xref: /sqlite-3.40.0/src/vdbeaux.c (revision 74bbd37d)
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
14 */
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
17 
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
21 
22 /*
23 ** Create a new virtual database engine.
24 */
25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26   sqlite3 *db = pParse->db;
27   Vdbe *p;
28   p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29   if( p==0 ) return 0;
30   memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31   p->db = db;
32   if( db->pVdbe ){
33     db->pVdbe->pPrev = p;
34   }
35   p->pNext = db->pVdbe;
36   p->pPrev = 0;
37   db->pVdbe = p;
38   p->magic = VDBE_MAGIC_INIT;
39   p->pParse = pParse;
40   pParse->pVdbe = p;
41   assert( pParse->aLabel==0 );
42   assert( pParse->nLabel==0 );
43   assert( p->nOpAlloc==0 );
44   assert( pParse->szOpAlloc==0 );
45   sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46   return p;
47 }
48 
49 /*
50 ** Return the Parse object that owns a Vdbe object.
51 */
52 Parse *sqlite3VdbeParser(Vdbe *p){
53   return p->pParse;
54 }
55 
56 /*
57 ** Change the error string stored in Vdbe.zErrMsg
58 */
59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60   va_list ap;
61   sqlite3DbFree(p->db, p->zErrMsg);
62   va_start(ap, zFormat);
63   p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64   va_end(ap);
65 }
66 
67 /*
68 ** Remember the SQL string for a prepared statement.
69 */
70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71   if( p==0 ) return;
72   p->prepFlags = prepFlags;
73   if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74     p->expmask = 0;
75   }
76   assert( p->zSql==0 );
77   p->zSql = sqlite3DbStrNDup(p->db, z, n);
78 }
79 
80 #ifdef SQLITE_ENABLE_NORMALIZE
81 /*
82 ** Add a new element to the Vdbe->pDblStr list.
83 */
84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85   if( p ){
86     int n = sqlite3Strlen30(z);
87     DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88                             sizeof(*pStr)+n+1-sizeof(pStr->z));
89     if( pStr ){
90       pStr->pNextStr = p->pDblStr;
91       p->pDblStr = pStr;
92       memcpy(pStr->z, z, n+1);
93     }
94   }
95 }
96 #endif
97 
98 #ifdef SQLITE_ENABLE_NORMALIZE
99 /*
100 ** zId of length nId is a double-quoted identifier.  Check to see if
101 ** that identifier is really used as a string literal.
102 */
103 int sqlite3VdbeUsesDoubleQuotedString(
104   Vdbe *pVdbe,            /* The prepared statement */
105   const char *zId         /* The double-quoted identifier, already dequoted */
106 ){
107   DblquoteStr *pStr;
108   assert( zId!=0 );
109   if( pVdbe->pDblStr==0 ) return 0;
110   for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111     if( strcmp(zId, pStr->z)==0 ) return 1;
112   }
113   return 0;
114 }
115 #endif
116 
117 /*
118 ** Swap all content between two VDBE structures.
119 */
120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
121   Vdbe tmp, *pTmp;
122   char *zTmp;
123   assert( pA->db==pB->db );
124   tmp = *pA;
125   *pA = *pB;
126   *pB = tmp;
127   pTmp = pA->pNext;
128   pA->pNext = pB->pNext;
129   pB->pNext = pTmp;
130   pTmp = pA->pPrev;
131   pA->pPrev = pB->pPrev;
132   pB->pPrev = pTmp;
133   zTmp = pA->zSql;
134   pA->zSql = pB->zSql;
135   pB->zSql = zTmp;
136 #ifdef SQLITE_ENABLE_NORMALIZE
137   zTmp = pA->zNormSql;
138   pA->zNormSql = pB->zNormSql;
139   pB->zNormSql = zTmp;
140 #endif
141   pB->expmask = pA->expmask;
142   pB->prepFlags = pA->prepFlags;
143   memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
144   pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
145 }
146 
147 /*
148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
149 ** than its current size. nOp is guaranteed to be less than or equal
150 ** to 1024/sizeof(Op).
151 **
152 ** If an out-of-memory error occurs while resizing the array, return
153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
154 ** unchanged (this is so that any opcodes already allocated can be
155 ** correctly deallocated along with the rest of the Vdbe).
156 */
157 static int growOpArray(Vdbe *v, int nOp){
158   VdbeOp *pNew;
159   Parse *p = v->pParse;
160 
161   /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
162   ** more frequent reallocs and hence provide more opportunities for
163   ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used
164   ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array
165   ** by the minimum* amount required until the size reaches 512.  Normal
166   ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
167   ** size of the op array or add 1KB of space, whichever is smaller. */
168 #ifdef SQLITE_TEST_REALLOC_STRESS
169   sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
170                         : (sqlite3_int64)v->nOpAlloc+nOp);
171 #else
172   sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
173                         : (sqlite3_int64)(1024/sizeof(Op)));
174   UNUSED_PARAMETER(nOp);
175 #endif
176 
177   /* Ensure that the size of a VDBE does not grow too large */
178   if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
179     sqlite3OomFault(p->db);
180     return SQLITE_NOMEM;
181   }
182 
183   assert( nOp<=(1024/sizeof(Op)) );
184   assert( nNew>=(v->nOpAlloc+nOp) );
185   pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
186   if( pNew ){
187     p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
188     v->nOpAlloc = p->szOpAlloc/sizeof(Op);
189     v->aOp = pNew;
190   }
191   return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
192 }
193 
194 #ifdef SQLITE_DEBUG
195 /* This routine is just a convenient place to set a breakpoint that will
196 ** fire after each opcode is inserted and displayed using
197 ** "PRAGMA vdbe_addoptrace=on".  Parameters "pc" (program counter) and
198 ** pOp are available to make the breakpoint conditional.
199 **
200 ** Other useful labels for breakpoints include:
201 **   test_trace_breakpoint(pc,pOp)
202 **   sqlite3CorruptError(lineno)
203 **   sqlite3MisuseError(lineno)
204 **   sqlite3CantopenError(lineno)
205 */
206 static void test_addop_breakpoint(int pc, Op *pOp){
207   static int n = 0;
208   n++;
209 }
210 #endif
211 
212 /*
213 ** Add a new instruction to the list of instructions current in the
214 ** VDBE.  Return the address of the new instruction.
215 **
216 ** Parameters:
217 **
218 **    p               Pointer to the VDBE
219 **
220 **    op              The opcode for this instruction
221 **
222 **    p1, p2, p3      Operands
223 **
224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
225 ** the sqlite3VdbeChangeP4() function to change the value of the P4
226 ** operand.
227 */
228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
229   assert( p->nOpAlloc<=p->nOp );
230   if( growOpArray(p, 1) ) return 1;
231   assert( p->nOpAlloc>p->nOp );
232   return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
233 }
234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
235   int i;
236   VdbeOp *pOp;
237 
238   i = p->nOp;
239   assert( p->magic==VDBE_MAGIC_INIT );
240   assert( op>=0 && op<0xff );
241   if( p->nOpAlloc<=i ){
242     return growOp3(p, op, p1, p2, p3);
243   }
244   p->nOp++;
245   pOp = &p->aOp[i];
246   pOp->opcode = (u8)op;
247   pOp->p5 = 0;
248   pOp->p1 = p1;
249   pOp->p2 = p2;
250   pOp->p3 = p3;
251   pOp->p4.p = 0;
252   pOp->p4type = P4_NOTUSED;
253 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
254   pOp->zComment = 0;
255 #endif
256 #ifdef SQLITE_DEBUG
257   if( p->db->flags & SQLITE_VdbeAddopTrace ){
258     sqlite3VdbePrintOp(0, i, &p->aOp[i]);
259     test_addop_breakpoint(i, &p->aOp[i]);
260   }
261 #endif
262 #ifdef VDBE_PROFILE
263   pOp->cycles = 0;
264   pOp->cnt = 0;
265 #endif
266 #ifdef SQLITE_VDBE_COVERAGE
267   pOp->iSrcLine = 0;
268 #endif
269   return i;
270 }
271 int sqlite3VdbeAddOp0(Vdbe *p, int op){
272   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
273 }
274 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
275   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
276 }
277 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
278   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
279 }
280 
281 /* Generate code for an unconditional jump to instruction iDest
282 */
283 int sqlite3VdbeGoto(Vdbe *p, int iDest){
284   return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
285 }
286 
287 /* Generate code to cause the string zStr to be loaded into
288 ** register iDest
289 */
290 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
291   return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
292 }
293 
294 /*
295 ** Generate code that initializes multiple registers to string or integer
296 ** constants.  The registers begin with iDest and increase consecutively.
297 ** One register is initialized for each characgter in zTypes[].  For each
298 ** "s" character in zTypes[], the register is a string if the argument is
299 ** not NULL, or OP_Null if the value is a null pointer.  For each "i" character
300 ** in zTypes[], the register is initialized to an integer.
301 **
302 ** If the input string does not end with "X" then an OP_ResultRow instruction
303 ** is generated for the values inserted.
304 */
305 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
306   va_list ap;
307   int i;
308   char c;
309   va_start(ap, zTypes);
310   for(i=0; (c = zTypes[i])!=0; i++){
311     if( c=='s' ){
312       const char *z = va_arg(ap, const char*);
313       sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
314     }else if( c=='i' ){
315       sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
316     }else{
317       goto skip_op_resultrow;
318     }
319   }
320   sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
321 skip_op_resultrow:
322   va_end(ap);
323 }
324 
325 /*
326 ** Add an opcode that includes the p4 value as a pointer.
327 */
328 int sqlite3VdbeAddOp4(
329   Vdbe *p,            /* Add the opcode to this VM */
330   int op,             /* The new opcode */
331   int p1,             /* The P1 operand */
332   int p2,             /* The P2 operand */
333   int p3,             /* The P3 operand */
334   const char *zP4,    /* The P4 operand */
335   int p4type          /* P4 operand type */
336 ){
337   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
338   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
339   return addr;
340 }
341 
342 /*
343 ** Add an OP_Function or OP_PureFunc opcode.
344 **
345 ** The eCallCtx argument is information (typically taken from Expr.op2)
346 ** that describes the calling context of the function.  0 means a general
347 ** function call.  NC_IsCheck means called by a check constraint,
348 ** NC_IdxExpr means called as part of an index expression.  NC_PartIdx
349 ** means in the WHERE clause of a partial index.  NC_GenCol means called
350 ** while computing a generated column value.  0 is the usual case.
351 */
352 int sqlite3VdbeAddFunctionCall(
353   Parse *pParse,        /* Parsing context */
354   int p1,               /* Constant argument mask */
355   int p2,               /* First argument register */
356   int p3,               /* Register into which results are written */
357   int nArg,             /* Number of argument */
358   const FuncDef *pFunc, /* The function to be invoked */
359   int eCallCtx          /* Calling context */
360 ){
361   Vdbe *v = pParse->pVdbe;
362   int nByte;
363   int addr;
364   sqlite3_context *pCtx;
365   assert( v );
366   nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
367   pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
368   if( pCtx==0 ){
369     assert( pParse->db->mallocFailed );
370     freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
371     return 0;
372   }
373   pCtx->pOut = 0;
374   pCtx->pFunc = (FuncDef*)pFunc;
375   pCtx->pVdbe = 0;
376   pCtx->isError = 0;
377   pCtx->argc = nArg;
378   pCtx->iOp = sqlite3VdbeCurrentAddr(v);
379   addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
380                            p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
381   sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
382   return addr;
383 }
384 
385 /*
386 ** Add an opcode that includes the p4 value with a P4_INT64 or
387 ** P4_REAL type.
388 */
389 int sqlite3VdbeAddOp4Dup8(
390   Vdbe *p,            /* Add the opcode to this VM */
391   int op,             /* The new opcode */
392   int p1,             /* The P1 operand */
393   int p2,             /* The P2 operand */
394   int p3,             /* The P3 operand */
395   const u8 *zP4,      /* The P4 operand */
396   int p4type          /* P4 operand type */
397 ){
398   char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
399   if( p4copy ) memcpy(p4copy, zP4, 8);
400   return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
401 }
402 
403 #ifndef SQLITE_OMIT_EXPLAIN
404 /*
405 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
406 ** 0 means "none".
407 */
408 int sqlite3VdbeExplainParent(Parse *pParse){
409   VdbeOp *pOp;
410   if( pParse->addrExplain==0 ) return 0;
411   pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
412   return pOp->p2;
413 }
414 
415 /*
416 ** Set a debugger breakpoint on the following routine in order to
417 ** monitor the EXPLAIN QUERY PLAN code generation.
418 */
419 #if defined(SQLITE_DEBUG)
420 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
421   (void)z1;
422   (void)z2;
423 }
424 #endif
425 
426 /*
427 ** Add a new OP_Explain opcode.
428 **
429 ** If the bPush flag is true, then make this opcode the parent for
430 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
431 */
432 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
433 #ifndef SQLITE_DEBUG
434   /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
435   ** But omit them (for performance) during production builds */
436   if( pParse->explain==2 )
437 #endif
438   {
439     char *zMsg;
440     Vdbe *v;
441     va_list ap;
442     int iThis;
443     va_start(ap, zFmt);
444     zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
445     va_end(ap);
446     v = pParse->pVdbe;
447     iThis = v->nOp;
448     sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
449                       zMsg, P4_DYNAMIC);
450     sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z);
451     if( bPush){
452       pParse->addrExplain = iThis;
453     }
454   }
455 }
456 
457 /*
458 ** Pop the EXPLAIN QUERY PLAN stack one level.
459 */
460 void sqlite3VdbeExplainPop(Parse *pParse){
461   sqlite3ExplainBreakpoint("POP", 0);
462   pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
463 }
464 #endif /* SQLITE_OMIT_EXPLAIN */
465 
466 /*
467 ** Add an OP_ParseSchema opcode.  This routine is broken out from
468 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
469 ** as having been used.
470 **
471 ** The zWhere string must have been obtained from sqlite3_malloc().
472 ** This routine will take ownership of the allocated memory.
473 */
474 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
475   int j;
476   sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
477   for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
478 }
479 
480 /*
481 ** Add an opcode that includes the p4 value as an integer.
482 */
483 int sqlite3VdbeAddOp4Int(
484   Vdbe *p,            /* Add the opcode to this VM */
485   int op,             /* The new opcode */
486   int p1,             /* The P1 operand */
487   int p2,             /* The P2 operand */
488   int p3,             /* The P3 operand */
489   int p4              /* The P4 operand as an integer */
490 ){
491   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
492   if( p->db->mallocFailed==0 ){
493     VdbeOp *pOp = &p->aOp[addr];
494     pOp->p4type = P4_INT32;
495     pOp->p4.i = p4;
496   }
497   return addr;
498 }
499 
500 /* Insert the end of a co-routine
501 */
502 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
503   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
504 
505   /* Clear the temporary register cache, thereby ensuring that each
506   ** co-routine has its own independent set of registers, because co-routines
507   ** might expect their registers to be preserved across an OP_Yield, and
508   ** that could cause problems if two or more co-routines are using the same
509   ** temporary register.
510   */
511   v->pParse->nTempReg = 0;
512   v->pParse->nRangeReg = 0;
513 }
514 
515 /*
516 ** Create a new symbolic label for an instruction that has yet to be
517 ** coded.  The symbolic label is really just a negative number.  The
518 ** label can be used as the P2 value of an operation.  Later, when
519 ** the label is resolved to a specific address, the VDBE will scan
520 ** through its operation list and change all values of P2 which match
521 ** the label into the resolved address.
522 **
523 ** The VDBE knows that a P2 value is a label because labels are
524 ** always negative and P2 values are suppose to be non-negative.
525 ** Hence, a negative P2 value is a label that has yet to be resolved.
526 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
527 ** property.
528 **
529 ** Variable usage notes:
530 **
531 **     Parse.aLabel[x]     Stores the address that the x-th label resolves
532 **                         into.  For testing (SQLITE_DEBUG), unresolved
533 **                         labels stores -1, but that is not required.
534 **     Parse.nLabelAlloc   Number of slots allocated to Parse.aLabel[]
535 **     Parse.nLabel        The *negative* of the number of labels that have
536 **                         been issued.  The negative is stored because
537 **                         that gives a performance improvement over storing
538 **                         the equivalent positive value.
539 */
540 int sqlite3VdbeMakeLabel(Parse *pParse){
541   return --pParse->nLabel;
542 }
543 
544 /*
545 ** Resolve label "x" to be the address of the next instruction to
546 ** be inserted.  The parameter "x" must have been obtained from
547 ** a prior call to sqlite3VdbeMakeLabel().
548 */
549 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
550   int nNewSize = 10 - p->nLabel;
551   p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
552                      nNewSize*sizeof(p->aLabel[0]));
553   if( p->aLabel==0 ){
554     p->nLabelAlloc = 0;
555   }else{
556 #ifdef SQLITE_DEBUG
557     int i;
558     for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
559 #endif
560     p->nLabelAlloc = nNewSize;
561     p->aLabel[j] = v->nOp;
562   }
563 }
564 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
565   Parse *p = v->pParse;
566   int j = ADDR(x);
567   assert( v->magic==VDBE_MAGIC_INIT );
568   assert( j<-p->nLabel );
569   assert( j>=0 );
570 #ifdef SQLITE_DEBUG
571   if( p->db->flags & SQLITE_VdbeAddopTrace ){
572     printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
573   }
574 #endif
575   if( p->nLabelAlloc + p->nLabel < 0 ){
576     resizeResolveLabel(p,v,j);
577   }else{
578     assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
579     p->aLabel[j] = v->nOp;
580   }
581 }
582 
583 /*
584 ** Mark the VDBE as one that can only be run one time.
585 */
586 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
587   p->runOnlyOnce = 1;
588 }
589 
590 /*
591 ** Mark the VDBE as one that can only be run multiple times.
592 */
593 void sqlite3VdbeReusable(Vdbe *p){
594   p->runOnlyOnce = 0;
595 }
596 
597 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
598 
599 /*
600 ** The following type and function are used to iterate through all opcodes
601 ** in a Vdbe main program and each of the sub-programs (triggers) it may
602 ** invoke directly or indirectly. It should be used as follows:
603 **
604 **   Op *pOp;
605 **   VdbeOpIter sIter;
606 **
607 **   memset(&sIter, 0, sizeof(sIter));
608 **   sIter.v = v;                            // v is of type Vdbe*
609 **   while( (pOp = opIterNext(&sIter)) ){
610 **     // Do something with pOp
611 **   }
612 **   sqlite3DbFree(v->db, sIter.apSub);
613 **
614 */
615 typedef struct VdbeOpIter VdbeOpIter;
616 struct VdbeOpIter {
617   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
618   SubProgram **apSub;        /* Array of subprograms */
619   int nSub;                  /* Number of entries in apSub */
620   int iAddr;                 /* Address of next instruction to return */
621   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
622 };
623 static Op *opIterNext(VdbeOpIter *p){
624   Vdbe *v = p->v;
625   Op *pRet = 0;
626   Op *aOp;
627   int nOp;
628 
629   if( p->iSub<=p->nSub ){
630 
631     if( p->iSub==0 ){
632       aOp = v->aOp;
633       nOp = v->nOp;
634     }else{
635       aOp = p->apSub[p->iSub-1]->aOp;
636       nOp = p->apSub[p->iSub-1]->nOp;
637     }
638     assert( p->iAddr<nOp );
639 
640     pRet = &aOp[p->iAddr];
641     p->iAddr++;
642     if( p->iAddr==nOp ){
643       p->iSub++;
644       p->iAddr = 0;
645     }
646 
647     if( pRet->p4type==P4_SUBPROGRAM ){
648       int nByte = (p->nSub+1)*sizeof(SubProgram*);
649       int j;
650       for(j=0; j<p->nSub; j++){
651         if( p->apSub[j]==pRet->p4.pProgram ) break;
652       }
653       if( j==p->nSub ){
654         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
655         if( !p->apSub ){
656           pRet = 0;
657         }else{
658           p->apSub[p->nSub++] = pRet->p4.pProgram;
659         }
660       }
661     }
662   }
663 
664   return pRet;
665 }
666 
667 /*
668 ** Check if the program stored in the VM associated with pParse may
669 ** throw an ABORT exception (causing the statement, but not entire transaction
670 ** to be rolled back). This condition is true if the main program or any
671 ** sub-programs contains any of the following:
672 **
673 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
674 **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
675 **   *  OP_Destroy
676 **   *  OP_VUpdate
677 **   *  OP_VCreate
678 **   *  OP_VRename
679 **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
680 **   *  OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
681 **      (for CREATE TABLE AS SELECT ...)
682 **
683 ** Then check that the value of Parse.mayAbort is true if an
684 ** ABORT may be thrown, or false otherwise. Return true if it does
685 ** match, or false otherwise. This function is intended to be used as
686 ** part of an assert statement in the compiler. Similar to:
687 **
688 **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
689 */
690 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
691   int hasAbort = 0;
692   int hasFkCounter = 0;
693   int hasCreateTable = 0;
694   int hasCreateIndex = 0;
695   int hasInitCoroutine = 0;
696   Op *pOp;
697   VdbeOpIter sIter;
698   memset(&sIter, 0, sizeof(sIter));
699   sIter.v = v;
700 
701   while( (pOp = opIterNext(&sIter))!=0 ){
702     int opcode = pOp->opcode;
703     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
704      || opcode==OP_VDestroy
705      || opcode==OP_VCreate
706      || (opcode==OP_ParseSchema && pOp->p4.z==0)
707      || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
708       && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
709     ){
710       hasAbort = 1;
711       break;
712     }
713     if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
714     if( mayAbort ){
715       /* hasCreateIndex may also be set for some DELETE statements that use
716       ** OP_Clear. So this routine may end up returning true in the case
717       ** where a "DELETE FROM tbl" has a statement-journal but does not
718       ** require one. This is not so bad - it is an inefficiency, not a bug. */
719       if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
720       if( opcode==OP_Clear ) hasCreateIndex = 1;
721     }
722     if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
723 #ifndef SQLITE_OMIT_FOREIGN_KEY
724     if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
725       hasFkCounter = 1;
726     }
727 #endif
728   }
729   sqlite3DbFree(v->db, sIter.apSub);
730 
731   /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
732   ** If malloc failed, then the while() loop above may not have iterated
733   ** through all opcodes and hasAbort may be set incorrectly. Return
734   ** true for this case to prevent the assert() in the callers frame
735   ** from failing.  */
736   return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
737         || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
738   );
739 }
740 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
741 
742 #ifdef SQLITE_DEBUG
743 /*
744 ** Increment the nWrite counter in the VDBE if the cursor is not an
745 ** ephemeral cursor, or if the cursor argument is NULL.
746 */
747 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
748   if( pC==0
749    || (pC->eCurType!=CURTYPE_SORTER
750        && pC->eCurType!=CURTYPE_PSEUDO
751        && !pC->isEphemeral)
752   ){
753     p->nWrite++;
754   }
755 }
756 #endif
757 
758 #ifdef SQLITE_DEBUG
759 /*
760 ** Assert if an Abort at this point in time might result in a corrupt
761 ** database.
762 */
763 void sqlite3VdbeAssertAbortable(Vdbe *p){
764   assert( p->nWrite==0 || p->usesStmtJournal );
765 }
766 #endif
767 
768 /*
769 ** This routine is called after all opcodes have been inserted.  It loops
770 ** through all the opcodes and fixes up some details.
771 **
772 ** (1) For each jump instruction with a negative P2 value (a label)
773 **     resolve the P2 value to an actual address.
774 **
775 ** (2) Compute the maximum number of arguments used by any SQL function
776 **     and store that value in *pMaxFuncArgs.
777 **
778 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
779 **     indicate what the prepared statement actually does.
780 **
781 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
782 **
783 ** (5) Reclaim the memory allocated for storing labels.
784 **
785 ** This routine will only function correctly if the mkopcodeh.tcl generator
786 ** script numbers the opcodes correctly.  Changes to this routine must be
787 ** coordinated with changes to mkopcodeh.tcl.
788 */
789 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
790   int nMaxArgs = *pMaxFuncArgs;
791   Op *pOp;
792   Parse *pParse = p->pParse;
793   int *aLabel = pParse->aLabel;
794   p->readOnly = 1;
795   p->bIsReader = 0;
796   pOp = &p->aOp[p->nOp-1];
797   while(1){
798 
799     /* Only JUMP opcodes and the short list of special opcodes in the switch
800     ** below need to be considered.  The mkopcodeh.tcl generator script groups
801     ** all these opcodes together near the front of the opcode list.  Skip
802     ** any opcode that does not need processing by virtual of the fact that
803     ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
804     */
805     if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
806       /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
807       ** cases from this switch! */
808       switch( pOp->opcode ){
809         case OP_Transaction: {
810           if( pOp->p2!=0 ) p->readOnly = 0;
811           /* fall thru */
812         }
813         case OP_AutoCommit:
814         case OP_Savepoint: {
815           p->bIsReader = 1;
816           break;
817         }
818 #ifndef SQLITE_OMIT_WAL
819         case OP_Checkpoint:
820 #endif
821         case OP_Vacuum:
822         case OP_JournalMode: {
823           p->readOnly = 0;
824           p->bIsReader = 1;
825           break;
826         }
827         case OP_Next:
828         case OP_SorterNext: {
829           pOp->p4.xAdvance = sqlite3BtreeNext;
830           pOp->p4type = P4_ADVANCE;
831           /* The code generator never codes any of these opcodes as a jump
832           ** to a label.  They are always coded as a jump backwards to a
833           ** known address */
834           assert( pOp->p2>=0 );
835           break;
836         }
837         case OP_Prev: {
838           pOp->p4.xAdvance = sqlite3BtreePrevious;
839           pOp->p4type = P4_ADVANCE;
840           /* The code generator never codes any of these opcodes as a jump
841           ** to a label.  They are always coded as a jump backwards to a
842           ** known address */
843           assert( pOp->p2>=0 );
844           break;
845         }
846 #ifndef SQLITE_OMIT_VIRTUALTABLE
847         case OP_VUpdate: {
848           if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
849           break;
850         }
851         case OP_VFilter: {
852           int n;
853           assert( (pOp - p->aOp) >= 3 );
854           assert( pOp[-1].opcode==OP_Integer );
855           n = pOp[-1].p1;
856           if( n>nMaxArgs ) nMaxArgs = n;
857           /* Fall through into the default case */
858         }
859 #endif
860         default: {
861           if( pOp->p2<0 ){
862             /* The mkopcodeh.tcl script has so arranged things that the only
863             ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
864             ** have non-negative values for P2. */
865             assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
866             assert( ADDR(pOp->p2)<-pParse->nLabel );
867             pOp->p2 = aLabel[ADDR(pOp->p2)];
868           }
869           break;
870         }
871       }
872       /* The mkopcodeh.tcl script has so arranged things that the only
873       ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
874       ** have non-negative values for P2. */
875       assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
876     }
877     if( pOp==p->aOp ) break;
878     pOp--;
879   }
880   sqlite3DbFree(p->db, pParse->aLabel);
881   pParse->aLabel = 0;
882   pParse->nLabel = 0;
883   *pMaxFuncArgs = nMaxArgs;
884   assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
885 }
886 
887 /*
888 ** Return the address of the next instruction to be inserted.
889 */
890 int sqlite3VdbeCurrentAddr(Vdbe *p){
891   assert( p->magic==VDBE_MAGIC_INIT );
892   return p->nOp;
893 }
894 
895 /*
896 ** Verify that at least N opcode slots are available in p without
897 ** having to malloc for more space (except when compiled using
898 ** SQLITE_TEST_REALLOC_STRESS).  This interface is used during testing
899 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
900 ** fail due to a OOM fault and hence that the return value from
901 ** sqlite3VdbeAddOpList() will always be non-NULL.
902 */
903 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
904 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
905   assert( p->nOp + N <= p->nOpAlloc );
906 }
907 #endif
908 
909 /*
910 ** Verify that the VM passed as the only argument does not contain
911 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
912 ** by code in pragma.c to ensure that the implementation of certain
913 ** pragmas comports with the flags specified in the mkpragmatab.tcl
914 ** script.
915 */
916 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
917 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
918   int i;
919   for(i=0; i<p->nOp; i++){
920     assert( p->aOp[i].opcode!=OP_ResultRow );
921   }
922 }
923 #endif
924 
925 /*
926 ** Generate code (a single OP_Abortable opcode) that will
927 ** verify that the VDBE program can safely call Abort in the current
928 ** context.
929 */
930 #if defined(SQLITE_DEBUG)
931 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
932   if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
933 }
934 #endif
935 
936 /*
937 ** This function returns a pointer to the array of opcodes associated with
938 ** the Vdbe passed as the first argument. It is the callers responsibility
939 ** to arrange for the returned array to be eventually freed using the
940 ** vdbeFreeOpArray() function.
941 **
942 ** Before returning, *pnOp is set to the number of entries in the returned
943 ** array. Also, *pnMaxArg is set to the larger of its current value and
944 ** the number of entries in the Vdbe.apArg[] array required to execute the
945 ** returned program.
946 */
947 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
948   VdbeOp *aOp = p->aOp;
949   assert( aOp && !p->db->mallocFailed );
950 
951   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
952   assert( DbMaskAllZero(p->btreeMask) );
953 
954   resolveP2Values(p, pnMaxArg);
955   *pnOp = p->nOp;
956   p->aOp = 0;
957   return aOp;
958 }
959 
960 /*
961 ** Add a whole list of operations to the operation stack.  Return a
962 ** pointer to the first operation inserted.
963 **
964 ** Non-zero P2 arguments to jump instructions are automatically adjusted
965 ** so that the jump target is relative to the first operation inserted.
966 */
967 VdbeOp *sqlite3VdbeAddOpList(
968   Vdbe *p,                     /* Add opcodes to the prepared statement */
969   int nOp,                     /* Number of opcodes to add */
970   VdbeOpList const *aOp,       /* The opcodes to be added */
971   int iLineno                  /* Source-file line number of first opcode */
972 ){
973   int i;
974   VdbeOp *pOut, *pFirst;
975   assert( nOp>0 );
976   assert( p->magic==VDBE_MAGIC_INIT );
977   if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
978     return 0;
979   }
980   pFirst = pOut = &p->aOp[p->nOp];
981   for(i=0; i<nOp; i++, aOp++, pOut++){
982     pOut->opcode = aOp->opcode;
983     pOut->p1 = aOp->p1;
984     pOut->p2 = aOp->p2;
985     assert( aOp->p2>=0 );
986     if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
987       pOut->p2 += p->nOp;
988     }
989     pOut->p3 = aOp->p3;
990     pOut->p4type = P4_NOTUSED;
991     pOut->p4.p = 0;
992     pOut->p5 = 0;
993 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
994     pOut->zComment = 0;
995 #endif
996 #ifdef SQLITE_VDBE_COVERAGE
997     pOut->iSrcLine = iLineno+i;
998 #else
999     (void)iLineno;
1000 #endif
1001 #ifdef SQLITE_DEBUG
1002     if( p->db->flags & SQLITE_VdbeAddopTrace ){
1003       sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1004     }
1005 #endif
1006   }
1007   p->nOp += nOp;
1008   return pFirst;
1009 }
1010 
1011 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1012 /*
1013 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1014 */
1015 void sqlite3VdbeScanStatus(
1016   Vdbe *p,                        /* VM to add scanstatus() to */
1017   int addrExplain,                /* Address of OP_Explain (or 0) */
1018   int addrLoop,                   /* Address of loop counter */
1019   int addrVisit,                  /* Address of rows visited counter */
1020   LogEst nEst,                    /* Estimated number of output rows */
1021   const char *zName               /* Name of table or index being scanned */
1022 ){
1023   sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1024   ScanStatus *aNew;
1025   aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1026   if( aNew ){
1027     ScanStatus *pNew = &aNew[p->nScan++];
1028     pNew->addrExplain = addrExplain;
1029     pNew->addrLoop = addrLoop;
1030     pNew->addrVisit = addrVisit;
1031     pNew->nEst = nEst;
1032     pNew->zName = sqlite3DbStrDup(p->db, zName);
1033     p->aScan = aNew;
1034   }
1035 }
1036 #endif
1037 
1038 
1039 /*
1040 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1041 ** for a specific instruction.
1042 */
1043 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1044   sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1045 }
1046 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1047   sqlite3VdbeGetOp(p,addr)->p1 = val;
1048 }
1049 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1050   sqlite3VdbeGetOp(p,addr)->p2 = val;
1051 }
1052 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1053   sqlite3VdbeGetOp(p,addr)->p3 = val;
1054 }
1055 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1056   assert( p->nOp>0 || p->db->mallocFailed );
1057   if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1058 }
1059 
1060 /*
1061 ** Change the P2 operand of instruction addr so that it points to
1062 ** the address of the next instruction to be coded.
1063 */
1064 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1065   sqlite3VdbeChangeP2(p, addr, p->nOp);
1066 }
1067 
1068 /*
1069 ** Change the P2 operand of the jump instruction at addr so that
1070 ** the jump lands on the next opcode.  Or if the jump instruction was
1071 ** the previous opcode (and is thus a no-op) then simply back up
1072 ** the next instruction counter by one slot so that the jump is
1073 ** overwritten by the next inserted opcode.
1074 **
1075 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1076 ** strives to omit useless byte-code like this:
1077 **
1078 **        7   Once 0 8 0
1079 **        8   ...
1080 */
1081 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
1082   if( addr==p->nOp-1 ){
1083     assert( p->aOp[addr].opcode==OP_Once
1084          || p->aOp[addr].opcode==OP_If
1085          || p->aOp[addr].opcode==OP_FkIfZero );
1086     assert( p->aOp[addr].p4type==0 );
1087 #ifdef SQLITE_VDBE_COVERAGE
1088     sqlite3VdbeGetOp(p,-1)->iSrcLine = 0;  /* Erase VdbeCoverage() macros */
1089 #endif
1090     p->nOp--;
1091   }else{
1092     sqlite3VdbeChangeP2(p, addr, p->nOp);
1093   }
1094 }
1095 
1096 
1097 /*
1098 ** If the input FuncDef structure is ephemeral, then free it.  If
1099 ** the FuncDef is not ephermal, then do nothing.
1100 */
1101 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1102   if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1103     sqlite3DbFreeNN(db, pDef);
1104   }
1105 }
1106 
1107 /*
1108 ** Delete a P4 value if necessary.
1109 */
1110 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1111   if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1112   sqlite3DbFreeNN(db, p);
1113 }
1114 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1115   freeEphemeralFunction(db, p->pFunc);
1116   sqlite3DbFreeNN(db, p);
1117 }
1118 static void freeP4(sqlite3 *db, int p4type, void *p4){
1119   assert( db );
1120   switch( p4type ){
1121     case P4_FUNCCTX: {
1122       freeP4FuncCtx(db, (sqlite3_context*)p4);
1123       break;
1124     }
1125     case P4_REAL:
1126     case P4_INT64:
1127     case P4_DYNAMIC:
1128     case P4_DYNBLOB:
1129     case P4_INTARRAY: {
1130       sqlite3DbFree(db, p4);
1131       break;
1132     }
1133     case P4_KEYINFO: {
1134       if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1135       break;
1136     }
1137 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1138     case P4_EXPR: {
1139       sqlite3ExprDelete(db, (Expr*)p4);
1140       break;
1141     }
1142 #endif
1143     case P4_FUNCDEF: {
1144       freeEphemeralFunction(db, (FuncDef*)p4);
1145       break;
1146     }
1147     case P4_MEM: {
1148       if( db->pnBytesFreed==0 ){
1149         sqlite3ValueFree((sqlite3_value*)p4);
1150       }else{
1151         freeP4Mem(db, (Mem*)p4);
1152       }
1153       break;
1154     }
1155     case P4_VTAB : {
1156       if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1157       break;
1158     }
1159   }
1160 }
1161 
1162 /*
1163 ** Free the space allocated for aOp and any p4 values allocated for the
1164 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1165 ** nOp entries.
1166 */
1167 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1168   if( aOp ){
1169     Op *pOp;
1170     for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
1171       if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1172 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1173       sqlite3DbFree(db, pOp->zComment);
1174 #endif
1175     }
1176     sqlite3DbFreeNN(db, aOp);
1177   }
1178 }
1179 
1180 /*
1181 ** Link the SubProgram object passed as the second argument into the linked
1182 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1183 ** objects when the VM is no longer required.
1184 */
1185 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1186   p->pNext = pVdbe->pProgram;
1187   pVdbe->pProgram = p;
1188 }
1189 
1190 /*
1191 ** Return true if the given Vdbe has any SubPrograms.
1192 */
1193 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1194   return pVdbe->pProgram!=0;
1195 }
1196 
1197 /*
1198 ** Change the opcode at addr into OP_Noop
1199 */
1200 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1201   VdbeOp *pOp;
1202   if( p->db->mallocFailed ) return 0;
1203   assert( addr>=0 && addr<p->nOp );
1204   pOp = &p->aOp[addr];
1205   freeP4(p->db, pOp->p4type, pOp->p4.p);
1206   pOp->p4type = P4_NOTUSED;
1207   pOp->p4.z = 0;
1208   pOp->opcode = OP_Noop;
1209   return 1;
1210 }
1211 
1212 /*
1213 ** If the last opcode is "op" and it is not a jump destination,
1214 ** then remove it.  Return true if and only if an opcode was removed.
1215 */
1216 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1217   if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1218     return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1219   }else{
1220     return 0;
1221   }
1222 }
1223 
1224 #ifdef SQLITE_DEBUG
1225 /*
1226 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1227 ** registers, except any identified by mask, are no longer in use.
1228 */
1229 void sqlite3VdbeReleaseRegisters(
1230   Parse *pParse,       /* Parsing context */
1231   int iFirst,          /* Index of first register to be released */
1232   int N,               /* Number of registers to release */
1233   u32 mask,            /* Mask of registers to NOT release */
1234   int bUndefine        /* If true, mark registers as undefined */
1235 ){
1236   if( N==0 ) return;
1237   assert( pParse->pVdbe );
1238   assert( iFirst>=1 );
1239   assert( iFirst+N-1<=pParse->nMem );
1240   if( N<=31 && mask!=0 ){
1241     while( N>0 && (mask&1)!=0 ){
1242       mask >>= 1;
1243       iFirst++;
1244       N--;
1245     }
1246     while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1247       mask &= ~MASKBIT32(N-1);
1248       N--;
1249     }
1250   }
1251   if( N>0 ){
1252     sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1253     if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1254   }
1255 }
1256 #endif /* SQLITE_DEBUG */
1257 
1258 
1259 /*
1260 ** Change the value of the P4 operand for a specific instruction.
1261 ** This routine is useful when a large program is loaded from a
1262 ** static array using sqlite3VdbeAddOpList but we want to make a
1263 ** few minor changes to the program.
1264 **
1265 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1266 ** the string is made into memory obtained from sqlite3_malloc().
1267 ** A value of n==0 means copy bytes of zP4 up to and including the
1268 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
1269 **
1270 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1271 ** to a string or structure that is guaranteed to exist for the lifetime of
1272 ** the Vdbe. In these cases we can just copy the pointer.
1273 **
1274 ** If addr<0 then change P4 on the most recently inserted instruction.
1275 */
1276 static void SQLITE_NOINLINE vdbeChangeP4Full(
1277   Vdbe *p,
1278   Op *pOp,
1279   const char *zP4,
1280   int n
1281 ){
1282   if( pOp->p4type ){
1283     freeP4(p->db, pOp->p4type, pOp->p4.p);
1284     pOp->p4type = 0;
1285     pOp->p4.p = 0;
1286   }
1287   if( n<0 ){
1288     sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1289   }else{
1290     if( n==0 ) n = sqlite3Strlen30(zP4);
1291     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1292     pOp->p4type = P4_DYNAMIC;
1293   }
1294 }
1295 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1296   Op *pOp;
1297   sqlite3 *db;
1298   assert( p!=0 );
1299   db = p->db;
1300   assert( p->magic==VDBE_MAGIC_INIT );
1301   assert( p->aOp!=0 || db->mallocFailed );
1302   if( db->mallocFailed ){
1303     if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1304     return;
1305   }
1306   assert( p->nOp>0 );
1307   assert( addr<p->nOp );
1308   if( addr<0 ){
1309     addr = p->nOp - 1;
1310   }
1311   pOp = &p->aOp[addr];
1312   if( n>=0 || pOp->p4type ){
1313     vdbeChangeP4Full(p, pOp, zP4, n);
1314     return;
1315   }
1316   if( n==P4_INT32 ){
1317     /* Note: this cast is safe, because the origin data point was an int
1318     ** that was cast to a (const char *). */
1319     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1320     pOp->p4type = P4_INT32;
1321   }else if( zP4!=0 ){
1322     assert( n<0 );
1323     pOp->p4.p = (void*)zP4;
1324     pOp->p4type = (signed char)n;
1325     if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1326   }
1327 }
1328 
1329 /*
1330 ** Change the P4 operand of the most recently coded instruction
1331 ** to the value defined by the arguments.  This is a high-speed
1332 ** version of sqlite3VdbeChangeP4().
1333 **
1334 ** The P4 operand must not have been previously defined.  And the new
1335 ** P4 must not be P4_INT32.  Use sqlite3VdbeChangeP4() in either of
1336 ** those cases.
1337 */
1338 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1339   VdbeOp *pOp;
1340   assert( n!=P4_INT32 && n!=P4_VTAB );
1341   assert( n<=0 );
1342   if( p->db->mallocFailed ){
1343     freeP4(p->db, n, pP4);
1344   }else{
1345     assert( pP4!=0 );
1346     assert( p->nOp>0 );
1347     pOp = &p->aOp[p->nOp-1];
1348     assert( pOp->p4type==P4_NOTUSED );
1349     pOp->p4type = n;
1350     pOp->p4.p = pP4;
1351   }
1352 }
1353 
1354 /*
1355 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1356 ** index given.
1357 */
1358 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1359   Vdbe *v = pParse->pVdbe;
1360   KeyInfo *pKeyInfo;
1361   assert( v!=0 );
1362   assert( pIdx!=0 );
1363   pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1364   if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1365 }
1366 
1367 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1368 /*
1369 ** Change the comment on the most recently coded instruction.  Or
1370 ** insert a No-op and add the comment to that new instruction.  This
1371 ** makes the code easier to read during debugging.  None of this happens
1372 ** in a production build.
1373 */
1374 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1375   assert( p->nOp>0 || p->aOp==0 );
1376   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed
1377           || p->pParse->nErr>0 );
1378   if( p->nOp ){
1379     assert( p->aOp );
1380     sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1381     p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1382   }
1383 }
1384 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1385   va_list ap;
1386   if( p ){
1387     va_start(ap, zFormat);
1388     vdbeVComment(p, zFormat, ap);
1389     va_end(ap);
1390   }
1391 }
1392 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1393   va_list ap;
1394   if( p ){
1395     sqlite3VdbeAddOp0(p, OP_Noop);
1396     va_start(ap, zFormat);
1397     vdbeVComment(p, zFormat, ap);
1398     va_end(ap);
1399   }
1400 }
1401 #endif  /* NDEBUG */
1402 
1403 #ifdef SQLITE_VDBE_COVERAGE
1404 /*
1405 ** Set the value if the iSrcLine field for the previously coded instruction.
1406 */
1407 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1408   sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1409 }
1410 #endif /* SQLITE_VDBE_COVERAGE */
1411 
1412 /*
1413 ** Return the opcode for a given address.  If the address is -1, then
1414 ** return the most recently inserted opcode.
1415 **
1416 ** If a memory allocation error has occurred prior to the calling of this
1417 ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
1418 ** is readable but not writable, though it is cast to a writable value.
1419 ** The return of a dummy opcode allows the call to continue functioning
1420 ** after an OOM fault without having to check to see if the return from
1421 ** this routine is a valid pointer.  But because the dummy.opcode is 0,
1422 ** dummy will never be written to.  This is verified by code inspection and
1423 ** by running with Valgrind.
1424 */
1425 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1426   /* C89 specifies that the constant "dummy" will be initialized to all
1427   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
1428   static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
1429   assert( p->magic==VDBE_MAGIC_INIT );
1430   if( addr<0 ){
1431     addr = p->nOp - 1;
1432   }
1433   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1434   if( p->db->mallocFailed ){
1435     return (VdbeOp*)&dummy;
1436   }else{
1437     return &p->aOp[addr];
1438   }
1439 }
1440 
1441 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1442 /*
1443 ** Return an integer value for one of the parameters to the opcode pOp
1444 ** determined by character c.
1445 */
1446 static int translateP(char c, const Op *pOp){
1447   if( c=='1' ) return pOp->p1;
1448   if( c=='2' ) return pOp->p2;
1449   if( c=='3' ) return pOp->p3;
1450   if( c=='4' ) return pOp->p4.i;
1451   return pOp->p5;
1452 }
1453 
1454 /*
1455 ** Compute a string for the "comment" field of a VDBE opcode listing.
1456 **
1457 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1458 ** to an extra string that is appended to the sqlite3OpcodeName().  In the
1459 ** absence of other comments, this synopsis becomes the comment on the opcode.
1460 ** Some translation occurs:
1461 **
1462 **       "PX"      ->  "r[X]"
1463 **       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1
1464 **       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0
1465 **       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x
1466 */
1467 char *sqlite3VdbeDisplayComment(
1468   sqlite3 *db,       /* Optional - Oom error reporting only */
1469   const Op *pOp,     /* The opcode to be commented */
1470   const char *zP4    /* Previously obtained value for P4 */
1471 ){
1472   const char *zOpName;
1473   const char *zSynopsis;
1474   int nOpName;
1475   int ii;
1476   char zAlt[50];
1477   StrAccum x;
1478 
1479   sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1480   zOpName = sqlite3OpcodeName(pOp->opcode);
1481   nOpName = sqlite3Strlen30(zOpName);
1482   if( zOpName[nOpName+1] ){
1483     int seenCom = 0;
1484     char c;
1485     zSynopsis = zOpName += nOpName + 1;
1486     if( strncmp(zSynopsis,"IF ",3)==0 ){
1487       if( pOp->p5 & SQLITE_STOREP2 ){
1488         sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
1489       }else{
1490         sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1491       }
1492       zSynopsis = zAlt;
1493     }
1494     for(ii=0; (c = zSynopsis[ii])!=0; ii++){
1495       if( c=='P' ){
1496         c = zSynopsis[++ii];
1497         if( c=='4' ){
1498           sqlite3_str_appendall(&x, zP4);
1499         }else if( c=='X' ){
1500           sqlite3_str_appendall(&x, pOp->zComment);
1501           seenCom = 1;
1502         }else{
1503           int v1 = translateP(c, pOp);
1504           int v2;
1505           if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1506             ii += 3;
1507             v2 = translateP(zSynopsis[ii], pOp);
1508             if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1509               ii += 2;
1510               v2++;
1511             }
1512             if( v2<2 ){
1513               sqlite3_str_appendf(&x, "%d", v1);
1514             }else{
1515               sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
1516             }
1517           }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
1518             sqlite3_context *pCtx = pOp->p4.pCtx;
1519             if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
1520               sqlite3_str_appendf(&x, "%d", v1);
1521             }else if( pCtx->argc>1 ){
1522               sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
1523             }else{
1524               assert( x.nChar>2 );
1525               x.nChar -= 2;
1526               ii++;
1527             }
1528             ii += 3;
1529           }else{
1530             sqlite3_str_appendf(&x, "%d", v1);
1531             if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1532               ii += 4;
1533             }
1534           }
1535         }
1536       }else{
1537         sqlite3_str_appendchar(&x, 1, c);
1538       }
1539     }
1540     if( !seenCom && pOp->zComment ){
1541       sqlite3_str_appendf(&x, "; %s", pOp->zComment);
1542     }
1543   }else if( pOp->zComment ){
1544     sqlite3_str_appendall(&x, pOp->zComment);
1545   }
1546   if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
1547     sqlite3OomFault(db);
1548   }
1549   return sqlite3StrAccumFinish(&x);
1550 }
1551 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1552 
1553 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1554 /*
1555 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1556 ** that can be displayed in the P4 column of EXPLAIN output.
1557 */
1558 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1559   const char *zOp = 0;
1560   switch( pExpr->op ){
1561     case TK_STRING:
1562       sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1563       break;
1564     case TK_INTEGER:
1565       sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1566       break;
1567     case TK_NULL:
1568       sqlite3_str_appendf(p, "NULL");
1569       break;
1570     case TK_REGISTER: {
1571       sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1572       break;
1573     }
1574     case TK_COLUMN: {
1575       if( pExpr->iColumn<0 ){
1576         sqlite3_str_appendf(p, "rowid");
1577       }else{
1578         sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1579       }
1580       break;
1581     }
1582     case TK_LT:      zOp = "LT";      break;
1583     case TK_LE:      zOp = "LE";      break;
1584     case TK_GT:      zOp = "GT";      break;
1585     case TK_GE:      zOp = "GE";      break;
1586     case TK_NE:      zOp = "NE";      break;
1587     case TK_EQ:      zOp = "EQ";      break;
1588     case TK_IS:      zOp = "IS";      break;
1589     case TK_ISNOT:   zOp = "ISNOT";   break;
1590     case TK_AND:     zOp = "AND";     break;
1591     case TK_OR:      zOp = "OR";      break;
1592     case TK_PLUS:    zOp = "ADD";     break;
1593     case TK_STAR:    zOp = "MUL";     break;
1594     case TK_MINUS:   zOp = "SUB";     break;
1595     case TK_REM:     zOp = "REM";     break;
1596     case TK_BITAND:  zOp = "BITAND";  break;
1597     case TK_BITOR:   zOp = "BITOR";   break;
1598     case TK_SLASH:   zOp = "DIV";     break;
1599     case TK_LSHIFT:  zOp = "LSHIFT";  break;
1600     case TK_RSHIFT:  zOp = "RSHIFT";  break;
1601     case TK_CONCAT:  zOp = "CONCAT";  break;
1602     case TK_UMINUS:  zOp = "MINUS";   break;
1603     case TK_UPLUS:   zOp = "PLUS";    break;
1604     case TK_BITNOT:  zOp = "BITNOT";  break;
1605     case TK_NOT:     zOp = "NOT";     break;
1606     case TK_ISNULL:  zOp = "ISNULL";  break;
1607     case TK_NOTNULL: zOp = "NOTNULL"; break;
1608 
1609     default:
1610       sqlite3_str_appendf(p, "%s", "expr");
1611       break;
1612   }
1613 
1614   if( zOp ){
1615     sqlite3_str_appendf(p, "%s(", zOp);
1616     displayP4Expr(p, pExpr->pLeft);
1617     if( pExpr->pRight ){
1618       sqlite3_str_append(p, ",", 1);
1619       displayP4Expr(p, pExpr->pRight);
1620     }
1621     sqlite3_str_append(p, ")", 1);
1622   }
1623 }
1624 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1625 
1626 
1627 #if VDBE_DISPLAY_P4
1628 /*
1629 ** Compute a string that describes the P4 parameter for an opcode.
1630 ** Use zTemp for any required temporary buffer space.
1631 */
1632 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
1633   char *zP4 = 0;
1634   StrAccum x;
1635 
1636   sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1637   switch( pOp->p4type ){
1638     case P4_KEYINFO: {
1639       int j;
1640       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1641       assert( pKeyInfo->aSortFlags!=0 );
1642       sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1643       for(j=0; j<pKeyInfo->nKeyField; j++){
1644         CollSeq *pColl = pKeyInfo->aColl[j];
1645         const char *zColl = pColl ? pColl->zName : "";
1646         if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1647         sqlite3_str_appendf(&x, ",%s%s%s",
1648                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1649                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1650                zColl);
1651       }
1652       sqlite3_str_append(&x, ")", 1);
1653       break;
1654     }
1655 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1656     case P4_EXPR: {
1657       displayP4Expr(&x, pOp->p4.pExpr);
1658       break;
1659     }
1660 #endif
1661     case P4_COLLSEQ: {
1662       static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
1663       CollSeq *pColl = pOp->p4.pColl;
1664       assert( pColl->enc>=0 && pColl->enc<4 );
1665       sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
1666                           encnames[pColl->enc]);
1667       break;
1668     }
1669     case P4_FUNCDEF: {
1670       FuncDef *pDef = pOp->p4.pFunc;
1671       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1672       break;
1673     }
1674     case P4_FUNCCTX: {
1675       FuncDef *pDef = pOp->p4.pCtx->pFunc;
1676       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1677       break;
1678     }
1679     case P4_INT64: {
1680       sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1681       break;
1682     }
1683     case P4_INT32: {
1684       sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1685       break;
1686     }
1687     case P4_REAL: {
1688       sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1689       break;
1690     }
1691     case P4_MEM: {
1692       Mem *pMem = pOp->p4.pMem;
1693       if( pMem->flags & MEM_Str ){
1694         zP4 = pMem->z;
1695       }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1696         sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1697       }else if( pMem->flags & MEM_Real ){
1698         sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1699       }else if( pMem->flags & MEM_Null ){
1700         zP4 = "NULL";
1701       }else{
1702         assert( pMem->flags & MEM_Blob );
1703         zP4 = "(blob)";
1704       }
1705       break;
1706     }
1707 #ifndef SQLITE_OMIT_VIRTUALTABLE
1708     case P4_VTAB: {
1709       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1710       sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1711       break;
1712     }
1713 #endif
1714     case P4_INTARRAY: {
1715       int i;
1716       int *ai = pOp->p4.ai;
1717       int n = ai[0];   /* The first element of an INTARRAY is always the
1718                        ** count of the number of elements to follow */
1719       for(i=1; i<=n; i++){
1720         sqlite3_str_appendf(&x, "%c%d", (i==1 ? '[' : ','), ai[i]);
1721       }
1722       sqlite3_str_append(&x, "]", 1);
1723       break;
1724     }
1725     case P4_SUBPROGRAM: {
1726       zP4 = "program";
1727       break;
1728     }
1729     case P4_DYNBLOB:
1730     case P4_ADVANCE: {
1731       break;
1732     }
1733     case P4_TABLE: {
1734       zP4 = pOp->p4.pTab->zName;
1735       break;
1736     }
1737     default: {
1738       zP4 = pOp->p4.z;
1739     }
1740   }
1741   if( zP4 ) sqlite3_str_appendall(&x, zP4);
1742   if( (x.accError & SQLITE_NOMEM)!=0 ){
1743     sqlite3OomFault(db);
1744   }
1745   return sqlite3StrAccumFinish(&x);
1746 }
1747 #endif /* VDBE_DISPLAY_P4 */
1748 
1749 /*
1750 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1751 **
1752 ** The prepared statements need to know in advance the complete set of
1753 ** attached databases that will be use.  A mask of these databases
1754 ** is maintained in p->btreeMask.  The p->lockMask value is the subset of
1755 ** p->btreeMask of databases that will require a lock.
1756 */
1757 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1758   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1759   assert( i<(int)sizeof(p->btreeMask)*8 );
1760   DbMaskSet(p->btreeMask, i);
1761   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1762     DbMaskSet(p->lockMask, i);
1763   }
1764 }
1765 
1766 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1767 /*
1768 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1769 ** this routine obtains the mutex associated with each BtShared structure
1770 ** that may be accessed by the VM passed as an argument. In doing so it also
1771 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1772 ** that the correct busy-handler callback is invoked if required.
1773 **
1774 ** If SQLite is not threadsafe but does support shared-cache mode, then
1775 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1776 ** of all of BtShared structures accessible via the database handle
1777 ** associated with the VM.
1778 **
1779 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1780 ** function is a no-op.
1781 **
1782 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1783 ** statement p will ever use.  Let N be the number of bits in p->btreeMask
1784 ** corresponding to btrees that use shared cache.  Then the runtime of
1785 ** this routine is N*N.  But as N is rarely more than 1, this should not
1786 ** be a problem.
1787 */
1788 void sqlite3VdbeEnter(Vdbe *p){
1789   int i;
1790   sqlite3 *db;
1791   Db *aDb;
1792   int nDb;
1793   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1794   db = p->db;
1795   aDb = db->aDb;
1796   nDb = db->nDb;
1797   for(i=0; i<nDb; i++){
1798     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1799       sqlite3BtreeEnter(aDb[i].pBt);
1800     }
1801   }
1802 }
1803 #endif
1804 
1805 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1806 /*
1807 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1808 */
1809 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1810   int i;
1811   sqlite3 *db;
1812   Db *aDb;
1813   int nDb;
1814   db = p->db;
1815   aDb = db->aDb;
1816   nDb = db->nDb;
1817   for(i=0; i<nDb; i++){
1818     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1819       sqlite3BtreeLeave(aDb[i].pBt);
1820     }
1821   }
1822 }
1823 void sqlite3VdbeLeave(Vdbe *p){
1824   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1825   vdbeLeave(p);
1826 }
1827 #endif
1828 
1829 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1830 /*
1831 ** Print a single opcode.  This routine is used for debugging only.
1832 */
1833 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
1834   char *zP4;
1835   char *zCom;
1836   sqlite3 dummyDb;
1837   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1838   if( pOut==0 ) pOut = stdout;
1839   sqlite3BeginBenignMalloc();
1840   dummyDb.mallocFailed = 1;
1841   zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
1842 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1843   zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
1844 #else
1845   zCom = 0;
1846 #endif
1847   /* NB:  The sqlite3OpcodeName() function is implemented by code created
1848   ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1849   ** information from the vdbe.c source text */
1850   fprintf(pOut, zFormat1, pc,
1851       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
1852       zP4 ? zP4 : "", pOp->p5,
1853       zCom ? zCom : ""
1854   );
1855   fflush(pOut);
1856   sqlite3_free(zP4);
1857   sqlite3_free(zCom);
1858   sqlite3EndBenignMalloc();
1859 }
1860 #endif
1861 
1862 /*
1863 ** Initialize an array of N Mem element.
1864 */
1865 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1866   while( (N--)>0 ){
1867     p->db = db;
1868     p->flags = flags;
1869     p->szMalloc = 0;
1870 #ifdef SQLITE_DEBUG
1871     p->pScopyFrom = 0;
1872 #endif
1873     p++;
1874   }
1875 }
1876 
1877 /*
1878 ** Release an array of N Mem elements
1879 */
1880 static void releaseMemArray(Mem *p, int N){
1881   if( p && N ){
1882     Mem *pEnd = &p[N];
1883     sqlite3 *db = p->db;
1884     if( db->pnBytesFreed ){
1885       do{
1886         if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1887       }while( (++p)<pEnd );
1888       return;
1889     }
1890     do{
1891       assert( (&p[1])==pEnd || p[0].db==p[1].db );
1892       assert( sqlite3VdbeCheckMemInvariants(p) );
1893 
1894       /* This block is really an inlined version of sqlite3VdbeMemRelease()
1895       ** that takes advantage of the fact that the memory cell value is
1896       ** being set to NULL after releasing any dynamic resources.
1897       **
1898       ** The justification for duplicating code is that according to
1899       ** callgrind, this causes a certain test case to hit the CPU 4.7
1900       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1901       ** sqlite3MemRelease() were called from here. With -O2, this jumps
1902       ** to 6.6 percent. The test case is inserting 1000 rows into a table
1903       ** with no indexes using a single prepared INSERT statement, bind()
1904       ** and reset(). Inserts are grouped into a transaction.
1905       */
1906       testcase( p->flags & MEM_Agg );
1907       testcase( p->flags & MEM_Dyn );
1908       testcase( p->xDel==sqlite3VdbeFrameMemDel );
1909       if( p->flags&(MEM_Agg|MEM_Dyn) ){
1910         sqlite3VdbeMemRelease(p);
1911       }else if( p->szMalloc ){
1912         sqlite3DbFreeNN(db, p->zMalloc);
1913         p->szMalloc = 0;
1914       }
1915 
1916       p->flags = MEM_Undefined;
1917     }while( (++p)<pEnd );
1918   }
1919 }
1920 
1921 #ifdef SQLITE_DEBUG
1922 /*
1923 ** Verify that pFrame is a valid VdbeFrame pointer.  Return true if it is
1924 ** and false if something is wrong.
1925 **
1926 ** This routine is intended for use inside of assert() statements only.
1927 */
1928 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
1929   if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
1930   return 1;
1931 }
1932 #endif
1933 
1934 
1935 /*
1936 ** This is a destructor on a Mem object (which is really an sqlite3_value)
1937 ** that deletes the Frame object that is attached to it as a blob.
1938 **
1939 ** This routine does not delete the Frame right away.  It merely adds the
1940 ** frame to a list of frames to be deleted when the Vdbe halts.
1941 */
1942 void sqlite3VdbeFrameMemDel(void *pArg){
1943   VdbeFrame *pFrame = (VdbeFrame*)pArg;
1944   assert( sqlite3VdbeFrameIsValid(pFrame) );
1945   pFrame->pParent = pFrame->v->pDelFrame;
1946   pFrame->v->pDelFrame = pFrame;
1947 }
1948 
1949 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
1950 /*
1951 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
1952 ** QUERY PLAN output.
1953 **
1954 ** Return SQLITE_ROW on success.  Return SQLITE_DONE if there are no
1955 ** more opcodes to be displayed.
1956 */
1957 int sqlite3VdbeNextOpcode(
1958   Vdbe *p,         /* The statement being explained */
1959   Mem *pSub,       /* Storage for keeping track of subprogram nesting */
1960   int eMode,       /* 0: normal.  1: EQP.  2:  TablesUsed */
1961   int *piPc,       /* IN/OUT: Current rowid.  Overwritten with next rowid */
1962   int *piAddr,     /* OUT: Write index into (*paOp)[] here */
1963   Op **paOp        /* OUT: Write the opcode array here */
1964 ){
1965   int nRow;                            /* Stop when row count reaches this */
1966   int nSub = 0;                        /* Number of sub-vdbes seen so far */
1967   SubProgram **apSub = 0;              /* Array of sub-vdbes */
1968   int i;                               /* Next instruction address */
1969   int rc = SQLITE_OK;                  /* Result code */
1970   Op *aOp = 0;                         /* Opcode array */
1971   int iPc;                             /* Rowid.  Copy of value in *piPc */
1972 
1973   /* When the number of output rows reaches nRow, that means the
1974   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1975   ** nRow is the sum of the number of rows in the main program, plus
1976   ** the sum of the number of rows in all trigger subprograms encountered
1977   ** so far.  The nRow value will increase as new trigger subprograms are
1978   ** encountered, but p->pc will eventually catch up to nRow.
1979   */
1980   nRow = p->nOp;
1981   if( pSub!=0 ){
1982     if( pSub->flags&MEM_Blob ){
1983       /* pSub is initiallly NULL.  It is initialized to a BLOB by
1984       ** the P4_SUBPROGRAM processing logic below */
1985       nSub = pSub->n/sizeof(Vdbe*);
1986       apSub = (SubProgram **)pSub->z;
1987     }
1988     for(i=0; i<nSub; i++){
1989       nRow += apSub[i]->nOp;
1990     }
1991   }
1992   iPc = *piPc;
1993   while(1){  /* Loop exits via break */
1994     i = iPc++;
1995     if( i>=nRow ){
1996       p->rc = SQLITE_OK;
1997       rc = SQLITE_DONE;
1998       break;
1999     }
2000     if( i<p->nOp ){
2001       /* The rowid is small enough that we are still in the
2002       ** main program. */
2003       aOp = p->aOp;
2004     }else{
2005       /* We are currently listing subprograms.  Figure out which one and
2006       ** pick up the appropriate opcode. */
2007       int j;
2008       i -= p->nOp;
2009       assert( apSub!=0 );
2010       assert( nSub>0 );
2011       for(j=0; i>=apSub[j]->nOp; j++){
2012         i -= apSub[j]->nOp;
2013         assert( i<apSub[j]->nOp || j+1<nSub );
2014       }
2015       aOp = apSub[j]->aOp;
2016     }
2017 
2018     /* When an OP_Program opcode is encounter (the only opcode that has
2019     ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2020     ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2021     ** has not already been seen.
2022     */
2023     if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
2024       int nByte = (nSub+1)*sizeof(SubProgram*);
2025       int j;
2026       for(j=0; j<nSub; j++){
2027         if( apSub[j]==aOp[i].p4.pProgram ) break;
2028       }
2029       if( j==nSub ){
2030         p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2031         if( p->rc!=SQLITE_OK ){
2032           rc = SQLITE_ERROR;
2033           break;
2034         }
2035         apSub = (SubProgram **)pSub->z;
2036         apSub[nSub++] = aOp[i].p4.pProgram;
2037         MemSetTypeFlag(pSub, MEM_Blob);
2038         pSub->n = nSub*sizeof(SubProgram*);
2039         nRow += aOp[i].p4.pProgram->nOp;
2040       }
2041     }
2042     if( eMode==0 ) break;
2043 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2044     if( eMode==2 ){
2045       Op *pOp = aOp + i;
2046       if( pOp->opcode==OP_OpenRead ) break;
2047       if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
2048       if( pOp->opcode==OP_ReopenIdx ) break;
2049     }else
2050 #endif
2051     {
2052       assert( eMode==1 );
2053       if( aOp[i].opcode==OP_Explain ) break;
2054       if( aOp[i].opcode==OP_Init && iPc>1 ) break;
2055     }
2056   }
2057   *piPc = iPc;
2058   *piAddr = i;
2059   *paOp = aOp;
2060   return rc;
2061 }
2062 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2063 
2064 
2065 /*
2066 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2067 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2068 */
2069 void sqlite3VdbeFrameDelete(VdbeFrame *p){
2070   int i;
2071   Mem *aMem = VdbeFrameMem(p);
2072   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
2073   assert( sqlite3VdbeFrameIsValid(p) );
2074   for(i=0; i<p->nChildCsr; i++){
2075     sqlite3VdbeFreeCursor(p->v, apCsr[i]);
2076   }
2077   releaseMemArray(aMem, p->nChildMem);
2078   sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
2079   sqlite3DbFree(p->v->db, p);
2080 }
2081 
2082 #ifndef SQLITE_OMIT_EXPLAIN
2083 /*
2084 ** Give a listing of the program in the virtual machine.
2085 **
2086 ** The interface is the same as sqlite3VdbeExec().  But instead of
2087 ** running the code, it invokes the callback once for each instruction.
2088 ** This feature is used to implement "EXPLAIN".
2089 **
2090 ** When p->explain==1, each instruction is listed.  When
2091 ** p->explain==2, only OP_Explain instructions are listed and these
2092 ** are shown in a different format.  p->explain==2 is used to implement
2093 ** EXPLAIN QUERY PLAN.
2094 ** 2018-04-24:  In p->explain==2 mode, the OP_Init opcodes of triggers
2095 ** are also shown, so that the boundaries between the main program and
2096 ** each trigger are clear.
2097 **
2098 ** When p->explain==1, first the main program is listed, then each of
2099 ** the trigger subprograms are listed one by one.
2100 */
2101 int sqlite3VdbeList(
2102   Vdbe *p                   /* The VDBE */
2103 ){
2104   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
2105   sqlite3 *db = p->db;                 /* The database connection */
2106   int i;                               /* Loop counter */
2107   int rc = SQLITE_OK;                  /* Return code */
2108   Mem *pMem = &p->aMem[1];             /* First Mem of result set */
2109   int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
2110   Op *aOp;                             /* Array of opcodes */
2111   Op *pOp;                             /* Current opcode */
2112 
2113   assert( p->explain );
2114   assert( p->magic==VDBE_MAGIC_RUN );
2115   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
2116 
2117   /* Even though this opcode does not use dynamic strings for
2118   ** the result, result columns may become dynamic if the user calls
2119   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2120   */
2121   releaseMemArray(pMem, 8);
2122   p->pResultSet = 0;
2123 
2124   if( p->rc==SQLITE_NOMEM ){
2125     /* This happens if a malloc() inside a call to sqlite3_column_text() or
2126     ** sqlite3_column_text16() failed.  */
2127     sqlite3OomFault(db);
2128     return SQLITE_ERROR;
2129   }
2130 
2131   if( bListSubprogs ){
2132     /* The first 8 memory cells are used for the result set.  So we will
2133     ** commandeer the 9th cell to use as storage for an array of pointers
2134     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
2135     ** cells.  */
2136     assert( p->nMem>9 );
2137     pSub = &p->aMem[9];
2138   }else{
2139     pSub = 0;
2140   }
2141 
2142   /* Figure out which opcode is next to display */
2143   rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
2144 
2145   if( rc==SQLITE_OK ){
2146     pOp = aOp + i;
2147     if( AtomicLoad(&db->u1.isInterrupted) ){
2148       p->rc = SQLITE_INTERRUPT;
2149       rc = SQLITE_ERROR;
2150       sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2151     }else{
2152       char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
2153       if( p->explain==2 ){
2154         sqlite3VdbeMemSetInt64(pMem, pOp->p1);
2155         sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
2156         sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
2157         sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
2158         p->nResColumn = 4;
2159       }else{
2160         sqlite3VdbeMemSetInt64(pMem+0, i);
2161         sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
2162                              -1, SQLITE_UTF8, SQLITE_STATIC);
2163         sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
2164         sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
2165         sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
2166         /* pMem+5 for p4 is done last */
2167         sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
2168 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2169         {
2170           char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
2171           sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
2172         }
2173 #else
2174         sqlite3VdbeMemSetNull(pMem+7);
2175 #endif
2176         sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
2177         p->nResColumn = 8;
2178       }
2179       p->pResultSet = pMem;
2180       if( db->mallocFailed ){
2181         p->rc = SQLITE_NOMEM;
2182         rc = SQLITE_ERROR;
2183       }else{
2184         p->rc = SQLITE_OK;
2185         rc = SQLITE_ROW;
2186       }
2187     }
2188   }
2189   return rc;
2190 }
2191 #endif /* SQLITE_OMIT_EXPLAIN */
2192 
2193 #ifdef SQLITE_DEBUG
2194 /*
2195 ** Print the SQL that was used to generate a VDBE program.
2196 */
2197 void sqlite3VdbePrintSql(Vdbe *p){
2198   const char *z = 0;
2199   if( p->zSql ){
2200     z = p->zSql;
2201   }else if( p->nOp>=1 ){
2202     const VdbeOp *pOp = &p->aOp[0];
2203     if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2204       z = pOp->p4.z;
2205       while( sqlite3Isspace(*z) ) z++;
2206     }
2207   }
2208   if( z ) printf("SQL: [%s]\n", z);
2209 }
2210 #endif
2211 
2212 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2213 /*
2214 ** Print an IOTRACE message showing SQL content.
2215 */
2216 void sqlite3VdbeIOTraceSql(Vdbe *p){
2217   int nOp = p->nOp;
2218   VdbeOp *pOp;
2219   if( sqlite3IoTrace==0 ) return;
2220   if( nOp<1 ) return;
2221   pOp = &p->aOp[0];
2222   if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2223     int i, j;
2224     char z[1000];
2225     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2226     for(i=0; sqlite3Isspace(z[i]); i++){}
2227     for(j=0; z[i]; i++){
2228       if( sqlite3Isspace(z[i]) ){
2229         if( z[i-1]!=' ' ){
2230           z[j++] = ' ';
2231         }
2232       }else{
2233         z[j++] = z[i];
2234       }
2235     }
2236     z[j] = 0;
2237     sqlite3IoTrace("SQL %s\n", z);
2238   }
2239 }
2240 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2241 
2242 /* An instance of this object describes bulk memory available for use
2243 ** by subcomponents of a prepared statement.  Space is allocated out
2244 ** of a ReusableSpace object by the allocSpace() routine below.
2245 */
2246 struct ReusableSpace {
2247   u8 *pSpace;            /* Available memory */
2248   sqlite3_int64 nFree;   /* Bytes of available memory */
2249   sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2250 };
2251 
2252 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2253 ** from the ReusableSpace object.  Return a pointer to the allocated
2254 ** memory on success.  If insufficient memory is available in the
2255 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2256 ** value by the amount needed and return NULL.
2257 **
2258 ** If pBuf is not initially NULL, that means that the memory has already
2259 ** been allocated by a prior call to this routine, so just return a copy
2260 ** of pBuf and leave ReusableSpace unchanged.
2261 **
2262 ** This allocator is employed to repurpose unused slots at the end of the
2263 ** opcode array of prepared state for other memory needs of the prepared
2264 ** statement.
2265 */
2266 static void *allocSpace(
2267   struct ReusableSpace *p,  /* Bulk memory available for allocation */
2268   void *pBuf,               /* Pointer to a prior allocation */
2269   sqlite3_int64 nByte       /* Bytes of memory needed */
2270 ){
2271   assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2272   if( pBuf==0 ){
2273     nByte = ROUND8(nByte);
2274     if( nByte <= p->nFree ){
2275       p->nFree -= nByte;
2276       pBuf = &p->pSpace[p->nFree];
2277     }else{
2278       p->nNeeded += nByte;
2279     }
2280   }
2281   assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2282   return pBuf;
2283 }
2284 
2285 /*
2286 ** Rewind the VDBE back to the beginning in preparation for
2287 ** running it.
2288 */
2289 void sqlite3VdbeRewind(Vdbe *p){
2290 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2291   int i;
2292 #endif
2293   assert( p!=0 );
2294   assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET );
2295 
2296   /* There should be at least one opcode.
2297   */
2298   assert( p->nOp>0 );
2299 
2300   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
2301   p->magic = VDBE_MAGIC_RUN;
2302 
2303 #ifdef SQLITE_DEBUG
2304   for(i=0; i<p->nMem; i++){
2305     assert( p->aMem[i].db==p->db );
2306   }
2307 #endif
2308   p->pc = -1;
2309   p->rc = SQLITE_OK;
2310   p->errorAction = OE_Abort;
2311   p->nChange = 0;
2312   p->cacheCtr = 1;
2313   p->minWriteFileFormat = 255;
2314   p->iStatement = 0;
2315   p->nFkConstraint = 0;
2316 #ifdef VDBE_PROFILE
2317   for(i=0; i<p->nOp; i++){
2318     p->aOp[i].cnt = 0;
2319     p->aOp[i].cycles = 0;
2320   }
2321 #endif
2322 }
2323 
2324 /*
2325 ** Prepare a virtual machine for execution for the first time after
2326 ** creating the virtual machine.  This involves things such
2327 ** as allocating registers and initializing the program counter.
2328 ** After the VDBE has be prepped, it can be executed by one or more
2329 ** calls to sqlite3VdbeExec().
2330 **
2331 ** This function may be called exactly once on each virtual machine.
2332 ** After this routine is called the VM has been "packaged" and is ready
2333 ** to run.  After this routine is called, further calls to
2334 ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
2335 ** the Vdbe from the Parse object that helped generate it so that the
2336 ** the Vdbe becomes an independent entity and the Parse object can be
2337 ** destroyed.
2338 **
2339 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2340 ** to its initial state after it has been run.
2341 */
2342 void sqlite3VdbeMakeReady(
2343   Vdbe *p,                       /* The VDBE */
2344   Parse *pParse                  /* Parsing context */
2345 ){
2346   sqlite3 *db;                   /* The database connection */
2347   int nVar;                      /* Number of parameters */
2348   int nMem;                      /* Number of VM memory registers */
2349   int nCursor;                   /* Number of cursors required */
2350   int nArg;                      /* Number of arguments in subprograms */
2351   int n;                         /* Loop counter */
2352   struct ReusableSpace x;        /* Reusable bulk memory */
2353 
2354   assert( p!=0 );
2355   assert( p->nOp>0 );
2356   assert( pParse!=0 );
2357   assert( p->magic==VDBE_MAGIC_INIT );
2358   assert( pParse==p->pParse );
2359   db = p->db;
2360   assert( db->mallocFailed==0 );
2361   nVar = pParse->nVar;
2362   nMem = pParse->nMem;
2363   nCursor = pParse->nTab;
2364   nArg = pParse->nMaxArg;
2365 
2366   /* Each cursor uses a memory cell.  The first cursor (cursor 0) can
2367   ** use aMem[0] which is not otherwise used by the VDBE program.  Allocate
2368   ** space at the end of aMem[] for cursors 1 and greater.
2369   ** See also: allocateCursor().
2370   */
2371   nMem += nCursor;
2372   if( nCursor==0 && nMem>0 ) nMem++;  /* Space for aMem[0] even if not used */
2373 
2374   /* Figure out how much reusable memory is available at the end of the
2375   ** opcode array.  This extra memory will be reallocated for other elements
2376   ** of the prepared statement.
2377   */
2378   n = ROUND8(sizeof(Op)*p->nOp);              /* Bytes of opcode memory used */
2379   x.pSpace = &((u8*)p->aOp)[n];               /* Unused opcode memory */
2380   assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2381   x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */
2382   assert( x.nFree>=0 );
2383   assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2384 
2385   resolveP2Values(p, &nArg);
2386   p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2387   if( pParse->explain ){
2388     static const char * const azColName[] = {
2389        "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2390        "id", "parent", "notused", "detail"
2391     };
2392     int iFirst, mx, i;
2393     if( nMem<10 ) nMem = 10;
2394     p->explain = pParse->explain;
2395     if( pParse->explain==2 ){
2396       sqlite3VdbeSetNumCols(p, 4);
2397       iFirst = 8;
2398       mx = 12;
2399     }else{
2400       sqlite3VdbeSetNumCols(p, 8);
2401       iFirst = 0;
2402       mx = 8;
2403     }
2404     for(i=iFirst; i<mx; i++){
2405       sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
2406                             azColName[i], SQLITE_STATIC);
2407     }
2408   }
2409   p->expired = 0;
2410 
2411   /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2412   ** passes.  On the first pass, we try to reuse unused memory at the
2413   ** end of the opcode array.  If we are unable to satisfy all memory
2414   ** requirements by reusing the opcode array tail, then the second
2415   ** pass will fill in the remainder using a fresh memory allocation.
2416   **
2417   ** This two-pass approach that reuses as much memory as possible from
2418   ** the leftover memory at the end of the opcode array.  This can significantly
2419   ** reduce the amount of memory held by a prepared statement.
2420   */
2421   x.nNeeded = 0;
2422   p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2423   p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2424   p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2425   p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2426 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2427   p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64));
2428 #endif
2429   if( x.nNeeded ){
2430     x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2431     x.nFree = x.nNeeded;
2432     if( !db->mallocFailed ){
2433       p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2434       p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2435       p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2436       p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2437 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2438       p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2439 #endif
2440     }
2441   }
2442 
2443   p->pVList = pParse->pVList;
2444   pParse->pVList =  0;
2445   if( db->mallocFailed ){
2446     p->nVar = 0;
2447     p->nCursor = 0;
2448     p->nMem = 0;
2449   }else{
2450     p->nCursor = nCursor;
2451     p->nVar = (ynVar)nVar;
2452     initMemArray(p->aVar, nVar, db, MEM_Null);
2453     p->nMem = nMem;
2454     initMemArray(p->aMem, nMem, db, MEM_Undefined);
2455     memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2456 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2457     memset(p->anExec, 0, p->nOp*sizeof(i64));
2458 #endif
2459   }
2460   sqlite3VdbeRewind(p);
2461 }
2462 
2463 /*
2464 ** Close a VDBE cursor and release all the resources that cursor
2465 ** happens to hold.
2466 */
2467 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2468   if( pCx==0 ){
2469     return;
2470   }
2471   assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2472   switch( pCx->eCurType ){
2473     case CURTYPE_SORTER: {
2474       sqlite3VdbeSorterClose(p->db, pCx);
2475       break;
2476     }
2477     case CURTYPE_BTREE: {
2478       if( pCx->isEphemeral ){
2479         if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx);
2480         /* The pCx->pCursor will be close automatically, if it exists, by
2481         ** the call above. */
2482       }else{
2483         assert( pCx->uc.pCursor!=0 );
2484         sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2485       }
2486       break;
2487     }
2488 #ifndef SQLITE_OMIT_VIRTUALTABLE
2489     case CURTYPE_VTAB: {
2490       sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2491       const sqlite3_module *pModule = pVCur->pVtab->pModule;
2492       assert( pVCur->pVtab->nRef>0 );
2493       pVCur->pVtab->nRef--;
2494       pModule->xClose(pVCur);
2495       break;
2496     }
2497 #endif
2498   }
2499 }
2500 
2501 /*
2502 ** Close all cursors in the current frame.
2503 */
2504 static void closeCursorsInFrame(Vdbe *p){
2505   if( p->apCsr ){
2506     int i;
2507     for(i=0; i<p->nCursor; i++){
2508       VdbeCursor *pC = p->apCsr[i];
2509       if( pC ){
2510         sqlite3VdbeFreeCursor(p, pC);
2511         p->apCsr[i] = 0;
2512       }
2513     }
2514   }
2515 }
2516 
2517 /*
2518 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2519 ** is used, for example, when a trigger sub-program is halted to restore
2520 ** control to the main program.
2521 */
2522 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2523   Vdbe *v = pFrame->v;
2524   closeCursorsInFrame(v);
2525 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2526   v->anExec = pFrame->anExec;
2527 #endif
2528   v->aOp = pFrame->aOp;
2529   v->nOp = pFrame->nOp;
2530   v->aMem = pFrame->aMem;
2531   v->nMem = pFrame->nMem;
2532   v->apCsr = pFrame->apCsr;
2533   v->nCursor = pFrame->nCursor;
2534   v->db->lastRowid = pFrame->lastRowid;
2535   v->nChange = pFrame->nChange;
2536   v->db->nChange = pFrame->nDbChange;
2537   sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2538   v->pAuxData = pFrame->pAuxData;
2539   pFrame->pAuxData = 0;
2540   return pFrame->pc;
2541 }
2542 
2543 /*
2544 ** Close all cursors.
2545 **
2546 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2547 ** cell array. This is necessary as the memory cell array may contain
2548 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2549 ** open cursors.
2550 */
2551 static void closeAllCursors(Vdbe *p){
2552   if( p->pFrame ){
2553     VdbeFrame *pFrame;
2554     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2555     sqlite3VdbeFrameRestore(pFrame);
2556     p->pFrame = 0;
2557     p->nFrame = 0;
2558   }
2559   assert( p->nFrame==0 );
2560   closeCursorsInFrame(p);
2561   if( p->aMem ){
2562     releaseMemArray(p->aMem, p->nMem);
2563   }
2564   while( p->pDelFrame ){
2565     VdbeFrame *pDel = p->pDelFrame;
2566     p->pDelFrame = pDel->pParent;
2567     sqlite3VdbeFrameDelete(pDel);
2568   }
2569 
2570   /* Delete any auxdata allocations made by the VM */
2571   if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2572   assert( p->pAuxData==0 );
2573 }
2574 
2575 /*
2576 ** Set the number of result columns that will be returned by this SQL
2577 ** statement. This is now set at compile time, rather than during
2578 ** execution of the vdbe program so that sqlite3_column_count() can
2579 ** be called on an SQL statement before sqlite3_step().
2580 */
2581 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2582   int n;
2583   sqlite3 *db = p->db;
2584 
2585   if( p->nResColumn ){
2586     releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2587     sqlite3DbFree(db, p->aColName);
2588   }
2589   n = nResColumn*COLNAME_N;
2590   p->nResColumn = (u16)nResColumn;
2591   p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2592   if( p->aColName==0 ) return;
2593   initMemArray(p->aColName, n, db, MEM_Null);
2594 }
2595 
2596 /*
2597 ** Set the name of the idx'th column to be returned by the SQL statement.
2598 ** zName must be a pointer to a nul terminated string.
2599 **
2600 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2601 **
2602 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2603 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2604 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2605 */
2606 int sqlite3VdbeSetColName(
2607   Vdbe *p,                         /* Vdbe being configured */
2608   int idx,                         /* Index of column zName applies to */
2609   int var,                         /* One of the COLNAME_* constants */
2610   const char *zName,               /* Pointer to buffer containing name */
2611   void (*xDel)(void*)              /* Memory management strategy for zName */
2612 ){
2613   int rc;
2614   Mem *pColName;
2615   assert( idx<p->nResColumn );
2616   assert( var<COLNAME_N );
2617   if( p->db->mallocFailed ){
2618     assert( !zName || xDel!=SQLITE_DYNAMIC );
2619     return SQLITE_NOMEM_BKPT;
2620   }
2621   assert( p->aColName!=0 );
2622   pColName = &(p->aColName[idx+var*p->nResColumn]);
2623   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2624   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2625   return rc;
2626 }
2627 
2628 /*
2629 ** A read or write transaction may or may not be active on database handle
2630 ** db. If a transaction is active, commit it. If there is a
2631 ** write-transaction spanning more than one database file, this routine
2632 ** takes care of the master journal trickery.
2633 */
2634 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2635   int i;
2636   int nTrans = 0;  /* Number of databases with an active write-transaction
2637                    ** that are candidates for a two-phase commit using a
2638                    ** master-journal */
2639   int rc = SQLITE_OK;
2640   int needXcommit = 0;
2641 
2642 #ifdef SQLITE_OMIT_VIRTUALTABLE
2643   /* With this option, sqlite3VtabSync() is defined to be simply
2644   ** SQLITE_OK so p is not used.
2645   */
2646   UNUSED_PARAMETER(p);
2647 #endif
2648 
2649   /* Before doing anything else, call the xSync() callback for any
2650   ** virtual module tables written in this transaction. This has to
2651   ** be done before determining whether a master journal file is
2652   ** required, as an xSync() callback may add an attached database
2653   ** to the transaction.
2654   */
2655   rc = sqlite3VtabSync(db, p);
2656 
2657   /* This loop determines (a) if the commit hook should be invoked and
2658   ** (b) how many database files have open write transactions, not
2659   ** including the temp database. (b) is important because if more than
2660   ** one database file has an open write transaction, a master journal
2661   ** file is required for an atomic commit.
2662   */
2663   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2664     Btree *pBt = db->aDb[i].pBt;
2665     if( sqlite3BtreeIsInTrans(pBt) ){
2666       /* Whether or not a database might need a master journal depends upon
2667       ** its journal mode (among other things).  This matrix determines which
2668       ** journal modes use a master journal and which do not */
2669       static const u8 aMJNeeded[] = {
2670         /* DELETE   */  1,
2671         /* PERSIST   */ 1,
2672         /* OFF       */ 0,
2673         /* TRUNCATE  */ 1,
2674         /* MEMORY    */ 0,
2675         /* WAL       */ 0
2676       };
2677       Pager *pPager;   /* Pager associated with pBt */
2678       needXcommit = 1;
2679       sqlite3BtreeEnter(pBt);
2680       pPager = sqlite3BtreePager(pBt);
2681       if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2682        && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2683        && sqlite3PagerIsMemdb(pPager)==0
2684       ){
2685         assert( i!=1 );
2686         nTrans++;
2687       }
2688       rc = sqlite3PagerExclusiveLock(pPager);
2689       sqlite3BtreeLeave(pBt);
2690     }
2691   }
2692   if( rc!=SQLITE_OK ){
2693     return rc;
2694   }
2695 
2696   /* If there are any write-transactions at all, invoke the commit hook */
2697   if( needXcommit && db->xCommitCallback ){
2698     rc = db->xCommitCallback(db->pCommitArg);
2699     if( rc ){
2700       return SQLITE_CONSTRAINT_COMMITHOOK;
2701     }
2702   }
2703 
2704   /* The simple case - no more than one database file (not counting the
2705   ** TEMP database) has a transaction active.   There is no need for the
2706   ** master-journal.
2707   **
2708   ** If the return value of sqlite3BtreeGetFilename() is a zero length
2709   ** string, it means the main database is :memory: or a temp file.  In
2710   ** that case we do not support atomic multi-file commits, so use the
2711   ** simple case then too.
2712   */
2713   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2714    || nTrans<=1
2715   ){
2716     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2717       Btree *pBt = db->aDb[i].pBt;
2718       if( pBt ){
2719         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2720       }
2721     }
2722 
2723     /* Do the commit only if all databases successfully complete phase 1.
2724     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2725     ** IO error while deleting or truncating a journal file. It is unlikely,
2726     ** but could happen. In this case abandon processing and return the error.
2727     */
2728     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2729       Btree *pBt = db->aDb[i].pBt;
2730       if( pBt ){
2731         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2732       }
2733     }
2734     if( rc==SQLITE_OK ){
2735       sqlite3VtabCommit(db);
2736     }
2737   }
2738 
2739   /* The complex case - There is a multi-file write-transaction active.
2740   ** This requires a master journal file to ensure the transaction is
2741   ** committed atomically.
2742   */
2743 #ifndef SQLITE_OMIT_DISKIO
2744   else{
2745     sqlite3_vfs *pVfs = db->pVfs;
2746     char *zMaster = 0;   /* File-name for the master journal */
2747     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2748     sqlite3_file *pMaster = 0;
2749     i64 offset = 0;
2750     int res;
2751     int retryCount = 0;
2752     int nMainFile;
2753 
2754     /* Select a master journal file name */
2755     nMainFile = sqlite3Strlen30(zMainFile);
2756     zMaster = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
2757     if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
2758     zMaster += 4;
2759     do {
2760       u32 iRandom;
2761       if( retryCount ){
2762         if( retryCount>100 ){
2763           sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2764           sqlite3OsDelete(pVfs, zMaster, 0);
2765           break;
2766         }else if( retryCount==1 ){
2767           sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2768         }
2769       }
2770       retryCount++;
2771       sqlite3_randomness(sizeof(iRandom), &iRandom);
2772       sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
2773                                (iRandom>>8)&0xffffff, iRandom&0xff);
2774       /* The antipenultimate character of the master journal name must
2775       ** be "9" to avoid name collisions when using 8+3 filenames. */
2776       assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2777       sqlite3FileSuffix3(zMainFile, zMaster);
2778       rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2779     }while( rc==SQLITE_OK && res );
2780     if( rc==SQLITE_OK ){
2781       /* Open the master journal. */
2782       rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2783           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2784           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2785       );
2786     }
2787     if( rc!=SQLITE_OK ){
2788       sqlite3DbFree(db, zMaster-4);
2789       return rc;
2790     }
2791 
2792     /* Write the name of each database file in the transaction into the new
2793     ** master journal file. If an error occurs at this point close
2794     ** and delete the master journal file. All the individual journal files
2795     ** still have 'null' as the master journal pointer, so they will roll
2796     ** back independently if a failure occurs.
2797     */
2798     for(i=0; i<db->nDb; i++){
2799       Btree *pBt = db->aDb[i].pBt;
2800       if( sqlite3BtreeIsInTrans(pBt) ){
2801         char const *zFile = sqlite3BtreeGetJournalname(pBt);
2802         if( zFile==0 ){
2803           continue;  /* Ignore TEMP and :memory: databases */
2804         }
2805         assert( zFile[0]!=0 );
2806         rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2807         offset += sqlite3Strlen30(zFile)+1;
2808         if( rc!=SQLITE_OK ){
2809           sqlite3OsCloseFree(pMaster);
2810           sqlite3OsDelete(pVfs, zMaster, 0);
2811           sqlite3DbFree(db, zMaster-4);
2812           return rc;
2813         }
2814       }
2815     }
2816 
2817     /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2818     ** flag is set this is not required.
2819     */
2820     if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2821      && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2822     ){
2823       sqlite3OsCloseFree(pMaster);
2824       sqlite3OsDelete(pVfs, zMaster, 0);
2825       sqlite3DbFree(db, zMaster-4);
2826       return rc;
2827     }
2828 
2829     /* Sync all the db files involved in the transaction. The same call
2830     ** sets the master journal pointer in each individual journal. If
2831     ** an error occurs here, do not delete the master journal file.
2832     **
2833     ** If the error occurs during the first call to
2834     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2835     ** master journal file will be orphaned. But we cannot delete it,
2836     ** in case the master journal file name was written into the journal
2837     ** file before the failure occurred.
2838     */
2839     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2840       Btree *pBt = db->aDb[i].pBt;
2841       if( pBt ){
2842         rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
2843       }
2844     }
2845     sqlite3OsCloseFree(pMaster);
2846     assert( rc!=SQLITE_BUSY );
2847     if( rc!=SQLITE_OK ){
2848       sqlite3DbFree(db, zMaster-4);
2849       return rc;
2850     }
2851 
2852     /* Delete the master journal file. This commits the transaction. After
2853     ** doing this the directory is synced again before any individual
2854     ** transaction files are deleted.
2855     */
2856     rc = sqlite3OsDelete(pVfs, zMaster, 1);
2857     sqlite3DbFree(db, zMaster-4);
2858     zMaster = 0;
2859     if( rc ){
2860       return rc;
2861     }
2862 
2863     /* All files and directories have already been synced, so the following
2864     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2865     ** deleting or truncating journals. If something goes wrong while
2866     ** this is happening we don't really care. The integrity of the
2867     ** transaction is already guaranteed, but some stray 'cold' journals
2868     ** may be lying around. Returning an error code won't help matters.
2869     */
2870     disable_simulated_io_errors();
2871     sqlite3BeginBenignMalloc();
2872     for(i=0; i<db->nDb; i++){
2873       Btree *pBt = db->aDb[i].pBt;
2874       if( pBt ){
2875         sqlite3BtreeCommitPhaseTwo(pBt, 1);
2876       }
2877     }
2878     sqlite3EndBenignMalloc();
2879     enable_simulated_io_errors();
2880 
2881     sqlite3VtabCommit(db);
2882   }
2883 #endif
2884 
2885   return rc;
2886 }
2887 
2888 /*
2889 ** This routine checks that the sqlite3.nVdbeActive count variable
2890 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2891 ** currently active. An assertion fails if the two counts do not match.
2892 ** This is an internal self-check only - it is not an essential processing
2893 ** step.
2894 **
2895 ** This is a no-op if NDEBUG is defined.
2896 */
2897 #ifndef NDEBUG
2898 static void checkActiveVdbeCnt(sqlite3 *db){
2899   Vdbe *p;
2900   int cnt = 0;
2901   int nWrite = 0;
2902   int nRead = 0;
2903   p = db->pVdbe;
2904   while( p ){
2905     if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2906       cnt++;
2907       if( p->readOnly==0 ) nWrite++;
2908       if( p->bIsReader ) nRead++;
2909     }
2910     p = p->pNext;
2911   }
2912   assert( cnt==db->nVdbeActive );
2913   assert( nWrite==db->nVdbeWrite );
2914   assert( nRead==db->nVdbeRead );
2915 }
2916 #else
2917 #define checkActiveVdbeCnt(x)
2918 #endif
2919 
2920 /*
2921 ** If the Vdbe passed as the first argument opened a statement-transaction,
2922 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2923 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2924 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2925 ** statement transaction is committed.
2926 **
2927 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2928 ** Otherwise SQLITE_OK.
2929 */
2930 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2931   sqlite3 *const db = p->db;
2932   int rc = SQLITE_OK;
2933   int i;
2934   const int iSavepoint = p->iStatement-1;
2935 
2936   assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2937   assert( db->nStatement>0 );
2938   assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2939 
2940   for(i=0; i<db->nDb; i++){
2941     int rc2 = SQLITE_OK;
2942     Btree *pBt = db->aDb[i].pBt;
2943     if( pBt ){
2944       if( eOp==SAVEPOINT_ROLLBACK ){
2945         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2946       }
2947       if( rc2==SQLITE_OK ){
2948         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2949       }
2950       if( rc==SQLITE_OK ){
2951         rc = rc2;
2952       }
2953     }
2954   }
2955   db->nStatement--;
2956   p->iStatement = 0;
2957 
2958   if( rc==SQLITE_OK ){
2959     if( eOp==SAVEPOINT_ROLLBACK ){
2960       rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2961     }
2962     if( rc==SQLITE_OK ){
2963       rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2964     }
2965   }
2966 
2967   /* If the statement transaction is being rolled back, also restore the
2968   ** database handles deferred constraint counter to the value it had when
2969   ** the statement transaction was opened.  */
2970   if( eOp==SAVEPOINT_ROLLBACK ){
2971     db->nDeferredCons = p->nStmtDefCons;
2972     db->nDeferredImmCons = p->nStmtDefImmCons;
2973   }
2974   return rc;
2975 }
2976 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2977   if( p->db->nStatement && p->iStatement ){
2978     return vdbeCloseStatement(p, eOp);
2979   }
2980   return SQLITE_OK;
2981 }
2982 
2983 
2984 /*
2985 ** This function is called when a transaction opened by the database
2986 ** handle associated with the VM passed as an argument is about to be
2987 ** committed. If there are outstanding deferred foreign key constraint
2988 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2989 **
2990 ** If there are outstanding FK violations and this function returns
2991 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2992 ** and write an error message to it. Then return SQLITE_ERROR.
2993 */
2994 #ifndef SQLITE_OMIT_FOREIGN_KEY
2995 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2996   sqlite3 *db = p->db;
2997   if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2998    || (!deferred && p->nFkConstraint>0)
2999   ){
3000     p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3001     p->errorAction = OE_Abort;
3002     sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
3003     return SQLITE_ERROR;
3004   }
3005   return SQLITE_OK;
3006 }
3007 #endif
3008 
3009 /*
3010 ** This routine is called the when a VDBE tries to halt.  If the VDBE
3011 ** has made changes and is in autocommit mode, then commit those
3012 ** changes.  If a rollback is needed, then do the rollback.
3013 **
3014 ** This routine is the only way to move the state of a VM from
3015 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
3016 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
3017 **
3018 ** Return an error code.  If the commit could not complete because of
3019 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
3020 ** means the close did not happen and needs to be repeated.
3021 */
3022 int sqlite3VdbeHalt(Vdbe *p){
3023   int rc;                         /* Used to store transient return codes */
3024   sqlite3 *db = p->db;
3025 
3026   /* This function contains the logic that determines if a statement or
3027   ** transaction will be committed or rolled back as a result of the
3028   ** execution of this virtual machine.
3029   **
3030   ** If any of the following errors occur:
3031   **
3032   **     SQLITE_NOMEM
3033   **     SQLITE_IOERR
3034   **     SQLITE_FULL
3035   **     SQLITE_INTERRUPT
3036   **
3037   ** Then the internal cache might have been left in an inconsistent
3038   ** state.  We need to rollback the statement transaction, if there is
3039   ** one, or the complete transaction if there is no statement transaction.
3040   */
3041 
3042   if( p->magic!=VDBE_MAGIC_RUN ){
3043     return SQLITE_OK;
3044   }
3045   if( db->mallocFailed ){
3046     p->rc = SQLITE_NOMEM_BKPT;
3047   }
3048   closeAllCursors(p);
3049   checkActiveVdbeCnt(db);
3050 
3051   /* No commit or rollback needed if the program never started or if the
3052   ** SQL statement does not read or write a database file.  */
3053   if( p->pc>=0 && p->bIsReader ){
3054     int mrc;   /* Primary error code from p->rc */
3055     int eStatementOp = 0;
3056     int isSpecialError;            /* Set to true if a 'special' error */
3057 
3058     /* Lock all btrees used by the statement */
3059     sqlite3VdbeEnter(p);
3060 
3061     /* Check for one of the special errors */
3062     mrc = p->rc & 0xff;
3063     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
3064                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
3065     if( isSpecialError ){
3066       /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3067       ** no rollback is necessary. Otherwise, at least a savepoint
3068       ** transaction must be rolled back to restore the database to a
3069       ** consistent state.
3070       **
3071       ** Even if the statement is read-only, it is important to perform
3072       ** a statement or transaction rollback operation. If the error
3073       ** occurred while writing to the journal, sub-journal or database
3074       ** file as part of an effort to free up cache space (see function
3075       ** pagerStress() in pager.c), the rollback is required to restore
3076       ** the pager to a consistent state.
3077       */
3078       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3079         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3080           eStatementOp = SAVEPOINT_ROLLBACK;
3081         }else{
3082           /* We are forced to roll back the active transaction. Before doing
3083           ** so, abort any other statements this handle currently has active.
3084           */
3085           sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3086           sqlite3CloseSavepoints(db);
3087           db->autoCommit = 1;
3088           p->nChange = 0;
3089         }
3090       }
3091     }
3092 
3093     /* Check for immediate foreign key violations. */
3094     if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3095       sqlite3VdbeCheckFk(p, 0);
3096     }
3097 
3098     /* If the auto-commit flag is set and this is the only active writer
3099     ** VM, then we do either a commit or rollback of the current transaction.
3100     **
3101     ** Note: This block also runs if one of the special errors handled
3102     ** above has occurred.
3103     */
3104     if( !sqlite3VtabInSync(db)
3105      && db->autoCommit
3106      && db->nVdbeWrite==(p->readOnly==0)
3107     ){
3108       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3109         rc = sqlite3VdbeCheckFk(p, 1);
3110         if( rc!=SQLITE_OK ){
3111           if( NEVER(p->readOnly) ){
3112             sqlite3VdbeLeave(p);
3113             return SQLITE_ERROR;
3114           }
3115           rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3116         }else{
3117           /* The auto-commit flag is true, the vdbe program was successful
3118           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3119           ** key constraints to hold up the transaction. This means a commit
3120           ** is required. */
3121           rc = vdbeCommit(db, p);
3122         }
3123         if( rc==SQLITE_BUSY && p->readOnly ){
3124           sqlite3VdbeLeave(p);
3125           return SQLITE_BUSY;
3126         }else if( rc!=SQLITE_OK ){
3127           p->rc = rc;
3128           sqlite3RollbackAll(db, SQLITE_OK);
3129           p->nChange = 0;
3130         }else{
3131           db->nDeferredCons = 0;
3132           db->nDeferredImmCons = 0;
3133           db->flags &= ~(u64)SQLITE_DeferFKs;
3134           sqlite3CommitInternalChanges(db);
3135         }
3136       }else{
3137         sqlite3RollbackAll(db, SQLITE_OK);
3138         p->nChange = 0;
3139       }
3140       db->nStatement = 0;
3141     }else if( eStatementOp==0 ){
3142       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3143         eStatementOp = SAVEPOINT_RELEASE;
3144       }else if( p->errorAction==OE_Abort ){
3145         eStatementOp = SAVEPOINT_ROLLBACK;
3146       }else{
3147         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3148         sqlite3CloseSavepoints(db);
3149         db->autoCommit = 1;
3150         p->nChange = 0;
3151       }
3152     }
3153 
3154     /* If eStatementOp is non-zero, then a statement transaction needs to
3155     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3156     ** do so. If this operation returns an error, and the current statement
3157     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3158     ** current statement error code.
3159     */
3160     if( eStatementOp ){
3161       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3162       if( rc ){
3163         if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3164           p->rc = rc;
3165           sqlite3DbFree(db, p->zErrMsg);
3166           p->zErrMsg = 0;
3167         }
3168         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3169         sqlite3CloseSavepoints(db);
3170         db->autoCommit = 1;
3171         p->nChange = 0;
3172       }
3173     }
3174 
3175     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3176     ** has been rolled back, update the database connection change-counter.
3177     */
3178     if( p->changeCntOn ){
3179       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3180         sqlite3VdbeSetChanges(db, p->nChange);
3181       }else{
3182         sqlite3VdbeSetChanges(db, 0);
3183       }
3184       p->nChange = 0;
3185     }
3186 
3187     /* Release the locks */
3188     sqlite3VdbeLeave(p);
3189   }
3190 
3191   /* We have successfully halted and closed the VM.  Record this fact. */
3192   if( p->pc>=0 ){
3193     db->nVdbeActive--;
3194     if( !p->readOnly ) db->nVdbeWrite--;
3195     if( p->bIsReader ) db->nVdbeRead--;
3196     assert( db->nVdbeActive>=db->nVdbeRead );
3197     assert( db->nVdbeRead>=db->nVdbeWrite );
3198     assert( db->nVdbeWrite>=0 );
3199   }
3200   p->magic = VDBE_MAGIC_HALT;
3201   checkActiveVdbeCnt(db);
3202   if( db->mallocFailed ){
3203     p->rc = SQLITE_NOMEM_BKPT;
3204   }
3205 
3206   /* If the auto-commit flag is set to true, then any locks that were held
3207   ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3208   ** to invoke any required unlock-notify callbacks.
3209   */
3210   if( db->autoCommit ){
3211     sqlite3ConnectionUnlocked(db);
3212   }
3213 
3214   assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3215   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3216 }
3217 
3218 
3219 /*
3220 ** Each VDBE holds the result of the most recent sqlite3_step() call
3221 ** in p->rc.  This routine sets that result back to SQLITE_OK.
3222 */
3223 void sqlite3VdbeResetStepResult(Vdbe *p){
3224   p->rc = SQLITE_OK;
3225 }
3226 
3227 /*
3228 ** Copy the error code and error message belonging to the VDBE passed
3229 ** as the first argument to its database handle (so that they will be
3230 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3231 **
3232 ** This function does not clear the VDBE error code or message, just
3233 ** copies them to the database handle.
3234 */
3235 int sqlite3VdbeTransferError(Vdbe *p){
3236   sqlite3 *db = p->db;
3237   int rc = p->rc;
3238   if( p->zErrMsg ){
3239     db->bBenignMalloc++;
3240     sqlite3BeginBenignMalloc();
3241     if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3242     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3243     sqlite3EndBenignMalloc();
3244     db->bBenignMalloc--;
3245   }else if( db->pErr ){
3246     sqlite3ValueSetNull(db->pErr);
3247   }
3248   db->errCode = rc;
3249   return rc;
3250 }
3251 
3252 #ifdef SQLITE_ENABLE_SQLLOG
3253 /*
3254 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3255 ** invoke it.
3256 */
3257 static void vdbeInvokeSqllog(Vdbe *v){
3258   if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3259     char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3260     assert( v->db->init.busy==0 );
3261     if( zExpanded ){
3262       sqlite3GlobalConfig.xSqllog(
3263           sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3264       );
3265       sqlite3DbFree(v->db, zExpanded);
3266     }
3267   }
3268 }
3269 #else
3270 # define vdbeInvokeSqllog(x)
3271 #endif
3272 
3273 /*
3274 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3275 ** Write any error messages into *pzErrMsg.  Return the result code.
3276 **
3277 ** After this routine is run, the VDBE should be ready to be executed
3278 ** again.
3279 **
3280 ** To look at it another way, this routine resets the state of the
3281 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
3282 ** VDBE_MAGIC_INIT.
3283 */
3284 int sqlite3VdbeReset(Vdbe *p){
3285 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3286   int i;
3287 #endif
3288 
3289   sqlite3 *db;
3290   db = p->db;
3291 
3292   /* If the VM did not run to completion or if it encountered an
3293   ** error, then it might not have been halted properly.  So halt
3294   ** it now.
3295   */
3296   sqlite3VdbeHalt(p);
3297 
3298   /* If the VDBE has been run even partially, then transfer the error code
3299   ** and error message from the VDBE into the main database structure.  But
3300   ** if the VDBE has just been set to run but has not actually executed any
3301   ** instructions yet, leave the main database error information unchanged.
3302   */
3303   if( p->pc>=0 ){
3304     vdbeInvokeSqllog(p);
3305     if( db->pErr || p->zErrMsg ){
3306       sqlite3VdbeTransferError(p);
3307     }else{
3308       db->errCode = p->rc;
3309     }
3310     if( p->runOnlyOnce ) p->expired = 1;
3311   }else if( p->rc && p->expired ){
3312     /* The expired flag was set on the VDBE before the first call
3313     ** to sqlite3_step(). For consistency (since sqlite3_step() was
3314     ** called), set the database error in this case as well.
3315     */
3316     sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
3317   }
3318 
3319   /* Reset register contents and reclaim error message memory.
3320   */
3321 #ifdef SQLITE_DEBUG
3322   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3323   ** Vdbe.aMem[] arrays have already been cleaned up.  */
3324   if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3325   if( p->aMem ){
3326     for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3327   }
3328 #endif
3329   if( p->zErrMsg ){
3330     sqlite3DbFree(db, p->zErrMsg);
3331     p->zErrMsg = 0;
3332   }
3333   p->pResultSet = 0;
3334 #ifdef SQLITE_DEBUG
3335   p->nWrite = 0;
3336 #endif
3337 
3338   /* Save profiling information from this VDBE run.
3339   */
3340 #ifdef VDBE_PROFILE
3341   {
3342     FILE *out = fopen("vdbe_profile.out", "a");
3343     if( out ){
3344       fprintf(out, "---- ");
3345       for(i=0; i<p->nOp; i++){
3346         fprintf(out, "%02x", p->aOp[i].opcode);
3347       }
3348       fprintf(out, "\n");
3349       if( p->zSql ){
3350         char c, pc = 0;
3351         fprintf(out, "-- ");
3352         for(i=0; (c = p->zSql[i])!=0; i++){
3353           if( pc=='\n' ) fprintf(out, "-- ");
3354           putc(c, out);
3355           pc = c;
3356         }
3357         if( pc!='\n' ) fprintf(out, "\n");
3358       }
3359       for(i=0; i<p->nOp; i++){
3360         char zHdr[100];
3361         sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3362            p->aOp[i].cnt,
3363            p->aOp[i].cycles,
3364            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
3365         );
3366         fprintf(out, "%s", zHdr);
3367         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3368       }
3369       fclose(out);
3370     }
3371   }
3372 #endif
3373   p->magic = VDBE_MAGIC_RESET;
3374   return p->rc & db->errMask;
3375 }
3376 
3377 /*
3378 ** Clean up and delete a VDBE after execution.  Return an integer which is
3379 ** the result code.  Write any error message text into *pzErrMsg.
3380 */
3381 int sqlite3VdbeFinalize(Vdbe *p){
3382   int rc = SQLITE_OK;
3383   if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
3384     rc = sqlite3VdbeReset(p);
3385     assert( (rc & p->db->errMask)==rc );
3386   }
3387   sqlite3VdbeDelete(p);
3388   return rc;
3389 }
3390 
3391 /*
3392 ** If parameter iOp is less than zero, then invoke the destructor for
3393 ** all auxiliary data pointers currently cached by the VM passed as
3394 ** the first argument.
3395 **
3396 ** Or, if iOp is greater than or equal to zero, then the destructor is
3397 ** only invoked for those auxiliary data pointers created by the user
3398 ** function invoked by the OP_Function opcode at instruction iOp of
3399 ** VM pVdbe, and only then if:
3400 **
3401 **    * the associated function parameter is the 32nd or later (counting
3402 **      from left to right), or
3403 **
3404 **    * the corresponding bit in argument mask is clear (where the first
3405 **      function parameter corresponds to bit 0 etc.).
3406 */
3407 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3408   while( *pp ){
3409     AuxData *pAux = *pp;
3410     if( (iOp<0)
3411      || (pAux->iAuxOp==iOp
3412           && pAux->iAuxArg>=0
3413           && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3414     ){
3415       testcase( pAux->iAuxArg==31 );
3416       if( pAux->xDeleteAux ){
3417         pAux->xDeleteAux(pAux->pAux);
3418       }
3419       *pp = pAux->pNextAux;
3420       sqlite3DbFree(db, pAux);
3421     }else{
3422       pp= &pAux->pNextAux;
3423     }
3424   }
3425 }
3426 
3427 /*
3428 ** Free all memory associated with the Vdbe passed as the second argument,
3429 ** except for object itself, which is preserved.
3430 **
3431 ** The difference between this function and sqlite3VdbeDelete() is that
3432 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3433 ** the database connection and frees the object itself.
3434 */
3435 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3436   SubProgram *pSub, *pNext;
3437   assert( p->db==0 || p->db==db );
3438   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3439   for(pSub=p->pProgram; pSub; pSub=pNext){
3440     pNext = pSub->pNext;
3441     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3442     sqlite3DbFree(db, pSub);
3443   }
3444   if( p->magic!=VDBE_MAGIC_INIT ){
3445     releaseMemArray(p->aVar, p->nVar);
3446     sqlite3DbFree(db, p->pVList);
3447     sqlite3DbFree(db, p->pFree);
3448   }
3449   vdbeFreeOpArray(db, p->aOp, p->nOp);
3450   sqlite3DbFree(db, p->aColName);
3451   sqlite3DbFree(db, p->zSql);
3452 #ifdef SQLITE_ENABLE_NORMALIZE
3453   sqlite3DbFree(db, p->zNormSql);
3454   {
3455     DblquoteStr *pThis, *pNext;
3456     for(pThis=p->pDblStr; pThis; pThis=pNext){
3457       pNext = pThis->pNextStr;
3458       sqlite3DbFree(db, pThis);
3459     }
3460   }
3461 #endif
3462 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3463   {
3464     int i;
3465     for(i=0; i<p->nScan; i++){
3466       sqlite3DbFree(db, p->aScan[i].zName);
3467     }
3468     sqlite3DbFree(db, p->aScan);
3469   }
3470 #endif
3471 }
3472 
3473 /*
3474 ** Delete an entire VDBE.
3475 */
3476 void sqlite3VdbeDelete(Vdbe *p){
3477   sqlite3 *db;
3478 
3479   assert( p!=0 );
3480   db = p->db;
3481   assert( sqlite3_mutex_held(db->mutex) );
3482   sqlite3VdbeClearObject(db, p);
3483   if( p->pPrev ){
3484     p->pPrev->pNext = p->pNext;
3485   }else{
3486     assert( db->pVdbe==p );
3487     db->pVdbe = p->pNext;
3488   }
3489   if( p->pNext ){
3490     p->pNext->pPrev = p->pPrev;
3491   }
3492   p->magic = VDBE_MAGIC_DEAD;
3493   p->db = 0;
3494   sqlite3DbFreeNN(db, p);
3495 }
3496 
3497 /*
3498 ** The cursor "p" has a pending seek operation that has not yet been
3499 ** carried out.  Seek the cursor now.  If an error occurs, return
3500 ** the appropriate error code.
3501 */
3502 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3503   int res, rc;
3504 #ifdef SQLITE_TEST
3505   extern int sqlite3_search_count;
3506 #endif
3507   assert( p->deferredMoveto );
3508   assert( p->isTable );
3509   assert( p->eCurType==CURTYPE_BTREE );
3510   rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
3511   if( rc ) return rc;
3512   if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3513 #ifdef SQLITE_TEST
3514   sqlite3_search_count++;
3515 #endif
3516   p->deferredMoveto = 0;
3517   p->cacheStatus = CACHE_STALE;
3518   return SQLITE_OK;
3519 }
3520 
3521 /*
3522 ** Something has moved cursor "p" out of place.  Maybe the row it was
3523 ** pointed to was deleted out from under it.  Or maybe the btree was
3524 ** rebalanced.  Whatever the cause, try to restore "p" to the place it
3525 ** is supposed to be pointing.  If the row was deleted out from under the
3526 ** cursor, set the cursor to point to a NULL row.
3527 */
3528 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3529   int isDifferentRow, rc;
3530   assert( p->eCurType==CURTYPE_BTREE );
3531   assert( p->uc.pCursor!=0 );
3532   assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3533   rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3534   p->cacheStatus = CACHE_STALE;
3535   if( isDifferentRow ) p->nullRow = 1;
3536   return rc;
3537 }
3538 
3539 /*
3540 ** Check to ensure that the cursor is valid.  Restore the cursor
3541 ** if need be.  Return any I/O error from the restore operation.
3542 */
3543 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3544   assert( p->eCurType==CURTYPE_BTREE );
3545   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3546     return handleMovedCursor(p);
3547   }
3548   return SQLITE_OK;
3549 }
3550 
3551 /*
3552 ** Make sure the cursor p is ready to read or write the row to which it
3553 ** was last positioned.  Return an error code if an OOM fault or I/O error
3554 ** prevents us from positioning the cursor to its correct position.
3555 **
3556 ** If a MoveTo operation is pending on the given cursor, then do that
3557 ** MoveTo now.  If no move is pending, check to see if the row has been
3558 ** deleted out from under the cursor and if it has, mark the row as
3559 ** a NULL row.
3560 **
3561 ** If the cursor is already pointing to the correct row and that row has
3562 ** not been deleted out from under the cursor, then this routine is a no-op.
3563 */
3564 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
3565   VdbeCursor *p = *pp;
3566   assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
3567   if( p->deferredMoveto ){
3568     int iMap;
3569     if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 && !p->nullRow ){
3570       *pp = p->pAltCursor;
3571       *piCol = iMap - 1;
3572       return SQLITE_OK;
3573     }
3574     return sqlite3VdbeFinishMoveto(p);
3575   }
3576   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3577     return handleMovedCursor(p);
3578   }
3579   return SQLITE_OK;
3580 }
3581 
3582 /*
3583 ** The following functions:
3584 **
3585 ** sqlite3VdbeSerialType()
3586 ** sqlite3VdbeSerialTypeLen()
3587 ** sqlite3VdbeSerialLen()
3588 ** sqlite3VdbeSerialPut()
3589 ** sqlite3VdbeSerialGet()
3590 **
3591 ** encapsulate the code that serializes values for storage in SQLite
3592 ** data and index records. Each serialized value consists of a
3593 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3594 ** integer, stored as a varint.
3595 **
3596 ** In an SQLite index record, the serial type is stored directly before
3597 ** the blob of data that it corresponds to. In a table record, all serial
3598 ** types are stored at the start of the record, and the blobs of data at
3599 ** the end. Hence these functions allow the caller to handle the
3600 ** serial-type and data blob separately.
3601 **
3602 ** The following table describes the various storage classes for data:
3603 **
3604 **   serial type        bytes of data      type
3605 **   --------------     ---------------    ---------------
3606 **      0                     0            NULL
3607 **      1                     1            signed integer
3608 **      2                     2            signed integer
3609 **      3                     3            signed integer
3610 **      4                     4            signed integer
3611 **      5                     6            signed integer
3612 **      6                     8            signed integer
3613 **      7                     8            IEEE float
3614 **      8                     0            Integer constant 0
3615 **      9                     0            Integer constant 1
3616 **     10,11                               reserved for expansion
3617 **    N>=12 and even       (N-12)/2        BLOB
3618 **    N>=13 and odd        (N-13)/2        text
3619 **
3620 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
3621 ** of SQLite will not understand those serial types.
3622 */
3623 
3624 #if 0 /* Inlined into the OP_MakeRecord opcode */
3625 /*
3626 ** Return the serial-type for the value stored in pMem.
3627 **
3628 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3629 **
3630 ** 2019-07-11:  The primary user of this subroutine was the OP_MakeRecord
3631 ** opcode in the byte-code engine.  But by moving this routine in-line, we
3632 ** can omit some redundant tests and make that opcode a lot faster.  So
3633 ** this routine is now only used by the STAT3 logic and STAT3 support has
3634 ** ended.  The code is kept here for historical reference only.
3635 */
3636 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3637   int flags = pMem->flags;
3638   u32 n;
3639 
3640   assert( pLen!=0 );
3641   if( flags&MEM_Null ){
3642     *pLen = 0;
3643     return 0;
3644   }
3645   if( flags&(MEM_Int|MEM_IntReal) ){
3646     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3647 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3648     i64 i = pMem->u.i;
3649     u64 u;
3650     testcase( flags & MEM_Int );
3651     testcase( flags & MEM_IntReal );
3652     if( i<0 ){
3653       u = ~i;
3654     }else{
3655       u = i;
3656     }
3657     if( u<=127 ){
3658       if( (i&1)==i && file_format>=4 ){
3659         *pLen = 0;
3660         return 8+(u32)u;
3661       }else{
3662         *pLen = 1;
3663         return 1;
3664       }
3665     }
3666     if( u<=32767 ){ *pLen = 2; return 2; }
3667     if( u<=8388607 ){ *pLen = 3; return 3; }
3668     if( u<=2147483647 ){ *pLen = 4; return 4; }
3669     if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3670     *pLen = 8;
3671     if( flags&MEM_IntReal ){
3672       /* If the value is IntReal and is going to take up 8 bytes to store
3673       ** as an integer, then we might as well make it an 8-byte floating
3674       ** point value */
3675       pMem->u.r = (double)pMem->u.i;
3676       pMem->flags &= ~MEM_IntReal;
3677       pMem->flags |= MEM_Real;
3678       return 7;
3679     }
3680     return 6;
3681   }
3682   if( flags&MEM_Real ){
3683     *pLen = 8;
3684     return 7;
3685   }
3686   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3687   assert( pMem->n>=0 );
3688   n = (u32)pMem->n;
3689   if( flags & MEM_Zero ){
3690     n += pMem->u.nZero;
3691   }
3692   *pLen = n;
3693   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3694 }
3695 #endif /* inlined into OP_MakeRecord */
3696 
3697 /*
3698 ** The sizes for serial types less than 128
3699 */
3700 static const u8 sqlite3SmallTypeSizes[] = {
3701         /*  0   1   2   3   4   5   6   7   8   9 */
3702 /*   0 */   0,  1,  2,  3,  4,  6,  8,  8,  0,  0,
3703 /*  10 */   0,  0,  0,  0,  1,  1,  2,  2,  3,  3,
3704 /*  20 */   4,  4,  5,  5,  6,  6,  7,  7,  8,  8,
3705 /*  30 */   9,  9, 10, 10, 11, 11, 12, 12, 13, 13,
3706 /*  40 */  14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3707 /*  50 */  19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3708 /*  60 */  24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3709 /*  70 */  29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3710 /*  80 */  34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3711 /*  90 */  39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3712 /* 100 */  44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3713 /* 110 */  49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3714 /* 120 */  54, 54, 55, 55, 56, 56, 57, 57
3715 };
3716 
3717 /*
3718 ** Return the length of the data corresponding to the supplied serial-type.
3719 */
3720 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3721   if( serial_type>=128 ){
3722     return (serial_type-12)/2;
3723   }else{
3724     assert( serial_type<12
3725             || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3726     return sqlite3SmallTypeSizes[serial_type];
3727   }
3728 }
3729 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3730   assert( serial_type<128 );
3731   return sqlite3SmallTypeSizes[serial_type];
3732 }
3733 
3734 /*
3735 ** If we are on an architecture with mixed-endian floating
3736 ** points (ex: ARM7) then swap the lower 4 bytes with the
3737 ** upper 4 bytes.  Return the result.
3738 **
3739 ** For most architectures, this is a no-op.
3740 **
3741 ** (later):  It is reported to me that the mixed-endian problem
3742 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
3743 ** that early versions of GCC stored the two words of a 64-bit
3744 ** float in the wrong order.  And that error has been propagated
3745 ** ever since.  The blame is not necessarily with GCC, though.
3746 ** GCC might have just copying the problem from a prior compiler.
3747 ** I am also told that newer versions of GCC that follow a different
3748 ** ABI get the byte order right.
3749 **
3750 ** Developers using SQLite on an ARM7 should compile and run their
3751 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
3752 ** enabled, some asserts below will ensure that the byte order of
3753 ** floating point values is correct.
3754 **
3755 ** (2007-08-30)  Frank van Vugt has studied this problem closely
3756 ** and has send his findings to the SQLite developers.  Frank
3757 ** writes that some Linux kernels offer floating point hardware
3758 ** emulation that uses only 32-bit mantissas instead of a full
3759 ** 48-bits as required by the IEEE standard.  (This is the
3760 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
3761 ** byte swapping becomes very complicated.  To avoid problems,
3762 ** the necessary byte swapping is carried out using a 64-bit integer
3763 ** rather than a 64-bit float.  Frank assures us that the code here
3764 ** works for him.  We, the developers, have no way to independently
3765 ** verify this, but Frank seems to know what he is talking about
3766 ** so we trust him.
3767 */
3768 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3769 static u64 floatSwap(u64 in){
3770   union {
3771     u64 r;
3772     u32 i[2];
3773   } u;
3774   u32 t;
3775 
3776   u.r = in;
3777   t = u.i[0];
3778   u.i[0] = u.i[1];
3779   u.i[1] = t;
3780   return u.r;
3781 }
3782 # define swapMixedEndianFloat(X)  X = floatSwap(X)
3783 #else
3784 # define swapMixedEndianFloat(X)
3785 #endif
3786 
3787 /*
3788 ** Write the serialized data blob for the value stored in pMem into
3789 ** buf. It is assumed that the caller has allocated sufficient space.
3790 ** Return the number of bytes written.
3791 **
3792 ** nBuf is the amount of space left in buf[].  The caller is responsible
3793 ** for allocating enough space to buf[] to hold the entire field, exclusive
3794 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3795 **
3796 ** Return the number of bytes actually written into buf[].  The number
3797 ** of bytes in the zero-filled tail is included in the return value only
3798 ** if those bytes were zeroed in buf[].
3799 */
3800 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3801   u32 len;
3802 
3803   /* Integer and Real */
3804   if( serial_type<=7 && serial_type>0 ){
3805     u64 v;
3806     u32 i;
3807     if( serial_type==7 ){
3808       assert( sizeof(v)==sizeof(pMem->u.r) );
3809       memcpy(&v, &pMem->u.r, sizeof(v));
3810       swapMixedEndianFloat(v);
3811     }else{
3812       v = pMem->u.i;
3813     }
3814     len = i = sqlite3SmallTypeSizes[serial_type];
3815     assert( i>0 );
3816     do{
3817       buf[--i] = (u8)(v&0xFF);
3818       v >>= 8;
3819     }while( i );
3820     return len;
3821   }
3822 
3823   /* String or blob */
3824   if( serial_type>=12 ){
3825     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3826              == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3827     len = pMem->n;
3828     if( len>0 ) memcpy(buf, pMem->z, len);
3829     return len;
3830   }
3831 
3832   /* NULL or constants 0 or 1 */
3833   return 0;
3834 }
3835 
3836 /* Input "x" is a sequence of unsigned characters that represent a
3837 ** big-endian integer.  Return the equivalent native integer
3838 */
3839 #define ONE_BYTE_INT(x)    ((i8)(x)[0])
3840 #define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
3841 #define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3842 #define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3843 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3844 
3845 /*
3846 ** Deserialize the data blob pointed to by buf as serial type serial_type
3847 ** and store the result in pMem.  Return the number of bytes read.
3848 **
3849 ** This function is implemented as two separate routines for performance.
3850 ** The few cases that require local variables are broken out into a separate
3851 ** routine so that in most cases the overhead of moving the stack pointer
3852 ** is avoided.
3853 */
3854 static u32 serialGet(
3855   const unsigned char *buf,     /* Buffer to deserialize from */
3856   u32 serial_type,              /* Serial type to deserialize */
3857   Mem *pMem                     /* Memory cell to write value into */
3858 ){
3859   u64 x = FOUR_BYTE_UINT(buf);
3860   u32 y = FOUR_BYTE_UINT(buf+4);
3861   x = (x<<32) + y;
3862   if( serial_type==6 ){
3863     /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3864     ** twos-complement integer. */
3865     pMem->u.i = *(i64*)&x;
3866     pMem->flags = MEM_Int;
3867     testcase( pMem->u.i<0 );
3868   }else{
3869     /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3870     ** floating point number. */
3871 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3872     /* Verify that integers and floating point values use the same
3873     ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3874     ** defined that 64-bit floating point values really are mixed
3875     ** endian.
3876     */
3877     static const u64 t1 = ((u64)0x3ff00000)<<32;
3878     static const double r1 = 1.0;
3879     u64 t2 = t1;
3880     swapMixedEndianFloat(t2);
3881     assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3882 #endif
3883     assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3884     swapMixedEndianFloat(x);
3885     memcpy(&pMem->u.r, &x, sizeof(x));
3886     pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
3887   }
3888   return 8;
3889 }
3890 u32 sqlite3VdbeSerialGet(
3891   const unsigned char *buf,     /* Buffer to deserialize from */
3892   u32 serial_type,              /* Serial type to deserialize */
3893   Mem *pMem                     /* Memory cell to write value into */
3894 ){
3895   switch( serial_type ){
3896     case 10: { /* Internal use only: NULL with virtual table
3897                ** UPDATE no-change flag set */
3898       pMem->flags = MEM_Null|MEM_Zero;
3899       pMem->n = 0;
3900       pMem->u.nZero = 0;
3901       break;
3902     }
3903     case 11:   /* Reserved for future use */
3904     case 0: {  /* Null */
3905       /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3906       pMem->flags = MEM_Null;
3907       break;
3908     }
3909     case 1: {
3910       /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3911       ** integer. */
3912       pMem->u.i = ONE_BYTE_INT(buf);
3913       pMem->flags = MEM_Int;
3914       testcase( pMem->u.i<0 );
3915       return 1;
3916     }
3917     case 2: { /* 2-byte signed integer */
3918       /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3919       ** twos-complement integer. */
3920       pMem->u.i = TWO_BYTE_INT(buf);
3921       pMem->flags = MEM_Int;
3922       testcase( pMem->u.i<0 );
3923       return 2;
3924     }
3925     case 3: { /* 3-byte signed integer */
3926       /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3927       ** twos-complement integer. */
3928       pMem->u.i = THREE_BYTE_INT(buf);
3929       pMem->flags = MEM_Int;
3930       testcase( pMem->u.i<0 );
3931       return 3;
3932     }
3933     case 4: { /* 4-byte signed integer */
3934       /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3935       ** twos-complement integer. */
3936       pMem->u.i = FOUR_BYTE_INT(buf);
3937 #ifdef __HP_cc
3938       /* Work around a sign-extension bug in the HP compiler for HP/UX */
3939       if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3940 #endif
3941       pMem->flags = MEM_Int;
3942       testcase( pMem->u.i<0 );
3943       return 4;
3944     }
3945     case 5: { /* 6-byte signed integer */
3946       /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3947       ** twos-complement integer. */
3948       pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3949       pMem->flags = MEM_Int;
3950       testcase( pMem->u.i<0 );
3951       return 6;
3952     }
3953     case 6:   /* 8-byte signed integer */
3954     case 7: { /* IEEE floating point */
3955       /* These use local variables, so do them in a separate routine
3956       ** to avoid having to move the frame pointer in the common case */
3957       return serialGet(buf,serial_type,pMem);
3958     }
3959     case 8:    /* Integer 0 */
3960     case 9: {  /* Integer 1 */
3961       /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3962       /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3963       pMem->u.i = serial_type-8;
3964       pMem->flags = MEM_Int;
3965       return 0;
3966     }
3967     default: {
3968       /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3969       ** length.
3970       ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3971       ** (N-13)/2 bytes in length. */
3972       static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3973       pMem->z = (char *)buf;
3974       pMem->n = (serial_type-12)/2;
3975       pMem->flags = aFlag[serial_type&1];
3976       return pMem->n;
3977     }
3978   }
3979   return 0;
3980 }
3981 /*
3982 ** This routine is used to allocate sufficient space for an UnpackedRecord
3983 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3984 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3985 **
3986 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3987 ** the unaligned buffer passed via the second and third arguments (presumably
3988 ** stack space). If the former, then *ppFree is set to a pointer that should
3989 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3990 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3991 ** before returning.
3992 **
3993 ** If an OOM error occurs, NULL is returned.
3994 */
3995 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3996   KeyInfo *pKeyInfo               /* Description of the record */
3997 ){
3998   UnpackedRecord *p;              /* Unpacked record to return */
3999   int nByte;                      /* Number of bytes required for *p */
4000   nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
4001   p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
4002   if( !p ) return 0;
4003   p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
4004   assert( pKeyInfo->aSortFlags!=0 );
4005   p->pKeyInfo = pKeyInfo;
4006   p->nField = pKeyInfo->nKeyField + 1;
4007   return p;
4008 }
4009 
4010 /*
4011 ** Given the nKey-byte encoding of a record in pKey[], populate the
4012 ** UnpackedRecord structure indicated by the fourth argument with the
4013 ** contents of the decoded record.
4014 */
4015 void sqlite3VdbeRecordUnpack(
4016   KeyInfo *pKeyInfo,     /* Information about the record format */
4017   int nKey,              /* Size of the binary record */
4018   const void *pKey,      /* The binary record */
4019   UnpackedRecord *p      /* Populate this structure before returning. */
4020 ){
4021   const unsigned char *aKey = (const unsigned char *)pKey;
4022   u32 d;
4023   u32 idx;                        /* Offset in aKey[] to read from */
4024   u16 u;                          /* Unsigned loop counter */
4025   u32 szHdr;
4026   Mem *pMem = p->aMem;
4027 
4028   p->default_rc = 0;
4029   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
4030   idx = getVarint32(aKey, szHdr);
4031   d = szHdr;
4032   u = 0;
4033   while( idx<szHdr && d<=(u32)nKey ){
4034     u32 serial_type;
4035 
4036     idx += getVarint32(&aKey[idx], serial_type);
4037     pMem->enc = pKeyInfo->enc;
4038     pMem->db = pKeyInfo->db;
4039     /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4040     pMem->szMalloc = 0;
4041     pMem->z = 0;
4042     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
4043     pMem++;
4044     if( (++u)>=p->nField ) break;
4045   }
4046   if( d>(u32)nKey && u ){
4047     assert( CORRUPT_DB );
4048     /* In a corrupt record entry, the last pMem might have been set up using
4049     ** uninitialized memory. Overwrite its value with NULL, to prevent
4050     ** warnings from MSAN. */
4051     sqlite3VdbeMemSetNull(pMem-1);
4052   }
4053   assert( u<=pKeyInfo->nKeyField + 1 );
4054   p->nField = u;
4055 }
4056 
4057 #ifdef SQLITE_DEBUG
4058 /*
4059 ** This function compares two index or table record keys in the same way
4060 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4061 ** this function deserializes and compares values using the
4062 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4063 ** in assert() statements to ensure that the optimized code in
4064 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4065 **
4066 ** Return true if the result of comparison is equivalent to desiredResult.
4067 ** Return false if there is a disagreement.
4068 */
4069 static int vdbeRecordCompareDebug(
4070   int nKey1, const void *pKey1, /* Left key */
4071   const UnpackedRecord *pPKey2, /* Right key */
4072   int desiredResult             /* Correct answer */
4073 ){
4074   u32 d1;            /* Offset into aKey[] of next data element */
4075   u32 idx1;          /* Offset into aKey[] of next header element */
4076   u32 szHdr1;        /* Number of bytes in header */
4077   int i = 0;
4078   int rc = 0;
4079   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4080   KeyInfo *pKeyInfo;
4081   Mem mem1;
4082 
4083   pKeyInfo = pPKey2->pKeyInfo;
4084   if( pKeyInfo->db==0 ) return 1;
4085   mem1.enc = pKeyInfo->enc;
4086   mem1.db = pKeyInfo->db;
4087   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
4088   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4089 
4090   /* Compilers may complain that mem1.u.i is potentially uninitialized.
4091   ** We could initialize it, as shown here, to silence those complaints.
4092   ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4093   ** the unnecessary initialization has a measurable negative performance
4094   ** impact, since this routine is a very high runner.  And so, we choose
4095   ** to ignore the compiler warnings and leave this variable uninitialized.
4096   */
4097   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
4098 
4099   idx1 = getVarint32(aKey1, szHdr1);
4100   if( szHdr1>98307 ) return SQLITE_CORRUPT;
4101   d1 = szHdr1;
4102   assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4103   assert( pKeyInfo->aSortFlags!=0 );
4104   assert( pKeyInfo->nKeyField>0 );
4105   assert( idx1<=szHdr1 || CORRUPT_DB );
4106   do{
4107     u32 serial_type1;
4108 
4109     /* Read the serial types for the next element in each key. */
4110     idx1 += getVarint32( aKey1+idx1, serial_type1 );
4111 
4112     /* Verify that there is enough key space remaining to avoid
4113     ** a buffer overread.  The "d1+serial_type1+2" subexpression will
4114     ** always be greater than or equal to the amount of required key space.
4115     ** Use that approximation to avoid the more expensive call to
4116     ** sqlite3VdbeSerialTypeLen() in the common case.
4117     */
4118     if( d1+(u64)serial_type1+2>(u64)nKey1
4119      && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4120     ){
4121       break;
4122     }
4123 
4124     /* Extract the values to be compared.
4125     */
4126     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4127 
4128     /* Do the comparison
4129     */
4130     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4131                            pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4132     if( rc!=0 ){
4133       assert( mem1.szMalloc==0 );  /* See comment below */
4134       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4135        && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4136       ){
4137         rc = -rc;
4138       }
4139       if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4140         rc = -rc;  /* Invert the result for DESC sort order. */
4141       }
4142       goto debugCompareEnd;
4143     }
4144     i++;
4145   }while( idx1<szHdr1 && i<pPKey2->nField );
4146 
4147   /* No memory allocation is ever used on mem1.  Prove this using
4148   ** the following assert().  If the assert() fails, it indicates a
4149   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4150   */
4151   assert( mem1.szMalloc==0 );
4152 
4153   /* rc==0 here means that one of the keys ran out of fields and
4154   ** all the fields up to that point were equal. Return the default_rc
4155   ** value.  */
4156   rc = pPKey2->default_rc;
4157 
4158 debugCompareEnd:
4159   if( desiredResult==0 && rc==0 ) return 1;
4160   if( desiredResult<0 && rc<0 ) return 1;
4161   if( desiredResult>0 && rc>0 ) return 1;
4162   if( CORRUPT_DB ) return 1;
4163   if( pKeyInfo->db->mallocFailed ) return 1;
4164   return 0;
4165 }
4166 #endif
4167 
4168 #ifdef SQLITE_DEBUG
4169 /*
4170 ** Count the number of fields (a.k.a. columns) in the record given by
4171 ** pKey,nKey.  The verify that this count is less than or equal to the
4172 ** limit given by pKeyInfo->nAllField.
4173 **
4174 ** If this constraint is not satisfied, it means that the high-speed
4175 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4176 ** not work correctly.  If this assert() ever fires, it probably means
4177 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4178 ** incorrectly.
4179 */
4180 static void vdbeAssertFieldCountWithinLimits(
4181   int nKey, const void *pKey,   /* The record to verify */
4182   const KeyInfo *pKeyInfo       /* Compare size with this KeyInfo */
4183 ){
4184   int nField = 0;
4185   u32 szHdr;
4186   u32 idx;
4187   u32 notUsed;
4188   const unsigned char *aKey = (const unsigned char*)pKey;
4189 
4190   if( CORRUPT_DB ) return;
4191   idx = getVarint32(aKey, szHdr);
4192   assert( nKey>=0 );
4193   assert( szHdr<=(u32)nKey );
4194   while( idx<szHdr ){
4195     idx += getVarint32(aKey+idx, notUsed);
4196     nField++;
4197   }
4198   assert( nField <= pKeyInfo->nAllField );
4199 }
4200 #else
4201 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4202 #endif
4203 
4204 /*
4205 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4206 ** using the collation sequence pColl. As usual, return a negative , zero
4207 ** or positive value if *pMem1 is less than, equal to or greater than
4208 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4209 */
4210 static int vdbeCompareMemString(
4211   const Mem *pMem1,
4212   const Mem *pMem2,
4213   const CollSeq *pColl,
4214   u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */
4215 ){
4216   if( pMem1->enc==pColl->enc ){
4217     /* The strings are already in the correct encoding.  Call the
4218      ** comparison function directly */
4219     return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4220   }else{
4221     int rc;
4222     const void *v1, *v2;
4223     Mem c1;
4224     Mem c2;
4225     sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4226     sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4227     sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4228     sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4229     v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4230     v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4231     if( (v1==0 || v2==0) ){
4232       if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4233       rc = 0;
4234     }else{
4235       rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4236     }
4237     sqlite3VdbeMemRelease(&c1);
4238     sqlite3VdbeMemRelease(&c2);
4239     return rc;
4240   }
4241 }
4242 
4243 /*
4244 ** The input pBlob is guaranteed to be a Blob that is not marked
4245 ** with MEM_Zero.  Return true if it could be a zero-blob.
4246 */
4247 static int isAllZero(const char *z, int n){
4248   int i;
4249   for(i=0; i<n; i++){
4250     if( z[i] ) return 0;
4251   }
4252   return 1;
4253 }
4254 
4255 /*
4256 ** Compare two blobs.  Return negative, zero, or positive if the first
4257 ** is less than, equal to, or greater than the second, respectively.
4258 ** If one blob is a prefix of the other, then the shorter is the lessor.
4259 */
4260 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4261   int c;
4262   int n1 = pB1->n;
4263   int n2 = pB2->n;
4264 
4265   /* It is possible to have a Blob value that has some non-zero content
4266   ** followed by zero content.  But that only comes up for Blobs formed
4267   ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4268   ** sqlite3MemCompare(). */
4269   assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4270   assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4271 
4272   if( (pB1->flags|pB2->flags) & MEM_Zero ){
4273     if( pB1->flags & pB2->flags & MEM_Zero ){
4274       return pB1->u.nZero - pB2->u.nZero;
4275     }else if( pB1->flags & MEM_Zero ){
4276       if( !isAllZero(pB2->z, pB2->n) ) return -1;
4277       return pB1->u.nZero - n2;
4278     }else{
4279       if( !isAllZero(pB1->z, pB1->n) ) return +1;
4280       return n1 - pB2->u.nZero;
4281     }
4282   }
4283   c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4284   if( c ) return c;
4285   return n1 - n2;
4286 }
4287 
4288 /*
4289 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4290 ** number.  Return negative, zero, or positive if the first (i64) is less than,
4291 ** equal to, or greater than the second (double).
4292 */
4293 static int sqlite3IntFloatCompare(i64 i, double r){
4294   if( sizeof(LONGDOUBLE_TYPE)>8 ){
4295     LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4296     if( x<r ) return -1;
4297     if( x>r ) return +1;
4298     return 0;
4299   }else{
4300     i64 y;
4301     double s;
4302     if( r<-9223372036854775808.0 ) return +1;
4303     if( r>=9223372036854775808.0 ) return -1;
4304     y = (i64)r;
4305     if( i<y ) return -1;
4306     if( i>y ) return +1;
4307     s = (double)i;
4308     if( s<r ) return -1;
4309     if( s>r ) return +1;
4310     return 0;
4311   }
4312 }
4313 
4314 /*
4315 ** Compare the values contained by the two memory cells, returning
4316 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4317 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4318 ** and reals) sorted numerically, followed by text ordered by the collating
4319 ** sequence pColl and finally blob's ordered by memcmp().
4320 **
4321 ** Two NULL values are considered equal by this function.
4322 */
4323 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4324   int f1, f2;
4325   int combined_flags;
4326 
4327   f1 = pMem1->flags;
4328   f2 = pMem2->flags;
4329   combined_flags = f1|f2;
4330   assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4331 
4332   /* If one value is NULL, it is less than the other. If both values
4333   ** are NULL, return 0.
4334   */
4335   if( combined_flags&MEM_Null ){
4336     return (f2&MEM_Null) - (f1&MEM_Null);
4337   }
4338 
4339   /* At least one of the two values is a number
4340   */
4341   if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4342     testcase( combined_flags & MEM_Int );
4343     testcase( combined_flags & MEM_Real );
4344     testcase( combined_flags & MEM_IntReal );
4345     if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4346       testcase( f1 & f2 & MEM_Int );
4347       testcase( f1 & f2 & MEM_IntReal );
4348       if( pMem1->u.i < pMem2->u.i ) return -1;
4349       if( pMem1->u.i > pMem2->u.i ) return +1;
4350       return 0;
4351     }
4352     if( (f1 & f2 & MEM_Real)!=0 ){
4353       if( pMem1->u.r < pMem2->u.r ) return -1;
4354       if( pMem1->u.r > pMem2->u.r ) return +1;
4355       return 0;
4356     }
4357     if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4358       testcase( f1 & MEM_Int );
4359       testcase( f1 & MEM_IntReal );
4360       if( (f2&MEM_Real)!=0 ){
4361         return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4362       }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4363         if( pMem1->u.i < pMem2->u.i ) return -1;
4364         if( pMem1->u.i > pMem2->u.i ) return +1;
4365         return 0;
4366       }else{
4367         return -1;
4368       }
4369     }
4370     if( (f1&MEM_Real)!=0 ){
4371       if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4372         testcase( f2 & MEM_Int );
4373         testcase( f2 & MEM_IntReal );
4374         return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4375       }else{
4376         return -1;
4377       }
4378     }
4379     return +1;
4380   }
4381 
4382   /* If one value is a string and the other is a blob, the string is less.
4383   ** If both are strings, compare using the collating functions.
4384   */
4385   if( combined_flags&MEM_Str ){
4386     if( (f1 & MEM_Str)==0 ){
4387       return 1;
4388     }
4389     if( (f2 & MEM_Str)==0 ){
4390       return -1;
4391     }
4392 
4393     assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4394     assert( pMem1->enc==SQLITE_UTF8 ||
4395             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4396 
4397     /* The collation sequence must be defined at this point, even if
4398     ** the user deletes the collation sequence after the vdbe program is
4399     ** compiled (this was not always the case).
4400     */
4401     assert( !pColl || pColl->xCmp );
4402 
4403     if( pColl ){
4404       return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4405     }
4406     /* If a NULL pointer was passed as the collate function, fall through
4407     ** to the blob case and use memcmp().  */
4408   }
4409 
4410   /* Both values must be blobs.  Compare using memcmp().  */
4411   return sqlite3BlobCompare(pMem1, pMem2);
4412 }
4413 
4414 
4415 /*
4416 ** The first argument passed to this function is a serial-type that
4417 ** corresponds to an integer - all values between 1 and 9 inclusive
4418 ** except 7. The second points to a buffer containing an integer value
4419 ** serialized according to serial_type. This function deserializes
4420 ** and returns the value.
4421 */
4422 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4423   u32 y;
4424   assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4425   switch( serial_type ){
4426     case 0:
4427     case 1:
4428       testcase( aKey[0]&0x80 );
4429       return ONE_BYTE_INT(aKey);
4430     case 2:
4431       testcase( aKey[0]&0x80 );
4432       return TWO_BYTE_INT(aKey);
4433     case 3:
4434       testcase( aKey[0]&0x80 );
4435       return THREE_BYTE_INT(aKey);
4436     case 4: {
4437       testcase( aKey[0]&0x80 );
4438       y = FOUR_BYTE_UINT(aKey);
4439       return (i64)*(int*)&y;
4440     }
4441     case 5: {
4442       testcase( aKey[0]&0x80 );
4443       return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4444     }
4445     case 6: {
4446       u64 x = FOUR_BYTE_UINT(aKey);
4447       testcase( aKey[0]&0x80 );
4448       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4449       return (i64)*(i64*)&x;
4450     }
4451   }
4452 
4453   return (serial_type - 8);
4454 }
4455 
4456 /*
4457 ** This function compares the two table rows or index records
4458 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
4459 ** or positive integer if key1 is less than, equal to or
4460 ** greater than key2.  The {nKey1, pKey1} key must be a blob
4461 ** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2
4462 ** key must be a parsed key such as obtained from
4463 ** sqlite3VdbeParseRecord.
4464 **
4465 ** If argument bSkip is non-zero, it is assumed that the caller has already
4466 ** determined that the first fields of the keys are equal.
4467 **
4468 ** Key1 and Key2 do not have to contain the same number of fields. If all
4469 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4470 ** returned.
4471 **
4472 ** If database corruption is discovered, set pPKey2->errCode to
4473 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4474 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4475 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4476 */
4477 int sqlite3VdbeRecordCompareWithSkip(
4478   int nKey1, const void *pKey1,   /* Left key */
4479   UnpackedRecord *pPKey2,         /* Right key */
4480   int bSkip                       /* If true, skip the first field */
4481 ){
4482   u32 d1;                         /* Offset into aKey[] of next data element */
4483   int i;                          /* Index of next field to compare */
4484   u32 szHdr1;                     /* Size of record header in bytes */
4485   u32 idx1;                       /* Offset of first type in header */
4486   int rc = 0;                     /* Return value */
4487   Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
4488   KeyInfo *pKeyInfo;
4489   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4490   Mem mem1;
4491 
4492   /* If bSkip is true, then the caller has already determined that the first
4493   ** two elements in the keys are equal. Fix the various stack variables so
4494   ** that this routine begins comparing at the second field. */
4495   if( bSkip ){
4496     u32 s1;
4497     idx1 = 1 + getVarint32(&aKey1[1], s1);
4498     szHdr1 = aKey1[0];
4499     d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4500     i = 1;
4501     pRhs++;
4502   }else{
4503     idx1 = getVarint32(aKey1, szHdr1);
4504     d1 = szHdr1;
4505     i = 0;
4506   }
4507   if( d1>(unsigned)nKey1 ){
4508     pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4509     return 0;  /* Corruption */
4510   }
4511 
4512   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4513   assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4514        || CORRUPT_DB );
4515   assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4516   assert( pPKey2->pKeyInfo->nKeyField>0 );
4517   assert( idx1<=szHdr1 || CORRUPT_DB );
4518   do{
4519     u32 serial_type;
4520 
4521     /* RHS is an integer */
4522     if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4523       testcase( pRhs->flags & MEM_Int );
4524       testcase( pRhs->flags & MEM_IntReal );
4525       serial_type = aKey1[idx1];
4526       testcase( serial_type==12 );
4527       if( serial_type>=10 ){
4528         rc = +1;
4529       }else if( serial_type==0 ){
4530         rc = -1;
4531       }else if( serial_type==7 ){
4532         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4533         rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4534       }else{
4535         i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4536         i64 rhs = pRhs->u.i;
4537         if( lhs<rhs ){
4538           rc = -1;
4539         }else if( lhs>rhs ){
4540           rc = +1;
4541         }
4542       }
4543     }
4544 
4545     /* RHS is real */
4546     else if( pRhs->flags & MEM_Real ){
4547       serial_type = aKey1[idx1];
4548       if( serial_type>=10 ){
4549         /* Serial types 12 or greater are strings and blobs (greater than
4550         ** numbers). Types 10 and 11 are currently "reserved for future
4551         ** use", so it doesn't really matter what the results of comparing
4552         ** them to numberic values are.  */
4553         rc = +1;
4554       }else if( serial_type==0 ){
4555         rc = -1;
4556       }else{
4557         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4558         if( serial_type==7 ){
4559           if( mem1.u.r<pRhs->u.r ){
4560             rc = -1;
4561           }else if( mem1.u.r>pRhs->u.r ){
4562             rc = +1;
4563           }
4564         }else{
4565           rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4566         }
4567       }
4568     }
4569 
4570     /* RHS is a string */
4571     else if( pRhs->flags & MEM_Str ){
4572       getVarint32NR(&aKey1[idx1], serial_type);
4573       testcase( serial_type==12 );
4574       if( serial_type<12 ){
4575         rc = -1;
4576       }else if( !(serial_type & 0x01) ){
4577         rc = +1;
4578       }else{
4579         mem1.n = (serial_type - 12) / 2;
4580         testcase( (d1+mem1.n)==(unsigned)nKey1 );
4581         testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4582         if( (d1+mem1.n) > (unsigned)nKey1
4583          || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4584         ){
4585           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4586           return 0;                /* Corruption */
4587         }else if( pKeyInfo->aColl[i] ){
4588           mem1.enc = pKeyInfo->enc;
4589           mem1.db = pKeyInfo->db;
4590           mem1.flags = MEM_Str;
4591           mem1.z = (char*)&aKey1[d1];
4592           rc = vdbeCompareMemString(
4593               &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4594           );
4595         }else{
4596           int nCmp = MIN(mem1.n, pRhs->n);
4597           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4598           if( rc==0 ) rc = mem1.n - pRhs->n;
4599         }
4600       }
4601     }
4602 
4603     /* RHS is a blob */
4604     else if( pRhs->flags & MEM_Blob ){
4605       assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4606       getVarint32NR(&aKey1[idx1], serial_type);
4607       testcase( serial_type==12 );
4608       if( serial_type<12 || (serial_type & 0x01) ){
4609         rc = -1;
4610       }else{
4611         int nStr = (serial_type - 12) / 2;
4612         testcase( (d1+nStr)==(unsigned)nKey1 );
4613         testcase( (d1+nStr+1)==(unsigned)nKey1 );
4614         if( (d1+nStr) > (unsigned)nKey1 ){
4615           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4616           return 0;                /* Corruption */
4617         }else if( pRhs->flags & MEM_Zero ){
4618           if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4619             rc = 1;
4620           }else{
4621             rc = nStr - pRhs->u.nZero;
4622           }
4623         }else{
4624           int nCmp = MIN(nStr, pRhs->n);
4625           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4626           if( rc==0 ) rc = nStr - pRhs->n;
4627         }
4628       }
4629     }
4630 
4631     /* RHS is null */
4632     else{
4633       serial_type = aKey1[idx1];
4634       rc = (serial_type!=0);
4635     }
4636 
4637     if( rc!=0 ){
4638       int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4639       if( sortFlags ){
4640         if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4641          || ((sortFlags & KEYINFO_ORDER_DESC)
4642            !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4643         ){
4644           rc = -rc;
4645         }
4646       }
4647       assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4648       assert( mem1.szMalloc==0 );  /* See comment below */
4649       return rc;
4650     }
4651 
4652     i++;
4653     if( i==pPKey2->nField ) break;
4654     pRhs++;
4655     d1 += sqlite3VdbeSerialTypeLen(serial_type);
4656     idx1 += sqlite3VarintLen(serial_type);
4657   }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 );
4658 
4659   /* No memory allocation is ever used on mem1.  Prove this using
4660   ** the following assert().  If the assert() fails, it indicates a
4661   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
4662   assert( mem1.szMalloc==0 );
4663 
4664   /* rc==0 here means that one or both of the keys ran out of fields and
4665   ** all the fields up to that point were equal. Return the default_rc
4666   ** value.  */
4667   assert( CORRUPT_DB
4668        || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4669        || pPKey2->pKeyInfo->db->mallocFailed
4670   );
4671   pPKey2->eqSeen = 1;
4672   return pPKey2->default_rc;
4673 }
4674 int sqlite3VdbeRecordCompare(
4675   int nKey1, const void *pKey1,   /* Left key */
4676   UnpackedRecord *pPKey2          /* Right key */
4677 ){
4678   return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4679 }
4680 
4681 
4682 /*
4683 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4684 ** that (a) the first field of pPKey2 is an integer, and (b) the
4685 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4686 ** byte (i.e. is less than 128).
4687 **
4688 ** To avoid concerns about buffer overreads, this routine is only used
4689 ** on schemas where the maximum valid header size is 63 bytes or less.
4690 */
4691 static int vdbeRecordCompareInt(
4692   int nKey1, const void *pKey1, /* Left key */
4693   UnpackedRecord *pPKey2        /* Right key */
4694 ){
4695   const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4696   int serial_type = ((const u8*)pKey1)[1];
4697   int res;
4698   u32 y;
4699   u64 x;
4700   i64 v;
4701   i64 lhs;
4702 
4703   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4704   assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4705   switch( serial_type ){
4706     case 1: { /* 1-byte signed integer */
4707       lhs = ONE_BYTE_INT(aKey);
4708       testcase( lhs<0 );
4709       break;
4710     }
4711     case 2: { /* 2-byte signed integer */
4712       lhs = TWO_BYTE_INT(aKey);
4713       testcase( lhs<0 );
4714       break;
4715     }
4716     case 3: { /* 3-byte signed integer */
4717       lhs = THREE_BYTE_INT(aKey);
4718       testcase( lhs<0 );
4719       break;
4720     }
4721     case 4: { /* 4-byte signed integer */
4722       y = FOUR_BYTE_UINT(aKey);
4723       lhs = (i64)*(int*)&y;
4724       testcase( lhs<0 );
4725       break;
4726     }
4727     case 5: { /* 6-byte signed integer */
4728       lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4729       testcase( lhs<0 );
4730       break;
4731     }
4732     case 6: { /* 8-byte signed integer */
4733       x = FOUR_BYTE_UINT(aKey);
4734       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4735       lhs = *(i64*)&x;
4736       testcase( lhs<0 );
4737       break;
4738     }
4739     case 8:
4740       lhs = 0;
4741       break;
4742     case 9:
4743       lhs = 1;
4744       break;
4745 
4746     /* This case could be removed without changing the results of running
4747     ** this code. Including it causes gcc to generate a faster switch
4748     ** statement (since the range of switch targets now starts at zero and
4749     ** is contiguous) but does not cause any duplicate code to be generated
4750     ** (as gcc is clever enough to combine the two like cases). Other
4751     ** compilers might be similar.  */
4752     case 0: case 7:
4753       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4754 
4755     default:
4756       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4757   }
4758 
4759   v = pPKey2->aMem[0].u.i;
4760   if( v>lhs ){
4761     res = pPKey2->r1;
4762   }else if( v<lhs ){
4763     res = pPKey2->r2;
4764   }else if( pPKey2->nField>1 ){
4765     /* The first fields of the two keys are equal. Compare the trailing
4766     ** fields.  */
4767     res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4768   }else{
4769     /* The first fields of the two keys are equal and there are no trailing
4770     ** fields. Return pPKey2->default_rc in this case. */
4771     res = pPKey2->default_rc;
4772     pPKey2->eqSeen = 1;
4773   }
4774 
4775   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4776   return res;
4777 }
4778 
4779 /*
4780 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4781 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4782 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4783 ** at the start of (pKey1/nKey1) fits in a single byte.
4784 */
4785 static int vdbeRecordCompareString(
4786   int nKey1, const void *pKey1, /* Left key */
4787   UnpackedRecord *pPKey2        /* Right key */
4788 ){
4789   const u8 *aKey1 = (const u8*)pKey1;
4790   int serial_type;
4791   int res;
4792 
4793   assert( pPKey2->aMem[0].flags & MEM_Str );
4794   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4795   serial_type = (u8)(aKey1[1]);
4796   if( serial_type >= 0x80 ){
4797     sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
4798   }
4799   if( serial_type<12 ){
4800     res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
4801   }else if( !(serial_type & 0x01) ){
4802     res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
4803   }else{
4804     int nCmp;
4805     int nStr;
4806     int szHdr = aKey1[0];
4807 
4808     nStr = (serial_type-12) / 2;
4809     if( (szHdr + nStr) > nKey1 ){
4810       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4811       return 0;    /* Corruption */
4812     }
4813     nCmp = MIN( pPKey2->aMem[0].n, nStr );
4814     res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4815 
4816     if( res>0 ){
4817       res = pPKey2->r2;
4818     }else if( res<0 ){
4819       res = pPKey2->r1;
4820     }else{
4821       res = nStr - pPKey2->aMem[0].n;
4822       if( res==0 ){
4823         if( pPKey2->nField>1 ){
4824           res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4825         }else{
4826           res = pPKey2->default_rc;
4827           pPKey2->eqSeen = 1;
4828         }
4829       }else if( res>0 ){
4830         res = pPKey2->r2;
4831       }else{
4832         res = pPKey2->r1;
4833       }
4834     }
4835   }
4836 
4837   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4838        || CORRUPT_DB
4839        || pPKey2->pKeyInfo->db->mallocFailed
4840   );
4841   return res;
4842 }
4843 
4844 /*
4845 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4846 ** suitable for comparing serialized records to the unpacked record passed
4847 ** as the only argument.
4848 */
4849 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4850   /* varintRecordCompareInt() and varintRecordCompareString() both assume
4851   ** that the size-of-header varint that occurs at the start of each record
4852   ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4853   ** also assumes that it is safe to overread a buffer by at least the
4854   ** maximum possible legal header size plus 8 bytes. Because there is
4855   ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4856   ** buffer passed to varintRecordCompareInt() this makes it convenient to
4857   ** limit the size of the header to 64 bytes in cases where the first field
4858   ** is an integer.
4859   **
4860   ** The easiest way to enforce this limit is to consider only records with
4861   ** 13 fields or less. If the first field is an integer, the maximum legal
4862   ** header size is (12*5 + 1 + 1) bytes.  */
4863   if( p->pKeyInfo->nAllField<=13 ){
4864     int flags = p->aMem[0].flags;
4865     if( p->pKeyInfo->aSortFlags[0] ){
4866       if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
4867         return sqlite3VdbeRecordCompare;
4868       }
4869       p->r1 = 1;
4870       p->r2 = -1;
4871     }else{
4872       p->r1 = -1;
4873       p->r2 = 1;
4874     }
4875     if( (flags & MEM_Int) ){
4876       return vdbeRecordCompareInt;
4877     }
4878     testcase( flags & MEM_Real );
4879     testcase( flags & MEM_Null );
4880     testcase( flags & MEM_Blob );
4881     if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
4882      && p->pKeyInfo->aColl[0]==0
4883     ){
4884       assert( flags & MEM_Str );
4885       return vdbeRecordCompareString;
4886     }
4887   }
4888 
4889   return sqlite3VdbeRecordCompare;
4890 }
4891 
4892 /*
4893 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4894 ** Read the rowid (the last field in the record) and store it in *rowid.
4895 ** Return SQLITE_OK if everything works, or an error code otherwise.
4896 **
4897 ** pCur might be pointing to text obtained from a corrupt database file.
4898 ** So the content cannot be trusted.  Do appropriate checks on the content.
4899 */
4900 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4901   i64 nCellKey = 0;
4902   int rc;
4903   u32 szHdr;        /* Size of the header */
4904   u32 typeRowid;    /* Serial type of the rowid */
4905   u32 lenRowid;     /* Size of the rowid */
4906   Mem m, v;
4907 
4908   /* Get the size of the index entry.  Only indices entries of less
4909   ** than 2GiB are support - anything large must be database corruption.
4910   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4911   ** this code can safely assume that nCellKey is 32-bits
4912   */
4913   assert( sqlite3BtreeCursorIsValid(pCur) );
4914   nCellKey = sqlite3BtreePayloadSize(pCur);
4915   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4916 
4917   /* Read in the complete content of the index entry */
4918   sqlite3VdbeMemInit(&m, db, 0);
4919   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
4920   if( rc ){
4921     return rc;
4922   }
4923 
4924   /* The index entry must begin with a header size */
4925   getVarint32NR((u8*)m.z, szHdr);
4926   testcase( szHdr==3 );
4927   testcase( szHdr==m.n );
4928   testcase( szHdr>0x7fffffff );
4929   assert( m.n>=0 );
4930   if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
4931     goto idx_rowid_corruption;
4932   }
4933 
4934   /* The last field of the index should be an integer - the ROWID.
4935   ** Verify that the last entry really is an integer. */
4936   getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
4937   testcase( typeRowid==1 );
4938   testcase( typeRowid==2 );
4939   testcase( typeRowid==3 );
4940   testcase( typeRowid==4 );
4941   testcase( typeRowid==5 );
4942   testcase( typeRowid==6 );
4943   testcase( typeRowid==8 );
4944   testcase( typeRowid==9 );
4945   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4946     goto idx_rowid_corruption;
4947   }
4948   lenRowid = sqlite3SmallTypeSizes[typeRowid];
4949   testcase( (u32)m.n==szHdr+lenRowid );
4950   if( unlikely((u32)m.n<szHdr+lenRowid) ){
4951     goto idx_rowid_corruption;
4952   }
4953 
4954   /* Fetch the integer off the end of the index record */
4955   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4956   *rowid = v.u.i;
4957   sqlite3VdbeMemRelease(&m);
4958   return SQLITE_OK;
4959 
4960   /* Jump here if database corruption is detected after m has been
4961   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
4962 idx_rowid_corruption:
4963   testcase( m.szMalloc!=0 );
4964   sqlite3VdbeMemRelease(&m);
4965   return SQLITE_CORRUPT_BKPT;
4966 }
4967 
4968 /*
4969 ** Compare the key of the index entry that cursor pC is pointing to against
4970 ** the key string in pUnpacked.  Write into *pRes a number
4971 ** that is negative, zero, or positive if pC is less than, equal to,
4972 ** or greater than pUnpacked.  Return SQLITE_OK on success.
4973 **
4974 ** pUnpacked is either created without a rowid or is truncated so that it
4975 ** omits the rowid at the end.  The rowid at the end of the index entry
4976 ** is ignored as well.  Hence, this routine only compares the prefixes
4977 ** of the keys prior to the final rowid, not the entire key.
4978 */
4979 int sqlite3VdbeIdxKeyCompare(
4980   sqlite3 *db,                     /* Database connection */
4981   VdbeCursor *pC,                  /* The cursor to compare against */
4982   UnpackedRecord *pUnpacked,       /* Unpacked version of key */
4983   int *res                         /* Write the comparison result here */
4984 ){
4985   i64 nCellKey = 0;
4986   int rc;
4987   BtCursor *pCur;
4988   Mem m;
4989 
4990   assert( pC->eCurType==CURTYPE_BTREE );
4991   pCur = pC->uc.pCursor;
4992   assert( sqlite3BtreeCursorIsValid(pCur) );
4993   nCellKey = sqlite3BtreePayloadSize(pCur);
4994   /* nCellKey will always be between 0 and 0xffffffff because of the way
4995   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4996   if( nCellKey<=0 || nCellKey>0x7fffffff ){
4997     *res = 0;
4998     return SQLITE_CORRUPT_BKPT;
4999   }
5000   sqlite3VdbeMemInit(&m, db, 0);
5001   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5002   if( rc ){
5003     return rc;
5004   }
5005   *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
5006   sqlite3VdbeMemRelease(&m);
5007   return SQLITE_OK;
5008 }
5009 
5010 /*
5011 ** This routine sets the value to be returned by subsequent calls to
5012 ** sqlite3_changes() on the database handle 'db'.
5013 */
5014 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
5015   assert( sqlite3_mutex_held(db->mutex) );
5016   db->nChange = nChange;
5017   db->nTotalChange += nChange;
5018 }
5019 
5020 /*
5021 ** Set a flag in the vdbe to update the change counter when it is finalised
5022 ** or reset.
5023 */
5024 void sqlite3VdbeCountChanges(Vdbe *v){
5025   v->changeCntOn = 1;
5026 }
5027 
5028 /*
5029 ** Mark every prepared statement associated with a database connection
5030 ** as expired.
5031 **
5032 ** An expired statement means that recompilation of the statement is
5033 ** recommend.  Statements expire when things happen that make their
5034 ** programs obsolete.  Removing user-defined functions or collating
5035 ** sequences, or changing an authorization function are the types of
5036 ** things that make prepared statements obsolete.
5037 **
5038 ** If iCode is 1, then expiration is advisory.  The statement should
5039 ** be reprepared before being restarted, but if it is already running
5040 ** it is allowed to run to completion.
5041 **
5042 ** Internally, this function just sets the Vdbe.expired flag on all
5043 ** prepared statements.  The flag is set to 1 for an immediate expiration
5044 ** and set to 2 for an advisory expiration.
5045 */
5046 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
5047   Vdbe *p;
5048   for(p = db->pVdbe; p; p=p->pNext){
5049     p->expired = iCode+1;
5050   }
5051 }
5052 
5053 /*
5054 ** Return the database associated with the Vdbe.
5055 */
5056 sqlite3 *sqlite3VdbeDb(Vdbe *v){
5057   return v->db;
5058 }
5059 
5060 /*
5061 ** Return the SQLITE_PREPARE flags for a Vdbe.
5062 */
5063 u8 sqlite3VdbePrepareFlags(Vdbe *v){
5064   return v->prepFlags;
5065 }
5066 
5067 /*
5068 ** Return a pointer to an sqlite3_value structure containing the value bound
5069 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5070 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5071 ** constants) to the value before returning it.
5072 **
5073 ** The returned value must be freed by the caller using sqlite3ValueFree().
5074 */
5075 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5076   assert( iVar>0 );
5077   if( v ){
5078     Mem *pMem = &v->aVar[iVar-1];
5079     assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5080     if( 0==(pMem->flags & MEM_Null) ){
5081       sqlite3_value *pRet = sqlite3ValueNew(v->db);
5082       if( pRet ){
5083         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5084         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5085       }
5086       return pRet;
5087     }
5088   }
5089   return 0;
5090 }
5091 
5092 /*
5093 ** Configure SQL variable iVar so that binding a new value to it signals
5094 ** to sqlite3_reoptimize() that re-preparing the statement may result
5095 ** in a better query plan.
5096 */
5097 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5098   assert( iVar>0 );
5099   assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5100   if( iVar>=32 ){
5101     v->expmask |= 0x80000000;
5102   }else{
5103     v->expmask |= ((u32)1 << (iVar-1));
5104   }
5105 }
5106 
5107 /*
5108 ** Cause a function to throw an error if it was call from OP_PureFunc
5109 ** rather than OP_Function.
5110 **
5111 ** OP_PureFunc means that the function must be deterministic, and should
5112 ** throw an error if it is given inputs that would make it non-deterministic.
5113 ** This routine is invoked by date/time functions that use non-deterministic
5114 ** features such as 'now'.
5115 */
5116 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5117   const VdbeOp *pOp;
5118 #ifdef SQLITE_ENABLE_STAT4
5119   if( pCtx->pVdbe==0 ) return 1;
5120 #endif
5121   pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5122   if( pOp->opcode==OP_PureFunc ){
5123     const char *zContext;
5124     char *zMsg;
5125     if( pOp->p5 & NC_IsCheck ){
5126       zContext = "a CHECK constraint";
5127     }else if( pOp->p5 & NC_GenCol ){
5128       zContext = "a generated column";
5129     }else{
5130       zContext = "an index";
5131     }
5132     zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5133                            pCtx->pFunc->zName, zContext);
5134     sqlite3_result_error(pCtx, zMsg, -1);
5135     sqlite3_free(zMsg);
5136     return 0;
5137   }
5138   return 1;
5139 }
5140 
5141 #ifndef SQLITE_OMIT_VIRTUALTABLE
5142 /*
5143 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5144 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5145 ** in memory obtained from sqlite3DbMalloc).
5146 */
5147 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5148   if( pVtab->zErrMsg ){
5149     sqlite3 *db = p->db;
5150     sqlite3DbFree(db, p->zErrMsg);
5151     p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5152     sqlite3_free(pVtab->zErrMsg);
5153     pVtab->zErrMsg = 0;
5154   }
5155 }
5156 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5157 
5158 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5159 
5160 /*
5161 ** If the second argument is not NULL, release any allocations associated
5162 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5163 ** structure itself, using sqlite3DbFree().
5164 **
5165 ** This function is used to free UnpackedRecord structures allocated by
5166 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5167 */
5168 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5169   if( p ){
5170     int i;
5171     for(i=0; i<nField; i++){
5172       Mem *pMem = &p->aMem[i];
5173       if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
5174     }
5175     sqlite3DbFreeNN(db, p);
5176   }
5177 }
5178 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5179 
5180 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5181 /*
5182 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5183 ** then cursor passed as the second argument should point to the row about
5184 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5185 ** the required value will be read from the row the cursor points to.
5186 */
5187 void sqlite3VdbePreUpdateHook(
5188   Vdbe *v,                        /* Vdbe pre-update hook is invoked by */
5189   VdbeCursor *pCsr,               /* Cursor to grab old.* values from */
5190   int op,                         /* SQLITE_INSERT, UPDATE or DELETE */
5191   const char *zDb,                /* Database name */
5192   Table *pTab,                    /* Modified table */
5193   i64 iKey1,                      /* Initial key value */
5194   int iReg                        /* Register for new.* record */
5195 ){
5196   sqlite3 *db = v->db;
5197   i64 iKey2;
5198   PreUpdate preupdate;
5199   const char *zTbl = pTab->zName;
5200   static const u8 fakeSortOrder = 0;
5201 
5202   assert( db->pPreUpdate==0 );
5203   memset(&preupdate, 0, sizeof(PreUpdate));
5204   if( HasRowid(pTab)==0 ){
5205     iKey1 = iKey2 = 0;
5206     preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5207   }else{
5208     if( op==SQLITE_UPDATE ){
5209       iKey2 = v->aMem[iReg].u.i;
5210     }else{
5211       iKey2 = iKey1;
5212     }
5213   }
5214 
5215   assert( pCsr->nField==pTab->nCol
5216        || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
5217   );
5218 
5219   preupdate.v = v;
5220   preupdate.pCsr = pCsr;
5221   preupdate.op = op;
5222   preupdate.iNewReg = iReg;
5223   preupdate.keyinfo.db = db;
5224   preupdate.keyinfo.enc = ENC(db);
5225   preupdate.keyinfo.nKeyField = pTab->nCol;
5226   preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5227   preupdate.iKey1 = iKey1;
5228   preupdate.iKey2 = iKey2;
5229   preupdate.pTab = pTab;
5230 
5231   db->pPreUpdate = &preupdate;
5232   db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5233   db->pPreUpdate = 0;
5234   sqlite3DbFree(db, preupdate.aRecord);
5235   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5236   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5237   if( preupdate.aNew ){
5238     int i;
5239     for(i=0; i<pCsr->nField; i++){
5240       sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5241     }
5242     sqlite3DbFreeNN(db, preupdate.aNew);
5243   }
5244 }
5245 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5246