1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* Forward references */ 19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef); 20 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 21 22 /* 23 ** Create a new virtual database engine. 24 */ 25 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 26 sqlite3 *db = pParse->db; 27 Vdbe *p; 28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 29 if( p==0 ) return 0; 30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 31 p->db = db; 32 if( db->pVdbe ){ 33 db->pVdbe->pPrev = p; 34 } 35 p->pNext = db->pVdbe; 36 p->pPrev = 0; 37 db->pVdbe = p; 38 p->magic = VDBE_MAGIC_INIT; 39 p->pParse = pParse; 40 pParse->pVdbe = p; 41 assert( pParse->aLabel==0 ); 42 assert( pParse->nLabel==0 ); 43 assert( p->nOpAlloc==0 ); 44 assert( pParse->szOpAlloc==0 ); 45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1); 46 return p; 47 } 48 49 /* 50 ** Return the Parse object that owns a Vdbe object. 51 */ 52 Parse *sqlite3VdbeParser(Vdbe *p){ 53 return p->pParse; 54 } 55 56 /* 57 ** Change the error string stored in Vdbe.zErrMsg 58 */ 59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 60 va_list ap; 61 sqlite3DbFree(p->db, p->zErrMsg); 62 va_start(ap, zFormat); 63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 64 va_end(ap); 65 } 66 67 /* 68 ** Remember the SQL string for a prepared statement. 69 */ 70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 71 if( p==0 ) return; 72 p->prepFlags = prepFlags; 73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 74 p->expmask = 0; 75 } 76 assert( p->zSql==0 ); 77 p->zSql = sqlite3DbStrNDup(p->db, z, n); 78 } 79 80 #ifdef SQLITE_ENABLE_NORMALIZE 81 /* 82 ** Add a new element to the Vdbe->pDblStr list. 83 */ 84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ 85 if( p ){ 86 int n = sqlite3Strlen30(z); 87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db, 88 sizeof(*pStr)+n+1-sizeof(pStr->z)); 89 if( pStr ){ 90 pStr->pNextStr = p->pDblStr; 91 p->pDblStr = pStr; 92 memcpy(pStr->z, z, n+1); 93 } 94 } 95 } 96 #endif 97 98 #ifdef SQLITE_ENABLE_NORMALIZE 99 /* 100 ** zId of length nId is a double-quoted identifier. Check to see if 101 ** that identifier is really used as a string literal. 102 */ 103 int sqlite3VdbeUsesDoubleQuotedString( 104 Vdbe *pVdbe, /* The prepared statement */ 105 const char *zId /* The double-quoted identifier, already dequoted */ 106 ){ 107 DblquoteStr *pStr; 108 assert( zId!=0 ); 109 if( pVdbe->pDblStr==0 ) return 0; 110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ 111 if( strcmp(zId, pStr->z)==0 ) return 1; 112 } 113 return 0; 114 } 115 #endif 116 117 /* 118 ** Swap all content between two VDBE structures. 119 */ 120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 121 Vdbe tmp, *pTmp; 122 char *zTmp; 123 assert( pA->db==pB->db ); 124 tmp = *pA; 125 *pA = *pB; 126 *pB = tmp; 127 pTmp = pA->pNext; 128 pA->pNext = pB->pNext; 129 pB->pNext = pTmp; 130 pTmp = pA->pPrev; 131 pA->pPrev = pB->pPrev; 132 pB->pPrev = pTmp; 133 zTmp = pA->zSql; 134 pA->zSql = pB->zSql; 135 pB->zSql = zTmp; 136 #ifdef SQLITE_ENABLE_NORMALIZE 137 zTmp = pA->zNormSql; 138 pA->zNormSql = pB->zNormSql; 139 pB->zNormSql = zTmp; 140 #endif 141 pB->expmask = pA->expmask; 142 pB->prepFlags = pA->prepFlags; 143 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 144 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 145 } 146 147 /* 148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 149 ** than its current size. nOp is guaranteed to be less than or equal 150 ** to 1024/sizeof(Op). 151 ** 152 ** If an out-of-memory error occurs while resizing the array, return 153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain 154 ** unchanged (this is so that any opcodes already allocated can be 155 ** correctly deallocated along with the rest of the Vdbe). 156 */ 157 static int growOpArray(Vdbe *v, int nOp){ 158 VdbeOp *pNew; 159 Parse *p = v->pParse; 160 161 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 162 ** more frequent reallocs and hence provide more opportunities for 163 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 164 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 165 ** by the minimum* amount required until the size reaches 512. Normal 166 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 167 ** size of the op array or add 1KB of space, whichever is smaller. */ 168 #ifdef SQLITE_TEST_REALLOC_STRESS 169 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc 170 : (sqlite3_int64)v->nOpAlloc+nOp); 171 #else 172 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc 173 : (sqlite3_int64)(1024/sizeof(Op))); 174 UNUSED_PARAMETER(nOp); 175 #endif 176 177 /* Ensure that the size of a VDBE does not grow too large */ 178 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 179 sqlite3OomFault(p->db); 180 return SQLITE_NOMEM; 181 } 182 183 assert( nOp<=(1024/sizeof(Op)) ); 184 assert( nNew>=(v->nOpAlloc+nOp) ); 185 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 186 if( pNew ){ 187 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 188 v->nOpAlloc = p->szOpAlloc/sizeof(Op); 189 v->aOp = pNew; 190 } 191 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 192 } 193 194 #ifdef SQLITE_DEBUG 195 /* This routine is just a convenient place to set a breakpoint that will 196 ** fire after each opcode is inserted and displayed using 197 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and 198 ** pOp are available to make the breakpoint conditional. 199 ** 200 ** Other useful labels for breakpoints include: 201 ** test_trace_breakpoint(pc,pOp) 202 ** sqlite3CorruptError(lineno) 203 ** sqlite3MisuseError(lineno) 204 ** sqlite3CantopenError(lineno) 205 */ 206 static void test_addop_breakpoint(int pc, Op *pOp){ 207 static int n = 0; 208 n++; 209 } 210 #endif 211 212 /* 213 ** Add a new instruction to the list of instructions current in the 214 ** VDBE. Return the address of the new instruction. 215 ** 216 ** Parameters: 217 ** 218 ** p Pointer to the VDBE 219 ** 220 ** op The opcode for this instruction 221 ** 222 ** p1, p2, p3 Operands 223 ** 224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 225 ** the sqlite3VdbeChangeP4() function to change the value of the P4 226 ** operand. 227 */ 228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 229 assert( p->nOpAlloc<=p->nOp ); 230 if( growOpArray(p, 1) ) return 1; 231 assert( p->nOpAlloc>p->nOp ); 232 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 233 } 234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 235 int i; 236 VdbeOp *pOp; 237 238 i = p->nOp; 239 assert( p->magic==VDBE_MAGIC_INIT ); 240 assert( op>=0 && op<0xff ); 241 if( p->nOpAlloc<=i ){ 242 return growOp3(p, op, p1, p2, p3); 243 } 244 p->nOp++; 245 pOp = &p->aOp[i]; 246 pOp->opcode = (u8)op; 247 pOp->p5 = 0; 248 pOp->p1 = p1; 249 pOp->p2 = p2; 250 pOp->p3 = p3; 251 pOp->p4.p = 0; 252 pOp->p4type = P4_NOTUSED; 253 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 254 pOp->zComment = 0; 255 #endif 256 #ifdef SQLITE_DEBUG 257 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 258 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 259 test_addop_breakpoint(i, &p->aOp[i]); 260 } 261 #endif 262 #ifdef VDBE_PROFILE 263 pOp->cycles = 0; 264 pOp->cnt = 0; 265 #endif 266 #ifdef SQLITE_VDBE_COVERAGE 267 pOp->iSrcLine = 0; 268 #endif 269 return i; 270 } 271 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 272 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 273 } 274 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 275 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 276 } 277 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 278 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 279 } 280 281 /* Generate code for an unconditional jump to instruction iDest 282 */ 283 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 284 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 285 } 286 287 /* Generate code to cause the string zStr to be loaded into 288 ** register iDest 289 */ 290 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 291 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 292 } 293 294 /* 295 ** Generate code that initializes multiple registers to string or integer 296 ** constants. The registers begin with iDest and increase consecutively. 297 ** One register is initialized for each characgter in zTypes[]. For each 298 ** "s" character in zTypes[], the register is a string if the argument is 299 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 300 ** in zTypes[], the register is initialized to an integer. 301 ** 302 ** If the input string does not end with "X" then an OP_ResultRow instruction 303 ** is generated for the values inserted. 304 */ 305 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 306 va_list ap; 307 int i; 308 char c; 309 va_start(ap, zTypes); 310 for(i=0; (c = zTypes[i])!=0; i++){ 311 if( c=='s' ){ 312 const char *z = va_arg(ap, const char*); 313 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 314 }else if( c=='i' ){ 315 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 316 }else{ 317 goto skip_op_resultrow; 318 } 319 } 320 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 321 skip_op_resultrow: 322 va_end(ap); 323 } 324 325 /* 326 ** Add an opcode that includes the p4 value as a pointer. 327 */ 328 int sqlite3VdbeAddOp4( 329 Vdbe *p, /* Add the opcode to this VM */ 330 int op, /* The new opcode */ 331 int p1, /* The P1 operand */ 332 int p2, /* The P2 operand */ 333 int p3, /* The P3 operand */ 334 const char *zP4, /* The P4 operand */ 335 int p4type /* P4 operand type */ 336 ){ 337 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 338 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 339 return addr; 340 } 341 342 /* 343 ** Add an OP_Function or OP_PureFunc opcode. 344 ** 345 ** The eCallCtx argument is information (typically taken from Expr.op2) 346 ** that describes the calling context of the function. 0 means a general 347 ** function call. NC_IsCheck means called by a check constraint, 348 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx 349 ** means in the WHERE clause of a partial index. NC_GenCol means called 350 ** while computing a generated column value. 0 is the usual case. 351 */ 352 int sqlite3VdbeAddFunctionCall( 353 Parse *pParse, /* Parsing context */ 354 int p1, /* Constant argument mask */ 355 int p2, /* First argument register */ 356 int p3, /* Register into which results are written */ 357 int nArg, /* Number of argument */ 358 const FuncDef *pFunc, /* The function to be invoked */ 359 int eCallCtx /* Calling context */ 360 ){ 361 Vdbe *v = pParse->pVdbe; 362 int nByte; 363 int addr; 364 sqlite3_context *pCtx; 365 assert( v ); 366 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*); 367 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte); 368 if( pCtx==0 ){ 369 assert( pParse->db->mallocFailed ); 370 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc); 371 return 0; 372 } 373 pCtx->pOut = 0; 374 pCtx->pFunc = (FuncDef*)pFunc; 375 pCtx->pVdbe = 0; 376 pCtx->isError = 0; 377 pCtx->argc = nArg; 378 pCtx->iOp = sqlite3VdbeCurrentAddr(v); 379 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function, 380 p1, p2, p3, (char*)pCtx, P4_FUNCCTX); 381 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef); 382 return addr; 383 } 384 385 /* 386 ** Add an opcode that includes the p4 value with a P4_INT64 or 387 ** P4_REAL type. 388 */ 389 int sqlite3VdbeAddOp4Dup8( 390 Vdbe *p, /* Add the opcode to this VM */ 391 int op, /* The new opcode */ 392 int p1, /* The P1 operand */ 393 int p2, /* The P2 operand */ 394 int p3, /* The P3 operand */ 395 const u8 *zP4, /* The P4 operand */ 396 int p4type /* P4 operand type */ 397 ){ 398 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 399 if( p4copy ) memcpy(p4copy, zP4, 8); 400 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 401 } 402 403 #ifndef SQLITE_OMIT_EXPLAIN 404 /* 405 ** Return the address of the current EXPLAIN QUERY PLAN baseline. 406 ** 0 means "none". 407 */ 408 int sqlite3VdbeExplainParent(Parse *pParse){ 409 VdbeOp *pOp; 410 if( pParse->addrExplain==0 ) return 0; 411 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); 412 return pOp->p2; 413 } 414 415 /* 416 ** Set a debugger breakpoint on the following routine in order to 417 ** monitor the EXPLAIN QUERY PLAN code generation. 418 */ 419 #if defined(SQLITE_DEBUG) 420 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ 421 (void)z1; 422 (void)z2; 423 } 424 #endif 425 426 /* 427 ** Add a new OP_Explain opcode. 428 ** 429 ** If the bPush flag is true, then make this opcode the parent for 430 ** subsequent Explains until sqlite3VdbeExplainPop() is called. 431 */ 432 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ 433 #ifndef SQLITE_DEBUG 434 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined. 435 ** But omit them (for performance) during production builds */ 436 if( pParse->explain==2 ) 437 #endif 438 { 439 char *zMsg; 440 Vdbe *v; 441 va_list ap; 442 int iThis; 443 va_start(ap, zFmt); 444 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); 445 va_end(ap); 446 v = pParse->pVdbe; 447 iThis = v->nOp; 448 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, 449 zMsg, P4_DYNAMIC); 450 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z); 451 if( bPush){ 452 pParse->addrExplain = iThis; 453 } 454 } 455 } 456 457 /* 458 ** Pop the EXPLAIN QUERY PLAN stack one level. 459 */ 460 void sqlite3VdbeExplainPop(Parse *pParse){ 461 sqlite3ExplainBreakpoint("POP", 0); 462 pParse->addrExplain = sqlite3VdbeExplainParent(pParse); 463 } 464 #endif /* SQLITE_OMIT_EXPLAIN */ 465 466 /* 467 ** Add an OP_ParseSchema opcode. This routine is broken out from 468 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 469 ** as having been used. 470 ** 471 ** The zWhere string must have been obtained from sqlite3_malloc(). 472 ** This routine will take ownership of the allocated memory. 473 */ 474 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 475 int j; 476 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 477 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 478 } 479 480 /* 481 ** Add an opcode that includes the p4 value as an integer. 482 */ 483 int sqlite3VdbeAddOp4Int( 484 Vdbe *p, /* Add the opcode to this VM */ 485 int op, /* The new opcode */ 486 int p1, /* The P1 operand */ 487 int p2, /* The P2 operand */ 488 int p3, /* The P3 operand */ 489 int p4 /* The P4 operand as an integer */ 490 ){ 491 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 492 if( p->db->mallocFailed==0 ){ 493 VdbeOp *pOp = &p->aOp[addr]; 494 pOp->p4type = P4_INT32; 495 pOp->p4.i = p4; 496 } 497 return addr; 498 } 499 500 /* Insert the end of a co-routine 501 */ 502 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 503 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 504 505 /* Clear the temporary register cache, thereby ensuring that each 506 ** co-routine has its own independent set of registers, because co-routines 507 ** might expect their registers to be preserved across an OP_Yield, and 508 ** that could cause problems if two or more co-routines are using the same 509 ** temporary register. 510 */ 511 v->pParse->nTempReg = 0; 512 v->pParse->nRangeReg = 0; 513 } 514 515 /* 516 ** Create a new symbolic label for an instruction that has yet to be 517 ** coded. The symbolic label is really just a negative number. The 518 ** label can be used as the P2 value of an operation. Later, when 519 ** the label is resolved to a specific address, the VDBE will scan 520 ** through its operation list and change all values of P2 which match 521 ** the label into the resolved address. 522 ** 523 ** The VDBE knows that a P2 value is a label because labels are 524 ** always negative and P2 values are suppose to be non-negative. 525 ** Hence, a negative P2 value is a label that has yet to be resolved. 526 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP 527 ** property. 528 ** 529 ** Variable usage notes: 530 ** 531 ** Parse.aLabel[x] Stores the address that the x-th label resolves 532 ** into. For testing (SQLITE_DEBUG), unresolved 533 ** labels stores -1, but that is not required. 534 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[] 535 ** Parse.nLabel The *negative* of the number of labels that have 536 ** been issued. The negative is stored because 537 ** that gives a performance improvement over storing 538 ** the equivalent positive value. 539 */ 540 int sqlite3VdbeMakeLabel(Parse *pParse){ 541 return --pParse->nLabel; 542 } 543 544 /* 545 ** Resolve label "x" to be the address of the next instruction to 546 ** be inserted. The parameter "x" must have been obtained from 547 ** a prior call to sqlite3VdbeMakeLabel(). 548 */ 549 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){ 550 int nNewSize = 10 - p->nLabel; 551 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 552 nNewSize*sizeof(p->aLabel[0])); 553 if( p->aLabel==0 ){ 554 p->nLabelAlloc = 0; 555 }else{ 556 #ifdef SQLITE_DEBUG 557 int i; 558 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1; 559 #endif 560 p->nLabelAlloc = nNewSize; 561 p->aLabel[j] = v->nOp; 562 } 563 } 564 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 565 Parse *p = v->pParse; 566 int j = ADDR(x); 567 assert( v->magic==VDBE_MAGIC_INIT ); 568 assert( j<-p->nLabel ); 569 assert( j>=0 ); 570 #ifdef SQLITE_DEBUG 571 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 572 printf("RESOLVE LABEL %d to %d\n", x, v->nOp); 573 } 574 #endif 575 if( p->nLabelAlloc + p->nLabel < 0 ){ 576 resizeResolveLabel(p,v,j); 577 }else{ 578 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ 579 p->aLabel[j] = v->nOp; 580 } 581 } 582 583 /* 584 ** Mark the VDBE as one that can only be run one time. 585 */ 586 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 587 p->runOnlyOnce = 1; 588 } 589 590 /* 591 ** Mark the VDBE as one that can only be run multiple times. 592 */ 593 void sqlite3VdbeReusable(Vdbe *p){ 594 p->runOnlyOnce = 0; 595 } 596 597 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 598 599 /* 600 ** The following type and function are used to iterate through all opcodes 601 ** in a Vdbe main program and each of the sub-programs (triggers) it may 602 ** invoke directly or indirectly. It should be used as follows: 603 ** 604 ** Op *pOp; 605 ** VdbeOpIter sIter; 606 ** 607 ** memset(&sIter, 0, sizeof(sIter)); 608 ** sIter.v = v; // v is of type Vdbe* 609 ** while( (pOp = opIterNext(&sIter)) ){ 610 ** // Do something with pOp 611 ** } 612 ** sqlite3DbFree(v->db, sIter.apSub); 613 ** 614 */ 615 typedef struct VdbeOpIter VdbeOpIter; 616 struct VdbeOpIter { 617 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 618 SubProgram **apSub; /* Array of subprograms */ 619 int nSub; /* Number of entries in apSub */ 620 int iAddr; /* Address of next instruction to return */ 621 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 622 }; 623 static Op *opIterNext(VdbeOpIter *p){ 624 Vdbe *v = p->v; 625 Op *pRet = 0; 626 Op *aOp; 627 int nOp; 628 629 if( p->iSub<=p->nSub ){ 630 631 if( p->iSub==0 ){ 632 aOp = v->aOp; 633 nOp = v->nOp; 634 }else{ 635 aOp = p->apSub[p->iSub-1]->aOp; 636 nOp = p->apSub[p->iSub-1]->nOp; 637 } 638 assert( p->iAddr<nOp ); 639 640 pRet = &aOp[p->iAddr]; 641 p->iAddr++; 642 if( p->iAddr==nOp ){ 643 p->iSub++; 644 p->iAddr = 0; 645 } 646 647 if( pRet->p4type==P4_SUBPROGRAM ){ 648 int nByte = (p->nSub+1)*sizeof(SubProgram*); 649 int j; 650 for(j=0; j<p->nSub; j++){ 651 if( p->apSub[j]==pRet->p4.pProgram ) break; 652 } 653 if( j==p->nSub ){ 654 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 655 if( !p->apSub ){ 656 pRet = 0; 657 }else{ 658 p->apSub[p->nSub++] = pRet->p4.pProgram; 659 } 660 } 661 } 662 } 663 664 return pRet; 665 } 666 667 /* 668 ** Check if the program stored in the VM associated with pParse may 669 ** throw an ABORT exception (causing the statement, but not entire transaction 670 ** to be rolled back). This condition is true if the main program or any 671 ** sub-programs contains any of the following: 672 ** 673 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 674 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 675 ** * OP_Destroy 676 ** * OP_VUpdate 677 ** * OP_VCreate 678 ** * OP_VRename 679 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 680 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 681 ** (for CREATE TABLE AS SELECT ...) 682 ** 683 ** Then check that the value of Parse.mayAbort is true if an 684 ** ABORT may be thrown, or false otherwise. Return true if it does 685 ** match, or false otherwise. This function is intended to be used as 686 ** part of an assert statement in the compiler. Similar to: 687 ** 688 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 689 */ 690 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 691 int hasAbort = 0; 692 int hasFkCounter = 0; 693 int hasCreateTable = 0; 694 int hasCreateIndex = 0; 695 int hasInitCoroutine = 0; 696 Op *pOp; 697 VdbeOpIter sIter; 698 memset(&sIter, 0, sizeof(sIter)); 699 sIter.v = v; 700 701 while( (pOp = opIterNext(&sIter))!=0 ){ 702 int opcode = pOp->opcode; 703 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 704 || opcode==OP_VDestroy 705 || opcode==OP_VCreate 706 || (opcode==OP_ParseSchema && pOp->p4.z==0) 707 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 708 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort)) 709 ){ 710 hasAbort = 1; 711 break; 712 } 713 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; 714 if( mayAbort ){ 715 /* hasCreateIndex may also be set for some DELETE statements that use 716 ** OP_Clear. So this routine may end up returning true in the case 717 ** where a "DELETE FROM tbl" has a statement-journal but does not 718 ** require one. This is not so bad - it is an inefficiency, not a bug. */ 719 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1; 720 if( opcode==OP_Clear ) hasCreateIndex = 1; 721 } 722 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 723 #ifndef SQLITE_OMIT_FOREIGN_KEY 724 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 725 hasFkCounter = 1; 726 } 727 #endif 728 } 729 sqlite3DbFree(v->db, sIter.apSub); 730 731 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 732 ** If malloc failed, then the while() loop above may not have iterated 733 ** through all opcodes and hasAbort may be set incorrectly. Return 734 ** true for this case to prevent the assert() in the callers frame 735 ** from failing. */ 736 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 737 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex 738 ); 739 } 740 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 741 742 #ifdef SQLITE_DEBUG 743 /* 744 ** Increment the nWrite counter in the VDBE if the cursor is not an 745 ** ephemeral cursor, or if the cursor argument is NULL. 746 */ 747 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ 748 if( pC==0 749 || (pC->eCurType!=CURTYPE_SORTER 750 && pC->eCurType!=CURTYPE_PSEUDO 751 && !pC->isEphemeral) 752 ){ 753 p->nWrite++; 754 } 755 } 756 #endif 757 758 #ifdef SQLITE_DEBUG 759 /* 760 ** Assert if an Abort at this point in time might result in a corrupt 761 ** database. 762 */ 763 void sqlite3VdbeAssertAbortable(Vdbe *p){ 764 assert( p->nWrite==0 || p->usesStmtJournal ); 765 } 766 #endif 767 768 /* 769 ** This routine is called after all opcodes have been inserted. It loops 770 ** through all the opcodes and fixes up some details. 771 ** 772 ** (1) For each jump instruction with a negative P2 value (a label) 773 ** resolve the P2 value to an actual address. 774 ** 775 ** (2) Compute the maximum number of arguments used by any SQL function 776 ** and store that value in *pMaxFuncArgs. 777 ** 778 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 779 ** indicate what the prepared statement actually does. 780 ** 781 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 782 ** 783 ** (5) Reclaim the memory allocated for storing labels. 784 ** 785 ** This routine will only function correctly if the mkopcodeh.tcl generator 786 ** script numbers the opcodes correctly. Changes to this routine must be 787 ** coordinated with changes to mkopcodeh.tcl. 788 */ 789 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 790 int nMaxArgs = *pMaxFuncArgs; 791 Op *pOp; 792 Parse *pParse = p->pParse; 793 int *aLabel = pParse->aLabel; 794 p->readOnly = 1; 795 p->bIsReader = 0; 796 pOp = &p->aOp[p->nOp-1]; 797 while(1){ 798 799 /* Only JUMP opcodes and the short list of special opcodes in the switch 800 ** below need to be considered. The mkopcodeh.tcl generator script groups 801 ** all these opcodes together near the front of the opcode list. Skip 802 ** any opcode that does not need processing by virtual of the fact that 803 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 804 */ 805 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 806 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 807 ** cases from this switch! */ 808 switch( pOp->opcode ){ 809 case OP_Transaction: { 810 if( pOp->p2!=0 ) p->readOnly = 0; 811 /* fall thru */ 812 } 813 case OP_AutoCommit: 814 case OP_Savepoint: { 815 p->bIsReader = 1; 816 break; 817 } 818 #ifndef SQLITE_OMIT_WAL 819 case OP_Checkpoint: 820 #endif 821 case OP_Vacuum: 822 case OP_JournalMode: { 823 p->readOnly = 0; 824 p->bIsReader = 1; 825 break; 826 } 827 case OP_Next: 828 case OP_SorterNext: { 829 pOp->p4.xAdvance = sqlite3BtreeNext; 830 pOp->p4type = P4_ADVANCE; 831 /* The code generator never codes any of these opcodes as a jump 832 ** to a label. They are always coded as a jump backwards to a 833 ** known address */ 834 assert( pOp->p2>=0 ); 835 break; 836 } 837 case OP_Prev: { 838 pOp->p4.xAdvance = sqlite3BtreePrevious; 839 pOp->p4type = P4_ADVANCE; 840 /* The code generator never codes any of these opcodes as a jump 841 ** to a label. They are always coded as a jump backwards to a 842 ** known address */ 843 assert( pOp->p2>=0 ); 844 break; 845 } 846 #ifndef SQLITE_OMIT_VIRTUALTABLE 847 case OP_VUpdate: { 848 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 849 break; 850 } 851 case OP_VFilter: { 852 int n; 853 assert( (pOp - p->aOp) >= 3 ); 854 assert( pOp[-1].opcode==OP_Integer ); 855 n = pOp[-1].p1; 856 if( n>nMaxArgs ) nMaxArgs = n; 857 /* Fall through into the default case */ 858 } 859 #endif 860 default: { 861 if( pOp->p2<0 ){ 862 /* The mkopcodeh.tcl script has so arranged things that the only 863 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 864 ** have non-negative values for P2. */ 865 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 866 assert( ADDR(pOp->p2)<-pParse->nLabel ); 867 pOp->p2 = aLabel[ADDR(pOp->p2)]; 868 } 869 break; 870 } 871 } 872 /* The mkopcodeh.tcl script has so arranged things that the only 873 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 874 ** have non-negative values for P2. */ 875 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 876 } 877 if( pOp==p->aOp ) break; 878 pOp--; 879 } 880 sqlite3DbFree(p->db, pParse->aLabel); 881 pParse->aLabel = 0; 882 pParse->nLabel = 0; 883 *pMaxFuncArgs = nMaxArgs; 884 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 885 } 886 887 /* 888 ** Return the address of the next instruction to be inserted. 889 */ 890 int sqlite3VdbeCurrentAddr(Vdbe *p){ 891 assert( p->magic==VDBE_MAGIC_INIT ); 892 return p->nOp; 893 } 894 895 /* 896 ** Verify that at least N opcode slots are available in p without 897 ** having to malloc for more space (except when compiled using 898 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 899 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 900 ** fail due to a OOM fault and hence that the return value from 901 ** sqlite3VdbeAddOpList() will always be non-NULL. 902 */ 903 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 904 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 905 assert( p->nOp + N <= p->nOpAlloc ); 906 } 907 #endif 908 909 /* 910 ** Verify that the VM passed as the only argument does not contain 911 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 912 ** by code in pragma.c to ensure that the implementation of certain 913 ** pragmas comports with the flags specified in the mkpragmatab.tcl 914 ** script. 915 */ 916 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 917 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 918 int i; 919 for(i=0; i<p->nOp; i++){ 920 assert( p->aOp[i].opcode!=OP_ResultRow ); 921 } 922 } 923 #endif 924 925 /* 926 ** Generate code (a single OP_Abortable opcode) that will 927 ** verify that the VDBE program can safely call Abort in the current 928 ** context. 929 */ 930 #if defined(SQLITE_DEBUG) 931 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ 932 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); 933 } 934 #endif 935 936 /* 937 ** This function returns a pointer to the array of opcodes associated with 938 ** the Vdbe passed as the first argument. It is the callers responsibility 939 ** to arrange for the returned array to be eventually freed using the 940 ** vdbeFreeOpArray() function. 941 ** 942 ** Before returning, *pnOp is set to the number of entries in the returned 943 ** array. Also, *pnMaxArg is set to the larger of its current value and 944 ** the number of entries in the Vdbe.apArg[] array required to execute the 945 ** returned program. 946 */ 947 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 948 VdbeOp *aOp = p->aOp; 949 assert( aOp && !p->db->mallocFailed ); 950 951 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 952 assert( DbMaskAllZero(p->btreeMask) ); 953 954 resolveP2Values(p, pnMaxArg); 955 *pnOp = p->nOp; 956 p->aOp = 0; 957 return aOp; 958 } 959 960 /* 961 ** Add a whole list of operations to the operation stack. Return a 962 ** pointer to the first operation inserted. 963 ** 964 ** Non-zero P2 arguments to jump instructions are automatically adjusted 965 ** so that the jump target is relative to the first operation inserted. 966 */ 967 VdbeOp *sqlite3VdbeAddOpList( 968 Vdbe *p, /* Add opcodes to the prepared statement */ 969 int nOp, /* Number of opcodes to add */ 970 VdbeOpList const *aOp, /* The opcodes to be added */ 971 int iLineno /* Source-file line number of first opcode */ 972 ){ 973 int i; 974 VdbeOp *pOut, *pFirst; 975 assert( nOp>0 ); 976 assert( p->magic==VDBE_MAGIC_INIT ); 977 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){ 978 return 0; 979 } 980 pFirst = pOut = &p->aOp[p->nOp]; 981 for(i=0; i<nOp; i++, aOp++, pOut++){ 982 pOut->opcode = aOp->opcode; 983 pOut->p1 = aOp->p1; 984 pOut->p2 = aOp->p2; 985 assert( aOp->p2>=0 ); 986 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 987 pOut->p2 += p->nOp; 988 } 989 pOut->p3 = aOp->p3; 990 pOut->p4type = P4_NOTUSED; 991 pOut->p4.p = 0; 992 pOut->p5 = 0; 993 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 994 pOut->zComment = 0; 995 #endif 996 #ifdef SQLITE_VDBE_COVERAGE 997 pOut->iSrcLine = iLineno+i; 998 #else 999 (void)iLineno; 1000 #endif 1001 #ifdef SQLITE_DEBUG 1002 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 1003 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 1004 } 1005 #endif 1006 } 1007 p->nOp += nOp; 1008 return pFirst; 1009 } 1010 1011 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 1012 /* 1013 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 1014 */ 1015 void sqlite3VdbeScanStatus( 1016 Vdbe *p, /* VM to add scanstatus() to */ 1017 int addrExplain, /* Address of OP_Explain (or 0) */ 1018 int addrLoop, /* Address of loop counter */ 1019 int addrVisit, /* Address of rows visited counter */ 1020 LogEst nEst, /* Estimated number of output rows */ 1021 const char *zName /* Name of table or index being scanned */ 1022 ){ 1023 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus); 1024 ScanStatus *aNew; 1025 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 1026 if( aNew ){ 1027 ScanStatus *pNew = &aNew[p->nScan++]; 1028 pNew->addrExplain = addrExplain; 1029 pNew->addrLoop = addrLoop; 1030 pNew->addrVisit = addrVisit; 1031 pNew->nEst = nEst; 1032 pNew->zName = sqlite3DbStrDup(p->db, zName); 1033 p->aScan = aNew; 1034 } 1035 } 1036 #endif 1037 1038 1039 /* 1040 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 1041 ** for a specific instruction. 1042 */ 1043 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){ 1044 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 1045 } 1046 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ 1047 sqlite3VdbeGetOp(p,addr)->p1 = val; 1048 } 1049 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ 1050 sqlite3VdbeGetOp(p,addr)->p2 = val; 1051 } 1052 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ 1053 sqlite3VdbeGetOp(p,addr)->p3 = val; 1054 } 1055 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 1056 assert( p->nOp>0 || p->db->mallocFailed ); 1057 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 1058 } 1059 1060 /* 1061 ** Change the P2 operand of instruction addr so that it points to 1062 ** the address of the next instruction to be coded. 1063 */ 1064 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 1065 sqlite3VdbeChangeP2(p, addr, p->nOp); 1066 } 1067 1068 /* 1069 ** Change the P2 operand of the jump instruction at addr so that 1070 ** the jump lands on the next opcode. Or if the jump instruction was 1071 ** the previous opcode (and is thus a no-op) then simply back up 1072 ** the next instruction counter by one slot so that the jump is 1073 ** overwritten by the next inserted opcode. 1074 ** 1075 ** This routine is an optimization of sqlite3VdbeJumpHere() that 1076 ** strives to omit useless byte-code like this: 1077 ** 1078 ** 7 Once 0 8 0 1079 ** 8 ... 1080 */ 1081 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){ 1082 if( addr==p->nOp-1 ){ 1083 assert( p->aOp[addr].opcode==OP_Once 1084 || p->aOp[addr].opcode==OP_If 1085 || p->aOp[addr].opcode==OP_FkIfZero ); 1086 assert( p->aOp[addr].p4type==0 ); 1087 #ifdef SQLITE_VDBE_COVERAGE 1088 sqlite3VdbeGetOp(p,-1)->iSrcLine = 0; /* Erase VdbeCoverage() macros */ 1089 #endif 1090 p->nOp--; 1091 }else{ 1092 sqlite3VdbeChangeP2(p, addr, p->nOp); 1093 } 1094 } 1095 1096 1097 /* 1098 ** If the input FuncDef structure is ephemeral, then free it. If 1099 ** the FuncDef is not ephermal, then do nothing. 1100 */ 1101 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 1102 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 1103 sqlite3DbFreeNN(db, pDef); 1104 } 1105 } 1106 1107 /* 1108 ** Delete a P4 value if necessary. 1109 */ 1110 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 1111 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1112 sqlite3DbFreeNN(db, p); 1113 } 1114 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 1115 freeEphemeralFunction(db, p->pFunc); 1116 sqlite3DbFreeNN(db, p); 1117 } 1118 static void freeP4(sqlite3 *db, int p4type, void *p4){ 1119 assert( db ); 1120 switch( p4type ){ 1121 case P4_FUNCCTX: { 1122 freeP4FuncCtx(db, (sqlite3_context*)p4); 1123 break; 1124 } 1125 case P4_REAL: 1126 case P4_INT64: 1127 case P4_DYNAMIC: 1128 case P4_DYNBLOB: 1129 case P4_INTARRAY: { 1130 sqlite3DbFree(db, p4); 1131 break; 1132 } 1133 case P4_KEYINFO: { 1134 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 1135 break; 1136 } 1137 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1138 case P4_EXPR: { 1139 sqlite3ExprDelete(db, (Expr*)p4); 1140 break; 1141 } 1142 #endif 1143 case P4_FUNCDEF: { 1144 freeEphemeralFunction(db, (FuncDef*)p4); 1145 break; 1146 } 1147 case P4_MEM: { 1148 if( db->pnBytesFreed==0 ){ 1149 sqlite3ValueFree((sqlite3_value*)p4); 1150 }else{ 1151 freeP4Mem(db, (Mem*)p4); 1152 } 1153 break; 1154 } 1155 case P4_VTAB : { 1156 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 1157 break; 1158 } 1159 } 1160 } 1161 1162 /* 1163 ** Free the space allocated for aOp and any p4 values allocated for the 1164 ** opcodes contained within. If aOp is not NULL it is assumed to contain 1165 ** nOp entries. 1166 */ 1167 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 1168 if( aOp ){ 1169 Op *pOp; 1170 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){ 1171 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 1172 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1173 sqlite3DbFree(db, pOp->zComment); 1174 #endif 1175 } 1176 sqlite3DbFreeNN(db, aOp); 1177 } 1178 } 1179 1180 /* 1181 ** Link the SubProgram object passed as the second argument into the linked 1182 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 1183 ** objects when the VM is no longer required. 1184 */ 1185 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 1186 p->pNext = pVdbe->pProgram; 1187 pVdbe->pProgram = p; 1188 } 1189 1190 /* 1191 ** Return true if the given Vdbe has any SubPrograms. 1192 */ 1193 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){ 1194 return pVdbe->pProgram!=0; 1195 } 1196 1197 /* 1198 ** Change the opcode at addr into OP_Noop 1199 */ 1200 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 1201 VdbeOp *pOp; 1202 if( p->db->mallocFailed ) return 0; 1203 assert( addr>=0 && addr<p->nOp ); 1204 pOp = &p->aOp[addr]; 1205 freeP4(p->db, pOp->p4type, pOp->p4.p); 1206 pOp->p4type = P4_NOTUSED; 1207 pOp->p4.z = 0; 1208 pOp->opcode = OP_Noop; 1209 return 1; 1210 } 1211 1212 /* 1213 ** If the last opcode is "op" and it is not a jump destination, 1214 ** then remove it. Return true if and only if an opcode was removed. 1215 */ 1216 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 1217 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 1218 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 1219 }else{ 1220 return 0; 1221 } 1222 } 1223 1224 #ifdef SQLITE_DEBUG 1225 /* 1226 ** Generate an OP_ReleaseReg opcode to indicate that a range of 1227 ** registers, except any identified by mask, are no longer in use. 1228 */ 1229 void sqlite3VdbeReleaseRegisters( 1230 Parse *pParse, /* Parsing context */ 1231 int iFirst, /* Index of first register to be released */ 1232 int N, /* Number of registers to release */ 1233 u32 mask, /* Mask of registers to NOT release */ 1234 int bUndefine /* If true, mark registers as undefined */ 1235 ){ 1236 if( N==0 ) return; 1237 assert( pParse->pVdbe ); 1238 assert( iFirst>=1 ); 1239 assert( iFirst+N-1<=pParse->nMem ); 1240 if( N<=31 && mask!=0 ){ 1241 while( N>0 && (mask&1)!=0 ){ 1242 mask >>= 1; 1243 iFirst++; 1244 N--; 1245 } 1246 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){ 1247 mask &= ~MASKBIT32(N-1); 1248 N--; 1249 } 1250 } 1251 if( N>0 ){ 1252 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); 1253 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); 1254 } 1255 } 1256 #endif /* SQLITE_DEBUG */ 1257 1258 1259 /* 1260 ** Change the value of the P4 operand for a specific instruction. 1261 ** This routine is useful when a large program is loaded from a 1262 ** static array using sqlite3VdbeAddOpList but we want to make a 1263 ** few minor changes to the program. 1264 ** 1265 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 1266 ** the string is made into memory obtained from sqlite3_malloc(). 1267 ** A value of n==0 means copy bytes of zP4 up to and including the 1268 ** first null byte. If n>0 then copy n+1 bytes of zP4. 1269 ** 1270 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 1271 ** to a string or structure that is guaranteed to exist for the lifetime of 1272 ** the Vdbe. In these cases we can just copy the pointer. 1273 ** 1274 ** If addr<0 then change P4 on the most recently inserted instruction. 1275 */ 1276 static void SQLITE_NOINLINE vdbeChangeP4Full( 1277 Vdbe *p, 1278 Op *pOp, 1279 const char *zP4, 1280 int n 1281 ){ 1282 if( pOp->p4type ){ 1283 freeP4(p->db, pOp->p4type, pOp->p4.p); 1284 pOp->p4type = 0; 1285 pOp->p4.p = 0; 1286 } 1287 if( n<0 ){ 1288 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 1289 }else{ 1290 if( n==0 ) n = sqlite3Strlen30(zP4); 1291 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 1292 pOp->p4type = P4_DYNAMIC; 1293 } 1294 } 1295 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 1296 Op *pOp; 1297 sqlite3 *db; 1298 assert( p!=0 ); 1299 db = p->db; 1300 assert( p->magic==VDBE_MAGIC_INIT ); 1301 assert( p->aOp!=0 || db->mallocFailed ); 1302 if( db->mallocFailed ){ 1303 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 1304 return; 1305 } 1306 assert( p->nOp>0 ); 1307 assert( addr<p->nOp ); 1308 if( addr<0 ){ 1309 addr = p->nOp - 1; 1310 } 1311 pOp = &p->aOp[addr]; 1312 if( n>=0 || pOp->p4type ){ 1313 vdbeChangeP4Full(p, pOp, zP4, n); 1314 return; 1315 } 1316 if( n==P4_INT32 ){ 1317 /* Note: this cast is safe, because the origin data point was an int 1318 ** that was cast to a (const char *). */ 1319 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 1320 pOp->p4type = P4_INT32; 1321 }else if( zP4!=0 ){ 1322 assert( n<0 ); 1323 pOp->p4.p = (void*)zP4; 1324 pOp->p4type = (signed char)n; 1325 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 1326 } 1327 } 1328 1329 /* 1330 ** Change the P4 operand of the most recently coded instruction 1331 ** to the value defined by the arguments. This is a high-speed 1332 ** version of sqlite3VdbeChangeP4(). 1333 ** 1334 ** The P4 operand must not have been previously defined. And the new 1335 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 1336 ** those cases. 1337 */ 1338 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1339 VdbeOp *pOp; 1340 assert( n!=P4_INT32 && n!=P4_VTAB ); 1341 assert( n<=0 ); 1342 if( p->db->mallocFailed ){ 1343 freeP4(p->db, n, pP4); 1344 }else{ 1345 assert( pP4!=0 ); 1346 assert( p->nOp>0 ); 1347 pOp = &p->aOp[p->nOp-1]; 1348 assert( pOp->p4type==P4_NOTUSED ); 1349 pOp->p4type = n; 1350 pOp->p4.p = pP4; 1351 } 1352 } 1353 1354 /* 1355 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1356 ** index given. 1357 */ 1358 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1359 Vdbe *v = pParse->pVdbe; 1360 KeyInfo *pKeyInfo; 1361 assert( v!=0 ); 1362 assert( pIdx!=0 ); 1363 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1364 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1365 } 1366 1367 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1368 /* 1369 ** Change the comment on the most recently coded instruction. Or 1370 ** insert a No-op and add the comment to that new instruction. This 1371 ** makes the code easier to read during debugging. None of this happens 1372 ** in a production build. 1373 */ 1374 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1375 assert( p->nOp>0 || p->aOp==0 ); 1376 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed 1377 || p->pParse->nErr>0 ); 1378 if( p->nOp ){ 1379 assert( p->aOp ); 1380 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1381 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1382 } 1383 } 1384 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1385 va_list ap; 1386 if( p ){ 1387 va_start(ap, zFormat); 1388 vdbeVComment(p, zFormat, ap); 1389 va_end(ap); 1390 } 1391 } 1392 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1393 va_list ap; 1394 if( p ){ 1395 sqlite3VdbeAddOp0(p, OP_Noop); 1396 va_start(ap, zFormat); 1397 vdbeVComment(p, zFormat, ap); 1398 va_end(ap); 1399 } 1400 } 1401 #endif /* NDEBUG */ 1402 1403 #ifdef SQLITE_VDBE_COVERAGE 1404 /* 1405 ** Set the value if the iSrcLine field for the previously coded instruction. 1406 */ 1407 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1408 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1409 } 1410 #endif /* SQLITE_VDBE_COVERAGE */ 1411 1412 /* 1413 ** Return the opcode for a given address. If the address is -1, then 1414 ** return the most recently inserted opcode. 1415 ** 1416 ** If a memory allocation error has occurred prior to the calling of this 1417 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1418 ** is readable but not writable, though it is cast to a writable value. 1419 ** The return of a dummy opcode allows the call to continue functioning 1420 ** after an OOM fault without having to check to see if the return from 1421 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1422 ** dummy will never be written to. This is verified by code inspection and 1423 ** by running with Valgrind. 1424 */ 1425 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1426 /* C89 specifies that the constant "dummy" will be initialized to all 1427 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1428 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1429 assert( p->magic==VDBE_MAGIC_INIT ); 1430 if( addr<0 ){ 1431 addr = p->nOp - 1; 1432 } 1433 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1434 if( p->db->mallocFailed ){ 1435 return (VdbeOp*)&dummy; 1436 }else{ 1437 return &p->aOp[addr]; 1438 } 1439 } 1440 1441 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1442 /* 1443 ** Return an integer value for one of the parameters to the opcode pOp 1444 ** determined by character c. 1445 */ 1446 static int translateP(char c, const Op *pOp){ 1447 if( c=='1' ) return pOp->p1; 1448 if( c=='2' ) return pOp->p2; 1449 if( c=='3' ) return pOp->p3; 1450 if( c=='4' ) return pOp->p4.i; 1451 return pOp->p5; 1452 } 1453 1454 /* 1455 ** Compute a string for the "comment" field of a VDBE opcode listing. 1456 ** 1457 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1458 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1459 ** absence of other comments, this synopsis becomes the comment on the opcode. 1460 ** Some translation occurs: 1461 ** 1462 ** "PX" -> "r[X]" 1463 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1464 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1465 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1466 */ 1467 char *sqlite3VdbeDisplayComment( 1468 sqlite3 *db, /* Optional - Oom error reporting only */ 1469 const Op *pOp, /* The opcode to be commented */ 1470 const char *zP4 /* Previously obtained value for P4 */ 1471 ){ 1472 const char *zOpName; 1473 const char *zSynopsis; 1474 int nOpName; 1475 int ii; 1476 char zAlt[50]; 1477 StrAccum x; 1478 1479 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1480 zOpName = sqlite3OpcodeName(pOp->opcode); 1481 nOpName = sqlite3Strlen30(zOpName); 1482 if( zOpName[nOpName+1] ){ 1483 int seenCom = 0; 1484 char c; 1485 zSynopsis = zOpName += nOpName + 1; 1486 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1487 if( pOp->p5 & SQLITE_STOREP2 ){ 1488 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3); 1489 }else{ 1490 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1491 } 1492 zSynopsis = zAlt; 1493 } 1494 for(ii=0; (c = zSynopsis[ii])!=0; ii++){ 1495 if( c=='P' ){ 1496 c = zSynopsis[++ii]; 1497 if( c=='4' ){ 1498 sqlite3_str_appendall(&x, zP4); 1499 }else if( c=='X' ){ 1500 sqlite3_str_appendall(&x, pOp->zComment); 1501 seenCom = 1; 1502 }else{ 1503 int v1 = translateP(c, pOp); 1504 int v2; 1505 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1506 ii += 3; 1507 v2 = translateP(zSynopsis[ii], pOp); 1508 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1509 ii += 2; 1510 v2++; 1511 } 1512 if( v2<2 ){ 1513 sqlite3_str_appendf(&x, "%d", v1); 1514 }else{ 1515 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1); 1516 } 1517 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){ 1518 sqlite3_context *pCtx = pOp->p4.pCtx; 1519 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){ 1520 sqlite3_str_appendf(&x, "%d", v1); 1521 }else if( pCtx->argc>1 ){ 1522 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1); 1523 }else{ 1524 assert( x.nChar>2 ); 1525 x.nChar -= 2; 1526 ii++; 1527 } 1528 ii += 3; 1529 }else{ 1530 sqlite3_str_appendf(&x, "%d", v1); 1531 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1532 ii += 4; 1533 } 1534 } 1535 } 1536 }else{ 1537 sqlite3_str_appendchar(&x, 1, c); 1538 } 1539 } 1540 if( !seenCom && pOp->zComment ){ 1541 sqlite3_str_appendf(&x, "; %s", pOp->zComment); 1542 } 1543 }else if( pOp->zComment ){ 1544 sqlite3_str_appendall(&x, pOp->zComment); 1545 } 1546 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){ 1547 sqlite3OomFault(db); 1548 } 1549 return sqlite3StrAccumFinish(&x); 1550 } 1551 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */ 1552 1553 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1554 /* 1555 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1556 ** that can be displayed in the P4 column of EXPLAIN output. 1557 */ 1558 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1559 const char *zOp = 0; 1560 switch( pExpr->op ){ 1561 case TK_STRING: 1562 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); 1563 break; 1564 case TK_INTEGER: 1565 sqlite3_str_appendf(p, "%d", pExpr->u.iValue); 1566 break; 1567 case TK_NULL: 1568 sqlite3_str_appendf(p, "NULL"); 1569 break; 1570 case TK_REGISTER: { 1571 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); 1572 break; 1573 } 1574 case TK_COLUMN: { 1575 if( pExpr->iColumn<0 ){ 1576 sqlite3_str_appendf(p, "rowid"); 1577 }else{ 1578 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); 1579 } 1580 break; 1581 } 1582 case TK_LT: zOp = "LT"; break; 1583 case TK_LE: zOp = "LE"; break; 1584 case TK_GT: zOp = "GT"; break; 1585 case TK_GE: zOp = "GE"; break; 1586 case TK_NE: zOp = "NE"; break; 1587 case TK_EQ: zOp = "EQ"; break; 1588 case TK_IS: zOp = "IS"; break; 1589 case TK_ISNOT: zOp = "ISNOT"; break; 1590 case TK_AND: zOp = "AND"; break; 1591 case TK_OR: zOp = "OR"; break; 1592 case TK_PLUS: zOp = "ADD"; break; 1593 case TK_STAR: zOp = "MUL"; break; 1594 case TK_MINUS: zOp = "SUB"; break; 1595 case TK_REM: zOp = "REM"; break; 1596 case TK_BITAND: zOp = "BITAND"; break; 1597 case TK_BITOR: zOp = "BITOR"; break; 1598 case TK_SLASH: zOp = "DIV"; break; 1599 case TK_LSHIFT: zOp = "LSHIFT"; break; 1600 case TK_RSHIFT: zOp = "RSHIFT"; break; 1601 case TK_CONCAT: zOp = "CONCAT"; break; 1602 case TK_UMINUS: zOp = "MINUS"; break; 1603 case TK_UPLUS: zOp = "PLUS"; break; 1604 case TK_BITNOT: zOp = "BITNOT"; break; 1605 case TK_NOT: zOp = "NOT"; break; 1606 case TK_ISNULL: zOp = "ISNULL"; break; 1607 case TK_NOTNULL: zOp = "NOTNULL"; break; 1608 1609 default: 1610 sqlite3_str_appendf(p, "%s", "expr"); 1611 break; 1612 } 1613 1614 if( zOp ){ 1615 sqlite3_str_appendf(p, "%s(", zOp); 1616 displayP4Expr(p, pExpr->pLeft); 1617 if( pExpr->pRight ){ 1618 sqlite3_str_append(p, ",", 1); 1619 displayP4Expr(p, pExpr->pRight); 1620 } 1621 sqlite3_str_append(p, ")", 1); 1622 } 1623 } 1624 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1625 1626 1627 #if VDBE_DISPLAY_P4 1628 /* 1629 ** Compute a string that describes the P4 parameter for an opcode. 1630 ** Use zTemp for any required temporary buffer space. 1631 */ 1632 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){ 1633 char *zP4 = 0; 1634 StrAccum x; 1635 1636 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1637 switch( pOp->p4type ){ 1638 case P4_KEYINFO: { 1639 int j; 1640 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1641 assert( pKeyInfo->aSortFlags!=0 ); 1642 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); 1643 for(j=0; j<pKeyInfo->nKeyField; j++){ 1644 CollSeq *pColl = pKeyInfo->aColl[j]; 1645 const char *zColl = pColl ? pColl->zName : ""; 1646 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1647 sqlite3_str_appendf(&x, ",%s%s%s", 1648 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "", 1649 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "", 1650 zColl); 1651 } 1652 sqlite3_str_append(&x, ")", 1); 1653 break; 1654 } 1655 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1656 case P4_EXPR: { 1657 displayP4Expr(&x, pOp->p4.pExpr); 1658 break; 1659 } 1660 #endif 1661 case P4_COLLSEQ: { 1662 static const char *const encnames[] = {"?", "8", "16LE", "16BE"}; 1663 CollSeq *pColl = pOp->p4.pColl; 1664 assert( pColl->enc>=0 && pColl->enc<4 ); 1665 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName, 1666 encnames[pColl->enc]); 1667 break; 1668 } 1669 case P4_FUNCDEF: { 1670 FuncDef *pDef = pOp->p4.pFunc; 1671 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1672 break; 1673 } 1674 case P4_FUNCCTX: { 1675 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1676 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1677 break; 1678 } 1679 case P4_INT64: { 1680 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); 1681 break; 1682 } 1683 case P4_INT32: { 1684 sqlite3_str_appendf(&x, "%d", pOp->p4.i); 1685 break; 1686 } 1687 case P4_REAL: { 1688 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); 1689 break; 1690 } 1691 case P4_MEM: { 1692 Mem *pMem = pOp->p4.pMem; 1693 if( pMem->flags & MEM_Str ){ 1694 zP4 = pMem->z; 1695 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1696 sqlite3_str_appendf(&x, "%lld", pMem->u.i); 1697 }else if( pMem->flags & MEM_Real ){ 1698 sqlite3_str_appendf(&x, "%.16g", pMem->u.r); 1699 }else if( pMem->flags & MEM_Null ){ 1700 zP4 = "NULL"; 1701 }else{ 1702 assert( pMem->flags & MEM_Blob ); 1703 zP4 = "(blob)"; 1704 } 1705 break; 1706 } 1707 #ifndef SQLITE_OMIT_VIRTUALTABLE 1708 case P4_VTAB: { 1709 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1710 sqlite3_str_appendf(&x, "vtab:%p", pVtab); 1711 break; 1712 } 1713 #endif 1714 case P4_INTARRAY: { 1715 int i; 1716 int *ai = pOp->p4.ai; 1717 int n = ai[0]; /* The first element of an INTARRAY is always the 1718 ** count of the number of elements to follow */ 1719 for(i=1; i<=n; i++){ 1720 sqlite3_str_appendf(&x, "%c%d", (i==1 ? '[' : ','), ai[i]); 1721 } 1722 sqlite3_str_append(&x, "]", 1); 1723 break; 1724 } 1725 case P4_SUBPROGRAM: { 1726 zP4 = "program"; 1727 break; 1728 } 1729 case P4_DYNBLOB: 1730 case P4_ADVANCE: { 1731 break; 1732 } 1733 case P4_TABLE: { 1734 zP4 = pOp->p4.pTab->zName; 1735 break; 1736 } 1737 default: { 1738 zP4 = pOp->p4.z; 1739 } 1740 } 1741 if( zP4 ) sqlite3_str_appendall(&x, zP4); 1742 if( (x.accError & SQLITE_NOMEM)!=0 ){ 1743 sqlite3OomFault(db); 1744 } 1745 return sqlite3StrAccumFinish(&x); 1746 } 1747 #endif /* VDBE_DISPLAY_P4 */ 1748 1749 /* 1750 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1751 ** 1752 ** The prepared statements need to know in advance the complete set of 1753 ** attached databases that will be use. A mask of these databases 1754 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1755 ** p->btreeMask of databases that will require a lock. 1756 */ 1757 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1758 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1759 assert( i<(int)sizeof(p->btreeMask)*8 ); 1760 DbMaskSet(p->btreeMask, i); 1761 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1762 DbMaskSet(p->lockMask, i); 1763 } 1764 } 1765 1766 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1767 /* 1768 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1769 ** this routine obtains the mutex associated with each BtShared structure 1770 ** that may be accessed by the VM passed as an argument. In doing so it also 1771 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1772 ** that the correct busy-handler callback is invoked if required. 1773 ** 1774 ** If SQLite is not threadsafe but does support shared-cache mode, then 1775 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1776 ** of all of BtShared structures accessible via the database handle 1777 ** associated with the VM. 1778 ** 1779 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1780 ** function is a no-op. 1781 ** 1782 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1783 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1784 ** corresponding to btrees that use shared cache. Then the runtime of 1785 ** this routine is N*N. But as N is rarely more than 1, this should not 1786 ** be a problem. 1787 */ 1788 void sqlite3VdbeEnter(Vdbe *p){ 1789 int i; 1790 sqlite3 *db; 1791 Db *aDb; 1792 int nDb; 1793 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1794 db = p->db; 1795 aDb = db->aDb; 1796 nDb = db->nDb; 1797 for(i=0; i<nDb; i++){ 1798 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1799 sqlite3BtreeEnter(aDb[i].pBt); 1800 } 1801 } 1802 } 1803 #endif 1804 1805 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1806 /* 1807 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1808 */ 1809 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1810 int i; 1811 sqlite3 *db; 1812 Db *aDb; 1813 int nDb; 1814 db = p->db; 1815 aDb = db->aDb; 1816 nDb = db->nDb; 1817 for(i=0; i<nDb; i++){ 1818 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1819 sqlite3BtreeLeave(aDb[i].pBt); 1820 } 1821 } 1822 } 1823 void sqlite3VdbeLeave(Vdbe *p){ 1824 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1825 vdbeLeave(p); 1826 } 1827 #endif 1828 1829 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1830 /* 1831 ** Print a single opcode. This routine is used for debugging only. 1832 */ 1833 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ 1834 char *zP4; 1835 char *zCom; 1836 sqlite3 dummyDb; 1837 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1838 if( pOut==0 ) pOut = stdout; 1839 sqlite3BeginBenignMalloc(); 1840 dummyDb.mallocFailed = 1; 1841 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp); 1842 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1843 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4); 1844 #else 1845 zCom = 0; 1846 #endif 1847 /* NB: The sqlite3OpcodeName() function is implemented by code created 1848 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1849 ** information from the vdbe.c source text */ 1850 fprintf(pOut, zFormat1, pc, 1851 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, 1852 zP4 ? zP4 : "", pOp->p5, 1853 zCom ? zCom : "" 1854 ); 1855 fflush(pOut); 1856 sqlite3_free(zP4); 1857 sqlite3_free(zCom); 1858 sqlite3EndBenignMalloc(); 1859 } 1860 #endif 1861 1862 /* 1863 ** Initialize an array of N Mem element. 1864 */ 1865 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1866 while( (N--)>0 ){ 1867 p->db = db; 1868 p->flags = flags; 1869 p->szMalloc = 0; 1870 #ifdef SQLITE_DEBUG 1871 p->pScopyFrom = 0; 1872 #endif 1873 p++; 1874 } 1875 } 1876 1877 /* 1878 ** Release an array of N Mem elements 1879 */ 1880 static void releaseMemArray(Mem *p, int N){ 1881 if( p && N ){ 1882 Mem *pEnd = &p[N]; 1883 sqlite3 *db = p->db; 1884 if( db->pnBytesFreed ){ 1885 do{ 1886 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1887 }while( (++p)<pEnd ); 1888 return; 1889 } 1890 do{ 1891 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1892 assert( sqlite3VdbeCheckMemInvariants(p) ); 1893 1894 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1895 ** that takes advantage of the fact that the memory cell value is 1896 ** being set to NULL after releasing any dynamic resources. 1897 ** 1898 ** The justification for duplicating code is that according to 1899 ** callgrind, this causes a certain test case to hit the CPU 4.7 1900 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1901 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1902 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1903 ** with no indexes using a single prepared INSERT statement, bind() 1904 ** and reset(). Inserts are grouped into a transaction. 1905 */ 1906 testcase( p->flags & MEM_Agg ); 1907 testcase( p->flags & MEM_Dyn ); 1908 testcase( p->xDel==sqlite3VdbeFrameMemDel ); 1909 if( p->flags&(MEM_Agg|MEM_Dyn) ){ 1910 sqlite3VdbeMemRelease(p); 1911 }else if( p->szMalloc ){ 1912 sqlite3DbFreeNN(db, p->zMalloc); 1913 p->szMalloc = 0; 1914 } 1915 1916 p->flags = MEM_Undefined; 1917 }while( (++p)<pEnd ); 1918 } 1919 } 1920 1921 #ifdef SQLITE_DEBUG 1922 /* 1923 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is 1924 ** and false if something is wrong. 1925 ** 1926 ** This routine is intended for use inside of assert() statements only. 1927 */ 1928 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){ 1929 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; 1930 return 1; 1931 } 1932 #endif 1933 1934 1935 /* 1936 ** This is a destructor on a Mem object (which is really an sqlite3_value) 1937 ** that deletes the Frame object that is attached to it as a blob. 1938 ** 1939 ** This routine does not delete the Frame right away. It merely adds the 1940 ** frame to a list of frames to be deleted when the Vdbe halts. 1941 */ 1942 void sqlite3VdbeFrameMemDel(void *pArg){ 1943 VdbeFrame *pFrame = (VdbeFrame*)pArg; 1944 assert( sqlite3VdbeFrameIsValid(pFrame) ); 1945 pFrame->pParent = pFrame->v->pDelFrame; 1946 pFrame->v->pDelFrame = pFrame; 1947 } 1948 1949 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN) 1950 /* 1951 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN 1952 ** QUERY PLAN output. 1953 ** 1954 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no 1955 ** more opcodes to be displayed. 1956 */ 1957 int sqlite3VdbeNextOpcode( 1958 Vdbe *p, /* The statement being explained */ 1959 Mem *pSub, /* Storage for keeping track of subprogram nesting */ 1960 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */ 1961 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */ 1962 int *piAddr, /* OUT: Write index into (*paOp)[] here */ 1963 Op **paOp /* OUT: Write the opcode array here */ 1964 ){ 1965 int nRow; /* Stop when row count reaches this */ 1966 int nSub = 0; /* Number of sub-vdbes seen so far */ 1967 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1968 int i; /* Next instruction address */ 1969 int rc = SQLITE_OK; /* Result code */ 1970 Op *aOp = 0; /* Opcode array */ 1971 int iPc; /* Rowid. Copy of value in *piPc */ 1972 1973 /* When the number of output rows reaches nRow, that means the 1974 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1975 ** nRow is the sum of the number of rows in the main program, plus 1976 ** the sum of the number of rows in all trigger subprograms encountered 1977 ** so far. The nRow value will increase as new trigger subprograms are 1978 ** encountered, but p->pc will eventually catch up to nRow. 1979 */ 1980 nRow = p->nOp; 1981 if( pSub!=0 ){ 1982 if( pSub->flags&MEM_Blob ){ 1983 /* pSub is initiallly NULL. It is initialized to a BLOB by 1984 ** the P4_SUBPROGRAM processing logic below */ 1985 nSub = pSub->n/sizeof(Vdbe*); 1986 apSub = (SubProgram **)pSub->z; 1987 } 1988 for(i=0; i<nSub; i++){ 1989 nRow += apSub[i]->nOp; 1990 } 1991 } 1992 iPc = *piPc; 1993 while(1){ /* Loop exits via break */ 1994 i = iPc++; 1995 if( i>=nRow ){ 1996 p->rc = SQLITE_OK; 1997 rc = SQLITE_DONE; 1998 break; 1999 } 2000 if( i<p->nOp ){ 2001 /* The rowid is small enough that we are still in the 2002 ** main program. */ 2003 aOp = p->aOp; 2004 }else{ 2005 /* We are currently listing subprograms. Figure out which one and 2006 ** pick up the appropriate opcode. */ 2007 int j; 2008 i -= p->nOp; 2009 assert( apSub!=0 ); 2010 assert( nSub>0 ); 2011 for(j=0; i>=apSub[j]->nOp; j++){ 2012 i -= apSub[j]->nOp; 2013 assert( i<apSub[j]->nOp || j+1<nSub ); 2014 } 2015 aOp = apSub[j]->aOp; 2016 } 2017 2018 /* When an OP_Program opcode is encounter (the only opcode that has 2019 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 2020 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 2021 ** has not already been seen. 2022 */ 2023 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){ 2024 int nByte = (nSub+1)*sizeof(SubProgram*); 2025 int j; 2026 for(j=0; j<nSub; j++){ 2027 if( apSub[j]==aOp[i].p4.pProgram ) break; 2028 } 2029 if( j==nSub ){ 2030 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); 2031 if( p->rc!=SQLITE_OK ){ 2032 rc = SQLITE_ERROR; 2033 break; 2034 } 2035 apSub = (SubProgram **)pSub->z; 2036 apSub[nSub++] = aOp[i].p4.pProgram; 2037 MemSetTypeFlag(pSub, MEM_Blob); 2038 pSub->n = nSub*sizeof(SubProgram*); 2039 nRow += aOp[i].p4.pProgram->nOp; 2040 } 2041 } 2042 if( eMode==0 ) break; 2043 #ifdef SQLITE_ENABLE_BYTECODE_VTAB 2044 if( eMode==2 ){ 2045 Op *pOp = aOp + i; 2046 if( pOp->opcode==OP_OpenRead ) break; 2047 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break; 2048 if( pOp->opcode==OP_ReopenIdx ) break; 2049 }else 2050 #endif 2051 { 2052 assert( eMode==1 ); 2053 if( aOp[i].opcode==OP_Explain ) break; 2054 if( aOp[i].opcode==OP_Init && iPc>1 ) break; 2055 } 2056 } 2057 *piPc = iPc; 2058 *piAddr = i; 2059 *paOp = aOp; 2060 return rc; 2061 } 2062 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */ 2063 2064 2065 /* 2066 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 2067 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 2068 */ 2069 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 2070 int i; 2071 Mem *aMem = VdbeFrameMem(p); 2072 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 2073 assert( sqlite3VdbeFrameIsValid(p) ); 2074 for(i=0; i<p->nChildCsr; i++){ 2075 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 2076 } 2077 releaseMemArray(aMem, p->nChildMem); 2078 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 2079 sqlite3DbFree(p->v->db, p); 2080 } 2081 2082 #ifndef SQLITE_OMIT_EXPLAIN 2083 /* 2084 ** Give a listing of the program in the virtual machine. 2085 ** 2086 ** The interface is the same as sqlite3VdbeExec(). But instead of 2087 ** running the code, it invokes the callback once for each instruction. 2088 ** This feature is used to implement "EXPLAIN". 2089 ** 2090 ** When p->explain==1, each instruction is listed. When 2091 ** p->explain==2, only OP_Explain instructions are listed and these 2092 ** are shown in a different format. p->explain==2 is used to implement 2093 ** EXPLAIN QUERY PLAN. 2094 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers 2095 ** are also shown, so that the boundaries between the main program and 2096 ** each trigger are clear. 2097 ** 2098 ** When p->explain==1, first the main program is listed, then each of 2099 ** the trigger subprograms are listed one by one. 2100 */ 2101 int sqlite3VdbeList( 2102 Vdbe *p /* The VDBE */ 2103 ){ 2104 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 2105 sqlite3 *db = p->db; /* The database connection */ 2106 int i; /* Loop counter */ 2107 int rc = SQLITE_OK; /* Return code */ 2108 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 2109 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); 2110 Op *aOp; /* Array of opcodes */ 2111 Op *pOp; /* Current opcode */ 2112 2113 assert( p->explain ); 2114 assert( p->magic==VDBE_MAGIC_RUN ); 2115 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 2116 2117 /* Even though this opcode does not use dynamic strings for 2118 ** the result, result columns may become dynamic if the user calls 2119 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 2120 */ 2121 releaseMemArray(pMem, 8); 2122 p->pResultSet = 0; 2123 2124 if( p->rc==SQLITE_NOMEM ){ 2125 /* This happens if a malloc() inside a call to sqlite3_column_text() or 2126 ** sqlite3_column_text16() failed. */ 2127 sqlite3OomFault(db); 2128 return SQLITE_ERROR; 2129 } 2130 2131 if( bListSubprogs ){ 2132 /* The first 8 memory cells are used for the result set. So we will 2133 ** commandeer the 9th cell to use as storage for an array of pointers 2134 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 2135 ** cells. */ 2136 assert( p->nMem>9 ); 2137 pSub = &p->aMem[9]; 2138 }else{ 2139 pSub = 0; 2140 } 2141 2142 /* Figure out which opcode is next to display */ 2143 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp); 2144 2145 if( rc==SQLITE_OK ){ 2146 pOp = aOp + i; 2147 if( AtomicLoad(&db->u1.isInterrupted) ){ 2148 p->rc = SQLITE_INTERRUPT; 2149 rc = SQLITE_ERROR; 2150 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 2151 }else{ 2152 char *zP4 = sqlite3VdbeDisplayP4(db, pOp); 2153 if( p->explain==2 ){ 2154 sqlite3VdbeMemSetInt64(pMem, pOp->p1); 2155 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2); 2156 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3); 2157 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free); 2158 p->nResColumn = 4; 2159 }else{ 2160 sqlite3VdbeMemSetInt64(pMem+0, i); 2161 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode), 2162 -1, SQLITE_UTF8, SQLITE_STATIC); 2163 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1); 2164 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2); 2165 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3); 2166 /* pMem+5 for p4 is done last */ 2167 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5); 2168 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2169 { 2170 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4); 2171 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free); 2172 } 2173 #else 2174 sqlite3VdbeMemSetNull(pMem+7); 2175 #endif 2176 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free); 2177 p->nResColumn = 8; 2178 } 2179 p->pResultSet = pMem; 2180 if( db->mallocFailed ){ 2181 p->rc = SQLITE_NOMEM; 2182 rc = SQLITE_ERROR; 2183 }else{ 2184 p->rc = SQLITE_OK; 2185 rc = SQLITE_ROW; 2186 } 2187 } 2188 } 2189 return rc; 2190 } 2191 #endif /* SQLITE_OMIT_EXPLAIN */ 2192 2193 #ifdef SQLITE_DEBUG 2194 /* 2195 ** Print the SQL that was used to generate a VDBE program. 2196 */ 2197 void sqlite3VdbePrintSql(Vdbe *p){ 2198 const char *z = 0; 2199 if( p->zSql ){ 2200 z = p->zSql; 2201 }else if( p->nOp>=1 ){ 2202 const VdbeOp *pOp = &p->aOp[0]; 2203 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2204 z = pOp->p4.z; 2205 while( sqlite3Isspace(*z) ) z++; 2206 } 2207 } 2208 if( z ) printf("SQL: [%s]\n", z); 2209 } 2210 #endif 2211 2212 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 2213 /* 2214 ** Print an IOTRACE message showing SQL content. 2215 */ 2216 void sqlite3VdbeIOTraceSql(Vdbe *p){ 2217 int nOp = p->nOp; 2218 VdbeOp *pOp; 2219 if( sqlite3IoTrace==0 ) return; 2220 if( nOp<1 ) return; 2221 pOp = &p->aOp[0]; 2222 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2223 int i, j; 2224 char z[1000]; 2225 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 2226 for(i=0; sqlite3Isspace(z[i]); i++){} 2227 for(j=0; z[i]; i++){ 2228 if( sqlite3Isspace(z[i]) ){ 2229 if( z[i-1]!=' ' ){ 2230 z[j++] = ' '; 2231 } 2232 }else{ 2233 z[j++] = z[i]; 2234 } 2235 } 2236 z[j] = 0; 2237 sqlite3IoTrace("SQL %s\n", z); 2238 } 2239 } 2240 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 2241 2242 /* An instance of this object describes bulk memory available for use 2243 ** by subcomponents of a prepared statement. Space is allocated out 2244 ** of a ReusableSpace object by the allocSpace() routine below. 2245 */ 2246 struct ReusableSpace { 2247 u8 *pSpace; /* Available memory */ 2248 sqlite3_int64 nFree; /* Bytes of available memory */ 2249 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */ 2250 }; 2251 2252 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 2253 ** from the ReusableSpace object. Return a pointer to the allocated 2254 ** memory on success. If insufficient memory is available in the 2255 ** ReusableSpace object, increase the ReusableSpace.nNeeded 2256 ** value by the amount needed and return NULL. 2257 ** 2258 ** If pBuf is not initially NULL, that means that the memory has already 2259 ** been allocated by a prior call to this routine, so just return a copy 2260 ** of pBuf and leave ReusableSpace unchanged. 2261 ** 2262 ** This allocator is employed to repurpose unused slots at the end of the 2263 ** opcode array of prepared state for other memory needs of the prepared 2264 ** statement. 2265 */ 2266 static void *allocSpace( 2267 struct ReusableSpace *p, /* Bulk memory available for allocation */ 2268 void *pBuf, /* Pointer to a prior allocation */ 2269 sqlite3_int64 nByte /* Bytes of memory needed */ 2270 ){ 2271 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 2272 if( pBuf==0 ){ 2273 nByte = ROUND8(nByte); 2274 if( nByte <= p->nFree ){ 2275 p->nFree -= nByte; 2276 pBuf = &p->pSpace[p->nFree]; 2277 }else{ 2278 p->nNeeded += nByte; 2279 } 2280 } 2281 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 2282 return pBuf; 2283 } 2284 2285 /* 2286 ** Rewind the VDBE back to the beginning in preparation for 2287 ** running it. 2288 */ 2289 void sqlite3VdbeRewind(Vdbe *p){ 2290 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 2291 int i; 2292 #endif 2293 assert( p!=0 ); 2294 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET ); 2295 2296 /* There should be at least one opcode. 2297 */ 2298 assert( p->nOp>0 ); 2299 2300 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 2301 p->magic = VDBE_MAGIC_RUN; 2302 2303 #ifdef SQLITE_DEBUG 2304 for(i=0; i<p->nMem; i++){ 2305 assert( p->aMem[i].db==p->db ); 2306 } 2307 #endif 2308 p->pc = -1; 2309 p->rc = SQLITE_OK; 2310 p->errorAction = OE_Abort; 2311 p->nChange = 0; 2312 p->cacheCtr = 1; 2313 p->minWriteFileFormat = 255; 2314 p->iStatement = 0; 2315 p->nFkConstraint = 0; 2316 #ifdef VDBE_PROFILE 2317 for(i=0; i<p->nOp; i++){ 2318 p->aOp[i].cnt = 0; 2319 p->aOp[i].cycles = 0; 2320 } 2321 #endif 2322 } 2323 2324 /* 2325 ** Prepare a virtual machine for execution for the first time after 2326 ** creating the virtual machine. This involves things such 2327 ** as allocating registers and initializing the program counter. 2328 ** After the VDBE has be prepped, it can be executed by one or more 2329 ** calls to sqlite3VdbeExec(). 2330 ** 2331 ** This function may be called exactly once on each virtual machine. 2332 ** After this routine is called the VM has been "packaged" and is ready 2333 ** to run. After this routine is called, further calls to 2334 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 2335 ** the Vdbe from the Parse object that helped generate it so that the 2336 ** the Vdbe becomes an independent entity and the Parse object can be 2337 ** destroyed. 2338 ** 2339 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 2340 ** to its initial state after it has been run. 2341 */ 2342 void sqlite3VdbeMakeReady( 2343 Vdbe *p, /* The VDBE */ 2344 Parse *pParse /* Parsing context */ 2345 ){ 2346 sqlite3 *db; /* The database connection */ 2347 int nVar; /* Number of parameters */ 2348 int nMem; /* Number of VM memory registers */ 2349 int nCursor; /* Number of cursors required */ 2350 int nArg; /* Number of arguments in subprograms */ 2351 int n; /* Loop counter */ 2352 struct ReusableSpace x; /* Reusable bulk memory */ 2353 2354 assert( p!=0 ); 2355 assert( p->nOp>0 ); 2356 assert( pParse!=0 ); 2357 assert( p->magic==VDBE_MAGIC_INIT ); 2358 assert( pParse==p->pParse ); 2359 db = p->db; 2360 assert( db->mallocFailed==0 ); 2361 nVar = pParse->nVar; 2362 nMem = pParse->nMem; 2363 nCursor = pParse->nTab; 2364 nArg = pParse->nMaxArg; 2365 2366 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 2367 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 2368 ** space at the end of aMem[] for cursors 1 and greater. 2369 ** See also: allocateCursor(). 2370 */ 2371 nMem += nCursor; 2372 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 2373 2374 /* Figure out how much reusable memory is available at the end of the 2375 ** opcode array. This extra memory will be reallocated for other elements 2376 ** of the prepared statement. 2377 */ 2378 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 2379 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 2380 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 2381 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 2382 assert( x.nFree>=0 ); 2383 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 2384 2385 resolveP2Values(p, &nArg); 2386 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 2387 if( pParse->explain ){ 2388 static const char * const azColName[] = { 2389 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", 2390 "id", "parent", "notused", "detail" 2391 }; 2392 int iFirst, mx, i; 2393 if( nMem<10 ) nMem = 10; 2394 p->explain = pParse->explain; 2395 if( pParse->explain==2 ){ 2396 sqlite3VdbeSetNumCols(p, 4); 2397 iFirst = 8; 2398 mx = 12; 2399 }else{ 2400 sqlite3VdbeSetNumCols(p, 8); 2401 iFirst = 0; 2402 mx = 8; 2403 } 2404 for(i=iFirst; i<mx; i++){ 2405 sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME, 2406 azColName[i], SQLITE_STATIC); 2407 } 2408 } 2409 p->expired = 0; 2410 2411 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 2412 ** passes. On the first pass, we try to reuse unused memory at the 2413 ** end of the opcode array. If we are unable to satisfy all memory 2414 ** requirements by reusing the opcode array tail, then the second 2415 ** pass will fill in the remainder using a fresh memory allocation. 2416 ** 2417 ** This two-pass approach that reuses as much memory as possible from 2418 ** the leftover memory at the end of the opcode array. This can significantly 2419 ** reduce the amount of memory held by a prepared statement. 2420 */ 2421 x.nNeeded = 0; 2422 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem)); 2423 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem)); 2424 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*)); 2425 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*)); 2426 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2427 p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64)); 2428 #endif 2429 if( x.nNeeded ){ 2430 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 2431 x.nFree = x.nNeeded; 2432 if( !db->mallocFailed ){ 2433 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 2434 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 2435 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 2436 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 2437 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2438 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 2439 #endif 2440 } 2441 } 2442 2443 p->pVList = pParse->pVList; 2444 pParse->pVList = 0; 2445 if( db->mallocFailed ){ 2446 p->nVar = 0; 2447 p->nCursor = 0; 2448 p->nMem = 0; 2449 }else{ 2450 p->nCursor = nCursor; 2451 p->nVar = (ynVar)nVar; 2452 initMemArray(p->aVar, nVar, db, MEM_Null); 2453 p->nMem = nMem; 2454 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2455 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2456 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2457 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2458 #endif 2459 } 2460 sqlite3VdbeRewind(p); 2461 } 2462 2463 /* 2464 ** Close a VDBE cursor and release all the resources that cursor 2465 ** happens to hold. 2466 */ 2467 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2468 if( pCx==0 ){ 2469 return; 2470 } 2471 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE ); 2472 switch( pCx->eCurType ){ 2473 case CURTYPE_SORTER: { 2474 sqlite3VdbeSorterClose(p->db, pCx); 2475 break; 2476 } 2477 case CURTYPE_BTREE: { 2478 if( pCx->isEphemeral ){ 2479 if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx); 2480 /* The pCx->pCursor will be close automatically, if it exists, by 2481 ** the call above. */ 2482 }else{ 2483 assert( pCx->uc.pCursor!=0 ); 2484 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2485 } 2486 break; 2487 } 2488 #ifndef SQLITE_OMIT_VIRTUALTABLE 2489 case CURTYPE_VTAB: { 2490 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2491 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2492 assert( pVCur->pVtab->nRef>0 ); 2493 pVCur->pVtab->nRef--; 2494 pModule->xClose(pVCur); 2495 break; 2496 } 2497 #endif 2498 } 2499 } 2500 2501 /* 2502 ** Close all cursors in the current frame. 2503 */ 2504 static void closeCursorsInFrame(Vdbe *p){ 2505 if( p->apCsr ){ 2506 int i; 2507 for(i=0; i<p->nCursor; i++){ 2508 VdbeCursor *pC = p->apCsr[i]; 2509 if( pC ){ 2510 sqlite3VdbeFreeCursor(p, pC); 2511 p->apCsr[i] = 0; 2512 } 2513 } 2514 } 2515 } 2516 2517 /* 2518 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2519 ** is used, for example, when a trigger sub-program is halted to restore 2520 ** control to the main program. 2521 */ 2522 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2523 Vdbe *v = pFrame->v; 2524 closeCursorsInFrame(v); 2525 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2526 v->anExec = pFrame->anExec; 2527 #endif 2528 v->aOp = pFrame->aOp; 2529 v->nOp = pFrame->nOp; 2530 v->aMem = pFrame->aMem; 2531 v->nMem = pFrame->nMem; 2532 v->apCsr = pFrame->apCsr; 2533 v->nCursor = pFrame->nCursor; 2534 v->db->lastRowid = pFrame->lastRowid; 2535 v->nChange = pFrame->nChange; 2536 v->db->nChange = pFrame->nDbChange; 2537 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2538 v->pAuxData = pFrame->pAuxData; 2539 pFrame->pAuxData = 0; 2540 return pFrame->pc; 2541 } 2542 2543 /* 2544 ** Close all cursors. 2545 ** 2546 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2547 ** cell array. This is necessary as the memory cell array may contain 2548 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2549 ** open cursors. 2550 */ 2551 static void closeAllCursors(Vdbe *p){ 2552 if( p->pFrame ){ 2553 VdbeFrame *pFrame; 2554 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2555 sqlite3VdbeFrameRestore(pFrame); 2556 p->pFrame = 0; 2557 p->nFrame = 0; 2558 } 2559 assert( p->nFrame==0 ); 2560 closeCursorsInFrame(p); 2561 if( p->aMem ){ 2562 releaseMemArray(p->aMem, p->nMem); 2563 } 2564 while( p->pDelFrame ){ 2565 VdbeFrame *pDel = p->pDelFrame; 2566 p->pDelFrame = pDel->pParent; 2567 sqlite3VdbeFrameDelete(pDel); 2568 } 2569 2570 /* Delete any auxdata allocations made by the VM */ 2571 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2572 assert( p->pAuxData==0 ); 2573 } 2574 2575 /* 2576 ** Set the number of result columns that will be returned by this SQL 2577 ** statement. This is now set at compile time, rather than during 2578 ** execution of the vdbe program so that sqlite3_column_count() can 2579 ** be called on an SQL statement before sqlite3_step(). 2580 */ 2581 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2582 int n; 2583 sqlite3 *db = p->db; 2584 2585 if( p->nResColumn ){ 2586 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2587 sqlite3DbFree(db, p->aColName); 2588 } 2589 n = nResColumn*COLNAME_N; 2590 p->nResColumn = (u16)nResColumn; 2591 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2592 if( p->aColName==0 ) return; 2593 initMemArray(p->aColName, n, db, MEM_Null); 2594 } 2595 2596 /* 2597 ** Set the name of the idx'th column to be returned by the SQL statement. 2598 ** zName must be a pointer to a nul terminated string. 2599 ** 2600 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2601 ** 2602 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2603 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2604 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2605 */ 2606 int sqlite3VdbeSetColName( 2607 Vdbe *p, /* Vdbe being configured */ 2608 int idx, /* Index of column zName applies to */ 2609 int var, /* One of the COLNAME_* constants */ 2610 const char *zName, /* Pointer to buffer containing name */ 2611 void (*xDel)(void*) /* Memory management strategy for zName */ 2612 ){ 2613 int rc; 2614 Mem *pColName; 2615 assert( idx<p->nResColumn ); 2616 assert( var<COLNAME_N ); 2617 if( p->db->mallocFailed ){ 2618 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2619 return SQLITE_NOMEM_BKPT; 2620 } 2621 assert( p->aColName!=0 ); 2622 pColName = &(p->aColName[idx+var*p->nResColumn]); 2623 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2624 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2625 return rc; 2626 } 2627 2628 /* 2629 ** A read or write transaction may or may not be active on database handle 2630 ** db. If a transaction is active, commit it. If there is a 2631 ** write-transaction spanning more than one database file, this routine 2632 ** takes care of the master journal trickery. 2633 */ 2634 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2635 int i; 2636 int nTrans = 0; /* Number of databases with an active write-transaction 2637 ** that are candidates for a two-phase commit using a 2638 ** master-journal */ 2639 int rc = SQLITE_OK; 2640 int needXcommit = 0; 2641 2642 #ifdef SQLITE_OMIT_VIRTUALTABLE 2643 /* With this option, sqlite3VtabSync() is defined to be simply 2644 ** SQLITE_OK so p is not used. 2645 */ 2646 UNUSED_PARAMETER(p); 2647 #endif 2648 2649 /* Before doing anything else, call the xSync() callback for any 2650 ** virtual module tables written in this transaction. This has to 2651 ** be done before determining whether a master journal file is 2652 ** required, as an xSync() callback may add an attached database 2653 ** to the transaction. 2654 */ 2655 rc = sqlite3VtabSync(db, p); 2656 2657 /* This loop determines (a) if the commit hook should be invoked and 2658 ** (b) how many database files have open write transactions, not 2659 ** including the temp database. (b) is important because if more than 2660 ** one database file has an open write transaction, a master journal 2661 ** file is required for an atomic commit. 2662 */ 2663 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2664 Btree *pBt = db->aDb[i].pBt; 2665 if( sqlite3BtreeIsInTrans(pBt) ){ 2666 /* Whether or not a database might need a master journal depends upon 2667 ** its journal mode (among other things). This matrix determines which 2668 ** journal modes use a master journal and which do not */ 2669 static const u8 aMJNeeded[] = { 2670 /* DELETE */ 1, 2671 /* PERSIST */ 1, 2672 /* OFF */ 0, 2673 /* TRUNCATE */ 1, 2674 /* MEMORY */ 0, 2675 /* WAL */ 0 2676 }; 2677 Pager *pPager; /* Pager associated with pBt */ 2678 needXcommit = 1; 2679 sqlite3BtreeEnter(pBt); 2680 pPager = sqlite3BtreePager(pBt); 2681 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2682 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2683 && sqlite3PagerIsMemdb(pPager)==0 2684 ){ 2685 assert( i!=1 ); 2686 nTrans++; 2687 } 2688 rc = sqlite3PagerExclusiveLock(pPager); 2689 sqlite3BtreeLeave(pBt); 2690 } 2691 } 2692 if( rc!=SQLITE_OK ){ 2693 return rc; 2694 } 2695 2696 /* If there are any write-transactions at all, invoke the commit hook */ 2697 if( needXcommit && db->xCommitCallback ){ 2698 rc = db->xCommitCallback(db->pCommitArg); 2699 if( rc ){ 2700 return SQLITE_CONSTRAINT_COMMITHOOK; 2701 } 2702 } 2703 2704 /* The simple case - no more than one database file (not counting the 2705 ** TEMP database) has a transaction active. There is no need for the 2706 ** master-journal. 2707 ** 2708 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2709 ** string, it means the main database is :memory: or a temp file. In 2710 ** that case we do not support atomic multi-file commits, so use the 2711 ** simple case then too. 2712 */ 2713 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2714 || nTrans<=1 2715 ){ 2716 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2717 Btree *pBt = db->aDb[i].pBt; 2718 if( pBt ){ 2719 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2720 } 2721 } 2722 2723 /* Do the commit only if all databases successfully complete phase 1. 2724 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2725 ** IO error while deleting or truncating a journal file. It is unlikely, 2726 ** but could happen. In this case abandon processing and return the error. 2727 */ 2728 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2729 Btree *pBt = db->aDb[i].pBt; 2730 if( pBt ){ 2731 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2732 } 2733 } 2734 if( rc==SQLITE_OK ){ 2735 sqlite3VtabCommit(db); 2736 } 2737 } 2738 2739 /* The complex case - There is a multi-file write-transaction active. 2740 ** This requires a master journal file to ensure the transaction is 2741 ** committed atomically. 2742 */ 2743 #ifndef SQLITE_OMIT_DISKIO 2744 else{ 2745 sqlite3_vfs *pVfs = db->pVfs; 2746 char *zMaster = 0; /* File-name for the master journal */ 2747 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2748 sqlite3_file *pMaster = 0; 2749 i64 offset = 0; 2750 int res; 2751 int retryCount = 0; 2752 int nMainFile; 2753 2754 /* Select a master journal file name */ 2755 nMainFile = sqlite3Strlen30(zMainFile); 2756 zMaster = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0); 2757 if( zMaster==0 ) return SQLITE_NOMEM_BKPT; 2758 zMaster += 4; 2759 do { 2760 u32 iRandom; 2761 if( retryCount ){ 2762 if( retryCount>100 ){ 2763 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 2764 sqlite3OsDelete(pVfs, zMaster, 0); 2765 break; 2766 }else if( retryCount==1 ){ 2767 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2768 } 2769 } 2770 retryCount++; 2771 sqlite3_randomness(sizeof(iRandom), &iRandom); 2772 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2773 (iRandom>>8)&0xffffff, iRandom&0xff); 2774 /* The antipenultimate character of the master journal name must 2775 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2776 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2777 sqlite3FileSuffix3(zMainFile, zMaster); 2778 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2779 }while( rc==SQLITE_OK && res ); 2780 if( rc==SQLITE_OK ){ 2781 /* Open the master journal. */ 2782 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2783 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2784 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2785 ); 2786 } 2787 if( rc!=SQLITE_OK ){ 2788 sqlite3DbFree(db, zMaster-4); 2789 return rc; 2790 } 2791 2792 /* Write the name of each database file in the transaction into the new 2793 ** master journal file. If an error occurs at this point close 2794 ** and delete the master journal file. All the individual journal files 2795 ** still have 'null' as the master journal pointer, so they will roll 2796 ** back independently if a failure occurs. 2797 */ 2798 for(i=0; i<db->nDb; i++){ 2799 Btree *pBt = db->aDb[i].pBt; 2800 if( sqlite3BtreeIsInTrans(pBt) ){ 2801 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2802 if( zFile==0 ){ 2803 continue; /* Ignore TEMP and :memory: databases */ 2804 } 2805 assert( zFile[0]!=0 ); 2806 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2807 offset += sqlite3Strlen30(zFile)+1; 2808 if( rc!=SQLITE_OK ){ 2809 sqlite3OsCloseFree(pMaster); 2810 sqlite3OsDelete(pVfs, zMaster, 0); 2811 sqlite3DbFree(db, zMaster-4); 2812 return rc; 2813 } 2814 } 2815 } 2816 2817 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2818 ** flag is set this is not required. 2819 */ 2820 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2821 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2822 ){ 2823 sqlite3OsCloseFree(pMaster); 2824 sqlite3OsDelete(pVfs, zMaster, 0); 2825 sqlite3DbFree(db, zMaster-4); 2826 return rc; 2827 } 2828 2829 /* Sync all the db files involved in the transaction. The same call 2830 ** sets the master journal pointer in each individual journal. If 2831 ** an error occurs here, do not delete the master journal file. 2832 ** 2833 ** If the error occurs during the first call to 2834 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2835 ** master journal file will be orphaned. But we cannot delete it, 2836 ** in case the master journal file name was written into the journal 2837 ** file before the failure occurred. 2838 */ 2839 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2840 Btree *pBt = db->aDb[i].pBt; 2841 if( pBt ){ 2842 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2843 } 2844 } 2845 sqlite3OsCloseFree(pMaster); 2846 assert( rc!=SQLITE_BUSY ); 2847 if( rc!=SQLITE_OK ){ 2848 sqlite3DbFree(db, zMaster-4); 2849 return rc; 2850 } 2851 2852 /* Delete the master journal file. This commits the transaction. After 2853 ** doing this the directory is synced again before any individual 2854 ** transaction files are deleted. 2855 */ 2856 rc = sqlite3OsDelete(pVfs, zMaster, 1); 2857 sqlite3DbFree(db, zMaster-4); 2858 zMaster = 0; 2859 if( rc ){ 2860 return rc; 2861 } 2862 2863 /* All files and directories have already been synced, so the following 2864 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2865 ** deleting or truncating journals. If something goes wrong while 2866 ** this is happening we don't really care. The integrity of the 2867 ** transaction is already guaranteed, but some stray 'cold' journals 2868 ** may be lying around. Returning an error code won't help matters. 2869 */ 2870 disable_simulated_io_errors(); 2871 sqlite3BeginBenignMalloc(); 2872 for(i=0; i<db->nDb; i++){ 2873 Btree *pBt = db->aDb[i].pBt; 2874 if( pBt ){ 2875 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2876 } 2877 } 2878 sqlite3EndBenignMalloc(); 2879 enable_simulated_io_errors(); 2880 2881 sqlite3VtabCommit(db); 2882 } 2883 #endif 2884 2885 return rc; 2886 } 2887 2888 /* 2889 ** This routine checks that the sqlite3.nVdbeActive count variable 2890 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2891 ** currently active. An assertion fails if the two counts do not match. 2892 ** This is an internal self-check only - it is not an essential processing 2893 ** step. 2894 ** 2895 ** This is a no-op if NDEBUG is defined. 2896 */ 2897 #ifndef NDEBUG 2898 static void checkActiveVdbeCnt(sqlite3 *db){ 2899 Vdbe *p; 2900 int cnt = 0; 2901 int nWrite = 0; 2902 int nRead = 0; 2903 p = db->pVdbe; 2904 while( p ){ 2905 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2906 cnt++; 2907 if( p->readOnly==0 ) nWrite++; 2908 if( p->bIsReader ) nRead++; 2909 } 2910 p = p->pNext; 2911 } 2912 assert( cnt==db->nVdbeActive ); 2913 assert( nWrite==db->nVdbeWrite ); 2914 assert( nRead==db->nVdbeRead ); 2915 } 2916 #else 2917 #define checkActiveVdbeCnt(x) 2918 #endif 2919 2920 /* 2921 ** If the Vdbe passed as the first argument opened a statement-transaction, 2922 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2923 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2924 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2925 ** statement transaction is committed. 2926 ** 2927 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2928 ** Otherwise SQLITE_OK. 2929 */ 2930 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 2931 sqlite3 *const db = p->db; 2932 int rc = SQLITE_OK; 2933 int i; 2934 const int iSavepoint = p->iStatement-1; 2935 2936 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2937 assert( db->nStatement>0 ); 2938 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2939 2940 for(i=0; i<db->nDb; i++){ 2941 int rc2 = SQLITE_OK; 2942 Btree *pBt = db->aDb[i].pBt; 2943 if( pBt ){ 2944 if( eOp==SAVEPOINT_ROLLBACK ){ 2945 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2946 } 2947 if( rc2==SQLITE_OK ){ 2948 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2949 } 2950 if( rc==SQLITE_OK ){ 2951 rc = rc2; 2952 } 2953 } 2954 } 2955 db->nStatement--; 2956 p->iStatement = 0; 2957 2958 if( rc==SQLITE_OK ){ 2959 if( eOp==SAVEPOINT_ROLLBACK ){ 2960 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2961 } 2962 if( rc==SQLITE_OK ){ 2963 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2964 } 2965 } 2966 2967 /* If the statement transaction is being rolled back, also restore the 2968 ** database handles deferred constraint counter to the value it had when 2969 ** the statement transaction was opened. */ 2970 if( eOp==SAVEPOINT_ROLLBACK ){ 2971 db->nDeferredCons = p->nStmtDefCons; 2972 db->nDeferredImmCons = p->nStmtDefImmCons; 2973 } 2974 return rc; 2975 } 2976 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2977 if( p->db->nStatement && p->iStatement ){ 2978 return vdbeCloseStatement(p, eOp); 2979 } 2980 return SQLITE_OK; 2981 } 2982 2983 2984 /* 2985 ** This function is called when a transaction opened by the database 2986 ** handle associated with the VM passed as an argument is about to be 2987 ** committed. If there are outstanding deferred foreign key constraint 2988 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2989 ** 2990 ** If there are outstanding FK violations and this function returns 2991 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2992 ** and write an error message to it. Then return SQLITE_ERROR. 2993 */ 2994 #ifndef SQLITE_OMIT_FOREIGN_KEY 2995 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2996 sqlite3 *db = p->db; 2997 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2998 || (!deferred && p->nFkConstraint>0) 2999 ){ 3000 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 3001 p->errorAction = OE_Abort; 3002 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 3003 return SQLITE_ERROR; 3004 } 3005 return SQLITE_OK; 3006 } 3007 #endif 3008 3009 /* 3010 ** This routine is called the when a VDBE tries to halt. If the VDBE 3011 ** has made changes and is in autocommit mode, then commit those 3012 ** changes. If a rollback is needed, then do the rollback. 3013 ** 3014 ** This routine is the only way to move the state of a VM from 3015 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 3016 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 3017 ** 3018 ** Return an error code. If the commit could not complete because of 3019 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 3020 ** means the close did not happen and needs to be repeated. 3021 */ 3022 int sqlite3VdbeHalt(Vdbe *p){ 3023 int rc; /* Used to store transient return codes */ 3024 sqlite3 *db = p->db; 3025 3026 /* This function contains the logic that determines if a statement or 3027 ** transaction will be committed or rolled back as a result of the 3028 ** execution of this virtual machine. 3029 ** 3030 ** If any of the following errors occur: 3031 ** 3032 ** SQLITE_NOMEM 3033 ** SQLITE_IOERR 3034 ** SQLITE_FULL 3035 ** SQLITE_INTERRUPT 3036 ** 3037 ** Then the internal cache might have been left in an inconsistent 3038 ** state. We need to rollback the statement transaction, if there is 3039 ** one, or the complete transaction if there is no statement transaction. 3040 */ 3041 3042 if( p->magic!=VDBE_MAGIC_RUN ){ 3043 return SQLITE_OK; 3044 } 3045 if( db->mallocFailed ){ 3046 p->rc = SQLITE_NOMEM_BKPT; 3047 } 3048 closeAllCursors(p); 3049 checkActiveVdbeCnt(db); 3050 3051 /* No commit or rollback needed if the program never started or if the 3052 ** SQL statement does not read or write a database file. */ 3053 if( p->pc>=0 && p->bIsReader ){ 3054 int mrc; /* Primary error code from p->rc */ 3055 int eStatementOp = 0; 3056 int isSpecialError; /* Set to true if a 'special' error */ 3057 3058 /* Lock all btrees used by the statement */ 3059 sqlite3VdbeEnter(p); 3060 3061 /* Check for one of the special errors */ 3062 mrc = p->rc & 0xff; 3063 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 3064 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 3065 if( isSpecialError ){ 3066 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 3067 ** no rollback is necessary. Otherwise, at least a savepoint 3068 ** transaction must be rolled back to restore the database to a 3069 ** consistent state. 3070 ** 3071 ** Even if the statement is read-only, it is important to perform 3072 ** a statement or transaction rollback operation. If the error 3073 ** occurred while writing to the journal, sub-journal or database 3074 ** file as part of an effort to free up cache space (see function 3075 ** pagerStress() in pager.c), the rollback is required to restore 3076 ** the pager to a consistent state. 3077 */ 3078 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 3079 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 3080 eStatementOp = SAVEPOINT_ROLLBACK; 3081 }else{ 3082 /* We are forced to roll back the active transaction. Before doing 3083 ** so, abort any other statements this handle currently has active. 3084 */ 3085 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3086 sqlite3CloseSavepoints(db); 3087 db->autoCommit = 1; 3088 p->nChange = 0; 3089 } 3090 } 3091 } 3092 3093 /* Check for immediate foreign key violations. */ 3094 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3095 sqlite3VdbeCheckFk(p, 0); 3096 } 3097 3098 /* If the auto-commit flag is set and this is the only active writer 3099 ** VM, then we do either a commit or rollback of the current transaction. 3100 ** 3101 ** Note: This block also runs if one of the special errors handled 3102 ** above has occurred. 3103 */ 3104 if( !sqlite3VtabInSync(db) 3105 && db->autoCommit 3106 && db->nVdbeWrite==(p->readOnly==0) 3107 ){ 3108 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3109 rc = sqlite3VdbeCheckFk(p, 1); 3110 if( rc!=SQLITE_OK ){ 3111 if( NEVER(p->readOnly) ){ 3112 sqlite3VdbeLeave(p); 3113 return SQLITE_ERROR; 3114 } 3115 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 3116 }else{ 3117 /* The auto-commit flag is true, the vdbe program was successful 3118 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 3119 ** key constraints to hold up the transaction. This means a commit 3120 ** is required. */ 3121 rc = vdbeCommit(db, p); 3122 } 3123 if( rc==SQLITE_BUSY && p->readOnly ){ 3124 sqlite3VdbeLeave(p); 3125 return SQLITE_BUSY; 3126 }else if( rc!=SQLITE_OK ){ 3127 p->rc = rc; 3128 sqlite3RollbackAll(db, SQLITE_OK); 3129 p->nChange = 0; 3130 }else{ 3131 db->nDeferredCons = 0; 3132 db->nDeferredImmCons = 0; 3133 db->flags &= ~(u64)SQLITE_DeferFKs; 3134 sqlite3CommitInternalChanges(db); 3135 } 3136 }else{ 3137 sqlite3RollbackAll(db, SQLITE_OK); 3138 p->nChange = 0; 3139 } 3140 db->nStatement = 0; 3141 }else if( eStatementOp==0 ){ 3142 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 3143 eStatementOp = SAVEPOINT_RELEASE; 3144 }else if( p->errorAction==OE_Abort ){ 3145 eStatementOp = SAVEPOINT_ROLLBACK; 3146 }else{ 3147 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3148 sqlite3CloseSavepoints(db); 3149 db->autoCommit = 1; 3150 p->nChange = 0; 3151 } 3152 } 3153 3154 /* If eStatementOp is non-zero, then a statement transaction needs to 3155 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 3156 ** do so. If this operation returns an error, and the current statement 3157 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 3158 ** current statement error code. 3159 */ 3160 if( eStatementOp ){ 3161 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 3162 if( rc ){ 3163 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 3164 p->rc = rc; 3165 sqlite3DbFree(db, p->zErrMsg); 3166 p->zErrMsg = 0; 3167 } 3168 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3169 sqlite3CloseSavepoints(db); 3170 db->autoCommit = 1; 3171 p->nChange = 0; 3172 } 3173 } 3174 3175 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 3176 ** has been rolled back, update the database connection change-counter. 3177 */ 3178 if( p->changeCntOn ){ 3179 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 3180 sqlite3VdbeSetChanges(db, p->nChange); 3181 }else{ 3182 sqlite3VdbeSetChanges(db, 0); 3183 } 3184 p->nChange = 0; 3185 } 3186 3187 /* Release the locks */ 3188 sqlite3VdbeLeave(p); 3189 } 3190 3191 /* We have successfully halted and closed the VM. Record this fact. */ 3192 if( p->pc>=0 ){ 3193 db->nVdbeActive--; 3194 if( !p->readOnly ) db->nVdbeWrite--; 3195 if( p->bIsReader ) db->nVdbeRead--; 3196 assert( db->nVdbeActive>=db->nVdbeRead ); 3197 assert( db->nVdbeRead>=db->nVdbeWrite ); 3198 assert( db->nVdbeWrite>=0 ); 3199 } 3200 p->magic = VDBE_MAGIC_HALT; 3201 checkActiveVdbeCnt(db); 3202 if( db->mallocFailed ){ 3203 p->rc = SQLITE_NOMEM_BKPT; 3204 } 3205 3206 /* If the auto-commit flag is set to true, then any locks that were held 3207 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 3208 ** to invoke any required unlock-notify callbacks. 3209 */ 3210 if( db->autoCommit ){ 3211 sqlite3ConnectionUnlocked(db); 3212 } 3213 3214 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 3215 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 3216 } 3217 3218 3219 /* 3220 ** Each VDBE holds the result of the most recent sqlite3_step() call 3221 ** in p->rc. This routine sets that result back to SQLITE_OK. 3222 */ 3223 void sqlite3VdbeResetStepResult(Vdbe *p){ 3224 p->rc = SQLITE_OK; 3225 } 3226 3227 /* 3228 ** Copy the error code and error message belonging to the VDBE passed 3229 ** as the first argument to its database handle (so that they will be 3230 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 3231 ** 3232 ** This function does not clear the VDBE error code or message, just 3233 ** copies them to the database handle. 3234 */ 3235 int sqlite3VdbeTransferError(Vdbe *p){ 3236 sqlite3 *db = p->db; 3237 int rc = p->rc; 3238 if( p->zErrMsg ){ 3239 db->bBenignMalloc++; 3240 sqlite3BeginBenignMalloc(); 3241 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 3242 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 3243 sqlite3EndBenignMalloc(); 3244 db->bBenignMalloc--; 3245 }else if( db->pErr ){ 3246 sqlite3ValueSetNull(db->pErr); 3247 } 3248 db->errCode = rc; 3249 return rc; 3250 } 3251 3252 #ifdef SQLITE_ENABLE_SQLLOG 3253 /* 3254 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 3255 ** invoke it. 3256 */ 3257 static void vdbeInvokeSqllog(Vdbe *v){ 3258 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 3259 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 3260 assert( v->db->init.busy==0 ); 3261 if( zExpanded ){ 3262 sqlite3GlobalConfig.xSqllog( 3263 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 3264 ); 3265 sqlite3DbFree(v->db, zExpanded); 3266 } 3267 } 3268 } 3269 #else 3270 # define vdbeInvokeSqllog(x) 3271 #endif 3272 3273 /* 3274 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 3275 ** Write any error messages into *pzErrMsg. Return the result code. 3276 ** 3277 ** After this routine is run, the VDBE should be ready to be executed 3278 ** again. 3279 ** 3280 ** To look at it another way, this routine resets the state of the 3281 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 3282 ** VDBE_MAGIC_INIT. 3283 */ 3284 int sqlite3VdbeReset(Vdbe *p){ 3285 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 3286 int i; 3287 #endif 3288 3289 sqlite3 *db; 3290 db = p->db; 3291 3292 /* If the VM did not run to completion or if it encountered an 3293 ** error, then it might not have been halted properly. So halt 3294 ** it now. 3295 */ 3296 sqlite3VdbeHalt(p); 3297 3298 /* If the VDBE has been run even partially, then transfer the error code 3299 ** and error message from the VDBE into the main database structure. But 3300 ** if the VDBE has just been set to run but has not actually executed any 3301 ** instructions yet, leave the main database error information unchanged. 3302 */ 3303 if( p->pc>=0 ){ 3304 vdbeInvokeSqllog(p); 3305 if( db->pErr || p->zErrMsg ){ 3306 sqlite3VdbeTransferError(p); 3307 }else{ 3308 db->errCode = p->rc; 3309 } 3310 if( p->runOnlyOnce ) p->expired = 1; 3311 }else if( p->rc && p->expired ){ 3312 /* The expired flag was set on the VDBE before the first call 3313 ** to sqlite3_step(). For consistency (since sqlite3_step() was 3314 ** called), set the database error in this case as well. 3315 */ 3316 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 3317 } 3318 3319 /* Reset register contents and reclaim error message memory. 3320 */ 3321 #ifdef SQLITE_DEBUG 3322 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 3323 ** Vdbe.aMem[] arrays have already been cleaned up. */ 3324 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 3325 if( p->aMem ){ 3326 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 3327 } 3328 #endif 3329 if( p->zErrMsg ){ 3330 sqlite3DbFree(db, p->zErrMsg); 3331 p->zErrMsg = 0; 3332 } 3333 p->pResultSet = 0; 3334 #ifdef SQLITE_DEBUG 3335 p->nWrite = 0; 3336 #endif 3337 3338 /* Save profiling information from this VDBE run. 3339 */ 3340 #ifdef VDBE_PROFILE 3341 { 3342 FILE *out = fopen("vdbe_profile.out", "a"); 3343 if( out ){ 3344 fprintf(out, "---- "); 3345 for(i=0; i<p->nOp; i++){ 3346 fprintf(out, "%02x", p->aOp[i].opcode); 3347 } 3348 fprintf(out, "\n"); 3349 if( p->zSql ){ 3350 char c, pc = 0; 3351 fprintf(out, "-- "); 3352 for(i=0; (c = p->zSql[i])!=0; i++){ 3353 if( pc=='\n' ) fprintf(out, "-- "); 3354 putc(c, out); 3355 pc = c; 3356 } 3357 if( pc!='\n' ) fprintf(out, "\n"); 3358 } 3359 for(i=0; i<p->nOp; i++){ 3360 char zHdr[100]; 3361 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 3362 p->aOp[i].cnt, 3363 p->aOp[i].cycles, 3364 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 3365 ); 3366 fprintf(out, "%s", zHdr); 3367 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 3368 } 3369 fclose(out); 3370 } 3371 } 3372 #endif 3373 p->magic = VDBE_MAGIC_RESET; 3374 return p->rc & db->errMask; 3375 } 3376 3377 /* 3378 ** Clean up and delete a VDBE after execution. Return an integer which is 3379 ** the result code. Write any error message text into *pzErrMsg. 3380 */ 3381 int sqlite3VdbeFinalize(Vdbe *p){ 3382 int rc = SQLITE_OK; 3383 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 3384 rc = sqlite3VdbeReset(p); 3385 assert( (rc & p->db->errMask)==rc ); 3386 } 3387 sqlite3VdbeDelete(p); 3388 return rc; 3389 } 3390 3391 /* 3392 ** If parameter iOp is less than zero, then invoke the destructor for 3393 ** all auxiliary data pointers currently cached by the VM passed as 3394 ** the first argument. 3395 ** 3396 ** Or, if iOp is greater than or equal to zero, then the destructor is 3397 ** only invoked for those auxiliary data pointers created by the user 3398 ** function invoked by the OP_Function opcode at instruction iOp of 3399 ** VM pVdbe, and only then if: 3400 ** 3401 ** * the associated function parameter is the 32nd or later (counting 3402 ** from left to right), or 3403 ** 3404 ** * the corresponding bit in argument mask is clear (where the first 3405 ** function parameter corresponds to bit 0 etc.). 3406 */ 3407 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 3408 while( *pp ){ 3409 AuxData *pAux = *pp; 3410 if( (iOp<0) 3411 || (pAux->iAuxOp==iOp 3412 && pAux->iAuxArg>=0 3413 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 3414 ){ 3415 testcase( pAux->iAuxArg==31 ); 3416 if( pAux->xDeleteAux ){ 3417 pAux->xDeleteAux(pAux->pAux); 3418 } 3419 *pp = pAux->pNextAux; 3420 sqlite3DbFree(db, pAux); 3421 }else{ 3422 pp= &pAux->pNextAux; 3423 } 3424 } 3425 } 3426 3427 /* 3428 ** Free all memory associated with the Vdbe passed as the second argument, 3429 ** except for object itself, which is preserved. 3430 ** 3431 ** The difference between this function and sqlite3VdbeDelete() is that 3432 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 3433 ** the database connection and frees the object itself. 3434 */ 3435 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 3436 SubProgram *pSub, *pNext; 3437 assert( p->db==0 || p->db==db ); 3438 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 3439 for(pSub=p->pProgram; pSub; pSub=pNext){ 3440 pNext = pSub->pNext; 3441 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 3442 sqlite3DbFree(db, pSub); 3443 } 3444 if( p->magic!=VDBE_MAGIC_INIT ){ 3445 releaseMemArray(p->aVar, p->nVar); 3446 sqlite3DbFree(db, p->pVList); 3447 sqlite3DbFree(db, p->pFree); 3448 } 3449 vdbeFreeOpArray(db, p->aOp, p->nOp); 3450 sqlite3DbFree(db, p->aColName); 3451 sqlite3DbFree(db, p->zSql); 3452 #ifdef SQLITE_ENABLE_NORMALIZE 3453 sqlite3DbFree(db, p->zNormSql); 3454 { 3455 DblquoteStr *pThis, *pNext; 3456 for(pThis=p->pDblStr; pThis; pThis=pNext){ 3457 pNext = pThis->pNextStr; 3458 sqlite3DbFree(db, pThis); 3459 } 3460 } 3461 #endif 3462 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3463 { 3464 int i; 3465 for(i=0; i<p->nScan; i++){ 3466 sqlite3DbFree(db, p->aScan[i].zName); 3467 } 3468 sqlite3DbFree(db, p->aScan); 3469 } 3470 #endif 3471 } 3472 3473 /* 3474 ** Delete an entire VDBE. 3475 */ 3476 void sqlite3VdbeDelete(Vdbe *p){ 3477 sqlite3 *db; 3478 3479 assert( p!=0 ); 3480 db = p->db; 3481 assert( sqlite3_mutex_held(db->mutex) ); 3482 sqlite3VdbeClearObject(db, p); 3483 if( p->pPrev ){ 3484 p->pPrev->pNext = p->pNext; 3485 }else{ 3486 assert( db->pVdbe==p ); 3487 db->pVdbe = p->pNext; 3488 } 3489 if( p->pNext ){ 3490 p->pNext->pPrev = p->pPrev; 3491 } 3492 p->magic = VDBE_MAGIC_DEAD; 3493 p->db = 0; 3494 sqlite3DbFreeNN(db, p); 3495 } 3496 3497 /* 3498 ** The cursor "p" has a pending seek operation that has not yet been 3499 ** carried out. Seek the cursor now. If an error occurs, return 3500 ** the appropriate error code. 3501 */ 3502 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){ 3503 int res, rc; 3504 #ifdef SQLITE_TEST 3505 extern int sqlite3_search_count; 3506 #endif 3507 assert( p->deferredMoveto ); 3508 assert( p->isTable ); 3509 assert( p->eCurType==CURTYPE_BTREE ); 3510 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); 3511 if( rc ) return rc; 3512 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3513 #ifdef SQLITE_TEST 3514 sqlite3_search_count++; 3515 #endif 3516 p->deferredMoveto = 0; 3517 p->cacheStatus = CACHE_STALE; 3518 return SQLITE_OK; 3519 } 3520 3521 /* 3522 ** Something has moved cursor "p" out of place. Maybe the row it was 3523 ** pointed to was deleted out from under it. Or maybe the btree was 3524 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3525 ** is supposed to be pointing. If the row was deleted out from under the 3526 ** cursor, set the cursor to point to a NULL row. 3527 */ 3528 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 3529 int isDifferentRow, rc; 3530 assert( p->eCurType==CURTYPE_BTREE ); 3531 assert( p->uc.pCursor!=0 ); 3532 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3533 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3534 p->cacheStatus = CACHE_STALE; 3535 if( isDifferentRow ) p->nullRow = 1; 3536 return rc; 3537 } 3538 3539 /* 3540 ** Check to ensure that the cursor is valid. Restore the cursor 3541 ** if need be. Return any I/O error from the restore operation. 3542 */ 3543 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3544 assert( p->eCurType==CURTYPE_BTREE ); 3545 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3546 return handleMovedCursor(p); 3547 } 3548 return SQLITE_OK; 3549 } 3550 3551 /* 3552 ** Make sure the cursor p is ready to read or write the row to which it 3553 ** was last positioned. Return an error code if an OOM fault or I/O error 3554 ** prevents us from positioning the cursor to its correct position. 3555 ** 3556 ** If a MoveTo operation is pending on the given cursor, then do that 3557 ** MoveTo now. If no move is pending, check to see if the row has been 3558 ** deleted out from under the cursor and if it has, mark the row as 3559 ** a NULL row. 3560 ** 3561 ** If the cursor is already pointing to the correct row and that row has 3562 ** not been deleted out from under the cursor, then this routine is a no-op. 3563 */ 3564 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){ 3565 VdbeCursor *p = *pp; 3566 assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO ); 3567 if( p->deferredMoveto ){ 3568 int iMap; 3569 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 && !p->nullRow ){ 3570 *pp = p->pAltCursor; 3571 *piCol = iMap - 1; 3572 return SQLITE_OK; 3573 } 3574 return sqlite3VdbeFinishMoveto(p); 3575 } 3576 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3577 return handleMovedCursor(p); 3578 } 3579 return SQLITE_OK; 3580 } 3581 3582 /* 3583 ** The following functions: 3584 ** 3585 ** sqlite3VdbeSerialType() 3586 ** sqlite3VdbeSerialTypeLen() 3587 ** sqlite3VdbeSerialLen() 3588 ** sqlite3VdbeSerialPut() 3589 ** sqlite3VdbeSerialGet() 3590 ** 3591 ** encapsulate the code that serializes values for storage in SQLite 3592 ** data and index records. Each serialized value consists of a 3593 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3594 ** integer, stored as a varint. 3595 ** 3596 ** In an SQLite index record, the serial type is stored directly before 3597 ** the blob of data that it corresponds to. In a table record, all serial 3598 ** types are stored at the start of the record, and the blobs of data at 3599 ** the end. Hence these functions allow the caller to handle the 3600 ** serial-type and data blob separately. 3601 ** 3602 ** The following table describes the various storage classes for data: 3603 ** 3604 ** serial type bytes of data type 3605 ** -------------- --------------- --------------- 3606 ** 0 0 NULL 3607 ** 1 1 signed integer 3608 ** 2 2 signed integer 3609 ** 3 3 signed integer 3610 ** 4 4 signed integer 3611 ** 5 6 signed integer 3612 ** 6 8 signed integer 3613 ** 7 8 IEEE float 3614 ** 8 0 Integer constant 0 3615 ** 9 0 Integer constant 1 3616 ** 10,11 reserved for expansion 3617 ** N>=12 and even (N-12)/2 BLOB 3618 ** N>=13 and odd (N-13)/2 text 3619 ** 3620 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3621 ** of SQLite will not understand those serial types. 3622 */ 3623 3624 #if 0 /* Inlined into the OP_MakeRecord opcode */ 3625 /* 3626 ** Return the serial-type for the value stored in pMem. 3627 ** 3628 ** This routine might convert a large MEM_IntReal value into MEM_Real. 3629 ** 3630 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord 3631 ** opcode in the byte-code engine. But by moving this routine in-line, we 3632 ** can omit some redundant tests and make that opcode a lot faster. So 3633 ** this routine is now only used by the STAT3 logic and STAT3 support has 3634 ** ended. The code is kept here for historical reference only. 3635 */ 3636 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3637 int flags = pMem->flags; 3638 u32 n; 3639 3640 assert( pLen!=0 ); 3641 if( flags&MEM_Null ){ 3642 *pLen = 0; 3643 return 0; 3644 } 3645 if( flags&(MEM_Int|MEM_IntReal) ){ 3646 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3647 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3648 i64 i = pMem->u.i; 3649 u64 u; 3650 testcase( flags & MEM_Int ); 3651 testcase( flags & MEM_IntReal ); 3652 if( i<0 ){ 3653 u = ~i; 3654 }else{ 3655 u = i; 3656 } 3657 if( u<=127 ){ 3658 if( (i&1)==i && file_format>=4 ){ 3659 *pLen = 0; 3660 return 8+(u32)u; 3661 }else{ 3662 *pLen = 1; 3663 return 1; 3664 } 3665 } 3666 if( u<=32767 ){ *pLen = 2; return 2; } 3667 if( u<=8388607 ){ *pLen = 3; return 3; } 3668 if( u<=2147483647 ){ *pLen = 4; return 4; } 3669 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3670 *pLen = 8; 3671 if( flags&MEM_IntReal ){ 3672 /* If the value is IntReal and is going to take up 8 bytes to store 3673 ** as an integer, then we might as well make it an 8-byte floating 3674 ** point value */ 3675 pMem->u.r = (double)pMem->u.i; 3676 pMem->flags &= ~MEM_IntReal; 3677 pMem->flags |= MEM_Real; 3678 return 7; 3679 } 3680 return 6; 3681 } 3682 if( flags&MEM_Real ){ 3683 *pLen = 8; 3684 return 7; 3685 } 3686 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3687 assert( pMem->n>=0 ); 3688 n = (u32)pMem->n; 3689 if( flags & MEM_Zero ){ 3690 n += pMem->u.nZero; 3691 } 3692 *pLen = n; 3693 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3694 } 3695 #endif /* inlined into OP_MakeRecord */ 3696 3697 /* 3698 ** The sizes for serial types less than 128 3699 */ 3700 static const u8 sqlite3SmallTypeSizes[] = { 3701 /* 0 1 2 3 4 5 6 7 8 9 */ 3702 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3703 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3704 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3705 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3706 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3707 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3708 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3709 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3710 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3711 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3712 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3713 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3714 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3715 }; 3716 3717 /* 3718 ** Return the length of the data corresponding to the supplied serial-type. 3719 */ 3720 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3721 if( serial_type>=128 ){ 3722 return (serial_type-12)/2; 3723 }else{ 3724 assert( serial_type<12 3725 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3726 return sqlite3SmallTypeSizes[serial_type]; 3727 } 3728 } 3729 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3730 assert( serial_type<128 ); 3731 return sqlite3SmallTypeSizes[serial_type]; 3732 } 3733 3734 /* 3735 ** If we are on an architecture with mixed-endian floating 3736 ** points (ex: ARM7) then swap the lower 4 bytes with the 3737 ** upper 4 bytes. Return the result. 3738 ** 3739 ** For most architectures, this is a no-op. 3740 ** 3741 ** (later): It is reported to me that the mixed-endian problem 3742 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3743 ** that early versions of GCC stored the two words of a 64-bit 3744 ** float in the wrong order. And that error has been propagated 3745 ** ever since. The blame is not necessarily with GCC, though. 3746 ** GCC might have just copying the problem from a prior compiler. 3747 ** I am also told that newer versions of GCC that follow a different 3748 ** ABI get the byte order right. 3749 ** 3750 ** Developers using SQLite on an ARM7 should compile and run their 3751 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3752 ** enabled, some asserts below will ensure that the byte order of 3753 ** floating point values is correct. 3754 ** 3755 ** (2007-08-30) Frank van Vugt has studied this problem closely 3756 ** and has send his findings to the SQLite developers. Frank 3757 ** writes that some Linux kernels offer floating point hardware 3758 ** emulation that uses only 32-bit mantissas instead of a full 3759 ** 48-bits as required by the IEEE standard. (This is the 3760 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3761 ** byte swapping becomes very complicated. To avoid problems, 3762 ** the necessary byte swapping is carried out using a 64-bit integer 3763 ** rather than a 64-bit float. Frank assures us that the code here 3764 ** works for him. We, the developers, have no way to independently 3765 ** verify this, but Frank seems to know what he is talking about 3766 ** so we trust him. 3767 */ 3768 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3769 static u64 floatSwap(u64 in){ 3770 union { 3771 u64 r; 3772 u32 i[2]; 3773 } u; 3774 u32 t; 3775 3776 u.r = in; 3777 t = u.i[0]; 3778 u.i[0] = u.i[1]; 3779 u.i[1] = t; 3780 return u.r; 3781 } 3782 # define swapMixedEndianFloat(X) X = floatSwap(X) 3783 #else 3784 # define swapMixedEndianFloat(X) 3785 #endif 3786 3787 /* 3788 ** Write the serialized data blob for the value stored in pMem into 3789 ** buf. It is assumed that the caller has allocated sufficient space. 3790 ** Return the number of bytes written. 3791 ** 3792 ** nBuf is the amount of space left in buf[]. The caller is responsible 3793 ** for allocating enough space to buf[] to hold the entire field, exclusive 3794 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3795 ** 3796 ** Return the number of bytes actually written into buf[]. The number 3797 ** of bytes in the zero-filled tail is included in the return value only 3798 ** if those bytes were zeroed in buf[]. 3799 */ 3800 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3801 u32 len; 3802 3803 /* Integer and Real */ 3804 if( serial_type<=7 && serial_type>0 ){ 3805 u64 v; 3806 u32 i; 3807 if( serial_type==7 ){ 3808 assert( sizeof(v)==sizeof(pMem->u.r) ); 3809 memcpy(&v, &pMem->u.r, sizeof(v)); 3810 swapMixedEndianFloat(v); 3811 }else{ 3812 v = pMem->u.i; 3813 } 3814 len = i = sqlite3SmallTypeSizes[serial_type]; 3815 assert( i>0 ); 3816 do{ 3817 buf[--i] = (u8)(v&0xFF); 3818 v >>= 8; 3819 }while( i ); 3820 return len; 3821 } 3822 3823 /* String or blob */ 3824 if( serial_type>=12 ){ 3825 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3826 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3827 len = pMem->n; 3828 if( len>0 ) memcpy(buf, pMem->z, len); 3829 return len; 3830 } 3831 3832 /* NULL or constants 0 or 1 */ 3833 return 0; 3834 } 3835 3836 /* Input "x" is a sequence of unsigned characters that represent a 3837 ** big-endian integer. Return the equivalent native integer 3838 */ 3839 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3840 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3841 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3842 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3843 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3844 3845 /* 3846 ** Deserialize the data blob pointed to by buf as serial type serial_type 3847 ** and store the result in pMem. Return the number of bytes read. 3848 ** 3849 ** This function is implemented as two separate routines for performance. 3850 ** The few cases that require local variables are broken out into a separate 3851 ** routine so that in most cases the overhead of moving the stack pointer 3852 ** is avoided. 3853 */ 3854 static u32 serialGet( 3855 const unsigned char *buf, /* Buffer to deserialize from */ 3856 u32 serial_type, /* Serial type to deserialize */ 3857 Mem *pMem /* Memory cell to write value into */ 3858 ){ 3859 u64 x = FOUR_BYTE_UINT(buf); 3860 u32 y = FOUR_BYTE_UINT(buf+4); 3861 x = (x<<32) + y; 3862 if( serial_type==6 ){ 3863 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3864 ** twos-complement integer. */ 3865 pMem->u.i = *(i64*)&x; 3866 pMem->flags = MEM_Int; 3867 testcase( pMem->u.i<0 ); 3868 }else{ 3869 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3870 ** floating point number. */ 3871 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3872 /* Verify that integers and floating point values use the same 3873 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3874 ** defined that 64-bit floating point values really are mixed 3875 ** endian. 3876 */ 3877 static const u64 t1 = ((u64)0x3ff00000)<<32; 3878 static const double r1 = 1.0; 3879 u64 t2 = t1; 3880 swapMixedEndianFloat(t2); 3881 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3882 #endif 3883 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3884 swapMixedEndianFloat(x); 3885 memcpy(&pMem->u.r, &x, sizeof(x)); 3886 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real; 3887 } 3888 return 8; 3889 } 3890 u32 sqlite3VdbeSerialGet( 3891 const unsigned char *buf, /* Buffer to deserialize from */ 3892 u32 serial_type, /* Serial type to deserialize */ 3893 Mem *pMem /* Memory cell to write value into */ 3894 ){ 3895 switch( serial_type ){ 3896 case 10: { /* Internal use only: NULL with virtual table 3897 ** UPDATE no-change flag set */ 3898 pMem->flags = MEM_Null|MEM_Zero; 3899 pMem->n = 0; 3900 pMem->u.nZero = 0; 3901 break; 3902 } 3903 case 11: /* Reserved for future use */ 3904 case 0: { /* Null */ 3905 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3906 pMem->flags = MEM_Null; 3907 break; 3908 } 3909 case 1: { 3910 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3911 ** integer. */ 3912 pMem->u.i = ONE_BYTE_INT(buf); 3913 pMem->flags = MEM_Int; 3914 testcase( pMem->u.i<0 ); 3915 return 1; 3916 } 3917 case 2: { /* 2-byte signed integer */ 3918 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3919 ** twos-complement integer. */ 3920 pMem->u.i = TWO_BYTE_INT(buf); 3921 pMem->flags = MEM_Int; 3922 testcase( pMem->u.i<0 ); 3923 return 2; 3924 } 3925 case 3: { /* 3-byte signed integer */ 3926 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3927 ** twos-complement integer. */ 3928 pMem->u.i = THREE_BYTE_INT(buf); 3929 pMem->flags = MEM_Int; 3930 testcase( pMem->u.i<0 ); 3931 return 3; 3932 } 3933 case 4: { /* 4-byte signed integer */ 3934 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3935 ** twos-complement integer. */ 3936 pMem->u.i = FOUR_BYTE_INT(buf); 3937 #ifdef __HP_cc 3938 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3939 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3940 #endif 3941 pMem->flags = MEM_Int; 3942 testcase( pMem->u.i<0 ); 3943 return 4; 3944 } 3945 case 5: { /* 6-byte signed integer */ 3946 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3947 ** twos-complement integer. */ 3948 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3949 pMem->flags = MEM_Int; 3950 testcase( pMem->u.i<0 ); 3951 return 6; 3952 } 3953 case 6: /* 8-byte signed integer */ 3954 case 7: { /* IEEE floating point */ 3955 /* These use local variables, so do them in a separate routine 3956 ** to avoid having to move the frame pointer in the common case */ 3957 return serialGet(buf,serial_type,pMem); 3958 } 3959 case 8: /* Integer 0 */ 3960 case 9: { /* Integer 1 */ 3961 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3962 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3963 pMem->u.i = serial_type-8; 3964 pMem->flags = MEM_Int; 3965 return 0; 3966 } 3967 default: { 3968 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3969 ** length. 3970 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3971 ** (N-13)/2 bytes in length. */ 3972 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3973 pMem->z = (char *)buf; 3974 pMem->n = (serial_type-12)/2; 3975 pMem->flags = aFlag[serial_type&1]; 3976 return pMem->n; 3977 } 3978 } 3979 return 0; 3980 } 3981 /* 3982 ** This routine is used to allocate sufficient space for an UnpackedRecord 3983 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3984 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3985 ** 3986 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3987 ** the unaligned buffer passed via the second and third arguments (presumably 3988 ** stack space). If the former, then *ppFree is set to a pointer that should 3989 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3990 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3991 ** before returning. 3992 ** 3993 ** If an OOM error occurs, NULL is returned. 3994 */ 3995 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3996 KeyInfo *pKeyInfo /* Description of the record */ 3997 ){ 3998 UnpackedRecord *p; /* Unpacked record to return */ 3999 int nByte; /* Number of bytes required for *p */ 4000 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 4001 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 4002 if( !p ) return 0; 4003 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 4004 assert( pKeyInfo->aSortFlags!=0 ); 4005 p->pKeyInfo = pKeyInfo; 4006 p->nField = pKeyInfo->nKeyField + 1; 4007 return p; 4008 } 4009 4010 /* 4011 ** Given the nKey-byte encoding of a record in pKey[], populate the 4012 ** UnpackedRecord structure indicated by the fourth argument with the 4013 ** contents of the decoded record. 4014 */ 4015 void sqlite3VdbeRecordUnpack( 4016 KeyInfo *pKeyInfo, /* Information about the record format */ 4017 int nKey, /* Size of the binary record */ 4018 const void *pKey, /* The binary record */ 4019 UnpackedRecord *p /* Populate this structure before returning. */ 4020 ){ 4021 const unsigned char *aKey = (const unsigned char *)pKey; 4022 u32 d; 4023 u32 idx; /* Offset in aKey[] to read from */ 4024 u16 u; /* Unsigned loop counter */ 4025 u32 szHdr; 4026 Mem *pMem = p->aMem; 4027 4028 p->default_rc = 0; 4029 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 4030 idx = getVarint32(aKey, szHdr); 4031 d = szHdr; 4032 u = 0; 4033 while( idx<szHdr && d<=(u32)nKey ){ 4034 u32 serial_type; 4035 4036 idx += getVarint32(&aKey[idx], serial_type); 4037 pMem->enc = pKeyInfo->enc; 4038 pMem->db = pKeyInfo->db; 4039 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 4040 pMem->szMalloc = 0; 4041 pMem->z = 0; 4042 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 4043 pMem++; 4044 if( (++u)>=p->nField ) break; 4045 } 4046 if( d>(u32)nKey && u ){ 4047 assert( CORRUPT_DB ); 4048 /* In a corrupt record entry, the last pMem might have been set up using 4049 ** uninitialized memory. Overwrite its value with NULL, to prevent 4050 ** warnings from MSAN. */ 4051 sqlite3VdbeMemSetNull(pMem-1); 4052 } 4053 assert( u<=pKeyInfo->nKeyField + 1 ); 4054 p->nField = u; 4055 } 4056 4057 #ifdef SQLITE_DEBUG 4058 /* 4059 ** This function compares two index or table record keys in the same way 4060 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 4061 ** this function deserializes and compares values using the 4062 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 4063 ** in assert() statements to ensure that the optimized code in 4064 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 4065 ** 4066 ** Return true if the result of comparison is equivalent to desiredResult. 4067 ** Return false if there is a disagreement. 4068 */ 4069 static int vdbeRecordCompareDebug( 4070 int nKey1, const void *pKey1, /* Left key */ 4071 const UnpackedRecord *pPKey2, /* Right key */ 4072 int desiredResult /* Correct answer */ 4073 ){ 4074 u32 d1; /* Offset into aKey[] of next data element */ 4075 u32 idx1; /* Offset into aKey[] of next header element */ 4076 u32 szHdr1; /* Number of bytes in header */ 4077 int i = 0; 4078 int rc = 0; 4079 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4080 KeyInfo *pKeyInfo; 4081 Mem mem1; 4082 4083 pKeyInfo = pPKey2->pKeyInfo; 4084 if( pKeyInfo->db==0 ) return 1; 4085 mem1.enc = pKeyInfo->enc; 4086 mem1.db = pKeyInfo->db; 4087 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 4088 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4089 4090 /* Compilers may complain that mem1.u.i is potentially uninitialized. 4091 ** We could initialize it, as shown here, to silence those complaints. 4092 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 4093 ** the unnecessary initialization has a measurable negative performance 4094 ** impact, since this routine is a very high runner. And so, we choose 4095 ** to ignore the compiler warnings and leave this variable uninitialized. 4096 */ 4097 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 4098 4099 idx1 = getVarint32(aKey1, szHdr1); 4100 if( szHdr1>98307 ) return SQLITE_CORRUPT; 4101 d1 = szHdr1; 4102 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 4103 assert( pKeyInfo->aSortFlags!=0 ); 4104 assert( pKeyInfo->nKeyField>0 ); 4105 assert( idx1<=szHdr1 || CORRUPT_DB ); 4106 do{ 4107 u32 serial_type1; 4108 4109 /* Read the serial types for the next element in each key. */ 4110 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 4111 4112 /* Verify that there is enough key space remaining to avoid 4113 ** a buffer overread. The "d1+serial_type1+2" subexpression will 4114 ** always be greater than or equal to the amount of required key space. 4115 ** Use that approximation to avoid the more expensive call to 4116 ** sqlite3VdbeSerialTypeLen() in the common case. 4117 */ 4118 if( d1+(u64)serial_type1+2>(u64)nKey1 4119 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 4120 ){ 4121 break; 4122 } 4123 4124 /* Extract the values to be compared. 4125 */ 4126 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 4127 4128 /* Do the comparison 4129 */ 4130 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], 4131 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0); 4132 if( rc!=0 ){ 4133 assert( mem1.szMalloc==0 ); /* See comment below */ 4134 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 4135 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null)) 4136 ){ 4137 rc = -rc; 4138 } 4139 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){ 4140 rc = -rc; /* Invert the result for DESC sort order. */ 4141 } 4142 goto debugCompareEnd; 4143 } 4144 i++; 4145 }while( idx1<szHdr1 && i<pPKey2->nField ); 4146 4147 /* No memory allocation is ever used on mem1. Prove this using 4148 ** the following assert(). If the assert() fails, it indicates a 4149 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 4150 */ 4151 assert( mem1.szMalloc==0 ); 4152 4153 /* rc==0 here means that one of the keys ran out of fields and 4154 ** all the fields up to that point were equal. Return the default_rc 4155 ** value. */ 4156 rc = pPKey2->default_rc; 4157 4158 debugCompareEnd: 4159 if( desiredResult==0 && rc==0 ) return 1; 4160 if( desiredResult<0 && rc<0 ) return 1; 4161 if( desiredResult>0 && rc>0 ) return 1; 4162 if( CORRUPT_DB ) return 1; 4163 if( pKeyInfo->db->mallocFailed ) return 1; 4164 return 0; 4165 } 4166 #endif 4167 4168 #ifdef SQLITE_DEBUG 4169 /* 4170 ** Count the number of fields (a.k.a. columns) in the record given by 4171 ** pKey,nKey. The verify that this count is less than or equal to the 4172 ** limit given by pKeyInfo->nAllField. 4173 ** 4174 ** If this constraint is not satisfied, it means that the high-speed 4175 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 4176 ** not work correctly. If this assert() ever fires, it probably means 4177 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 4178 ** incorrectly. 4179 */ 4180 static void vdbeAssertFieldCountWithinLimits( 4181 int nKey, const void *pKey, /* The record to verify */ 4182 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 4183 ){ 4184 int nField = 0; 4185 u32 szHdr; 4186 u32 idx; 4187 u32 notUsed; 4188 const unsigned char *aKey = (const unsigned char*)pKey; 4189 4190 if( CORRUPT_DB ) return; 4191 idx = getVarint32(aKey, szHdr); 4192 assert( nKey>=0 ); 4193 assert( szHdr<=(u32)nKey ); 4194 while( idx<szHdr ){ 4195 idx += getVarint32(aKey+idx, notUsed); 4196 nField++; 4197 } 4198 assert( nField <= pKeyInfo->nAllField ); 4199 } 4200 #else 4201 # define vdbeAssertFieldCountWithinLimits(A,B,C) 4202 #endif 4203 4204 /* 4205 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 4206 ** using the collation sequence pColl. As usual, return a negative , zero 4207 ** or positive value if *pMem1 is less than, equal to or greater than 4208 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 4209 */ 4210 static int vdbeCompareMemString( 4211 const Mem *pMem1, 4212 const Mem *pMem2, 4213 const CollSeq *pColl, 4214 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 4215 ){ 4216 if( pMem1->enc==pColl->enc ){ 4217 /* The strings are already in the correct encoding. Call the 4218 ** comparison function directly */ 4219 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 4220 }else{ 4221 int rc; 4222 const void *v1, *v2; 4223 Mem c1; 4224 Mem c2; 4225 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 4226 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 4227 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 4228 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 4229 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 4230 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 4231 if( (v1==0 || v2==0) ){ 4232 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 4233 rc = 0; 4234 }else{ 4235 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 4236 } 4237 sqlite3VdbeMemRelease(&c1); 4238 sqlite3VdbeMemRelease(&c2); 4239 return rc; 4240 } 4241 } 4242 4243 /* 4244 ** The input pBlob is guaranteed to be a Blob that is not marked 4245 ** with MEM_Zero. Return true if it could be a zero-blob. 4246 */ 4247 static int isAllZero(const char *z, int n){ 4248 int i; 4249 for(i=0; i<n; i++){ 4250 if( z[i] ) return 0; 4251 } 4252 return 1; 4253 } 4254 4255 /* 4256 ** Compare two blobs. Return negative, zero, or positive if the first 4257 ** is less than, equal to, or greater than the second, respectively. 4258 ** If one blob is a prefix of the other, then the shorter is the lessor. 4259 */ 4260 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 4261 int c; 4262 int n1 = pB1->n; 4263 int n2 = pB2->n; 4264 4265 /* It is possible to have a Blob value that has some non-zero content 4266 ** followed by zero content. But that only comes up for Blobs formed 4267 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 4268 ** sqlite3MemCompare(). */ 4269 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 4270 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 4271 4272 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 4273 if( pB1->flags & pB2->flags & MEM_Zero ){ 4274 return pB1->u.nZero - pB2->u.nZero; 4275 }else if( pB1->flags & MEM_Zero ){ 4276 if( !isAllZero(pB2->z, pB2->n) ) return -1; 4277 return pB1->u.nZero - n2; 4278 }else{ 4279 if( !isAllZero(pB1->z, pB1->n) ) return +1; 4280 return n1 - pB2->u.nZero; 4281 } 4282 } 4283 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 4284 if( c ) return c; 4285 return n1 - n2; 4286 } 4287 4288 /* 4289 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 4290 ** number. Return negative, zero, or positive if the first (i64) is less than, 4291 ** equal to, or greater than the second (double). 4292 */ 4293 static int sqlite3IntFloatCompare(i64 i, double r){ 4294 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 4295 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 4296 if( x<r ) return -1; 4297 if( x>r ) return +1; 4298 return 0; 4299 }else{ 4300 i64 y; 4301 double s; 4302 if( r<-9223372036854775808.0 ) return +1; 4303 if( r>=9223372036854775808.0 ) return -1; 4304 y = (i64)r; 4305 if( i<y ) return -1; 4306 if( i>y ) return +1; 4307 s = (double)i; 4308 if( s<r ) return -1; 4309 if( s>r ) return +1; 4310 return 0; 4311 } 4312 } 4313 4314 /* 4315 ** Compare the values contained by the two memory cells, returning 4316 ** negative, zero or positive if pMem1 is less than, equal to, or greater 4317 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 4318 ** and reals) sorted numerically, followed by text ordered by the collating 4319 ** sequence pColl and finally blob's ordered by memcmp(). 4320 ** 4321 ** Two NULL values are considered equal by this function. 4322 */ 4323 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 4324 int f1, f2; 4325 int combined_flags; 4326 4327 f1 = pMem1->flags; 4328 f2 = pMem2->flags; 4329 combined_flags = f1|f2; 4330 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); 4331 4332 /* If one value is NULL, it is less than the other. If both values 4333 ** are NULL, return 0. 4334 */ 4335 if( combined_flags&MEM_Null ){ 4336 return (f2&MEM_Null) - (f1&MEM_Null); 4337 } 4338 4339 /* At least one of the two values is a number 4340 */ 4341 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ 4342 testcase( combined_flags & MEM_Int ); 4343 testcase( combined_flags & MEM_Real ); 4344 testcase( combined_flags & MEM_IntReal ); 4345 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ 4346 testcase( f1 & f2 & MEM_Int ); 4347 testcase( f1 & f2 & MEM_IntReal ); 4348 if( pMem1->u.i < pMem2->u.i ) return -1; 4349 if( pMem1->u.i > pMem2->u.i ) return +1; 4350 return 0; 4351 } 4352 if( (f1 & f2 & MEM_Real)!=0 ){ 4353 if( pMem1->u.r < pMem2->u.r ) return -1; 4354 if( pMem1->u.r > pMem2->u.r ) return +1; 4355 return 0; 4356 } 4357 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ 4358 testcase( f1 & MEM_Int ); 4359 testcase( f1 & MEM_IntReal ); 4360 if( (f2&MEM_Real)!=0 ){ 4361 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 4362 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4363 if( pMem1->u.i < pMem2->u.i ) return -1; 4364 if( pMem1->u.i > pMem2->u.i ) return +1; 4365 return 0; 4366 }else{ 4367 return -1; 4368 } 4369 } 4370 if( (f1&MEM_Real)!=0 ){ 4371 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4372 testcase( f2 & MEM_Int ); 4373 testcase( f2 & MEM_IntReal ); 4374 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 4375 }else{ 4376 return -1; 4377 } 4378 } 4379 return +1; 4380 } 4381 4382 /* If one value is a string and the other is a blob, the string is less. 4383 ** If both are strings, compare using the collating functions. 4384 */ 4385 if( combined_flags&MEM_Str ){ 4386 if( (f1 & MEM_Str)==0 ){ 4387 return 1; 4388 } 4389 if( (f2 & MEM_Str)==0 ){ 4390 return -1; 4391 } 4392 4393 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 4394 assert( pMem1->enc==SQLITE_UTF8 || 4395 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 4396 4397 /* The collation sequence must be defined at this point, even if 4398 ** the user deletes the collation sequence after the vdbe program is 4399 ** compiled (this was not always the case). 4400 */ 4401 assert( !pColl || pColl->xCmp ); 4402 4403 if( pColl ){ 4404 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 4405 } 4406 /* If a NULL pointer was passed as the collate function, fall through 4407 ** to the blob case and use memcmp(). */ 4408 } 4409 4410 /* Both values must be blobs. Compare using memcmp(). */ 4411 return sqlite3BlobCompare(pMem1, pMem2); 4412 } 4413 4414 4415 /* 4416 ** The first argument passed to this function is a serial-type that 4417 ** corresponds to an integer - all values between 1 and 9 inclusive 4418 ** except 7. The second points to a buffer containing an integer value 4419 ** serialized according to serial_type. This function deserializes 4420 ** and returns the value. 4421 */ 4422 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 4423 u32 y; 4424 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 4425 switch( serial_type ){ 4426 case 0: 4427 case 1: 4428 testcase( aKey[0]&0x80 ); 4429 return ONE_BYTE_INT(aKey); 4430 case 2: 4431 testcase( aKey[0]&0x80 ); 4432 return TWO_BYTE_INT(aKey); 4433 case 3: 4434 testcase( aKey[0]&0x80 ); 4435 return THREE_BYTE_INT(aKey); 4436 case 4: { 4437 testcase( aKey[0]&0x80 ); 4438 y = FOUR_BYTE_UINT(aKey); 4439 return (i64)*(int*)&y; 4440 } 4441 case 5: { 4442 testcase( aKey[0]&0x80 ); 4443 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4444 } 4445 case 6: { 4446 u64 x = FOUR_BYTE_UINT(aKey); 4447 testcase( aKey[0]&0x80 ); 4448 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4449 return (i64)*(i64*)&x; 4450 } 4451 } 4452 4453 return (serial_type - 8); 4454 } 4455 4456 /* 4457 ** This function compares the two table rows or index records 4458 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 4459 ** or positive integer if key1 is less than, equal to or 4460 ** greater than key2. The {nKey1, pKey1} key must be a blob 4461 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 4462 ** key must be a parsed key such as obtained from 4463 ** sqlite3VdbeParseRecord. 4464 ** 4465 ** If argument bSkip is non-zero, it is assumed that the caller has already 4466 ** determined that the first fields of the keys are equal. 4467 ** 4468 ** Key1 and Key2 do not have to contain the same number of fields. If all 4469 ** fields that appear in both keys are equal, then pPKey2->default_rc is 4470 ** returned. 4471 ** 4472 ** If database corruption is discovered, set pPKey2->errCode to 4473 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 4474 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 4475 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 4476 */ 4477 int sqlite3VdbeRecordCompareWithSkip( 4478 int nKey1, const void *pKey1, /* Left key */ 4479 UnpackedRecord *pPKey2, /* Right key */ 4480 int bSkip /* If true, skip the first field */ 4481 ){ 4482 u32 d1; /* Offset into aKey[] of next data element */ 4483 int i; /* Index of next field to compare */ 4484 u32 szHdr1; /* Size of record header in bytes */ 4485 u32 idx1; /* Offset of first type in header */ 4486 int rc = 0; /* Return value */ 4487 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 4488 KeyInfo *pKeyInfo; 4489 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4490 Mem mem1; 4491 4492 /* If bSkip is true, then the caller has already determined that the first 4493 ** two elements in the keys are equal. Fix the various stack variables so 4494 ** that this routine begins comparing at the second field. */ 4495 if( bSkip ){ 4496 u32 s1; 4497 idx1 = 1 + getVarint32(&aKey1[1], s1); 4498 szHdr1 = aKey1[0]; 4499 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 4500 i = 1; 4501 pRhs++; 4502 }else{ 4503 idx1 = getVarint32(aKey1, szHdr1); 4504 d1 = szHdr1; 4505 i = 0; 4506 } 4507 if( d1>(unsigned)nKey1 ){ 4508 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4509 return 0; /* Corruption */ 4510 } 4511 4512 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4513 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 4514 || CORRUPT_DB ); 4515 assert( pPKey2->pKeyInfo->aSortFlags!=0 ); 4516 assert( pPKey2->pKeyInfo->nKeyField>0 ); 4517 assert( idx1<=szHdr1 || CORRUPT_DB ); 4518 do{ 4519 u32 serial_type; 4520 4521 /* RHS is an integer */ 4522 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ 4523 testcase( pRhs->flags & MEM_Int ); 4524 testcase( pRhs->flags & MEM_IntReal ); 4525 serial_type = aKey1[idx1]; 4526 testcase( serial_type==12 ); 4527 if( serial_type>=10 ){ 4528 rc = +1; 4529 }else if( serial_type==0 ){ 4530 rc = -1; 4531 }else if( serial_type==7 ){ 4532 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4533 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4534 }else{ 4535 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4536 i64 rhs = pRhs->u.i; 4537 if( lhs<rhs ){ 4538 rc = -1; 4539 }else if( lhs>rhs ){ 4540 rc = +1; 4541 } 4542 } 4543 } 4544 4545 /* RHS is real */ 4546 else if( pRhs->flags & MEM_Real ){ 4547 serial_type = aKey1[idx1]; 4548 if( serial_type>=10 ){ 4549 /* Serial types 12 or greater are strings and blobs (greater than 4550 ** numbers). Types 10 and 11 are currently "reserved for future 4551 ** use", so it doesn't really matter what the results of comparing 4552 ** them to numberic values are. */ 4553 rc = +1; 4554 }else if( serial_type==0 ){ 4555 rc = -1; 4556 }else{ 4557 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4558 if( serial_type==7 ){ 4559 if( mem1.u.r<pRhs->u.r ){ 4560 rc = -1; 4561 }else if( mem1.u.r>pRhs->u.r ){ 4562 rc = +1; 4563 } 4564 }else{ 4565 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4566 } 4567 } 4568 } 4569 4570 /* RHS is a string */ 4571 else if( pRhs->flags & MEM_Str ){ 4572 getVarint32NR(&aKey1[idx1], serial_type); 4573 testcase( serial_type==12 ); 4574 if( serial_type<12 ){ 4575 rc = -1; 4576 }else if( !(serial_type & 0x01) ){ 4577 rc = +1; 4578 }else{ 4579 mem1.n = (serial_type - 12) / 2; 4580 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4581 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4582 if( (d1+mem1.n) > (unsigned)nKey1 4583 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i 4584 ){ 4585 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4586 return 0; /* Corruption */ 4587 }else if( pKeyInfo->aColl[i] ){ 4588 mem1.enc = pKeyInfo->enc; 4589 mem1.db = pKeyInfo->db; 4590 mem1.flags = MEM_Str; 4591 mem1.z = (char*)&aKey1[d1]; 4592 rc = vdbeCompareMemString( 4593 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4594 ); 4595 }else{ 4596 int nCmp = MIN(mem1.n, pRhs->n); 4597 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4598 if( rc==0 ) rc = mem1.n - pRhs->n; 4599 } 4600 } 4601 } 4602 4603 /* RHS is a blob */ 4604 else if( pRhs->flags & MEM_Blob ){ 4605 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4606 getVarint32NR(&aKey1[idx1], serial_type); 4607 testcase( serial_type==12 ); 4608 if( serial_type<12 || (serial_type & 0x01) ){ 4609 rc = -1; 4610 }else{ 4611 int nStr = (serial_type - 12) / 2; 4612 testcase( (d1+nStr)==(unsigned)nKey1 ); 4613 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4614 if( (d1+nStr) > (unsigned)nKey1 ){ 4615 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4616 return 0; /* Corruption */ 4617 }else if( pRhs->flags & MEM_Zero ){ 4618 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4619 rc = 1; 4620 }else{ 4621 rc = nStr - pRhs->u.nZero; 4622 } 4623 }else{ 4624 int nCmp = MIN(nStr, pRhs->n); 4625 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4626 if( rc==0 ) rc = nStr - pRhs->n; 4627 } 4628 } 4629 } 4630 4631 /* RHS is null */ 4632 else{ 4633 serial_type = aKey1[idx1]; 4634 rc = (serial_type!=0); 4635 } 4636 4637 if( rc!=0 ){ 4638 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i]; 4639 if( sortFlags ){ 4640 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0 4641 || ((sortFlags & KEYINFO_ORDER_DESC) 4642 !=(serial_type==0 || (pRhs->flags&MEM_Null))) 4643 ){ 4644 rc = -rc; 4645 } 4646 } 4647 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4648 assert( mem1.szMalloc==0 ); /* See comment below */ 4649 return rc; 4650 } 4651 4652 i++; 4653 if( i==pPKey2->nField ) break; 4654 pRhs++; 4655 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4656 idx1 += sqlite3VarintLen(serial_type); 4657 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 ); 4658 4659 /* No memory allocation is ever used on mem1. Prove this using 4660 ** the following assert(). If the assert() fails, it indicates a 4661 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4662 assert( mem1.szMalloc==0 ); 4663 4664 /* rc==0 here means that one or both of the keys ran out of fields and 4665 ** all the fields up to that point were equal. Return the default_rc 4666 ** value. */ 4667 assert( CORRUPT_DB 4668 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4669 || pPKey2->pKeyInfo->db->mallocFailed 4670 ); 4671 pPKey2->eqSeen = 1; 4672 return pPKey2->default_rc; 4673 } 4674 int sqlite3VdbeRecordCompare( 4675 int nKey1, const void *pKey1, /* Left key */ 4676 UnpackedRecord *pPKey2 /* Right key */ 4677 ){ 4678 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4679 } 4680 4681 4682 /* 4683 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4684 ** that (a) the first field of pPKey2 is an integer, and (b) the 4685 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4686 ** byte (i.e. is less than 128). 4687 ** 4688 ** To avoid concerns about buffer overreads, this routine is only used 4689 ** on schemas where the maximum valid header size is 63 bytes or less. 4690 */ 4691 static int vdbeRecordCompareInt( 4692 int nKey1, const void *pKey1, /* Left key */ 4693 UnpackedRecord *pPKey2 /* Right key */ 4694 ){ 4695 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4696 int serial_type = ((const u8*)pKey1)[1]; 4697 int res; 4698 u32 y; 4699 u64 x; 4700 i64 v; 4701 i64 lhs; 4702 4703 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4704 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4705 switch( serial_type ){ 4706 case 1: { /* 1-byte signed integer */ 4707 lhs = ONE_BYTE_INT(aKey); 4708 testcase( lhs<0 ); 4709 break; 4710 } 4711 case 2: { /* 2-byte signed integer */ 4712 lhs = TWO_BYTE_INT(aKey); 4713 testcase( lhs<0 ); 4714 break; 4715 } 4716 case 3: { /* 3-byte signed integer */ 4717 lhs = THREE_BYTE_INT(aKey); 4718 testcase( lhs<0 ); 4719 break; 4720 } 4721 case 4: { /* 4-byte signed integer */ 4722 y = FOUR_BYTE_UINT(aKey); 4723 lhs = (i64)*(int*)&y; 4724 testcase( lhs<0 ); 4725 break; 4726 } 4727 case 5: { /* 6-byte signed integer */ 4728 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4729 testcase( lhs<0 ); 4730 break; 4731 } 4732 case 6: { /* 8-byte signed integer */ 4733 x = FOUR_BYTE_UINT(aKey); 4734 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4735 lhs = *(i64*)&x; 4736 testcase( lhs<0 ); 4737 break; 4738 } 4739 case 8: 4740 lhs = 0; 4741 break; 4742 case 9: 4743 lhs = 1; 4744 break; 4745 4746 /* This case could be removed without changing the results of running 4747 ** this code. Including it causes gcc to generate a faster switch 4748 ** statement (since the range of switch targets now starts at zero and 4749 ** is contiguous) but does not cause any duplicate code to be generated 4750 ** (as gcc is clever enough to combine the two like cases). Other 4751 ** compilers might be similar. */ 4752 case 0: case 7: 4753 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4754 4755 default: 4756 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4757 } 4758 4759 v = pPKey2->aMem[0].u.i; 4760 if( v>lhs ){ 4761 res = pPKey2->r1; 4762 }else if( v<lhs ){ 4763 res = pPKey2->r2; 4764 }else if( pPKey2->nField>1 ){ 4765 /* The first fields of the two keys are equal. Compare the trailing 4766 ** fields. */ 4767 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4768 }else{ 4769 /* The first fields of the two keys are equal and there are no trailing 4770 ** fields. Return pPKey2->default_rc in this case. */ 4771 res = pPKey2->default_rc; 4772 pPKey2->eqSeen = 1; 4773 } 4774 4775 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4776 return res; 4777 } 4778 4779 /* 4780 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4781 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4782 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4783 ** at the start of (pKey1/nKey1) fits in a single byte. 4784 */ 4785 static int vdbeRecordCompareString( 4786 int nKey1, const void *pKey1, /* Left key */ 4787 UnpackedRecord *pPKey2 /* Right key */ 4788 ){ 4789 const u8 *aKey1 = (const u8*)pKey1; 4790 int serial_type; 4791 int res; 4792 4793 assert( pPKey2->aMem[0].flags & MEM_Str ); 4794 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4795 serial_type = (u8)(aKey1[1]); 4796 if( serial_type >= 0x80 ){ 4797 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type); 4798 } 4799 if( serial_type<12 ){ 4800 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4801 }else if( !(serial_type & 0x01) ){ 4802 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4803 }else{ 4804 int nCmp; 4805 int nStr; 4806 int szHdr = aKey1[0]; 4807 4808 nStr = (serial_type-12) / 2; 4809 if( (szHdr + nStr) > nKey1 ){ 4810 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4811 return 0; /* Corruption */ 4812 } 4813 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4814 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4815 4816 if( res>0 ){ 4817 res = pPKey2->r2; 4818 }else if( res<0 ){ 4819 res = pPKey2->r1; 4820 }else{ 4821 res = nStr - pPKey2->aMem[0].n; 4822 if( res==0 ){ 4823 if( pPKey2->nField>1 ){ 4824 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4825 }else{ 4826 res = pPKey2->default_rc; 4827 pPKey2->eqSeen = 1; 4828 } 4829 }else if( res>0 ){ 4830 res = pPKey2->r2; 4831 }else{ 4832 res = pPKey2->r1; 4833 } 4834 } 4835 } 4836 4837 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4838 || CORRUPT_DB 4839 || pPKey2->pKeyInfo->db->mallocFailed 4840 ); 4841 return res; 4842 } 4843 4844 /* 4845 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4846 ** suitable for comparing serialized records to the unpacked record passed 4847 ** as the only argument. 4848 */ 4849 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4850 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4851 ** that the size-of-header varint that occurs at the start of each record 4852 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4853 ** also assumes that it is safe to overread a buffer by at least the 4854 ** maximum possible legal header size plus 8 bytes. Because there is 4855 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4856 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4857 ** limit the size of the header to 64 bytes in cases where the first field 4858 ** is an integer. 4859 ** 4860 ** The easiest way to enforce this limit is to consider only records with 4861 ** 13 fields or less. If the first field is an integer, the maximum legal 4862 ** header size is (12*5 + 1 + 1) bytes. */ 4863 if( p->pKeyInfo->nAllField<=13 ){ 4864 int flags = p->aMem[0].flags; 4865 if( p->pKeyInfo->aSortFlags[0] ){ 4866 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){ 4867 return sqlite3VdbeRecordCompare; 4868 } 4869 p->r1 = 1; 4870 p->r2 = -1; 4871 }else{ 4872 p->r1 = -1; 4873 p->r2 = 1; 4874 } 4875 if( (flags & MEM_Int) ){ 4876 return vdbeRecordCompareInt; 4877 } 4878 testcase( flags & MEM_Real ); 4879 testcase( flags & MEM_Null ); 4880 testcase( flags & MEM_Blob ); 4881 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 4882 && p->pKeyInfo->aColl[0]==0 4883 ){ 4884 assert( flags & MEM_Str ); 4885 return vdbeRecordCompareString; 4886 } 4887 } 4888 4889 return sqlite3VdbeRecordCompare; 4890 } 4891 4892 /* 4893 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4894 ** Read the rowid (the last field in the record) and store it in *rowid. 4895 ** Return SQLITE_OK if everything works, or an error code otherwise. 4896 ** 4897 ** pCur might be pointing to text obtained from a corrupt database file. 4898 ** So the content cannot be trusted. Do appropriate checks on the content. 4899 */ 4900 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4901 i64 nCellKey = 0; 4902 int rc; 4903 u32 szHdr; /* Size of the header */ 4904 u32 typeRowid; /* Serial type of the rowid */ 4905 u32 lenRowid; /* Size of the rowid */ 4906 Mem m, v; 4907 4908 /* Get the size of the index entry. Only indices entries of less 4909 ** than 2GiB are support - anything large must be database corruption. 4910 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4911 ** this code can safely assume that nCellKey is 32-bits 4912 */ 4913 assert( sqlite3BtreeCursorIsValid(pCur) ); 4914 nCellKey = sqlite3BtreePayloadSize(pCur); 4915 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4916 4917 /* Read in the complete content of the index entry */ 4918 sqlite3VdbeMemInit(&m, db, 0); 4919 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 4920 if( rc ){ 4921 return rc; 4922 } 4923 4924 /* The index entry must begin with a header size */ 4925 getVarint32NR((u8*)m.z, szHdr); 4926 testcase( szHdr==3 ); 4927 testcase( szHdr==m.n ); 4928 testcase( szHdr>0x7fffffff ); 4929 assert( m.n>=0 ); 4930 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ 4931 goto idx_rowid_corruption; 4932 } 4933 4934 /* The last field of the index should be an integer - the ROWID. 4935 ** Verify that the last entry really is an integer. */ 4936 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid); 4937 testcase( typeRowid==1 ); 4938 testcase( typeRowid==2 ); 4939 testcase( typeRowid==3 ); 4940 testcase( typeRowid==4 ); 4941 testcase( typeRowid==5 ); 4942 testcase( typeRowid==6 ); 4943 testcase( typeRowid==8 ); 4944 testcase( typeRowid==9 ); 4945 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4946 goto idx_rowid_corruption; 4947 } 4948 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4949 testcase( (u32)m.n==szHdr+lenRowid ); 4950 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4951 goto idx_rowid_corruption; 4952 } 4953 4954 /* Fetch the integer off the end of the index record */ 4955 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4956 *rowid = v.u.i; 4957 sqlite3VdbeMemRelease(&m); 4958 return SQLITE_OK; 4959 4960 /* Jump here if database corruption is detected after m has been 4961 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4962 idx_rowid_corruption: 4963 testcase( m.szMalloc!=0 ); 4964 sqlite3VdbeMemRelease(&m); 4965 return SQLITE_CORRUPT_BKPT; 4966 } 4967 4968 /* 4969 ** Compare the key of the index entry that cursor pC is pointing to against 4970 ** the key string in pUnpacked. Write into *pRes a number 4971 ** that is negative, zero, or positive if pC is less than, equal to, 4972 ** or greater than pUnpacked. Return SQLITE_OK on success. 4973 ** 4974 ** pUnpacked is either created without a rowid or is truncated so that it 4975 ** omits the rowid at the end. The rowid at the end of the index entry 4976 ** is ignored as well. Hence, this routine only compares the prefixes 4977 ** of the keys prior to the final rowid, not the entire key. 4978 */ 4979 int sqlite3VdbeIdxKeyCompare( 4980 sqlite3 *db, /* Database connection */ 4981 VdbeCursor *pC, /* The cursor to compare against */ 4982 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4983 int *res /* Write the comparison result here */ 4984 ){ 4985 i64 nCellKey = 0; 4986 int rc; 4987 BtCursor *pCur; 4988 Mem m; 4989 4990 assert( pC->eCurType==CURTYPE_BTREE ); 4991 pCur = pC->uc.pCursor; 4992 assert( sqlite3BtreeCursorIsValid(pCur) ); 4993 nCellKey = sqlite3BtreePayloadSize(pCur); 4994 /* nCellKey will always be between 0 and 0xffffffff because of the way 4995 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4996 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4997 *res = 0; 4998 return SQLITE_CORRUPT_BKPT; 4999 } 5000 sqlite3VdbeMemInit(&m, db, 0); 5001 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 5002 if( rc ){ 5003 return rc; 5004 } 5005 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); 5006 sqlite3VdbeMemRelease(&m); 5007 return SQLITE_OK; 5008 } 5009 5010 /* 5011 ** This routine sets the value to be returned by subsequent calls to 5012 ** sqlite3_changes() on the database handle 'db'. 5013 */ 5014 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 5015 assert( sqlite3_mutex_held(db->mutex) ); 5016 db->nChange = nChange; 5017 db->nTotalChange += nChange; 5018 } 5019 5020 /* 5021 ** Set a flag in the vdbe to update the change counter when it is finalised 5022 ** or reset. 5023 */ 5024 void sqlite3VdbeCountChanges(Vdbe *v){ 5025 v->changeCntOn = 1; 5026 } 5027 5028 /* 5029 ** Mark every prepared statement associated with a database connection 5030 ** as expired. 5031 ** 5032 ** An expired statement means that recompilation of the statement is 5033 ** recommend. Statements expire when things happen that make their 5034 ** programs obsolete. Removing user-defined functions or collating 5035 ** sequences, or changing an authorization function are the types of 5036 ** things that make prepared statements obsolete. 5037 ** 5038 ** If iCode is 1, then expiration is advisory. The statement should 5039 ** be reprepared before being restarted, but if it is already running 5040 ** it is allowed to run to completion. 5041 ** 5042 ** Internally, this function just sets the Vdbe.expired flag on all 5043 ** prepared statements. The flag is set to 1 for an immediate expiration 5044 ** and set to 2 for an advisory expiration. 5045 */ 5046 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ 5047 Vdbe *p; 5048 for(p = db->pVdbe; p; p=p->pNext){ 5049 p->expired = iCode+1; 5050 } 5051 } 5052 5053 /* 5054 ** Return the database associated with the Vdbe. 5055 */ 5056 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 5057 return v->db; 5058 } 5059 5060 /* 5061 ** Return the SQLITE_PREPARE flags for a Vdbe. 5062 */ 5063 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 5064 return v->prepFlags; 5065 } 5066 5067 /* 5068 ** Return a pointer to an sqlite3_value structure containing the value bound 5069 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 5070 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 5071 ** constants) to the value before returning it. 5072 ** 5073 ** The returned value must be freed by the caller using sqlite3ValueFree(). 5074 */ 5075 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 5076 assert( iVar>0 ); 5077 if( v ){ 5078 Mem *pMem = &v->aVar[iVar-1]; 5079 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5080 if( 0==(pMem->flags & MEM_Null) ){ 5081 sqlite3_value *pRet = sqlite3ValueNew(v->db); 5082 if( pRet ){ 5083 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 5084 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 5085 } 5086 return pRet; 5087 } 5088 } 5089 return 0; 5090 } 5091 5092 /* 5093 ** Configure SQL variable iVar so that binding a new value to it signals 5094 ** to sqlite3_reoptimize() that re-preparing the statement may result 5095 ** in a better query plan. 5096 */ 5097 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 5098 assert( iVar>0 ); 5099 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5100 if( iVar>=32 ){ 5101 v->expmask |= 0x80000000; 5102 }else{ 5103 v->expmask |= ((u32)1 << (iVar-1)); 5104 } 5105 } 5106 5107 /* 5108 ** Cause a function to throw an error if it was call from OP_PureFunc 5109 ** rather than OP_Function. 5110 ** 5111 ** OP_PureFunc means that the function must be deterministic, and should 5112 ** throw an error if it is given inputs that would make it non-deterministic. 5113 ** This routine is invoked by date/time functions that use non-deterministic 5114 ** features such as 'now'. 5115 */ 5116 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 5117 const VdbeOp *pOp; 5118 #ifdef SQLITE_ENABLE_STAT4 5119 if( pCtx->pVdbe==0 ) return 1; 5120 #endif 5121 pOp = pCtx->pVdbe->aOp + pCtx->iOp; 5122 if( pOp->opcode==OP_PureFunc ){ 5123 const char *zContext; 5124 char *zMsg; 5125 if( pOp->p5 & NC_IsCheck ){ 5126 zContext = "a CHECK constraint"; 5127 }else if( pOp->p5 & NC_GenCol ){ 5128 zContext = "a generated column"; 5129 }else{ 5130 zContext = "an index"; 5131 } 5132 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s", 5133 pCtx->pFunc->zName, zContext); 5134 sqlite3_result_error(pCtx, zMsg, -1); 5135 sqlite3_free(zMsg); 5136 return 0; 5137 } 5138 return 1; 5139 } 5140 5141 #ifndef SQLITE_OMIT_VIRTUALTABLE 5142 /* 5143 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 5144 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 5145 ** in memory obtained from sqlite3DbMalloc). 5146 */ 5147 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 5148 if( pVtab->zErrMsg ){ 5149 sqlite3 *db = p->db; 5150 sqlite3DbFree(db, p->zErrMsg); 5151 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 5152 sqlite3_free(pVtab->zErrMsg); 5153 pVtab->zErrMsg = 0; 5154 } 5155 } 5156 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5157 5158 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5159 5160 /* 5161 ** If the second argument is not NULL, release any allocations associated 5162 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 5163 ** structure itself, using sqlite3DbFree(). 5164 ** 5165 ** This function is used to free UnpackedRecord structures allocated by 5166 ** the vdbeUnpackRecord() function found in vdbeapi.c. 5167 */ 5168 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 5169 if( p ){ 5170 int i; 5171 for(i=0; i<nField; i++){ 5172 Mem *pMem = &p->aMem[i]; 5173 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem); 5174 } 5175 sqlite3DbFreeNN(db, p); 5176 } 5177 } 5178 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5179 5180 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5181 /* 5182 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 5183 ** then cursor passed as the second argument should point to the row about 5184 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 5185 ** the required value will be read from the row the cursor points to. 5186 */ 5187 void sqlite3VdbePreUpdateHook( 5188 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 5189 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 5190 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 5191 const char *zDb, /* Database name */ 5192 Table *pTab, /* Modified table */ 5193 i64 iKey1, /* Initial key value */ 5194 int iReg /* Register for new.* record */ 5195 ){ 5196 sqlite3 *db = v->db; 5197 i64 iKey2; 5198 PreUpdate preupdate; 5199 const char *zTbl = pTab->zName; 5200 static const u8 fakeSortOrder = 0; 5201 5202 assert( db->pPreUpdate==0 ); 5203 memset(&preupdate, 0, sizeof(PreUpdate)); 5204 if( HasRowid(pTab)==0 ){ 5205 iKey1 = iKey2 = 0; 5206 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 5207 }else{ 5208 if( op==SQLITE_UPDATE ){ 5209 iKey2 = v->aMem[iReg].u.i; 5210 }else{ 5211 iKey2 = iKey1; 5212 } 5213 } 5214 5215 assert( pCsr->nField==pTab->nCol 5216 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 5217 ); 5218 5219 preupdate.v = v; 5220 preupdate.pCsr = pCsr; 5221 preupdate.op = op; 5222 preupdate.iNewReg = iReg; 5223 preupdate.keyinfo.db = db; 5224 preupdate.keyinfo.enc = ENC(db); 5225 preupdate.keyinfo.nKeyField = pTab->nCol; 5226 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder; 5227 preupdate.iKey1 = iKey1; 5228 preupdate.iKey2 = iKey2; 5229 preupdate.pTab = pTab; 5230 5231 db->pPreUpdate = &preupdate; 5232 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 5233 db->pPreUpdate = 0; 5234 sqlite3DbFree(db, preupdate.aRecord); 5235 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 5236 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 5237 if( preupdate.aNew ){ 5238 int i; 5239 for(i=0; i<pCsr->nField; i++){ 5240 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 5241 } 5242 sqlite3DbFreeNN(db, preupdate.aNew); 5243 } 5244 } 5245 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5246