byte floating 3606 ** point value */ 3607 pMem->u.r = (double)pMem->u.i; 3608 pMem->flags &= ~MEM_IntReal; 3609 pMem->flags |= MEM_Real; 3610 return 7; 3611 } 3612 return 6; 3613 } 3614 if( flags&MEM_Real ){ 3615 *pLen = 8; 3616 return 7; 3617 } 3618 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3619 assert( pMem->n>=0 ); 3620 n = (u32)pMem->n; 3621 if( flags & MEM_Zero ){ 3622 n += pMem->u.nZero; 3623 } 3624 *pLen = n; 3625 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3626 } 3627 #endif /* inlined into OP_MakeRecord */ 3628 3629 /* 3630 ** The sizes for serial types less than 128 3631 */ 3632 static const u8 sqlite3SmallTypeSizes[] = { 3633 /* 0 1 2 3 4 5 6 7 8 9 */ 3634 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3635 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3636 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3637 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3638 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3639 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3640 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3641 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3642 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3643 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3644 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3645 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3646 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3647 }; 3648 3649 /* 3650 ** Return the length of the data corresponding to the supplied serial-type. 3651 */ 3652 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3653 if( serial_type>=128 ){ 3654 return (serial_type-12)/2; 3655 }else{ 3656 assert( serial_type<12 3657 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3658 return sqlite3SmallTypeSizes[serial_type]; 3659 } 3660 } 3661 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3662 assert( serial_type<128 ); 3663 return sqlite3SmallTypeSizes[serial_type]; 3664 } 3665 3666 /* 3667 ** If we are on an architecture with mixed-endian floating 3668 ** points (ex: ARM7) then swap the lower 4 bytes with the 3669 ** upper 4 bytes. Return the result. 3670 ** 3671 ** For most architectures, this is a no-op. 3672 ** 3673 ** (later): It is reported to me that the mixed-endian problem 3674 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3675 ** that early versions of GCC stored the two words of a 64-bit 3676 ** float in the wrong order. And that error has been propagated 3677 ** ever since. The blame is not necessarily with GCC, though. 3678 ** GCC might have just copying the problem from a prior compiler. 3679 ** I am also told that newer versions of GCC that follow a different 3680 ** ABI get the byte order right. 3681 ** 3682 ** Developers using SQLite on an ARM7 should compile and run their 3683 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3684 ** enabled, some asserts below will ensure that the byte order of 3685 ** floating point values is correct. 3686 ** 3687 ** (2007-08-30) Frank van Vugt has studied this problem closely 3688 ** and has send his findings to the SQLite developers. Frank 3689 ** writes that some Linux kernels offer floating point hardware 3690 ** emulation that uses only 32-bit mantissas instead of a full 3691 ** 48-bits as required by the IEEE standard. (This is the 3692 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3693 ** byte swapping becomes very complicated. To avoid problems, 3694 ** the necessary byte swapping is carried out using a 64-bit integer 3695 ** rather than a 64-bit float. Frank assures us that the code here 3696 ** works for him. We, the developers, have no way to independently 3697 ** verify this, but Frank seems to know what he is talking about 3698 ** so we trust him. 3699 */ 3700 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3701 static u64 floatSwap(u64 in){ 3702 union { 3703 u64 r; 3704 u32 i[2]; 3705 } u; 3706 u32 t; 3707 3708 u.r = in; 3709 t = u.i[0]; 3710 u.i[0] = u.i[1]; 3711 u.i[1] = t; 3712 return u.r; 3713 } 3714 # define swapMixedEndianFloat(X) X = floatSwap(X) 3715 #else 3716 # define swapMixedEndianFloat(X) 3717 #endif 3718 3719 /* 3720 ** Write the serialized data blob for the value stored in pMem into 3721 ** buf. It is assumed that the caller has allocated sufficient space. 3722 ** Return the number of bytes written. 3723 ** 3724 ** nBuf is the amount of space left in buf[]. The caller is responsible 3725 ** for allocating enough space to buf[] to hold the entire field, exclusive 3726 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3727 ** 3728 ** Return the number of bytes actually written into buf[]. The number 3729 ** of bytes in the zero-filled tail is included in the return value only 3730 ** if those bytes were zeroed in buf[]. 3731 */ 3732 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3733 u32 len; 3734 3735 /* Integer and Real */ 3736 if( serial_type<=7 && serial_type>0 ){ 3737 u64 v; 3738 u32 i; 3739 if( serial_type==7 ){ 3740 assert( sizeof(v)==sizeof(pMem->u.r) ); 3741 memcpy(&v, &pMem->u.r, sizeof(v)); 3742 swapMixedEndianFloat(v); 3743 }else{ 3744 v = pMem->u.i; 3745 } 3746 len = i = sqlite3SmallTypeSizes[serial_type]; 3747 assert( i>0 ); 3748 do{ 3749 buf[--i] = (u8)(v&0xFF); 3750 v >>= 8; 3751 }while( i ); 3752 return len; 3753 } 3754 3755 /* String or blob */ 3756 if( serial_type>=12 ){ 3757 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3758 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3759 len = pMem->n; 3760 if( len>0 ) memcpy(buf, pMem->z, len); 3761 return len; 3762 } 3763 3764 /* NULL or constants 0 or 1 */ 3765 return 0; 3766 } 3767 3768 /* Input "x" is a sequence of unsigned characters that represent a 3769 ** big-endian integer. Return the equivalent native integer 3770 */ 3771 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3772 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3773 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3774 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3775 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3776 3777 /* 3778 ** Deserialize the data blob pointed to by buf as serial type serial_type 3779 ** and store the result in pMem. Return the number of bytes read. 3780 ** 3781 ** This function is implemented as two separate routines for performance. 3782 ** The few cases that require local variables are broken out into a separate 3783 ** routine so that in most cases the overhead of moving the stack pointer 3784 ** is avoided. 3785 */ 3786 static u32 serialGet( 3787 const unsigned char *buf, /* Buffer to deserialize from */ 3788 u32 serial_type, /* Serial type to deserialize */ 3789 Mem *pMem /* Memory cell to write value into */ 3790 ){ 3791 u64 x = FOUR_BYTE_UINT(buf); 3792 u32 y = FOUR_BYTE_UINT(buf+4); 3793 x = (x<<32) + y; 3794 if( serial_type==6 ){ 3795 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3796 ** twos-complement integer. */ 3797 pMem->u.i = *(i64*)&x; 3798 pMem->flags = MEM_Int; 3799 testcase( pMem->u.i<0 ); 3800 }else{ 3801 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3802 ** floating point number. */ 3803 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3804 /* Verify that integers and floating point values use the same 3805 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3806 ** defined that 64-bit floating point values really are mixed 3807 ** endian. 3808 */ 3809 static const u64 t1 = ((u64)0x3ff00000)<<32; 3810 static const double r1 = 1.0; 3811 u64 t2 = t1; 3812 swapMixedEndianFloat(t2); 3813 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3814 #endif 3815 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3816 swapMixedEndianFloat(x); 3817 memcpy(&pMem->u.r, &x, sizeof(x)); 3818 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real; 3819 } 3820 return 8; 3821 } 3822 u32 sqlite3VdbeSerialGet( 3823 const unsigned char *buf, /* Buffer to deserialize from */ 3824 u32 serial_type, /* Serial type to deserialize */ 3825 Mem *pMem /* Memory cell to write value into */ 3826 ){ 3827 switch( serial_type ){ 3828 case 10: { /* Internal use only: NULL with virtual table 3829 ** UPDATE no-change flag set */ 3830 pMem->flags = MEM_Null|MEM_Zero; 3831 pMem->n = 0; 3832 pMem->u.nZero = 0; 3833 break; 3834 } 3835 case 11: /* Reserved for future use */ 3836 case 0: { /* Null */ 3837 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3838 pMem->flags = MEM_Null; 3839 break; 3840 } 3841 case 1: { 3842 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3843 ** integer. */ 3844 pMem->u.i = ONE_BYTE_INT(buf); 3845 pMem->flags = MEM_Int; 3846 testcase( pMem->u.i<0 ); 3847 return 1; 3848 } 3849 case 2: { /* 2-byte signed integer */ 3850 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3851 ** twos-complement integer. */ 3852 pMem->u.i = TWO_BYTE_INT(buf); 3853 pMem->flags = MEM_Int; 3854 testcase( pMem->u.i<0 ); 3855 return 2; 3856 } 3857 case 3: { /* 3-byte signed integer */ 3858 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3859 ** twos-complement integer. */ 3860 pMem->u.i = THREE_BYTE_INT(buf); 3861 pMem->flags = MEM_Int; 3862 testcase( pMem->u.i<0 ); 3863 return 3; 3864 } 3865 case 4: { /* 4-byte signed integer */ 3866 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3867 ** twos-complement integer. */ 3868 pMem->u.i = FOUR_BYTE_INT(buf); 3869 #ifdef __HP_cc 3870 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3871 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3872 #endif 3873 pMem->flags = MEM_Int; 3874 testcase( pMem->u.i<0 ); 3875 return 4; 3876 } 3877 case 5: { /* 6-byte signed integer */ 3878 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3879 ** twos-complement integer. */ 3880 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3881 pMem->flags = MEM_Int; 3882 testcase( pMem->u.i<0 ); 3883 return 6; 3884 } 3885 case 6: /* 8-byte signed integer */ 3886 case 7: { /* IEEE floating point */ 3887 /* These use local variables, so do them in a separate routine 3888 ** to avoid having to move the frame pointer in the common case */ 3889 return serialGet(buf,serial_type,pMem); 3890 } 3891 case 8: /* Integer 0 */ 3892 case 9: { /* Integer 1 */ 3893 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3894 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3895 pMem->u.i = serial_type-8; 3896 pMem->flags = MEM_Int; 3897 return 0; 3898 } 3899 default: { 3900 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3901 ** length. 3902 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3903 ** (N-13)/2 bytes in length. */ 3904 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3905 pMem->z = (char *)buf; 3906 pMem->n = (serial_type-12)/2; 3907 pMem->flags = aFlag[serial_type&1]; 3908 return pMem->n; 3909 } 3910 } 3911 return 0; 3912 } 3913 /* 3914 ** This routine is used to allocate sufficient space for an UnpackedRecord 3915 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3916 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3917 ** 3918 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3919 ** the unaligned buffer passed via the second and third arguments (presumably 3920 ** stack space). If the former, then *ppFree is set to a pointer that should 3921 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3922 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3923 ** before returning. 3924 ** 3925 ** If an OOM error occurs, NULL is returned. 3926 */ 3927 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3928 KeyInfo *pKeyInfo /* Description of the record */ 3929 ){ 3930 UnpackedRecord *p; /* Unpacked record to return */ 3931 int nByte; /* Number of bytes required for *p */ 3932 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 3933 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3934 if( !p ) return 0; 3935 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3936 assert( pKeyInfo->aSortFlags!=0 ); 3937 p->pKeyInfo = pKeyInfo; 3938 p->nField = pKeyInfo->nKeyField + 1; 3939 return p; 3940 } 3941 3942 /* 3943 ** Given the nKey-byte encoding of a record in pKey[], populate the 3944 ** UnpackedRecord structure indicated by the fourth argument with the 3945 ** contents of the decoded record. 3946 */ 3947 void sqlite3VdbeRecordUnpack( 3948 KeyInfo *pKeyInfo, /* Information about the record format */ 3949 int nKey, /* Size of the binary record */ 3950 const void *pKey, /* The binary record */ 3951 UnpackedRecord *p /* Populate this structure before returning. */ 3952 ){ 3953 const unsigned char *aKey = (const unsigned char *)pKey; 3954 u32 d; 3955 u32 idx; /* Offset in aKey[] to read from */ 3956 u16 u; /* Unsigned loop counter */ 3957 u32 szHdr; 3958 Mem *pMem = p->aMem; 3959 3960 p->default_rc = 0; 3961 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3962 idx = getVarint32(aKey, szHdr); 3963 d = szHdr; 3964 u = 0; 3965 while( idx<szHdr && d<=(u32)nKey ){ 3966 u32 serial_type; 3967 3968 idx += getVarint32(&aKey[idx], serial_type); 3969 pMem->enc = pKeyInfo->enc; 3970 pMem->db = pKeyInfo->db; 3971 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 3972 pMem->szMalloc = 0; 3973 pMem->z = 0; 3974 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3975 pMem++; 3976 if( (++u)>=p->nField ) break; 3977 } 3978 if( d>(u32)nKey && u ){ 3979 assert( CORRUPT_DB ); 3980 /* In a corrupt record entry, the last pMem might have been set up using 3981 ** uninitialized memory. Overwrite its value with NULL, to prevent 3982 ** warnings from MSAN. */ 3983 sqlite3VdbeMemSetNull(pMem-1); 3984 } 3985 assert( u<=pKeyInfo->nKeyField + 1 ); 3986 p->nField = u; 3987 } 3988 3989 #ifdef SQLITE_DEBUG 3990 /* 3991 ** This function compares two index or table record keys in the same way 3992 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 3993 ** this function deserializes and compares values using the 3994 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 3995 ** in assert() statements to ensure that the optimized code in 3996 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 3997 ** 3998 ** Return true if the result of comparison is equivalent to desiredResult. 3999 ** Return false if there is a disagreement. 4000 */ 4001 static int vdbeRecordCompareDebug( 4002 int nKey1, const void *pKey1, /* Left key */ 4003 const UnpackedRecord *pPKey2, /* Right key */ 4004 int desiredResult /* Correct answer */ 4005 ){ 4006 u32 d1; /* Offset into aKey[] of next data element */ 4007 u32 idx1; /* Offset into aKey[] of next header element */ 4008 u32 szHdr1; /* Number of bytes in header */ 4009 int i = 0; 4010 int rc = 0; 4011 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4012 KeyInfo *pKeyInfo; 4013 Mem mem1; 4014 4015 pKeyInfo = pPKey2->pKeyInfo; 4016 if( pKeyInfo->db==0 ) return 1; 4017 mem1.enc = pKeyInfo->enc; 4018 mem1.db = pKeyInfo->db; 4019 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 4020 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4021 4022 /* Compilers may complain that mem1.u.i is potentially uninitialized. 4023 ** We could initialize it, as shown here, to silence those complaints. 4024 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 4025 ** the unnecessary initialization has a measurable negative performance 4026 ** impact, since this routine is a very high runner. And so, we choose 4027 ** to ignore the compiler warnings and leave this variable uninitialized. 4028 */ 4029 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 4030 4031 idx1 = getVarint32(aKey1, szHdr1); 4032 if( szHdr1>98307 ) return SQLITE_CORRUPT; 4033 d1 = szHdr1; 4034 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 4035 assert( pKeyInfo->aSortFlags!=0 ); 4036 assert( pKeyInfo->nKeyField>0 ); 4037 assert( idx1<=szHdr1 || CORRUPT_DB ); 4038 do{ 4039 u32 serial_type1; 4040 4041 /* Read the serial types for the next element in each key. */ 4042 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 4043 4044 /* Verify that there is enough key space remaining to avoid 4045 ** a buffer overread. The "d1+serial_type1+2" subexpression will 4046 ** always be greater than or equal to the amount of required key space. 4047 ** Use that approximation to avoid the more expensive call to 4048 ** sqlite3VdbeSerialTypeLen() in the common case. 4049 */ 4050 if( d1+(u64)serial_type1+2>(u64)nKey1 4051 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 4052 ){ 4053 break; 4054 } 4055 4056 /* Extract the values to be compared. 4057 */ 4058 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 4059 4060 /* Do the comparison 4061 */ 4062 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], 4063 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0); 4064 if( rc!=0 ){ 4065 assert( mem1.szMalloc==0 ); /* See comment below */ 4066 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 4067 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null)) 4068 ){ 4069 rc = -rc; 4070 } 4071 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){ 4072 rc = -rc; /* Invert the result for DESC sort order. */ 4073 } 4074 goto debugCompareEnd; 4075 } 4076 i++; 4077 }while( idx1<szHdr1 && i<pPKey2->nField ); 4078 4079 /* No memory allocation is ever used on mem1. Prove this using 4080 ** the following assert(). If the assert() fails, it indicates a 4081 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 4082 */ 4083 assert( mem1.szMalloc==0 ); 4084 4085 /* rc==0 here means that one of the keys ran out of fields and 4086 ** all the fields up to that point were equal. Return the default_rc 4087 ** value. */ 4088 rc = pPKey2->default_rc; 4089 4090 debugCompareEnd: 4091 if( desiredResult==0 && rc==0 ) return 1; 4092 if( desiredResult<0 && rc<0 ) return 1; 4093 if( desiredResult>0 && rc>0 ) return 1; 4094 if( CORRUPT_DB ) return 1; 4095 if( pKeyInfo->db->mallocFailed ) return 1; 4096 return 0; 4097 } 4098 #endif 4099 4100 #ifdef SQLITE_DEBUG 4101 /* 4102 ** Count the number of fields (a.k.a. columns) in the record given by 4103 ** pKey,nKey. The verify that this count is less than or equal to the 4104 ** limit given by pKeyInfo->nAllField. 4105 ** 4106 ** If this constraint is not satisfied, it means that the high-speed 4107 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 4108 ** not work correctly. If this assert() ever fires, it probably means 4109 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 4110 ** incorrectly. 4111 */ 4112 static void vdbeAssertFieldCountWithinLimits( 4113 int nKey, const void *pKey, /* The record to verify */ 4114 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 4115 ){ 4116 int nField = 0; 4117 u32 szHdr; 4118 u32 idx; 4119 u32 notUsed; 4120 const unsigned char *aKey = (const unsigned char*)pKey; 4121 4122 if( CORRUPT_DB ) return; 4123 idx = getVarint32(aKey, szHdr); 4124 assert( nKey>=0 ); 4125 assert( szHdr<=(u32)nKey ); 4126 while( idx<szHdr ){ 4127 idx += getVarint32(aKey+idx, notUsed); 4128 nField++; 4129 } 4130 assert( nField <= pKeyInfo->nAllField ); 4131 } 4132 #else 4133 # define vdbeAssertFieldCountWithinLimits(A,B,C) 4134 #endif 4135 4136 /* 4137 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 4138 ** using the collation sequence pColl. As usual, return a negative , zero 4139 ** or positive value if *pMem1 is less than, equal to or greater than 4140 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 4141 */ 4142 static int vdbeCompareMemString( 4143 const Mem *pMem1, 4144 const Mem *pMem2, 4145 const CollSeq *pColl, 4146 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 4147 ){ 4148 if( pMem1->enc==pColl->enc ){ 4149 /* The strings are already in the correct encoding. Call the 4150 ** comparison function directly */ 4151 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 4152 }else{ 4153 int rc; 4154 const void *v1, *v2; 4155 Mem c1; 4156 Mem c2; 4157 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 4158 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 4159 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 4160 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 4161 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 4162 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 4163 if( (v1==0 || v2==0) ){ 4164 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 4165 rc = 0; 4166 }else{ 4167 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 4168 } 4169 sqlite3VdbeMemRelease(&c1); 4170 sqlite3VdbeMemRelease(&c2); 4171 return rc; 4172 } 4173 } 4174 4175 /* 4176 ** The input pBlob is guaranteed to be a Blob that is not marked 4177 ** with MEM_Zero. Return true if it could be a zero-blob. 4178 */ 4179 static int isAllZero(const char *z, int n){ 4180 int i; 4181 for(i=0; i<n; i++){ 4182 if( z[i] ) return 0; 4183 } 4184 return 1; 4185 } 4186 4187 /* 4188 ** Compare two blobs. Return negative, zero, or positive if the first 4189 ** is less than, equal to, or greater than the second, respectively. 4190 ** If one blob is a prefix of the other, then the shorter is the lessor. 4191 */ 4192 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 4193 int c; 4194 int n1 = pB1->n; 4195 int n2 = pB2->n; 4196 4197 /* It is possible to have a Blob value that has some non-zero content 4198 ** followed by zero content. But that only comes up for Blobs formed 4199 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 4200 ** sqlite3MemCompare(). */ 4201 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 4202 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 4203 4204 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 4205 if( pB1->flags & pB2->flags & MEM_Zero ){ 4206 return pB1->u.nZero - pB2->u.nZero; 4207 }else if( pB1->flags & MEM_Zero ){ 4208 if( !isAllZero(pB2->z, pB2->n) ) return -1; 4209 return pB1->u.nZero - n2; 4210 }else{ 4211 if( !isAllZero(pB1->z, pB1->n) ) return +1; 4212 return n1 - pB2->u.nZero; 4213 } 4214 } 4215 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 4216 if( c ) return c; 4217 return n1 - n2; 4218 } 4219 4220 /* 4221 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 4222 ** number. Return negative, zero, or positive if the first (i64) is less than, 4223 ** equal to, or greater than the second (double). 4224 */ 4225 static int sqlite3IntFloatCompare(i64 i, double r){ 4226 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 4227 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 4228 if( x<r ) return -1; 4229 if( x>r ) return +1; 4230 return 0; 4231 }else{ 4232 i64 y; 4233 double s; 4234 if( r<-9223372036854775808.0 ) return +1; 4235 if( r>=9223372036854775808.0 ) return -1; 4236 y = (i64)r; 4237 if( i<y ) return -1; 4238 if( i>y ) return +1; 4239 s = (double)i; 4240 if( s<r ) return -1; 4241 if( s>r ) return +1; 4242 return 0; 4243 } 4244 } 4245 4246 /* 4247 ** Compare the values contained by the two memory cells, returning 4248 ** negative, zero or positive if pMem1 is less than, equal to, or greater 4249 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 4250 ** and reals) sorted numerically, followed by text ordered by the collating 4251 ** sequence pColl and finally blob's ordered by memcmp(). 4252 ** 4253 ** Two NULL values are considered equal by this function. 4254 */ 4255 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 4256 int f1, f2; 4257 int combined_flags; 4258 4259 f1 = pMem1->flags; 4260 f2 = pMem2->flags; 4261 combined_flags = f1|f2; 4262 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); 4263 4264 /* If one value is NULL, it is less than the other. If both values 4265 ** are NULL, return 0. 4266 */ 4267 if( combined_flags&MEM_Null ){ 4268 return (f2&MEM_Null) - (f1&MEM_Null); 4269 } 4270 4271 /* At least one of the two values is a number 4272 */ 4273 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ 4274 testcase( combined_flags & MEM_Int ); 4275 testcase( combined_flags & MEM_Real ); 4276 testcase( combined_flags & MEM_IntReal ); 4277 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ 4278 testcase( f1 & f2 & MEM_Int ); 4279 testcase( f1 & f2 & MEM_IntReal ); 4280 if( pMem1->u.i < pMem2->u.i ) return -1; 4281 if( pMem1->u.i > pMem2->u.i ) return +1; 4282 return 0; 4283 } 4284 if( (f1 & f2 & MEM_Real)!=0 ){ 4285 if( pMem1->u.r < pMem2->u.r ) return -1; 4286 if( pMem1->u.r > pMem2->u.r ) return +1; 4287 return 0; 4288 } 4289 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ 4290 testcase( f1 & MEM_Int ); 4291 testcase( f1 & MEM_IntReal ); 4292 if( (f2&MEM_Real)!=0 ){ 4293 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 4294 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4295 if( pMem1->u.i < pMem2->u.i ) return -1; 4296 if( pMem1->u.i > pMem2->u.i ) return +1; 4297 return 0; 4298 }else{ 4299 return -1; 4300 } 4301 } 4302 if( (f1&MEM_Real)!=0 ){ 4303 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4304 testcase( f2 & MEM_Int ); 4305 testcase( f2 & MEM_IntReal ); 4306 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 4307 }else{ 4308 return -1; 4309 } 4310 } 4311 return +1; 4312 } 4313 4314 /* If one value is a string and the other is a blob, the string is less. 4315 ** If both are strings, compare using the collating functions. 4316 */ 4317 if( combined_flags&MEM_Str ){ 4318 if( (f1 & MEM_Str)==0 ){ 4319 return 1; 4320 } 4321 if( (f2 & MEM_Str)==0 ){ 4322 return -1; 4323 } 4324 4325 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 4326 assert( pMem1->enc==SQLITE_UTF8 || 4327 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 4328 4329 /* The collation sequence must be defined at this point, even if 4330 ** the user deletes the collation sequence after the vdbe program is 4331 ** compiled (this was not always the case). 4332 */ 4333 assert( !pColl || pColl->xCmp ); 4334 4335 if( pColl ){ 4336 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 4337 } 4338 /* If a NULL pointer was passed as the collate function, fall through 4339 ** to the blob case and use memcmp(). */ 4340 } 4341 4342 /* Both values must be blobs. Compare using memcmp(). */ 4343 return sqlite3BlobCompare(pMem1, pMem2); 4344 } 4345 4346 4347 /* 4348 ** The first argument passed to this function is a serial-type that 4349 ** corresponds to an integer - all values between 1 and 9 inclusive 4350 ** except 7. The second points to a buffer containing an integer value 4351 ** serialized according to serial_type. This function deserializes 4352 ** and returns the value. 4353 */ 4354 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 4355 u32 y; 4356 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 4357 switch( serial_type ){ 4358 case 0: 4359 case 1: 4360 testcase( aKey[0]&0x80 ); 4361 return ONE_BYTE_INT(aKey); 4362 case 2: 4363 testcase( aKey[0]&0x80 ); 4364 return TWO_BYTE_INT(aKey); 4365 case 3: 4366 testcase( aKey[0]&0x80 ); 4367 return THREE_BYTE_INT(aKey); 4368 case 4: { 4369 testcase( aKey[0]&0x80 ); 4370 y = FOUR_BYTE_UINT(aKey); 4371 return (i64)*(int*)&y; 4372 } 4373 case 5: { 4374 testcase( aKey[0]&0x80 ); 4375 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4376 } 4377 case 6: { 4378 u64 x = FOUR_BYTE_UINT(aKey); 4379 testcase( aKey[0]&0x80 ); 4380 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4381 return (i64)*(i64*)&x; 4382 } 4383 } 4384 4385 return (serial_type - 8); 4386 } 4387 4388 /* 4389 ** This function compares the two table rows or index records 4390 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 4391 ** or positive integer if key1 is less than, equal to or 4392 ** greater than key2. The {nKey1, pKey1} key must be a blob 4393 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 4394 ** key must be a parsed key such as obtained from 4395 ** sqlite3VdbeParseRecord. 4396 ** 4397 ** If argument bSkip is non-zero, it is assumed that the caller has already 4398 ** determined that the first fields of the keys are equal. 4399 ** 4400 ** Key1 and Key2 do not have to contain the same number of fields. If all 4401 ** fields that appear in both keys are equal, then pPKey2->default_rc is 4402 ** returned. 4403 ** 4404 ** If database corruption is discovered, set pPKey2->errCode to 4405 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 4406 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 4407 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 4408 */ 4409 int sqlite3VdbeRecordCompareWithSkip( 4410 int nKey1, const void *pKey1, /* Left key */ 4411 UnpackedRecord *pPKey2, /* Right key */ 4412 int bSkip /* If true, skip the first field */ 4413 ){ 4414 u32 d1; /* Offset into aKey[] of next data element */ 4415 int i; /* Index of next field to compare */ 4416 u32 szHdr1; /* Size of record header in bytes */ 4417 u32 idx1; /* Offset of first type in header */ 4418 int rc = 0; /* Return value */ 4419 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 4420 KeyInfo *pKeyInfo; 4421 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4422 Mem mem1; 4423 4424 /* If bSkip is true, then the caller has already determined that the first 4425 ** two elements in the keys are equal. Fix the various stack variables so 4426 ** that this routine begins comparing at the second field. */ 4427 if( bSkip ){ 4428 u32 s1; 4429 idx1 = 1 + getVarint32(&aKey1[1], s1); 4430 szHdr1 = aKey1[0]; 4431 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 4432 i = 1; 4433 pRhs++; 4434 }else{ 4435 idx1 = getVarint32(aKey1, szHdr1); 4436 d1 = szHdr1; 4437 i = 0; 4438 } 4439 if( d1>(unsigned)nKey1 ){ 4440 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4441 return 0; /* Corruption */ 4442 } 4443 4444 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4445 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 4446 || CORRUPT_DB ); 4447 assert( pPKey2->pKeyInfo->aSortFlags!=0 ); 4448 assert( pPKey2->pKeyInfo->nKeyField>0 ); 4449 assert( idx1<=szHdr1 || CORRUPT_DB ); 4450 do{ 4451 u32 serial_type; 4452 4453 /* RHS is an integer */ 4454 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ 4455 testcase( pRhs->flags & MEM_Int ); 4456 testcase( pRhs->flags & MEM_IntReal ); 4457 serial_type = aKey1[idx1]; 4458 testcase( serial_type==12 ); 4459 if( serial_type>=10 ){ 4460 rc = +1; 4461 }else if( serial_type==0 ){ 4462 rc = -1; 4463 }else if( serial_type==7 ){ 4464 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4465 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4466 }else{ 4467 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4468 i64 rhs = pRhs->u.i; 4469 if( lhs<rhs ){ 4470 rc = -1; 4471 }else if( lhs>rhs ){ 4472 rc = +1; 4473 } 4474 } 4475 } 4476 4477 /* RHS is real */ 4478 else if( pRhs->flags & MEM_Real ){ 4479 serial_type = aKey1[idx1]; 4480 if( serial_type>=10 ){ 4481 /* Serial types 12 or greater are strings and blobs (greater than 4482 ** numbers). Types 10 and 11 are currently "reserved for future 4483 ** use", so it doesn't really matter what the results of comparing 4484 ** them to numberic values are. */ 4485 rc = +1; 4486 }else if( serial_type==0 ){ 4487 rc = -1; 4488 }else{ 4489 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4490 if( serial_type==7 ){ 4491 if( mem1.u.r<pRhs->u.r ){ 4492 rc = -1; 4493 }else if( mem1.u.r>pRhs->u.r ){ 4494 rc = +1; 4495 } 4496 }else{ 4497 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4498 } 4499 } 4500 } 4501 4502 /* RHS is a string */ 4503 else if( pRhs->flags & MEM_Str ){ 4504 getVarint32(&aKey1[idx1], serial_type); 4505 testcase( serial_type==12 ); 4506 if( serial_type<12 ){ 4507 rc = -1; 4508 }else if( !(serial_type & 0x01) ){ 4509 rc = +1; 4510 }else{ 4511 mem1.n = (serial_type - 12) / 2; 4512 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4513 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4514 if( (d1+mem1.n) > (unsigned)nKey1 4515 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i 4516 ){ 4517 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4518 return 0; /* Corruption */ 4519 }else if( pKeyInfo->aColl[i] ){ 4520 mem1.enc = pKeyInfo->enc; 4521 mem1.db = pKeyInfo->db; 4522 mem1.flags = MEM_Str; 4523 mem1.z = (char*)&aKey1[d1]; 4524 rc = vdbeCompareMemString( 4525 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4526 ); 4527 }else{ 4528 int nCmp = MIN(mem1.n, pRhs->n); 4529 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4530 if( rc==0 ) rc = mem1.n - pRhs->n; 4531 } 4532 } 4533 } 4534 4535 /* RHS is a blob */ 4536 else if( pRhs->flags & MEM_Blob ){ 4537 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4538 getVarint32(&aKey1[idx1], serial_type); 4539 testcase( serial_type==12 ); 4540 if( serial_type<12 || (serial_type & 0x01) ){ 4541 rc = -1; 4542 }else{ 4543 int nStr = (serial_type - 12) / 2; 4544 testcase( (d1+nStr)==(unsigned)nKey1 ); 4545 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4546 if( (d1+nStr) > (unsigned)nKey1 ){ 4547 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4548 return 0; /* Corruption */ 4549 }else if( pRhs->flags & MEM_Zero ){ 4550 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4551 rc = 1; 4552 }else{ 4553 rc = nStr - pRhs->u.nZero; 4554 } 4555 }else{ 4556 int nCmp = MIN(nStr, pRhs->n); 4557 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4558 if( rc==0 ) rc = nStr - pRhs->n; 4559 } 4560 } 4561 } 4562 4563 /* RHS is null */ 4564 else{ 4565 serial_type = aKey1[idx1]; 4566 rc = (serial_type!=0); 4567 } 4568 4569 if( rc!=0 ){ 4570 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i]; 4571 if( sortFlags ){ 4572 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0 4573 || ((sortFlags & KEYINFO_ORDER_DESC) 4574 !=(serial_type==0 || (pRhs->flags&MEM_Null))) 4575 ){ 4576 rc = -rc; 4577 } 4578 } 4579 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4580 assert( mem1.szMalloc==0 ); /* See comment below */ 4581 return rc; 4582 } 4583 4584 i++; 4585 if( i==pPKey2->nField ) break; 4586 pRhs++; 4587 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4588 idx1 += sqlite3VarintLen(serial_type); 4589 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 ); 4590 4591 /* No memory allocation is ever used on mem1. Prove this using 4592 ** the following assert(). If the assert() fails, it indicates a 4593 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4594 assert( mem1.szMalloc==0 ); 4595 4596 /* rc==0 here means that one or both of the keys ran out of fields and 4597 ** all the fields up to that point were equal. Return the default_rc 4598 ** value. */ 4599 assert( CORRUPT_DB 4600 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4601 || pPKey2->pKeyInfo->db->mallocFailed 4602 ); 4603 pPKey2->eqSeen = 1; 4604 return pPKey2->default_rc; 4605 } 4606 int sqlite3VdbeRecordCompare( 4607 int nKey1, const void *pKey1, /* Left key */ 4608 UnpackedRecord *pPKey2 /* Right key */ 4609 ){ 4610 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4611 } 4612 4613 4614 /* 4615 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4616 ** that (a) the first field of pPKey2 is an integer, and (b) the 4617 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4618 ** byte (i.e. is less than 128). 4619 ** 4620 ** To avoid concerns about buffer overreads, this routine is only used 4621 ** on schemas where the maximum valid header size is 63 bytes or less. 4622 */ 4623 static int vdbeRecordCompareInt( 4624 int nKey1, const void *pKey1, /* Left key */ 4625 UnpackedRecord *pPKey2 /* Right key */ 4626 ){ 4627 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4628 int serial_type = ((const u8*)pKey1)[1]; 4629 int res; 4630 u32 y; 4631 u64 x; 4632 i64 v; 4633 i64 lhs; 4634 4635 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4636 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4637 switch( serial_type ){ 4638 case 1: { /* 1-byte signed integer */ 4639 lhs = ONE_BYTE_INT(aKey); 4640 testcase( lhs<0 ); 4641 break; 4642 } 4643 case 2: { /* 2-byte signed integer */ 4644 lhs = TWO_BYTE_INT(aKey); 4645 testcase( lhs<0 ); 4646 break; 4647 } 4648 case 3: { /* 3-byte signed integer */ 4649 lhs = THREE_BYTE_INT(aKey); 4650 testcase( lhs<0 ); 4651 break; 4652 } 4653 case 4: { /* 4-byte signed integer */ 4654 y = FOUR_BYTE_UINT(aKey); 4655 lhs = (i64)*(int*)&y; 4656 testcase( lhs<0 ); 4657 break; 4658 } 4659 case 5: { /* 6-byte signed integer */ 4660 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4661 testcase( lhs<0 ); 4662 break; 4663 } 4664 case 6: { /* 8-byte signed integer */ 4665 x = FOUR_BYTE_UINT(aKey); 4666 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4667 lhs = *(i64*)&x; 4668 testcase( lhs<0 ); 4669 break; 4670 } 4671 case 8: 4672 lhs = 0; 4673 break; 4674 case 9: 4675 lhs = 1; 4676 break; 4677 4678 /* This case could be removed without changing the results of running 4679 ** this code. Including it causes gcc to generate a faster switch 4680 ** statement (since the range of switch targets now starts at zero and 4681 ** is contiguous) but does not cause any duplicate code to be generated 4682 ** (as gcc is clever enough to combine the two like cases). Other 4683 ** compilers might be similar. */ 4684 case 0: case 7: 4685 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4686 4687 default: 4688 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4689 } 4690 4691 v = pPKey2->aMem[0].u.i; 4692 if( v>lhs ){ 4693 res = pPKey2->r1; 4694 }else if( v<lhs ){ 4695 res = pPKey2->r2; 4696 }else if( pPKey2->nField>1 ){ 4697 /* The first fields of the two keys are equal. Compare the trailing 4698 ** fields. */ 4699 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4700 }else{ 4701 /* The first fields of the two keys are equal and there are no trailing 4702 ** fields. Return pPKey2->default_rc in this case. */ 4703 res = pPKey2->default_rc; 4704 pPKey2->eqSeen = 1; 4705 } 4706 4707 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4708 return res; 4709 } 4710 4711 /* 4712 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4713 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4714 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4715 ** at the start of (pKey1/nKey1) fits in a single byte. 4716 */ 4717 static int vdbeRecordCompareString( 4718 int nKey1, const void *pKey1, /* Left key */ 4719 UnpackedRecord *pPKey2 /* Right key */ 4720 ){ 4721 const u8 *aKey1 = (const u8*)pKey1; 4722 int serial_type; 4723 int res; 4724 4725 assert( pPKey2->aMem[0].flags & MEM_Str ); 4726 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4727 getVarint32(&aKey1[1], serial_type); 4728 if( serial_type<12 ){ 4729 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4730 }else if( !(serial_type & 0x01) ){ 4731 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4732 }else{ 4733 int nCmp; 4734 int nStr; 4735 int szHdr = aKey1[0]; 4736 4737 nStr = (serial_type-12) / 2; 4738 if( (szHdr + nStr) > nKey1 ){ 4739 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4740 return 0; /* Corruption */ 4741 } 4742 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4743 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4744 4745 if( res>0 ){ 4746 res = pPKey2->r2; 4747 }else if( res<0 ){ 4748 res = pPKey2->r1; 4749 }else{ 4750 res = nStr - pPKey2->aMem[0].n; 4751 if( res==0 ){ 4752 if( pPKey2->nField>1 ){ 4753 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4754 }else{ 4755 res = pPKey2->default_rc; 4756 pPKey2->eqSeen = 1; 4757 } 4758 }else if( res>0 ){ 4759 res = pPKey2->r2; 4760 }else{ 4761 res = pPKey2->r1; 4762 } 4763 } 4764 } 4765 4766 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4767 || CORRUPT_DB 4768 || pPKey2->pKeyInfo->db->mallocFailed 4769 ); 4770 return res; 4771 } 4772 4773 /* 4774 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4775 ** suitable for comparing serialized records to the unpacked record passed 4776 ** as the only argument. 4777 */ 4778 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4779 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4780 ** that the size-of-header varint that occurs at the start of each record 4781 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4782 ** also assumes that it is safe to overread a buffer by at least the 4783 ** maximum possible legal header size plus 8 bytes. Because there is 4784 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4785 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4786 ** limit the size of the header to 64 bytes in cases where the first field 4787 ** is an integer. 4788 ** 4789 ** The easiest way to enforce this limit is to consider only records with 4790 ** 13 fields or less. If the first field is an integer, the maximum legal 4791 ** header size is (12*5 + 1 + 1) bytes. */ 4792 if( p->pKeyInfo->nAllField<=13 ){ 4793 int flags = p->aMem[0].flags; 4794 if( p->pKeyInfo->aSortFlags[0] ){ 4795 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){ 4796 return sqlite3VdbeRecordCompare; 4797 } 4798 p->r1 = 1; 4799 p->r2 = -1; 4800 }else{ 4801 p->r1 = -1; 4802 p->r2 = 1; 4803 } 4804 if( (flags & MEM_Int) ){ 4805 return vdbeRecordCompareInt; 4806 } 4807 testcase( flags & MEM_Real ); 4808 testcase( flags & MEM_Null ); 4809 testcase( flags & MEM_Blob ); 4810 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 4811 && p->pKeyInfo->aColl[0]==0 4812 ){ 4813 assert( flags & MEM_Str ); 4814 return vdbeRecordCompareString; 4815 } 4816 } 4817 4818 return sqlite3VdbeRecordCompare; 4819 } 4820 4821 /* 4822 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4823 ** Read the rowid (the last field in the record) and store it in *rowid. 4824 ** Return SQLITE_OK if everything works, or an error code otherwise. 4825 ** 4826 ** pCur might be pointing to text obtained from a corrupt database file. 4827 ** So the content cannot be trusted. Do appropriate checks on the content. 4828 */ 4829 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4830 i64 nCellKey = 0; 4831 int rc; 4832 u32 szHdr; /* Size of the header */ 4833 u32 typeRowid; /* Serial type of the rowid */ 4834 u32 lenRowid; /* Size of the rowid */ 4835 Mem m, v; 4836 4837 /* Get the size of the index entry. Only indices entries of less 4838 ** than 2GiB are support - anything large must be database corruption. 4839 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4840 ** this code can safely assume that nCellKey is 32-bits 4841 */ 4842 assert( sqlite3BtreeCursorIsValid(pCur) ); 4843 nCellKey = sqlite3BtreePayloadSize(pCur); 4844 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4845 4846 /* Read in the complete content of the index entry */ 4847 sqlite3VdbeMemInit(&m, db, 0); 4848 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4849 if( rc ){ 4850 return rc; 4851 } 4852 4853 /* The index entry must begin with a header size */ 4854 (void)getVarint32((u8*)m.z, szHdr); 4855 testcase( szHdr==3 ); 4856 testcase( szHdr==m.n ); 4857 testcase( szHdr>0x7fffffff ); 4858 assert( m.n>=0 ); 4859 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ 4860 goto idx_rowid_corruption; 4861 } 4862 4863 /* The last field of the index should be an integer - the ROWID. 4864 ** Verify that the last entry really is an integer. */ 4865 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 4866 testcase( typeRowid==1 ); 4867 testcase( typeRowid==2 ); 4868 testcase( typeRowid==3 ); 4869 testcase( typeRowid==4 ); 4870 testcase( typeRowid==5 ); 4871 testcase( typeRowid==6 ); 4872 testcase( typeRowid==8 ); 4873 testcase( typeRowid==9 ); 4874 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4875 goto idx_rowid_corruption; 4876 } 4877 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4878 testcase( (u32)m.n==szHdr+lenRowid ); 4879 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4880 goto idx_rowid_corruption; 4881 } 4882 4883 /* Fetch the integer off the end of the index record */ 4884 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4885 *rowid = v.u.i; 4886 sqlite3VdbeMemRelease(&m); 4887 return SQLITE_OK; 4888 4889 /* Jump here if database corruption is detected after m has been 4890 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4891 idx_rowid_corruption: 4892 testcase( m.szMalloc!=0 ); 4893 sqlite3VdbeMemRelease(&m); 4894 return SQLITE_CORRUPT_BKPT; 4895 } 4896 4897 /* 4898 ** Compare the key of the index entry that cursor pC is pointing to against 4899 ** the key string in pUnpacked. Write into *pRes a number 4900 ** that is negative, zero, or positive if pC is less than, equal to, 4901 ** or greater than pUnpacked. Return SQLITE_OK on success. 4902 ** 4903 ** pUnpacked is either created without a rowid or is truncated so that it 4904 ** omits the rowid at the end. The rowid at the end of the index entry 4905 ** is ignored as well. Hence, this routine only compares the prefixes 4906 ** of the keys prior to the final rowid, not the entire key. 4907 */ 4908 int sqlite3VdbeIdxKeyCompare( 4909 sqlite3 *db, /* Database connection */ 4910 VdbeCursor *pC, /* The cursor to compare against */ 4911 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4912 int *res /* Write the comparison result here */ 4913 ){ 4914 i64 nCellKey = 0; 4915 int rc; 4916 BtCursor *pCur; 4917 Mem m; 4918 4919 assert( pC->eCurType==CURTYPE_BTREE ); 4920 pCur = pC->uc.pCursor; 4921 assert( sqlite3BtreeCursorIsValid(pCur) ); 4922 nCellKey = sqlite3BtreePayloadSize(pCur); 4923 /* nCellKey will always be between 0 and 0xffffffff because of the way 4924 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4925 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4926 *res = 0; 4927 return SQLITE_CORRUPT_BKPT; 4928 } 4929 sqlite3VdbeMemInit(&m, db, 0); 4930 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4931 if( rc ){ 4932 return rc; 4933 } 4934 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); 4935 sqlite3VdbeMemRelease(&m); 4936 return SQLITE_OK; 4937 } 4938 4939 /* 4940 ** This routine sets the value to be returned by subsequent calls to 4941 ** sqlite3_changes() on the database handle 'db'. 4942 */ 4943 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 4944 assert( sqlite3_mutex_held(db->mutex) ); 4945 db->nChange = nChange; 4946 db->nTotalChange += nChange; 4947 } 4948 4949 /* 4950 ** Set a flag in the vdbe to update the change counter when it is finalised 4951 ** or reset. 4952 */ 4953 void sqlite3VdbeCountChanges(Vdbe *v){ 4954 v->changeCntOn = 1; 4955 } 4956 4957 /* 4958 ** Mark every prepared statement associated with a database connection 4959 ** as expired. 4960 ** 4961 ** An expired statement means that recompilation of the statement is 4962 ** recommend. Statements expire when things happen that make their 4963 ** programs obsolete. Removing user-defined functions or collating 4964 ** sequences, or changing an authorization function are the types of 4965 ** things that make prepared statements obsolete. 4966 ** 4967 ** If iCode is 1, then expiration is advisory. The statement should 4968 ** be reprepared before being restarted, but if it is already running 4969 ** it is allowed to run to completion. 4970 ** 4971 ** Internally, this function just sets the Vdbe.expired flag on all 4972 ** prepared statements. The flag is set to 1 for an immediate expiration 4973 ** and set to 2 for an advisory expiration. 4974 */ 4975 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ 4976 Vdbe *p; 4977 for(p = db->pVdbe; p; p=p->pNext){ 4978 p->expired = iCode+1; 4979 } 4980 } 4981 4982 /* 4983 ** Return the database associated with the Vdbe. 4984 */ 4985 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 4986 return v->db; 4987 } 4988 4989 /* 4990 ** Return the SQLITE_PREPARE flags for a Vdbe. 4991 */ 4992 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 4993 return v->prepFlags; 4994 } 4995 4996 /* 4997 ** Return a pointer to an sqlite3_value structure containing the value bound 4998 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 4999 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 5000 ** constants) to the value before returning it. 5001 ** 5002 ** The returned value must be freed by the caller using sqlite3ValueFree(). 5003 */ 5004 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 5005 assert( iVar>0 ); 5006 if( v ){ 5007 Mem *pMem = &v->aVar[iVar-1]; 5008 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5009 if( 0==(pMem->flags & MEM_Null) ){ 5010 sqlite3_value *pRet = sqlite3ValueNew(v->db); 5011 if( pRet ){ 5012 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 5013 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 5014 } 5015 return pRet; 5016 } 5017 } 5018 return 0; 5019 } 5020 5021 /* 5022 ** Configure SQL variable iVar so that binding a new value to it signals 5023 ** to sqlite3_reoptimize() that re-preparing the statement may result 5024 ** in a better query plan. 5025 */ 5026 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 5027 assert( iVar>0 ); 5028 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5029 if( iVar>=32 ){ 5030 v->expmask |= 0x80000000; 5031 }else{ 5032 v->expmask |= ((u32)1 << (iVar-1)); 5033 } 5034 } 5035 5036 /* 5037 ** Cause a function to throw an error if it was call from OP_PureFunc 5038 ** rather than OP_Function. 5039 ** 5040 ** OP_PureFunc means that the function must be deterministic, and should 5041 ** throw an error if it is given inputs that would make it non-deterministic. 5042 ** This routine is invoked by date/time functions that use non-deterministic 5043 ** features such as 'now'. 5044 */ 5045 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 5046 const VdbeOp *pOp; 5047 #ifdef SQLITE_ENABLE_STAT4 5048 if( pCtx->pVdbe==0 ) return 1; 5049 #endif 5050 pOp = pCtx->pVdbe->aOp + pCtx->iOp; 5051 if( pOp->opcode==OP_PureFunc ){ 5052 const char *zContext; 5053 char *zMsg; 5054 if( pOp->p5 & NC_IsCheck ){ 5055 zContext = "a CHECK constraint"; 5056 }else if( pOp->p5 & NC_GenCol ){ 5057 zContext = "a generated column"; 5058 }else{ 5059 zContext = "an index"; 5060 } 5061 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s", 5062 pCtx->pFunc->zName, zContext); 5063 sqlite3_result_error(pCtx, zMsg, -1); 5064 sqlite3_free(zMsg); 5065 return 0; 5066 } 5067 return 1; 5068 } 5069 5070 #ifndef SQLITE_OMIT_VIRTUALTABLE 5071 /* 5072 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 5073 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 5074 ** in memory obtained from sqlite3DbMalloc). 5075 */ 5076 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 5077 if( pVtab->zErrMsg ){ 5078 sqlite3 *db = p->db; 5079 sqlite3DbFree(db, p->zErrMsg); 5080 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 5081 sqlite3_free(pVtab->zErrMsg); 5082 pVtab->zErrMsg = 0; 5083 } 5084 } 5085 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5086 5087 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5088 5089 /* 5090 ** If the second argument is not NULL, release any allocations associated 5091 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 5092 ** structure itself, using sqlite3DbFree(). 5093 ** 5094 ** This function is used to free UnpackedRecord structures allocated by 5095 ** the vdbeUnpackRecord() function found in vdbeapi.c. 5096 */ 5097 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 5098 if( p ){ 5099 int i; 5100 for(i=0; i<nField; i++){ 5101 Mem *pMem = &p->aMem[i]; 5102 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem); 5103 } 5104 sqlite3DbFreeNN(db, p); 5105 } 5106 } 5107 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5108 5109 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5110 /* 5111 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 5112 ** then cursor passed as the second argument should point to the row about 5113 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 5114 ** the required value will be read from the row the cursor points to. 5115 */ 5116 void sqlite3VdbePreUpdateHook( 5117 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 5118 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 5119 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 5120 const char *zDb, /* Database name */ 5121 Table *pTab, /* Modified table */ 5122 i64 iKey1, /* Initial key value */ 5123 int iReg /* Register for new.* record */ 5124 ){ 5125 sqlite3 *db = v->db; 5126 i64 iKey2; 5127 PreUpdate preupdate; 5128 const char *zTbl = pTab->zName; 5129 static const u8 fakeSortOrder = 0; 5130 5131 assert( db->pPreUpdate==0 ); 5132 memset(&preupdate, 0, sizeof(PreUpdate)); 5133 if( HasRowid(pTab)==0 ){ 5134 iKey1 = iKey2 = 0; 5135 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 5136 }else{ 5137 if( op==SQLITE_UPDATE ){ 5138 iKey2 = v->aMem[iReg].u.i; 5139 }else{ 5140 iKey2 = iKey1; 5141 } 5142 } 5143 5144 assert( pCsr->nField==pTab->nCol 5145 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 5146 ); 5147 5148 preupdate.v = v; 5149 preupdate.pCsr = pCsr; 5150 preupdate.op = op; 5151 preupdate.iNewReg = iReg; 5152 preupdate.keyinfo.db = db; 5153 preupdate.keyinfo.enc = ENC(db); 5154 preupdate.keyinfo.nKeyField = pTab->nCol; 5155 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder; 5156 preupdate.iKey1 = iKey1; 5157 preupdate.iKey2 = iKey2; 5158 preupdate.pTab = pTab; 5159 5160 db->pPreUpdate = &preupdate; 5161 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 5162 db->pPreUpdate = 0; 5163 sqlite3DbFree(db, preupdate.aRecord); 5164 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 5165 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 5166 if( preupdate.aNew ){ 5167 int i; 5168 for(i=0; i<pCsr->nField; i++){ 5169 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 5170 } 5171 sqlite3DbFreeNN(db, preupdate.aNew); 5172 } 5173 } 5174 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5175