1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* Forward references */ 19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef); 20 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 21 22 /* 23 ** Create a new virtual database engine. 24 */ 25 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 26 sqlite3 *db = pParse->db; 27 Vdbe *p; 28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 29 if( p==0 ) return 0; 30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 31 p->db = db; 32 if( db->pVdbe ){ 33 db->pVdbe->pPrev = p; 34 } 35 p->pNext = db->pVdbe; 36 p->pPrev = 0; 37 db->pVdbe = p; 38 assert( p->eVdbeState==VDBE_INIT_STATE ); 39 p->pParse = pParse; 40 pParse->pVdbe = p; 41 assert( pParse->aLabel==0 ); 42 assert( pParse->nLabel==0 ); 43 assert( p->nOpAlloc==0 ); 44 assert( pParse->szOpAlloc==0 ); 45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1); 46 return p; 47 } 48 49 /* 50 ** Return the Parse object that owns a Vdbe object. 51 */ 52 Parse *sqlite3VdbeParser(Vdbe *p){ 53 return p->pParse; 54 } 55 56 /* 57 ** Change the error string stored in Vdbe.zErrMsg 58 */ 59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 60 va_list ap; 61 sqlite3DbFree(p->db, p->zErrMsg); 62 va_start(ap, zFormat); 63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 64 va_end(ap); 65 } 66 67 /* 68 ** Remember the SQL string for a prepared statement. 69 */ 70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 71 if( p==0 ) return; 72 p->prepFlags = prepFlags; 73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 74 p->expmask = 0; 75 } 76 assert( p->zSql==0 ); 77 p->zSql = sqlite3DbStrNDup(p->db, z, n); 78 } 79 80 #ifdef SQLITE_ENABLE_NORMALIZE 81 /* 82 ** Add a new element to the Vdbe->pDblStr list. 83 */ 84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ 85 if( p ){ 86 int n = sqlite3Strlen30(z); 87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db, 88 sizeof(*pStr)+n+1-sizeof(pStr->z)); 89 if( pStr ){ 90 pStr->pNextStr = p->pDblStr; 91 p->pDblStr = pStr; 92 memcpy(pStr->z, z, n+1); 93 } 94 } 95 } 96 #endif 97 98 #ifdef SQLITE_ENABLE_NORMALIZE 99 /* 100 ** zId of length nId is a double-quoted identifier. Check to see if 101 ** that identifier is really used as a string literal. 102 */ 103 int sqlite3VdbeUsesDoubleQuotedString( 104 Vdbe *pVdbe, /* The prepared statement */ 105 const char *zId /* The double-quoted identifier, already dequoted */ 106 ){ 107 DblquoteStr *pStr; 108 assert( zId!=0 ); 109 if( pVdbe->pDblStr==0 ) return 0; 110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ 111 if( strcmp(zId, pStr->z)==0 ) return 1; 112 } 113 return 0; 114 } 115 #endif 116 117 /* 118 ** Swap byte-code between two VDBE structures. 119 ** 120 ** This happens after pB was previously run and returned 121 ** SQLITE_SCHEMA. The statement was then reprepared in pA. 122 ** This routine transfers the new bytecode in pA over to pB 123 ** so that pB can be run again. The old pB byte code is 124 ** moved back to pA so that it will be cleaned up when pA is 125 ** finalized. 126 */ 127 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 128 Vdbe tmp, *pTmp; 129 char *zTmp; 130 assert( pA->db==pB->db ); 131 tmp = *pA; 132 *pA = *pB; 133 *pB = tmp; 134 pTmp = pA->pNext; 135 pA->pNext = pB->pNext; 136 pB->pNext = pTmp; 137 pTmp = pA->pPrev; 138 pA->pPrev = pB->pPrev; 139 pB->pPrev = pTmp; 140 zTmp = pA->zSql; 141 pA->zSql = pB->zSql; 142 pB->zSql = zTmp; 143 #ifdef SQLITE_ENABLE_NORMALIZE 144 zTmp = pA->zNormSql; 145 pA->zNormSql = pB->zNormSql; 146 pB->zNormSql = zTmp; 147 #endif 148 pB->expmask = pA->expmask; 149 pB->prepFlags = pA->prepFlags; 150 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 151 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 152 } 153 154 /* 155 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 156 ** than its current size. nOp is guaranteed to be less than or equal 157 ** to 1024/sizeof(Op). 158 ** 159 ** If an out-of-memory error occurs while resizing the array, return 160 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain 161 ** unchanged (this is so that any opcodes already allocated can be 162 ** correctly deallocated along with the rest of the Vdbe). 163 */ 164 static int growOpArray(Vdbe *v, int nOp){ 165 VdbeOp *pNew; 166 Parse *p = v->pParse; 167 168 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 169 ** more frequent reallocs and hence provide more opportunities for 170 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 171 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 172 ** by the minimum* amount required until the size reaches 512. Normal 173 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 174 ** size of the op array or add 1KB of space, whichever is smaller. */ 175 #ifdef SQLITE_TEST_REALLOC_STRESS 176 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc 177 : (sqlite3_int64)v->nOpAlloc+nOp); 178 #else 179 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc 180 : (sqlite3_int64)(1024/sizeof(Op))); 181 UNUSED_PARAMETER(nOp); 182 #endif 183 184 /* Ensure that the size of a VDBE does not grow too large */ 185 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 186 sqlite3OomFault(p->db); 187 return SQLITE_NOMEM; 188 } 189 190 assert( nOp<=(int)(1024/sizeof(Op)) ); 191 assert( nNew>=(v->nOpAlloc+nOp) ); 192 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 193 if( pNew ){ 194 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 195 v->nOpAlloc = p->szOpAlloc/sizeof(Op); 196 v->aOp = pNew; 197 } 198 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 199 } 200 201 #ifdef SQLITE_DEBUG 202 /* This routine is just a convenient place to set a breakpoint that will 203 ** fire after each opcode is inserted and displayed using 204 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and 205 ** pOp are available to make the breakpoint conditional. 206 ** 207 ** Other useful labels for breakpoints include: 208 ** test_trace_breakpoint(pc,pOp) 209 ** sqlite3CorruptError(lineno) 210 ** sqlite3MisuseError(lineno) 211 ** sqlite3CantopenError(lineno) 212 */ 213 static void test_addop_breakpoint(int pc, Op *pOp){ 214 static int n = 0; 215 n++; 216 } 217 #endif 218 219 /* 220 ** Add a new instruction to the list of instructions current in the 221 ** VDBE. Return the address of the new instruction. 222 ** 223 ** Parameters: 224 ** 225 ** p Pointer to the VDBE 226 ** 227 ** op The opcode for this instruction 228 ** 229 ** p1, p2, p3 Operands 230 ** 231 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 232 ** the sqlite3VdbeChangeP4() function to change the value of the P4 233 ** operand. 234 */ 235 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 236 assert( p->nOpAlloc<=p->nOp ); 237 if( growOpArray(p, 1) ) return 1; 238 assert( p->nOpAlloc>p->nOp ); 239 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 240 } 241 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 242 int i; 243 VdbeOp *pOp; 244 245 i = p->nOp; 246 assert( p->eVdbeState==VDBE_INIT_STATE ); 247 assert( op>=0 && op<0xff ); 248 if( p->nOpAlloc<=i ){ 249 return growOp3(p, op, p1, p2, p3); 250 } 251 assert( p->aOp!=0 ); 252 p->nOp++; 253 pOp = &p->aOp[i]; 254 assert( pOp!=0 ); 255 pOp->opcode = (u8)op; 256 pOp->p5 = 0; 257 pOp->p1 = p1; 258 pOp->p2 = p2; 259 pOp->p3 = p3; 260 pOp->p4.p = 0; 261 pOp->p4type = P4_NOTUSED; 262 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 263 pOp->zComment = 0; 264 #endif 265 #ifdef SQLITE_DEBUG 266 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 267 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 268 test_addop_breakpoint(i, &p->aOp[i]); 269 } 270 #endif 271 #ifdef VDBE_PROFILE 272 pOp->cycles = 0; 273 pOp->cnt = 0; 274 #endif 275 #ifdef SQLITE_VDBE_COVERAGE 276 pOp->iSrcLine = 0; 277 #endif 278 return i; 279 } 280 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 281 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 282 } 283 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 284 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 285 } 286 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 287 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 288 } 289 290 /* Generate code for an unconditional jump to instruction iDest 291 */ 292 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 293 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 294 } 295 296 /* Generate code to cause the string zStr to be loaded into 297 ** register iDest 298 */ 299 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 300 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 301 } 302 303 /* 304 ** Generate code that initializes multiple registers to string or integer 305 ** constants. The registers begin with iDest and increase consecutively. 306 ** One register is initialized for each characgter in zTypes[]. For each 307 ** "s" character in zTypes[], the register is a string if the argument is 308 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 309 ** in zTypes[], the register is initialized to an integer. 310 ** 311 ** If the input string does not end with "X" then an OP_ResultRow instruction 312 ** is generated for the values inserted. 313 */ 314 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 315 va_list ap; 316 int i; 317 char c; 318 va_start(ap, zTypes); 319 for(i=0; (c = zTypes[i])!=0; i++){ 320 if( c=='s' ){ 321 const char *z = va_arg(ap, const char*); 322 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 323 }else if( c=='i' ){ 324 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 325 }else{ 326 goto skip_op_resultrow; 327 } 328 } 329 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 330 skip_op_resultrow: 331 va_end(ap); 332 } 333 334 /* 335 ** Add an opcode that includes the p4 value as a pointer. 336 */ 337 int sqlite3VdbeAddOp4( 338 Vdbe *p, /* Add the opcode to this VM */ 339 int op, /* The new opcode */ 340 int p1, /* The P1 operand */ 341 int p2, /* The P2 operand */ 342 int p3, /* The P3 operand */ 343 const char *zP4, /* The P4 operand */ 344 int p4type /* P4 operand type */ 345 ){ 346 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 347 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 348 return addr; 349 } 350 351 /* 352 ** Add an OP_Function or OP_PureFunc opcode. 353 ** 354 ** The eCallCtx argument is information (typically taken from Expr.op2) 355 ** that describes the calling context of the function. 0 means a general 356 ** function call. NC_IsCheck means called by a check constraint, 357 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx 358 ** means in the WHERE clause of a partial index. NC_GenCol means called 359 ** while computing a generated column value. 0 is the usual case. 360 */ 361 int sqlite3VdbeAddFunctionCall( 362 Parse *pParse, /* Parsing context */ 363 int p1, /* Constant argument mask */ 364 int p2, /* First argument register */ 365 int p3, /* Register into which results are written */ 366 int nArg, /* Number of argument */ 367 const FuncDef *pFunc, /* The function to be invoked */ 368 int eCallCtx /* Calling context */ 369 ){ 370 Vdbe *v = pParse->pVdbe; 371 int nByte; 372 int addr; 373 sqlite3_context *pCtx; 374 assert( v ); 375 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*); 376 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte); 377 if( pCtx==0 ){ 378 assert( pParse->db->mallocFailed ); 379 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc); 380 return 0; 381 } 382 pCtx->pOut = 0; 383 pCtx->pFunc = (FuncDef*)pFunc; 384 pCtx->pVdbe = 0; 385 pCtx->isError = 0; 386 pCtx->argc = nArg; 387 pCtx->iOp = sqlite3VdbeCurrentAddr(v); 388 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function, 389 p1, p2, p3, (char*)pCtx, P4_FUNCCTX); 390 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef); 391 return addr; 392 } 393 394 /* 395 ** Add an opcode that includes the p4 value with a P4_INT64 or 396 ** P4_REAL type. 397 */ 398 int sqlite3VdbeAddOp4Dup8( 399 Vdbe *p, /* Add the opcode to this VM */ 400 int op, /* The new opcode */ 401 int p1, /* The P1 operand */ 402 int p2, /* The P2 operand */ 403 int p3, /* The P3 operand */ 404 const u8 *zP4, /* The P4 operand */ 405 int p4type /* P4 operand type */ 406 ){ 407 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 408 if( p4copy ) memcpy(p4copy, zP4, 8); 409 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 410 } 411 412 #ifndef SQLITE_OMIT_EXPLAIN 413 /* 414 ** Return the address of the current EXPLAIN QUERY PLAN baseline. 415 ** 0 means "none". 416 */ 417 int sqlite3VdbeExplainParent(Parse *pParse){ 418 VdbeOp *pOp; 419 if( pParse->addrExplain==0 ) return 0; 420 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); 421 return pOp->p2; 422 } 423 424 /* 425 ** Set a debugger breakpoint on the following routine in order to 426 ** monitor the EXPLAIN QUERY PLAN code generation. 427 */ 428 #if defined(SQLITE_DEBUG) 429 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ 430 (void)z1; 431 (void)z2; 432 } 433 #endif 434 435 /* 436 ** Add a new OP_Explain opcode. 437 ** 438 ** If the bPush flag is true, then make this opcode the parent for 439 ** subsequent Explains until sqlite3VdbeExplainPop() is called. 440 */ 441 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ 442 #ifndef SQLITE_DEBUG 443 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined. 444 ** But omit them (for performance) during production builds */ 445 if( pParse->explain==2 ) 446 #endif 447 { 448 char *zMsg; 449 Vdbe *v; 450 va_list ap; 451 int iThis; 452 va_start(ap, zFmt); 453 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); 454 va_end(ap); 455 v = pParse->pVdbe; 456 iThis = v->nOp; 457 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, 458 zMsg, P4_DYNAMIC); 459 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z); 460 if( bPush){ 461 pParse->addrExplain = iThis; 462 } 463 } 464 } 465 466 /* 467 ** Pop the EXPLAIN QUERY PLAN stack one level. 468 */ 469 void sqlite3VdbeExplainPop(Parse *pParse){ 470 sqlite3ExplainBreakpoint("POP", 0); 471 pParse->addrExplain = sqlite3VdbeExplainParent(pParse); 472 } 473 #endif /* SQLITE_OMIT_EXPLAIN */ 474 475 /* 476 ** Add an OP_ParseSchema opcode. This routine is broken out from 477 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 478 ** as having been used. 479 ** 480 ** The zWhere string must have been obtained from sqlite3_malloc(). 481 ** This routine will take ownership of the allocated memory. 482 */ 483 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){ 484 int j; 485 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 486 sqlite3VdbeChangeP5(p, p5); 487 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 488 sqlite3MayAbort(p->pParse); 489 } 490 491 /* 492 ** Add an opcode that includes the p4 value as an integer. 493 */ 494 int sqlite3VdbeAddOp4Int( 495 Vdbe *p, /* Add the opcode to this VM */ 496 int op, /* The new opcode */ 497 int p1, /* The P1 operand */ 498 int p2, /* The P2 operand */ 499 int p3, /* The P3 operand */ 500 int p4 /* The P4 operand as an integer */ 501 ){ 502 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 503 if( p->db->mallocFailed==0 ){ 504 VdbeOp *pOp = &p->aOp[addr]; 505 pOp->p4type = P4_INT32; 506 pOp->p4.i = p4; 507 } 508 return addr; 509 } 510 511 /* Insert the end of a co-routine 512 */ 513 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 514 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 515 516 /* Clear the temporary register cache, thereby ensuring that each 517 ** co-routine has its own independent set of registers, because co-routines 518 ** might expect their registers to be preserved across an OP_Yield, and 519 ** that could cause problems if two or more co-routines are using the same 520 ** temporary register. 521 */ 522 v->pParse->nTempReg = 0; 523 v->pParse->nRangeReg = 0; 524 } 525 526 /* 527 ** Create a new symbolic label for an instruction that has yet to be 528 ** coded. The symbolic label is really just a negative number. The 529 ** label can be used as the P2 value of an operation. Later, when 530 ** the label is resolved to a specific address, the VDBE will scan 531 ** through its operation list and change all values of P2 which match 532 ** the label into the resolved address. 533 ** 534 ** The VDBE knows that a P2 value is a label because labels are 535 ** always negative and P2 values are suppose to be non-negative. 536 ** Hence, a negative P2 value is a label that has yet to be resolved. 537 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP 538 ** property. 539 ** 540 ** Variable usage notes: 541 ** 542 ** Parse.aLabel[x] Stores the address that the x-th label resolves 543 ** into. For testing (SQLITE_DEBUG), unresolved 544 ** labels stores -1, but that is not required. 545 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[] 546 ** Parse.nLabel The *negative* of the number of labels that have 547 ** been issued. The negative is stored because 548 ** that gives a performance improvement over storing 549 ** the equivalent positive value. 550 */ 551 int sqlite3VdbeMakeLabel(Parse *pParse){ 552 return --pParse->nLabel; 553 } 554 555 /* 556 ** Resolve label "x" to be the address of the next instruction to 557 ** be inserted. The parameter "x" must have been obtained from 558 ** a prior call to sqlite3VdbeMakeLabel(). 559 */ 560 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){ 561 int nNewSize = 10 - p->nLabel; 562 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 563 nNewSize*sizeof(p->aLabel[0])); 564 if( p->aLabel==0 ){ 565 p->nLabelAlloc = 0; 566 }else{ 567 #ifdef SQLITE_DEBUG 568 int i; 569 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1; 570 #endif 571 p->nLabelAlloc = nNewSize; 572 p->aLabel[j] = v->nOp; 573 } 574 } 575 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 576 Parse *p = v->pParse; 577 int j = ADDR(x); 578 assert( v->eVdbeState==VDBE_INIT_STATE ); 579 assert( j<-p->nLabel ); 580 assert( j>=0 ); 581 #ifdef SQLITE_DEBUG 582 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 583 printf("RESOLVE LABEL %d to %d\n", x, v->nOp); 584 } 585 #endif 586 if( p->nLabelAlloc + p->nLabel < 0 ){ 587 resizeResolveLabel(p,v,j); 588 }else{ 589 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ 590 p->aLabel[j] = v->nOp; 591 } 592 } 593 594 /* 595 ** Mark the VDBE as one that can only be run one time. 596 */ 597 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 598 sqlite3VdbeAddOp2(p, OP_Expire, 1, 1); 599 } 600 601 /* 602 ** Mark the VDBE as one that can be run multiple times. 603 */ 604 void sqlite3VdbeReusable(Vdbe *p){ 605 int i; 606 for(i=1; ALWAYS(i<p->nOp); i++){ 607 if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){ 608 p->aOp[1].opcode = OP_Noop; 609 break; 610 } 611 } 612 } 613 614 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 615 616 /* 617 ** The following type and function are used to iterate through all opcodes 618 ** in a Vdbe main program and each of the sub-programs (triggers) it may 619 ** invoke directly or indirectly. It should be used as follows: 620 ** 621 ** Op *pOp; 622 ** VdbeOpIter sIter; 623 ** 624 ** memset(&sIter, 0, sizeof(sIter)); 625 ** sIter.v = v; // v is of type Vdbe* 626 ** while( (pOp = opIterNext(&sIter)) ){ 627 ** // Do something with pOp 628 ** } 629 ** sqlite3DbFree(v->db, sIter.apSub); 630 ** 631 */ 632 typedef struct VdbeOpIter VdbeOpIter; 633 struct VdbeOpIter { 634 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 635 SubProgram **apSub; /* Array of subprograms */ 636 int nSub; /* Number of entries in apSub */ 637 int iAddr; /* Address of next instruction to return */ 638 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 639 }; 640 static Op *opIterNext(VdbeOpIter *p){ 641 Vdbe *v = p->v; 642 Op *pRet = 0; 643 Op *aOp; 644 int nOp; 645 646 if( p->iSub<=p->nSub ){ 647 648 if( p->iSub==0 ){ 649 aOp = v->aOp; 650 nOp = v->nOp; 651 }else{ 652 aOp = p->apSub[p->iSub-1]->aOp; 653 nOp = p->apSub[p->iSub-1]->nOp; 654 } 655 assert( p->iAddr<nOp ); 656 657 pRet = &aOp[p->iAddr]; 658 p->iAddr++; 659 if( p->iAddr==nOp ){ 660 p->iSub++; 661 p->iAddr = 0; 662 } 663 664 if( pRet->p4type==P4_SUBPROGRAM ){ 665 int nByte = (p->nSub+1)*sizeof(SubProgram*); 666 int j; 667 for(j=0; j<p->nSub; j++){ 668 if( p->apSub[j]==pRet->p4.pProgram ) break; 669 } 670 if( j==p->nSub ){ 671 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 672 if( !p->apSub ){ 673 pRet = 0; 674 }else{ 675 p->apSub[p->nSub++] = pRet->p4.pProgram; 676 } 677 } 678 } 679 } 680 681 return pRet; 682 } 683 684 /* 685 ** Check if the program stored in the VM associated with pParse may 686 ** throw an ABORT exception (causing the statement, but not entire transaction 687 ** to be rolled back). This condition is true if the main program or any 688 ** sub-programs contains any of the following: 689 ** 690 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 691 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 692 ** * OP_Destroy 693 ** * OP_VUpdate 694 ** * OP_VCreate 695 ** * OP_VRename 696 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 697 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 698 ** (for CREATE TABLE AS SELECT ...) 699 ** 700 ** Then check that the value of Parse.mayAbort is true if an 701 ** ABORT may be thrown, or false otherwise. Return true if it does 702 ** match, or false otherwise. This function is intended to be used as 703 ** part of an assert statement in the compiler. Similar to: 704 ** 705 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 706 */ 707 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 708 int hasAbort = 0; 709 int hasFkCounter = 0; 710 int hasCreateTable = 0; 711 int hasCreateIndex = 0; 712 int hasInitCoroutine = 0; 713 Op *pOp; 714 VdbeOpIter sIter; 715 716 if( v==0 ) return 0; 717 memset(&sIter, 0, sizeof(sIter)); 718 sIter.v = v; 719 720 while( (pOp = opIterNext(&sIter))!=0 ){ 721 int opcode = pOp->opcode; 722 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 723 || opcode==OP_VDestroy 724 || opcode==OP_VCreate 725 || opcode==OP_ParseSchema 726 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 727 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort)) 728 ){ 729 hasAbort = 1; 730 break; 731 } 732 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; 733 if( mayAbort ){ 734 /* hasCreateIndex may also be set for some DELETE statements that use 735 ** OP_Clear. So this routine may end up returning true in the case 736 ** where a "DELETE FROM tbl" has a statement-journal but does not 737 ** require one. This is not so bad - it is an inefficiency, not a bug. */ 738 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1; 739 if( opcode==OP_Clear ) hasCreateIndex = 1; 740 } 741 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 742 #ifndef SQLITE_OMIT_FOREIGN_KEY 743 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 744 hasFkCounter = 1; 745 } 746 #endif 747 } 748 sqlite3DbFree(v->db, sIter.apSub); 749 750 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 751 ** If malloc failed, then the while() loop above may not have iterated 752 ** through all opcodes and hasAbort may be set incorrectly. Return 753 ** true for this case to prevent the assert() in the callers frame 754 ** from failing. */ 755 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 756 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex 757 ); 758 } 759 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 760 761 #ifdef SQLITE_DEBUG 762 /* 763 ** Increment the nWrite counter in the VDBE if the cursor is not an 764 ** ephemeral cursor, or if the cursor argument is NULL. 765 */ 766 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ 767 if( pC==0 768 || (pC->eCurType!=CURTYPE_SORTER 769 && pC->eCurType!=CURTYPE_PSEUDO 770 && !pC->isEphemeral) 771 ){ 772 p->nWrite++; 773 } 774 } 775 #endif 776 777 #ifdef SQLITE_DEBUG 778 /* 779 ** Assert if an Abort at this point in time might result in a corrupt 780 ** database. 781 */ 782 void sqlite3VdbeAssertAbortable(Vdbe *p){ 783 assert( p->nWrite==0 || p->usesStmtJournal ); 784 } 785 #endif 786 787 /* 788 ** This routine is called after all opcodes have been inserted. It loops 789 ** through all the opcodes and fixes up some details. 790 ** 791 ** (1) For each jump instruction with a negative P2 value (a label) 792 ** resolve the P2 value to an actual address. 793 ** 794 ** (2) Compute the maximum number of arguments used by any SQL function 795 ** and store that value in *pMaxFuncArgs. 796 ** 797 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 798 ** indicate what the prepared statement actually does. 799 ** 800 ** (4) (discontinued) 801 ** 802 ** (5) Reclaim the memory allocated for storing labels. 803 ** 804 ** This routine will only function correctly if the mkopcodeh.tcl generator 805 ** script numbers the opcodes correctly. Changes to this routine must be 806 ** coordinated with changes to mkopcodeh.tcl. 807 */ 808 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 809 int nMaxArgs = *pMaxFuncArgs; 810 Op *pOp; 811 Parse *pParse = p->pParse; 812 int *aLabel = pParse->aLabel; 813 p->readOnly = 1; 814 p->bIsReader = 0; 815 pOp = &p->aOp[p->nOp-1]; 816 assert( p->aOp[0].opcode==OP_Init ); 817 while( 1 /* Loop termates when it reaches the OP_Init opcode */ ){ 818 /* Only JUMP opcodes and the short list of special opcodes in the switch 819 ** below need to be considered. The mkopcodeh.tcl generator script groups 820 ** all these opcodes together near the front of the opcode list. Skip 821 ** any opcode that does not need processing by virtual of the fact that 822 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 823 */ 824 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 825 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 826 ** cases from this switch! */ 827 switch( pOp->opcode ){ 828 case OP_Transaction: { 829 if( pOp->p2!=0 ) p->readOnly = 0; 830 /* no break */ deliberate_fall_through 831 } 832 case OP_AutoCommit: 833 case OP_Savepoint: { 834 p->bIsReader = 1; 835 break; 836 } 837 #ifndef SQLITE_OMIT_WAL 838 case OP_Checkpoint: 839 #endif 840 case OP_Vacuum: 841 case OP_JournalMode: { 842 p->readOnly = 0; 843 p->bIsReader = 1; 844 break; 845 } 846 case OP_Init: { 847 assert( pOp->p2>=0 ); 848 goto resolve_p2_values_loop_exit; 849 } 850 #ifndef SQLITE_OMIT_VIRTUALTABLE 851 case OP_VUpdate: { 852 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 853 break; 854 } 855 case OP_VFilter: { 856 int n; 857 assert( (pOp - p->aOp) >= 3 ); 858 assert( pOp[-1].opcode==OP_Integer ); 859 n = pOp[-1].p1; 860 if( n>nMaxArgs ) nMaxArgs = n; 861 /* Fall through into the default case */ 862 /* no break */ deliberate_fall_through 863 } 864 #endif 865 default: { 866 if( pOp->p2<0 ){ 867 /* The mkopcodeh.tcl script has so arranged things that the only 868 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 869 ** have non-negative values for P2. */ 870 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 871 assert( ADDR(pOp->p2)<-pParse->nLabel ); 872 pOp->p2 = aLabel[ADDR(pOp->p2)]; 873 } 874 break; 875 } 876 } 877 /* The mkopcodeh.tcl script has so arranged things that the only 878 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 879 ** have non-negative values for P2. */ 880 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 881 } 882 assert( pOp>p->aOp ); 883 pOp--; 884 } 885 resolve_p2_values_loop_exit: 886 if( aLabel ){ 887 sqlite3DbFreeNN(p->db, pParse->aLabel); 888 pParse->aLabel = 0; 889 } 890 pParse->nLabel = 0; 891 *pMaxFuncArgs = nMaxArgs; 892 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 893 } 894 895 #ifdef SQLITE_DEBUG 896 /* 897 ** Check to see if a subroutine contains a jump to a location outside of 898 ** the subroutine. If a jump outside the subroutine is detected, add code 899 ** that will cause the program to halt with an error message. 900 ** 901 ** The subroutine consists of opcodes between iFirst and iLast. Jumps to 902 ** locations within the subroutine are acceptable. iRetReg is a register 903 ** that contains the return address. Jumps to outside the range of iFirst 904 ** through iLast are also acceptable as long as the jump destination is 905 ** an OP_Return to iReturnAddr. 906 ** 907 ** A jump to an unresolved label means that the jump destination will be 908 ** beyond the current address. That is normally a jump to an early 909 ** termination and is consider acceptable. 910 ** 911 ** This routine only runs during debug builds. The purpose is (of course) 912 ** to detect invalid escapes out of a subroutine. The OP_Halt opcode 913 ** is generated rather than an assert() or other error, so that ".eqp full" 914 ** will still work to show the original bytecode, to aid in debugging. 915 */ 916 void sqlite3VdbeNoJumpsOutsideSubrtn( 917 Vdbe *v, /* The byte-code program under construction */ 918 int iFirst, /* First opcode of the subroutine */ 919 int iLast, /* Last opcode of the subroutine */ 920 int iRetReg /* Subroutine return address register */ 921 ){ 922 VdbeOp *pOp; 923 Parse *pParse; 924 int i; 925 sqlite3_str *pErr = 0; 926 assert( v!=0 ); 927 pParse = v->pParse; 928 assert( pParse!=0 ); 929 if( pParse->nErr ) return; 930 assert( iLast>=iFirst ); 931 assert( iLast<v->nOp ); 932 pOp = &v->aOp[iFirst]; 933 for(i=iFirst; i<=iLast; i++, pOp++){ 934 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){ 935 int iDest = pOp->p2; /* Jump destination */ 936 if( iDest==0 ) continue; 937 if( pOp->opcode==OP_Gosub ) continue; 938 if( iDest<0 ){ 939 int j = ADDR(iDest); 940 assert( j>=0 ); 941 if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){ 942 continue; 943 } 944 iDest = pParse->aLabel[j]; 945 } 946 if( iDest<iFirst || iDest>iLast ){ 947 int j = iDest; 948 for(; j<v->nOp; j++){ 949 VdbeOp *pX = &v->aOp[j]; 950 if( pX->opcode==OP_Return ){ 951 if( pX->p1==iRetReg ) break; 952 continue; 953 } 954 if( pX->opcode==OP_Noop ) continue; 955 if( pX->opcode==OP_Explain ) continue; 956 if( pErr==0 ){ 957 pErr = sqlite3_str_new(0); 958 }else{ 959 sqlite3_str_appendchar(pErr, 1, '\n'); 960 } 961 sqlite3_str_appendf(pErr, 962 "Opcode at %d jumps to %d which is outside the " 963 "subroutine at %d..%d", 964 i, iDest, iFirst, iLast); 965 break; 966 } 967 } 968 } 969 } 970 if( pErr ){ 971 char *zErr = sqlite3_str_finish(pErr); 972 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0); 973 sqlite3_free(zErr); 974 sqlite3MayAbort(pParse); 975 } 976 } 977 #endif /* SQLITE_DEBUG */ 978 979 /* 980 ** Return the address of the next instruction to be inserted. 981 */ 982 int sqlite3VdbeCurrentAddr(Vdbe *p){ 983 assert( p->eVdbeState==VDBE_INIT_STATE ); 984 return p->nOp; 985 } 986 987 /* 988 ** Verify that at least N opcode slots are available in p without 989 ** having to malloc for more space (except when compiled using 990 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 991 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 992 ** fail due to a OOM fault and hence that the return value from 993 ** sqlite3VdbeAddOpList() will always be non-NULL. 994 */ 995 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 996 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 997 assert( p->nOp + N <= p->nOpAlloc ); 998 } 999 #endif 1000 1001 /* 1002 ** Verify that the VM passed as the only argument does not contain 1003 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 1004 ** by code in pragma.c to ensure that the implementation of certain 1005 ** pragmas comports with the flags specified in the mkpragmatab.tcl 1006 ** script. 1007 */ 1008 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 1009 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 1010 int i; 1011 for(i=0; i<p->nOp; i++){ 1012 assert( p->aOp[i].opcode!=OP_ResultRow ); 1013 } 1014 } 1015 #endif 1016 1017 /* 1018 ** Generate code (a single OP_Abortable opcode) that will 1019 ** verify that the VDBE program can safely call Abort in the current 1020 ** context. 1021 */ 1022 #if defined(SQLITE_DEBUG) 1023 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ 1024 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); 1025 } 1026 #endif 1027 1028 /* 1029 ** This function returns a pointer to the array of opcodes associated with 1030 ** the Vdbe passed as the first argument. It is the callers responsibility 1031 ** to arrange for the returned array to be eventually freed using the 1032 ** vdbeFreeOpArray() function. 1033 ** 1034 ** Before returning, *pnOp is set to the number of entries in the returned 1035 ** array. Also, *pnMaxArg is set to the larger of its current value and 1036 ** the number of entries in the Vdbe.apArg[] array required to execute the 1037 ** returned program. 1038 */ 1039 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 1040 VdbeOp *aOp = p->aOp; 1041 assert( aOp && !p->db->mallocFailed ); 1042 1043 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 1044 assert( DbMaskAllZero(p->btreeMask) ); 1045 1046 resolveP2Values(p, pnMaxArg); 1047 *pnOp = p->nOp; 1048 p->aOp = 0; 1049 return aOp; 1050 } 1051 1052 /* 1053 ** Add a whole list of operations to the operation stack. Return a 1054 ** pointer to the first operation inserted. 1055 ** 1056 ** Non-zero P2 arguments to jump instructions are automatically adjusted 1057 ** so that the jump target is relative to the first operation inserted. 1058 */ 1059 VdbeOp *sqlite3VdbeAddOpList( 1060 Vdbe *p, /* Add opcodes to the prepared statement */ 1061 int nOp, /* Number of opcodes to add */ 1062 VdbeOpList const *aOp, /* The opcodes to be added */ 1063 int iLineno /* Source-file line number of first opcode */ 1064 ){ 1065 int i; 1066 VdbeOp *pOut, *pFirst; 1067 assert( nOp>0 ); 1068 assert( p->eVdbeState==VDBE_INIT_STATE ); 1069 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){ 1070 return 0; 1071 } 1072 pFirst = pOut = &p->aOp[p->nOp]; 1073 for(i=0; i<nOp; i++, aOp++, pOut++){ 1074 pOut->opcode = aOp->opcode; 1075 pOut->p1 = aOp->p1; 1076 pOut->p2 = aOp->p2; 1077 assert( aOp->p2>=0 ); 1078 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 1079 pOut->p2 += p->nOp; 1080 } 1081 pOut->p3 = aOp->p3; 1082 pOut->p4type = P4_NOTUSED; 1083 pOut->p4.p = 0; 1084 pOut->p5 = 0; 1085 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1086 pOut->zComment = 0; 1087 #endif 1088 #ifdef SQLITE_VDBE_COVERAGE 1089 pOut->iSrcLine = iLineno+i; 1090 #else 1091 (void)iLineno; 1092 #endif 1093 #ifdef SQLITE_DEBUG 1094 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 1095 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 1096 } 1097 #endif 1098 } 1099 p->nOp += nOp; 1100 return pFirst; 1101 } 1102 1103 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 1104 /* 1105 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 1106 */ 1107 void sqlite3VdbeScanStatus( 1108 Vdbe *p, /* VM to add scanstatus() to */ 1109 int addrExplain, /* Address of OP_Explain (or 0) */ 1110 int addrLoop, /* Address of loop counter */ 1111 int addrVisit, /* Address of rows visited counter */ 1112 LogEst nEst, /* Estimated number of output rows */ 1113 const char *zName /* Name of table or index being scanned */ 1114 ){ 1115 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus); 1116 ScanStatus *aNew; 1117 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 1118 if( aNew ){ 1119 ScanStatus *pNew = &aNew[p->nScan++]; 1120 pNew->addrExplain = addrExplain; 1121 pNew->addrLoop = addrLoop; 1122 pNew->addrVisit = addrVisit; 1123 pNew->nEst = nEst; 1124 pNew->zName = sqlite3DbStrDup(p->db, zName); 1125 p->aScan = aNew; 1126 } 1127 } 1128 #endif 1129 1130 1131 /* 1132 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 1133 ** for a specific instruction. 1134 */ 1135 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){ 1136 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 1137 } 1138 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ 1139 sqlite3VdbeGetOp(p,addr)->p1 = val; 1140 } 1141 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ 1142 sqlite3VdbeGetOp(p,addr)->p2 = val; 1143 } 1144 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ 1145 sqlite3VdbeGetOp(p,addr)->p3 = val; 1146 } 1147 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 1148 assert( p->nOp>0 || p->db->mallocFailed ); 1149 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 1150 } 1151 1152 /* 1153 ** Change the P2 operand of instruction addr so that it points to 1154 ** the address of the next instruction to be coded. 1155 */ 1156 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 1157 sqlite3VdbeChangeP2(p, addr, p->nOp); 1158 } 1159 1160 /* 1161 ** Change the P2 operand of the jump instruction at addr so that 1162 ** the jump lands on the next opcode. Or if the jump instruction was 1163 ** the previous opcode (and is thus a no-op) then simply back up 1164 ** the next instruction counter by one slot so that the jump is 1165 ** overwritten by the next inserted opcode. 1166 ** 1167 ** This routine is an optimization of sqlite3VdbeJumpHere() that 1168 ** strives to omit useless byte-code like this: 1169 ** 1170 ** 7 Once 0 8 0 1171 ** 8 ... 1172 */ 1173 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){ 1174 if( addr==p->nOp-1 ){ 1175 assert( p->aOp[addr].opcode==OP_Once 1176 || p->aOp[addr].opcode==OP_If 1177 || p->aOp[addr].opcode==OP_FkIfZero ); 1178 assert( p->aOp[addr].p4type==0 ); 1179 #ifdef SQLITE_VDBE_COVERAGE 1180 sqlite3VdbeGetOp(p,-1)->iSrcLine = 0; /* Erase VdbeCoverage() macros */ 1181 #endif 1182 p->nOp--; 1183 }else{ 1184 sqlite3VdbeChangeP2(p, addr, p->nOp); 1185 } 1186 } 1187 1188 1189 /* 1190 ** If the input FuncDef structure is ephemeral, then free it. If 1191 ** the FuncDef is not ephermal, then do nothing. 1192 */ 1193 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 1194 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 1195 sqlite3DbFreeNN(db, pDef); 1196 } 1197 } 1198 1199 /* 1200 ** Delete a P4 value if necessary. 1201 */ 1202 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 1203 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1204 sqlite3DbFreeNN(db, p); 1205 } 1206 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 1207 freeEphemeralFunction(db, p->pFunc); 1208 sqlite3DbFreeNN(db, p); 1209 } 1210 static void freeP4(sqlite3 *db, int p4type, void *p4){ 1211 assert( db ); 1212 switch( p4type ){ 1213 case P4_FUNCCTX: { 1214 freeP4FuncCtx(db, (sqlite3_context*)p4); 1215 break; 1216 } 1217 case P4_REAL: 1218 case P4_INT64: 1219 case P4_DYNAMIC: 1220 case P4_INTARRAY: { 1221 sqlite3DbFree(db, p4); 1222 break; 1223 } 1224 case P4_KEYINFO: { 1225 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 1226 break; 1227 } 1228 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1229 case P4_EXPR: { 1230 sqlite3ExprDelete(db, (Expr*)p4); 1231 break; 1232 } 1233 #endif 1234 case P4_FUNCDEF: { 1235 freeEphemeralFunction(db, (FuncDef*)p4); 1236 break; 1237 } 1238 case P4_MEM: { 1239 if( db->pnBytesFreed==0 ){ 1240 sqlite3ValueFree((sqlite3_value*)p4); 1241 }else{ 1242 freeP4Mem(db, (Mem*)p4); 1243 } 1244 break; 1245 } 1246 case P4_VTAB : { 1247 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 1248 break; 1249 } 1250 } 1251 } 1252 1253 /* 1254 ** Free the space allocated for aOp and any p4 values allocated for the 1255 ** opcodes contained within. If aOp is not NULL it is assumed to contain 1256 ** nOp entries. 1257 */ 1258 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 1259 assert( nOp>=0 ); 1260 if( aOp ){ 1261 Op *pOp = &aOp[nOp-1]; 1262 while(1){ /* Exit via break */ 1263 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 1264 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1265 sqlite3DbFree(db, pOp->zComment); 1266 #endif 1267 if( pOp==aOp ) break; 1268 pOp--; 1269 } 1270 sqlite3DbFreeNN(db, aOp); 1271 } 1272 } 1273 1274 /* 1275 ** Link the SubProgram object passed as the second argument into the linked 1276 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 1277 ** objects when the VM is no longer required. 1278 */ 1279 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 1280 p->pNext = pVdbe->pProgram; 1281 pVdbe->pProgram = p; 1282 } 1283 1284 /* 1285 ** Return true if the given Vdbe has any SubPrograms. 1286 */ 1287 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){ 1288 return pVdbe->pProgram!=0; 1289 } 1290 1291 /* 1292 ** Change the opcode at addr into OP_Noop 1293 */ 1294 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 1295 VdbeOp *pOp; 1296 if( p->db->mallocFailed ) return 0; 1297 assert( addr>=0 && addr<p->nOp ); 1298 pOp = &p->aOp[addr]; 1299 freeP4(p->db, pOp->p4type, pOp->p4.p); 1300 pOp->p4type = P4_NOTUSED; 1301 pOp->p4.z = 0; 1302 pOp->opcode = OP_Noop; 1303 return 1; 1304 } 1305 1306 /* 1307 ** If the last opcode is "op" and it is not a jump destination, 1308 ** then remove it. Return true if and only if an opcode was removed. 1309 */ 1310 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 1311 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 1312 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 1313 }else{ 1314 return 0; 1315 } 1316 } 1317 1318 #ifdef SQLITE_DEBUG 1319 /* 1320 ** Generate an OP_ReleaseReg opcode to indicate that a range of 1321 ** registers, except any identified by mask, are no longer in use. 1322 */ 1323 void sqlite3VdbeReleaseRegisters( 1324 Parse *pParse, /* Parsing context */ 1325 int iFirst, /* Index of first register to be released */ 1326 int N, /* Number of registers to release */ 1327 u32 mask, /* Mask of registers to NOT release */ 1328 int bUndefine /* If true, mark registers as undefined */ 1329 ){ 1330 if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return; 1331 assert( pParse->pVdbe ); 1332 assert( iFirst>=1 ); 1333 assert( iFirst+N-1<=pParse->nMem ); 1334 if( N<=31 && mask!=0 ){ 1335 while( N>0 && (mask&1)!=0 ){ 1336 mask >>= 1; 1337 iFirst++; 1338 N--; 1339 } 1340 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){ 1341 mask &= ~MASKBIT32(N-1); 1342 N--; 1343 } 1344 } 1345 if( N>0 ){ 1346 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); 1347 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); 1348 } 1349 } 1350 #endif /* SQLITE_DEBUG */ 1351 1352 1353 /* 1354 ** Change the value of the P4 operand for a specific instruction. 1355 ** This routine is useful when a large program is loaded from a 1356 ** static array using sqlite3VdbeAddOpList but we want to make a 1357 ** few minor changes to the program. 1358 ** 1359 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 1360 ** the string is made into memory obtained from sqlite3_malloc(). 1361 ** A value of n==0 means copy bytes of zP4 up to and including the 1362 ** first null byte. If n>0 then copy n+1 bytes of zP4. 1363 ** 1364 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 1365 ** to a string or structure that is guaranteed to exist for the lifetime of 1366 ** the Vdbe. In these cases we can just copy the pointer. 1367 ** 1368 ** If addr<0 then change P4 on the most recently inserted instruction. 1369 */ 1370 static void SQLITE_NOINLINE vdbeChangeP4Full( 1371 Vdbe *p, 1372 Op *pOp, 1373 const char *zP4, 1374 int n 1375 ){ 1376 if( pOp->p4type ){ 1377 freeP4(p->db, pOp->p4type, pOp->p4.p); 1378 pOp->p4type = 0; 1379 pOp->p4.p = 0; 1380 } 1381 if( n<0 ){ 1382 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 1383 }else{ 1384 if( n==0 ) n = sqlite3Strlen30(zP4); 1385 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 1386 pOp->p4type = P4_DYNAMIC; 1387 } 1388 } 1389 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 1390 Op *pOp; 1391 sqlite3 *db; 1392 assert( p!=0 ); 1393 db = p->db; 1394 assert( p->eVdbeState==VDBE_INIT_STATE ); 1395 assert( p->aOp!=0 || db->mallocFailed ); 1396 if( db->mallocFailed ){ 1397 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 1398 return; 1399 } 1400 assert( p->nOp>0 ); 1401 assert( addr<p->nOp ); 1402 if( addr<0 ){ 1403 addr = p->nOp - 1; 1404 } 1405 pOp = &p->aOp[addr]; 1406 if( n>=0 || pOp->p4type ){ 1407 vdbeChangeP4Full(p, pOp, zP4, n); 1408 return; 1409 } 1410 if( n==P4_INT32 ){ 1411 /* Note: this cast is safe, because the origin data point was an int 1412 ** that was cast to a (const char *). */ 1413 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 1414 pOp->p4type = P4_INT32; 1415 }else if( zP4!=0 ){ 1416 assert( n<0 ); 1417 pOp->p4.p = (void*)zP4; 1418 pOp->p4type = (signed char)n; 1419 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 1420 } 1421 } 1422 1423 /* 1424 ** Change the P4 operand of the most recently coded instruction 1425 ** to the value defined by the arguments. This is a high-speed 1426 ** version of sqlite3VdbeChangeP4(). 1427 ** 1428 ** The P4 operand must not have been previously defined. And the new 1429 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 1430 ** those cases. 1431 */ 1432 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1433 VdbeOp *pOp; 1434 assert( n!=P4_INT32 && n!=P4_VTAB ); 1435 assert( n<=0 ); 1436 if( p->db->mallocFailed ){ 1437 freeP4(p->db, n, pP4); 1438 }else{ 1439 assert( pP4!=0 ); 1440 assert( p->nOp>0 ); 1441 pOp = &p->aOp[p->nOp-1]; 1442 assert( pOp->p4type==P4_NOTUSED ); 1443 pOp->p4type = n; 1444 pOp->p4.p = pP4; 1445 } 1446 } 1447 1448 /* 1449 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1450 ** index given. 1451 */ 1452 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1453 Vdbe *v = pParse->pVdbe; 1454 KeyInfo *pKeyInfo; 1455 assert( v!=0 ); 1456 assert( pIdx!=0 ); 1457 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1458 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1459 } 1460 1461 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1462 /* 1463 ** Change the comment on the most recently coded instruction. Or 1464 ** insert a No-op and add the comment to that new instruction. This 1465 ** makes the code easier to read during debugging. None of this happens 1466 ** in a production build. 1467 */ 1468 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1469 assert( p->nOp>0 || p->aOp==0 ); 1470 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 ); 1471 if( p->nOp ){ 1472 assert( p->aOp ); 1473 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1474 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1475 } 1476 } 1477 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1478 va_list ap; 1479 if( p ){ 1480 va_start(ap, zFormat); 1481 vdbeVComment(p, zFormat, ap); 1482 va_end(ap); 1483 } 1484 } 1485 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1486 va_list ap; 1487 if( p ){ 1488 sqlite3VdbeAddOp0(p, OP_Noop); 1489 va_start(ap, zFormat); 1490 vdbeVComment(p, zFormat, ap); 1491 va_end(ap); 1492 } 1493 } 1494 #endif /* NDEBUG */ 1495 1496 #ifdef SQLITE_VDBE_COVERAGE 1497 /* 1498 ** Set the value if the iSrcLine field for the previously coded instruction. 1499 */ 1500 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1501 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1502 } 1503 #endif /* SQLITE_VDBE_COVERAGE */ 1504 1505 /* 1506 ** Return the opcode for a given address. If the address is -1, then 1507 ** return the most recently inserted opcode. 1508 ** 1509 ** If a memory allocation error has occurred prior to the calling of this 1510 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1511 ** is readable but not writable, though it is cast to a writable value. 1512 ** The return of a dummy opcode allows the call to continue functioning 1513 ** after an OOM fault without having to check to see if the return from 1514 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1515 ** dummy will never be written to. This is verified by code inspection and 1516 ** by running with Valgrind. 1517 */ 1518 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1519 /* C89 specifies that the constant "dummy" will be initialized to all 1520 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1521 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1522 assert( p->eVdbeState==VDBE_INIT_STATE ); 1523 if( addr<0 ){ 1524 addr = p->nOp - 1; 1525 } 1526 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1527 if( p->db->mallocFailed ){ 1528 return (VdbeOp*)&dummy; 1529 }else{ 1530 return &p->aOp[addr]; 1531 } 1532 } 1533 1534 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1535 /* 1536 ** Return an integer value for one of the parameters to the opcode pOp 1537 ** determined by character c. 1538 */ 1539 static int translateP(char c, const Op *pOp){ 1540 if( c=='1' ) return pOp->p1; 1541 if( c=='2' ) return pOp->p2; 1542 if( c=='3' ) return pOp->p3; 1543 if( c=='4' ) return pOp->p4.i; 1544 return pOp->p5; 1545 } 1546 1547 /* 1548 ** Compute a string for the "comment" field of a VDBE opcode listing. 1549 ** 1550 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1551 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1552 ** absence of other comments, this synopsis becomes the comment on the opcode. 1553 ** Some translation occurs: 1554 ** 1555 ** "PX" -> "r[X]" 1556 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1557 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1558 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1559 */ 1560 char *sqlite3VdbeDisplayComment( 1561 sqlite3 *db, /* Optional - Oom error reporting only */ 1562 const Op *pOp, /* The opcode to be commented */ 1563 const char *zP4 /* Previously obtained value for P4 */ 1564 ){ 1565 const char *zOpName; 1566 const char *zSynopsis; 1567 int nOpName; 1568 int ii; 1569 char zAlt[50]; 1570 StrAccum x; 1571 1572 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1573 zOpName = sqlite3OpcodeName(pOp->opcode); 1574 nOpName = sqlite3Strlen30(zOpName); 1575 if( zOpName[nOpName+1] ){ 1576 int seenCom = 0; 1577 char c; 1578 zSynopsis = zOpName + nOpName + 1; 1579 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1580 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1581 zSynopsis = zAlt; 1582 } 1583 for(ii=0; (c = zSynopsis[ii])!=0; ii++){ 1584 if( c=='P' ){ 1585 c = zSynopsis[++ii]; 1586 if( c=='4' ){ 1587 sqlite3_str_appendall(&x, zP4); 1588 }else if( c=='X' ){ 1589 if( pOp->zComment && pOp->zComment[0] ){ 1590 sqlite3_str_appendall(&x, pOp->zComment); 1591 seenCom = 1; 1592 break; 1593 } 1594 }else{ 1595 int v1 = translateP(c, pOp); 1596 int v2; 1597 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1598 ii += 3; 1599 v2 = translateP(zSynopsis[ii], pOp); 1600 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1601 ii += 2; 1602 v2++; 1603 } 1604 if( v2<2 ){ 1605 sqlite3_str_appendf(&x, "%d", v1); 1606 }else{ 1607 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1); 1608 } 1609 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){ 1610 sqlite3_context *pCtx = pOp->p4.pCtx; 1611 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){ 1612 sqlite3_str_appendf(&x, "%d", v1); 1613 }else if( pCtx->argc>1 ){ 1614 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1); 1615 }else if( x.accError==0 ){ 1616 assert( x.nChar>2 ); 1617 x.nChar -= 2; 1618 ii++; 1619 } 1620 ii += 3; 1621 }else{ 1622 sqlite3_str_appendf(&x, "%d", v1); 1623 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1624 ii += 4; 1625 } 1626 } 1627 } 1628 }else{ 1629 sqlite3_str_appendchar(&x, 1, c); 1630 } 1631 } 1632 if( !seenCom && pOp->zComment ){ 1633 sqlite3_str_appendf(&x, "; %s", pOp->zComment); 1634 } 1635 }else if( pOp->zComment ){ 1636 sqlite3_str_appendall(&x, pOp->zComment); 1637 } 1638 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){ 1639 sqlite3OomFault(db); 1640 } 1641 return sqlite3StrAccumFinish(&x); 1642 } 1643 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */ 1644 1645 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1646 /* 1647 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1648 ** that can be displayed in the P4 column of EXPLAIN output. 1649 */ 1650 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1651 const char *zOp = 0; 1652 switch( pExpr->op ){ 1653 case TK_STRING: 1654 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1655 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); 1656 break; 1657 case TK_INTEGER: 1658 sqlite3_str_appendf(p, "%d", pExpr->u.iValue); 1659 break; 1660 case TK_NULL: 1661 sqlite3_str_appendf(p, "NULL"); 1662 break; 1663 case TK_REGISTER: { 1664 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); 1665 break; 1666 } 1667 case TK_COLUMN: { 1668 if( pExpr->iColumn<0 ){ 1669 sqlite3_str_appendf(p, "rowid"); 1670 }else{ 1671 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); 1672 } 1673 break; 1674 } 1675 case TK_LT: zOp = "LT"; break; 1676 case TK_LE: zOp = "LE"; break; 1677 case TK_GT: zOp = "GT"; break; 1678 case TK_GE: zOp = "GE"; break; 1679 case TK_NE: zOp = "NE"; break; 1680 case TK_EQ: zOp = "EQ"; break; 1681 case TK_IS: zOp = "IS"; break; 1682 case TK_ISNOT: zOp = "ISNOT"; break; 1683 case TK_AND: zOp = "AND"; break; 1684 case TK_OR: zOp = "OR"; break; 1685 case TK_PLUS: zOp = "ADD"; break; 1686 case TK_STAR: zOp = "MUL"; break; 1687 case TK_MINUS: zOp = "SUB"; break; 1688 case TK_REM: zOp = "REM"; break; 1689 case TK_BITAND: zOp = "BITAND"; break; 1690 case TK_BITOR: zOp = "BITOR"; break; 1691 case TK_SLASH: zOp = "DIV"; break; 1692 case TK_LSHIFT: zOp = "LSHIFT"; break; 1693 case TK_RSHIFT: zOp = "RSHIFT"; break; 1694 case TK_CONCAT: zOp = "CONCAT"; break; 1695 case TK_UMINUS: zOp = "MINUS"; break; 1696 case TK_UPLUS: zOp = "PLUS"; break; 1697 case TK_BITNOT: zOp = "BITNOT"; break; 1698 case TK_NOT: zOp = "NOT"; break; 1699 case TK_ISNULL: zOp = "ISNULL"; break; 1700 case TK_NOTNULL: zOp = "NOTNULL"; break; 1701 1702 default: 1703 sqlite3_str_appendf(p, "%s", "expr"); 1704 break; 1705 } 1706 1707 if( zOp ){ 1708 sqlite3_str_appendf(p, "%s(", zOp); 1709 displayP4Expr(p, pExpr->pLeft); 1710 if( pExpr->pRight ){ 1711 sqlite3_str_append(p, ",", 1); 1712 displayP4Expr(p, pExpr->pRight); 1713 } 1714 sqlite3_str_append(p, ")", 1); 1715 } 1716 } 1717 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1718 1719 1720 #if VDBE_DISPLAY_P4 1721 /* 1722 ** Compute a string that describes the P4 parameter for an opcode. 1723 ** Use zTemp for any required temporary buffer space. 1724 */ 1725 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){ 1726 char *zP4 = 0; 1727 StrAccum x; 1728 1729 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1730 switch( pOp->p4type ){ 1731 case P4_KEYINFO: { 1732 int j; 1733 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1734 assert( pKeyInfo->aSortFlags!=0 ); 1735 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); 1736 for(j=0; j<pKeyInfo->nKeyField; j++){ 1737 CollSeq *pColl = pKeyInfo->aColl[j]; 1738 const char *zColl = pColl ? pColl->zName : ""; 1739 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1740 sqlite3_str_appendf(&x, ",%s%s%s", 1741 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "", 1742 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "", 1743 zColl); 1744 } 1745 sqlite3_str_append(&x, ")", 1); 1746 break; 1747 } 1748 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1749 case P4_EXPR: { 1750 displayP4Expr(&x, pOp->p4.pExpr); 1751 break; 1752 } 1753 #endif 1754 case P4_COLLSEQ: { 1755 static const char *const encnames[] = {"?", "8", "16LE", "16BE"}; 1756 CollSeq *pColl = pOp->p4.pColl; 1757 assert( pColl->enc<4 ); 1758 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName, 1759 encnames[pColl->enc]); 1760 break; 1761 } 1762 case P4_FUNCDEF: { 1763 FuncDef *pDef = pOp->p4.pFunc; 1764 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1765 break; 1766 } 1767 case P4_FUNCCTX: { 1768 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1769 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1770 break; 1771 } 1772 case P4_INT64: { 1773 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); 1774 break; 1775 } 1776 case P4_INT32: { 1777 sqlite3_str_appendf(&x, "%d", pOp->p4.i); 1778 break; 1779 } 1780 case P4_REAL: { 1781 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); 1782 break; 1783 } 1784 case P4_MEM: { 1785 Mem *pMem = pOp->p4.pMem; 1786 if( pMem->flags & MEM_Str ){ 1787 zP4 = pMem->z; 1788 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1789 sqlite3_str_appendf(&x, "%lld", pMem->u.i); 1790 }else if( pMem->flags & MEM_Real ){ 1791 sqlite3_str_appendf(&x, "%.16g", pMem->u.r); 1792 }else if( pMem->flags & MEM_Null ){ 1793 zP4 = "NULL"; 1794 }else{ 1795 assert( pMem->flags & MEM_Blob ); 1796 zP4 = "(blob)"; 1797 } 1798 break; 1799 } 1800 #ifndef SQLITE_OMIT_VIRTUALTABLE 1801 case P4_VTAB: { 1802 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1803 sqlite3_str_appendf(&x, "vtab:%p", pVtab); 1804 break; 1805 } 1806 #endif 1807 case P4_INTARRAY: { 1808 u32 i; 1809 u32 *ai = pOp->p4.ai; 1810 u32 n = ai[0]; /* The first element of an INTARRAY is always the 1811 ** count of the number of elements to follow */ 1812 for(i=1; i<=n; i++){ 1813 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]); 1814 } 1815 sqlite3_str_append(&x, "]", 1); 1816 break; 1817 } 1818 case P4_SUBPROGRAM: { 1819 zP4 = "program"; 1820 break; 1821 } 1822 case P4_TABLE: { 1823 zP4 = pOp->p4.pTab->zName; 1824 break; 1825 } 1826 default: { 1827 zP4 = pOp->p4.z; 1828 } 1829 } 1830 if( zP4 ) sqlite3_str_appendall(&x, zP4); 1831 if( (x.accError & SQLITE_NOMEM)!=0 ){ 1832 sqlite3OomFault(db); 1833 } 1834 return sqlite3StrAccumFinish(&x); 1835 } 1836 #endif /* VDBE_DISPLAY_P4 */ 1837 1838 /* 1839 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1840 ** 1841 ** The prepared statements need to know in advance the complete set of 1842 ** attached databases that will be use. A mask of these databases 1843 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1844 ** p->btreeMask of databases that will require a lock. 1845 */ 1846 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1847 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1848 assert( i<(int)sizeof(p->btreeMask)*8 ); 1849 DbMaskSet(p->btreeMask, i); 1850 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1851 DbMaskSet(p->lockMask, i); 1852 } 1853 } 1854 1855 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1856 /* 1857 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1858 ** this routine obtains the mutex associated with each BtShared structure 1859 ** that may be accessed by the VM passed as an argument. In doing so it also 1860 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1861 ** that the correct busy-handler callback is invoked if required. 1862 ** 1863 ** If SQLite is not threadsafe but does support shared-cache mode, then 1864 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1865 ** of all of BtShared structures accessible via the database handle 1866 ** associated with the VM. 1867 ** 1868 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1869 ** function is a no-op. 1870 ** 1871 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1872 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1873 ** corresponding to btrees that use shared cache. Then the runtime of 1874 ** this routine is N*N. But as N is rarely more than 1, this should not 1875 ** be a problem. 1876 */ 1877 void sqlite3VdbeEnter(Vdbe *p){ 1878 int i; 1879 sqlite3 *db; 1880 Db *aDb; 1881 int nDb; 1882 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1883 db = p->db; 1884 aDb = db->aDb; 1885 nDb = db->nDb; 1886 for(i=0; i<nDb; i++){ 1887 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1888 sqlite3BtreeEnter(aDb[i].pBt); 1889 } 1890 } 1891 } 1892 #endif 1893 1894 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1895 /* 1896 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1897 */ 1898 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1899 int i; 1900 sqlite3 *db; 1901 Db *aDb; 1902 int nDb; 1903 db = p->db; 1904 aDb = db->aDb; 1905 nDb = db->nDb; 1906 for(i=0; i<nDb; i++){ 1907 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1908 sqlite3BtreeLeave(aDb[i].pBt); 1909 } 1910 } 1911 } 1912 void sqlite3VdbeLeave(Vdbe *p){ 1913 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1914 vdbeLeave(p); 1915 } 1916 #endif 1917 1918 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1919 /* 1920 ** Print a single opcode. This routine is used for debugging only. 1921 */ 1922 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ 1923 char *zP4; 1924 char *zCom; 1925 sqlite3 dummyDb; 1926 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1927 if( pOut==0 ) pOut = stdout; 1928 sqlite3BeginBenignMalloc(); 1929 dummyDb.mallocFailed = 1; 1930 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp); 1931 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1932 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4); 1933 #else 1934 zCom = 0; 1935 #endif 1936 /* NB: The sqlite3OpcodeName() function is implemented by code created 1937 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1938 ** information from the vdbe.c source text */ 1939 fprintf(pOut, zFormat1, pc, 1940 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, 1941 zP4 ? zP4 : "", pOp->p5, 1942 zCom ? zCom : "" 1943 ); 1944 fflush(pOut); 1945 sqlite3_free(zP4); 1946 sqlite3_free(zCom); 1947 sqlite3EndBenignMalloc(); 1948 } 1949 #endif 1950 1951 /* 1952 ** Initialize an array of N Mem element. 1953 ** 1954 ** This is a high-runner, so only those fields that really do need to 1955 ** be initialized are set. The Mem structure is organized so that 1956 ** the fields that get initialized are nearby and hopefully on the same 1957 ** cache line. 1958 ** 1959 ** Mem.flags = flags 1960 ** Mem.db = db 1961 ** Mem.szMalloc = 0 1962 ** 1963 ** All other fields of Mem can safely remain uninitialized for now. They 1964 ** will be initialized before use. 1965 */ 1966 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1967 if( N>0 ){ 1968 do{ 1969 p->flags = flags; 1970 p->db = db; 1971 p->szMalloc = 0; 1972 #ifdef SQLITE_DEBUG 1973 p->pScopyFrom = 0; 1974 #endif 1975 p++; 1976 }while( (--N)>0 ); 1977 } 1978 } 1979 1980 /* 1981 ** Release auxiliary memory held in an array of N Mem elements. 1982 ** 1983 ** After this routine returns, all Mem elements in the array will still 1984 ** be valid. Those Mem elements that were not holding auxiliary resources 1985 ** will be unchanged. Mem elements which had something freed will be 1986 ** set to MEM_Undefined. 1987 */ 1988 static void releaseMemArray(Mem *p, int N){ 1989 if( p && N ){ 1990 Mem *pEnd = &p[N]; 1991 sqlite3 *db = p->db; 1992 if( db->pnBytesFreed ){ 1993 do{ 1994 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1995 }while( (++p)<pEnd ); 1996 return; 1997 } 1998 do{ 1999 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 2000 assert( sqlite3VdbeCheckMemInvariants(p) ); 2001 2002 /* This block is really an inlined version of sqlite3VdbeMemRelease() 2003 ** that takes advantage of the fact that the memory cell value is 2004 ** being set to NULL after releasing any dynamic resources. 2005 ** 2006 ** The justification for duplicating code is that according to 2007 ** callgrind, this causes a certain test case to hit the CPU 4.7 2008 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 2009 ** sqlite3MemRelease() were called from here. With -O2, this jumps 2010 ** to 6.6 percent. The test case is inserting 1000 rows into a table 2011 ** with no indexes using a single prepared INSERT statement, bind() 2012 ** and reset(). Inserts are grouped into a transaction. 2013 */ 2014 testcase( p->flags & MEM_Agg ); 2015 testcase( p->flags & MEM_Dyn ); 2016 if( p->flags&(MEM_Agg|MEM_Dyn) ){ 2017 testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel ); 2018 sqlite3VdbeMemRelease(p); 2019 p->flags = MEM_Undefined; 2020 }else if( p->szMalloc ){ 2021 sqlite3DbFreeNN(db, p->zMalloc); 2022 p->szMalloc = 0; 2023 p->flags = MEM_Undefined; 2024 } 2025 #ifdef SQLITE_DEBUG 2026 else{ 2027 p->flags = MEM_Undefined; 2028 } 2029 #endif 2030 }while( (++p)<pEnd ); 2031 } 2032 } 2033 2034 #ifdef SQLITE_DEBUG 2035 /* 2036 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is 2037 ** and false if something is wrong. 2038 ** 2039 ** This routine is intended for use inside of assert() statements only. 2040 */ 2041 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){ 2042 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; 2043 return 1; 2044 } 2045 #endif 2046 2047 2048 /* 2049 ** This is a destructor on a Mem object (which is really an sqlite3_value) 2050 ** that deletes the Frame object that is attached to it as a blob. 2051 ** 2052 ** This routine does not delete the Frame right away. It merely adds the 2053 ** frame to a list of frames to be deleted when the Vdbe halts. 2054 */ 2055 void sqlite3VdbeFrameMemDel(void *pArg){ 2056 VdbeFrame *pFrame = (VdbeFrame*)pArg; 2057 assert( sqlite3VdbeFrameIsValid(pFrame) ); 2058 pFrame->pParent = pFrame->v->pDelFrame; 2059 pFrame->v->pDelFrame = pFrame; 2060 } 2061 2062 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN) 2063 /* 2064 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN 2065 ** QUERY PLAN output. 2066 ** 2067 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no 2068 ** more opcodes to be displayed. 2069 */ 2070 int sqlite3VdbeNextOpcode( 2071 Vdbe *p, /* The statement being explained */ 2072 Mem *pSub, /* Storage for keeping track of subprogram nesting */ 2073 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */ 2074 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */ 2075 int *piAddr, /* OUT: Write index into (*paOp)[] here */ 2076 Op **paOp /* OUT: Write the opcode array here */ 2077 ){ 2078 int nRow; /* Stop when row count reaches this */ 2079 int nSub = 0; /* Number of sub-vdbes seen so far */ 2080 SubProgram **apSub = 0; /* Array of sub-vdbes */ 2081 int i; /* Next instruction address */ 2082 int rc = SQLITE_OK; /* Result code */ 2083 Op *aOp = 0; /* Opcode array */ 2084 int iPc; /* Rowid. Copy of value in *piPc */ 2085 2086 /* When the number of output rows reaches nRow, that means the 2087 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 2088 ** nRow is the sum of the number of rows in the main program, plus 2089 ** the sum of the number of rows in all trigger subprograms encountered 2090 ** so far. The nRow value will increase as new trigger subprograms are 2091 ** encountered, but p->pc will eventually catch up to nRow. 2092 */ 2093 nRow = p->nOp; 2094 if( pSub!=0 ){ 2095 if( pSub->flags&MEM_Blob ){ 2096 /* pSub is initiallly NULL. It is initialized to a BLOB by 2097 ** the P4_SUBPROGRAM processing logic below */ 2098 nSub = pSub->n/sizeof(Vdbe*); 2099 apSub = (SubProgram **)pSub->z; 2100 } 2101 for(i=0; i<nSub; i++){ 2102 nRow += apSub[i]->nOp; 2103 } 2104 } 2105 iPc = *piPc; 2106 while(1){ /* Loop exits via break */ 2107 i = iPc++; 2108 if( i>=nRow ){ 2109 p->rc = SQLITE_OK; 2110 rc = SQLITE_DONE; 2111 break; 2112 } 2113 if( i<p->nOp ){ 2114 /* The rowid is small enough that we are still in the 2115 ** main program. */ 2116 aOp = p->aOp; 2117 }else{ 2118 /* We are currently listing subprograms. Figure out which one and 2119 ** pick up the appropriate opcode. */ 2120 int j; 2121 i -= p->nOp; 2122 assert( apSub!=0 ); 2123 assert( nSub>0 ); 2124 for(j=0; i>=apSub[j]->nOp; j++){ 2125 i -= apSub[j]->nOp; 2126 assert( i<apSub[j]->nOp || j+1<nSub ); 2127 } 2128 aOp = apSub[j]->aOp; 2129 } 2130 2131 /* When an OP_Program opcode is encounter (the only opcode that has 2132 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 2133 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 2134 ** has not already been seen. 2135 */ 2136 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){ 2137 int nByte = (nSub+1)*sizeof(SubProgram*); 2138 int j; 2139 for(j=0; j<nSub; j++){ 2140 if( apSub[j]==aOp[i].p4.pProgram ) break; 2141 } 2142 if( j==nSub ){ 2143 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); 2144 if( p->rc!=SQLITE_OK ){ 2145 rc = SQLITE_ERROR; 2146 break; 2147 } 2148 apSub = (SubProgram **)pSub->z; 2149 apSub[nSub++] = aOp[i].p4.pProgram; 2150 MemSetTypeFlag(pSub, MEM_Blob); 2151 pSub->n = nSub*sizeof(SubProgram*); 2152 nRow += aOp[i].p4.pProgram->nOp; 2153 } 2154 } 2155 if( eMode==0 ) break; 2156 #ifdef SQLITE_ENABLE_BYTECODE_VTAB 2157 if( eMode==2 ){ 2158 Op *pOp = aOp + i; 2159 if( pOp->opcode==OP_OpenRead ) break; 2160 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break; 2161 if( pOp->opcode==OP_ReopenIdx ) break; 2162 }else 2163 #endif 2164 { 2165 assert( eMode==1 ); 2166 if( aOp[i].opcode==OP_Explain ) break; 2167 if( aOp[i].opcode==OP_Init && iPc>1 ) break; 2168 } 2169 } 2170 *piPc = iPc; 2171 *piAddr = i; 2172 *paOp = aOp; 2173 return rc; 2174 } 2175 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */ 2176 2177 2178 /* 2179 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 2180 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 2181 */ 2182 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 2183 int i; 2184 Mem *aMem = VdbeFrameMem(p); 2185 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 2186 assert( sqlite3VdbeFrameIsValid(p) ); 2187 for(i=0; i<p->nChildCsr; i++){ 2188 if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]); 2189 } 2190 releaseMemArray(aMem, p->nChildMem); 2191 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 2192 sqlite3DbFree(p->v->db, p); 2193 } 2194 2195 #ifndef SQLITE_OMIT_EXPLAIN 2196 /* 2197 ** Give a listing of the program in the virtual machine. 2198 ** 2199 ** The interface is the same as sqlite3VdbeExec(). But instead of 2200 ** running the code, it invokes the callback once for each instruction. 2201 ** This feature is used to implement "EXPLAIN". 2202 ** 2203 ** When p->explain==1, each instruction is listed. When 2204 ** p->explain==2, only OP_Explain instructions are listed and these 2205 ** are shown in a different format. p->explain==2 is used to implement 2206 ** EXPLAIN QUERY PLAN. 2207 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers 2208 ** are also shown, so that the boundaries between the main program and 2209 ** each trigger are clear. 2210 ** 2211 ** When p->explain==1, first the main program is listed, then each of 2212 ** the trigger subprograms are listed one by one. 2213 */ 2214 int sqlite3VdbeList( 2215 Vdbe *p /* The VDBE */ 2216 ){ 2217 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 2218 sqlite3 *db = p->db; /* The database connection */ 2219 int i; /* Loop counter */ 2220 int rc = SQLITE_OK; /* Return code */ 2221 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 2222 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); 2223 Op *aOp; /* Array of opcodes */ 2224 Op *pOp; /* Current opcode */ 2225 2226 assert( p->explain ); 2227 assert( p->eVdbeState==VDBE_RUN_STATE ); 2228 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 2229 2230 /* Even though this opcode does not use dynamic strings for 2231 ** the result, result columns may become dynamic if the user calls 2232 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 2233 */ 2234 releaseMemArray(pMem, 8); 2235 p->pResultSet = 0; 2236 2237 if( p->rc==SQLITE_NOMEM ){ 2238 /* This happens if a malloc() inside a call to sqlite3_column_text() or 2239 ** sqlite3_column_text16() failed. */ 2240 sqlite3OomFault(db); 2241 return SQLITE_ERROR; 2242 } 2243 2244 if( bListSubprogs ){ 2245 /* The first 8 memory cells are used for the result set. So we will 2246 ** commandeer the 9th cell to use as storage for an array of pointers 2247 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 2248 ** cells. */ 2249 assert( p->nMem>9 ); 2250 pSub = &p->aMem[9]; 2251 }else{ 2252 pSub = 0; 2253 } 2254 2255 /* Figure out which opcode is next to display */ 2256 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp); 2257 2258 if( rc==SQLITE_OK ){ 2259 pOp = aOp + i; 2260 if( AtomicLoad(&db->u1.isInterrupted) ){ 2261 p->rc = SQLITE_INTERRUPT; 2262 rc = SQLITE_ERROR; 2263 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 2264 }else{ 2265 char *zP4 = sqlite3VdbeDisplayP4(db, pOp); 2266 if( p->explain==2 ){ 2267 sqlite3VdbeMemSetInt64(pMem, pOp->p1); 2268 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2); 2269 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3); 2270 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free); 2271 p->nResColumn = 4; 2272 }else{ 2273 sqlite3VdbeMemSetInt64(pMem+0, i); 2274 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode), 2275 -1, SQLITE_UTF8, SQLITE_STATIC); 2276 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1); 2277 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2); 2278 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3); 2279 /* pMem+5 for p4 is done last */ 2280 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5); 2281 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2282 { 2283 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4); 2284 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free); 2285 } 2286 #else 2287 sqlite3VdbeMemSetNull(pMem+7); 2288 #endif 2289 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free); 2290 p->nResColumn = 8; 2291 } 2292 p->pResultSet = pMem; 2293 if( db->mallocFailed ){ 2294 p->rc = SQLITE_NOMEM; 2295 rc = SQLITE_ERROR; 2296 }else{ 2297 p->rc = SQLITE_OK; 2298 rc = SQLITE_ROW; 2299 } 2300 } 2301 } 2302 return rc; 2303 } 2304 #endif /* SQLITE_OMIT_EXPLAIN */ 2305 2306 #ifdef SQLITE_DEBUG 2307 /* 2308 ** Print the SQL that was used to generate a VDBE program. 2309 */ 2310 void sqlite3VdbePrintSql(Vdbe *p){ 2311 const char *z = 0; 2312 if( p->zSql ){ 2313 z = p->zSql; 2314 }else if( p->nOp>=1 ){ 2315 const VdbeOp *pOp = &p->aOp[0]; 2316 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2317 z = pOp->p4.z; 2318 while( sqlite3Isspace(*z) ) z++; 2319 } 2320 } 2321 if( z ) printf("SQL: [%s]\n", z); 2322 } 2323 #endif 2324 2325 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 2326 /* 2327 ** Print an IOTRACE message showing SQL content. 2328 */ 2329 void sqlite3VdbeIOTraceSql(Vdbe *p){ 2330 int nOp = p->nOp; 2331 VdbeOp *pOp; 2332 if( sqlite3IoTrace==0 ) return; 2333 if( nOp<1 ) return; 2334 pOp = &p->aOp[0]; 2335 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2336 int i, j; 2337 char z[1000]; 2338 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 2339 for(i=0; sqlite3Isspace(z[i]); i++){} 2340 for(j=0; z[i]; i++){ 2341 if( sqlite3Isspace(z[i]) ){ 2342 if( z[i-1]!=' ' ){ 2343 z[j++] = ' '; 2344 } 2345 }else{ 2346 z[j++] = z[i]; 2347 } 2348 } 2349 z[j] = 0; 2350 sqlite3IoTrace("SQL %s\n", z); 2351 } 2352 } 2353 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 2354 2355 /* An instance of this object describes bulk memory available for use 2356 ** by subcomponents of a prepared statement. Space is allocated out 2357 ** of a ReusableSpace object by the allocSpace() routine below. 2358 */ 2359 struct ReusableSpace { 2360 u8 *pSpace; /* Available memory */ 2361 sqlite3_int64 nFree; /* Bytes of available memory */ 2362 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */ 2363 }; 2364 2365 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 2366 ** from the ReusableSpace object. Return a pointer to the allocated 2367 ** memory on success. If insufficient memory is available in the 2368 ** ReusableSpace object, increase the ReusableSpace.nNeeded 2369 ** value by the amount needed and return NULL. 2370 ** 2371 ** If pBuf is not initially NULL, that means that the memory has already 2372 ** been allocated by a prior call to this routine, so just return a copy 2373 ** of pBuf and leave ReusableSpace unchanged. 2374 ** 2375 ** This allocator is employed to repurpose unused slots at the end of the 2376 ** opcode array of prepared state for other memory needs of the prepared 2377 ** statement. 2378 */ 2379 static void *allocSpace( 2380 struct ReusableSpace *p, /* Bulk memory available for allocation */ 2381 void *pBuf, /* Pointer to a prior allocation */ 2382 sqlite3_int64 nByte /* Bytes of memory needed. */ 2383 ){ 2384 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 2385 if( pBuf==0 ){ 2386 nByte = ROUND8P(nByte); 2387 if( nByte <= p->nFree ){ 2388 p->nFree -= nByte; 2389 pBuf = &p->pSpace[p->nFree]; 2390 }else{ 2391 p->nNeeded += nByte; 2392 } 2393 } 2394 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 2395 return pBuf; 2396 } 2397 2398 /* 2399 ** Rewind the VDBE back to the beginning in preparation for 2400 ** running it. 2401 */ 2402 void sqlite3VdbeRewind(Vdbe *p){ 2403 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 2404 int i; 2405 #endif 2406 assert( p!=0 ); 2407 assert( p->eVdbeState==VDBE_INIT_STATE 2408 || p->eVdbeState==VDBE_READY_STATE 2409 || p->eVdbeState==VDBE_HALT_STATE ); 2410 2411 /* There should be at least one opcode. 2412 */ 2413 assert( p->nOp>0 ); 2414 2415 p->eVdbeState = VDBE_READY_STATE; 2416 2417 #ifdef SQLITE_DEBUG 2418 for(i=0; i<p->nMem; i++){ 2419 assert( p->aMem[i].db==p->db ); 2420 } 2421 #endif 2422 p->pc = -1; 2423 p->rc = SQLITE_OK; 2424 p->errorAction = OE_Abort; 2425 p->nChange = 0; 2426 p->cacheCtr = 1; 2427 p->minWriteFileFormat = 255; 2428 p->iStatement = 0; 2429 p->nFkConstraint = 0; 2430 #ifdef VDBE_PROFILE 2431 for(i=0; i<p->nOp; i++){ 2432 p->aOp[i].cnt = 0; 2433 p->aOp[i].cycles = 0; 2434 } 2435 #endif 2436 } 2437 2438 /* 2439 ** Prepare a virtual machine for execution for the first time after 2440 ** creating the virtual machine. This involves things such 2441 ** as allocating registers and initializing the program counter. 2442 ** After the VDBE has be prepped, it can be executed by one or more 2443 ** calls to sqlite3VdbeExec(). 2444 ** 2445 ** This function may be called exactly once on each virtual machine. 2446 ** After this routine is called the VM has been "packaged" and is ready 2447 ** to run. After this routine is called, further calls to 2448 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 2449 ** the Vdbe from the Parse object that helped generate it so that the 2450 ** the Vdbe becomes an independent entity and the Parse object can be 2451 ** destroyed. 2452 ** 2453 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 2454 ** to its initial state after it has been run. 2455 */ 2456 void sqlite3VdbeMakeReady( 2457 Vdbe *p, /* The VDBE */ 2458 Parse *pParse /* Parsing context */ 2459 ){ 2460 sqlite3 *db; /* The database connection */ 2461 int nVar; /* Number of parameters */ 2462 int nMem; /* Number of VM memory registers */ 2463 int nCursor; /* Number of cursors required */ 2464 int nArg; /* Number of arguments in subprograms */ 2465 int n; /* Loop counter */ 2466 struct ReusableSpace x; /* Reusable bulk memory */ 2467 2468 assert( p!=0 ); 2469 assert( p->nOp>0 ); 2470 assert( pParse!=0 ); 2471 assert( p->eVdbeState==VDBE_INIT_STATE ); 2472 assert( pParse==p->pParse ); 2473 p->pVList = pParse->pVList; 2474 pParse->pVList = 0; 2475 db = p->db; 2476 assert( db->mallocFailed==0 ); 2477 nVar = pParse->nVar; 2478 nMem = pParse->nMem; 2479 nCursor = pParse->nTab; 2480 nArg = pParse->nMaxArg; 2481 2482 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 2483 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 2484 ** space at the end of aMem[] for cursors 1 and greater. 2485 ** See also: allocateCursor(). 2486 */ 2487 nMem += nCursor; 2488 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 2489 2490 /* Figure out how much reusable memory is available at the end of the 2491 ** opcode array. This extra memory will be reallocated for other elements 2492 ** of the prepared statement. 2493 */ 2494 n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 2495 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 2496 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 2497 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 2498 assert( x.nFree>=0 ); 2499 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 2500 2501 resolveP2Values(p, &nArg); 2502 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 2503 if( pParse->explain ){ 2504 static const char * const azColName[] = { 2505 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", 2506 "id", "parent", "notused", "detail" 2507 }; 2508 int iFirst, mx, i; 2509 if( nMem<10 ) nMem = 10; 2510 p->explain = pParse->explain; 2511 if( pParse->explain==2 ){ 2512 sqlite3VdbeSetNumCols(p, 4); 2513 iFirst = 8; 2514 mx = 12; 2515 }else{ 2516 sqlite3VdbeSetNumCols(p, 8); 2517 iFirst = 0; 2518 mx = 8; 2519 } 2520 for(i=iFirst; i<mx; i++){ 2521 sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME, 2522 azColName[i], SQLITE_STATIC); 2523 } 2524 } 2525 p->expired = 0; 2526 2527 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 2528 ** passes. On the first pass, we try to reuse unused memory at the 2529 ** end of the opcode array. If we are unable to satisfy all memory 2530 ** requirements by reusing the opcode array tail, then the second 2531 ** pass will fill in the remainder using a fresh memory allocation. 2532 ** 2533 ** This two-pass approach that reuses as much memory as possible from 2534 ** the leftover memory at the end of the opcode array. This can significantly 2535 ** reduce the amount of memory held by a prepared statement. 2536 */ 2537 x.nNeeded = 0; 2538 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem)); 2539 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem)); 2540 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*)); 2541 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*)); 2542 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2543 p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64)); 2544 #endif 2545 if( x.nNeeded ){ 2546 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 2547 x.nFree = x.nNeeded; 2548 if( !db->mallocFailed ){ 2549 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 2550 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 2551 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 2552 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 2553 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2554 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 2555 #endif 2556 } 2557 } 2558 2559 if( db->mallocFailed ){ 2560 p->nVar = 0; 2561 p->nCursor = 0; 2562 p->nMem = 0; 2563 }else{ 2564 p->nCursor = nCursor; 2565 p->nVar = (ynVar)nVar; 2566 initMemArray(p->aVar, nVar, db, MEM_Null); 2567 p->nMem = nMem; 2568 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2569 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2570 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2571 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2572 #endif 2573 } 2574 sqlite3VdbeRewind(p); 2575 } 2576 2577 /* 2578 ** Close a VDBE cursor and release all the resources that cursor 2579 ** happens to hold. 2580 */ 2581 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2582 if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx); 2583 } 2584 void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){ 2585 switch( pCx->eCurType ){ 2586 case CURTYPE_SORTER: { 2587 sqlite3VdbeSorterClose(p->db, pCx); 2588 break; 2589 } 2590 case CURTYPE_BTREE: { 2591 assert( pCx->uc.pCursor!=0 ); 2592 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2593 break; 2594 } 2595 #ifndef SQLITE_OMIT_VIRTUALTABLE 2596 case CURTYPE_VTAB: { 2597 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2598 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2599 assert( pVCur->pVtab->nRef>0 ); 2600 pVCur->pVtab->nRef--; 2601 pModule->xClose(pVCur); 2602 break; 2603 } 2604 #endif 2605 } 2606 } 2607 2608 /* 2609 ** Close all cursors in the current frame. 2610 */ 2611 static void closeCursorsInFrame(Vdbe *p){ 2612 int i; 2613 for(i=0; i<p->nCursor; i++){ 2614 VdbeCursor *pC = p->apCsr[i]; 2615 if( pC ){ 2616 sqlite3VdbeFreeCursorNN(p, pC); 2617 p->apCsr[i] = 0; 2618 } 2619 } 2620 } 2621 2622 /* 2623 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2624 ** is used, for example, when a trigger sub-program is halted to restore 2625 ** control to the main program. 2626 */ 2627 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2628 Vdbe *v = pFrame->v; 2629 closeCursorsInFrame(v); 2630 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2631 v->anExec = pFrame->anExec; 2632 #endif 2633 v->aOp = pFrame->aOp; 2634 v->nOp = pFrame->nOp; 2635 v->aMem = pFrame->aMem; 2636 v->nMem = pFrame->nMem; 2637 v->apCsr = pFrame->apCsr; 2638 v->nCursor = pFrame->nCursor; 2639 v->db->lastRowid = pFrame->lastRowid; 2640 v->nChange = pFrame->nChange; 2641 v->db->nChange = pFrame->nDbChange; 2642 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2643 v->pAuxData = pFrame->pAuxData; 2644 pFrame->pAuxData = 0; 2645 return pFrame->pc; 2646 } 2647 2648 /* 2649 ** Close all cursors. 2650 ** 2651 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2652 ** cell array. This is necessary as the memory cell array may contain 2653 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2654 ** open cursors. 2655 */ 2656 static void closeAllCursors(Vdbe *p){ 2657 if( p->pFrame ){ 2658 VdbeFrame *pFrame; 2659 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2660 sqlite3VdbeFrameRestore(pFrame); 2661 p->pFrame = 0; 2662 p->nFrame = 0; 2663 } 2664 assert( p->nFrame==0 ); 2665 closeCursorsInFrame(p); 2666 releaseMemArray(p->aMem, p->nMem); 2667 while( p->pDelFrame ){ 2668 VdbeFrame *pDel = p->pDelFrame; 2669 p->pDelFrame = pDel->pParent; 2670 sqlite3VdbeFrameDelete(pDel); 2671 } 2672 2673 /* Delete any auxdata allocations made by the VM */ 2674 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2675 assert( p->pAuxData==0 ); 2676 } 2677 2678 /* 2679 ** Set the number of result columns that will be returned by this SQL 2680 ** statement. This is now set at compile time, rather than during 2681 ** execution of the vdbe program so that sqlite3_column_count() can 2682 ** be called on an SQL statement before sqlite3_step(). 2683 */ 2684 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2685 int n; 2686 sqlite3 *db = p->db; 2687 2688 if( p->nResColumn ){ 2689 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2690 sqlite3DbFree(db, p->aColName); 2691 } 2692 n = nResColumn*COLNAME_N; 2693 p->nResColumn = (u16)nResColumn; 2694 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2695 if( p->aColName==0 ) return; 2696 initMemArray(p->aColName, n, db, MEM_Null); 2697 } 2698 2699 /* 2700 ** Set the name of the idx'th column to be returned by the SQL statement. 2701 ** zName must be a pointer to a nul terminated string. 2702 ** 2703 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2704 ** 2705 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2706 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2707 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2708 */ 2709 int sqlite3VdbeSetColName( 2710 Vdbe *p, /* Vdbe being configured */ 2711 int idx, /* Index of column zName applies to */ 2712 int var, /* One of the COLNAME_* constants */ 2713 const char *zName, /* Pointer to buffer containing name */ 2714 void (*xDel)(void*) /* Memory management strategy for zName */ 2715 ){ 2716 int rc; 2717 Mem *pColName; 2718 assert( idx<p->nResColumn ); 2719 assert( var<COLNAME_N ); 2720 if( p->db->mallocFailed ){ 2721 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2722 return SQLITE_NOMEM_BKPT; 2723 } 2724 assert( p->aColName!=0 ); 2725 pColName = &(p->aColName[idx+var*p->nResColumn]); 2726 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2727 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2728 return rc; 2729 } 2730 2731 /* 2732 ** A read or write transaction may or may not be active on database handle 2733 ** db. If a transaction is active, commit it. If there is a 2734 ** write-transaction spanning more than one database file, this routine 2735 ** takes care of the super-journal trickery. 2736 */ 2737 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2738 int i; 2739 int nTrans = 0; /* Number of databases with an active write-transaction 2740 ** that are candidates for a two-phase commit using a 2741 ** super-journal */ 2742 int rc = SQLITE_OK; 2743 int needXcommit = 0; 2744 2745 #ifdef SQLITE_OMIT_VIRTUALTABLE 2746 /* With this option, sqlite3VtabSync() is defined to be simply 2747 ** SQLITE_OK so p is not used. 2748 */ 2749 UNUSED_PARAMETER(p); 2750 #endif 2751 2752 /* Before doing anything else, call the xSync() callback for any 2753 ** virtual module tables written in this transaction. This has to 2754 ** be done before determining whether a super-journal file is 2755 ** required, as an xSync() callback may add an attached database 2756 ** to the transaction. 2757 */ 2758 rc = sqlite3VtabSync(db, p); 2759 2760 /* This loop determines (a) if the commit hook should be invoked and 2761 ** (b) how many database files have open write transactions, not 2762 ** including the temp database. (b) is important because if more than 2763 ** one database file has an open write transaction, a super-journal 2764 ** file is required for an atomic commit. 2765 */ 2766 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2767 Btree *pBt = db->aDb[i].pBt; 2768 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 2769 /* Whether or not a database might need a super-journal depends upon 2770 ** its journal mode (among other things). This matrix determines which 2771 ** journal modes use a super-journal and which do not */ 2772 static const u8 aMJNeeded[] = { 2773 /* DELETE */ 1, 2774 /* PERSIST */ 1, 2775 /* OFF */ 0, 2776 /* TRUNCATE */ 1, 2777 /* MEMORY */ 0, 2778 /* WAL */ 0 2779 }; 2780 Pager *pPager; /* Pager associated with pBt */ 2781 needXcommit = 1; 2782 sqlite3BtreeEnter(pBt); 2783 pPager = sqlite3BtreePager(pBt); 2784 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2785 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2786 && sqlite3PagerIsMemdb(pPager)==0 2787 ){ 2788 assert( i!=1 ); 2789 nTrans++; 2790 } 2791 rc = sqlite3PagerExclusiveLock(pPager); 2792 sqlite3BtreeLeave(pBt); 2793 } 2794 } 2795 if( rc!=SQLITE_OK ){ 2796 return rc; 2797 } 2798 2799 /* If there are any write-transactions at all, invoke the commit hook */ 2800 if( needXcommit && db->xCommitCallback ){ 2801 rc = db->xCommitCallback(db->pCommitArg); 2802 if( rc ){ 2803 return SQLITE_CONSTRAINT_COMMITHOOK; 2804 } 2805 } 2806 2807 /* The simple case - no more than one database file (not counting the 2808 ** TEMP database) has a transaction active. There is no need for the 2809 ** super-journal. 2810 ** 2811 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2812 ** string, it means the main database is :memory: or a temp file. In 2813 ** that case we do not support atomic multi-file commits, so use the 2814 ** simple case then too. 2815 */ 2816 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2817 || nTrans<=1 2818 ){ 2819 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2820 Btree *pBt = db->aDb[i].pBt; 2821 if( pBt ){ 2822 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2823 } 2824 } 2825 2826 /* Do the commit only if all databases successfully complete phase 1. 2827 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2828 ** IO error while deleting or truncating a journal file. It is unlikely, 2829 ** but could happen. In this case abandon processing and return the error. 2830 */ 2831 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2832 Btree *pBt = db->aDb[i].pBt; 2833 if( pBt ){ 2834 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2835 } 2836 } 2837 if( rc==SQLITE_OK ){ 2838 sqlite3VtabCommit(db); 2839 } 2840 } 2841 2842 /* The complex case - There is a multi-file write-transaction active. 2843 ** This requires a super-journal file to ensure the transaction is 2844 ** committed atomically. 2845 */ 2846 #ifndef SQLITE_OMIT_DISKIO 2847 else{ 2848 sqlite3_vfs *pVfs = db->pVfs; 2849 char *zSuper = 0; /* File-name for the super-journal */ 2850 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2851 sqlite3_file *pSuperJrnl = 0; 2852 i64 offset = 0; 2853 int res; 2854 int retryCount = 0; 2855 int nMainFile; 2856 2857 /* Select a super-journal file name */ 2858 nMainFile = sqlite3Strlen30(zMainFile); 2859 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0); 2860 if( zSuper==0 ) return SQLITE_NOMEM_BKPT; 2861 zSuper += 4; 2862 do { 2863 u32 iRandom; 2864 if( retryCount ){ 2865 if( retryCount>100 ){ 2866 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper); 2867 sqlite3OsDelete(pVfs, zSuper, 0); 2868 break; 2869 }else if( retryCount==1 ){ 2870 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper); 2871 } 2872 } 2873 retryCount++; 2874 sqlite3_randomness(sizeof(iRandom), &iRandom); 2875 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X", 2876 (iRandom>>8)&0xffffff, iRandom&0xff); 2877 /* The antipenultimate character of the super-journal name must 2878 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2879 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' ); 2880 sqlite3FileSuffix3(zMainFile, zSuper); 2881 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); 2882 }while( rc==SQLITE_OK && res ); 2883 if( rc==SQLITE_OK ){ 2884 /* Open the super-journal. */ 2885 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl, 2886 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2887 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0 2888 ); 2889 } 2890 if( rc!=SQLITE_OK ){ 2891 sqlite3DbFree(db, zSuper-4); 2892 return rc; 2893 } 2894 2895 /* Write the name of each database file in the transaction into the new 2896 ** super-journal file. If an error occurs at this point close 2897 ** and delete the super-journal file. All the individual journal files 2898 ** still have 'null' as the super-journal pointer, so they will roll 2899 ** back independently if a failure occurs. 2900 */ 2901 for(i=0; i<db->nDb; i++){ 2902 Btree *pBt = db->aDb[i].pBt; 2903 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 2904 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2905 if( zFile==0 ){ 2906 continue; /* Ignore TEMP and :memory: databases */ 2907 } 2908 assert( zFile[0]!=0 ); 2909 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset); 2910 offset += sqlite3Strlen30(zFile)+1; 2911 if( rc!=SQLITE_OK ){ 2912 sqlite3OsCloseFree(pSuperJrnl); 2913 sqlite3OsDelete(pVfs, zSuper, 0); 2914 sqlite3DbFree(db, zSuper-4); 2915 return rc; 2916 } 2917 } 2918 } 2919 2920 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device 2921 ** flag is set this is not required. 2922 */ 2923 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL) 2924 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL)) 2925 ){ 2926 sqlite3OsCloseFree(pSuperJrnl); 2927 sqlite3OsDelete(pVfs, zSuper, 0); 2928 sqlite3DbFree(db, zSuper-4); 2929 return rc; 2930 } 2931 2932 /* Sync all the db files involved in the transaction. The same call 2933 ** sets the super-journal pointer in each individual journal. If 2934 ** an error occurs here, do not delete the super-journal file. 2935 ** 2936 ** If the error occurs during the first call to 2937 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2938 ** super-journal file will be orphaned. But we cannot delete it, 2939 ** in case the super-journal file name was written into the journal 2940 ** file before the failure occurred. 2941 */ 2942 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2943 Btree *pBt = db->aDb[i].pBt; 2944 if( pBt ){ 2945 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper); 2946 } 2947 } 2948 sqlite3OsCloseFree(pSuperJrnl); 2949 assert( rc!=SQLITE_BUSY ); 2950 if( rc!=SQLITE_OK ){ 2951 sqlite3DbFree(db, zSuper-4); 2952 return rc; 2953 } 2954 2955 /* Delete the super-journal file. This commits the transaction. After 2956 ** doing this the directory is synced again before any individual 2957 ** transaction files are deleted. 2958 */ 2959 rc = sqlite3OsDelete(pVfs, zSuper, 1); 2960 sqlite3DbFree(db, zSuper-4); 2961 zSuper = 0; 2962 if( rc ){ 2963 return rc; 2964 } 2965 2966 /* All files and directories have already been synced, so the following 2967 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2968 ** deleting or truncating journals. If something goes wrong while 2969 ** this is happening we don't really care. The integrity of the 2970 ** transaction is already guaranteed, but some stray 'cold' journals 2971 ** may be lying around. Returning an error code won't help matters. 2972 */ 2973 disable_simulated_io_errors(); 2974 sqlite3BeginBenignMalloc(); 2975 for(i=0; i<db->nDb; i++){ 2976 Btree *pBt = db->aDb[i].pBt; 2977 if( pBt ){ 2978 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2979 } 2980 } 2981 sqlite3EndBenignMalloc(); 2982 enable_simulated_io_errors(); 2983 2984 sqlite3VtabCommit(db); 2985 } 2986 #endif 2987 2988 return rc; 2989 } 2990 2991 /* 2992 ** This routine checks that the sqlite3.nVdbeActive count variable 2993 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2994 ** currently active. An assertion fails if the two counts do not match. 2995 ** This is an internal self-check only - it is not an essential processing 2996 ** step. 2997 ** 2998 ** This is a no-op if NDEBUG is defined. 2999 */ 3000 #ifndef NDEBUG 3001 static void checkActiveVdbeCnt(sqlite3 *db){ 3002 Vdbe *p; 3003 int cnt = 0; 3004 int nWrite = 0; 3005 int nRead = 0; 3006 p = db->pVdbe; 3007 while( p ){ 3008 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 3009 cnt++; 3010 if( p->readOnly==0 ) nWrite++; 3011 if( p->bIsReader ) nRead++; 3012 } 3013 p = p->pNext; 3014 } 3015 assert( cnt==db->nVdbeActive ); 3016 assert( nWrite==db->nVdbeWrite ); 3017 assert( nRead==db->nVdbeRead ); 3018 } 3019 #else 3020 #define checkActiveVdbeCnt(x) 3021 #endif 3022 3023 /* 3024 ** If the Vdbe passed as the first argument opened a statement-transaction, 3025 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 3026 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 3027 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 3028 ** statement transaction is committed. 3029 ** 3030 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 3031 ** Otherwise SQLITE_OK. 3032 */ 3033 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 3034 sqlite3 *const db = p->db; 3035 int rc = SQLITE_OK; 3036 int i; 3037 const int iSavepoint = p->iStatement-1; 3038 3039 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 3040 assert( db->nStatement>0 ); 3041 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 3042 3043 for(i=0; i<db->nDb; i++){ 3044 int rc2 = SQLITE_OK; 3045 Btree *pBt = db->aDb[i].pBt; 3046 if( pBt ){ 3047 if( eOp==SAVEPOINT_ROLLBACK ){ 3048 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 3049 } 3050 if( rc2==SQLITE_OK ){ 3051 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 3052 } 3053 if( rc==SQLITE_OK ){ 3054 rc = rc2; 3055 } 3056 } 3057 } 3058 db->nStatement--; 3059 p->iStatement = 0; 3060 3061 if( rc==SQLITE_OK ){ 3062 if( eOp==SAVEPOINT_ROLLBACK ){ 3063 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 3064 } 3065 if( rc==SQLITE_OK ){ 3066 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 3067 } 3068 } 3069 3070 /* If the statement transaction is being rolled back, also restore the 3071 ** database handles deferred constraint counter to the value it had when 3072 ** the statement transaction was opened. */ 3073 if( eOp==SAVEPOINT_ROLLBACK ){ 3074 db->nDeferredCons = p->nStmtDefCons; 3075 db->nDeferredImmCons = p->nStmtDefImmCons; 3076 } 3077 return rc; 3078 } 3079 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 3080 if( p->db->nStatement && p->iStatement ){ 3081 return vdbeCloseStatement(p, eOp); 3082 } 3083 return SQLITE_OK; 3084 } 3085 3086 3087 /* 3088 ** This function is called when a transaction opened by the database 3089 ** handle associated with the VM passed as an argument is about to be 3090 ** committed. If there are outstanding deferred foreign key constraint 3091 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 3092 ** 3093 ** If there are outstanding FK violations and this function returns 3094 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 3095 ** and write an error message to it. Then return SQLITE_ERROR. 3096 */ 3097 #ifndef SQLITE_OMIT_FOREIGN_KEY 3098 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 3099 sqlite3 *db = p->db; 3100 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 3101 || (!deferred && p->nFkConstraint>0) 3102 ){ 3103 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 3104 p->errorAction = OE_Abort; 3105 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 3106 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR; 3107 return SQLITE_CONSTRAINT_FOREIGNKEY; 3108 } 3109 return SQLITE_OK; 3110 } 3111 #endif 3112 3113 /* 3114 ** This routine is called the when a VDBE tries to halt. If the VDBE 3115 ** has made changes and is in autocommit mode, then commit those 3116 ** changes. If a rollback is needed, then do the rollback. 3117 ** 3118 ** This routine is the only way to move the sqlite3eOpenState of a VM from 3119 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to 3120 ** call this on a VM that is in the SQLITE_STATE_HALT state. 3121 ** 3122 ** Return an error code. If the commit could not complete because of 3123 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 3124 ** means the close did not happen and needs to be repeated. 3125 */ 3126 int sqlite3VdbeHalt(Vdbe *p){ 3127 int rc; /* Used to store transient return codes */ 3128 sqlite3 *db = p->db; 3129 3130 /* This function contains the logic that determines if a statement or 3131 ** transaction will be committed or rolled back as a result of the 3132 ** execution of this virtual machine. 3133 ** 3134 ** If any of the following errors occur: 3135 ** 3136 ** SQLITE_NOMEM 3137 ** SQLITE_IOERR 3138 ** SQLITE_FULL 3139 ** SQLITE_INTERRUPT 3140 ** 3141 ** Then the internal cache might have been left in an inconsistent 3142 ** state. We need to rollback the statement transaction, if there is 3143 ** one, or the complete transaction if there is no statement transaction. 3144 */ 3145 3146 assert( p->eVdbeState==VDBE_RUN_STATE ); 3147 if( db->mallocFailed ){ 3148 p->rc = SQLITE_NOMEM_BKPT; 3149 } 3150 closeAllCursors(p); 3151 checkActiveVdbeCnt(db); 3152 3153 /* No commit or rollback needed if the program never started or if the 3154 ** SQL statement does not read or write a database file. */ 3155 if( p->bIsReader ){ 3156 int mrc; /* Primary error code from p->rc */ 3157 int eStatementOp = 0; 3158 int isSpecialError; /* Set to true if a 'special' error */ 3159 3160 /* Lock all btrees used by the statement */ 3161 sqlite3VdbeEnter(p); 3162 3163 /* Check for one of the special errors */ 3164 if( p->rc ){ 3165 mrc = p->rc & 0xff; 3166 isSpecialError = mrc==SQLITE_NOMEM 3167 || mrc==SQLITE_IOERR 3168 || mrc==SQLITE_INTERRUPT 3169 || mrc==SQLITE_FULL; 3170 }else{ 3171 mrc = isSpecialError = 0; 3172 } 3173 if( isSpecialError ){ 3174 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 3175 ** no rollback is necessary. Otherwise, at least a savepoint 3176 ** transaction must be rolled back to restore the database to a 3177 ** consistent state. 3178 ** 3179 ** Even if the statement is read-only, it is important to perform 3180 ** a statement or transaction rollback operation. If the error 3181 ** occurred while writing to the journal, sub-journal or database 3182 ** file as part of an effort to free up cache space (see function 3183 ** pagerStress() in pager.c), the rollback is required to restore 3184 ** the pager to a consistent state. 3185 */ 3186 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 3187 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 3188 eStatementOp = SAVEPOINT_ROLLBACK; 3189 }else{ 3190 /* We are forced to roll back the active transaction. Before doing 3191 ** so, abort any other statements this handle currently has active. 3192 */ 3193 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3194 sqlite3CloseSavepoints(db); 3195 db->autoCommit = 1; 3196 p->nChange = 0; 3197 } 3198 } 3199 } 3200 3201 /* Check for immediate foreign key violations. */ 3202 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3203 sqlite3VdbeCheckFk(p, 0); 3204 } 3205 3206 /* If the auto-commit flag is set and this is the only active writer 3207 ** VM, then we do either a commit or rollback of the current transaction. 3208 ** 3209 ** Note: This block also runs if one of the special errors handled 3210 ** above has occurred. 3211 */ 3212 if( !sqlite3VtabInSync(db) 3213 && db->autoCommit 3214 && db->nVdbeWrite==(p->readOnly==0) 3215 ){ 3216 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3217 rc = sqlite3VdbeCheckFk(p, 1); 3218 if( rc!=SQLITE_OK ){ 3219 if( NEVER(p->readOnly) ){ 3220 sqlite3VdbeLeave(p); 3221 return SQLITE_ERROR; 3222 } 3223 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 3224 }else if( db->flags & SQLITE_CorruptRdOnly ){ 3225 rc = SQLITE_CORRUPT; 3226 db->flags &= ~SQLITE_CorruptRdOnly; 3227 }else{ 3228 /* The auto-commit flag is true, the vdbe program was successful 3229 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 3230 ** key constraints to hold up the transaction. This means a commit 3231 ** is required. */ 3232 rc = vdbeCommit(db, p); 3233 } 3234 if( rc==SQLITE_BUSY && p->readOnly ){ 3235 sqlite3VdbeLeave(p); 3236 return SQLITE_BUSY; 3237 }else if( rc!=SQLITE_OK ){ 3238 p->rc = rc; 3239 sqlite3RollbackAll(db, SQLITE_OK); 3240 p->nChange = 0; 3241 }else{ 3242 db->nDeferredCons = 0; 3243 db->nDeferredImmCons = 0; 3244 db->flags &= ~(u64)SQLITE_DeferFKs; 3245 sqlite3CommitInternalChanges(db); 3246 } 3247 }else{ 3248 sqlite3RollbackAll(db, SQLITE_OK); 3249 p->nChange = 0; 3250 } 3251 db->nStatement = 0; 3252 }else if( eStatementOp==0 ){ 3253 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 3254 eStatementOp = SAVEPOINT_RELEASE; 3255 }else if( p->errorAction==OE_Abort ){ 3256 eStatementOp = SAVEPOINT_ROLLBACK; 3257 }else{ 3258 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3259 sqlite3CloseSavepoints(db); 3260 db->autoCommit = 1; 3261 p->nChange = 0; 3262 } 3263 } 3264 3265 /* If eStatementOp is non-zero, then a statement transaction needs to 3266 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 3267 ** do so. If this operation returns an error, and the current statement 3268 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 3269 ** current statement error code. 3270 */ 3271 if( eStatementOp ){ 3272 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 3273 if( rc ){ 3274 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 3275 p->rc = rc; 3276 sqlite3DbFree(db, p->zErrMsg); 3277 p->zErrMsg = 0; 3278 } 3279 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3280 sqlite3CloseSavepoints(db); 3281 db->autoCommit = 1; 3282 p->nChange = 0; 3283 } 3284 } 3285 3286 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 3287 ** has been rolled back, update the database connection change-counter. 3288 */ 3289 if( p->changeCntOn ){ 3290 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 3291 sqlite3VdbeSetChanges(db, p->nChange); 3292 }else{ 3293 sqlite3VdbeSetChanges(db, 0); 3294 } 3295 p->nChange = 0; 3296 } 3297 3298 /* Release the locks */ 3299 sqlite3VdbeLeave(p); 3300 } 3301 3302 /* We have successfully halted and closed the VM. Record this fact. */ 3303 db->nVdbeActive--; 3304 if( !p->readOnly ) db->nVdbeWrite--; 3305 if( p->bIsReader ) db->nVdbeRead--; 3306 assert( db->nVdbeActive>=db->nVdbeRead ); 3307 assert( db->nVdbeRead>=db->nVdbeWrite ); 3308 assert( db->nVdbeWrite>=0 ); 3309 p->eVdbeState = VDBE_HALT_STATE; 3310 checkActiveVdbeCnt(db); 3311 if( db->mallocFailed ){ 3312 p->rc = SQLITE_NOMEM_BKPT; 3313 } 3314 3315 /* If the auto-commit flag is set to true, then any locks that were held 3316 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 3317 ** to invoke any required unlock-notify callbacks. 3318 */ 3319 if( db->autoCommit ){ 3320 sqlite3ConnectionUnlocked(db); 3321 } 3322 3323 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 3324 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 3325 } 3326 3327 3328 /* 3329 ** Each VDBE holds the result of the most recent sqlite3_step() call 3330 ** in p->rc. This routine sets that result back to SQLITE_OK. 3331 */ 3332 void sqlite3VdbeResetStepResult(Vdbe *p){ 3333 p->rc = SQLITE_OK; 3334 } 3335 3336 /* 3337 ** Copy the error code and error message belonging to the VDBE passed 3338 ** as the first argument to its database handle (so that they will be 3339 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 3340 ** 3341 ** This function does not clear the VDBE error code or message, just 3342 ** copies them to the database handle. 3343 */ 3344 int sqlite3VdbeTransferError(Vdbe *p){ 3345 sqlite3 *db = p->db; 3346 int rc = p->rc; 3347 if( p->zErrMsg ){ 3348 db->bBenignMalloc++; 3349 sqlite3BeginBenignMalloc(); 3350 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 3351 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 3352 sqlite3EndBenignMalloc(); 3353 db->bBenignMalloc--; 3354 }else if( db->pErr ){ 3355 sqlite3ValueSetNull(db->pErr); 3356 } 3357 db->errCode = rc; 3358 db->errByteOffset = -1; 3359 return rc; 3360 } 3361 3362 #ifdef SQLITE_ENABLE_SQLLOG 3363 /* 3364 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 3365 ** invoke it. 3366 */ 3367 static void vdbeInvokeSqllog(Vdbe *v){ 3368 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 3369 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 3370 assert( v->db->init.busy==0 ); 3371 if( zExpanded ){ 3372 sqlite3GlobalConfig.xSqllog( 3373 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 3374 ); 3375 sqlite3DbFree(v->db, zExpanded); 3376 } 3377 } 3378 } 3379 #else 3380 # define vdbeInvokeSqllog(x) 3381 #endif 3382 3383 /* 3384 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 3385 ** Write any error messages into *pzErrMsg. Return the result code. 3386 ** 3387 ** After this routine is run, the VDBE should be ready to be executed 3388 ** again. 3389 ** 3390 ** To look at it another way, this routine resets the state of the 3391 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to 3392 ** VDBE_READY_STATE. 3393 */ 3394 int sqlite3VdbeReset(Vdbe *p){ 3395 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 3396 int i; 3397 #endif 3398 3399 sqlite3 *db; 3400 db = p->db; 3401 3402 /* If the VM did not run to completion or if it encountered an 3403 ** error, then it might not have been halted properly. So halt 3404 ** it now. 3405 */ 3406 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); 3407 3408 /* If the VDBE has been run even partially, then transfer the error code 3409 ** and error message from the VDBE into the main database structure. But 3410 ** if the VDBE has just been set to run but has not actually executed any 3411 ** instructions yet, leave the main database error information unchanged. 3412 */ 3413 if( p->pc>=0 ){ 3414 vdbeInvokeSqllog(p); 3415 if( db->pErr || p->zErrMsg ){ 3416 sqlite3VdbeTransferError(p); 3417 }else{ 3418 db->errCode = p->rc; 3419 } 3420 } 3421 3422 /* Reset register contents and reclaim error message memory. 3423 */ 3424 #ifdef SQLITE_DEBUG 3425 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 3426 ** Vdbe.aMem[] arrays have already been cleaned up. */ 3427 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 3428 if( p->aMem ){ 3429 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 3430 } 3431 #endif 3432 if( p->zErrMsg ){ 3433 sqlite3DbFree(db, p->zErrMsg); 3434 p->zErrMsg = 0; 3435 } 3436 p->pResultSet = 0; 3437 #ifdef SQLITE_DEBUG 3438 p->nWrite = 0; 3439 #endif 3440 3441 /* Save profiling information from this VDBE run. 3442 */ 3443 #ifdef VDBE_PROFILE 3444 { 3445 FILE *out = fopen("vdbe_profile.out", "a"); 3446 if( out ){ 3447 fprintf(out, "---- "); 3448 for(i=0; i<p->nOp; i++){ 3449 fprintf(out, "%02x", p->aOp[i].opcode); 3450 } 3451 fprintf(out, "\n"); 3452 if( p->zSql ){ 3453 char c, pc = 0; 3454 fprintf(out, "-- "); 3455 for(i=0; (c = p->zSql[i])!=0; i++){ 3456 if( pc=='\n' ) fprintf(out, "-- "); 3457 putc(c, out); 3458 pc = c; 3459 } 3460 if( pc!='\n' ) fprintf(out, "\n"); 3461 } 3462 for(i=0; i<p->nOp; i++){ 3463 char zHdr[100]; 3464 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 3465 p->aOp[i].cnt, 3466 p->aOp[i].cycles, 3467 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 3468 ); 3469 fprintf(out, "%s", zHdr); 3470 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 3471 } 3472 fclose(out); 3473 } 3474 } 3475 #endif 3476 return p->rc & db->errMask; 3477 } 3478 3479 /* 3480 ** Clean up and delete a VDBE after execution. Return an integer which is 3481 ** the result code. Write any error message text into *pzErrMsg. 3482 */ 3483 int sqlite3VdbeFinalize(Vdbe *p){ 3484 int rc = SQLITE_OK; 3485 assert( VDBE_RUN_STATE>VDBE_READY_STATE ); 3486 assert( VDBE_HALT_STATE>VDBE_READY_STATE ); 3487 assert( VDBE_INIT_STATE<VDBE_READY_STATE ); 3488 if( p->eVdbeState>=VDBE_READY_STATE ){ 3489 rc = sqlite3VdbeReset(p); 3490 assert( (rc & p->db->errMask)==rc ); 3491 } 3492 sqlite3VdbeDelete(p); 3493 return rc; 3494 } 3495 3496 /* 3497 ** If parameter iOp is less than zero, then invoke the destructor for 3498 ** all auxiliary data pointers currently cached by the VM passed as 3499 ** the first argument. 3500 ** 3501 ** Or, if iOp is greater than or equal to zero, then the destructor is 3502 ** only invoked for those auxiliary data pointers created by the user 3503 ** function invoked by the OP_Function opcode at instruction iOp of 3504 ** VM pVdbe, and only then if: 3505 ** 3506 ** * the associated function parameter is the 32nd or later (counting 3507 ** from left to right), or 3508 ** 3509 ** * the corresponding bit in argument mask is clear (where the first 3510 ** function parameter corresponds to bit 0 etc.). 3511 */ 3512 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 3513 while( *pp ){ 3514 AuxData *pAux = *pp; 3515 if( (iOp<0) 3516 || (pAux->iAuxOp==iOp 3517 && pAux->iAuxArg>=0 3518 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 3519 ){ 3520 testcase( pAux->iAuxArg==31 ); 3521 if( pAux->xDeleteAux ){ 3522 pAux->xDeleteAux(pAux->pAux); 3523 } 3524 *pp = pAux->pNextAux; 3525 sqlite3DbFree(db, pAux); 3526 }else{ 3527 pp= &pAux->pNextAux; 3528 } 3529 } 3530 } 3531 3532 /* 3533 ** Free all memory associated with the Vdbe passed as the second argument, 3534 ** except for object itself, which is preserved. 3535 ** 3536 ** The difference between this function and sqlite3VdbeDelete() is that 3537 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 3538 ** the database connection and frees the object itself. 3539 */ 3540 static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 3541 SubProgram *pSub, *pNext; 3542 assert( p->db==0 || p->db==db ); 3543 if( p->aColName ){ 3544 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 3545 sqlite3DbFreeNN(db, p->aColName); 3546 } 3547 for(pSub=p->pProgram; pSub; pSub=pNext){ 3548 pNext = pSub->pNext; 3549 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 3550 sqlite3DbFree(db, pSub); 3551 } 3552 if( p->eVdbeState!=VDBE_INIT_STATE ){ 3553 releaseMemArray(p->aVar, p->nVar); 3554 if( p->pVList ) sqlite3DbFreeNN(db, p->pVList); 3555 if( p->pFree ) sqlite3DbFreeNN(db, p->pFree); 3556 } 3557 vdbeFreeOpArray(db, p->aOp, p->nOp); 3558 sqlite3DbFree(db, p->zSql); 3559 #ifdef SQLITE_ENABLE_NORMALIZE 3560 sqlite3DbFree(db, p->zNormSql); 3561 { 3562 DblquoteStr *pThis, *pNext; 3563 for(pThis=p->pDblStr; pThis; pThis=pNext){ 3564 pNext = pThis->pNextStr; 3565 sqlite3DbFree(db, pThis); 3566 } 3567 } 3568 #endif 3569 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3570 { 3571 int i; 3572 for(i=0; i<p->nScan; i++){ 3573 sqlite3DbFree(db, p->aScan[i].zName); 3574 } 3575 sqlite3DbFree(db, p->aScan); 3576 } 3577 #endif 3578 } 3579 3580 /* 3581 ** Delete an entire VDBE. 3582 */ 3583 void sqlite3VdbeDelete(Vdbe *p){ 3584 sqlite3 *db; 3585 3586 assert( p!=0 ); 3587 db = p->db; 3588 assert( sqlite3_mutex_held(db->mutex) ); 3589 sqlite3VdbeClearObject(db, p); 3590 if( db->pnBytesFreed==0 ){ 3591 if( p->pPrev ){ 3592 p->pPrev->pNext = p->pNext; 3593 }else{ 3594 assert( db->pVdbe==p ); 3595 db->pVdbe = p->pNext; 3596 } 3597 if( p->pNext ){ 3598 p->pNext->pPrev = p->pPrev; 3599 } 3600 } 3601 sqlite3DbFreeNN(db, p); 3602 } 3603 3604 /* 3605 ** The cursor "p" has a pending seek operation that has not yet been 3606 ** carried out. Seek the cursor now. If an error occurs, return 3607 ** the appropriate error code. 3608 */ 3609 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){ 3610 int res, rc; 3611 #ifdef SQLITE_TEST 3612 extern int sqlite3_search_count; 3613 #endif 3614 assert( p->deferredMoveto ); 3615 assert( p->isTable ); 3616 assert( p->eCurType==CURTYPE_BTREE ); 3617 rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res); 3618 if( rc ) return rc; 3619 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3620 #ifdef SQLITE_TEST 3621 sqlite3_search_count++; 3622 #endif 3623 p->deferredMoveto = 0; 3624 p->cacheStatus = CACHE_STALE; 3625 return SQLITE_OK; 3626 } 3627 3628 /* 3629 ** Something has moved cursor "p" out of place. Maybe the row it was 3630 ** pointed to was deleted out from under it. Or maybe the btree was 3631 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3632 ** is supposed to be pointing. If the row was deleted out from under the 3633 ** cursor, set the cursor to point to a NULL row. 3634 */ 3635 int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){ 3636 int isDifferentRow, rc; 3637 assert( p->eCurType==CURTYPE_BTREE ); 3638 assert( p->uc.pCursor!=0 ); 3639 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3640 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3641 p->cacheStatus = CACHE_STALE; 3642 if( isDifferentRow ) p->nullRow = 1; 3643 return rc; 3644 } 3645 3646 /* 3647 ** Check to ensure that the cursor is valid. Restore the cursor 3648 ** if need be. Return any I/O error from the restore operation. 3649 */ 3650 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3651 assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) ); 3652 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3653 return sqlite3VdbeHandleMovedCursor(p); 3654 } 3655 return SQLITE_OK; 3656 } 3657 3658 /* 3659 ** The following functions: 3660 ** 3661 ** sqlite3VdbeSerialType() 3662 ** sqlite3VdbeSerialTypeLen() 3663 ** sqlite3VdbeSerialLen() 3664 ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02 3665 ** sqlite3VdbeSerialGet() 3666 ** 3667 ** encapsulate the code that serializes values for storage in SQLite 3668 ** data and index records. Each serialized value consists of a 3669 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3670 ** integer, stored as a varint. 3671 ** 3672 ** In an SQLite index record, the serial type is stored directly before 3673 ** the blob of data that it corresponds to. In a table record, all serial 3674 ** types are stored at the start of the record, and the blobs of data at 3675 ** the end. Hence these functions allow the caller to handle the 3676 ** serial-type and data blob separately. 3677 ** 3678 ** The following table describes the various storage classes for data: 3679 ** 3680 ** serial type bytes of data type 3681 ** -------------- --------------- --------------- 3682 ** 0 0 NULL 3683 ** 1 1 signed integer 3684 ** 2 2 signed integer 3685 ** 3 3 signed integer 3686 ** 4 4 signed integer 3687 ** 5 6 signed integer 3688 ** 6 8 signed integer 3689 ** 7 8 IEEE float 3690 ** 8 0 Integer constant 0 3691 ** 9 0 Integer constant 1 3692 ** 10,11 reserved for expansion 3693 ** N>=12 and even (N-12)/2 BLOB 3694 ** N>=13 and odd (N-13)/2 text 3695 ** 3696 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3697 ** of SQLite will not understand those serial types. 3698 */ 3699 3700 #if 0 /* Inlined into the OP_MakeRecord opcode */ 3701 /* 3702 ** Return the serial-type for the value stored in pMem. 3703 ** 3704 ** This routine might convert a large MEM_IntReal value into MEM_Real. 3705 ** 3706 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord 3707 ** opcode in the byte-code engine. But by moving this routine in-line, we 3708 ** can omit some redundant tests and make that opcode a lot faster. So 3709 ** this routine is now only used by the STAT3 logic and STAT3 support has 3710 ** ended. The code is kept here for historical reference only. 3711 */ 3712 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3713 int flags = pMem->flags; 3714 u32 n; 3715 3716 assert( pLen!=0 ); 3717 if( flags&MEM_Null ){ 3718 *pLen = 0; 3719 return 0; 3720 } 3721 if( flags&(MEM_Int|MEM_IntReal) ){ 3722 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3723 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3724 i64 i = pMem->u.i; 3725 u64 u; 3726 testcase( flags & MEM_Int ); 3727 testcase( flags & MEM_IntReal ); 3728 if( i<0 ){ 3729 u = ~i; 3730 }else{ 3731 u = i; 3732 } 3733 if( u<=127 ){ 3734 if( (i&1)==i && file_format>=4 ){ 3735 *pLen = 0; 3736 return 8+(u32)u; 3737 }else{ 3738 *pLen = 1; 3739 return 1; 3740 } 3741 } 3742 if( u<=32767 ){ *pLen = 2; return 2; } 3743 if( u<=8388607 ){ *pLen = 3; return 3; } 3744 if( u<=2147483647 ){ *pLen = 4; return 4; } 3745 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3746 *pLen = 8; 3747 if( flags&MEM_IntReal ){ 3748 /* If the value is IntReal and is going to take up 8 bytes to store 3749 ** as an integer, then we might as well make it an 8-byte floating 3750 ** point value */ 3751 pMem->u.r = (double)pMem->u.i; 3752 pMem->flags &= ~MEM_IntReal; 3753 pMem->flags |= MEM_Real; 3754 return 7; 3755 } 3756 return 6; 3757 } 3758 if( flags&MEM_Real ){ 3759 *pLen = 8; 3760 return 7; 3761 } 3762 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3763 assert( pMem->n>=0 ); 3764 n = (u32)pMem->n; 3765 if( flags & MEM_Zero ){ 3766 n += pMem->u.nZero; 3767 } 3768 *pLen = n; 3769 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3770 } 3771 #endif /* inlined into OP_MakeRecord */ 3772 3773 /* 3774 ** The sizes for serial types less than 128 3775 */ 3776 const u8 sqlite3SmallTypeSizes[128] = { 3777 /* 0 1 2 3 4 5 6 7 8 9 */ 3778 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3779 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3780 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3781 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3782 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3783 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3784 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3785 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3786 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3787 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3788 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3789 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3790 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3791 }; 3792 3793 /* 3794 ** Return the length of the data corresponding to the supplied serial-type. 3795 */ 3796 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3797 if( serial_type>=128 ){ 3798 return (serial_type-12)/2; 3799 }else{ 3800 assert( serial_type<12 3801 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3802 return sqlite3SmallTypeSizes[serial_type]; 3803 } 3804 } 3805 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3806 assert( serial_type<128 ); 3807 return sqlite3SmallTypeSizes[serial_type]; 3808 } 3809 3810 /* 3811 ** If we are on an architecture with mixed-endian floating 3812 ** points (ex: ARM7) then swap the lower 4 bytes with the 3813 ** upper 4 bytes. Return the result. 3814 ** 3815 ** For most architectures, this is a no-op. 3816 ** 3817 ** (later): It is reported to me that the mixed-endian problem 3818 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3819 ** that early versions of GCC stored the two words of a 64-bit 3820 ** float in the wrong order. And that error has been propagated 3821 ** ever since. The blame is not necessarily with GCC, though. 3822 ** GCC might have just copying the problem from a prior compiler. 3823 ** I am also told that newer versions of GCC that follow a different 3824 ** ABI get the byte order right. 3825 ** 3826 ** Developers using SQLite on an ARM7 should compile and run their 3827 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3828 ** enabled, some asserts below will ensure that the byte order of 3829 ** floating point values is correct. 3830 ** 3831 ** (2007-08-30) Frank van Vugt has studied this problem closely 3832 ** and has send his findings to the SQLite developers. Frank 3833 ** writes that some Linux kernels offer floating point hardware 3834 ** emulation that uses only 32-bit mantissas instead of a full 3835 ** 48-bits as required by the IEEE standard. (This is the 3836 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3837 ** byte swapping becomes very complicated. To avoid problems, 3838 ** the necessary byte swapping is carried out using a 64-bit integer 3839 ** rather than a 64-bit float. Frank assures us that the code here 3840 ** works for him. We, the developers, have no way to independently 3841 ** verify this, but Frank seems to know what he is talking about 3842 ** so we trust him. 3843 */ 3844 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3845 u64 sqlite3FloatSwap(u64 in){ 3846 union { 3847 u64 r; 3848 u32 i[2]; 3849 } u; 3850 u32 t; 3851 3852 u.r = in; 3853 t = u.i[0]; 3854 u.i[0] = u.i[1]; 3855 u.i[1] = t; 3856 return u.r; 3857 } 3858 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */ 3859 3860 3861 /* Input "x" is a sequence of unsigned characters that represent a 3862 ** big-endian integer. Return the equivalent native integer 3863 */ 3864 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3865 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3866 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3867 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3868 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3869 3870 /* 3871 ** Deserialize the data blob pointed to by buf as serial type serial_type 3872 ** and store the result in pMem. 3873 ** 3874 ** This function is implemented as two separate routines for performance. 3875 ** The few cases that require local variables are broken out into a separate 3876 ** routine so that in most cases the overhead of moving the stack pointer 3877 ** is avoided. 3878 */ 3879 static void serialGet( 3880 const unsigned char *buf, /* Buffer to deserialize from */ 3881 u32 serial_type, /* Serial type to deserialize */ 3882 Mem *pMem /* Memory cell to write value into */ 3883 ){ 3884 u64 x = FOUR_BYTE_UINT(buf); 3885 u32 y = FOUR_BYTE_UINT(buf+4); 3886 x = (x<<32) + y; 3887 if( serial_type==6 ){ 3888 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3889 ** twos-complement integer. */ 3890 pMem->u.i = *(i64*)&x; 3891 pMem->flags = MEM_Int; 3892 testcase( pMem->u.i<0 ); 3893 }else{ 3894 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3895 ** floating point number. */ 3896 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3897 /* Verify that integers and floating point values use the same 3898 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3899 ** defined that 64-bit floating point values really are mixed 3900 ** endian. 3901 */ 3902 static const u64 t1 = ((u64)0x3ff00000)<<32; 3903 static const double r1 = 1.0; 3904 u64 t2 = t1; 3905 swapMixedEndianFloat(t2); 3906 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3907 #endif 3908 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3909 swapMixedEndianFloat(x); 3910 memcpy(&pMem->u.r, &x, sizeof(x)); 3911 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real; 3912 } 3913 } 3914 void sqlite3VdbeSerialGet( 3915 const unsigned char *buf, /* Buffer to deserialize from */ 3916 u32 serial_type, /* Serial type to deserialize */ 3917 Mem *pMem /* Memory cell to write value into */ 3918 ){ 3919 switch( serial_type ){ 3920 case 10: { /* Internal use only: NULL with virtual table 3921 ** UPDATE no-change flag set */ 3922 pMem->flags = MEM_Null|MEM_Zero; 3923 pMem->n = 0; 3924 pMem->u.nZero = 0; 3925 return; 3926 } 3927 case 11: /* Reserved for future use */ 3928 case 0: { /* Null */ 3929 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3930 pMem->flags = MEM_Null; 3931 return; 3932 } 3933 case 1: { 3934 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3935 ** integer. */ 3936 pMem->u.i = ONE_BYTE_INT(buf); 3937 pMem->flags = MEM_Int; 3938 testcase( pMem->u.i<0 ); 3939 return; 3940 } 3941 case 2: { /* 2-byte signed integer */ 3942 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3943 ** twos-complement integer. */ 3944 pMem->u.i = TWO_BYTE_INT(buf); 3945 pMem->flags = MEM_Int; 3946 testcase( pMem->u.i<0 ); 3947 return; 3948 } 3949 case 3: { /* 3-byte signed integer */ 3950 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3951 ** twos-complement integer. */ 3952 pMem->u.i = THREE_BYTE_INT(buf); 3953 pMem->flags = MEM_Int; 3954 testcase( pMem->u.i<0 ); 3955 return; 3956 } 3957 case 4: { /* 4-byte signed integer */ 3958 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3959 ** twos-complement integer. */ 3960 pMem->u.i = FOUR_BYTE_INT(buf); 3961 #ifdef __HP_cc 3962 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3963 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3964 #endif 3965 pMem->flags = MEM_Int; 3966 testcase( pMem->u.i<0 ); 3967 return; 3968 } 3969 case 5: { /* 6-byte signed integer */ 3970 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3971 ** twos-complement integer. */ 3972 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3973 pMem->flags = MEM_Int; 3974 testcase( pMem->u.i<0 ); 3975 return; 3976 } 3977 case 6: /* 8-byte signed integer */ 3978 case 7: { /* IEEE floating point */ 3979 /* These use local variables, so do them in a separate routine 3980 ** to avoid having to move the frame pointer in the common case */ 3981 serialGet(buf,serial_type,pMem); 3982 return; 3983 } 3984 case 8: /* Integer 0 */ 3985 case 9: { /* Integer 1 */ 3986 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3987 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3988 pMem->u.i = serial_type-8; 3989 pMem->flags = MEM_Int; 3990 return; 3991 } 3992 default: { 3993 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3994 ** length. 3995 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3996 ** (N-13)/2 bytes in length. */ 3997 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3998 pMem->z = (char *)buf; 3999 pMem->n = (serial_type-12)/2; 4000 pMem->flags = aFlag[serial_type&1]; 4001 return; 4002 } 4003 } 4004 return; 4005 } 4006 /* 4007 ** This routine is used to allocate sufficient space for an UnpackedRecord 4008 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 4009 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 4010 ** 4011 ** The space is either allocated using sqlite3DbMallocRaw() or from within 4012 ** the unaligned buffer passed via the second and third arguments (presumably 4013 ** stack space). If the former, then *ppFree is set to a pointer that should 4014 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 4015 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 4016 ** before returning. 4017 ** 4018 ** If an OOM error occurs, NULL is returned. 4019 */ 4020 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 4021 KeyInfo *pKeyInfo /* Description of the record */ 4022 ){ 4023 UnpackedRecord *p; /* Unpacked record to return */ 4024 int nByte; /* Number of bytes required for *p */ 4025 nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 4026 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 4027 if( !p ) return 0; 4028 p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))]; 4029 assert( pKeyInfo->aSortFlags!=0 ); 4030 p->pKeyInfo = pKeyInfo; 4031 p->nField = pKeyInfo->nKeyField + 1; 4032 return p; 4033 } 4034 4035 /* 4036 ** Given the nKey-byte encoding of a record in pKey[], populate the 4037 ** UnpackedRecord structure indicated by the fourth argument with the 4038 ** contents of the decoded record. 4039 */ 4040 void sqlite3VdbeRecordUnpack( 4041 KeyInfo *pKeyInfo, /* Information about the record format */ 4042 int nKey, /* Size of the binary record */ 4043 const void *pKey, /* The binary record */ 4044 UnpackedRecord *p /* Populate this structure before returning. */ 4045 ){ 4046 const unsigned char *aKey = (const unsigned char *)pKey; 4047 u32 d; 4048 u32 idx; /* Offset in aKey[] to read from */ 4049 u16 u; /* Unsigned loop counter */ 4050 u32 szHdr; 4051 Mem *pMem = p->aMem; 4052 4053 p->default_rc = 0; 4054 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 4055 idx = getVarint32(aKey, szHdr); 4056 d = szHdr; 4057 u = 0; 4058 while( idx<szHdr && d<=(u32)nKey ){ 4059 u32 serial_type; 4060 4061 idx += getVarint32(&aKey[idx], serial_type); 4062 pMem->enc = pKeyInfo->enc; 4063 pMem->db = pKeyInfo->db; 4064 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 4065 pMem->szMalloc = 0; 4066 pMem->z = 0; 4067 sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 4068 d += sqlite3VdbeSerialTypeLen(serial_type); 4069 pMem++; 4070 if( (++u)>=p->nField ) break; 4071 } 4072 if( d>(u32)nKey && u ){ 4073 assert( CORRUPT_DB ); 4074 /* In a corrupt record entry, the last pMem might have been set up using 4075 ** uninitialized memory. Overwrite its value with NULL, to prevent 4076 ** warnings from MSAN. */ 4077 sqlite3VdbeMemSetNull(pMem-1); 4078 } 4079 assert( u<=pKeyInfo->nKeyField + 1 ); 4080 p->nField = u; 4081 } 4082 4083 #ifdef SQLITE_DEBUG 4084 /* 4085 ** This function compares two index or table record keys in the same way 4086 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 4087 ** this function deserializes and compares values using the 4088 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 4089 ** in assert() statements to ensure that the optimized code in 4090 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 4091 ** 4092 ** Return true if the result of comparison is equivalent to desiredResult. 4093 ** Return false if there is a disagreement. 4094 */ 4095 static int vdbeRecordCompareDebug( 4096 int nKey1, const void *pKey1, /* Left key */ 4097 const UnpackedRecord *pPKey2, /* Right key */ 4098 int desiredResult /* Correct answer */ 4099 ){ 4100 u32 d1; /* Offset into aKey[] of next data element */ 4101 u32 idx1; /* Offset into aKey[] of next header element */ 4102 u32 szHdr1; /* Number of bytes in header */ 4103 int i = 0; 4104 int rc = 0; 4105 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4106 KeyInfo *pKeyInfo; 4107 Mem mem1; 4108 4109 pKeyInfo = pPKey2->pKeyInfo; 4110 if( pKeyInfo->db==0 ) return 1; 4111 mem1.enc = pKeyInfo->enc; 4112 mem1.db = pKeyInfo->db; 4113 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 4114 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4115 4116 /* Compilers may complain that mem1.u.i is potentially uninitialized. 4117 ** We could initialize it, as shown here, to silence those complaints. 4118 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 4119 ** the unnecessary initialization has a measurable negative performance 4120 ** impact, since this routine is a very high runner. And so, we choose 4121 ** to ignore the compiler warnings and leave this variable uninitialized. 4122 */ 4123 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 4124 4125 idx1 = getVarint32(aKey1, szHdr1); 4126 if( szHdr1>98307 ) return SQLITE_CORRUPT; 4127 d1 = szHdr1; 4128 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 4129 assert( pKeyInfo->aSortFlags!=0 ); 4130 assert( pKeyInfo->nKeyField>0 ); 4131 assert( idx1<=szHdr1 || CORRUPT_DB ); 4132 do{ 4133 u32 serial_type1; 4134 4135 /* Read the serial types for the next element in each key. */ 4136 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 4137 4138 /* Verify that there is enough key space remaining to avoid 4139 ** a buffer overread. The "d1+serial_type1+2" subexpression will 4140 ** always be greater than or equal to the amount of required key space. 4141 ** Use that approximation to avoid the more expensive call to 4142 ** sqlite3VdbeSerialTypeLen() in the common case. 4143 */ 4144 if( d1+(u64)serial_type1+2>(u64)nKey1 4145 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 4146 ){ 4147 break; 4148 } 4149 4150 /* Extract the values to be compared. 4151 */ 4152 sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 4153 d1 += sqlite3VdbeSerialTypeLen(serial_type1); 4154 4155 /* Do the comparison 4156 */ 4157 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], 4158 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0); 4159 if( rc!=0 ){ 4160 assert( mem1.szMalloc==0 ); /* See comment below */ 4161 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 4162 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null)) 4163 ){ 4164 rc = -rc; 4165 } 4166 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){ 4167 rc = -rc; /* Invert the result for DESC sort order. */ 4168 } 4169 goto debugCompareEnd; 4170 } 4171 i++; 4172 }while( idx1<szHdr1 && i<pPKey2->nField ); 4173 4174 /* No memory allocation is ever used on mem1. Prove this using 4175 ** the following assert(). If the assert() fails, it indicates a 4176 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 4177 */ 4178 assert( mem1.szMalloc==0 ); 4179 4180 /* rc==0 here means that one of the keys ran out of fields and 4181 ** all the fields up to that point were equal. Return the default_rc 4182 ** value. */ 4183 rc = pPKey2->default_rc; 4184 4185 debugCompareEnd: 4186 if( desiredResult==0 && rc==0 ) return 1; 4187 if( desiredResult<0 && rc<0 ) return 1; 4188 if( desiredResult>0 && rc>0 ) return 1; 4189 if( CORRUPT_DB ) return 1; 4190 if( pKeyInfo->db->mallocFailed ) return 1; 4191 return 0; 4192 } 4193 #endif 4194 4195 #ifdef SQLITE_DEBUG 4196 /* 4197 ** Count the number of fields (a.k.a. columns) in the record given by 4198 ** pKey,nKey. The verify that this count is less than or equal to the 4199 ** limit given by pKeyInfo->nAllField. 4200 ** 4201 ** If this constraint is not satisfied, it means that the high-speed 4202 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 4203 ** not work correctly. If this assert() ever fires, it probably means 4204 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 4205 ** incorrectly. 4206 */ 4207 static void vdbeAssertFieldCountWithinLimits( 4208 int nKey, const void *pKey, /* The record to verify */ 4209 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 4210 ){ 4211 int nField = 0; 4212 u32 szHdr; 4213 u32 idx; 4214 u32 notUsed; 4215 const unsigned char *aKey = (const unsigned char*)pKey; 4216 4217 if( CORRUPT_DB ) return; 4218 idx = getVarint32(aKey, szHdr); 4219 assert( nKey>=0 ); 4220 assert( szHdr<=(u32)nKey ); 4221 while( idx<szHdr ){ 4222 idx += getVarint32(aKey+idx, notUsed); 4223 nField++; 4224 } 4225 assert( nField <= pKeyInfo->nAllField ); 4226 } 4227 #else 4228 # define vdbeAssertFieldCountWithinLimits(A,B,C) 4229 #endif 4230 4231 /* 4232 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 4233 ** using the collation sequence pColl. As usual, return a negative , zero 4234 ** or positive value if *pMem1 is less than, equal to or greater than 4235 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 4236 */ 4237 static int vdbeCompareMemString( 4238 const Mem *pMem1, 4239 const Mem *pMem2, 4240 const CollSeq *pColl, 4241 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 4242 ){ 4243 if( pMem1->enc==pColl->enc ){ 4244 /* The strings are already in the correct encoding. Call the 4245 ** comparison function directly */ 4246 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 4247 }else{ 4248 int rc; 4249 const void *v1, *v2; 4250 Mem c1; 4251 Mem c2; 4252 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 4253 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 4254 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 4255 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 4256 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 4257 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 4258 if( (v1==0 || v2==0) ){ 4259 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 4260 rc = 0; 4261 }else{ 4262 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 4263 } 4264 sqlite3VdbeMemReleaseMalloc(&c1); 4265 sqlite3VdbeMemReleaseMalloc(&c2); 4266 return rc; 4267 } 4268 } 4269 4270 /* 4271 ** The input pBlob is guaranteed to be a Blob that is not marked 4272 ** with MEM_Zero. Return true if it could be a zero-blob. 4273 */ 4274 static int isAllZero(const char *z, int n){ 4275 int i; 4276 for(i=0; i<n; i++){ 4277 if( z[i] ) return 0; 4278 } 4279 return 1; 4280 } 4281 4282 /* 4283 ** Compare two blobs. Return negative, zero, or positive if the first 4284 ** is less than, equal to, or greater than the second, respectively. 4285 ** If one blob is a prefix of the other, then the shorter is the lessor. 4286 */ 4287 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 4288 int c; 4289 int n1 = pB1->n; 4290 int n2 = pB2->n; 4291 4292 /* It is possible to have a Blob value that has some non-zero content 4293 ** followed by zero content. But that only comes up for Blobs formed 4294 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 4295 ** sqlite3MemCompare(). */ 4296 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 4297 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 4298 4299 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 4300 if( pB1->flags & pB2->flags & MEM_Zero ){ 4301 return pB1->u.nZero - pB2->u.nZero; 4302 }else if( pB1->flags & MEM_Zero ){ 4303 if( !isAllZero(pB2->z, pB2->n) ) return -1; 4304 return pB1->u.nZero - n2; 4305 }else{ 4306 if( !isAllZero(pB1->z, pB1->n) ) return +1; 4307 return n1 - pB2->u.nZero; 4308 } 4309 } 4310 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 4311 if( c ) return c; 4312 return n1 - n2; 4313 } 4314 4315 /* 4316 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 4317 ** number. Return negative, zero, or positive if the first (i64) is less than, 4318 ** equal to, or greater than the second (double). 4319 */ 4320 int sqlite3IntFloatCompare(i64 i, double r){ 4321 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 4322 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 4323 testcase( x<r ); 4324 testcase( x>r ); 4325 testcase( x==r ); 4326 if( x<r ) return -1; 4327 if( x>r ) return +1; /*NO_TEST*/ /* work around bugs in gcov */ 4328 return 0; /*NO_TEST*/ /* work around bugs in gcov */ 4329 }else{ 4330 i64 y; 4331 double s; 4332 if( r<-9223372036854775808.0 ) return +1; 4333 if( r>=9223372036854775808.0 ) return -1; 4334 y = (i64)r; 4335 if( i<y ) return -1; 4336 if( i>y ) return +1; 4337 s = (double)i; 4338 if( s<r ) return -1; 4339 if( s>r ) return +1; 4340 return 0; 4341 } 4342 } 4343 4344 /* 4345 ** Compare the values contained by the two memory cells, returning 4346 ** negative, zero or positive if pMem1 is less than, equal to, or greater 4347 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 4348 ** and reals) sorted numerically, followed by text ordered by the collating 4349 ** sequence pColl and finally blob's ordered by memcmp(). 4350 ** 4351 ** Two NULL values are considered equal by this function. 4352 */ 4353 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 4354 int f1, f2; 4355 int combined_flags; 4356 4357 f1 = pMem1->flags; 4358 f2 = pMem2->flags; 4359 combined_flags = f1|f2; 4360 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); 4361 4362 /* If one value is NULL, it is less than the other. If both values 4363 ** are NULL, return 0. 4364 */ 4365 if( combined_flags&MEM_Null ){ 4366 return (f2&MEM_Null) - (f1&MEM_Null); 4367 } 4368 4369 /* At least one of the two values is a number 4370 */ 4371 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ 4372 testcase( combined_flags & MEM_Int ); 4373 testcase( combined_flags & MEM_Real ); 4374 testcase( combined_flags & MEM_IntReal ); 4375 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ 4376 testcase( f1 & f2 & MEM_Int ); 4377 testcase( f1 & f2 & MEM_IntReal ); 4378 if( pMem1->u.i < pMem2->u.i ) return -1; 4379 if( pMem1->u.i > pMem2->u.i ) return +1; 4380 return 0; 4381 } 4382 if( (f1 & f2 & MEM_Real)!=0 ){ 4383 if( pMem1->u.r < pMem2->u.r ) return -1; 4384 if( pMem1->u.r > pMem2->u.r ) return +1; 4385 return 0; 4386 } 4387 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ 4388 testcase( f1 & MEM_Int ); 4389 testcase( f1 & MEM_IntReal ); 4390 if( (f2&MEM_Real)!=0 ){ 4391 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 4392 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4393 if( pMem1->u.i < pMem2->u.i ) return -1; 4394 if( pMem1->u.i > pMem2->u.i ) return +1; 4395 return 0; 4396 }else{ 4397 return -1; 4398 } 4399 } 4400 if( (f1&MEM_Real)!=0 ){ 4401 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4402 testcase( f2 & MEM_Int ); 4403 testcase( f2 & MEM_IntReal ); 4404 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 4405 }else{ 4406 return -1; 4407 } 4408 } 4409 return +1; 4410 } 4411 4412 /* If one value is a string and the other is a blob, the string is less. 4413 ** If both are strings, compare using the collating functions. 4414 */ 4415 if( combined_flags&MEM_Str ){ 4416 if( (f1 & MEM_Str)==0 ){ 4417 return 1; 4418 } 4419 if( (f2 & MEM_Str)==0 ){ 4420 return -1; 4421 } 4422 4423 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 4424 assert( pMem1->enc==SQLITE_UTF8 || 4425 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 4426 4427 /* The collation sequence must be defined at this point, even if 4428 ** the user deletes the collation sequence after the vdbe program is 4429 ** compiled (this was not always the case). 4430 */ 4431 assert( !pColl || pColl->xCmp ); 4432 4433 if( pColl ){ 4434 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 4435 } 4436 /* If a NULL pointer was passed as the collate function, fall through 4437 ** to the blob case and use memcmp(). */ 4438 } 4439 4440 /* Both values must be blobs. Compare using memcmp(). */ 4441 return sqlite3BlobCompare(pMem1, pMem2); 4442 } 4443 4444 4445 /* 4446 ** The first argument passed to this function is a serial-type that 4447 ** corresponds to an integer - all values between 1 and 9 inclusive 4448 ** except 7. The second points to a buffer containing an integer value 4449 ** serialized according to serial_type. This function deserializes 4450 ** and returns the value. 4451 */ 4452 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 4453 u32 y; 4454 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 4455 switch( serial_type ){ 4456 case 0: 4457 case 1: 4458 testcase( aKey[0]&0x80 ); 4459 return ONE_BYTE_INT(aKey); 4460 case 2: 4461 testcase( aKey[0]&0x80 ); 4462 return TWO_BYTE_INT(aKey); 4463 case 3: 4464 testcase( aKey[0]&0x80 ); 4465 return THREE_BYTE_INT(aKey); 4466 case 4: { 4467 testcase( aKey[0]&0x80 ); 4468 y = FOUR_BYTE_UINT(aKey); 4469 return (i64)*(int*)&y; 4470 } 4471 case 5: { 4472 testcase( aKey[0]&0x80 ); 4473 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4474 } 4475 case 6: { 4476 u64 x = FOUR_BYTE_UINT(aKey); 4477 testcase( aKey[0]&0x80 ); 4478 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4479 return (i64)*(i64*)&x; 4480 } 4481 } 4482 4483 return (serial_type - 8); 4484 } 4485 4486 /* 4487 ** This function compares the two table rows or index records 4488 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 4489 ** or positive integer if key1 is less than, equal to or 4490 ** greater than key2. The {nKey1, pKey1} key must be a blob 4491 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 4492 ** key must be a parsed key such as obtained from 4493 ** sqlite3VdbeParseRecord. 4494 ** 4495 ** If argument bSkip is non-zero, it is assumed that the caller has already 4496 ** determined that the first fields of the keys are equal. 4497 ** 4498 ** Key1 and Key2 do not have to contain the same number of fields. If all 4499 ** fields that appear in both keys are equal, then pPKey2->default_rc is 4500 ** returned. 4501 ** 4502 ** If database corruption is discovered, set pPKey2->errCode to 4503 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 4504 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 4505 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 4506 */ 4507 int sqlite3VdbeRecordCompareWithSkip( 4508 int nKey1, const void *pKey1, /* Left key */ 4509 UnpackedRecord *pPKey2, /* Right key */ 4510 int bSkip /* If true, skip the first field */ 4511 ){ 4512 u32 d1; /* Offset into aKey[] of next data element */ 4513 int i; /* Index of next field to compare */ 4514 u32 szHdr1; /* Size of record header in bytes */ 4515 u32 idx1; /* Offset of first type in header */ 4516 int rc = 0; /* Return value */ 4517 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 4518 KeyInfo *pKeyInfo; 4519 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4520 Mem mem1; 4521 4522 /* If bSkip is true, then the caller has already determined that the first 4523 ** two elements in the keys are equal. Fix the various stack variables so 4524 ** that this routine begins comparing at the second field. */ 4525 if( bSkip ){ 4526 u32 s1 = aKey1[1]; 4527 if( s1<0x80 ){ 4528 idx1 = 2; 4529 }else{ 4530 idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1); 4531 } 4532 szHdr1 = aKey1[0]; 4533 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 4534 i = 1; 4535 pRhs++; 4536 }else{ 4537 if( (szHdr1 = aKey1[0])<0x80 ){ 4538 idx1 = 1; 4539 }else{ 4540 idx1 = sqlite3GetVarint32(aKey1, &szHdr1); 4541 } 4542 d1 = szHdr1; 4543 i = 0; 4544 } 4545 if( d1>(unsigned)nKey1 ){ 4546 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4547 return 0; /* Corruption */ 4548 } 4549 4550 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4551 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 4552 || CORRUPT_DB ); 4553 assert( pPKey2->pKeyInfo->aSortFlags!=0 ); 4554 assert( pPKey2->pKeyInfo->nKeyField>0 ); 4555 assert( idx1<=szHdr1 || CORRUPT_DB ); 4556 do{ 4557 u32 serial_type; 4558 4559 /* RHS is an integer */ 4560 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ 4561 testcase( pRhs->flags & MEM_Int ); 4562 testcase( pRhs->flags & MEM_IntReal ); 4563 serial_type = aKey1[idx1]; 4564 testcase( serial_type==12 ); 4565 if( serial_type>=10 ){ 4566 rc = +1; 4567 }else if( serial_type==0 ){ 4568 rc = -1; 4569 }else if( serial_type==7 ){ 4570 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4571 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4572 }else{ 4573 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4574 i64 rhs = pRhs->u.i; 4575 if( lhs<rhs ){ 4576 rc = -1; 4577 }else if( lhs>rhs ){ 4578 rc = +1; 4579 } 4580 } 4581 } 4582 4583 /* RHS is real */ 4584 else if( pRhs->flags & MEM_Real ){ 4585 serial_type = aKey1[idx1]; 4586 if( serial_type>=10 ){ 4587 /* Serial types 12 or greater are strings and blobs (greater than 4588 ** numbers). Types 10 and 11 are currently "reserved for future 4589 ** use", so it doesn't really matter what the results of comparing 4590 ** them to numberic values are. */ 4591 rc = +1; 4592 }else if( serial_type==0 ){ 4593 rc = -1; 4594 }else{ 4595 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4596 if( serial_type==7 ){ 4597 if( mem1.u.r<pRhs->u.r ){ 4598 rc = -1; 4599 }else if( mem1.u.r>pRhs->u.r ){ 4600 rc = +1; 4601 } 4602 }else{ 4603 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4604 } 4605 } 4606 } 4607 4608 /* RHS is a string */ 4609 else if( pRhs->flags & MEM_Str ){ 4610 getVarint32NR(&aKey1[idx1], serial_type); 4611 testcase( serial_type==12 ); 4612 if( serial_type<12 ){ 4613 rc = -1; 4614 }else if( !(serial_type & 0x01) ){ 4615 rc = +1; 4616 }else{ 4617 mem1.n = (serial_type - 12) / 2; 4618 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4619 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4620 if( (d1+mem1.n) > (unsigned)nKey1 4621 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i 4622 ){ 4623 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4624 return 0; /* Corruption */ 4625 }else if( pKeyInfo->aColl[i] ){ 4626 mem1.enc = pKeyInfo->enc; 4627 mem1.db = pKeyInfo->db; 4628 mem1.flags = MEM_Str; 4629 mem1.z = (char*)&aKey1[d1]; 4630 rc = vdbeCompareMemString( 4631 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4632 ); 4633 }else{ 4634 int nCmp = MIN(mem1.n, pRhs->n); 4635 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4636 if( rc==0 ) rc = mem1.n - pRhs->n; 4637 } 4638 } 4639 } 4640 4641 /* RHS is a blob */ 4642 else if( pRhs->flags & MEM_Blob ){ 4643 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4644 getVarint32NR(&aKey1[idx1], serial_type); 4645 testcase( serial_type==12 ); 4646 if( serial_type<12 || (serial_type & 0x01) ){ 4647 rc = -1; 4648 }else{ 4649 int nStr = (serial_type - 12) / 2; 4650 testcase( (d1+nStr)==(unsigned)nKey1 ); 4651 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4652 if( (d1+nStr) > (unsigned)nKey1 ){ 4653 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4654 return 0; /* Corruption */ 4655 }else if( pRhs->flags & MEM_Zero ){ 4656 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4657 rc = 1; 4658 }else{ 4659 rc = nStr - pRhs->u.nZero; 4660 } 4661 }else{ 4662 int nCmp = MIN(nStr, pRhs->n); 4663 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4664 if( rc==0 ) rc = nStr - pRhs->n; 4665 } 4666 } 4667 } 4668 4669 /* RHS is null */ 4670 else{ 4671 serial_type = aKey1[idx1]; 4672 rc = (serial_type!=0); 4673 } 4674 4675 if( rc!=0 ){ 4676 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i]; 4677 if( sortFlags ){ 4678 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0 4679 || ((sortFlags & KEYINFO_ORDER_DESC) 4680 !=(serial_type==0 || (pRhs->flags&MEM_Null))) 4681 ){ 4682 rc = -rc; 4683 } 4684 } 4685 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4686 assert( mem1.szMalloc==0 ); /* See comment below */ 4687 return rc; 4688 } 4689 4690 i++; 4691 if( i==pPKey2->nField ) break; 4692 pRhs++; 4693 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4694 idx1 += sqlite3VarintLen(serial_type); 4695 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 ); 4696 4697 /* No memory allocation is ever used on mem1. Prove this using 4698 ** the following assert(). If the assert() fails, it indicates a 4699 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4700 assert( mem1.szMalloc==0 ); 4701 4702 /* rc==0 here means that one or both of the keys ran out of fields and 4703 ** all the fields up to that point were equal. Return the default_rc 4704 ** value. */ 4705 assert( CORRUPT_DB 4706 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4707 || pPKey2->pKeyInfo->db->mallocFailed 4708 ); 4709 pPKey2->eqSeen = 1; 4710 return pPKey2->default_rc; 4711 } 4712 int sqlite3VdbeRecordCompare( 4713 int nKey1, const void *pKey1, /* Left key */ 4714 UnpackedRecord *pPKey2 /* Right key */ 4715 ){ 4716 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4717 } 4718 4719 4720 /* 4721 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4722 ** that (a) the first field of pPKey2 is an integer, and (b) the 4723 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4724 ** byte (i.e. is less than 128). 4725 ** 4726 ** To avoid concerns about buffer overreads, this routine is only used 4727 ** on schemas where the maximum valid header size is 63 bytes or less. 4728 */ 4729 static int vdbeRecordCompareInt( 4730 int nKey1, const void *pKey1, /* Left key */ 4731 UnpackedRecord *pPKey2 /* Right key */ 4732 ){ 4733 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4734 int serial_type = ((const u8*)pKey1)[1]; 4735 int res; 4736 u32 y; 4737 u64 x; 4738 i64 v; 4739 i64 lhs; 4740 4741 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4742 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4743 switch( serial_type ){ 4744 case 1: { /* 1-byte signed integer */ 4745 lhs = ONE_BYTE_INT(aKey); 4746 testcase( lhs<0 ); 4747 break; 4748 } 4749 case 2: { /* 2-byte signed integer */ 4750 lhs = TWO_BYTE_INT(aKey); 4751 testcase( lhs<0 ); 4752 break; 4753 } 4754 case 3: { /* 3-byte signed integer */ 4755 lhs = THREE_BYTE_INT(aKey); 4756 testcase( lhs<0 ); 4757 break; 4758 } 4759 case 4: { /* 4-byte signed integer */ 4760 y = FOUR_BYTE_UINT(aKey); 4761 lhs = (i64)*(int*)&y; 4762 testcase( lhs<0 ); 4763 break; 4764 } 4765 case 5: { /* 6-byte signed integer */ 4766 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4767 testcase( lhs<0 ); 4768 break; 4769 } 4770 case 6: { /* 8-byte signed integer */ 4771 x = FOUR_BYTE_UINT(aKey); 4772 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4773 lhs = *(i64*)&x; 4774 testcase( lhs<0 ); 4775 break; 4776 } 4777 case 8: 4778 lhs = 0; 4779 break; 4780 case 9: 4781 lhs = 1; 4782 break; 4783 4784 /* This case could be removed without changing the results of running 4785 ** this code. Including it causes gcc to generate a faster switch 4786 ** statement (since the range of switch targets now starts at zero and 4787 ** is contiguous) but does not cause any duplicate code to be generated 4788 ** (as gcc is clever enough to combine the two like cases). Other 4789 ** compilers might be similar. */ 4790 case 0: case 7: 4791 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4792 4793 default: 4794 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4795 } 4796 4797 assert( pPKey2->u.i == pPKey2->aMem[0].u.i ); 4798 v = pPKey2->u.i; 4799 if( v>lhs ){ 4800 res = pPKey2->r1; 4801 }else if( v<lhs ){ 4802 res = pPKey2->r2; 4803 }else if( pPKey2->nField>1 ){ 4804 /* The first fields of the two keys are equal. Compare the trailing 4805 ** fields. */ 4806 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4807 }else{ 4808 /* The first fields of the two keys are equal and there are no trailing 4809 ** fields. Return pPKey2->default_rc in this case. */ 4810 res = pPKey2->default_rc; 4811 pPKey2->eqSeen = 1; 4812 } 4813 4814 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4815 return res; 4816 } 4817 4818 /* 4819 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4820 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4821 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4822 ** at the start of (pKey1/nKey1) fits in a single byte. 4823 */ 4824 static int vdbeRecordCompareString( 4825 int nKey1, const void *pKey1, /* Left key */ 4826 UnpackedRecord *pPKey2 /* Right key */ 4827 ){ 4828 const u8 *aKey1 = (const u8*)pKey1; 4829 int serial_type; 4830 int res; 4831 4832 assert( pPKey2->aMem[0].flags & MEM_Str ); 4833 assert( pPKey2->aMem[0].n == pPKey2->n ); 4834 assert( pPKey2->aMem[0].z == pPKey2->u.z ); 4835 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4836 serial_type = (signed char)(aKey1[1]); 4837 4838 vrcs_restart: 4839 if( serial_type<12 ){ 4840 if( serial_type<0 ){ 4841 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type); 4842 if( serial_type>=12 ) goto vrcs_restart; 4843 assert( CORRUPT_DB ); 4844 } 4845 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4846 }else if( !(serial_type & 0x01) ){ 4847 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4848 }else{ 4849 int nCmp; 4850 int nStr; 4851 int szHdr = aKey1[0]; 4852 4853 nStr = (serial_type-12) / 2; 4854 if( (szHdr + nStr) > nKey1 ){ 4855 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4856 return 0; /* Corruption */ 4857 } 4858 nCmp = MIN( pPKey2->n, nStr ); 4859 res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp); 4860 4861 if( res>0 ){ 4862 res = pPKey2->r2; 4863 }else if( res<0 ){ 4864 res = pPKey2->r1; 4865 }else{ 4866 res = nStr - pPKey2->n; 4867 if( res==0 ){ 4868 if( pPKey2->nField>1 ){ 4869 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4870 }else{ 4871 res = pPKey2->default_rc; 4872 pPKey2->eqSeen = 1; 4873 } 4874 }else if( res>0 ){ 4875 res = pPKey2->r2; 4876 }else{ 4877 res = pPKey2->r1; 4878 } 4879 } 4880 } 4881 4882 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4883 || CORRUPT_DB 4884 || pPKey2->pKeyInfo->db->mallocFailed 4885 ); 4886 return res; 4887 } 4888 4889 /* 4890 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4891 ** suitable for comparing serialized records to the unpacked record passed 4892 ** as the only argument. 4893 */ 4894 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4895 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4896 ** that the size-of-header varint that occurs at the start of each record 4897 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4898 ** also assumes that it is safe to overread a buffer by at least the 4899 ** maximum possible legal header size plus 8 bytes. Because there is 4900 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4901 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4902 ** limit the size of the header to 64 bytes in cases where the first field 4903 ** is an integer. 4904 ** 4905 ** The easiest way to enforce this limit is to consider only records with 4906 ** 13 fields or less. If the first field is an integer, the maximum legal 4907 ** header size is (12*5 + 1 + 1) bytes. */ 4908 if( p->pKeyInfo->nAllField<=13 ){ 4909 int flags = p->aMem[0].flags; 4910 if( p->pKeyInfo->aSortFlags[0] ){ 4911 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){ 4912 return sqlite3VdbeRecordCompare; 4913 } 4914 p->r1 = 1; 4915 p->r2 = -1; 4916 }else{ 4917 p->r1 = -1; 4918 p->r2 = 1; 4919 } 4920 if( (flags & MEM_Int) ){ 4921 p->u.i = p->aMem[0].u.i; 4922 return vdbeRecordCompareInt; 4923 } 4924 testcase( flags & MEM_Real ); 4925 testcase( flags & MEM_Null ); 4926 testcase( flags & MEM_Blob ); 4927 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 4928 && p->pKeyInfo->aColl[0]==0 4929 ){ 4930 assert( flags & MEM_Str ); 4931 p->u.z = p->aMem[0].z; 4932 p->n = p->aMem[0].n; 4933 return vdbeRecordCompareString; 4934 } 4935 } 4936 4937 return sqlite3VdbeRecordCompare; 4938 } 4939 4940 /* 4941 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4942 ** Read the rowid (the last field in the record) and store it in *rowid. 4943 ** Return SQLITE_OK if everything works, or an error code otherwise. 4944 ** 4945 ** pCur might be pointing to text obtained from a corrupt database file. 4946 ** So the content cannot be trusted. Do appropriate checks on the content. 4947 */ 4948 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4949 i64 nCellKey = 0; 4950 int rc; 4951 u32 szHdr; /* Size of the header */ 4952 u32 typeRowid; /* Serial type of the rowid */ 4953 u32 lenRowid; /* Size of the rowid */ 4954 Mem m, v; 4955 4956 /* Get the size of the index entry. Only indices entries of less 4957 ** than 2GiB are support - anything large must be database corruption. 4958 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4959 ** this code can safely assume that nCellKey is 32-bits 4960 */ 4961 assert( sqlite3BtreeCursorIsValid(pCur) ); 4962 nCellKey = sqlite3BtreePayloadSize(pCur); 4963 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4964 4965 /* Read in the complete content of the index entry */ 4966 sqlite3VdbeMemInit(&m, db, 0); 4967 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 4968 if( rc ){ 4969 return rc; 4970 } 4971 4972 /* The index entry must begin with a header size */ 4973 getVarint32NR((u8*)m.z, szHdr); 4974 testcase( szHdr==3 ); 4975 testcase( szHdr==(u32)m.n ); 4976 testcase( szHdr>0x7fffffff ); 4977 assert( m.n>=0 ); 4978 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ 4979 goto idx_rowid_corruption; 4980 } 4981 4982 /* The last field of the index should be an integer - the ROWID. 4983 ** Verify that the last entry really is an integer. */ 4984 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid); 4985 testcase( typeRowid==1 ); 4986 testcase( typeRowid==2 ); 4987 testcase( typeRowid==3 ); 4988 testcase( typeRowid==4 ); 4989 testcase( typeRowid==5 ); 4990 testcase( typeRowid==6 ); 4991 testcase( typeRowid==8 ); 4992 testcase( typeRowid==9 ); 4993 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4994 goto idx_rowid_corruption; 4995 } 4996 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4997 testcase( (u32)m.n==szHdr+lenRowid ); 4998 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4999 goto idx_rowid_corruption; 5000 } 5001 5002 /* Fetch the integer off the end of the index record */ 5003 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 5004 *rowid = v.u.i; 5005 sqlite3VdbeMemReleaseMalloc(&m); 5006 return SQLITE_OK; 5007 5008 /* Jump here if database corruption is detected after m has been 5009 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 5010 idx_rowid_corruption: 5011 testcase( m.szMalloc!=0 ); 5012 sqlite3VdbeMemReleaseMalloc(&m); 5013 return SQLITE_CORRUPT_BKPT; 5014 } 5015 5016 /* 5017 ** Compare the key of the index entry that cursor pC is pointing to against 5018 ** the key string in pUnpacked. Write into *pRes a number 5019 ** that is negative, zero, or positive if pC is less than, equal to, 5020 ** or greater than pUnpacked. Return SQLITE_OK on success. 5021 ** 5022 ** pUnpacked is either created without a rowid or is truncated so that it 5023 ** omits the rowid at the end. The rowid at the end of the index entry 5024 ** is ignored as well. Hence, this routine only compares the prefixes 5025 ** of the keys prior to the final rowid, not the entire key. 5026 */ 5027 int sqlite3VdbeIdxKeyCompare( 5028 sqlite3 *db, /* Database connection */ 5029 VdbeCursor *pC, /* The cursor to compare against */ 5030 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 5031 int *res /* Write the comparison result here */ 5032 ){ 5033 i64 nCellKey = 0; 5034 int rc; 5035 BtCursor *pCur; 5036 Mem m; 5037 5038 assert( pC->eCurType==CURTYPE_BTREE ); 5039 pCur = pC->uc.pCursor; 5040 assert( sqlite3BtreeCursorIsValid(pCur) ); 5041 nCellKey = sqlite3BtreePayloadSize(pCur); 5042 /* nCellKey will always be between 0 and 0xffffffff because of the way 5043 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 5044 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 5045 *res = 0; 5046 return SQLITE_CORRUPT_BKPT; 5047 } 5048 sqlite3VdbeMemInit(&m, db, 0); 5049 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 5050 if( rc ){ 5051 return rc; 5052 } 5053 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); 5054 sqlite3VdbeMemReleaseMalloc(&m); 5055 return SQLITE_OK; 5056 } 5057 5058 /* 5059 ** This routine sets the value to be returned by subsequent calls to 5060 ** sqlite3_changes() on the database handle 'db'. 5061 */ 5062 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){ 5063 assert( sqlite3_mutex_held(db->mutex) ); 5064 db->nChange = nChange; 5065 db->nTotalChange += nChange; 5066 } 5067 5068 /* 5069 ** Set a flag in the vdbe to update the change counter when it is finalised 5070 ** or reset. 5071 */ 5072 void sqlite3VdbeCountChanges(Vdbe *v){ 5073 v->changeCntOn = 1; 5074 } 5075 5076 /* 5077 ** Mark every prepared statement associated with a database connection 5078 ** as expired. 5079 ** 5080 ** An expired statement means that recompilation of the statement is 5081 ** recommend. Statements expire when things happen that make their 5082 ** programs obsolete. Removing user-defined functions or collating 5083 ** sequences, or changing an authorization function are the types of 5084 ** things that make prepared statements obsolete. 5085 ** 5086 ** If iCode is 1, then expiration is advisory. The statement should 5087 ** be reprepared before being restarted, but if it is already running 5088 ** it is allowed to run to completion. 5089 ** 5090 ** Internally, this function just sets the Vdbe.expired flag on all 5091 ** prepared statements. The flag is set to 1 for an immediate expiration 5092 ** and set to 2 for an advisory expiration. 5093 */ 5094 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ 5095 Vdbe *p; 5096 for(p = db->pVdbe; p; p=p->pNext){ 5097 p->expired = iCode+1; 5098 } 5099 } 5100 5101 /* 5102 ** Return the database associated with the Vdbe. 5103 */ 5104 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 5105 return v->db; 5106 } 5107 5108 /* 5109 ** Return the SQLITE_PREPARE flags for a Vdbe. 5110 */ 5111 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 5112 return v->prepFlags; 5113 } 5114 5115 /* 5116 ** Return a pointer to an sqlite3_value structure containing the value bound 5117 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 5118 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 5119 ** constants) to the value before returning it. 5120 ** 5121 ** The returned value must be freed by the caller using sqlite3ValueFree(). 5122 */ 5123 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 5124 assert( iVar>0 ); 5125 if( v ){ 5126 Mem *pMem = &v->aVar[iVar-1]; 5127 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5128 if( 0==(pMem->flags & MEM_Null) ){ 5129 sqlite3_value *pRet = sqlite3ValueNew(v->db); 5130 if( pRet ){ 5131 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 5132 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 5133 } 5134 return pRet; 5135 } 5136 } 5137 return 0; 5138 } 5139 5140 /* 5141 ** Configure SQL variable iVar so that binding a new value to it signals 5142 ** to sqlite3_reoptimize() that re-preparing the statement may result 5143 ** in a better query plan. 5144 */ 5145 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 5146 assert( iVar>0 ); 5147 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5148 if( iVar>=32 ){ 5149 v->expmask |= 0x80000000; 5150 }else{ 5151 v->expmask |= ((u32)1 << (iVar-1)); 5152 } 5153 } 5154 5155 /* 5156 ** Cause a function to throw an error if it was call from OP_PureFunc 5157 ** rather than OP_Function. 5158 ** 5159 ** OP_PureFunc means that the function must be deterministic, and should 5160 ** throw an error if it is given inputs that would make it non-deterministic. 5161 ** This routine is invoked by date/time functions that use non-deterministic 5162 ** features such as 'now'. 5163 */ 5164 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 5165 const VdbeOp *pOp; 5166 #ifdef SQLITE_ENABLE_STAT4 5167 if( pCtx->pVdbe==0 ) return 1; 5168 #endif 5169 pOp = pCtx->pVdbe->aOp + pCtx->iOp; 5170 if( pOp->opcode==OP_PureFunc ){ 5171 const char *zContext; 5172 char *zMsg; 5173 if( pOp->p5 & NC_IsCheck ){ 5174 zContext = "a CHECK constraint"; 5175 }else if( pOp->p5 & NC_GenCol ){ 5176 zContext = "a generated column"; 5177 }else{ 5178 zContext = "an index"; 5179 } 5180 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s", 5181 pCtx->pFunc->zName, zContext); 5182 sqlite3_result_error(pCtx, zMsg, -1); 5183 sqlite3_free(zMsg); 5184 return 0; 5185 } 5186 return 1; 5187 } 5188 5189 #ifndef SQLITE_OMIT_VIRTUALTABLE 5190 /* 5191 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 5192 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 5193 ** in memory obtained from sqlite3DbMalloc). 5194 */ 5195 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 5196 if( pVtab->zErrMsg ){ 5197 sqlite3 *db = p->db; 5198 sqlite3DbFree(db, p->zErrMsg); 5199 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 5200 sqlite3_free(pVtab->zErrMsg); 5201 pVtab->zErrMsg = 0; 5202 } 5203 } 5204 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5205 5206 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5207 5208 /* 5209 ** If the second argument is not NULL, release any allocations associated 5210 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 5211 ** structure itself, using sqlite3DbFree(). 5212 ** 5213 ** This function is used to free UnpackedRecord structures allocated by 5214 ** the vdbeUnpackRecord() function found in vdbeapi.c. 5215 */ 5216 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 5217 if( p ){ 5218 int i; 5219 for(i=0; i<nField; i++){ 5220 Mem *pMem = &p->aMem[i]; 5221 if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem); 5222 } 5223 sqlite3DbFreeNN(db, p); 5224 } 5225 } 5226 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5227 5228 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5229 /* 5230 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 5231 ** then cursor passed as the second argument should point to the row about 5232 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 5233 ** the required value will be read from the row the cursor points to. 5234 */ 5235 void sqlite3VdbePreUpdateHook( 5236 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 5237 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 5238 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 5239 const char *zDb, /* Database name */ 5240 Table *pTab, /* Modified table */ 5241 i64 iKey1, /* Initial key value */ 5242 int iReg, /* Register for new.* record */ 5243 int iBlobWrite 5244 ){ 5245 sqlite3 *db = v->db; 5246 i64 iKey2; 5247 PreUpdate preupdate; 5248 const char *zTbl = pTab->zName; 5249 static const u8 fakeSortOrder = 0; 5250 5251 assert( db->pPreUpdate==0 ); 5252 memset(&preupdate, 0, sizeof(PreUpdate)); 5253 if( HasRowid(pTab)==0 ){ 5254 iKey1 = iKey2 = 0; 5255 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 5256 }else{ 5257 if( op==SQLITE_UPDATE ){ 5258 iKey2 = v->aMem[iReg].u.i; 5259 }else{ 5260 iKey2 = iKey1; 5261 } 5262 } 5263 5264 assert( pCsr!=0 ); 5265 assert( pCsr->eCurType==CURTYPE_BTREE ); 5266 assert( pCsr->nField==pTab->nCol 5267 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 5268 ); 5269 5270 preupdate.v = v; 5271 preupdate.pCsr = pCsr; 5272 preupdate.op = op; 5273 preupdate.iNewReg = iReg; 5274 preupdate.keyinfo.db = db; 5275 preupdate.keyinfo.enc = ENC(db); 5276 preupdate.keyinfo.nKeyField = pTab->nCol; 5277 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder; 5278 preupdate.iKey1 = iKey1; 5279 preupdate.iKey2 = iKey2; 5280 preupdate.pTab = pTab; 5281 preupdate.iBlobWrite = iBlobWrite; 5282 5283 db->pPreUpdate = &preupdate; 5284 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 5285 db->pPreUpdate = 0; 5286 sqlite3DbFree(db, preupdate.aRecord); 5287 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 5288 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 5289 if( preupdate.aNew ){ 5290 int i; 5291 for(i=0; i<pCsr->nField; i++){ 5292 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 5293 } 5294 sqlite3DbFreeNN(db, preupdate.aNew); 5295 } 5296 } 5297 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5298