1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* 19 ** Create a new virtual database engine. 20 */ 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 22 sqlite3 *db = pParse->db; 23 Vdbe *p; 24 p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); 25 if( p==0 ) return 0; 26 p->db = db; 27 if( db->pVdbe ){ 28 db->pVdbe->pPrev = p; 29 } 30 p->pNext = db->pVdbe; 31 p->pPrev = 0; 32 db->pVdbe = p; 33 p->magic = VDBE_MAGIC_INIT; 34 p->pParse = pParse; 35 assert( pParse->aLabel==0 ); 36 assert( pParse->nLabel==0 ); 37 assert( pParse->nOpAlloc==0 ); 38 assert( pParse->szOpAlloc==0 ); 39 return p; 40 } 41 42 /* 43 ** Change the error string stored in Vdbe.zErrMsg 44 */ 45 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 46 va_list ap; 47 sqlite3DbFree(p->db, p->zErrMsg); 48 va_start(ap, zFormat); 49 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 50 va_end(ap); 51 } 52 53 /* 54 ** Remember the SQL string for a prepared statement. 55 */ 56 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ 57 assert( isPrepareV2==1 || isPrepareV2==0 ); 58 if( p==0 ) return; 59 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG) 60 if( !isPrepareV2 ) return; 61 #endif 62 assert( p->zSql==0 ); 63 p->zSql = sqlite3DbStrNDup(p->db, z, n); 64 p->isPrepareV2 = (u8)isPrepareV2; 65 } 66 67 /* 68 ** Return the SQL associated with a prepared statement 69 */ 70 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 71 Vdbe *p = (Vdbe *)pStmt; 72 return p ? p->zSql : 0; 73 } 74 75 /* 76 ** Swap all content between two VDBE structures. 77 */ 78 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 79 Vdbe tmp, *pTmp; 80 char *zTmp; 81 tmp = *pA; 82 *pA = *pB; 83 *pB = tmp; 84 pTmp = pA->pNext; 85 pA->pNext = pB->pNext; 86 pB->pNext = pTmp; 87 pTmp = pA->pPrev; 88 pA->pPrev = pB->pPrev; 89 pB->pPrev = pTmp; 90 zTmp = pA->zSql; 91 pA->zSql = pB->zSql; 92 pB->zSql = zTmp; 93 pB->isPrepareV2 = pA->isPrepareV2; 94 } 95 96 /* 97 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 98 ** than its current size. nOp is guaranteed to be less than or equal 99 ** to 1024/sizeof(Op). 100 ** 101 ** If an out-of-memory error occurs while resizing the array, return 102 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain 103 ** unchanged (this is so that any opcodes already allocated can be 104 ** correctly deallocated along with the rest of the Vdbe). 105 */ 106 static int growOpArray(Vdbe *v, int nOp){ 107 VdbeOp *pNew; 108 Parse *p = v->pParse; 109 110 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 111 ** more frequent reallocs and hence provide more opportunities for 112 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 113 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 114 ** by the minimum* amount required until the size reaches 512. Normal 115 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 116 ** size of the op array or add 1KB of space, whichever is smaller. */ 117 #ifdef SQLITE_TEST_REALLOC_STRESS 118 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); 119 #else 120 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 121 UNUSED_PARAMETER(nOp); 122 #endif 123 124 assert( nOp<=(1024/sizeof(Op)) ); 125 assert( nNew>=(p->nOpAlloc+nOp) ); 126 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 127 if( pNew ){ 128 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 129 p->nOpAlloc = p->szOpAlloc/sizeof(Op); 130 v->aOp = pNew; 131 } 132 return (pNew ? SQLITE_OK : SQLITE_NOMEM); 133 } 134 135 #ifdef SQLITE_DEBUG 136 /* This routine is just a convenient place to set a breakpoint that will 137 ** fire after each opcode is inserted and displayed using 138 ** "PRAGMA vdbe_addoptrace=on". 139 */ 140 static void test_addop_breakpoint(void){ 141 static int n = 0; 142 n++; 143 } 144 #endif 145 146 /* 147 ** Add a new instruction to the list of instructions current in the 148 ** VDBE. Return the address of the new instruction. 149 ** 150 ** Parameters: 151 ** 152 ** p Pointer to the VDBE 153 ** 154 ** op The opcode for this instruction 155 ** 156 ** p1, p2, p3 Operands 157 ** 158 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 159 ** the sqlite3VdbeChangeP4() function to change the value of the P4 160 ** operand. 161 */ 162 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 163 assert( p->pParse->nOpAlloc<=p->nOp ); 164 if( growOpArray(p, 1) ) return 1; 165 assert( p->pParse->nOpAlloc>p->nOp ); 166 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 167 } 168 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 169 int i; 170 VdbeOp *pOp; 171 172 i = p->nOp; 173 assert( p->magic==VDBE_MAGIC_INIT ); 174 assert( op>=0 && op<0xff ); 175 if( p->pParse->nOpAlloc<=i ){ 176 return growOp3(p, op, p1, p2, p3); 177 } 178 p->nOp++; 179 pOp = &p->aOp[i]; 180 pOp->opcode = (u8)op; 181 pOp->p5 = 0; 182 pOp->p1 = p1; 183 pOp->p2 = p2; 184 pOp->p3 = p3; 185 pOp->p4.p = 0; 186 pOp->p4type = P4_NOTUSED; 187 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 188 pOp->zComment = 0; 189 #endif 190 #ifdef SQLITE_DEBUG 191 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 192 int jj, kk; 193 Parse *pParse = p->pParse; 194 for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){ 195 struct yColCache *x = pParse->aColCache + jj; 196 if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue; 197 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); 198 kk++; 199 } 200 if( kk ) printf("\n"); 201 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 202 test_addop_breakpoint(); 203 } 204 #endif 205 #ifdef VDBE_PROFILE 206 pOp->cycles = 0; 207 pOp->cnt = 0; 208 #endif 209 #ifdef SQLITE_VDBE_COVERAGE 210 pOp->iSrcLine = 0; 211 #endif 212 return i; 213 } 214 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 215 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 216 } 217 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 218 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 219 } 220 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 221 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 222 } 223 224 /* Generate code for an unconditional jump to instruction iDest 225 */ 226 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 227 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 228 } 229 230 /* Generate code to cause the string zStr to be loaded into 231 ** register iDest 232 */ 233 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 234 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 235 } 236 237 /* 238 ** Generate code that initializes multiple registers to string or integer 239 ** constants. The registers begin with iDest and increase consecutively. 240 ** One register is initialized for each characgter in zTypes[]. For each 241 ** "s" character in zTypes[], the register is a string if the argument is 242 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 243 ** in zTypes[], the register is initialized to an integer. 244 */ 245 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 246 va_list ap; 247 int i; 248 char c; 249 va_start(ap, zTypes); 250 for(i=0; (c = zTypes[i])!=0; i++){ 251 if( c=='s' ){ 252 const char *z = va_arg(ap, const char*); 253 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0); 254 }else{ 255 assert( c=='i' ); 256 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++); 257 } 258 } 259 va_end(ap); 260 } 261 262 /* 263 ** Add an opcode that includes the p4 value as a pointer. 264 */ 265 int sqlite3VdbeAddOp4( 266 Vdbe *p, /* Add the opcode to this VM */ 267 int op, /* The new opcode */ 268 int p1, /* The P1 operand */ 269 int p2, /* The P2 operand */ 270 int p3, /* The P3 operand */ 271 const char *zP4, /* The P4 operand */ 272 int p4type /* P4 operand type */ 273 ){ 274 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 275 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 276 return addr; 277 } 278 279 /* 280 ** Add an opcode that includes the p4 value with a P4_INT64 or 281 ** P4_REAL type. 282 */ 283 int sqlite3VdbeAddOp4Dup8( 284 Vdbe *p, /* Add the opcode to this VM */ 285 int op, /* The new opcode */ 286 int p1, /* The P1 operand */ 287 int p2, /* The P2 operand */ 288 int p3, /* The P3 operand */ 289 const u8 *zP4, /* The P4 operand */ 290 int p4type /* P4 operand type */ 291 ){ 292 char *p4copy = sqlite3DbMallocRaw(sqlite3VdbeDb(p), 8); 293 if( p4copy ) memcpy(p4copy, zP4, 8); 294 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 295 } 296 297 /* 298 ** Add an OP_ParseSchema opcode. This routine is broken out from 299 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 300 ** as having been used. 301 ** 302 ** The zWhere string must have been obtained from sqlite3_malloc(). 303 ** This routine will take ownership of the allocated memory. 304 */ 305 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 306 int j; 307 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 308 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 309 } 310 311 /* 312 ** Add an opcode that includes the p4 value as an integer. 313 */ 314 int sqlite3VdbeAddOp4Int( 315 Vdbe *p, /* Add the opcode to this VM */ 316 int op, /* The new opcode */ 317 int p1, /* The P1 operand */ 318 int p2, /* The P2 operand */ 319 int p3, /* The P3 operand */ 320 int p4 /* The P4 operand as an integer */ 321 ){ 322 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 323 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32); 324 return addr; 325 } 326 327 /* 328 ** Create a new symbolic label for an instruction that has yet to be 329 ** coded. The symbolic label is really just a negative number. The 330 ** label can be used as the P2 value of an operation. Later, when 331 ** the label is resolved to a specific address, the VDBE will scan 332 ** through its operation list and change all values of P2 which match 333 ** the label into the resolved address. 334 ** 335 ** The VDBE knows that a P2 value is a label because labels are 336 ** always negative and P2 values are suppose to be non-negative. 337 ** Hence, a negative P2 value is a label that has yet to be resolved. 338 ** 339 ** Zero is returned if a malloc() fails. 340 */ 341 int sqlite3VdbeMakeLabel(Vdbe *v){ 342 Parse *p = v->pParse; 343 int i = p->nLabel++; 344 assert( v->magic==VDBE_MAGIC_INIT ); 345 if( (i & (i-1))==0 ){ 346 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 347 (i*2+1)*sizeof(p->aLabel[0])); 348 } 349 if( p->aLabel ){ 350 p->aLabel[i] = -1; 351 } 352 return ADDR(i); 353 } 354 355 /* 356 ** Resolve label "x" to be the address of the next instruction to 357 ** be inserted. The parameter "x" must have been obtained from 358 ** a prior call to sqlite3VdbeMakeLabel(). 359 */ 360 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 361 Parse *p = v->pParse; 362 int j = ADDR(x); 363 assert( v->magic==VDBE_MAGIC_INIT ); 364 assert( j<p->nLabel ); 365 assert( j>=0 ); 366 if( p->aLabel ){ 367 p->aLabel[j] = v->nOp; 368 } 369 p->iFixedOp = v->nOp - 1; 370 } 371 372 /* 373 ** Mark the VDBE as one that can only be run one time. 374 */ 375 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 376 p->runOnlyOnce = 1; 377 } 378 379 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 380 381 /* 382 ** The following type and function are used to iterate through all opcodes 383 ** in a Vdbe main program and each of the sub-programs (triggers) it may 384 ** invoke directly or indirectly. It should be used as follows: 385 ** 386 ** Op *pOp; 387 ** VdbeOpIter sIter; 388 ** 389 ** memset(&sIter, 0, sizeof(sIter)); 390 ** sIter.v = v; // v is of type Vdbe* 391 ** while( (pOp = opIterNext(&sIter)) ){ 392 ** // Do something with pOp 393 ** } 394 ** sqlite3DbFree(v->db, sIter.apSub); 395 ** 396 */ 397 typedef struct VdbeOpIter VdbeOpIter; 398 struct VdbeOpIter { 399 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 400 SubProgram **apSub; /* Array of subprograms */ 401 int nSub; /* Number of entries in apSub */ 402 int iAddr; /* Address of next instruction to return */ 403 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 404 }; 405 static Op *opIterNext(VdbeOpIter *p){ 406 Vdbe *v = p->v; 407 Op *pRet = 0; 408 Op *aOp; 409 int nOp; 410 411 if( p->iSub<=p->nSub ){ 412 413 if( p->iSub==0 ){ 414 aOp = v->aOp; 415 nOp = v->nOp; 416 }else{ 417 aOp = p->apSub[p->iSub-1]->aOp; 418 nOp = p->apSub[p->iSub-1]->nOp; 419 } 420 assert( p->iAddr<nOp ); 421 422 pRet = &aOp[p->iAddr]; 423 p->iAddr++; 424 if( p->iAddr==nOp ){ 425 p->iSub++; 426 p->iAddr = 0; 427 } 428 429 if( pRet->p4type==P4_SUBPROGRAM ){ 430 int nByte = (p->nSub+1)*sizeof(SubProgram*); 431 int j; 432 for(j=0; j<p->nSub; j++){ 433 if( p->apSub[j]==pRet->p4.pProgram ) break; 434 } 435 if( j==p->nSub ){ 436 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 437 if( !p->apSub ){ 438 pRet = 0; 439 }else{ 440 p->apSub[p->nSub++] = pRet->p4.pProgram; 441 } 442 } 443 } 444 } 445 446 return pRet; 447 } 448 449 /* 450 ** Check if the program stored in the VM associated with pParse may 451 ** throw an ABORT exception (causing the statement, but not entire transaction 452 ** to be rolled back). This condition is true if the main program or any 453 ** sub-programs contains any of the following: 454 ** 455 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 456 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 457 ** * OP_Destroy 458 ** * OP_VUpdate 459 ** * OP_VRename 460 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 461 ** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...) 462 ** 463 ** Then check that the value of Parse.mayAbort is true if an 464 ** ABORT may be thrown, or false otherwise. Return true if it does 465 ** match, or false otherwise. This function is intended to be used as 466 ** part of an assert statement in the compiler. Similar to: 467 ** 468 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 469 */ 470 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 471 int hasAbort = 0; 472 int hasFkCounter = 0; 473 int hasCreateTable = 0; 474 int hasInitCoroutine = 0; 475 Op *pOp; 476 VdbeOpIter sIter; 477 memset(&sIter, 0, sizeof(sIter)); 478 sIter.v = v; 479 480 while( (pOp = opIterNext(&sIter))!=0 ){ 481 int opcode = pOp->opcode; 482 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 483 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 484 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 485 ){ 486 hasAbort = 1; 487 break; 488 } 489 if( opcode==OP_CreateTable ) hasCreateTable = 1; 490 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 491 #ifndef SQLITE_OMIT_FOREIGN_KEY 492 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 493 hasFkCounter = 1; 494 } 495 #endif 496 } 497 sqlite3DbFree(v->db, sIter.apSub); 498 499 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 500 ** If malloc failed, then the while() loop above may not have iterated 501 ** through all opcodes and hasAbort may be set incorrectly. Return 502 ** true for this case to prevent the assert() in the callers frame 503 ** from failing. */ 504 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 505 || (hasCreateTable && hasInitCoroutine) ); 506 } 507 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 508 509 /* 510 ** This routine is called after all opcodes have been inserted. It loops 511 ** through all the opcodes and fixes up some details. 512 ** 513 ** (1) For each jump instruction with a negative P2 value (a label) 514 ** resolve the P2 value to an actual address. 515 ** 516 ** (2) Compute the maximum number of arguments used by any SQL function 517 ** and store that value in *pMaxFuncArgs. 518 ** 519 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 520 ** indicate what the prepared statement actually does. 521 ** 522 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 523 ** 524 ** (5) Reclaim the memory allocated for storing labels. 525 */ 526 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 527 int i; 528 int nMaxArgs = *pMaxFuncArgs; 529 Op *pOp; 530 Parse *pParse = p->pParse; 531 int *aLabel = pParse->aLabel; 532 p->readOnly = 1; 533 p->bIsReader = 0; 534 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ 535 u8 opcode = pOp->opcode; 536 537 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 538 ** cases from this switch! */ 539 switch( opcode ){ 540 case OP_Transaction: { 541 if( pOp->p2!=0 ) p->readOnly = 0; 542 /* fall thru */ 543 } 544 case OP_AutoCommit: 545 case OP_Savepoint: { 546 p->bIsReader = 1; 547 break; 548 } 549 #ifndef SQLITE_OMIT_WAL 550 case OP_Checkpoint: 551 #endif 552 case OP_Vacuum: 553 case OP_JournalMode: { 554 p->readOnly = 0; 555 p->bIsReader = 1; 556 break; 557 } 558 #ifndef SQLITE_OMIT_VIRTUALTABLE 559 case OP_VUpdate: { 560 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 561 break; 562 } 563 case OP_VFilter: { 564 int n; 565 assert( p->nOp - i >= 3 ); 566 assert( pOp[-1].opcode==OP_Integer ); 567 n = pOp[-1].p1; 568 if( n>nMaxArgs ) nMaxArgs = n; 569 break; 570 } 571 #endif 572 case OP_Next: 573 case OP_NextIfOpen: 574 case OP_SorterNext: { 575 pOp->p4.xAdvance = sqlite3BtreeNext; 576 pOp->p4type = P4_ADVANCE; 577 break; 578 } 579 case OP_Prev: 580 case OP_PrevIfOpen: { 581 pOp->p4.xAdvance = sqlite3BtreePrevious; 582 pOp->p4type = P4_ADVANCE; 583 break; 584 } 585 } 586 587 pOp->opflags = sqlite3OpcodeProperty[opcode]; 588 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){ 589 assert( ADDR(pOp->p2)<pParse->nLabel ); 590 pOp->p2 = aLabel[ADDR(pOp->p2)]; 591 } 592 } 593 sqlite3DbFree(p->db, pParse->aLabel); 594 pParse->aLabel = 0; 595 pParse->nLabel = 0; 596 *pMaxFuncArgs = nMaxArgs; 597 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 598 } 599 600 /* 601 ** Return the address of the next instruction to be inserted. 602 */ 603 int sqlite3VdbeCurrentAddr(Vdbe *p){ 604 assert( p->magic==VDBE_MAGIC_INIT ); 605 return p->nOp; 606 } 607 608 /* 609 ** Verify that at least N opcode slots are available in p without 610 ** having to malloc for more space (except when compiled using 611 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 612 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 613 ** fail due to a OOM fault and hence that the return value from 614 ** sqlite3VdbeAddOpList() will always be non-NULL. 615 */ 616 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 617 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 618 assert( p->nOp + N <= p->pParse->nOpAlloc ); 619 } 620 #endif 621 622 /* 623 ** This function returns a pointer to the array of opcodes associated with 624 ** the Vdbe passed as the first argument. It is the callers responsibility 625 ** to arrange for the returned array to be eventually freed using the 626 ** vdbeFreeOpArray() function. 627 ** 628 ** Before returning, *pnOp is set to the number of entries in the returned 629 ** array. Also, *pnMaxArg is set to the larger of its current value and 630 ** the number of entries in the Vdbe.apArg[] array required to execute the 631 ** returned program. 632 */ 633 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 634 VdbeOp *aOp = p->aOp; 635 assert( aOp && !p->db->mallocFailed ); 636 637 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 638 assert( DbMaskAllZero(p->btreeMask) ); 639 640 resolveP2Values(p, pnMaxArg); 641 *pnOp = p->nOp; 642 p->aOp = 0; 643 return aOp; 644 } 645 646 /* 647 ** Add a whole list of operations to the operation stack. Return a 648 ** pointer to the first operation inserted. 649 */ 650 VdbeOp *sqlite3VdbeAddOpList( 651 Vdbe *p, /* Add opcodes to the prepared statement */ 652 int nOp, /* Number of opcodes to add */ 653 VdbeOpList const *aOp, /* The opcodes to be added */ 654 int iLineno /* Source-file line number of first opcode */ 655 ){ 656 int i; 657 VdbeOp *pOut, *pFirst; 658 assert( nOp>0 ); 659 assert( p->magic==VDBE_MAGIC_INIT ); 660 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ 661 return 0; 662 } 663 pFirst = pOut = &p->aOp[p->nOp]; 664 for(i=0; i<nOp; i++, aOp++, pOut++){ 665 pOut->opcode = aOp->opcode; 666 pOut->p1 = aOp->p1; 667 pOut->p2 = aOp->p2; 668 assert( aOp->p2>=0 ); 669 pOut->p3 = aOp->p3; 670 pOut->p4type = P4_NOTUSED; 671 pOut->p4.p = 0; 672 pOut->p5 = 0; 673 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 674 pOut->zComment = 0; 675 #endif 676 #ifdef SQLITE_VDBE_COVERAGE 677 pOut->iSrcLine = iLineno+i; 678 #else 679 (void)iLineno; 680 #endif 681 #ifdef SQLITE_DEBUG 682 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 683 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 684 } 685 #endif 686 } 687 p->nOp += nOp; 688 return pFirst; 689 } 690 691 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 692 /* 693 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 694 */ 695 void sqlite3VdbeScanStatus( 696 Vdbe *p, /* VM to add scanstatus() to */ 697 int addrExplain, /* Address of OP_Explain (or 0) */ 698 int addrLoop, /* Address of loop counter */ 699 int addrVisit, /* Address of rows visited counter */ 700 LogEst nEst, /* Estimated number of output rows */ 701 const char *zName /* Name of table or index being scanned */ 702 ){ 703 int nByte = (p->nScan+1) * sizeof(ScanStatus); 704 ScanStatus *aNew; 705 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 706 if( aNew ){ 707 ScanStatus *pNew = &aNew[p->nScan++]; 708 pNew->addrExplain = addrExplain; 709 pNew->addrLoop = addrLoop; 710 pNew->addrVisit = addrVisit; 711 pNew->nEst = nEst; 712 pNew->zName = sqlite3DbStrDup(p->db, zName); 713 p->aScan = aNew; 714 } 715 } 716 #endif 717 718 719 /* 720 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 721 ** for a specific instruction. 722 */ 723 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){ 724 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 725 } 726 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ 727 sqlite3VdbeGetOp(p,addr)->p1 = val; 728 } 729 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ 730 sqlite3VdbeGetOp(p,addr)->p2 = val; 731 } 732 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ 733 sqlite3VdbeGetOp(p,addr)->p3 = val; 734 } 735 void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){ 736 if( !p->db->mallocFailed ) p->aOp[p->nOp-1].p5 = p5; 737 } 738 739 /* 740 ** Change the P2 operand of instruction addr so that it points to 741 ** the address of the next instruction to be coded. 742 */ 743 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 744 p->pParse->iFixedOp = p->nOp - 1; 745 sqlite3VdbeChangeP2(p, addr, p->nOp); 746 } 747 748 749 /* 750 ** If the input FuncDef structure is ephemeral, then free it. If 751 ** the FuncDef is not ephermal, then do nothing. 752 */ 753 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 754 if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 755 sqlite3DbFree(db, pDef); 756 } 757 } 758 759 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 760 761 /* 762 ** Delete a P4 value if necessary. 763 */ 764 static void freeP4(sqlite3 *db, int p4type, void *p4){ 765 if( p4 ){ 766 assert( db ); 767 switch( p4type ){ 768 case P4_FUNCCTX: { 769 freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc); 770 /* Fall through into the next case */ 771 } 772 case P4_REAL: 773 case P4_INT64: 774 case P4_DYNAMIC: 775 case P4_INTARRAY: { 776 sqlite3DbFree(db, p4); 777 break; 778 } 779 case P4_KEYINFO: { 780 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 781 break; 782 } 783 #ifdef SQLITE_ENABLE_CURSOR_HINTS 784 case P4_EXPR: { 785 sqlite3ExprDelete(db, (Expr*)p4); 786 break; 787 } 788 #endif 789 case P4_MPRINTF: { 790 if( db->pnBytesFreed==0 ) sqlite3_free(p4); 791 break; 792 } 793 case P4_FUNCDEF: { 794 freeEphemeralFunction(db, (FuncDef*)p4); 795 break; 796 } 797 case P4_MEM: { 798 if( db->pnBytesFreed==0 ){ 799 sqlite3ValueFree((sqlite3_value*)p4); 800 }else{ 801 Mem *p = (Mem*)p4; 802 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 803 sqlite3DbFree(db, p); 804 } 805 break; 806 } 807 case P4_VTAB : { 808 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 809 break; 810 } 811 } 812 } 813 } 814 815 /* 816 ** Free the space allocated for aOp and any p4 values allocated for the 817 ** opcodes contained within. If aOp is not NULL it is assumed to contain 818 ** nOp entries. 819 */ 820 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 821 if( aOp ){ 822 Op *pOp; 823 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ 824 if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p); 825 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 826 sqlite3DbFree(db, pOp->zComment); 827 #endif 828 } 829 } 830 sqlite3DbFree(db, aOp); 831 } 832 833 /* 834 ** Link the SubProgram object passed as the second argument into the linked 835 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 836 ** objects when the VM is no longer required. 837 */ 838 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 839 p->pNext = pVdbe->pProgram; 840 pVdbe->pProgram = p; 841 } 842 843 /* 844 ** Change the opcode at addr into OP_Noop 845 */ 846 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 847 VdbeOp *pOp; 848 if( p->db->mallocFailed ) return 0; 849 assert( addr>=0 && addr<p->nOp ); 850 pOp = &p->aOp[addr]; 851 freeP4(p->db, pOp->p4type, pOp->p4.p); 852 pOp->p4type = P4_NOTUSED; 853 pOp->p4.z = 0; 854 pOp->opcode = OP_Noop; 855 return 1; 856 } 857 858 /* 859 ** If the last opcode is "op" and it is not a jump destination, 860 ** then remove it. Return true if and only if an opcode was removed. 861 */ 862 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 863 if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){ 864 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 865 }else{ 866 return 0; 867 } 868 } 869 870 /* 871 ** Change the value of the P4 operand for a specific instruction. 872 ** This routine is useful when a large program is loaded from a 873 ** static array using sqlite3VdbeAddOpList but we want to make a 874 ** few minor changes to the program. 875 ** 876 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 877 ** the string is made into memory obtained from sqlite3_malloc(). 878 ** A value of n==0 means copy bytes of zP4 up to and including the 879 ** first null byte. If n>0 then copy n+1 bytes of zP4. 880 ** 881 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 882 ** to a string or structure that is guaranteed to exist for the lifetime of 883 ** the Vdbe. In these cases we can just copy the pointer. 884 ** 885 ** If addr<0 then change P4 on the most recently inserted instruction. 886 */ 887 static void SQLITE_NOINLINE vdbeChangeP4Full( 888 Vdbe *p, 889 Op *pOp, 890 const char *zP4, 891 int n 892 ){ 893 if( pOp->p4type ){ 894 freeP4(p->db, pOp->p4type, pOp->p4.p); 895 pOp->p4type = 0; 896 pOp->p4.p = 0; 897 } 898 if( n<0 ){ 899 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 900 }else{ 901 if( n==0 ) n = sqlite3Strlen30(zP4); 902 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 903 pOp->p4type = P4_DYNAMIC; 904 } 905 } 906 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 907 Op *pOp; 908 sqlite3 *db; 909 assert( p!=0 ); 910 db = p->db; 911 assert( p->magic==VDBE_MAGIC_INIT ); 912 assert( p->aOp!=0 || db->mallocFailed ); 913 if( db->mallocFailed ){ 914 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 915 return; 916 } 917 assert( p->nOp>0 ); 918 assert( addr<p->nOp ); 919 if( addr<0 ){ 920 addr = p->nOp - 1; 921 } 922 pOp = &p->aOp[addr]; 923 if( n>=0 || pOp->p4type ){ 924 vdbeChangeP4Full(p, pOp, zP4, n); 925 return; 926 } 927 if( n==P4_INT32 ){ 928 /* Note: this cast is safe, because the origin data point was an int 929 ** that was cast to a (const char *). */ 930 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 931 pOp->p4type = P4_INT32; 932 }else if( zP4!=0 ){ 933 assert( n<0 ); 934 pOp->p4.p = (void*)zP4; 935 pOp->p4type = (signed char)n; 936 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 937 } 938 } 939 940 /* 941 ** Set the P4 on the most recently added opcode to the KeyInfo for the 942 ** index given. 943 */ 944 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 945 Vdbe *v = pParse->pVdbe; 946 assert( v!=0 ); 947 assert( pIdx!=0 ); 948 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx), 949 P4_KEYINFO); 950 } 951 952 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 953 /* 954 ** Change the comment on the most recently coded instruction. Or 955 ** insert a No-op and add the comment to that new instruction. This 956 ** makes the code easier to read during debugging. None of this happens 957 ** in a production build. 958 */ 959 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 960 assert( p->nOp>0 || p->aOp==0 ); 961 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 962 if( p->nOp ){ 963 assert( p->aOp ); 964 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 965 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 966 } 967 } 968 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 969 va_list ap; 970 if( p ){ 971 va_start(ap, zFormat); 972 vdbeVComment(p, zFormat, ap); 973 va_end(ap); 974 } 975 } 976 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 977 va_list ap; 978 if( p ){ 979 sqlite3VdbeAddOp0(p, OP_Noop); 980 va_start(ap, zFormat); 981 vdbeVComment(p, zFormat, ap); 982 va_end(ap); 983 } 984 } 985 #endif /* NDEBUG */ 986 987 #ifdef SQLITE_VDBE_COVERAGE 988 /* 989 ** Set the value if the iSrcLine field for the previously coded instruction. 990 */ 991 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 992 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 993 } 994 #endif /* SQLITE_VDBE_COVERAGE */ 995 996 /* 997 ** Return the opcode for a given address. If the address is -1, then 998 ** return the most recently inserted opcode. 999 ** 1000 ** If a memory allocation error has occurred prior to the calling of this 1001 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1002 ** is readable but not writable, though it is cast to a writable value. 1003 ** The return of a dummy opcode allows the call to continue functioning 1004 ** after an OOM fault without having to check to see if the return from 1005 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1006 ** dummy will never be written to. This is verified by code inspection and 1007 ** by running with Valgrind. 1008 */ 1009 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1010 /* C89 specifies that the constant "dummy" will be initialized to all 1011 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1012 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1013 assert( p->magic==VDBE_MAGIC_INIT ); 1014 if( addr<0 ){ 1015 addr = p->nOp - 1; 1016 } 1017 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1018 if( p->db->mallocFailed ){ 1019 return (VdbeOp*)&dummy; 1020 }else{ 1021 return &p->aOp[addr]; 1022 } 1023 } 1024 1025 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1026 /* 1027 ** Return an integer value for one of the parameters to the opcode pOp 1028 ** determined by character c. 1029 */ 1030 static int translateP(char c, const Op *pOp){ 1031 if( c=='1' ) return pOp->p1; 1032 if( c=='2' ) return pOp->p2; 1033 if( c=='3' ) return pOp->p3; 1034 if( c=='4' ) return pOp->p4.i; 1035 return pOp->p5; 1036 } 1037 1038 /* 1039 ** Compute a string for the "comment" field of a VDBE opcode listing. 1040 ** 1041 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1042 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1043 ** absence of other comments, this synopsis becomes the comment on the opcode. 1044 ** Some translation occurs: 1045 ** 1046 ** "PX" -> "r[X]" 1047 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1048 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1049 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1050 */ 1051 static int displayComment( 1052 const Op *pOp, /* The opcode to be commented */ 1053 const char *zP4, /* Previously obtained value for P4 */ 1054 char *zTemp, /* Write result here */ 1055 int nTemp /* Space available in zTemp[] */ 1056 ){ 1057 const char *zOpName; 1058 const char *zSynopsis; 1059 int nOpName; 1060 int ii, jj; 1061 zOpName = sqlite3OpcodeName(pOp->opcode); 1062 nOpName = sqlite3Strlen30(zOpName); 1063 if( zOpName[nOpName+1] ){ 1064 int seenCom = 0; 1065 char c; 1066 zSynopsis = zOpName += nOpName + 1; 1067 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 1068 if( c=='P' ){ 1069 c = zSynopsis[++ii]; 1070 if( c=='4' ){ 1071 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 1072 }else if( c=='X' ){ 1073 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 1074 seenCom = 1; 1075 }else{ 1076 int v1 = translateP(c, pOp); 1077 int v2; 1078 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 1079 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1080 ii += 3; 1081 jj += sqlite3Strlen30(zTemp+jj); 1082 v2 = translateP(zSynopsis[ii], pOp); 1083 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1084 ii += 2; 1085 v2++; 1086 } 1087 if( v2>1 ){ 1088 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 1089 } 1090 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1091 ii += 4; 1092 } 1093 } 1094 jj += sqlite3Strlen30(zTemp+jj); 1095 }else{ 1096 zTemp[jj++] = c; 1097 } 1098 } 1099 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 1100 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 1101 jj += sqlite3Strlen30(zTemp+jj); 1102 } 1103 if( jj<nTemp ) zTemp[jj] = 0; 1104 }else if( pOp->zComment ){ 1105 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 1106 jj = sqlite3Strlen30(zTemp); 1107 }else{ 1108 zTemp[0] = 0; 1109 jj = 0; 1110 } 1111 return jj; 1112 } 1113 #endif /* SQLITE_DEBUG */ 1114 1115 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1116 /* 1117 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1118 ** that can be displayed in the P4 column of EXPLAIN output. 1119 */ 1120 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1121 const char *zOp = 0; 1122 switch( pExpr->op ){ 1123 case TK_STRING: 1124 sqlite3XPrintf(p, "%Q", pExpr->u.zToken); 1125 break; 1126 case TK_INTEGER: 1127 sqlite3XPrintf(p, "%d", pExpr->u.iValue); 1128 break; 1129 case TK_NULL: 1130 sqlite3XPrintf(p, "NULL"); 1131 break; 1132 case TK_REGISTER: { 1133 sqlite3XPrintf(p, "r[%d]", pExpr->iTable); 1134 break; 1135 } 1136 case TK_COLUMN: { 1137 if( pExpr->iColumn<0 ){ 1138 sqlite3XPrintf(p, "rowid"); 1139 }else{ 1140 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn); 1141 } 1142 break; 1143 } 1144 case TK_LT: zOp = "LT"; break; 1145 case TK_LE: zOp = "LE"; break; 1146 case TK_GT: zOp = "GT"; break; 1147 case TK_GE: zOp = "GE"; break; 1148 case TK_NE: zOp = "NE"; break; 1149 case TK_EQ: zOp = "EQ"; break; 1150 case TK_IS: zOp = "IS"; break; 1151 case TK_ISNOT: zOp = "ISNOT"; break; 1152 case TK_AND: zOp = "AND"; break; 1153 case TK_OR: zOp = "OR"; break; 1154 case TK_PLUS: zOp = "ADD"; break; 1155 case TK_STAR: zOp = "MUL"; break; 1156 case TK_MINUS: zOp = "SUB"; break; 1157 case TK_REM: zOp = "REM"; break; 1158 case TK_BITAND: zOp = "BITAND"; break; 1159 case TK_BITOR: zOp = "BITOR"; break; 1160 case TK_SLASH: zOp = "DIV"; break; 1161 case TK_LSHIFT: zOp = "LSHIFT"; break; 1162 case TK_RSHIFT: zOp = "RSHIFT"; break; 1163 case TK_CONCAT: zOp = "CONCAT"; break; 1164 case TK_UMINUS: zOp = "MINUS"; break; 1165 case TK_UPLUS: zOp = "PLUS"; break; 1166 case TK_BITNOT: zOp = "BITNOT"; break; 1167 case TK_NOT: zOp = "NOT"; break; 1168 case TK_ISNULL: zOp = "ISNULL"; break; 1169 case TK_NOTNULL: zOp = "NOTNULL"; break; 1170 1171 default: 1172 sqlite3XPrintf(p, "%s", "expr"); 1173 break; 1174 } 1175 1176 if( zOp ){ 1177 sqlite3XPrintf(p, "%s(", zOp); 1178 displayP4Expr(p, pExpr->pLeft); 1179 if( pExpr->pRight ){ 1180 sqlite3StrAccumAppend(p, ",", 1); 1181 displayP4Expr(p, pExpr->pRight); 1182 } 1183 sqlite3StrAccumAppend(p, ")", 1); 1184 } 1185 } 1186 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1187 1188 1189 #if VDBE_DISPLAY_P4 1190 /* 1191 ** Compute a string that describes the P4 parameter for an opcode. 1192 ** Use zTemp for any required temporary buffer space. 1193 */ 1194 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 1195 char *zP4 = zTemp; 1196 StrAccum x; 1197 assert( nTemp>=20 ); 1198 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0); 1199 switch( pOp->p4type ){ 1200 case P4_KEYINFO: { 1201 int j; 1202 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1203 assert( pKeyInfo->aSortOrder!=0 ); 1204 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nField); 1205 for(j=0; j<pKeyInfo->nField; j++){ 1206 CollSeq *pColl = pKeyInfo->aColl[j]; 1207 const char *zColl = pColl ? pColl->zName : ""; 1208 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1209 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl); 1210 } 1211 sqlite3StrAccumAppend(&x, ")", 1); 1212 break; 1213 } 1214 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1215 case P4_EXPR: { 1216 displayP4Expr(&x, pOp->p4.pExpr); 1217 break; 1218 } 1219 #endif 1220 case P4_COLLSEQ: { 1221 CollSeq *pColl = pOp->p4.pColl; 1222 sqlite3XPrintf(&x, "(%.20s)", pColl->zName); 1223 break; 1224 } 1225 case P4_FUNCDEF: { 1226 FuncDef *pDef = pOp->p4.pFunc; 1227 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1228 break; 1229 } 1230 #ifdef SQLITE_DEBUG 1231 case P4_FUNCCTX: { 1232 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1233 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1234 break; 1235 } 1236 #endif 1237 case P4_INT64: { 1238 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64); 1239 break; 1240 } 1241 case P4_INT32: { 1242 sqlite3XPrintf(&x, "%d", pOp->p4.i); 1243 break; 1244 } 1245 case P4_REAL: { 1246 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal); 1247 break; 1248 } 1249 case P4_MEM: { 1250 Mem *pMem = pOp->p4.pMem; 1251 if( pMem->flags & MEM_Str ){ 1252 zP4 = pMem->z; 1253 }else if( pMem->flags & MEM_Int ){ 1254 sqlite3XPrintf(&x, "%lld", pMem->u.i); 1255 }else if( pMem->flags & MEM_Real ){ 1256 sqlite3XPrintf(&x, "%.16g", pMem->u.r); 1257 }else if( pMem->flags & MEM_Null ){ 1258 zP4 = "NULL"; 1259 }else{ 1260 assert( pMem->flags & MEM_Blob ); 1261 zP4 = "(blob)"; 1262 } 1263 break; 1264 } 1265 #ifndef SQLITE_OMIT_VIRTUALTABLE 1266 case P4_VTAB: { 1267 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1268 sqlite3XPrintf(&x, "vtab:%p", pVtab); 1269 break; 1270 } 1271 #endif 1272 case P4_INTARRAY: { 1273 int i; 1274 int *ai = pOp->p4.ai; 1275 int n = ai[0]; /* The first element of an INTARRAY is always the 1276 ** count of the number of elements to follow */ 1277 for(i=1; i<n; i++){ 1278 sqlite3XPrintf(&x, ",%d", ai[i]); 1279 } 1280 zTemp[0] = '['; 1281 sqlite3StrAccumAppend(&x, "]", 1); 1282 break; 1283 } 1284 case P4_SUBPROGRAM: { 1285 sqlite3XPrintf(&x, "program"); 1286 break; 1287 } 1288 case P4_ADVANCE: { 1289 zTemp[0] = 0; 1290 break; 1291 } 1292 default: { 1293 zP4 = pOp->p4.z; 1294 if( zP4==0 ){ 1295 zP4 = zTemp; 1296 zTemp[0] = 0; 1297 } 1298 } 1299 } 1300 sqlite3StrAccumFinish(&x); 1301 assert( zP4!=0 ); 1302 return zP4; 1303 } 1304 #endif /* VDBE_DISPLAY_P4 */ 1305 1306 /* 1307 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1308 ** 1309 ** The prepared statements need to know in advance the complete set of 1310 ** attached databases that will be use. A mask of these databases 1311 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1312 ** p->btreeMask of databases that will require a lock. 1313 */ 1314 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1315 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1316 assert( i<(int)sizeof(p->btreeMask)*8 ); 1317 DbMaskSet(p->btreeMask, i); 1318 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1319 DbMaskSet(p->lockMask, i); 1320 } 1321 } 1322 1323 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1324 /* 1325 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1326 ** this routine obtains the mutex associated with each BtShared structure 1327 ** that may be accessed by the VM passed as an argument. In doing so it also 1328 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1329 ** that the correct busy-handler callback is invoked if required. 1330 ** 1331 ** If SQLite is not threadsafe but does support shared-cache mode, then 1332 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1333 ** of all of BtShared structures accessible via the database handle 1334 ** associated with the VM. 1335 ** 1336 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1337 ** function is a no-op. 1338 ** 1339 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1340 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1341 ** corresponding to btrees that use shared cache. Then the runtime of 1342 ** this routine is N*N. But as N is rarely more than 1, this should not 1343 ** be a problem. 1344 */ 1345 void sqlite3VdbeEnter(Vdbe *p){ 1346 int i; 1347 sqlite3 *db; 1348 Db *aDb; 1349 int nDb; 1350 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1351 db = p->db; 1352 aDb = db->aDb; 1353 nDb = db->nDb; 1354 for(i=0; i<nDb; i++){ 1355 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1356 sqlite3BtreeEnter(aDb[i].pBt); 1357 } 1358 } 1359 } 1360 #endif 1361 1362 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1363 /* 1364 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1365 */ 1366 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1367 int i; 1368 sqlite3 *db; 1369 Db *aDb; 1370 int nDb; 1371 db = p->db; 1372 aDb = db->aDb; 1373 nDb = db->nDb; 1374 for(i=0; i<nDb; i++){ 1375 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1376 sqlite3BtreeLeave(aDb[i].pBt); 1377 } 1378 } 1379 } 1380 void sqlite3VdbeLeave(Vdbe *p){ 1381 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1382 vdbeLeave(p); 1383 } 1384 #endif 1385 1386 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1387 /* 1388 ** Print a single opcode. This routine is used for debugging only. 1389 */ 1390 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ 1391 char *zP4; 1392 char zPtr[50]; 1393 char zCom[100]; 1394 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1395 if( pOut==0 ) pOut = stdout; 1396 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1397 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1398 displayComment(pOp, zP4, zCom, sizeof(zCom)); 1399 #else 1400 zCom[0] = 0; 1401 #endif 1402 /* NB: The sqlite3OpcodeName() function is implemented by code created 1403 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1404 ** information from the vdbe.c source text */ 1405 fprintf(pOut, zFormat1, pc, 1406 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1407 zCom 1408 ); 1409 fflush(pOut); 1410 } 1411 #endif 1412 1413 /* 1414 ** Release an array of N Mem elements 1415 */ 1416 static void releaseMemArray(Mem *p, int N){ 1417 if( p && N ){ 1418 Mem *pEnd = &p[N]; 1419 sqlite3 *db = p->db; 1420 u8 malloc_failed = db->mallocFailed; 1421 if( db->pnBytesFreed ){ 1422 do{ 1423 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1424 }while( (++p)<pEnd ); 1425 return; 1426 } 1427 do{ 1428 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1429 assert( sqlite3VdbeCheckMemInvariants(p) ); 1430 1431 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1432 ** that takes advantage of the fact that the memory cell value is 1433 ** being set to NULL after releasing any dynamic resources. 1434 ** 1435 ** The justification for duplicating code is that according to 1436 ** callgrind, this causes a certain test case to hit the CPU 4.7 1437 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1438 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1439 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1440 ** with no indexes using a single prepared INSERT statement, bind() 1441 ** and reset(). Inserts are grouped into a transaction. 1442 */ 1443 testcase( p->flags & MEM_Agg ); 1444 testcase( p->flags & MEM_Dyn ); 1445 testcase( p->flags & MEM_Frame ); 1446 testcase( p->flags & MEM_RowSet ); 1447 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ 1448 sqlite3VdbeMemRelease(p); 1449 }else if( p->szMalloc ){ 1450 sqlite3DbFree(db, p->zMalloc); 1451 p->szMalloc = 0; 1452 } 1453 1454 p->flags = MEM_Undefined; 1455 }while( (++p)<pEnd ); 1456 db->mallocFailed = malloc_failed; 1457 } 1458 } 1459 1460 /* 1461 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1462 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1463 */ 1464 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1465 int i; 1466 Mem *aMem = VdbeFrameMem(p); 1467 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1468 for(i=0; i<p->nChildCsr; i++){ 1469 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1470 } 1471 releaseMemArray(aMem, p->nChildMem); 1472 sqlite3DbFree(p->v->db, p); 1473 } 1474 1475 #ifndef SQLITE_OMIT_EXPLAIN 1476 /* 1477 ** Give a listing of the program in the virtual machine. 1478 ** 1479 ** The interface is the same as sqlite3VdbeExec(). But instead of 1480 ** running the code, it invokes the callback once for each instruction. 1481 ** This feature is used to implement "EXPLAIN". 1482 ** 1483 ** When p->explain==1, each instruction is listed. When 1484 ** p->explain==2, only OP_Explain instructions are listed and these 1485 ** are shown in a different format. p->explain==2 is used to implement 1486 ** EXPLAIN QUERY PLAN. 1487 ** 1488 ** When p->explain==1, first the main program is listed, then each of 1489 ** the trigger subprograms are listed one by one. 1490 */ 1491 int sqlite3VdbeList( 1492 Vdbe *p /* The VDBE */ 1493 ){ 1494 int nRow; /* Stop when row count reaches this */ 1495 int nSub = 0; /* Number of sub-vdbes seen so far */ 1496 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1497 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1498 sqlite3 *db = p->db; /* The database connection */ 1499 int i; /* Loop counter */ 1500 int rc = SQLITE_OK; /* Return code */ 1501 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 1502 1503 assert( p->explain ); 1504 assert( p->magic==VDBE_MAGIC_RUN ); 1505 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1506 1507 /* Even though this opcode does not use dynamic strings for 1508 ** the result, result columns may become dynamic if the user calls 1509 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1510 */ 1511 releaseMemArray(pMem, 8); 1512 p->pResultSet = 0; 1513 1514 if( p->rc==SQLITE_NOMEM ){ 1515 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1516 ** sqlite3_column_text16() failed. */ 1517 db->mallocFailed = 1; 1518 return SQLITE_ERROR; 1519 } 1520 1521 /* When the number of output rows reaches nRow, that means the 1522 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1523 ** nRow is the sum of the number of rows in the main program, plus 1524 ** the sum of the number of rows in all trigger subprograms encountered 1525 ** so far. The nRow value will increase as new trigger subprograms are 1526 ** encountered, but p->pc will eventually catch up to nRow. 1527 */ 1528 nRow = p->nOp; 1529 if( p->explain==1 ){ 1530 /* The first 8 memory cells are used for the result set. So we will 1531 ** commandeer the 9th cell to use as storage for an array of pointers 1532 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1533 ** cells. */ 1534 assert( p->nMem>9 ); 1535 pSub = &p->aMem[9]; 1536 if( pSub->flags&MEM_Blob ){ 1537 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1538 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1539 nSub = pSub->n/sizeof(Vdbe*); 1540 apSub = (SubProgram **)pSub->z; 1541 } 1542 for(i=0; i<nSub; i++){ 1543 nRow += apSub[i]->nOp; 1544 } 1545 } 1546 1547 do{ 1548 i = p->pc++; 1549 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); 1550 if( i>=nRow ){ 1551 p->rc = SQLITE_OK; 1552 rc = SQLITE_DONE; 1553 }else if( db->u1.isInterrupted ){ 1554 p->rc = SQLITE_INTERRUPT; 1555 rc = SQLITE_ERROR; 1556 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 1557 }else{ 1558 char *zP4; 1559 Op *pOp; 1560 if( i<p->nOp ){ 1561 /* The output line number is small enough that we are still in the 1562 ** main program. */ 1563 pOp = &p->aOp[i]; 1564 }else{ 1565 /* We are currently listing subprograms. Figure out which one and 1566 ** pick up the appropriate opcode. */ 1567 int j; 1568 i -= p->nOp; 1569 for(j=0; i>=apSub[j]->nOp; j++){ 1570 i -= apSub[j]->nOp; 1571 } 1572 pOp = &apSub[j]->aOp[i]; 1573 } 1574 if( p->explain==1 ){ 1575 pMem->flags = MEM_Int; 1576 pMem->u.i = i; /* Program counter */ 1577 pMem++; 1578 1579 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1580 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1581 assert( pMem->z!=0 ); 1582 pMem->n = sqlite3Strlen30(pMem->z); 1583 pMem->enc = SQLITE_UTF8; 1584 pMem++; 1585 1586 /* When an OP_Program opcode is encounter (the only opcode that has 1587 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1588 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1589 ** has not already been seen. 1590 */ 1591 if( pOp->p4type==P4_SUBPROGRAM ){ 1592 int nByte = (nSub+1)*sizeof(SubProgram*); 1593 int j; 1594 for(j=0; j<nSub; j++){ 1595 if( apSub[j]==pOp->p4.pProgram ) break; 1596 } 1597 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){ 1598 apSub = (SubProgram **)pSub->z; 1599 apSub[nSub++] = pOp->p4.pProgram; 1600 pSub->flags |= MEM_Blob; 1601 pSub->n = nSub*sizeof(SubProgram*); 1602 } 1603 } 1604 } 1605 1606 pMem->flags = MEM_Int; 1607 pMem->u.i = pOp->p1; /* P1 */ 1608 pMem++; 1609 1610 pMem->flags = MEM_Int; 1611 pMem->u.i = pOp->p2; /* P2 */ 1612 pMem++; 1613 1614 pMem->flags = MEM_Int; 1615 pMem->u.i = pOp->p3; /* P3 */ 1616 pMem++; 1617 1618 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */ 1619 assert( p->db->mallocFailed ); 1620 return SQLITE_ERROR; 1621 } 1622 pMem->flags = MEM_Str|MEM_Term; 1623 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc); 1624 if( zP4!=pMem->z ){ 1625 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 1626 }else{ 1627 assert( pMem->z!=0 ); 1628 pMem->n = sqlite3Strlen30(pMem->z); 1629 pMem->enc = SQLITE_UTF8; 1630 } 1631 pMem++; 1632 1633 if( p->explain==1 ){ 1634 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ 1635 assert( p->db->mallocFailed ); 1636 return SQLITE_ERROR; 1637 } 1638 pMem->flags = MEM_Str|MEM_Term; 1639 pMem->n = 2; 1640 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1641 pMem->enc = SQLITE_UTF8; 1642 pMem++; 1643 1644 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1645 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ 1646 assert( p->db->mallocFailed ); 1647 return SQLITE_ERROR; 1648 } 1649 pMem->flags = MEM_Str|MEM_Term; 1650 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 1651 pMem->enc = SQLITE_UTF8; 1652 #else 1653 pMem->flags = MEM_Null; /* Comment */ 1654 #endif 1655 } 1656 1657 p->nResColumn = 8 - 4*(p->explain-1); 1658 p->pResultSet = &p->aMem[1]; 1659 p->rc = SQLITE_OK; 1660 rc = SQLITE_ROW; 1661 } 1662 return rc; 1663 } 1664 #endif /* SQLITE_OMIT_EXPLAIN */ 1665 1666 #ifdef SQLITE_DEBUG 1667 /* 1668 ** Print the SQL that was used to generate a VDBE program. 1669 */ 1670 void sqlite3VdbePrintSql(Vdbe *p){ 1671 const char *z = 0; 1672 if( p->zSql ){ 1673 z = p->zSql; 1674 }else if( p->nOp>=1 ){ 1675 const VdbeOp *pOp = &p->aOp[0]; 1676 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1677 z = pOp->p4.z; 1678 while( sqlite3Isspace(*z) ) z++; 1679 } 1680 } 1681 if( z ) printf("SQL: [%s]\n", z); 1682 } 1683 #endif 1684 1685 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 1686 /* 1687 ** Print an IOTRACE message showing SQL content. 1688 */ 1689 void sqlite3VdbeIOTraceSql(Vdbe *p){ 1690 int nOp = p->nOp; 1691 VdbeOp *pOp; 1692 if( sqlite3IoTrace==0 ) return; 1693 if( nOp<1 ) return; 1694 pOp = &p->aOp[0]; 1695 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1696 int i, j; 1697 char z[1000]; 1698 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 1699 for(i=0; sqlite3Isspace(z[i]); i++){} 1700 for(j=0; z[i]; i++){ 1701 if( sqlite3Isspace(z[i]) ){ 1702 if( z[i-1]!=' ' ){ 1703 z[j++] = ' '; 1704 } 1705 }else{ 1706 z[j++] = z[i]; 1707 } 1708 } 1709 z[j] = 0; 1710 sqlite3IoTrace("SQL %s\n", z); 1711 } 1712 } 1713 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 1714 1715 /* An instance of this object describes bulk memory available for use 1716 ** by subcomponents of a prepared statement. Space is allocated out 1717 ** of a ReusableSpace object by the allocSpace() routine below. 1718 */ 1719 struct ReusableSpace { 1720 u8 *pSpace; /* Available memory */ 1721 int nFree; /* Bytes of available memory */ 1722 int nNeeded; /* Total bytes that could not be allocated */ 1723 }; 1724 1725 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 1726 ** from the ReusableSpace object. Return a pointer to the allocated 1727 ** memory on success. If insufficient memory is available in the 1728 ** ReusableSpace object, increase the ReusableSpace.nNeeded 1729 ** value by the amount needed and return NULL. 1730 ** 1731 ** If pBuf is not initially NULL, that means that the memory has already 1732 ** been allocated by a prior call to this routine, so just return a copy 1733 ** of pBuf and leave ReusableSpace unchanged. 1734 ** 1735 ** This allocator is employed to repurpose unused slots at the end of the 1736 ** opcode array of prepared state for other memory needs of the prepared 1737 ** statement. 1738 */ 1739 static void *allocSpace( 1740 struct ReusableSpace *p, /* Bulk memory available for allocation */ 1741 void *pBuf, /* Pointer to a prior allocation */ 1742 int nByte /* Bytes of memory needed */ 1743 ){ 1744 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 1745 if( pBuf==0 ){ 1746 nByte = ROUND8(nByte); 1747 if( nByte <= p->nFree ){ 1748 p->nFree -= nByte; 1749 pBuf = &p->pSpace[p->nFree]; 1750 }else{ 1751 p->nNeeded += nByte; 1752 } 1753 } 1754 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 1755 return pBuf; 1756 } 1757 1758 /* 1759 ** Rewind the VDBE back to the beginning in preparation for 1760 ** running it. 1761 */ 1762 void sqlite3VdbeRewind(Vdbe *p){ 1763 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1764 int i; 1765 #endif 1766 assert( p!=0 ); 1767 assert( p->magic==VDBE_MAGIC_INIT ); 1768 1769 /* There should be at least one opcode. 1770 */ 1771 assert( p->nOp>0 ); 1772 1773 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 1774 p->magic = VDBE_MAGIC_RUN; 1775 1776 #ifdef SQLITE_DEBUG 1777 for(i=1; i<p->nMem; i++){ 1778 assert( p->aMem[i].db==p->db ); 1779 } 1780 #endif 1781 p->pc = -1; 1782 p->rc = SQLITE_OK; 1783 p->errorAction = OE_Abort; 1784 p->nChange = 0; 1785 p->cacheCtr = 1; 1786 p->minWriteFileFormat = 255; 1787 p->iStatement = 0; 1788 p->nFkConstraint = 0; 1789 #ifdef VDBE_PROFILE 1790 for(i=0; i<p->nOp; i++){ 1791 p->aOp[i].cnt = 0; 1792 p->aOp[i].cycles = 0; 1793 } 1794 #endif 1795 } 1796 1797 /* 1798 ** Prepare a virtual machine for execution for the first time after 1799 ** creating the virtual machine. This involves things such 1800 ** as allocating registers and initializing the program counter. 1801 ** After the VDBE has be prepped, it can be executed by one or more 1802 ** calls to sqlite3VdbeExec(). 1803 ** 1804 ** This function may be called exactly once on each virtual machine. 1805 ** After this routine is called the VM has been "packaged" and is ready 1806 ** to run. After this routine is called, further calls to 1807 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 1808 ** the Vdbe from the Parse object that helped generate it so that the 1809 ** the Vdbe becomes an independent entity and the Parse object can be 1810 ** destroyed. 1811 ** 1812 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 1813 ** to its initial state after it has been run. 1814 */ 1815 void sqlite3VdbeMakeReady( 1816 Vdbe *p, /* The VDBE */ 1817 Parse *pParse /* Parsing context */ 1818 ){ 1819 sqlite3 *db; /* The database connection */ 1820 int nVar; /* Number of parameters */ 1821 int nMem; /* Number of VM memory registers */ 1822 int nCursor; /* Number of cursors required */ 1823 int nArg; /* Number of arguments in subprograms */ 1824 int nOnce; /* Number of OP_Once instructions */ 1825 int n; /* Loop counter */ 1826 struct ReusableSpace x; /* Reusable bulk memory */ 1827 1828 assert( p!=0 ); 1829 assert( p->nOp>0 ); 1830 assert( pParse!=0 ); 1831 assert( p->magic==VDBE_MAGIC_INIT ); 1832 assert( pParse==p->pParse ); 1833 db = p->db; 1834 assert( db->mallocFailed==0 ); 1835 nVar = pParse->nVar; 1836 nMem = pParse->nMem; 1837 nCursor = pParse->nTab; 1838 nArg = pParse->nMaxArg; 1839 nOnce = pParse->nOnce; 1840 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */ 1841 1842 /* For each cursor required, also allocate a memory cell. Memory 1843 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by 1844 ** the vdbe program. Instead they are used to allocate memory for 1845 ** VdbeCursor/BtCursor structures. The blob of memory associated with 1846 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) 1847 ** stores the blob of memory associated with cursor 1, etc. 1848 ** 1849 ** See also: allocateCursor(). 1850 */ 1851 nMem += nCursor; 1852 1853 /* Figure out how much reusable memory is available at the end of the 1854 ** opcode array. This extra memory will be reallocated for other elements 1855 ** of the prepared statement. 1856 */ 1857 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 1858 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 1859 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 1860 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 1861 assert( x.nFree>=0 ); 1862 if( x.nFree>0 ){ 1863 memset(x.pSpace, 0, x.nFree); 1864 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 1865 } 1866 1867 resolveP2Values(p, &nArg); 1868 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 1869 if( pParse->explain && nMem<10 ){ 1870 nMem = 10; 1871 } 1872 p->expired = 0; 1873 1874 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 1875 ** passes. On the first pass, we try to reuse unused memory at the 1876 ** end of the opcode array. If we are unable to satisfy all memory 1877 ** requirements by reusing the opcode array tail, then the second 1878 ** pass will fill in the remainder using a fresh memory allocation. 1879 ** 1880 ** This two-pass approach that reuses as much memory as possible from 1881 ** the leftover memory at the end of the opcode array. This can significantly 1882 ** reduce the amount of memory held by a prepared statement. 1883 */ 1884 do { 1885 x.nNeeded = 0; 1886 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 1887 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 1888 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 1889 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 1890 p->aOnceFlag = allocSpace(&x, p->aOnceFlag, nOnce); 1891 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1892 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 1893 #endif 1894 if( x.nNeeded==0 ) break; 1895 x.pSpace = p->pFree = sqlite3DbMallocZero(db, x.nNeeded); 1896 x.nFree = x.nNeeded; 1897 }while( !db->mallocFailed ); 1898 1899 p->nCursor = nCursor; 1900 p->nOnceFlag = nOnce; 1901 if( p->aVar ){ 1902 p->nVar = (ynVar)nVar; 1903 for(n=0; n<nVar; n++){ 1904 p->aVar[n].flags = MEM_Null; 1905 p->aVar[n].db = db; 1906 } 1907 } 1908 p->nzVar = pParse->nzVar; 1909 p->azVar = pParse->azVar; 1910 pParse->nzVar = 0; 1911 pParse->azVar = 0; 1912 if( p->aMem ){ 1913 p->aMem--; /* aMem[] goes from 1..nMem */ 1914 p->nMem = nMem; /* not from 0..nMem-1 */ 1915 for(n=1; n<=nMem; n++){ 1916 p->aMem[n].flags = MEM_Undefined; 1917 p->aMem[n].db = db; 1918 } 1919 } 1920 p->explain = pParse->explain; 1921 sqlite3VdbeRewind(p); 1922 } 1923 1924 /* 1925 ** Close a VDBE cursor and release all the resources that cursor 1926 ** happens to hold. 1927 */ 1928 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 1929 if( pCx==0 ){ 1930 return; 1931 } 1932 assert( pCx->pBt==0 || pCx->eCurType==CURTYPE_BTREE ); 1933 switch( pCx->eCurType ){ 1934 case CURTYPE_SORTER: { 1935 sqlite3VdbeSorterClose(p->db, pCx); 1936 break; 1937 } 1938 case CURTYPE_BTREE: { 1939 if( pCx->pBt ){ 1940 sqlite3BtreeClose(pCx->pBt); 1941 /* The pCx->pCursor will be close automatically, if it exists, by 1942 ** the call above. */ 1943 }else{ 1944 assert( pCx->uc.pCursor!=0 ); 1945 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 1946 } 1947 break; 1948 } 1949 #ifndef SQLITE_OMIT_VIRTUALTABLE 1950 case CURTYPE_VTAB: { 1951 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 1952 const sqlite3_module *pModule = pVCur->pVtab->pModule; 1953 assert( pVCur->pVtab->nRef>0 ); 1954 pVCur->pVtab->nRef--; 1955 pModule->xClose(pVCur); 1956 break; 1957 } 1958 #endif 1959 } 1960 } 1961 1962 /* 1963 ** Close all cursors in the current frame. 1964 */ 1965 static void closeCursorsInFrame(Vdbe *p){ 1966 if( p->apCsr ){ 1967 int i; 1968 for(i=0; i<p->nCursor; i++){ 1969 VdbeCursor *pC = p->apCsr[i]; 1970 if( pC ){ 1971 sqlite3VdbeFreeCursor(p, pC); 1972 p->apCsr[i] = 0; 1973 } 1974 } 1975 } 1976 } 1977 1978 /* 1979 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 1980 ** is used, for example, when a trigger sub-program is halted to restore 1981 ** control to the main program. 1982 */ 1983 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 1984 Vdbe *v = pFrame->v; 1985 closeCursorsInFrame(v); 1986 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1987 v->anExec = pFrame->anExec; 1988 #endif 1989 v->aOnceFlag = pFrame->aOnceFlag; 1990 v->nOnceFlag = pFrame->nOnceFlag; 1991 v->aOp = pFrame->aOp; 1992 v->nOp = pFrame->nOp; 1993 v->aMem = pFrame->aMem; 1994 v->nMem = pFrame->nMem; 1995 v->apCsr = pFrame->apCsr; 1996 v->nCursor = pFrame->nCursor; 1997 v->db->lastRowid = pFrame->lastRowid; 1998 v->nChange = pFrame->nChange; 1999 v->db->nChange = pFrame->nDbChange; 2000 return pFrame->pc; 2001 } 2002 2003 /* 2004 ** Close all cursors. 2005 ** 2006 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2007 ** cell array. This is necessary as the memory cell array may contain 2008 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2009 ** open cursors. 2010 */ 2011 static void closeAllCursors(Vdbe *p){ 2012 if( p->pFrame ){ 2013 VdbeFrame *pFrame; 2014 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2015 sqlite3VdbeFrameRestore(pFrame); 2016 p->pFrame = 0; 2017 p->nFrame = 0; 2018 } 2019 assert( p->nFrame==0 ); 2020 closeCursorsInFrame(p); 2021 if( p->aMem ){ 2022 releaseMemArray(&p->aMem[1], p->nMem); 2023 } 2024 while( p->pDelFrame ){ 2025 VdbeFrame *pDel = p->pDelFrame; 2026 p->pDelFrame = pDel->pParent; 2027 sqlite3VdbeFrameDelete(pDel); 2028 } 2029 2030 /* Delete any auxdata allocations made by the VM */ 2031 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0); 2032 assert( p->pAuxData==0 ); 2033 } 2034 2035 /* 2036 ** Clean up the VM after a single run. 2037 */ 2038 static void Cleanup(Vdbe *p){ 2039 sqlite3 *db = p->db; 2040 2041 #ifdef SQLITE_DEBUG 2042 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 2043 ** Vdbe.aMem[] arrays have already been cleaned up. */ 2044 int i; 2045 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 2046 if( p->aMem ){ 2047 for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 2048 } 2049 #endif 2050 2051 sqlite3DbFree(db, p->zErrMsg); 2052 p->zErrMsg = 0; 2053 p->pResultSet = 0; 2054 } 2055 2056 /* 2057 ** Set the number of result columns that will be returned by this SQL 2058 ** statement. This is now set at compile time, rather than during 2059 ** execution of the vdbe program so that sqlite3_column_count() can 2060 ** be called on an SQL statement before sqlite3_step(). 2061 */ 2062 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2063 Mem *pColName; 2064 int n; 2065 sqlite3 *db = p->db; 2066 2067 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2068 sqlite3DbFree(db, p->aColName); 2069 n = nResColumn*COLNAME_N; 2070 p->nResColumn = (u16)nResColumn; 2071 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n ); 2072 if( p->aColName==0 ) return; 2073 while( n-- > 0 ){ 2074 pColName->flags = MEM_Null; 2075 pColName->db = p->db; 2076 pColName++; 2077 } 2078 } 2079 2080 /* 2081 ** Set the name of the idx'th column to be returned by the SQL statement. 2082 ** zName must be a pointer to a nul terminated string. 2083 ** 2084 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2085 ** 2086 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2087 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2088 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2089 */ 2090 int sqlite3VdbeSetColName( 2091 Vdbe *p, /* Vdbe being configured */ 2092 int idx, /* Index of column zName applies to */ 2093 int var, /* One of the COLNAME_* constants */ 2094 const char *zName, /* Pointer to buffer containing name */ 2095 void (*xDel)(void*) /* Memory management strategy for zName */ 2096 ){ 2097 int rc; 2098 Mem *pColName; 2099 assert( idx<p->nResColumn ); 2100 assert( var<COLNAME_N ); 2101 if( p->db->mallocFailed ){ 2102 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2103 return SQLITE_NOMEM; 2104 } 2105 assert( p->aColName!=0 ); 2106 pColName = &(p->aColName[idx+var*p->nResColumn]); 2107 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2108 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2109 return rc; 2110 } 2111 2112 /* 2113 ** A read or write transaction may or may not be active on database handle 2114 ** db. If a transaction is active, commit it. If there is a 2115 ** write-transaction spanning more than one database file, this routine 2116 ** takes care of the master journal trickery. 2117 */ 2118 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2119 int i; 2120 int nTrans = 0; /* Number of databases with an active write-transaction */ 2121 int rc = SQLITE_OK; 2122 int needXcommit = 0; 2123 2124 #ifdef SQLITE_OMIT_VIRTUALTABLE 2125 /* With this option, sqlite3VtabSync() is defined to be simply 2126 ** SQLITE_OK so p is not used. 2127 */ 2128 UNUSED_PARAMETER(p); 2129 #endif 2130 2131 /* Before doing anything else, call the xSync() callback for any 2132 ** virtual module tables written in this transaction. This has to 2133 ** be done before determining whether a master journal file is 2134 ** required, as an xSync() callback may add an attached database 2135 ** to the transaction. 2136 */ 2137 rc = sqlite3VtabSync(db, p); 2138 2139 /* This loop determines (a) if the commit hook should be invoked and 2140 ** (b) how many database files have open write transactions, not 2141 ** including the temp database. (b) is important because if more than 2142 ** one database file has an open write transaction, a master journal 2143 ** file is required for an atomic commit. 2144 */ 2145 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2146 Btree *pBt = db->aDb[i].pBt; 2147 if( sqlite3BtreeIsInTrans(pBt) ){ 2148 needXcommit = 1; 2149 if( i!=1 ) nTrans++; 2150 sqlite3BtreeEnter(pBt); 2151 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt)); 2152 sqlite3BtreeLeave(pBt); 2153 } 2154 } 2155 if( rc!=SQLITE_OK ){ 2156 return rc; 2157 } 2158 2159 /* If there are any write-transactions at all, invoke the commit hook */ 2160 if( needXcommit && db->xCommitCallback ){ 2161 rc = db->xCommitCallback(db->pCommitArg); 2162 if( rc ){ 2163 return SQLITE_CONSTRAINT_COMMITHOOK; 2164 } 2165 } 2166 2167 /* The simple case - no more than one database file (not counting the 2168 ** TEMP database) has a transaction active. There is no need for the 2169 ** master-journal. 2170 ** 2171 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2172 ** string, it means the main database is :memory: or a temp file. In 2173 ** that case we do not support atomic multi-file commits, so use the 2174 ** simple case then too. 2175 */ 2176 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2177 || nTrans<=1 2178 ){ 2179 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2180 Btree *pBt = db->aDb[i].pBt; 2181 if( pBt ){ 2182 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2183 } 2184 } 2185 2186 /* Do the commit only if all databases successfully complete phase 1. 2187 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2188 ** IO error while deleting or truncating a journal file. It is unlikely, 2189 ** but could happen. In this case abandon processing and return the error. 2190 */ 2191 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2192 Btree *pBt = db->aDb[i].pBt; 2193 if( pBt ){ 2194 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2195 } 2196 } 2197 if( rc==SQLITE_OK ){ 2198 sqlite3VtabCommit(db); 2199 } 2200 } 2201 2202 /* The complex case - There is a multi-file write-transaction active. 2203 ** This requires a master journal file to ensure the transaction is 2204 ** committed atomically. 2205 */ 2206 #ifndef SQLITE_OMIT_DISKIO 2207 else{ 2208 sqlite3_vfs *pVfs = db->pVfs; 2209 int needSync = 0; 2210 char *zMaster = 0; /* File-name for the master journal */ 2211 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2212 sqlite3_file *pMaster = 0; 2213 i64 offset = 0; 2214 int res; 2215 int retryCount = 0; 2216 int nMainFile; 2217 2218 /* Select a master journal file name */ 2219 nMainFile = sqlite3Strlen30(zMainFile); 2220 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); 2221 if( zMaster==0 ) return SQLITE_NOMEM; 2222 do { 2223 u32 iRandom; 2224 if( retryCount ){ 2225 if( retryCount>100 ){ 2226 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 2227 sqlite3OsDelete(pVfs, zMaster, 0); 2228 break; 2229 }else if( retryCount==1 ){ 2230 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2231 } 2232 } 2233 retryCount++; 2234 sqlite3_randomness(sizeof(iRandom), &iRandom); 2235 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2236 (iRandom>>8)&0xffffff, iRandom&0xff); 2237 /* The antipenultimate character of the master journal name must 2238 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2239 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2240 sqlite3FileSuffix3(zMainFile, zMaster); 2241 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2242 }while( rc==SQLITE_OK && res ); 2243 if( rc==SQLITE_OK ){ 2244 /* Open the master journal. */ 2245 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2246 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2247 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2248 ); 2249 } 2250 if( rc!=SQLITE_OK ){ 2251 sqlite3DbFree(db, zMaster); 2252 return rc; 2253 } 2254 2255 /* Write the name of each database file in the transaction into the new 2256 ** master journal file. If an error occurs at this point close 2257 ** and delete the master journal file. All the individual journal files 2258 ** still have 'null' as the master journal pointer, so they will roll 2259 ** back independently if a failure occurs. 2260 */ 2261 for(i=0; i<db->nDb; i++){ 2262 Btree *pBt = db->aDb[i].pBt; 2263 if( sqlite3BtreeIsInTrans(pBt) ){ 2264 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2265 if( zFile==0 ){ 2266 continue; /* Ignore TEMP and :memory: databases */ 2267 } 2268 assert( zFile[0]!=0 ); 2269 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){ 2270 needSync = 1; 2271 } 2272 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2273 offset += sqlite3Strlen30(zFile)+1; 2274 if( rc!=SQLITE_OK ){ 2275 sqlite3OsCloseFree(pMaster); 2276 sqlite3OsDelete(pVfs, zMaster, 0); 2277 sqlite3DbFree(db, zMaster); 2278 return rc; 2279 } 2280 } 2281 } 2282 2283 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2284 ** flag is set this is not required. 2285 */ 2286 if( needSync 2287 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2288 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2289 ){ 2290 sqlite3OsCloseFree(pMaster); 2291 sqlite3OsDelete(pVfs, zMaster, 0); 2292 sqlite3DbFree(db, zMaster); 2293 return rc; 2294 } 2295 2296 /* Sync all the db files involved in the transaction. The same call 2297 ** sets the master journal pointer in each individual journal. If 2298 ** an error occurs here, do not delete the master journal file. 2299 ** 2300 ** If the error occurs during the first call to 2301 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2302 ** master journal file will be orphaned. But we cannot delete it, 2303 ** in case the master journal file name was written into the journal 2304 ** file before the failure occurred. 2305 */ 2306 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2307 Btree *pBt = db->aDb[i].pBt; 2308 if( pBt ){ 2309 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2310 } 2311 } 2312 sqlite3OsCloseFree(pMaster); 2313 assert( rc!=SQLITE_BUSY ); 2314 if( rc!=SQLITE_OK ){ 2315 sqlite3DbFree(db, zMaster); 2316 return rc; 2317 } 2318 2319 /* Delete the master journal file. This commits the transaction. After 2320 ** doing this the directory is synced again before any individual 2321 ** transaction files are deleted. 2322 */ 2323 rc = sqlite3OsDelete(pVfs, zMaster, needSync); 2324 sqlite3DbFree(db, zMaster); 2325 zMaster = 0; 2326 if( rc ){ 2327 return rc; 2328 } 2329 2330 /* All files and directories have already been synced, so the following 2331 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2332 ** deleting or truncating journals. If something goes wrong while 2333 ** this is happening we don't really care. The integrity of the 2334 ** transaction is already guaranteed, but some stray 'cold' journals 2335 ** may be lying around. Returning an error code won't help matters. 2336 */ 2337 disable_simulated_io_errors(); 2338 sqlite3BeginBenignMalloc(); 2339 for(i=0; i<db->nDb; i++){ 2340 Btree *pBt = db->aDb[i].pBt; 2341 if( pBt ){ 2342 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2343 } 2344 } 2345 sqlite3EndBenignMalloc(); 2346 enable_simulated_io_errors(); 2347 2348 sqlite3VtabCommit(db); 2349 } 2350 #endif 2351 2352 return rc; 2353 } 2354 2355 /* 2356 ** This routine checks that the sqlite3.nVdbeActive count variable 2357 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2358 ** currently active. An assertion fails if the two counts do not match. 2359 ** This is an internal self-check only - it is not an essential processing 2360 ** step. 2361 ** 2362 ** This is a no-op if NDEBUG is defined. 2363 */ 2364 #ifndef NDEBUG 2365 static void checkActiveVdbeCnt(sqlite3 *db){ 2366 Vdbe *p; 2367 int cnt = 0; 2368 int nWrite = 0; 2369 int nRead = 0; 2370 p = db->pVdbe; 2371 while( p ){ 2372 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2373 cnt++; 2374 if( p->readOnly==0 ) nWrite++; 2375 if( p->bIsReader ) nRead++; 2376 } 2377 p = p->pNext; 2378 } 2379 assert( cnt==db->nVdbeActive ); 2380 assert( nWrite==db->nVdbeWrite ); 2381 assert( nRead==db->nVdbeRead ); 2382 } 2383 #else 2384 #define checkActiveVdbeCnt(x) 2385 #endif 2386 2387 /* 2388 ** If the Vdbe passed as the first argument opened a statement-transaction, 2389 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2390 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2391 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2392 ** statement transaction is committed. 2393 ** 2394 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2395 ** Otherwise SQLITE_OK. 2396 */ 2397 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2398 sqlite3 *const db = p->db; 2399 int rc = SQLITE_OK; 2400 2401 /* If p->iStatement is greater than zero, then this Vdbe opened a 2402 ** statement transaction that should be closed here. The only exception 2403 ** is that an IO error may have occurred, causing an emergency rollback. 2404 ** In this case (db->nStatement==0), and there is nothing to do. 2405 */ 2406 if( db->nStatement && p->iStatement ){ 2407 int i; 2408 const int iSavepoint = p->iStatement-1; 2409 2410 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2411 assert( db->nStatement>0 ); 2412 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2413 2414 for(i=0; i<db->nDb; i++){ 2415 int rc2 = SQLITE_OK; 2416 Btree *pBt = db->aDb[i].pBt; 2417 if( pBt ){ 2418 if( eOp==SAVEPOINT_ROLLBACK ){ 2419 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2420 } 2421 if( rc2==SQLITE_OK ){ 2422 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2423 } 2424 if( rc==SQLITE_OK ){ 2425 rc = rc2; 2426 } 2427 } 2428 } 2429 db->nStatement--; 2430 p->iStatement = 0; 2431 2432 if( rc==SQLITE_OK ){ 2433 if( eOp==SAVEPOINT_ROLLBACK ){ 2434 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2435 } 2436 if( rc==SQLITE_OK ){ 2437 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2438 } 2439 } 2440 2441 /* If the statement transaction is being rolled back, also restore the 2442 ** database handles deferred constraint counter to the value it had when 2443 ** the statement transaction was opened. */ 2444 if( eOp==SAVEPOINT_ROLLBACK ){ 2445 db->nDeferredCons = p->nStmtDefCons; 2446 db->nDeferredImmCons = p->nStmtDefImmCons; 2447 } 2448 } 2449 return rc; 2450 } 2451 2452 /* 2453 ** This function is called when a transaction opened by the database 2454 ** handle associated with the VM passed as an argument is about to be 2455 ** committed. If there are outstanding deferred foreign key constraint 2456 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2457 ** 2458 ** If there are outstanding FK violations and this function returns 2459 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2460 ** and write an error message to it. Then return SQLITE_ERROR. 2461 */ 2462 #ifndef SQLITE_OMIT_FOREIGN_KEY 2463 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2464 sqlite3 *db = p->db; 2465 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2466 || (!deferred && p->nFkConstraint>0) 2467 ){ 2468 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2469 p->errorAction = OE_Abort; 2470 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2471 return SQLITE_ERROR; 2472 } 2473 return SQLITE_OK; 2474 } 2475 #endif 2476 2477 /* 2478 ** This routine is called the when a VDBE tries to halt. If the VDBE 2479 ** has made changes and is in autocommit mode, then commit those 2480 ** changes. If a rollback is needed, then do the rollback. 2481 ** 2482 ** This routine is the only way to move the state of a VM from 2483 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2484 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2485 ** 2486 ** Return an error code. If the commit could not complete because of 2487 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2488 ** means the close did not happen and needs to be repeated. 2489 */ 2490 int sqlite3VdbeHalt(Vdbe *p){ 2491 int rc; /* Used to store transient return codes */ 2492 sqlite3 *db = p->db; 2493 2494 /* This function contains the logic that determines if a statement or 2495 ** transaction will be committed or rolled back as a result of the 2496 ** execution of this virtual machine. 2497 ** 2498 ** If any of the following errors occur: 2499 ** 2500 ** SQLITE_NOMEM 2501 ** SQLITE_IOERR 2502 ** SQLITE_FULL 2503 ** SQLITE_INTERRUPT 2504 ** 2505 ** Then the internal cache might have been left in an inconsistent 2506 ** state. We need to rollback the statement transaction, if there is 2507 ** one, or the complete transaction if there is no statement transaction. 2508 */ 2509 2510 if( p->db->mallocFailed ){ 2511 p->rc = SQLITE_NOMEM; 2512 } 2513 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag); 2514 closeAllCursors(p); 2515 if( p->magic!=VDBE_MAGIC_RUN ){ 2516 return SQLITE_OK; 2517 } 2518 checkActiveVdbeCnt(db); 2519 2520 /* No commit or rollback needed if the program never started or if the 2521 ** SQL statement does not read or write a database file. */ 2522 if( p->pc>=0 && p->bIsReader ){ 2523 int mrc; /* Primary error code from p->rc */ 2524 int eStatementOp = 0; 2525 int isSpecialError; /* Set to true if a 'special' error */ 2526 2527 /* Lock all btrees used by the statement */ 2528 sqlite3VdbeEnter(p); 2529 2530 /* Check for one of the special errors */ 2531 mrc = p->rc & 0xff; 2532 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2533 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2534 if( isSpecialError ){ 2535 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2536 ** no rollback is necessary. Otherwise, at least a savepoint 2537 ** transaction must be rolled back to restore the database to a 2538 ** consistent state. 2539 ** 2540 ** Even if the statement is read-only, it is important to perform 2541 ** a statement or transaction rollback operation. If the error 2542 ** occurred while writing to the journal, sub-journal or database 2543 ** file as part of an effort to free up cache space (see function 2544 ** pagerStress() in pager.c), the rollback is required to restore 2545 ** the pager to a consistent state. 2546 */ 2547 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2548 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2549 eStatementOp = SAVEPOINT_ROLLBACK; 2550 }else{ 2551 /* We are forced to roll back the active transaction. Before doing 2552 ** so, abort any other statements this handle currently has active. 2553 */ 2554 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2555 sqlite3CloseSavepoints(db); 2556 db->autoCommit = 1; 2557 p->nChange = 0; 2558 } 2559 } 2560 } 2561 2562 /* Check for immediate foreign key violations. */ 2563 if( p->rc==SQLITE_OK ){ 2564 sqlite3VdbeCheckFk(p, 0); 2565 } 2566 2567 /* If the auto-commit flag is set and this is the only active writer 2568 ** VM, then we do either a commit or rollback of the current transaction. 2569 ** 2570 ** Note: This block also runs if one of the special errors handled 2571 ** above has occurred. 2572 */ 2573 if( !sqlite3VtabInSync(db) 2574 && db->autoCommit 2575 && db->nVdbeWrite==(p->readOnly==0) 2576 ){ 2577 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2578 rc = sqlite3VdbeCheckFk(p, 1); 2579 if( rc!=SQLITE_OK ){ 2580 if( NEVER(p->readOnly) ){ 2581 sqlite3VdbeLeave(p); 2582 return SQLITE_ERROR; 2583 } 2584 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2585 }else{ 2586 /* The auto-commit flag is true, the vdbe program was successful 2587 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2588 ** key constraints to hold up the transaction. This means a commit 2589 ** is required. */ 2590 rc = vdbeCommit(db, p); 2591 } 2592 if( rc==SQLITE_BUSY && p->readOnly ){ 2593 sqlite3VdbeLeave(p); 2594 return SQLITE_BUSY; 2595 }else if( rc!=SQLITE_OK ){ 2596 p->rc = rc; 2597 sqlite3RollbackAll(db, SQLITE_OK); 2598 p->nChange = 0; 2599 }else{ 2600 db->nDeferredCons = 0; 2601 db->nDeferredImmCons = 0; 2602 db->flags &= ~SQLITE_DeferFKs; 2603 sqlite3CommitInternalChanges(db); 2604 } 2605 }else{ 2606 sqlite3RollbackAll(db, SQLITE_OK); 2607 p->nChange = 0; 2608 } 2609 db->nStatement = 0; 2610 }else if( eStatementOp==0 ){ 2611 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2612 eStatementOp = SAVEPOINT_RELEASE; 2613 }else if( p->errorAction==OE_Abort ){ 2614 eStatementOp = SAVEPOINT_ROLLBACK; 2615 }else{ 2616 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2617 sqlite3CloseSavepoints(db); 2618 db->autoCommit = 1; 2619 p->nChange = 0; 2620 } 2621 } 2622 2623 /* If eStatementOp is non-zero, then a statement transaction needs to 2624 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2625 ** do so. If this operation returns an error, and the current statement 2626 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2627 ** current statement error code. 2628 */ 2629 if( eStatementOp ){ 2630 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2631 if( rc ){ 2632 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 2633 p->rc = rc; 2634 sqlite3DbFree(db, p->zErrMsg); 2635 p->zErrMsg = 0; 2636 } 2637 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2638 sqlite3CloseSavepoints(db); 2639 db->autoCommit = 1; 2640 p->nChange = 0; 2641 } 2642 } 2643 2644 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2645 ** has been rolled back, update the database connection change-counter. 2646 */ 2647 if( p->changeCntOn ){ 2648 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2649 sqlite3VdbeSetChanges(db, p->nChange); 2650 }else{ 2651 sqlite3VdbeSetChanges(db, 0); 2652 } 2653 p->nChange = 0; 2654 } 2655 2656 /* Release the locks */ 2657 sqlite3VdbeLeave(p); 2658 } 2659 2660 /* We have successfully halted and closed the VM. Record this fact. */ 2661 if( p->pc>=0 ){ 2662 db->nVdbeActive--; 2663 if( !p->readOnly ) db->nVdbeWrite--; 2664 if( p->bIsReader ) db->nVdbeRead--; 2665 assert( db->nVdbeActive>=db->nVdbeRead ); 2666 assert( db->nVdbeRead>=db->nVdbeWrite ); 2667 assert( db->nVdbeWrite>=0 ); 2668 } 2669 p->magic = VDBE_MAGIC_HALT; 2670 checkActiveVdbeCnt(db); 2671 if( p->db->mallocFailed ){ 2672 p->rc = SQLITE_NOMEM; 2673 } 2674 2675 /* If the auto-commit flag is set to true, then any locks that were held 2676 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2677 ** to invoke any required unlock-notify callbacks. 2678 */ 2679 if( db->autoCommit ){ 2680 sqlite3ConnectionUnlocked(db); 2681 } 2682 2683 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 2684 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 2685 } 2686 2687 2688 /* 2689 ** Each VDBE holds the result of the most recent sqlite3_step() call 2690 ** in p->rc. This routine sets that result back to SQLITE_OK. 2691 */ 2692 void sqlite3VdbeResetStepResult(Vdbe *p){ 2693 p->rc = SQLITE_OK; 2694 } 2695 2696 /* 2697 ** Copy the error code and error message belonging to the VDBE passed 2698 ** as the first argument to its database handle (so that they will be 2699 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 2700 ** 2701 ** This function does not clear the VDBE error code or message, just 2702 ** copies them to the database handle. 2703 */ 2704 int sqlite3VdbeTransferError(Vdbe *p){ 2705 sqlite3 *db = p->db; 2706 int rc = p->rc; 2707 if( p->zErrMsg ){ 2708 u8 mallocFailed = db->mallocFailed; 2709 sqlite3BeginBenignMalloc(); 2710 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 2711 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 2712 sqlite3EndBenignMalloc(); 2713 db->mallocFailed = mallocFailed; 2714 db->errCode = rc; 2715 }else{ 2716 sqlite3Error(db, rc); 2717 } 2718 return rc; 2719 } 2720 2721 #ifdef SQLITE_ENABLE_SQLLOG 2722 /* 2723 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 2724 ** invoke it. 2725 */ 2726 static void vdbeInvokeSqllog(Vdbe *v){ 2727 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 2728 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 2729 assert( v->db->init.busy==0 ); 2730 if( zExpanded ){ 2731 sqlite3GlobalConfig.xSqllog( 2732 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 2733 ); 2734 sqlite3DbFree(v->db, zExpanded); 2735 } 2736 } 2737 } 2738 #else 2739 # define vdbeInvokeSqllog(x) 2740 #endif 2741 2742 /* 2743 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 2744 ** Write any error messages into *pzErrMsg. Return the result code. 2745 ** 2746 ** After this routine is run, the VDBE should be ready to be executed 2747 ** again. 2748 ** 2749 ** To look at it another way, this routine resets the state of the 2750 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 2751 ** VDBE_MAGIC_INIT. 2752 */ 2753 int sqlite3VdbeReset(Vdbe *p){ 2754 sqlite3 *db; 2755 db = p->db; 2756 2757 /* If the VM did not run to completion or if it encountered an 2758 ** error, then it might not have been halted properly. So halt 2759 ** it now. 2760 */ 2761 sqlite3VdbeHalt(p); 2762 2763 /* If the VDBE has be run even partially, then transfer the error code 2764 ** and error message from the VDBE into the main database structure. But 2765 ** if the VDBE has just been set to run but has not actually executed any 2766 ** instructions yet, leave the main database error information unchanged. 2767 */ 2768 if( p->pc>=0 ){ 2769 vdbeInvokeSqllog(p); 2770 sqlite3VdbeTransferError(p); 2771 sqlite3DbFree(db, p->zErrMsg); 2772 p->zErrMsg = 0; 2773 if( p->runOnlyOnce ) p->expired = 1; 2774 }else if( p->rc && p->expired ){ 2775 /* The expired flag was set on the VDBE before the first call 2776 ** to sqlite3_step(). For consistency (since sqlite3_step() was 2777 ** called), set the database error in this case as well. 2778 */ 2779 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 2780 sqlite3DbFree(db, p->zErrMsg); 2781 p->zErrMsg = 0; 2782 } 2783 2784 /* Reclaim all memory used by the VDBE 2785 */ 2786 Cleanup(p); 2787 2788 /* Save profiling information from this VDBE run. 2789 */ 2790 #ifdef VDBE_PROFILE 2791 { 2792 FILE *out = fopen("vdbe_profile.out", "a"); 2793 if( out ){ 2794 int i; 2795 fprintf(out, "---- "); 2796 for(i=0; i<p->nOp; i++){ 2797 fprintf(out, "%02x", p->aOp[i].opcode); 2798 } 2799 fprintf(out, "\n"); 2800 if( p->zSql ){ 2801 char c, pc = 0; 2802 fprintf(out, "-- "); 2803 for(i=0; (c = p->zSql[i])!=0; i++){ 2804 if( pc=='\n' ) fprintf(out, "-- "); 2805 putc(c, out); 2806 pc = c; 2807 } 2808 if( pc!='\n' ) fprintf(out, "\n"); 2809 } 2810 for(i=0; i<p->nOp; i++){ 2811 char zHdr[100]; 2812 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 2813 p->aOp[i].cnt, 2814 p->aOp[i].cycles, 2815 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 2816 ); 2817 fprintf(out, "%s", zHdr); 2818 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 2819 } 2820 fclose(out); 2821 } 2822 } 2823 #endif 2824 p->iCurrentTime = 0; 2825 p->magic = VDBE_MAGIC_INIT; 2826 return p->rc & db->errMask; 2827 } 2828 2829 /* 2830 ** Clean up and delete a VDBE after execution. Return an integer which is 2831 ** the result code. Write any error message text into *pzErrMsg. 2832 */ 2833 int sqlite3VdbeFinalize(Vdbe *p){ 2834 int rc = SQLITE_OK; 2835 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 2836 rc = sqlite3VdbeReset(p); 2837 assert( (rc & p->db->errMask)==rc ); 2838 } 2839 sqlite3VdbeDelete(p); 2840 return rc; 2841 } 2842 2843 /* 2844 ** If parameter iOp is less than zero, then invoke the destructor for 2845 ** all auxiliary data pointers currently cached by the VM passed as 2846 ** the first argument. 2847 ** 2848 ** Or, if iOp is greater than or equal to zero, then the destructor is 2849 ** only invoked for those auxiliary data pointers created by the user 2850 ** function invoked by the OP_Function opcode at instruction iOp of 2851 ** VM pVdbe, and only then if: 2852 ** 2853 ** * the associated function parameter is the 32nd or later (counting 2854 ** from left to right), or 2855 ** 2856 ** * the corresponding bit in argument mask is clear (where the first 2857 ** function parameter corresponds to bit 0 etc.). 2858 */ 2859 void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){ 2860 AuxData **pp = &pVdbe->pAuxData; 2861 while( *pp ){ 2862 AuxData *pAux = *pp; 2863 if( (iOp<0) 2864 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg)))) 2865 ){ 2866 testcase( pAux->iArg==31 ); 2867 if( pAux->xDelete ){ 2868 pAux->xDelete(pAux->pAux); 2869 } 2870 *pp = pAux->pNext; 2871 sqlite3DbFree(pVdbe->db, pAux); 2872 }else{ 2873 pp= &pAux->pNext; 2874 } 2875 } 2876 } 2877 2878 /* 2879 ** Free all memory associated with the Vdbe passed as the second argument, 2880 ** except for object itself, which is preserved. 2881 ** 2882 ** The difference between this function and sqlite3VdbeDelete() is that 2883 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 2884 ** the database connection and frees the object itself. 2885 */ 2886 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 2887 SubProgram *pSub, *pNext; 2888 int i; 2889 assert( p->db==0 || p->db==db ); 2890 releaseMemArray(p->aVar, p->nVar); 2891 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2892 for(pSub=p->pProgram; pSub; pSub=pNext){ 2893 pNext = pSub->pNext; 2894 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 2895 sqlite3DbFree(db, pSub); 2896 } 2897 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); 2898 sqlite3DbFree(db, p->azVar); 2899 vdbeFreeOpArray(db, p->aOp, p->nOp); 2900 sqlite3DbFree(db, p->aColName); 2901 sqlite3DbFree(db, p->zSql); 2902 sqlite3DbFree(db, p->pFree); 2903 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2904 for(i=0; i<p->nScan; i++){ 2905 sqlite3DbFree(db, p->aScan[i].zName); 2906 } 2907 sqlite3DbFree(db, p->aScan); 2908 #endif 2909 } 2910 2911 /* 2912 ** Delete an entire VDBE. 2913 */ 2914 void sqlite3VdbeDelete(Vdbe *p){ 2915 sqlite3 *db; 2916 2917 if( NEVER(p==0) ) return; 2918 db = p->db; 2919 assert( sqlite3_mutex_held(db->mutex) ); 2920 sqlite3VdbeClearObject(db, p); 2921 if( p->pPrev ){ 2922 p->pPrev->pNext = p->pNext; 2923 }else{ 2924 assert( db->pVdbe==p ); 2925 db->pVdbe = p->pNext; 2926 } 2927 if( p->pNext ){ 2928 p->pNext->pPrev = p->pPrev; 2929 } 2930 p->magic = VDBE_MAGIC_DEAD; 2931 p->db = 0; 2932 sqlite3DbFree(db, p); 2933 } 2934 2935 /* 2936 ** The cursor "p" has a pending seek operation that has not yet been 2937 ** carried out. Seek the cursor now. If an error occurs, return 2938 ** the appropriate error code. 2939 */ 2940 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ 2941 int res, rc; 2942 #ifdef SQLITE_TEST 2943 extern int sqlite3_search_count; 2944 #endif 2945 assert( p->deferredMoveto ); 2946 assert( p->isTable ); 2947 assert( p->eCurType==CURTYPE_BTREE ); 2948 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); 2949 if( rc ) return rc; 2950 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 2951 #ifdef SQLITE_TEST 2952 sqlite3_search_count++; 2953 #endif 2954 p->deferredMoveto = 0; 2955 p->cacheStatus = CACHE_STALE; 2956 return SQLITE_OK; 2957 } 2958 2959 /* 2960 ** Something has moved cursor "p" out of place. Maybe the row it was 2961 ** pointed to was deleted out from under it. Or maybe the btree was 2962 ** rebalanced. Whatever the cause, try to restore "p" to the place it 2963 ** is supposed to be pointing. If the row was deleted out from under the 2964 ** cursor, set the cursor to point to a NULL row. 2965 */ 2966 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 2967 int isDifferentRow, rc; 2968 assert( p->eCurType==CURTYPE_BTREE ); 2969 assert( p->uc.pCursor!=0 ); 2970 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 2971 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 2972 p->cacheStatus = CACHE_STALE; 2973 if( isDifferentRow ) p->nullRow = 1; 2974 return rc; 2975 } 2976 2977 /* 2978 ** Check to ensure that the cursor is valid. Restore the cursor 2979 ** if need be. Return any I/O error from the restore operation. 2980 */ 2981 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 2982 assert( p->eCurType==CURTYPE_BTREE ); 2983 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 2984 return handleMovedCursor(p); 2985 } 2986 return SQLITE_OK; 2987 } 2988 2989 /* 2990 ** Make sure the cursor p is ready to read or write the row to which it 2991 ** was last positioned. Return an error code if an OOM fault or I/O error 2992 ** prevents us from positioning the cursor to its correct position. 2993 ** 2994 ** If a MoveTo operation is pending on the given cursor, then do that 2995 ** MoveTo now. If no move is pending, check to see if the row has been 2996 ** deleted out from under the cursor and if it has, mark the row as 2997 ** a NULL row. 2998 ** 2999 ** If the cursor is already pointing to the correct row and that row has 3000 ** not been deleted out from under the cursor, then this routine is a no-op. 3001 */ 3002 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){ 3003 VdbeCursor *p = *pp; 3004 if( p->eCurType==CURTYPE_BTREE ){ 3005 if( p->deferredMoveto ){ 3006 int iMap; 3007 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){ 3008 *pp = p->pAltCursor; 3009 *piCol = iMap - 1; 3010 return SQLITE_OK; 3011 } 3012 return handleDeferredMoveto(p); 3013 } 3014 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3015 return handleMovedCursor(p); 3016 } 3017 } 3018 return SQLITE_OK; 3019 } 3020 3021 /* 3022 ** The following functions: 3023 ** 3024 ** sqlite3VdbeSerialType() 3025 ** sqlite3VdbeSerialTypeLen() 3026 ** sqlite3VdbeSerialLen() 3027 ** sqlite3VdbeSerialPut() 3028 ** sqlite3VdbeSerialGet() 3029 ** 3030 ** encapsulate the code that serializes values for storage in SQLite 3031 ** data and index records. Each serialized value consists of a 3032 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3033 ** integer, stored as a varint. 3034 ** 3035 ** In an SQLite index record, the serial type is stored directly before 3036 ** the blob of data that it corresponds to. In a table record, all serial 3037 ** types are stored at the start of the record, and the blobs of data at 3038 ** the end. Hence these functions allow the caller to handle the 3039 ** serial-type and data blob separately. 3040 ** 3041 ** The following table describes the various storage classes for data: 3042 ** 3043 ** serial type bytes of data type 3044 ** -------------- --------------- --------------- 3045 ** 0 0 NULL 3046 ** 1 1 signed integer 3047 ** 2 2 signed integer 3048 ** 3 3 signed integer 3049 ** 4 4 signed integer 3050 ** 5 6 signed integer 3051 ** 6 8 signed integer 3052 ** 7 8 IEEE float 3053 ** 8 0 Integer constant 0 3054 ** 9 0 Integer constant 1 3055 ** 10,11 reserved for expansion 3056 ** N>=12 and even (N-12)/2 BLOB 3057 ** N>=13 and odd (N-13)/2 text 3058 ** 3059 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3060 ** of SQLite will not understand those serial types. 3061 */ 3062 3063 /* 3064 ** Return the serial-type for the value stored in pMem. 3065 */ 3066 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3067 int flags = pMem->flags; 3068 u32 n; 3069 3070 assert( pLen!=0 ); 3071 if( flags&MEM_Null ){ 3072 *pLen = 0; 3073 return 0; 3074 } 3075 if( flags&MEM_Int ){ 3076 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3077 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3078 i64 i = pMem->u.i; 3079 u64 u; 3080 if( i<0 ){ 3081 u = ~i; 3082 }else{ 3083 u = i; 3084 } 3085 if( u<=127 ){ 3086 if( (i&1)==i && file_format>=4 ){ 3087 *pLen = 0; 3088 return 8+(u32)u; 3089 }else{ 3090 *pLen = 1; 3091 return 1; 3092 } 3093 } 3094 if( u<=32767 ){ *pLen = 2; return 2; } 3095 if( u<=8388607 ){ *pLen = 3; return 3; } 3096 if( u<=2147483647 ){ *pLen = 4; return 4; } 3097 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3098 *pLen = 8; 3099 return 6; 3100 } 3101 if( flags&MEM_Real ){ 3102 *pLen = 8; 3103 return 7; 3104 } 3105 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3106 assert( pMem->n>=0 ); 3107 n = (u32)pMem->n; 3108 if( flags & MEM_Zero ){ 3109 n += pMem->u.nZero; 3110 } 3111 *pLen = n; 3112 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3113 } 3114 3115 /* 3116 ** The sizes for serial types less than 128 3117 */ 3118 static const u8 sqlite3SmallTypeSizes[] = { 3119 /* 0 1 2 3 4 5 6 7 8 9 */ 3120 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3121 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3122 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3123 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3124 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3125 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3126 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3127 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3128 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3129 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3130 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3131 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3132 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3133 }; 3134 3135 /* 3136 ** Return the length of the data corresponding to the supplied serial-type. 3137 */ 3138 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3139 if( serial_type>=128 ){ 3140 return (serial_type-12)/2; 3141 }else{ 3142 assert( serial_type<12 3143 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3144 return sqlite3SmallTypeSizes[serial_type]; 3145 } 3146 } 3147 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3148 assert( serial_type<128 ); 3149 return sqlite3SmallTypeSizes[serial_type]; 3150 } 3151 3152 /* 3153 ** If we are on an architecture with mixed-endian floating 3154 ** points (ex: ARM7) then swap the lower 4 bytes with the 3155 ** upper 4 bytes. Return the result. 3156 ** 3157 ** For most architectures, this is a no-op. 3158 ** 3159 ** (later): It is reported to me that the mixed-endian problem 3160 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3161 ** that early versions of GCC stored the two words of a 64-bit 3162 ** float in the wrong order. And that error has been propagated 3163 ** ever since. The blame is not necessarily with GCC, though. 3164 ** GCC might have just copying the problem from a prior compiler. 3165 ** I am also told that newer versions of GCC that follow a different 3166 ** ABI get the byte order right. 3167 ** 3168 ** Developers using SQLite on an ARM7 should compile and run their 3169 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3170 ** enabled, some asserts below will ensure that the byte order of 3171 ** floating point values is correct. 3172 ** 3173 ** (2007-08-30) Frank van Vugt has studied this problem closely 3174 ** and has send his findings to the SQLite developers. Frank 3175 ** writes that some Linux kernels offer floating point hardware 3176 ** emulation that uses only 32-bit mantissas instead of a full 3177 ** 48-bits as required by the IEEE standard. (This is the 3178 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3179 ** byte swapping becomes very complicated. To avoid problems, 3180 ** the necessary byte swapping is carried out using a 64-bit integer 3181 ** rather than a 64-bit float. Frank assures us that the code here 3182 ** works for him. We, the developers, have no way to independently 3183 ** verify this, but Frank seems to know what he is talking about 3184 ** so we trust him. 3185 */ 3186 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3187 static u64 floatSwap(u64 in){ 3188 union { 3189 u64 r; 3190 u32 i[2]; 3191 } u; 3192 u32 t; 3193 3194 u.r = in; 3195 t = u.i[0]; 3196 u.i[0] = u.i[1]; 3197 u.i[1] = t; 3198 return u.r; 3199 } 3200 # define swapMixedEndianFloat(X) X = floatSwap(X) 3201 #else 3202 # define swapMixedEndianFloat(X) 3203 #endif 3204 3205 /* 3206 ** Write the serialized data blob for the value stored in pMem into 3207 ** buf. It is assumed that the caller has allocated sufficient space. 3208 ** Return the number of bytes written. 3209 ** 3210 ** nBuf is the amount of space left in buf[]. The caller is responsible 3211 ** for allocating enough space to buf[] to hold the entire field, exclusive 3212 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3213 ** 3214 ** Return the number of bytes actually written into buf[]. The number 3215 ** of bytes in the zero-filled tail is included in the return value only 3216 ** if those bytes were zeroed in buf[]. 3217 */ 3218 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3219 u32 len; 3220 3221 /* Integer and Real */ 3222 if( serial_type<=7 && serial_type>0 ){ 3223 u64 v; 3224 u32 i; 3225 if( serial_type==7 ){ 3226 assert( sizeof(v)==sizeof(pMem->u.r) ); 3227 memcpy(&v, &pMem->u.r, sizeof(v)); 3228 swapMixedEndianFloat(v); 3229 }else{ 3230 v = pMem->u.i; 3231 } 3232 len = i = sqlite3SmallTypeSizes[serial_type]; 3233 assert( i>0 ); 3234 do{ 3235 buf[--i] = (u8)(v&0xFF); 3236 v >>= 8; 3237 }while( i ); 3238 return len; 3239 } 3240 3241 /* String or blob */ 3242 if( serial_type>=12 ){ 3243 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3244 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3245 len = pMem->n; 3246 if( len>0 ) memcpy(buf, pMem->z, len); 3247 return len; 3248 } 3249 3250 /* NULL or constants 0 or 1 */ 3251 return 0; 3252 } 3253 3254 /* Input "x" is a sequence of unsigned characters that represent a 3255 ** big-endian integer. Return the equivalent native integer 3256 */ 3257 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3258 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3259 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3260 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3261 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3262 3263 /* 3264 ** Deserialize the data blob pointed to by buf as serial type serial_type 3265 ** and store the result in pMem. Return the number of bytes read. 3266 ** 3267 ** This function is implemented as two separate routines for performance. 3268 ** The few cases that require local variables are broken out into a separate 3269 ** routine so that in most cases the overhead of moving the stack pointer 3270 ** is avoided. 3271 */ 3272 static u32 SQLITE_NOINLINE serialGet( 3273 const unsigned char *buf, /* Buffer to deserialize from */ 3274 u32 serial_type, /* Serial type to deserialize */ 3275 Mem *pMem /* Memory cell to write value into */ 3276 ){ 3277 u64 x = FOUR_BYTE_UINT(buf); 3278 u32 y = FOUR_BYTE_UINT(buf+4); 3279 x = (x<<32) + y; 3280 if( serial_type==6 ){ 3281 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3282 ** twos-complement integer. */ 3283 pMem->u.i = *(i64*)&x; 3284 pMem->flags = MEM_Int; 3285 testcase( pMem->u.i<0 ); 3286 }else{ 3287 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3288 ** floating point number. */ 3289 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3290 /* Verify that integers and floating point values use the same 3291 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3292 ** defined that 64-bit floating point values really are mixed 3293 ** endian. 3294 */ 3295 static const u64 t1 = ((u64)0x3ff00000)<<32; 3296 static const double r1 = 1.0; 3297 u64 t2 = t1; 3298 swapMixedEndianFloat(t2); 3299 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3300 #endif 3301 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3302 swapMixedEndianFloat(x); 3303 memcpy(&pMem->u.r, &x, sizeof(x)); 3304 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; 3305 } 3306 return 8; 3307 } 3308 u32 sqlite3VdbeSerialGet( 3309 const unsigned char *buf, /* Buffer to deserialize from */ 3310 u32 serial_type, /* Serial type to deserialize */ 3311 Mem *pMem /* Memory cell to write value into */ 3312 ){ 3313 switch( serial_type ){ 3314 case 10: /* Reserved for future use */ 3315 case 11: /* Reserved for future use */ 3316 case 0: { /* Null */ 3317 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3318 pMem->flags = MEM_Null; 3319 break; 3320 } 3321 case 1: { 3322 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3323 ** integer. */ 3324 pMem->u.i = ONE_BYTE_INT(buf); 3325 pMem->flags = MEM_Int; 3326 testcase( pMem->u.i<0 ); 3327 return 1; 3328 } 3329 case 2: { /* 2-byte signed integer */ 3330 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3331 ** twos-complement integer. */ 3332 pMem->u.i = TWO_BYTE_INT(buf); 3333 pMem->flags = MEM_Int; 3334 testcase( pMem->u.i<0 ); 3335 return 2; 3336 } 3337 case 3: { /* 3-byte signed integer */ 3338 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3339 ** twos-complement integer. */ 3340 pMem->u.i = THREE_BYTE_INT(buf); 3341 pMem->flags = MEM_Int; 3342 testcase( pMem->u.i<0 ); 3343 return 3; 3344 } 3345 case 4: { /* 4-byte signed integer */ 3346 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3347 ** twos-complement integer. */ 3348 pMem->u.i = FOUR_BYTE_INT(buf); 3349 #ifdef __HP_cc 3350 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3351 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3352 #endif 3353 pMem->flags = MEM_Int; 3354 testcase( pMem->u.i<0 ); 3355 return 4; 3356 } 3357 case 5: { /* 6-byte signed integer */ 3358 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3359 ** twos-complement integer. */ 3360 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3361 pMem->flags = MEM_Int; 3362 testcase( pMem->u.i<0 ); 3363 return 6; 3364 } 3365 case 6: /* 8-byte signed integer */ 3366 case 7: { /* IEEE floating point */ 3367 /* These use local variables, so do them in a separate routine 3368 ** to avoid having to move the frame pointer in the common case */ 3369 return serialGet(buf,serial_type,pMem); 3370 } 3371 case 8: /* Integer 0 */ 3372 case 9: { /* Integer 1 */ 3373 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3374 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3375 pMem->u.i = serial_type-8; 3376 pMem->flags = MEM_Int; 3377 return 0; 3378 } 3379 default: { 3380 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3381 ** length. 3382 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3383 ** (N-13)/2 bytes in length. */ 3384 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3385 pMem->z = (char *)buf; 3386 pMem->n = (serial_type-12)/2; 3387 pMem->flags = aFlag[serial_type&1]; 3388 return pMem->n; 3389 } 3390 } 3391 return 0; 3392 } 3393 /* 3394 ** This routine is used to allocate sufficient space for an UnpackedRecord 3395 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3396 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3397 ** 3398 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3399 ** the unaligned buffer passed via the second and third arguments (presumably 3400 ** stack space). If the former, then *ppFree is set to a pointer that should 3401 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3402 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3403 ** before returning. 3404 ** 3405 ** If an OOM error occurs, NULL is returned. 3406 */ 3407 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3408 KeyInfo *pKeyInfo, /* Description of the record */ 3409 char *pSpace, /* Unaligned space available */ 3410 int szSpace, /* Size of pSpace[] in bytes */ 3411 char **ppFree /* OUT: Caller should free this pointer */ 3412 ){ 3413 UnpackedRecord *p; /* Unpacked record to return */ 3414 int nOff; /* Increment pSpace by nOff to align it */ 3415 int nByte; /* Number of bytes required for *p */ 3416 3417 /* We want to shift the pointer pSpace up such that it is 8-byte aligned. 3418 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift 3419 ** it by. If pSpace is already 8-byte aligned, nOff should be zero. 3420 */ 3421 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7; 3422 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); 3423 if( nByte>szSpace+nOff ){ 3424 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3425 *ppFree = (char *)p; 3426 if( !p ) return 0; 3427 }else{ 3428 p = (UnpackedRecord*)&pSpace[nOff]; 3429 *ppFree = 0; 3430 } 3431 3432 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3433 assert( pKeyInfo->aSortOrder!=0 ); 3434 p->pKeyInfo = pKeyInfo; 3435 p->nField = pKeyInfo->nField + 1; 3436 return p; 3437 } 3438 3439 /* 3440 ** Given the nKey-byte encoding of a record in pKey[], populate the 3441 ** UnpackedRecord structure indicated by the fourth argument with the 3442 ** contents of the decoded record. 3443 */ 3444 void sqlite3VdbeRecordUnpack( 3445 KeyInfo *pKeyInfo, /* Information about the record format */ 3446 int nKey, /* Size of the binary record */ 3447 const void *pKey, /* The binary record */ 3448 UnpackedRecord *p /* Populate this structure before returning. */ 3449 ){ 3450 const unsigned char *aKey = (const unsigned char *)pKey; 3451 int d; 3452 u32 idx; /* Offset in aKey[] to read from */ 3453 u16 u; /* Unsigned loop counter */ 3454 u32 szHdr; 3455 Mem *pMem = p->aMem; 3456 3457 p->default_rc = 0; 3458 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3459 idx = getVarint32(aKey, szHdr); 3460 d = szHdr; 3461 u = 0; 3462 while( idx<szHdr && d<=nKey ){ 3463 u32 serial_type; 3464 3465 idx += getVarint32(&aKey[idx], serial_type); 3466 pMem->enc = pKeyInfo->enc; 3467 pMem->db = pKeyInfo->db; 3468 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 3469 pMem->szMalloc = 0; 3470 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3471 pMem++; 3472 if( (++u)>=p->nField ) break; 3473 } 3474 assert( u<=pKeyInfo->nField + 1 ); 3475 p->nField = u; 3476 } 3477 3478 #if SQLITE_DEBUG 3479 /* 3480 ** This function compares two index or table record keys in the same way 3481 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 3482 ** this function deserializes and compares values using the 3483 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 3484 ** in assert() statements to ensure that the optimized code in 3485 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 3486 ** 3487 ** Return true if the result of comparison is equivalent to desiredResult. 3488 ** Return false if there is a disagreement. 3489 */ 3490 static int vdbeRecordCompareDebug( 3491 int nKey1, const void *pKey1, /* Left key */ 3492 const UnpackedRecord *pPKey2, /* Right key */ 3493 int desiredResult /* Correct answer */ 3494 ){ 3495 u32 d1; /* Offset into aKey[] of next data element */ 3496 u32 idx1; /* Offset into aKey[] of next header element */ 3497 u32 szHdr1; /* Number of bytes in header */ 3498 int i = 0; 3499 int rc = 0; 3500 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3501 KeyInfo *pKeyInfo; 3502 Mem mem1; 3503 3504 pKeyInfo = pPKey2->pKeyInfo; 3505 if( pKeyInfo->db==0 ) return 1; 3506 mem1.enc = pKeyInfo->enc; 3507 mem1.db = pKeyInfo->db; 3508 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 3509 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3510 3511 /* Compilers may complain that mem1.u.i is potentially uninitialized. 3512 ** We could initialize it, as shown here, to silence those complaints. 3513 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 3514 ** the unnecessary initialization has a measurable negative performance 3515 ** impact, since this routine is a very high runner. And so, we choose 3516 ** to ignore the compiler warnings and leave this variable uninitialized. 3517 */ 3518 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 3519 3520 idx1 = getVarint32(aKey1, szHdr1); 3521 if( szHdr1>98307 ) return SQLITE_CORRUPT; 3522 d1 = szHdr1; 3523 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB ); 3524 assert( pKeyInfo->aSortOrder!=0 ); 3525 assert( pKeyInfo->nField>0 ); 3526 assert( idx1<=szHdr1 || CORRUPT_DB ); 3527 do{ 3528 u32 serial_type1; 3529 3530 /* Read the serial types for the next element in each key. */ 3531 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 3532 3533 /* Verify that there is enough key space remaining to avoid 3534 ** a buffer overread. The "d1+serial_type1+2" subexpression will 3535 ** always be greater than or equal to the amount of required key space. 3536 ** Use that approximation to avoid the more expensive call to 3537 ** sqlite3VdbeSerialTypeLen() in the common case. 3538 */ 3539 if( d1+serial_type1+2>(u32)nKey1 3540 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 3541 ){ 3542 break; 3543 } 3544 3545 /* Extract the values to be compared. 3546 */ 3547 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 3548 3549 /* Do the comparison 3550 */ 3551 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); 3552 if( rc!=0 ){ 3553 assert( mem1.szMalloc==0 ); /* See comment below */ 3554 if( pKeyInfo->aSortOrder[i] ){ 3555 rc = -rc; /* Invert the result for DESC sort order. */ 3556 } 3557 goto debugCompareEnd; 3558 } 3559 i++; 3560 }while( idx1<szHdr1 && i<pPKey2->nField ); 3561 3562 /* No memory allocation is ever used on mem1. Prove this using 3563 ** the following assert(). If the assert() fails, it indicates a 3564 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 3565 */ 3566 assert( mem1.szMalloc==0 ); 3567 3568 /* rc==0 here means that one of the keys ran out of fields and 3569 ** all the fields up to that point were equal. Return the default_rc 3570 ** value. */ 3571 rc = pPKey2->default_rc; 3572 3573 debugCompareEnd: 3574 if( desiredResult==0 && rc==0 ) return 1; 3575 if( desiredResult<0 && rc<0 ) return 1; 3576 if( desiredResult>0 && rc>0 ) return 1; 3577 if( CORRUPT_DB ) return 1; 3578 if( pKeyInfo->db->mallocFailed ) return 1; 3579 return 0; 3580 } 3581 #endif 3582 3583 #if SQLITE_DEBUG 3584 /* 3585 ** Count the number of fields (a.k.a. columns) in the record given by 3586 ** pKey,nKey. The verify that this count is less than or equal to the 3587 ** limit given by pKeyInfo->nField + pKeyInfo->nXField. 3588 ** 3589 ** If this constraint is not satisfied, it means that the high-speed 3590 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 3591 ** not work correctly. If this assert() ever fires, it probably means 3592 ** that the KeyInfo.nField or KeyInfo.nXField values were computed 3593 ** incorrectly. 3594 */ 3595 static void vdbeAssertFieldCountWithinLimits( 3596 int nKey, const void *pKey, /* The record to verify */ 3597 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 3598 ){ 3599 int nField = 0; 3600 u32 szHdr; 3601 u32 idx; 3602 u32 notUsed; 3603 const unsigned char *aKey = (const unsigned char*)pKey; 3604 3605 if( CORRUPT_DB ) return; 3606 idx = getVarint32(aKey, szHdr); 3607 assert( nKey>=0 ); 3608 assert( szHdr<=(u32)nKey ); 3609 while( idx<szHdr ){ 3610 idx += getVarint32(aKey+idx, notUsed); 3611 nField++; 3612 } 3613 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField ); 3614 } 3615 #else 3616 # define vdbeAssertFieldCountWithinLimits(A,B,C) 3617 #endif 3618 3619 /* 3620 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 3621 ** using the collation sequence pColl. As usual, return a negative , zero 3622 ** or positive value if *pMem1 is less than, equal to or greater than 3623 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 3624 */ 3625 static int vdbeCompareMemString( 3626 const Mem *pMem1, 3627 const Mem *pMem2, 3628 const CollSeq *pColl, 3629 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 3630 ){ 3631 if( pMem1->enc==pColl->enc ){ 3632 /* The strings are already in the correct encoding. Call the 3633 ** comparison function directly */ 3634 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 3635 }else{ 3636 int rc; 3637 const void *v1, *v2; 3638 int n1, n2; 3639 Mem c1; 3640 Mem c2; 3641 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 3642 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 3643 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 3644 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 3645 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 3646 n1 = v1==0 ? 0 : c1.n; 3647 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 3648 n2 = v2==0 ? 0 : c2.n; 3649 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); 3650 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM; 3651 sqlite3VdbeMemRelease(&c1); 3652 sqlite3VdbeMemRelease(&c2); 3653 return rc; 3654 } 3655 } 3656 3657 /* 3658 ** Compare two blobs. Return negative, zero, or positive if the first 3659 ** is less than, equal to, or greater than the second, respectively. 3660 ** If one blob is a prefix of the other, then the shorter is the lessor. 3661 */ 3662 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 3663 int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n); 3664 if( c ) return c; 3665 return pB1->n - pB2->n; 3666 } 3667 3668 /* 3669 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 3670 ** number. Return negative, zero, or positive if the first (i64) is less than, 3671 ** equal to, or greater than the second (double). 3672 */ 3673 static int sqlite3IntFloatCompare(i64 i, double r){ 3674 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 3675 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 3676 if( x<r ) return -1; 3677 if( x>r ) return +1; 3678 return 0; 3679 }else{ 3680 i64 y; 3681 double s; 3682 if( r<-9223372036854775808.0 ) return +1; 3683 if( r>9223372036854775807.0 ) return -1; 3684 y = (i64)r; 3685 if( i<y ) return -1; 3686 if( i>y ){ 3687 if( y==SMALLEST_INT64 && r>0.0 ) return -1; 3688 return +1; 3689 } 3690 s = (double)i; 3691 if( s<r ) return -1; 3692 if( s>r ) return +1; 3693 return 0; 3694 } 3695 } 3696 3697 /* 3698 ** Compare the values contained by the two memory cells, returning 3699 ** negative, zero or positive if pMem1 is less than, equal to, or greater 3700 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 3701 ** and reals) sorted numerically, followed by text ordered by the collating 3702 ** sequence pColl and finally blob's ordered by memcmp(). 3703 ** 3704 ** Two NULL values are considered equal by this function. 3705 */ 3706 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 3707 int f1, f2; 3708 int combined_flags; 3709 3710 f1 = pMem1->flags; 3711 f2 = pMem2->flags; 3712 combined_flags = f1|f2; 3713 assert( (combined_flags & MEM_RowSet)==0 ); 3714 3715 /* If one value is NULL, it is less than the other. If both values 3716 ** are NULL, return 0. 3717 */ 3718 if( combined_flags&MEM_Null ){ 3719 return (f2&MEM_Null) - (f1&MEM_Null); 3720 } 3721 3722 /* At least one of the two values is a number 3723 */ 3724 if( combined_flags&(MEM_Int|MEM_Real) ){ 3725 if( (f1 & f2 & MEM_Int)!=0 ){ 3726 if( pMem1->u.i < pMem2->u.i ) return -1; 3727 if( pMem1->u.i > pMem2->u.i ) return +1; 3728 return 0; 3729 } 3730 if( (f1 & f2 & MEM_Real)!=0 ){ 3731 if( pMem1->u.r < pMem2->u.r ) return -1; 3732 if( pMem1->u.r > pMem2->u.r ) return +1; 3733 return 0; 3734 } 3735 if( (f1&MEM_Int)!=0 ){ 3736 if( (f2&MEM_Real)!=0 ){ 3737 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 3738 }else{ 3739 return -1; 3740 } 3741 } 3742 if( (f1&MEM_Real)!=0 ){ 3743 if( (f2&MEM_Int)!=0 ){ 3744 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 3745 }else{ 3746 return -1; 3747 } 3748 } 3749 return +1; 3750 } 3751 3752 /* If one value is a string and the other is a blob, the string is less. 3753 ** If both are strings, compare using the collating functions. 3754 */ 3755 if( combined_flags&MEM_Str ){ 3756 if( (f1 & MEM_Str)==0 ){ 3757 return 1; 3758 } 3759 if( (f2 & MEM_Str)==0 ){ 3760 return -1; 3761 } 3762 3763 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 3764 assert( pMem1->enc==SQLITE_UTF8 || 3765 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 3766 3767 /* The collation sequence must be defined at this point, even if 3768 ** the user deletes the collation sequence after the vdbe program is 3769 ** compiled (this was not always the case). 3770 */ 3771 assert( !pColl || pColl->xCmp ); 3772 3773 if( pColl ){ 3774 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 3775 } 3776 /* If a NULL pointer was passed as the collate function, fall through 3777 ** to the blob case and use memcmp(). */ 3778 } 3779 3780 /* Both values must be blobs. Compare using memcmp(). */ 3781 return sqlite3BlobCompare(pMem1, pMem2); 3782 } 3783 3784 3785 /* 3786 ** The first argument passed to this function is a serial-type that 3787 ** corresponds to an integer - all values between 1 and 9 inclusive 3788 ** except 7. The second points to a buffer containing an integer value 3789 ** serialized according to serial_type. This function deserializes 3790 ** and returns the value. 3791 */ 3792 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 3793 u32 y; 3794 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 3795 switch( serial_type ){ 3796 case 0: 3797 case 1: 3798 testcase( aKey[0]&0x80 ); 3799 return ONE_BYTE_INT(aKey); 3800 case 2: 3801 testcase( aKey[0]&0x80 ); 3802 return TWO_BYTE_INT(aKey); 3803 case 3: 3804 testcase( aKey[0]&0x80 ); 3805 return THREE_BYTE_INT(aKey); 3806 case 4: { 3807 testcase( aKey[0]&0x80 ); 3808 y = FOUR_BYTE_UINT(aKey); 3809 return (i64)*(int*)&y; 3810 } 3811 case 5: { 3812 testcase( aKey[0]&0x80 ); 3813 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 3814 } 3815 case 6: { 3816 u64 x = FOUR_BYTE_UINT(aKey); 3817 testcase( aKey[0]&0x80 ); 3818 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 3819 return (i64)*(i64*)&x; 3820 } 3821 } 3822 3823 return (serial_type - 8); 3824 } 3825 3826 /* 3827 ** This function compares the two table rows or index records 3828 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 3829 ** or positive integer if key1 is less than, equal to or 3830 ** greater than key2. The {nKey1, pKey1} key must be a blob 3831 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 3832 ** key must be a parsed key such as obtained from 3833 ** sqlite3VdbeParseRecord. 3834 ** 3835 ** If argument bSkip is non-zero, it is assumed that the caller has already 3836 ** determined that the first fields of the keys are equal. 3837 ** 3838 ** Key1 and Key2 do not have to contain the same number of fields. If all 3839 ** fields that appear in both keys are equal, then pPKey2->default_rc is 3840 ** returned. 3841 ** 3842 ** If database corruption is discovered, set pPKey2->errCode to 3843 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 3844 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 3845 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 3846 */ 3847 int sqlite3VdbeRecordCompareWithSkip( 3848 int nKey1, const void *pKey1, /* Left key */ 3849 UnpackedRecord *pPKey2, /* Right key */ 3850 int bSkip /* If true, skip the first field */ 3851 ){ 3852 u32 d1; /* Offset into aKey[] of next data element */ 3853 int i; /* Index of next field to compare */ 3854 u32 szHdr1; /* Size of record header in bytes */ 3855 u32 idx1; /* Offset of first type in header */ 3856 int rc = 0; /* Return value */ 3857 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 3858 KeyInfo *pKeyInfo = pPKey2->pKeyInfo; 3859 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3860 Mem mem1; 3861 3862 /* If bSkip is true, then the caller has already determined that the first 3863 ** two elements in the keys are equal. Fix the various stack variables so 3864 ** that this routine begins comparing at the second field. */ 3865 if( bSkip ){ 3866 u32 s1; 3867 idx1 = 1 + getVarint32(&aKey1[1], s1); 3868 szHdr1 = aKey1[0]; 3869 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 3870 i = 1; 3871 pRhs++; 3872 }else{ 3873 idx1 = getVarint32(aKey1, szHdr1); 3874 d1 = szHdr1; 3875 if( d1>(unsigned)nKey1 ){ 3876 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3877 return 0; /* Corruption */ 3878 } 3879 i = 0; 3880 } 3881 3882 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3883 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 3884 || CORRUPT_DB ); 3885 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); 3886 assert( pPKey2->pKeyInfo->nField>0 ); 3887 assert( idx1<=szHdr1 || CORRUPT_DB ); 3888 do{ 3889 u32 serial_type; 3890 3891 /* RHS is an integer */ 3892 if( pRhs->flags & MEM_Int ){ 3893 serial_type = aKey1[idx1]; 3894 testcase( serial_type==12 ); 3895 if( serial_type>=10 ){ 3896 rc = +1; 3897 }else if( serial_type==0 ){ 3898 rc = -1; 3899 }else if( serial_type==7 ){ 3900 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 3901 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 3902 }else{ 3903 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 3904 i64 rhs = pRhs->u.i; 3905 if( lhs<rhs ){ 3906 rc = -1; 3907 }else if( lhs>rhs ){ 3908 rc = +1; 3909 } 3910 } 3911 } 3912 3913 /* RHS is real */ 3914 else if( pRhs->flags & MEM_Real ){ 3915 serial_type = aKey1[idx1]; 3916 if( serial_type>=10 ){ 3917 /* Serial types 12 or greater are strings and blobs (greater than 3918 ** numbers). Types 10 and 11 are currently "reserved for future 3919 ** use", so it doesn't really matter what the results of comparing 3920 ** them to numberic values are. */ 3921 rc = +1; 3922 }else if( serial_type==0 ){ 3923 rc = -1; 3924 }else{ 3925 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 3926 if( serial_type==7 ){ 3927 if( mem1.u.r<pRhs->u.r ){ 3928 rc = -1; 3929 }else if( mem1.u.r>pRhs->u.r ){ 3930 rc = +1; 3931 } 3932 }else{ 3933 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 3934 } 3935 } 3936 } 3937 3938 /* RHS is a string */ 3939 else if( pRhs->flags & MEM_Str ){ 3940 getVarint32(&aKey1[idx1], serial_type); 3941 testcase( serial_type==12 ); 3942 if( serial_type<12 ){ 3943 rc = -1; 3944 }else if( !(serial_type & 0x01) ){ 3945 rc = +1; 3946 }else{ 3947 mem1.n = (serial_type - 12) / 2; 3948 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 3949 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 3950 if( (d1+mem1.n) > (unsigned)nKey1 ){ 3951 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3952 return 0; /* Corruption */ 3953 }else if( pKeyInfo->aColl[i] ){ 3954 mem1.enc = pKeyInfo->enc; 3955 mem1.db = pKeyInfo->db; 3956 mem1.flags = MEM_Str; 3957 mem1.z = (char*)&aKey1[d1]; 3958 rc = vdbeCompareMemString( 3959 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 3960 ); 3961 }else{ 3962 int nCmp = MIN(mem1.n, pRhs->n); 3963 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 3964 if( rc==0 ) rc = mem1.n - pRhs->n; 3965 } 3966 } 3967 } 3968 3969 /* RHS is a blob */ 3970 else if( pRhs->flags & MEM_Blob ){ 3971 getVarint32(&aKey1[idx1], serial_type); 3972 testcase( serial_type==12 ); 3973 if( serial_type<12 || (serial_type & 0x01) ){ 3974 rc = -1; 3975 }else{ 3976 int nStr = (serial_type - 12) / 2; 3977 testcase( (d1+nStr)==(unsigned)nKey1 ); 3978 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 3979 if( (d1+nStr) > (unsigned)nKey1 ){ 3980 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3981 return 0; /* Corruption */ 3982 }else{ 3983 int nCmp = MIN(nStr, pRhs->n); 3984 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 3985 if( rc==0 ) rc = nStr - pRhs->n; 3986 } 3987 } 3988 } 3989 3990 /* RHS is null */ 3991 else{ 3992 serial_type = aKey1[idx1]; 3993 rc = (serial_type!=0); 3994 } 3995 3996 if( rc!=0 ){ 3997 if( pKeyInfo->aSortOrder[i] ){ 3998 rc = -rc; 3999 } 4000 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4001 assert( mem1.szMalloc==0 ); /* See comment below */ 4002 return rc; 4003 } 4004 4005 i++; 4006 pRhs++; 4007 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4008 idx1 += sqlite3VarintLen(serial_type); 4009 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); 4010 4011 /* No memory allocation is ever used on mem1. Prove this using 4012 ** the following assert(). If the assert() fails, it indicates a 4013 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4014 assert( mem1.szMalloc==0 ); 4015 4016 /* rc==0 here means that one or both of the keys ran out of fields and 4017 ** all the fields up to that point were equal. Return the default_rc 4018 ** value. */ 4019 assert( CORRUPT_DB 4020 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4021 || pKeyInfo->db->mallocFailed 4022 ); 4023 pPKey2->eqSeen = 1; 4024 return pPKey2->default_rc; 4025 } 4026 int sqlite3VdbeRecordCompare( 4027 int nKey1, const void *pKey1, /* Left key */ 4028 UnpackedRecord *pPKey2 /* Right key */ 4029 ){ 4030 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4031 } 4032 4033 4034 /* 4035 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4036 ** that (a) the first field of pPKey2 is an integer, and (b) the 4037 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4038 ** byte (i.e. is less than 128). 4039 ** 4040 ** To avoid concerns about buffer overreads, this routine is only used 4041 ** on schemas where the maximum valid header size is 63 bytes or less. 4042 */ 4043 static int vdbeRecordCompareInt( 4044 int nKey1, const void *pKey1, /* Left key */ 4045 UnpackedRecord *pPKey2 /* Right key */ 4046 ){ 4047 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4048 int serial_type = ((const u8*)pKey1)[1]; 4049 int res; 4050 u32 y; 4051 u64 x; 4052 i64 v = pPKey2->aMem[0].u.i; 4053 i64 lhs; 4054 4055 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4056 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4057 switch( serial_type ){ 4058 case 1: { /* 1-byte signed integer */ 4059 lhs = ONE_BYTE_INT(aKey); 4060 testcase( lhs<0 ); 4061 break; 4062 } 4063 case 2: { /* 2-byte signed integer */ 4064 lhs = TWO_BYTE_INT(aKey); 4065 testcase( lhs<0 ); 4066 break; 4067 } 4068 case 3: { /* 3-byte signed integer */ 4069 lhs = THREE_BYTE_INT(aKey); 4070 testcase( lhs<0 ); 4071 break; 4072 } 4073 case 4: { /* 4-byte signed integer */ 4074 y = FOUR_BYTE_UINT(aKey); 4075 lhs = (i64)*(int*)&y; 4076 testcase( lhs<0 ); 4077 break; 4078 } 4079 case 5: { /* 6-byte signed integer */ 4080 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4081 testcase( lhs<0 ); 4082 break; 4083 } 4084 case 6: { /* 8-byte signed integer */ 4085 x = FOUR_BYTE_UINT(aKey); 4086 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4087 lhs = *(i64*)&x; 4088 testcase( lhs<0 ); 4089 break; 4090 } 4091 case 8: 4092 lhs = 0; 4093 break; 4094 case 9: 4095 lhs = 1; 4096 break; 4097 4098 /* This case could be removed without changing the results of running 4099 ** this code. Including it causes gcc to generate a faster switch 4100 ** statement (since the range of switch targets now starts at zero and 4101 ** is contiguous) but does not cause any duplicate code to be generated 4102 ** (as gcc is clever enough to combine the two like cases). Other 4103 ** compilers might be similar. */ 4104 case 0: case 7: 4105 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4106 4107 default: 4108 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4109 } 4110 4111 if( v>lhs ){ 4112 res = pPKey2->r1; 4113 }else if( v<lhs ){ 4114 res = pPKey2->r2; 4115 }else if( pPKey2->nField>1 ){ 4116 /* The first fields of the two keys are equal. Compare the trailing 4117 ** fields. */ 4118 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4119 }else{ 4120 /* The first fields of the two keys are equal and there are no trailing 4121 ** fields. Return pPKey2->default_rc in this case. */ 4122 res = pPKey2->default_rc; 4123 pPKey2->eqSeen = 1; 4124 } 4125 4126 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4127 return res; 4128 } 4129 4130 /* 4131 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4132 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4133 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4134 ** at the start of (pKey1/nKey1) fits in a single byte. 4135 */ 4136 static int vdbeRecordCompareString( 4137 int nKey1, const void *pKey1, /* Left key */ 4138 UnpackedRecord *pPKey2 /* Right key */ 4139 ){ 4140 const u8 *aKey1 = (const u8*)pKey1; 4141 int serial_type; 4142 int res; 4143 4144 assert( pPKey2->aMem[0].flags & MEM_Str ); 4145 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4146 getVarint32(&aKey1[1], serial_type); 4147 if( serial_type<12 ){ 4148 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4149 }else if( !(serial_type & 0x01) ){ 4150 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4151 }else{ 4152 int nCmp; 4153 int nStr; 4154 int szHdr = aKey1[0]; 4155 4156 nStr = (serial_type-12) / 2; 4157 if( (szHdr + nStr) > nKey1 ){ 4158 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4159 return 0; /* Corruption */ 4160 } 4161 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4162 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4163 4164 if( res==0 ){ 4165 res = nStr - pPKey2->aMem[0].n; 4166 if( res==0 ){ 4167 if( pPKey2->nField>1 ){ 4168 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4169 }else{ 4170 res = pPKey2->default_rc; 4171 pPKey2->eqSeen = 1; 4172 } 4173 }else if( res>0 ){ 4174 res = pPKey2->r2; 4175 }else{ 4176 res = pPKey2->r1; 4177 } 4178 }else if( res>0 ){ 4179 res = pPKey2->r2; 4180 }else{ 4181 res = pPKey2->r1; 4182 } 4183 } 4184 4185 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4186 || CORRUPT_DB 4187 || pPKey2->pKeyInfo->db->mallocFailed 4188 ); 4189 return res; 4190 } 4191 4192 /* 4193 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4194 ** suitable for comparing serialized records to the unpacked record passed 4195 ** as the only argument. 4196 */ 4197 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4198 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4199 ** that the size-of-header varint that occurs at the start of each record 4200 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4201 ** also assumes that it is safe to overread a buffer by at least the 4202 ** maximum possible legal header size plus 8 bytes. Because there is 4203 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4204 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4205 ** limit the size of the header to 64 bytes in cases where the first field 4206 ** is an integer. 4207 ** 4208 ** The easiest way to enforce this limit is to consider only records with 4209 ** 13 fields or less. If the first field is an integer, the maximum legal 4210 ** header size is (12*5 + 1 + 1) bytes. */ 4211 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){ 4212 int flags = p->aMem[0].flags; 4213 if( p->pKeyInfo->aSortOrder[0] ){ 4214 p->r1 = 1; 4215 p->r2 = -1; 4216 }else{ 4217 p->r1 = -1; 4218 p->r2 = 1; 4219 } 4220 if( (flags & MEM_Int) ){ 4221 return vdbeRecordCompareInt; 4222 } 4223 testcase( flags & MEM_Real ); 4224 testcase( flags & MEM_Null ); 4225 testcase( flags & MEM_Blob ); 4226 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ 4227 assert( flags & MEM_Str ); 4228 return vdbeRecordCompareString; 4229 } 4230 } 4231 4232 return sqlite3VdbeRecordCompare; 4233 } 4234 4235 /* 4236 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4237 ** Read the rowid (the last field in the record) and store it in *rowid. 4238 ** Return SQLITE_OK if everything works, or an error code otherwise. 4239 ** 4240 ** pCur might be pointing to text obtained from a corrupt database file. 4241 ** So the content cannot be trusted. Do appropriate checks on the content. 4242 */ 4243 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4244 i64 nCellKey = 0; 4245 int rc; 4246 u32 szHdr; /* Size of the header */ 4247 u32 typeRowid; /* Serial type of the rowid */ 4248 u32 lenRowid; /* Size of the rowid */ 4249 Mem m, v; 4250 4251 /* Get the size of the index entry. Only indices entries of less 4252 ** than 2GiB are support - anything large must be database corruption. 4253 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4254 ** this code can safely assume that nCellKey is 32-bits 4255 */ 4256 assert( sqlite3BtreeCursorIsValid(pCur) ); 4257 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); 4258 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 4259 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4260 4261 /* Read in the complete content of the index entry */ 4262 sqlite3VdbeMemInit(&m, db, 0); 4263 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m); 4264 if( rc ){ 4265 return rc; 4266 } 4267 4268 /* The index entry must begin with a header size */ 4269 (void)getVarint32((u8*)m.z, szHdr); 4270 testcase( szHdr==3 ); 4271 testcase( szHdr==m.n ); 4272 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ 4273 goto idx_rowid_corruption; 4274 } 4275 4276 /* The last field of the index should be an integer - the ROWID. 4277 ** Verify that the last entry really is an integer. */ 4278 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 4279 testcase( typeRowid==1 ); 4280 testcase( typeRowid==2 ); 4281 testcase( typeRowid==3 ); 4282 testcase( typeRowid==4 ); 4283 testcase( typeRowid==5 ); 4284 testcase( typeRowid==6 ); 4285 testcase( typeRowid==8 ); 4286 testcase( typeRowid==9 ); 4287 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4288 goto idx_rowid_corruption; 4289 } 4290 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4291 testcase( (u32)m.n==szHdr+lenRowid ); 4292 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4293 goto idx_rowid_corruption; 4294 } 4295 4296 /* Fetch the integer off the end of the index record */ 4297 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4298 *rowid = v.u.i; 4299 sqlite3VdbeMemRelease(&m); 4300 return SQLITE_OK; 4301 4302 /* Jump here if database corruption is detected after m has been 4303 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4304 idx_rowid_corruption: 4305 testcase( m.szMalloc!=0 ); 4306 sqlite3VdbeMemRelease(&m); 4307 return SQLITE_CORRUPT_BKPT; 4308 } 4309 4310 /* 4311 ** Compare the key of the index entry that cursor pC is pointing to against 4312 ** the key string in pUnpacked. Write into *pRes a number 4313 ** that is negative, zero, or positive if pC is less than, equal to, 4314 ** or greater than pUnpacked. Return SQLITE_OK on success. 4315 ** 4316 ** pUnpacked is either created without a rowid or is truncated so that it 4317 ** omits the rowid at the end. The rowid at the end of the index entry 4318 ** is ignored as well. Hence, this routine only compares the prefixes 4319 ** of the keys prior to the final rowid, not the entire key. 4320 */ 4321 int sqlite3VdbeIdxKeyCompare( 4322 sqlite3 *db, /* Database connection */ 4323 VdbeCursor *pC, /* The cursor to compare against */ 4324 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4325 int *res /* Write the comparison result here */ 4326 ){ 4327 i64 nCellKey = 0; 4328 int rc; 4329 BtCursor *pCur; 4330 Mem m; 4331 4332 assert( pC->eCurType==CURTYPE_BTREE ); 4333 pCur = pC->uc.pCursor; 4334 assert( sqlite3BtreeCursorIsValid(pCur) ); 4335 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); 4336 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 4337 /* nCellKey will always be between 0 and 0xffffffff because of the way 4338 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4339 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4340 *res = 0; 4341 return SQLITE_CORRUPT_BKPT; 4342 } 4343 sqlite3VdbeMemInit(&m, db, 0); 4344 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m); 4345 if( rc ){ 4346 return rc; 4347 } 4348 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); 4349 sqlite3VdbeMemRelease(&m); 4350 return SQLITE_OK; 4351 } 4352 4353 /* 4354 ** This routine sets the value to be returned by subsequent calls to 4355 ** sqlite3_changes() on the database handle 'db'. 4356 */ 4357 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 4358 assert( sqlite3_mutex_held(db->mutex) ); 4359 db->nChange = nChange; 4360 db->nTotalChange += nChange; 4361 } 4362 4363 /* 4364 ** Set a flag in the vdbe to update the change counter when it is finalised 4365 ** or reset. 4366 */ 4367 void sqlite3VdbeCountChanges(Vdbe *v){ 4368 v->changeCntOn = 1; 4369 } 4370 4371 /* 4372 ** Mark every prepared statement associated with a database connection 4373 ** as expired. 4374 ** 4375 ** An expired statement means that recompilation of the statement is 4376 ** recommend. Statements expire when things happen that make their 4377 ** programs obsolete. Removing user-defined functions or collating 4378 ** sequences, or changing an authorization function are the types of 4379 ** things that make prepared statements obsolete. 4380 */ 4381 void sqlite3ExpirePreparedStatements(sqlite3 *db){ 4382 Vdbe *p; 4383 for(p = db->pVdbe; p; p=p->pNext){ 4384 p->expired = 1; 4385 } 4386 } 4387 4388 /* 4389 ** Return the database associated with the Vdbe. 4390 */ 4391 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 4392 return v->db; 4393 } 4394 4395 /* 4396 ** Return a pointer to an sqlite3_value structure containing the value bound 4397 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 4398 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 4399 ** constants) to the value before returning it. 4400 ** 4401 ** The returned value must be freed by the caller using sqlite3ValueFree(). 4402 */ 4403 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 4404 assert( iVar>0 ); 4405 if( v ){ 4406 Mem *pMem = &v->aVar[iVar-1]; 4407 if( 0==(pMem->flags & MEM_Null) ){ 4408 sqlite3_value *pRet = sqlite3ValueNew(v->db); 4409 if( pRet ){ 4410 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 4411 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 4412 } 4413 return pRet; 4414 } 4415 } 4416 return 0; 4417 } 4418 4419 /* 4420 ** Configure SQL variable iVar so that binding a new value to it signals 4421 ** to sqlite3_reoptimize() that re-preparing the statement may result 4422 ** in a better query plan. 4423 */ 4424 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 4425 assert( iVar>0 ); 4426 if( iVar>32 ){ 4427 v->expmask = 0xffffffff; 4428 }else{ 4429 v->expmask |= ((u32)1 << (iVar-1)); 4430 } 4431 } 4432 4433 #ifndef SQLITE_OMIT_VIRTUALTABLE 4434 /* 4435 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 4436 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 4437 ** in memory obtained from sqlite3DbMalloc). 4438 */ 4439 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 4440 if( pVtab->zErrMsg ){ 4441 sqlite3 *db = p->db; 4442 sqlite3DbFree(db, p->zErrMsg); 4443 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 4444 sqlite3_free(pVtab->zErrMsg); 4445 pVtab->zErrMsg = 0; 4446 } 4447 } 4448 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4449