1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* 19 ** Create a new virtual database engine. 20 */ 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 22 sqlite3 *db = pParse->db; 23 Vdbe *p; 24 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 25 if( p==0 ) return 0; 26 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 27 p->db = db; 28 if( db->pVdbe ){ 29 db->pVdbe->pPrev = p; 30 } 31 p->pNext = db->pVdbe; 32 p->pPrev = 0; 33 db->pVdbe = p; 34 p->magic = VDBE_MAGIC_INIT; 35 p->pParse = pParse; 36 pParse->pVdbe = p; 37 assert( pParse->aLabel==0 ); 38 assert( pParse->nLabel==0 ); 39 assert( pParse->nOpAlloc==0 ); 40 assert( pParse->szOpAlloc==0 ); 41 sqlite3VdbeAddOp2(p, OP_Init, 0, 1); 42 return p; 43 } 44 45 /* 46 ** Change the error string stored in Vdbe.zErrMsg 47 */ 48 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 49 va_list ap; 50 sqlite3DbFree(p->db, p->zErrMsg); 51 va_start(ap, zFormat); 52 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 53 va_end(ap); 54 } 55 56 /* 57 ** Remember the SQL string for a prepared statement. 58 */ 59 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 60 if( p==0 ) return; 61 p->prepFlags = prepFlags; 62 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 63 p->expmask = 0; 64 } 65 assert( p->zSql==0 ); 66 p->zSql = sqlite3DbStrNDup(p->db, z, n); 67 } 68 69 /* 70 ** Swap all content between two VDBE structures. 71 */ 72 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 73 Vdbe tmp, *pTmp; 74 char *zTmp; 75 assert( pA->db==pB->db ); 76 tmp = *pA; 77 *pA = *pB; 78 *pB = tmp; 79 pTmp = pA->pNext; 80 pA->pNext = pB->pNext; 81 pB->pNext = pTmp; 82 pTmp = pA->pPrev; 83 pA->pPrev = pB->pPrev; 84 pB->pPrev = pTmp; 85 zTmp = pA->zSql; 86 pA->zSql = pB->zSql; 87 pB->zSql = zTmp; 88 pB->expmask = pA->expmask; 89 pB->prepFlags = pA->prepFlags; 90 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 91 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 92 } 93 94 /* 95 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 96 ** than its current size. nOp is guaranteed to be less than or equal 97 ** to 1024/sizeof(Op). 98 ** 99 ** If an out-of-memory error occurs while resizing the array, return 100 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain 101 ** unchanged (this is so that any opcodes already allocated can be 102 ** correctly deallocated along with the rest of the Vdbe). 103 */ 104 static int growOpArray(Vdbe *v, int nOp){ 105 VdbeOp *pNew; 106 Parse *p = v->pParse; 107 108 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 109 ** more frequent reallocs and hence provide more opportunities for 110 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 111 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 112 ** by the minimum* amount required until the size reaches 512. Normal 113 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 114 ** size of the op array or add 1KB of space, whichever is smaller. */ 115 #ifdef SQLITE_TEST_REALLOC_STRESS 116 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); 117 #else 118 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 119 UNUSED_PARAMETER(nOp); 120 #endif 121 122 /* Ensure that the size of a VDBE does not grow too large */ 123 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 124 sqlite3OomFault(p->db); 125 return SQLITE_NOMEM; 126 } 127 128 assert( nOp<=(1024/sizeof(Op)) ); 129 assert( nNew>=(p->nOpAlloc+nOp) ); 130 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 131 if( pNew ){ 132 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 133 p->nOpAlloc = p->szOpAlloc/sizeof(Op); 134 v->aOp = pNew; 135 } 136 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 137 } 138 139 #ifdef SQLITE_DEBUG 140 /* This routine is just a convenient place to set a breakpoint that will 141 ** fire after each opcode is inserted and displayed using 142 ** "PRAGMA vdbe_addoptrace=on". 143 */ 144 static void test_addop_breakpoint(void){ 145 static int n = 0; 146 n++; 147 } 148 #endif 149 150 /* 151 ** Add a new instruction to the list of instructions current in the 152 ** VDBE. Return the address of the new instruction. 153 ** 154 ** Parameters: 155 ** 156 ** p Pointer to the VDBE 157 ** 158 ** op The opcode for this instruction 159 ** 160 ** p1, p2, p3 Operands 161 ** 162 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 163 ** the sqlite3VdbeChangeP4() function to change the value of the P4 164 ** operand. 165 */ 166 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 167 assert( p->pParse->nOpAlloc<=p->nOp ); 168 if( growOpArray(p, 1) ) return 1; 169 assert( p->pParse->nOpAlloc>p->nOp ); 170 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 171 } 172 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 173 int i; 174 VdbeOp *pOp; 175 176 i = p->nOp; 177 assert( p->magic==VDBE_MAGIC_INIT ); 178 assert( op>=0 && op<0xff ); 179 if( p->pParse->nOpAlloc<=i ){ 180 return growOp3(p, op, p1, p2, p3); 181 } 182 p->nOp++; 183 pOp = &p->aOp[i]; 184 pOp->opcode = (u8)op; 185 pOp->p5 = 0; 186 pOp->p1 = p1; 187 pOp->p2 = p2; 188 pOp->p3 = p3; 189 pOp->p4.p = 0; 190 pOp->p4type = P4_NOTUSED; 191 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 192 pOp->zComment = 0; 193 #endif 194 #ifdef SQLITE_DEBUG 195 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 196 int jj, kk; 197 Parse *pParse = p->pParse; 198 for(jj=kk=0; jj<pParse->nColCache; jj++){ 199 struct yColCache *x = pParse->aColCache + jj; 200 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); 201 kk++; 202 } 203 if( kk ) printf("\n"); 204 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 205 test_addop_breakpoint(); 206 } 207 #endif 208 #ifdef VDBE_PROFILE 209 pOp->cycles = 0; 210 pOp->cnt = 0; 211 #endif 212 #ifdef SQLITE_VDBE_COVERAGE 213 pOp->iSrcLine = 0; 214 #endif 215 return i; 216 } 217 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 218 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 219 } 220 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 221 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 222 } 223 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 224 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 225 } 226 227 /* Generate code for an unconditional jump to instruction iDest 228 */ 229 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 230 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 231 } 232 233 /* Generate code to cause the string zStr to be loaded into 234 ** register iDest 235 */ 236 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 237 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 238 } 239 240 /* 241 ** Generate code that initializes multiple registers to string or integer 242 ** constants. The registers begin with iDest and increase consecutively. 243 ** One register is initialized for each characgter in zTypes[]. For each 244 ** "s" character in zTypes[], the register is a string if the argument is 245 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 246 ** in zTypes[], the register is initialized to an integer. 247 ** 248 ** If the input string does not end with "X" then an OP_ResultRow instruction 249 ** is generated for the values inserted. 250 */ 251 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 252 va_list ap; 253 int i; 254 char c; 255 va_start(ap, zTypes); 256 for(i=0; (c = zTypes[i])!=0; i++){ 257 if( c=='s' ){ 258 const char *z = va_arg(ap, const char*); 259 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 260 }else if( c=='i' ){ 261 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 262 }else{ 263 goto skip_op_resultrow; 264 } 265 } 266 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 267 skip_op_resultrow: 268 va_end(ap); 269 } 270 271 /* 272 ** Add an opcode that includes the p4 value as a pointer. 273 */ 274 int sqlite3VdbeAddOp4( 275 Vdbe *p, /* Add the opcode to this VM */ 276 int op, /* The new opcode */ 277 int p1, /* The P1 operand */ 278 int p2, /* The P2 operand */ 279 int p3, /* The P3 operand */ 280 const char *zP4, /* The P4 operand */ 281 int p4type /* P4 operand type */ 282 ){ 283 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 284 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 285 return addr; 286 } 287 288 /* 289 ** Add an opcode that includes the p4 value with a P4_INT64 or 290 ** P4_REAL type. 291 */ 292 int sqlite3VdbeAddOp4Dup8( 293 Vdbe *p, /* Add the opcode to this VM */ 294 int op, /* The new opcode */ 295 int p1, /* The P1 operand */ 296 int p2, /* The P2 operand */ 297 int p3, /* The P3 operand */ 298 const u8 *zP4, /* The P4 operand */ 299 int p4type /* P4 operand type */ 300 ){ 301 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 302 if( p4copy ) memcpy(p4copy, zP4, 8); 303 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 304 } 305 306 /* 307 ** Add an OP_ParseSchema opcode. This routine is broken out from 308 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 309 ** as having been used. 310 ** 311 ** The zWhere string must have been obtained from sqlite3_malloc(). 312 ** This routine will take ownership of the allocated memory. 313 */ 314 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 315 int j; 316 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 317 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 318 } 319 320 /* 321 ** Add an opcode that includes the p4 value as an integer. 322 */ 323 int sqlite3VdbeAddOp4Int( 324 Vdbe *p, /* Add the opcode to this VM */ 325 int op, /* The new opcode */ 326 int p1, /* The P1 operand */ 327 int p2, /* The P2 operand */ 328 int p3, /* The P3 operand */ 329 int p4 /* The P4 operand as an integer */ 330 ){ 331 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 332 if( p->db->mallocFailed==0 ){ 333 VdbeOp *pOp = &p->aOp[addr]; 334 pOp->p4type = P4_INT32; 335 pOp->p4.i = p4; 336 } 337 return addr; 338 } 339 340 /* Insert the end of a co-routine 341 */ 342 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 343 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 344 345 /* Clear the temporary register cache, thereby ensuring that each 346 ** co-routine has its own independent set of registers, because co-routines 347 ** might expect their registers to be preserved across an OP_Yield, and 348 ** that could cause problems if two or more co-routines are using the same 349 ** temporary register. 350 */ 351 v->pParse->nTempReg = 0; 352 v->pParse->nRangeReg = 0; 353 } 354 355 /* 356 ** Create a new symbolic label for an instruction that has yet to be 357 ** coded. The symbolic label is really just a negative number. The 358 ** label can be used as the P2 value of an operation. Later, when 359 ** the label is resolved to a specific address, the VDBE will scan 360 ** through its operation list and change all values of P2 which match 361 ** the label into the resolved address. 362 ** 363 ** The VDBE knows that a P2 value is a label because labels are 364 ** always negative and P2 values are suppose to be non-negative. 365 ** Hence, a negative P2 value is a label that has yet to be resolved. 366 ** 367 ** Zero is returned if a malloc() fails. 368 */ 369 int sqlite3VdbeMakeLabel(Vdbe *v){ 370 Parse *p = v->pParse; 371 int i = p->nLabel++; 372 assert( v->magic==VDBE_MAGIC_INIT ); 373 if( (i & (i-1))==0 ){ 374 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 375 (i*2+1)*sizeof(p->aLabel[0])); 376 } 377 if( p->aLabel ){ 378 p->aLabel[i] = -1; 379 } 380 return ADDR(i); 381 } 382 383 /* 384 ** Resolve label "x" to be the address of the next instruction to 385 ** be inserted. The parameter "x" must have been obtained from 386 ** a prior call to sqlite3VdbeMakeLabel(). 387 */ 388 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 389 Parse *p = v->pParse; 390 int j = ADDR(x); 391 assert( v->magic==VDBE_MAGIC_INIT ); 392 assert( j<p->nLabel ); 393 assert( j>=0 ); 394 if( p->aLabel ){ 395 p->aLabel[j] = v->nOp; 396 } 397 } 398 399 /* 400 ** Mark the VDBE as one that can only be run one time. 401 */ 402 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 403 p->runOnlyOnce = 1; 404 } 405 406 /* 407 ** Mark the VDBE as one that can only be run multiple times. 408 */ 409 void sqlite3VdbeReusable(Vdbe *p){ 410 p->runOnlyOnce = 0; 411 } 412 413 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 414 415 /* 416 ** The following type and function are used to iterate through all opcodes 417 ** in a Vdbe main program and each of the sub-programs (triggers) it may 418 ** invoke directly or indirectly. It should be used as follows: 419 ** 420 ** Op *pOp; 421 ** VdbeOpIter sIter; 422 ** 423 ** memset(&sIter, 0, sizeof(sIter)); 424 ** sIter.v = v; // v is of type Vdbe* 425 ** while( (pOp = opIterNext(&sIter)) ){ 426 ** // Do something with pOp 427 ** } 428 ** sqlite3DbFree(v->db, sIter.apSub); 429 ** 430 */ 431 typedef struct VdbeOpIter VdbeOpIter; 432 struct VdbeOpIter { 433 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 434 SubProgram **apSub; /* Array of subprograms */ 435 int nSub; /* Number of entries in apSub */ 436 int iAddr; /* Address of next instruction to return */ 437 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 438 }; 439 static Op *opIterNext(VdbeOpIter *p){ 440 Vdbe *v = p->v; 441 Op *pRet = 0; 442 Op *aOp; 443 int nOp; 444 445 if( p->iSub<=p->nSub ){ 446 447 if( p->iSub==0 ){ 448 aOp = v->aOp; 449 nOp = v->nOp; 450 }else{ 451 aOp = p->apSub[p->iSub-1]->aOp; 452 nOp = p->apSub[p->iSub-1]->nOp; 453 } 454 assert( p->iAddr<nOp ); 455 456 pRet = &aOp[p->iAddr]; 457 p->iAddr++; 458 if( p->iAddr==nOp ){ 459 p->iSub++; 460 p->iAddr = 0; 461 } 462 463 if( pRet->p4type==P4_SUBPROGRAM ){ 464 int nByte = (p->nSub+1)*sizeof(SubProgram*); 465 int j; 466 for(j=0; j<p->nSub; j++){ 467 if( p->apSub[j]==pRet->p4.pProgram ) break; 468 } 469 if( j==p->nSub ){ 470 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 471 if( !p->apSub ){ 472 pRet = 0; 473 }else{ 474 p->apSub[p->nSub++] = pRet->p4.pProgram; 475 } 476 } 477 } 478 } 479 480 return pRet; 481 } 482 483 /* 484 ** Check if the program stored in the VM associated with pParse may 485 ** throw an ABORT exception (causing the statement, but not entire transaction 486 ** to be rolled back). This condition is true if the main program or any 487 ** sub-programs contains any of the following: 488 ** 489 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 490 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 491 ** * OP_Destroy 492 ** * OP_VUpdate 493 ** * OP_VRename 494 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 495 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 496 ** (for CREATE TABLE AS SELECT ...) 497 ** 498 ** Then check that the value of Parse.mayAbort is true if an 499 ** ABORT may be thrown, or false otherwise. Return true if it does 500 ** match, or false otherwise. This function is intended to be used as 501 ** part of an assert statement in the compiler. Similar to: 502 ** 503 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 504 */ 505 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 506 int hasAbort = 0; 507 int hasFkCounter = 0; 508 int hasCreateTable = 0; 509 int hasInitCoroutine = 0; 510 Op *pOp; 511 VdbeOpIter sIter; 512 memset(&sIter, 0, sizeof(sIter)); 513 sIter.v = v; 514 515 while( (pOp = opIterNext(&sIter))!=0 ){ 516 int opcode = pOp->opcode; 517 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 518 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 519 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 520 ){ 521 hasAbort = 1; 522 break; 523 } 524 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; 525 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 526 #ifndef SQLITE_OMIT_FOREIGN_KEY 527 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 528 hasFkCounter = 1; 529 } 530 #endif 531 } 532 sqlite3DbFree(v->db, sIter.apSub); 533 534 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 535 ** If malloc failed, then the while() loop above may not have iterated 536 ** through all opcodes and hasAbort may be set incorrectly. Return 537 ** true for this case to prevent the assert() in the callers frame 538 ** from failing. */ 539 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 540 || (hasCreateTable && hasInitCoroutine) ); 541 } 542 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 543 544 /* 545 ** This routine is called after all opcodes have been inserted. It loops 546 ** through all the opcodes and fixes up some details. 547 ** 548 ** (1) For each jump instruction with a negative P2 value (a label) 549 ** resolve the P2 value to an actual address. 550 ** 551 ** (2) Compute the maximum number of arguments used by any SQL function 552 ** and store that value in *pMaxFuncArgs. 553 ** 554 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 555 ** indicate what the prepared statement actually does. 556 ** 557 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 558 ** 559 ** (5) Reclaim the memory allocated for storing labels. 560 ** 561 ** This routine will only function correctly if the mkopcodeh.tcl generator 562 ** script numbers the opcodes correctly. Changes to this routine must be 563 ** coordinated with changes to mkopcodeh.tcl. 564 */ 565 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 566 int nMaxArgs = *pMaxFuncArgs; 567 Op *pOp; 568 Parse *pParse = p->pParse; 569 int *aLabel = pParse->aLabel; 570 p->readOnly = 1; 571 p->bIsReader = 0; 572 pOp = &p->aOp[p->nOp-1]; 573 while(1){ 574 575 /* Only JUMP opcodes and the short list of special opcodes in the switch 576 ** below need to be considered. The mkopcodeh.tcl generator script groups 577 ** all these opcodes together near the front of the opcode list. Skip 578 ** any opcode that does not need processing by virtual of the fact that 579 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 580 */ 581 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 582 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 583 ** cases from this switch! */ 584 switch( pOp->opcode ){ 585 case OP_Transaction: { 586 if( pOp->p2!=0 ) p->readOnly = 0; 587 /* fall thru */ 588 } 589 case OP_AutoCommit: 590 case OP_Savepoint: { 591 p->bIsReader = 1; 592 break; 593 } 594 #ifndef SQLITE_OMIT_WAL 595 case OP_Checkpoint: 596 #endif 597 case OP_Vacuum: 598 case OP_JournalMode: { 599 p->readOnly = 0; 600 p->bIsReader = 1; 601 break; 602 } 603 case OP_Next: 604 case OP_NextIfOpen: 605 case OP_SorterNext: { 606 pOp->p4.xAdvance = sqlite3BtreeNext; 607 pOp->p4type = P4_ADVANCE; 608 /* The code generator never codes any of these opcodes as a jump 609 ** to a label. They are always coded as a jump backwards to a 610 ** known address */ 611 assert( pOp->p2>=0 ); 612 break; 613 } 614 case OP_Prev: 615 case OP_PrevIfOpen: { 616 pOp->p4.xAdvance = sqlite3BtreePrevious; 617 pOp->p4type = P4_ADVANCE; 618 /* The code generator never codes any of these opcodes as a jump 619 ** to a label. They are always coded as a jump backwards to a 620 ** known address */ 621 assert( pOp->p2>=0 ); 622 break; 623 } 624 #ifndef SQLITE_OMIT_VIRTUALTABLE 625 case OP_VUpdate: { 626 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 627 break; 628 } 629 case OP_VFilter: { 630 int n; 631 assert( (pOp - p->aOp) >= 3 ); 632 assert( pOp[-1].opcode==OP_Integer ); 633 n = pOp[-1].p1; 634 if( n>nMaxArgs ) nMaxArgs = n; 635 /* Fall through into the default case */ 636 } 637 #endif 638 default: { 639 if( pOp->p2<0 ){ 640 /* The mkopcodeh.tcl script has so arranged things that the only 641 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 642 ** have non-negative values for P2. */ 643 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 644 assert( ADDR(pOp->p2)<pParse->nLabel ); 645 pOp->p2 = aLabel[ADDR(pOp->p2)]; 646 } 647 break; 648 } 649 } 650 /* The mkopcodeh.tcl script has so arranged things that the only 651 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 652 ** have non-negative values for P2. */ 653 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 654 } 655 if( pOp==p->aOp ) break; 656 pOp--; 657 } 658 sqlite3DbFree(p->db, pParse->aLabel); 659 pParse->aLabel = 0; 660 pParse->nLabel = 0; 661 *pMaxFuncArgs = nMaxArgs; 662 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 663 } 664 665 /* 666 ** Return the address of the next instruction to be inserted. 667 */ 668 int sqlite3VdbeCurrentAddr(Vdbe *p){ 669 assert( p->magic==VDBE_MAGIC_INIT ); 670 return p->nOp; 671 } 672 673 /* 674 ** Verify that at least N opcode slots are available in p without 675 ** having to malloc for more space (except when compiled using 676 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 677 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 678 ** fail due to a OOM fault and hence that the return value from 679 ** sqlite3VdbeAddOpList() will always be non-NULL. 680 */ 681 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 682 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 683 assert( p->nOp + N <= p->pParse->nOpAlloc ); 684 } 685 #endif 686 687 /* 688 ** Verify that the VM passed as the only argument does not contain 689 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 690 ** by code in pragma.c to ensure that the implementation of certain 691 ** pragmas comports with the flags specified in the mkpragmatab.tcl 692 ** script. 693 */ 694 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 695 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 696 int i; 697 for(i=0; i<p->nOp; i++){ 698 assert( p->aOp[i].opcode!=OP_ResultRow ); 699 } 700 } 701 #endif 702 703 /* 704 ** This function returns a pointer to the array of opcodes associated with 705 ** the Vdbe passed as the first argument. It is the callers responsibility 706 ** to arrange for the returned array to be eventually freed using the 707 ** vdbeFreeOpArray() function. 708 ** 709 ** Before returning, *pnOp is set to the number of entries in the returned 710 ** array. Also, *pnMaxArg is set to the larger of its current value and 711 ** the number of entries in the Vdbe.apArg[] array required to execute the 712 ** returned program. 713 */ 714 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 715 VdbeOp *aOp = p->aOp; 716 assert( aOp && !p->db->mallocFailed ); 717 718 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 719 assert( DbMaskAllZero(p->btreeMask) ); 720 721 resolveP2Values(p, pnMaxArg); 722 *pnOp = p->nOp; 723 p->aOp = 0; 724 return aOp; 725 } 726 727 /* 728 ** Add a whole list of operations to the operation stack. Return a 729 ** pointer to the first operation inserted. 730 ** 731 ** Non-zero P2 arguments to jump instructions are automatically adjusted 732 ** so that the jump target is relative to the first operation inserted. 733 */ 734 VdbeOp *sqlite3VdbeAddOpList( 735 Vdbe *p, /* Add opcodes to the prepared statement */ 736 int nOp, /* Number of opcodes to add */ 737 VdbeOpList const *aOp, /* The opcodes to be added */ 738 int iLineno /* Source-file line number of first opcode */ 739 ){ 740 int i; 741 VdbeOp *pOut, *pFirst; 742 assert( nOp>0 ); 743 assert( p->magic==VDBE_MAGIC_INIT ); 744 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ 745 return 0; 746 } 747 pFirst = pOut = &p->aOp[p->nOp]; 748 for(i=0; i<nOp; i++, aOp++, pOut++){ 749 pOut->opcode = aOp->opcode; 750 pOut->p1 = aOp->p1; 751 pOut->p2 = aOp->p2; 752 assert( aOp->p2>=0 ); 753 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 754 pOut->p2 += p->nOp; 755 } 756 pOut->p3 = aOp->p3; 757 pOut->p4type = P4_NOTUSED; 758 pOut->p4.p = 0; 759 pOut->p5 = 0; 760 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 761 pOut->zComment = 0; 762 #endif 763 #ifdef SQLITE_VDBE_COVERAGE 764 pOut->iSrcLine = iLineno+i; 765 #else 766 (void)iLineno; 767 #endif 768 #ifdef SQLITE_DEBUG 769 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 770 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 771 } 772 #endif 773 } 774 p->nOp += nOp; 775 return pFirst; 776 } 777 778 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 779 /* 780 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 781 */ 782 void sqlite3VdbeScanStatus( 783 Vdbe *p, /* VM to add scanstatus() to */ 784 int addrExplain, /* Address of OP_Explain (or 0) */ 785 int addrLoop, /* Address of loop counter */ 786 int addrVisit, /* Address of rows visited counter */ 787 LogEst nEst, /* Estimated number of output rows */ 788 const char *zName /* Name of table or index being scanned */ 789 ){ 790 int nByte = (p->nScan+1) * sizeof(ScanStatus); 791 ScanStatus *aNew; 792 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 793 if( aNew ){ 794 ScanStatus *pNew = &aNew[p->nScan++]; 795 pNew->addrExplain = addrExplain; 796 pNew->addrLoop = addrLoop; 797 pNew->addrVisit = addrVisit; 798 pNew->nEst = nEst; 799 pNew->zName = sqlite3DbStrDup(p->db, zName); 800 p->aScan = aNew; 801 } 802 } 803 #endif 804 805 806 /* 807 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 808 ** for a specific instruction. 809 */ 810 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){ 811 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 812 } 813 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ 814 sqlite3VdbeGetOp(p,addr)->p1 = val; 815 } 816 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ 817 sqlite3VdbeGetOp(p,addr)->p2 = val; 818 } 819 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ 820 sqlite3VdbeGetOp(p,addr)->p3 = val; 821 } 822 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 823 assert( p->nOp>0 || p->db->mallocFailed ); 824 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 825 } 826 827 /* 828 ** Change the P2 operand of instruction addr so that it points to 829 ** the address of the next instruction to be coded. 830 */ 831 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 832 sqlite3VdbeChangeP2(p, addr, p->nOp); 833 } 834 835 836 /* 837 ** If the input FuncDef structure is ephemeral, then free it. If 838 ** the FuncDef is not ephermal, then do nothing. 839 */ 840 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 841 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 842 sqlite3DbFreeNN(db, pDef); 843 } 844 } 845 846 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 847 848 /* 849 ** Delete a P4 value if necessary. 850 */ 851 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 852 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 853 sqlite3DbFreeNN(db, p); 854 } 855 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 856 freeEphemeralFunction(db, p->pFunc); 857 sqlite3DbFreeNN(db, p); 858 } 859 static void freeP4(sqlite3 *db, int p4type, void *p4){ 860 assert( db ); 861 switch( p4type ){ 862 case P4_FUNCCTX: { 863 freeP4FuncCtx(db, (sqlite3_context*)p4); 864 break; 865 } 866 case P4_REAL: 867 case P4_INT64: 868 case P4_DYNAMIC: 869 case P4_INTARRAY: { 870 sqlite3DbFree(db, p4); 871 break; 872 } 873 case P4_KEYINFO: { 874 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 875 break; 876 } 877 #ifdef SQLITE_ENABLE_CURSOR_HINTS 878 case P4_EXPR: { 879 sqlite3ExprDelete(db, (Expr*)p4); 880 break; 881 } 882 #endif 883 case P4_FUNCDEF: { 884 freeEphemeralFunction(db, (FuncDef*)p4); 885 break; 886 } 887 case P4_MEM: { 888 if( db->pnBytesFreed==0 ){ 889 sqlite3ValueFree((sqlite3_value*)p4); 890 }else{ 891 freeP4Mem(db, (Mem*)p4); 892 } 893 break; 894 } 895 case P4_VTAB : { 896 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 897 break; 898 } 899 } 900 } 901 902 /* 903 ** Free the space allocated for aOp and any p4 values allocated for the 904 ** opcodes contained within. If aOp is not NULL it is assumed to contain 905 ** nOp entries. 906 */ 907 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 908 if( aOp ){ 909 Op *pOp; 910 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){ 911 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 912 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 913 sqlite3DbFree(db, pOp->zComment); 914 #endif 915 } 916 sqlite3DbFreeNN(db, aOp); 917 } 918 } 919 920 /* 921 ** Link the SubProgram object passed as the second argument into the linked 922 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 923 ** objects when the VM is no longer required. 924 */ 925 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 926 p->pNext = pVdbe->pProgram; 927 pVdbe->pProgram = p; 928 } 929 930 /* 931 ** Change the opcode at addr into OP_Noop 932 */ 933 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 934 VdbeOp *pOp; 935 if( p->db->mallocFailed ) return 0; 936 assert( addr>=0 && addr<p->nOp ); 937 pOp = &p->aOp[addr]; 938 freeP4(p->db, pOp->p4type, pOp->p4.p); 939 pOp->p4type = P4_NOTUSED; 940 pOp->p4.z = 0; 941 pOp->opcode = OP_Noop; 942 return 1; 943 } 944 945 /* 946 ** If the last opcode is "op" and it is not a jump destination, 947 ** then remove it. Return true if and only if an opcode was removed. 948 */ 949 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 950 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 951 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 952 }else{ 953 return 0; 954 } 955 } 956 957 /* 958 ** Change the value of the P4 operand for a specific instruction. 959 ** This routine is useful when a large program is loaded from a 960 ** static array using sqlite3VdbeAddOpList but we want to make a 961 ** few minor changes to the program. 962 ** 963 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 964 ** the string is made into memory obtained from sqlite3_malloc(). 965 ** A value of n==0 means copy bytes of zP4 up to and including the 966 ** first null byte. If n>0 then copy n+1 bytes of zP4. 967 ** 968 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 969 ** to a string or structure that is guaranteed to exist for the lifetime of 970 ** the Vdbe. In these cases we can just copy the pointer. 971 ** 972 ** If addr<0 then change P4 on the most recently inserted instruction. 973 */ 974 static void SQLITE_NOINLINE vdbeChangeP4Full( 975 Vdbe *p, 976 Op *pOp, 977 const char *zP4, 978 int n 979 ){ 980 if( pOp->p4type ){ 981 freeP4(p->db, pOp->p4type, pOp->p4.p); 982 pOp->p4type = 0; 983 pOp->p4.p = 0; 984 } 985 if( n<0 ){ 986 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 987 }else{ 988 if( n==0 ) n = sqlite3Strlen30(zP4); 989 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 990 pOp->p4type = P4_DYNAMIC; 991 } 992 } 993 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 994 Op *pOp; 995 sqlite3 *db; 996 assert( p!=0 ); 997 db = p->db; 998 assert( p->magic==VDBE_MAGIC_INIT ); 999 assert( p->aOp!=0 || db->mallocFailed ); 1000 if( db->mallocFailed ){ 1001 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 1002 return; 1003 } 1004 assert( p->nOp>0 ); 1005 assert( addr<p->nOp ); 1006 if( addr<0 ){ 1007 addr = p->nOp - 1; 1008 } 1009 pOp = &p->aOp[addr]; 1010 if( n>=0 || pOp->p4type ){ 1011 vdbeChangeP4Full(p, pOp, zP4, n); 1012 return; 1013 } 1014 if( n==P4_INT32 ){ 1015 /* Note: this cast is safe, because the origin data point was an int 1016 ** that was cast to a (const char *). */ 1017 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 1018 pOp->p4type = P4_INT32; 1019 }else if( zP4!=0 ){ 1020 assert( n<0 ); 1021 pOp->p4.p = (void*)zP4; 1022 pOp->p4type = (signed char)n; 1023 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 1024 } 1025 } 1026 1027 /* 1028 ** Change the P4 operand of the most recently coded instruction 1029 ** to the value defined by the arguments. This is a high-speed 1030 ** version of sqlite3VdbeChangeP4(). 1031 ** 1032 ** The P4 operand must not have been previously defined. And the new 1033 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 1034 ** those cases. 1035 */ 1036 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1037 VdbeOp *pOp; 1038 assert( n!=P4_INT32 && n!=P4_VTAB ); 1039 assert( n<=0 ); 1040 if( p->db->mallocFailed ){ 1041 freeP4(p->db, n, pP4); 1042 }else{ 1043 assert( pP4!=0 ); 1044 assert( p->nOp>0 ); 1045 pOp = &p->aOp[p->nOp-1]; 1046 assert( pOp->p4type==P4_NOTUSED ); 1047 pOp->p4type = n; 1048 pOp->p4.p = pP4; 1049 } 1050 } 1051 1052 /* 1053 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1054 ** index given. 1055 */ 1056 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1057 Vdbe *v = pParse->pVdbe; 1058 KeyInfo *pKeyInfo; 1059 assert( v!=0 ); 1060 assert( pIdx!=0 ); 1061 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1062 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1063 } 1064 1065 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1066 /* 1067 ** Change the comment on the most recently coded instruction. Or 1068 ** insert a No-op and add the comment to that new instruction. This 1069 ** makes the code easier to read during debugging. None of this happens 1070 ** in a production build. 1071 */ 1072 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1073 assert( p->nOp>0 || p->aOp==0 ); 1074 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 1075 if( p->nOp ){ 1076 assert( p->aOp ); 1077 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1078 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1079 } 1080 } 1081 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1082 va_list ap; 1083 if( p ){ 1084 va_start(ap, zFormat); 1085 vdbeVComment(p, zFormat, ap); 1086 va_end(ap); 1087 } 1088 } 1089 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1090 va_list ap; 1091 if( p ){ 1092 sqlite3VdbeAddOp0(p, OP_Noop); 1093 va_start(ap, zFormat); 1094 vdbeVComment(p, zFormat, ap); 1095 va_end(ap); 1096 } 1097 } 1098 #endif /* NDEBUG */ 1099 1100 #ifdef SQLITE_VDBE_COVERAGE 1101 /* 1102 ** Set the value if the iSrcLine field for the previously coded instruction. 1103 */ 1104 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1105 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1106 } 1107 #endif /* SQLITE_VDBE_COVERAGE */ 1108 1109 /* 1110 ** Return the opcode for a given address. If the address is -1, then 1111 ** return the most recently inserted opcode. 1112 ** 1113 ** If a memory allocation error has occurred prior to the calling of this 1114 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1115 ** is readable but not writable, though it is cast to a writable value. 1116 ** The return of a dummy opcode allows the call to continue functioning 1117 ** after an OOM fault without having to check to see if the return from 1118 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1119 ** dummy will never be written to. This is verified by code inspection and 1120 ** by running with Valgrind. 1121 */ 1122 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1123 /* C89 specifies that the constant "dummy" will be initialized to all 1124 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1125 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1126 assert( p->magic==VDBE_MAGIC_INIT ); 1127 if( addr<0 ){ 1128 addr = p->nOp - 1; 1129 } 1130 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1131 if( p->db->mallocFailed ){ 1132 return (VdbeOp*)&dummy; 1133 }else{ 1134 return &p->aOp[addr]; 1135 } 1136 } 1137 1138 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1139 /* 1140 ** Return an integer value for one of the parameters to the opcode pOp 1141 ** determined by character c. 1142 */ 1143 static int translateP(char c, const Op *pOp){ 1144 if( c=='1' ) return pOp->p1; 1145 if( c=='2' ) return pOp->p2; 1146 if( c=='3' ) return pOp->p3; 1147 if( c=='4' ) return pOp->p4.i; 1148 return pOp->p5; 1149 } 1150 1151 /* 1152 ** Compute a string for the "comment" field of a VDBE opcode listing. 1153 ** 1154 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1155 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1156 ** absence of other comments, this synopsis becomes the comment on the opcode. 1157 ** Some translation occurs: 1158 ** 1159 ** "PX" -> "r[X]" 1160 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1161 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1162 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1163 */ 1164 static int displayComment( 1165 const Op *pOp, /* The opcode to be commented */ 1166 const char *zP4, /* Previously obtained value for P4 */ 1167 char *zTemp, /* Write result here */ 1168 int nTemp /* Space available in zTemp[] */ 1169 ){ 1170 const char *zOpName; 1171 const char *zSynopsis; 1172 int nOpName; 1173 int ii, jj; 1174 char zAlt[50]; 1175 zOpName = sqlite3OpcodeName(pOp->opcode); 1176 nOpName = sqlite3Strlen30(zOpName); 1177 if( zOpName[nOpName+1] ){ 1178 int seenCom = 0; 1179 char c; 1180 zSynopsis = zOpName += nOpName + 1; 1181 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1182 if( pOp->p5 & SQLITE_STOREP2 ){ 1183 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3); 1184 }else{ 1185 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1186 } 1187 zSynopsis = zAlt; 1188 } 1189 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 1190 if( c=='P' ){ 1191 c = zSynopsis[++ii]; 1192 if( c=='4' ){ 1193 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 1194 }else if( c=='X' ){ 1195 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 1196 seenCom = 1; 1197 }else{ 1198 int v1 = translateP(c, pOp); 1199 int v2; 1200 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 1201 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1202 ii += 3; 1203 jj += sqlite3Strlen30(zTemp+jj); 1204 v2 = translateP(zSynopsis[ii], pOp); 1205 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1206 ii += 2; 1207 v2++; 1208 } 1209 if( v2>1 ){ 1210 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 1211 } 1212 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1213 ii += 4; 1214 } 1215 } 1216 jj += sqlite3Strlen30(zTemp+jj); 1217 }else{ 1218 zTemp[jj++] = c; 1219 } 1220 } 1221 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 1222 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 1223 jj += sqlite3Strlen30(zTemp+jj); 1224 } 1225 if( jj<nTemp ) zTemp[jj] = 0; 1226 }else if( pOp->zComment ){ 1227 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 1228 jj = sqlite3Strlen30(zTemp); 1229 }else{ 1230 zTemp[0] = 0; 1231 jj = 0; 1232 } 1233 return jj; 1234 } 1235 #endif /* SQLITE_DEBUG */ 1236 1237 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1238 /* 1239 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1240 ** that can be displayed in the P4 column of EXPLAIN output. 1241 */ 1242 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1243 const char *zOp = 0; 1244 switch( pExpr->op ){ 1245 case TK_STRING: 1246 sqlite3XPrintf(p, "%Q", pExpr->u.zToken); 1247 break; 1248 case TK_INTEGER: 1249 sqlite3XPrintf(p, "%d", pExpr->u.iValue); 1250 break; 1251 case TK_NULL: 1252 sqlite3XPrintf(p, "NULL"); 1253 break; 1254 case TK_REGISTER: { 1255 sqlite3XPrintf(p, "r[%d]", pExpr->iTable); 1256 break; 1257 } 1258 case TK_COLUMN: { 1259 if( pExpr->iColumn<0 ){ 1260 sqlite3XPrintf(p, "rowid"); 1261 }else{ 1262 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn); 1263 } 1264 break; 1265 } 1266 case TK_LT: zOp = "LT"; break; 1267 case TK_LE: zOp = "LE"; break; 1268 case TK_GT: zOp = "GT"; break; 1269 case TK_GE: zOp = "GE"; break; 1270 case TK_NE: zOp = "NE"; break; 1271 case TK_EQ: zOp = "EQ"; break; 1272 case TK_IS: zOp = "IS"; break; 1273 case TK_ISNOT: zOp = "ISNOT"; break; 1274 case TK_AND: zOp = "AND"; break; 1275 case TK_OR: zOp = "OR"; break; 1276 case TK_PLUS: zOp = "ADD"; break; 1277 case TK_STAR: zOp = "MUL"; break; 1278 case TK_MINUS: zOp = "SUB"; break; 1279 case TK_REM: zOp = "REM"; break; 1280 case TK_BITAND: zOp = "BITAND"; break; 1281 case TK_BITOR: zOp = "BITOR"; break; 1282 case TK_SLASH: zOp = "DIV"; break; 1283 case TK_LSHIFT: zOp = "LSHIFT"; break; 1284 case TK_RSHIFT: zOp = "RSHIFT"; break; 1285 case TK_CONCAT: zOp = "CONCAT"; break; 1286 case TK_UMINUS: zOp = "MINUS"; break; 1287 case TK_UPLUS: zOp = "PLUS"; break; 1288 case TK_BITNOT: zOp = "BITNOT"; break; 1289 case TK_NOT: zOp = "NOT"; break; 1290 case TK_ISNULL: zOp = "ISNULL"; break; 1291 case TK_NOTNULL: zOp = "NOTNULL"; break; 1292 1293 default: 1294 sqlite3XPrintf(p, "%s", "expr"); 1295 break; 1296 } 1297 1298 if( zOp ){ 1299 sqlite3XPrintf(p, "%s(", zOp); 1300 displayP4Expr(p, pExpr->pLeft); 1301 if( pExpr->pRight ){ 1302 sqlite3StrAccumAppend(p, ",", 1); 1303 displayP4Expr(p, pExpr->pRight); 1304 } 1305 sqlite3StrAccumAppend(p, ")", 1); 1306 } 1307 } 1308 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1309 1310 1311 #if VDBE_DISPLAY_P4 1312 /* 1313 ** Compute a string that describes the P4 parameter for an opcode. 1314 ** Use zTemp for any required temporary buffer space. 1315 */ 1316 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 1317 char *zP4 = zTemp; 1318 StrAccum x; 1319 assert( nTemp>=20 ); 1320 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0); 1321 switch( pOp->p4type ){ 1322 case P4_KEYINFO: { 1323 int j; 1324 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1325 assert( pKeyInfo->aSortOrder!=0 ); 1326 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nKeyField); 1327 for(j=0; j<pKeyInfo->nKeyField; j++){ 1328 CollSeq *pColl = pKeyInfo->aColl[j]; 1329 const char *zColl = pColl ? pColl->zName : ""; 1330 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1331 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl); 1332 } 1333 sqlite3StrAccumAppend(&x, ")", 1); 1334 break; 1335 } 1336 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1337 case P4_EXPR: { 1338 displayP4Expr(&x, pOp->p4.pExpr); 1339 break; 1340 } 1341 #endif 1342 case P4_COLLSEQ: { 1343 CollSeq *pColl = pOp->p4.pColl; 1344 sqlite3XPrintf(&x, "(%.20s)", pColl->zName); 1345 break; 1346 } 1347 case P4_FUNCDEF: { 1348 FuncDef *pDef = pOp->p4.pFunc; 1349 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1350 break; 1351 } 1352 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1353 case P4_FUNCCTX: { 1354 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1355 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1356 break; 1357 } 1358 #endif 1359 case P4_INT64: { 1360 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64); 1361 break; 1362 } 1363 case P4_INT32: { 1364 sqlite3XPrintf(&x, "%d", pOp->p4.i); 1365 break; 1366 } 1367 case P4_REAL: { 1368 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal); 1369 break; 1370 } 1371 case P4_MEM: { 1372 Mem *pMem = pOp->p4.pMem; 1373 if( pMem->flags & MEM_Str ){ 1374 zP4 = pMem->z; 1375 }else if( pMem->flags & MEM_Int ){ 1376 sqlite3XPrintf(&x, "%lld", pMem->u.i); 1377 }else if( pMem->flags & MEM_Real ){ 1378 sqlite3XPrintf(&x, "%.16g", pMem->u.r); 1379 }else if( pMem->flags & MEM_Null ){ 1380 zP4 = "NULL"; 1381 }else{ 1382 assert( pMem->flags & MEM_Blob ); 1383 zP4 = "(blob)"; 1384 } 1385 break; 1386 } 1387 #ifndef SQLITE_OMIT_VIRTUALTABLE 1388 case P4_VTAB: { 1389 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1390 sqlite3XPrintf(&x, "vtab:%p", pVtab); 1391 break; 1392 } 1393 #endif 1394 case P4_INTARRAY: { 1395 int i; 1396 int *ai = pOp->p4.ai; 1397 int n = ai[0]; /* The first element of an INTARRAY is always the 1398 ** count of the number of elements to follow */ 1399 for(i=1; i<=n; i++){ 1400 sqlite3XPrintf(&x, ",%d", ai[i]); 1401 } 1402 zTemp[0] = '['; 1403 sqlite3StrAccumAppend(&x, "]", 1); 1404 break; 1405 } 1406 case P4_SUBPROGRAM: { 1407 sqlite3XPrintf(&x, "program"); 1408 break; 1409 } 1410 case P4_ADVANCE: { 1411 zTemp[0] = 0; 1412 break; 1413 } 1414 case P4_TABLE: { 1415 sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName); 1416 break; 1417 } 1418 default: { 1419 zP4 = pOp->p4.z; 1420 if( zP4==0 ){ 1421 zP4 = zTemp; 1422 zTemp[0] = 0; 1423 } 1424 } 1425 } 1426 sqlite3StrAccumFinish(&x); 1427 assert( zP4!=0 ); 1428 return zP4; 1429 } 1430 #endif /* VDBE_DISPLAY_P4 */ 1431 1432 /* 1433 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1434 ** 1435 ** The prepared statements need to know in advance the complete set of 1436 ** attached databases that will be use. A mask of these databases 1437 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1438 ** p->btreeMask of databases that will require a lock. 1439 */ 1440 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1441 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1442 assert( i<(int)sizeof(p->btreeMask)*8 ); 1443 DbMaskSet(p->btreeMask, i); 1444 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1445 DbMaskSet(p->lockMask, i); 1446 } 1447 } 1448 1449 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1450 /* 1451 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1452 ** this routine obtains the mutex associated with each BtShared structure 1453 ** that may be accessed by the VM passed as an argument. In doing so it also 1454 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1455 ** that the correct busy-handler callback is invoked if required. 1456 ** 1457 ** If SQLite is not threadsafe but does support shared-cache mode, then 1458 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1459 ** of all of BtShared structures accessible via the database handle 1460 ** associated with the VM. 1461 ** 1462 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1463 ** function is a no-op. 1464 ** 1465 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1466 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1467 ** corresponding to btrees that use shared cache. Then the runtime of 1468 ** this routine is N*N. But as N is rarely more than 1, this should not 1469 ** be a problem. 1470 */ 1471 void sqlite3VdbeEnter(Vdbe *p){ 1472 int i; 1473 sqlite3 *db; 1474 Db *aDb; 1475 int nDb; 1476 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1477 db = p->db; 1478 aDb = db->aDb; 1479 nDb = db->nDb; 1480 for(i=0; i<nDb; i++){ 1481 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1482 sqlite3BtreeEnter(aDb[i].pBt); 1483 } 1484 } 1485 } 1486 #endif 1487 1488 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1489 /* 1490 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1491 */ 1492 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1493 int i; 1494 sqlite3 *db; 1495 Db *aDb; 1496 int nDb; 1497 db = p->db; 1498 aDb = db->aDb; 1499 nDb = db->nDb; 1500 for(i=0; i<nDb; i++){ 1501 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1502 sqlite3BtreeLeave(aDb[i].pBt); 1503 } 1504 } 1505 } 1506 void sqlite3VdbeLeave(Vdbe *p){ 1507 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1508 vdbeLeave(p); 1509 } 1510 #endif 1511 1512 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1513 /* 1514 ** Print a single opcode. This routine is used for debugging only. 1515 */ 1516 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ 1517 char *zP4; 1518 char zPtr[50]; 1519 char zCom[100]; 1520 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1521 if( pOut==0 ) pOut = stdout; 1522 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1523 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1524 displayComment(pOp, zP4, zCom, sizeof(zCom)); 1525 #else 1526 zCom[0] = 0; 1527 #endif 1528 /* NB: The sqlite3OpcodeName() function is implemented by code created 1529 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1530 ** information from the vdbe.c source text */ 1531 fprintf(pOut, zFormat1, pc, 1532 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1533 zCom 1534 ); 1535 fflush(pOut); 1536 } 1537 #endif 1538 1539 /* 1540 ** Initialize an array of N Mem element. 1541 */ 1542 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1543 while( (N--)>0 ){ 1544 p->db = db; 1545 p->flags = flags; 1546 p->szMalloc = 0; 1547 #ifdef SQLITE_DEBUG 1548 p->pScopyFrom = 0; 1549 #endif 1550 p++; 1551 } 1552 } 1553 1554 /* 1555 ** Release an array of N Mem elements 1556 */ 1557 static void releaseMemArray(Mem *p, int N){ 1558 if( p && N ){ 1559 Mem *pEnd = &p[N]; 1560 sqlite3 *db = p->db; 1561 if( db->pnBytesFreed ){ 1562 do{ 1563 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1564 }while( (++p)<pEnd ); 1565 return; 1566 } 1567 do{ 1568 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1569 assert( sqlite3VdbeCheckMemInvariants(p) ); 1570 1571 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1572 ** that takes advantage of the fact that the memory cell value is 1573 ** being set to NULL after releasing any dynamic resources. 1574 ** 1575 ** The justification for duplicating code is that according to 1576 ** callgrind, this causes a certain test case to hit the CPU 4.7 1577 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1578 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1579 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1580 ** with no indexes using a single prepared INSERT statement, bind() 1581 ** and reset(). Inserts are grouped into a transaction. 1582 */ 1583 testcase( p->flags & MEM_Agg ); 1584 testcase( p->flags & MEM_Dyn ); 1585 testcase( p->flags & MEM_Frame ); 1586 testcase( p->flags & MEM_RowSet ); 1587 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ 1588 sqlite3VdbeMemRelease(p); 1589 }else if( p->szMalloc ){ 1590 sqlite3DbFreeNN(db, p->zMalloc); 1591 p->szMalloc = 0; 1592 } 1593 1594 p->flags = MEM_Undefined; 1595 }while( (++p)<pEnd ); 1596 } 1597 } 1598 1599 /* 1600 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1601 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1602 */ 1603 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1604 int i; 1605 Mem *aMem = VdbeFrameMem(p); 1606 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1607 for(i=0; i<p->nChildCsr; i++){ 1608 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1609 } 1610 releaseMemArray(aMem, p->nChildMem); 1611 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 1612 sqlite3DbFree(p->v->db, p); 1613 } 1614 1615 #ifndef SQLITE_OMIT_EXPLAIN 1616 /* 1617 ** Give a listing of the program in the virtual machine. 1618 ** 1619 ** The interface is the same as sqlite3VdbeExec(). But instead of 1620 ** running the code, it invokes the callback once for each instruction. 1621 ** This feature is used to implement "EXPLAIN". 1622 ** 1623 ** When p->explain==1, each instruction is listed. When 1624 ** p->explain==2, only OP_Explain instructions are listed and these 1625 ** are shown in a different format. p->explain==2 is used to implement 1626 ** EXPLAIN QUERY PLAN. 1627 ** 1628 ** When p->explain==1, first the main program is listed, then each of 1629 ** the trigger subprograms are listed one by one. 1630 */ 1631 int sqlite3VdbeList( 1632 Vdbe *p /* The VDBE */ 1633 ){ 1634 int nRow; /* Stop when row count reaches this */ 1635 int nSub = 0; /* Number of sub-vdbes seen so far */ 1636 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1637 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1638 sqlite3 *db = p->db; /* The database connection */ 1639 int i; /* Loop counter */ 1640 int rc = SQLITE_OK; /* Return code */ 1641 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 1642 1643 assert( p->explain ); 1644 assert( p->magic==VDBE_MAGIC_RUN ); 1645 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1646 1647 /* Even though this opcode does not use dynamic strings for 1648 ** the result, result columns may become dynamic if the user calls 1649 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1650 */ 1651 releaseMemArray(pMem, 8); 1652 p->pResultSet = 0; 1653 1654 if( p->rc==SQLITE_NOMEM_BKPT ){ 1655 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1656 ** sqlite3_column_text16() failed. */ 1657 sqlite3OomFault(db); 1658 return SQLITE_ERROR; 1659 } 1660 1661 /* When the number of output rows reaches nRow, that means the 1662 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1663 ** nRow is the sum of the number of rows in the main program, plus 1664 ** the sum of the number of rows in all trigger subprograms encountered 1665 ** so far. The nRow value will increase as new trigger subprograms are 1666 ** encountered, but p->pc will eventually catch up to nRow. 1667 */ 1668 nRow = p->nOp; 1669 if( p->explain==1 ){ 1670 /* The first 8 memory cells are used for the result set. So we will 1671 ** commandeer the 9th cell to use as storage for an array of pointers 1672 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1673 ** cells. */ 1674 assert( p->nMem>9 ); 1675 pSub = &p->aMem[9]; 1676 if( pSub->flags&MEM_Blob ){ 1677 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1678 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1679 nSub = pSub->n/sizeof(Vdbe*); 1680 apSub = (SubProgram **)pSub->z; 1681 } 1682 for(i=0; i<nSub; i++){ 1683 nRow += apSub[i]->nOp; 1684 } 1685 } 1686 1687 do{ 1688 i = p->pc++; 1689 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); 1690 if( i>=nRow ){ 1691 p->rc = SQLITE_OK; 1692 rc = SQLITE_DONE; 1693 }else if( db->u1.isInterrupted ){ 1694 p->rc = SQLITE_INTERRUPT; 1695 rc = SQLITE_ERROR; 1696 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 1697 }else{ 1698 char *zP4; 1699 Op *pOp; 1700 if( i<p->nOp ){ 1701 /* The output line number is small enough that we are still in the 1702 ** main program. */ 1703 pOp = &p->aOp[i]; 1704 }else{ 1705 /* We are currently listing subprograms. Figure out which one and 1706 ** pick up the appropriate opcode. */ 1707 int j; 1708 i -= p->nOp; 1709 for(j=0; i>=apSub[j]->nOp; j++){ 1710 i -= apSub[j]->nOp; 1711 } 1712 pOp = &apSub[j]->aOp[i]; 1713 } 1714 if( p->explain==1 ){ 1715 pMem->flags = MEM_Int; 1716 pMem->u.i = i; /* Program counter */ 1717 pMem++; 1718 1719 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1720 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1721 assert( pMem->z!=0 ); 1722 pMem->n = sqlite3Strlen30(pMem->z); 1723 pMem->enc = SQLITE_UTF8; 1724 pMem++; 1725 1726 /* When an OP_Program opcode is encounter (the only opcode that has 1727 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1728 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1729 ** has not already been seen. 1730 */ 1731 if( pOp->p4type==P4_SUBPROGRAM ){ 1732 int nByte = (nSub+1)*sizeof(SubProgram*); 1733 int j; 1734 for(j=0; j<nSub; j++){ 1735 if( apSub[j]==pOp->p4.pProgram ) break; 1736 } 1737 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){ 1738 apSub = (SubProgram **)pSub->z; 1739 apSub[nSub++] = pOp->p4.pProgram; 1740 pSub->flags |= MEM_Blob; 1741 pSub->n = nSub*sizeof(SubProgram*); 1742 } 1743 } 1744 } 1745 1746 pMem->flags = MEM_Int; 1747 pMem->u.i = pOp->p1; /* P1 */ 1748 pMem++; 1749 1750 pMem->flags = MEM_Int; 1751 pMem->u.i = pOp->p2; /* P2 */ 1752 pMem++; 1753 1754 pMem->flags = MEM_Int; 1755 pMem->u.i = pOp->p3; /* P3 */ 1756 pMem++; 1757 1758 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */ 1759 assert( p->db->mallocFailed ); 1760 return SQLITE_ERROR; 1761 } 1762 pMem->flags = MEM_Str|MEM_Term; 1763 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc); 1764 if( zP4!=pMem->z ){ 1765 pMem->n = 0; 1766 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 1767 }else{ 1768 assert( pMem->z!=0 ); 1769 pMem->n = sqlite3Strlen30(pMem->z); 1770 pMem->enc = SQLITE_UTF8; 1771 } 1772 pMem++; 1773 1774 if( p->explain==1 ){ 1775 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ 1776 assert( p->db->mallocFailed ); 1777 return SQLITE_ERROR; 1778 } 1779 pMem->flags = MEM_Str|MEM_Term; 1780 pMem->n = 2; 1781 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1782 pMem->enc = SQLITE_UTF8; 1783 pMem++; 1784 1785 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1786 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ 1787 assert( p->db->mallocFailed ); 1788 return SQLITE_ERROR; 1789 } 1790 pMem->flags = MEM_Str|MEM_Term; 1791 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 1792 pMem->enc = SQLITE_UTF8; 1793 #else 1794 pMem->flags = MEM_Null; /* Comment */ 1795 #endif 1796 } 1797 1798 p->nResColumn = 8 - 4*(p->explain-1); 1799 p->pResultSet = &p->aMem[1]; 1800 p->rc = SQLITE_OK; 1801 rc = SQLITE_ROW; 1802 } 1803 return rc; 1804 } 1805 #endif /* SQLITE_OMIT_EXPLAIN */ 1806 1807 #ifdef SQLITE_DEBUG 1808 /* 1809 ** Print the SQL that was used to generate a VDBE program. 1810 */ 1811 void sqlite3VdbePrintSql(Vdbe *p){ 1812 const char *z = 0; 1813 if( p->zSql ){ 1814 z = p->zSql; 1815 }else if( p->nOp>=1 ){ 1816 const VdbeOp *pOp = &p->aOp[0]; 1817 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1818 z = pOp->p4.z; 1819 while( sqlite3Isspace(*z) ) z++; 1820 } 1821 } 1822 if( z ) printf("SQL: [%s]\n", z); 1823 } 1824 #endif 1825 1826 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 1827 /* 1828 ** Print an IOTRACE message showing SQL content. 1829 */ 1830 void sqlite3VdbeIOTraceSql(Vdbe *p){ 1831 int nOp = p->nOp; 1832 VdbeOp *pOp; 1833 if( sqlite3IoTrace==0 ) return; 1834 if( nOp<1 ) return; 1835 pOp = &p->aOp[0]; 1836 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1837 int i, j; 1838 char z[1000]; 1839 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 1840 for(i=0; sqlite3Isspace(z[i]); i++){} 1841 for(j=0; z[i]; i++){ 1842 if( sqlite3Isspace(z[i]) ){ 1843 if( z[i-1]!=' ' ){ 1844 z[j++] = ' '; 1845 } 1846 }else{ 1847 z[j++] = z[i]; 1848 } 1849 } 1850 z[j] = 0; 1851 sqlite3IoTrace("SQL %s\n", z); 1852 } 1853 } 1854 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 1855 1856 /* An instance of this object describes bulk memory available for use 1857 ** by subcomponents of a prepared statement. Space is allocated out 1858 ** of a ReusableSpace object by the allocSpace() routine below. 1859 */ 1860 struct ReusableSpace { 1861 u8 *pSpace; /* Available memory */ 1862 int nFree; /* Bytes of available memory */ 1863 int nNeeded; /* Total bytes that could not be allocated */ 1864 }; 1865 1866 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 1867 ** from the ReusableSpace object. Return a pointer to the allocated 1868 ** memory on success. If insufficient memory is available in the 1869 ** ReusableSpace object, increase the ReusableSpace.nNeeded 1870 ** value by the amount needed and return NULL. 1871 ** 1872 ** If pBuf is not initially NULL, that means that the memory has already 1873 ** been allocated by a prior call to this routine, so just return a copy 1874 ** of pBuf and leave ReusableSpace unchanged. 1875 ** 1876 ** This allocator is employed to repurpose unused slots at the end of the 1877 ** opcode array of prepared state for other memory needs of the prepared 1878 ** statement. 1879 */ 1880 static void *allocSpace( 1881 struct ReusableSpace *p, /* Bulk memory available for allocation */ 1882 void *pBuf, /* Pointer to a prior allocation */ 1883 int nByte /* Bytes of memory needed */ 1884 ){ 1885 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 1886 if( pBuf==0 ){ 1887 nByte = ROUND8(nByte); 1888 if( nByte <= p->nFree ){ 1889 p->nFree -= nByte; 1890 pBuf = &p->pSpace[p->nFree]; 1891 }else{ 1892 p->nNeeded += nByte; 1893 } 1894 } 1895 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 1896 return pBuf; 1897 } 1898 1899 /* 1900 ** Rewind the VDBE back to the beginning in preparation for 1901 ** running it. 1902 */ 1903 void sqlite3VdbeRewind(Vdbe *p){ 1904 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1905 int i; 1906 #endif 1907 assert( p!=0 ); 1908 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET ); 1909 1910 /* There should be at least one opcode. 1911 */ 1912 assert( p->nOp>0 ); 1913 1914 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 1915 p->magic = VDBE_MAGIC_RUN; 1916 1917 #ifdef SQLITE_DEBUG 1918 for(i=0; i<p->nMem; i++){ 1919 assert( p->aMem[i].db==p->db ); 1920 } 1921 #endif 1922 p->pc = -1; 1923 p->rc = SQLITE_OK; 1924 p->errorAction = OE_Abort; 1925 p->nChange = 0; 1926 p->cacheCtr = 1; 1927 p->minWriteFileFormat = 255; 1928 p->iStatement = 0; 1929 p->nFkConstraint = 0; 1930 #ifdef VDBE_PROFILE 1931 for(i=0; i<p->nOp; i++){ 1932 p->aOp[i].cnt = 0; 1933 p->aOp[i].cycles = 0; 1934 } 1935 #endif 1936 } 1937 1938 /* 1939 ** Prepare a virtual machine for execution for the first time after 1940 ** creating the virtual machine. This involves things such 1941 ** as allocating registers and initializing the program counter. 1942 ** After the VDBE has be prepped, it can be executed by one or more 1943 ** calls to sqlite3VdbeExec(). 1944 ** 1945 ** This function may be called exactly once on each virtual machine. 1946 ** After this routine is called the VM has been "packaged" and is ready 1947 ** to run. After this routine is called, further calls to 1948 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 1949 ** the Vdbe from the Parse object that helped generate it so that the 1950 ** the Vdbe becomes an independent entity and the Parse object can be 1951 ** destroyed. 1952 ** 1953 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 1954 ** to its initial state after it has been run. 1955 */ 1956 void sqlite3VdbeMakeReady( 1957 Vdbe *p, /* The VDBE */ 1958 Parse *pParse /* Parsing context */ 1959 ){ 1960 sqlite3 *db; /* The database connection */ 1961 int nVar; /* Number of parameters */ 1962 int nMem; /* Number of VM memory registers */ 1963 int nCursor; /* Number of cursors required */ 1964 int nArg; /* Number of arguments in subprograms */ 1965 int n; /* Loop counter */ 1966 struct ReusableSpace x; /* Reusable bulk memory */ 1967 1968 assert( p!=0 ); 1969 assert( p->nOp>0 ); 1970 assert( pParse!=0 ); 1971 assert( p->magic==VDBE_MAGIC_INIT ); 1972 assert( pParse==p->pParse ); 1973 db = p->db; 1974 assert( db->mallocFailed==0 ); 1975 nVar = pParse->nVar; 1976 nMem = pParse->nMem; 1977 nCursor = pParse->nTab; 1978 nArg = pParse->nMaxArg; 1979 1980 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 1981 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 1982 ** space at the end of aMem[] for cursors 1 and greater. 1983 ** See also: allocateCursor(). 1984 */ 1985 nMem += nCursor; 1986 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 1987 1988 /* Figure out how much reusable memory is available at the end of the 1989 ** opcode array. This extra memory will be reallocated for other elements 1990 ** of the prepared statement. 1991 */ 1992 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 1993 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 1994 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 1995 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 1996 assert( x.nFree>=0 ); 1997 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 1998 1999 resolveP2Values(p, &nArg); 2000 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 2001 if( pParse->explain && nMem<10 ){ 2002 nMem = 10; 2003 } 2004 p->expired = 0; 2005 2006 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 2007 ** passes. On the first pass, we try to reuse unused memory at the 2008 ** end of the opcode array. If we are unable to satisfy all memory 2009 ** requirements by reusing the opcode array tail, then the second 2010 ** pass will fill in the remainder using a fresh memory allocation. 2011 ** 2012 ** This two-pass approach that reuses as much memory as possible from 2013 ** the leftover memory at the end of the opcode array. This can significantly 2014 ** reduce the amount of memory held by a prepared statement. 2015 */ 2016 do { 2017 x.nNeeded = 0; 2018 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 2019 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 2020 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 2021 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 2022 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2023 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 2024 #endif 2025 if( x.nNeeded==0 ) break; 2026 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 2027 x.nFree = x.nNeeded; 2028 }while( !db->mallocFailed ); 2029 2030 p->pVList = pParse->pVList; 2031 pParse->pVList = 0; 2032 p->explain = pParse->explain; 2033 if( db->mallocFailed ){ 2034 p->nVar = 0; 2035 p->nCursor = 0; 2036 p->nMem = 0; 2037 }else{ 2038 p->nCursor = nCursor; 2039 p->nVar = (ynVar)nVar; 2040 initMemArray(p->aVar, nVar, db, MEM_Null); 2041 p->nMem = nMem; 2042 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2043 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2044 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2045 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2046 #endif 2047 } 2048 sqlite3VdbeRewind(p); 2049 } 2050 2051 /* 2052 ** Close a VDBE cursor and release all the resources that cursor 2053 ** happens to hold. 2054 */ 2055 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2056 if( pCx==0 ){ 2057 return; 2058 } 2059 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE ); 2060 switch( pCx->eCurType ){ 2061 case CURTYPE_SORTER: { 2062 sqlite3VdbeSorterClose(p->db, pCx); 2063 break; 2064 } 2065 case CURTYPE_BTREE: { 2066 if( pCx->isEphemeral ){ 2067 if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx); 2068 /* The pCx->pCursor will be close automatically, if it exists, by 2069 ** the call above. */ 2070 }else{ 2071 assert( pCx->uc.pCursor!=0 ); 2072 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2073 } 2074 break; 2075 } 2076 #ifndef SQLITE_OMIT_VIRTUALTABLE 2077 case CURTYPE_VTAB: { 2078 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2079 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2080 assert( pVCur->pVtab->nRef>0 ); 2081 pVCur->pVtab->nRef--; 2082 pModule->xClose(pVCur); 2083 break; 2084 } 2085 #endif 2086 } 2087 } 2088 2089 /* 2090 ** Close all cursors in the current frame. 2091 */ 2092 static void closeCursorsInFrame(Vdbe *p){ 2093 if( p->apCsr ){ 2094 int i; 2095 for(i=0; i<p->nCursor; i++){ 2096 VdbeCursor *pC = p->apCsr[i]; 2097 if( pC ){ 2098 sqlite3VdbeFreeCursor(p, pC); 2099 p->apCsr[i] = 0; 2100 } 2101 } 2102 } 2103 } 2104 2105 /* 2106 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2107 ** is used, for example, when a trigger sub-program is halted to restore 2108 ** control to the main program. 2109 */ 2110 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2111 Vdbe *v = pFrame->v; 2112 closeCursorsInFrame(v); 2113 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2114 v->anExec = pFrame->anExec; 2115 #endif 2116 v->aOp = pFrame->aOp; 2117 v->nOp = pFrame->nOp; 2118 v->aMem = pFrame->aMem; 2119 v->nMem = pFrame->nMem; 2120 v->apCsr = pFrame->apCsr; 2121 v->nCursor = pFrame->nCursor; 2122 v->db->lastRowid = pFrame->lastRowid; 2123 v->nChange = pFrame->nChange; 2124 v->db->nChange = pFrame->nDbChange; 2125 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2126 v->pAuxData = pFrame->pAuxData; 2127 pFrame->pAuxData = 0; 2128 return pFrame->pc; 2129 } 2130 2131 /* 2132 ** Close all cursors. 2133 ** 2134 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2135 ** cell array. This is necessary as the memory cell array may contain 2136 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2137 ** open cursors. 2138 */ 2139 static void closeAllCursors(Vdbe *p){ 2140 if( p->pFrame ){ 2141 VdbeFrame *pFrame; 2142 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2143 sqlite3VdbeFrameRestore(pFrame); 2144 p->pFrame = 0; 2145 p->nFrame = 0; 2146 } 2147 assert( p->nFrame==0 ); 2148 closeCursorsInFrame(p); 2149 if( p->aMem ){ 2150 releaseMemArray(p->aMem, p->nMem); 2151 } 2152 while( p->pDelFrame ){ 2153 VdbeFrame *pDel = p->pDelFrame; 2154 p->pDelFrame = pDel->pParent; 2155 sqlite3VdbeFrameDelete(pDel); 2156 } 2157 2158 /* Delete any auxdata allocations made by the VM */ 2159 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2160 assert( p->pAuxData==0 ); 2161 } 2162 2163 /* 2164 ** Set the number of result columns that will be returned by this SQL 2165 ** statement. This is now set at compile time, rather than during 2166 ** execution of the vdbe program so that sqlite3_column_count() can 2167 ** be called on an SQL statement before sqlite3_step(). 2168 */ 2169 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2170 int n; 2171 sqlite3 *db = p->db; 2172 2173 if( p->nResColumn ){ 2174 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2175 sqlite3DbFree(db, p->aColName); 2176 } 2177 n = nResColumn*COLNAME_N; 2178 p->nResColumn = (u16)nResColumn; 2179 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2180 if( p->aColName==0 ) return; 2181 initMemArray(p->aColName, n, db, MEM_Null); 2182 } 2183 2184 /* 2185 ** Set the name of the idx'th column to be returned by the SQL statement. 2186 ** zName must be a pointer to a nul terminated string. 2187 ** 2188 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2189 ** 2190 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2191 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2192 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2193 */ 2194 int sqlite3VdbeSetColName( 2195 Vdbe *p, /* Vdbe being configured */ 2196 int idx, /* Index of column zName applies to */ 2197 int var, /* One of the COLNAME_* constants */ 2198 const char *zName, /* Pointer to buffer containing name */ 2199 void (*xDel)(void*) /* Memory management strategy for zName */ 2200 ){ 2201 int rc; 2202 Mem *pColName; 2203 assert( idx<p->nResColumn ); 2204 assert( var<COLNAME_N ); 2205 if( p->db->mallocFailed ){ 2206 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2207 return SQLITE_NOMEM_BKPT; 2208 } 2209 assert( p->aColName!=0 ); 2210 pColName = &(p->aColName[idx+var*p->nResColumn]); 2211 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2212 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2213 return rc; 2214 } 2215 2216 /* 2217 ** A read or write transaction may or may not be active on database handle 2218 ** db. If a transaction is active, commit it. If there is a 2219 ** write-transaction spanning more than one database file, this routine 2220 ** takes care of the master journal trickery. 2221 */ 2222 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2223 int i; 2224 int nTrans = 0; /* Number of databases with an active write-transaction 2225 ** that are candidates for a two-phase commit using a 2226 ** master-journal */ 2227 int rc = SQLITE_OK; 2228 int needXcommit = 0; 2229 2230 #ifdef SQLITE_OMIT_VIRTUALTABLE 2231 /* With this option, sqlite3VtabSync() is defined to be simply 2232 ** SQLITE_OK so p is not used. 2233 */ 2234 UNUSED_PARAMETER(p); 2235 #endif 2236 2237 /* Before doing anything else, call the xSync() callback for any 2238 ** virtual module tables written in this transaction. This has to 2239 ** be done before determining whether a master journal file is 2240 ** required, as an xSync() callback may add an attached database 2241 ** to the transaction. 2242 */ 2243 rc = sqlite3VtabSync(db, p); 2244 2245 /* This loop determines (a) if the commit hook should be invoked and 2246 ** (b) how many database files have open write transactions, not 2247 ** including the temp database. (b) is important because if more than 2248 ** one database file has an open write transaction, a master journal 2249 ** file is required for an atomic commit. 2250 */ 2251 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2252 Btree *pBt = db->aDb[i].pBt; 2253 if( sqlite3BtreeIsInTrans(pBt) ){ 2254 /* Whether or not a database might need a master journal depends upon 2255 ** its journal mode (among other things). This matrix determines which 2256 ** journal modes use a master journal and which do not */ 2257 static const u8 aMJNeeded[] = { 2258 /* DELETE */ 1, 2259 /* PERSIST */ 1, 2260 /* OFF */ 0, 2261 /* TRUNCATE */ 1, 2262 /* MEMORY */ 0, 2263 /* WAL */ 0 2264 }; 2265 Pager *pPager; /* Pager associated with pBt */ 2266 needXcommit = 1; 2267 sqlite3BtreeEnter(pBt); 2268 pPager = sqlite3BtreePager(pBt); 2269 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2270 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2271 ){ 2272 assert( i!=1 ); 2273 nTrans++; 2274 } 2275 rc = sqlite3PagerExclusiveLock(pPager); 2276 sqlite3BtreeLeave(pBt); 2277 } 2278 } 2279 if( rc!=SQLITE_OK ){ 2280 return rc; 2281 } 2282 2283 /* If there are any write-transactions at all, invoke the commit hook */ 2284 if( needXcommit && db->xCommitCallback ){ 2285 rc = db->xCommitCallback(db->pCommitArg); 2286 if( rc ){ 2287 return SQLITE_CONSTRAINT_COMMITHOOK; 2288 } 2289 } 2290 2291 /* The simple case - no more than one database file (not counting the 2292 ** TEMP database) has a transaction active. There is no need for the 2293 ** master-journal. 2294 ** 2295 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2296 ** string, it means the main database is :memory: or a temp file. In 2297 ** that case we do not support atomic multi-file commits, so use the 2298 ** simple case then too. 2299 */ 2300 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2301 || nTrans<=1 2302 ){ 2303 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2304 Btree *pBt = db->aDb[i].pBt; 2305 if( pBt ){ 2306 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2307 } 2308 } 2309 2310 /* Do the commit only if all databases successfully complete phase 1. 2311 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2312 ** IO error while deleting or truncating a journal file. It is unlikely, 2313 ** but could happen. In this case abandon processing and return the error. 2314 */ 2315 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2316 Btree *pBt = db->aDb[i].pBt; 2317 if( pBt ){ 2318 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2319 } 2320 } 2321 if( rc==SQLITE_OK ){ 2322 sqlite3VtabCommit(db); 2323 } 2324 } 2325 2326 /* The complex case - There is a multi-file write-transaction active. 2327 ** This requires a master journal file to ensure the transaction is 2328 ** committed atomically. 2329 */ 2330 #ifndef SQLITE_OMIT_DISKIO 2331 else{ 2332 sqlite3_vfs *pVfs = db->pVfs; 2333 char *zMaster = 0; /* File-name for the master journal */ 2334 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2335 sqlite3_file *pMaster = 0; 2336 i64 offset = 0; 2337 int res; 2338 int retryCount = 0; 2339 int nMainFile; 2340 2341 /* Select a master journal file name */ 2342 nMainFile = sqlite3Strlen30(zMainFile); 2343 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); 2344 if( zMaster==0 ) return SQLITE_NOMEM_BKPT; 2345 do { 2346 u32 iRandom; 2347 if( retryCount ){ 2348 if( retryCount>100 ){ 2349 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 2350 sqlite3OsDelete(pVfs, zMaster, 0); 2351 break; 2352 }else if( retryCount==1 ){ 2353 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2354 } 2355 } 2356 retryCount++; 2357 sqlite3_randomness(sizeof(iRandom), &iRandom); 2358 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2359 (iRandom>>8)&0xffffff, iRandom&0xff); 2360 /* The antipenultimate character of the master journal name must 2361 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2362 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2363 sqlite3FileSuffix3(zMainFile, zMaster); 2364 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2365 }while( rc==SQLITE_OK && res ); 2366 if( rc==SQLITE_OK ){ 2367 /* Open the master journal. */ 2368 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2369 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2370 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2371 ); 2372 } 2373 if( rc!=SQLITE_OK ){ 2374 sqlite3DbFree(db, zMaster); 2375 return rc; 2376 } 2377 2378 /* Write the name of each database file in the transaction into the new 2379 ** master journal file. If an error occurs at this point close 2380 ** and delete the master journal file. All the individual journal files 2381 ** still have 'null' as the master journal pointer, so they will roll 2382 ** back independently if a failure occurs. 2383 */ 2384 for(i=0; i<db->nDb; i++){ 2385 Btree *pBt = db->aDb[i].pBt; 2386 if( sqlite3BtreeIsInTrans(pBt) ){ 2387 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2388 if( zFile==0 ){ 2389 continue; /* Ignore TEMP and :memory: databases */ 2390 } 2391 assert( zFile[0]!=0 ); 2392 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2393 offset += sqlite3Strlen30(zFile)+1; 2394 if( rc!=SQLITE_OK ){ 2395 sqlite3OsCloseFree(pMaster); 2396 sqlite3OsDelete(pVfs, zMaster, 0); 2397 sqlite3DbFree(db, zMaster); 2398 return rc; 2399 } 2400 } 2401 } 2402 2403 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2404 ** flag is set this is not required. 2405 */ 2406 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2407 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2408 ){ 2409 sqlite3OsCloseFree(pMaster); 2410 sqlite3OsDelete(pVfs, zMaster, 0); 2411 sqlite3DbFree(db, zMaster); 2412 return rc; 2413 } 2414 2415 /* Sync all the db files involved in the transaction. The same call 2416 ** sets the master journal pointer in each individual journal. If 2417 ** an error occurs here, do not delete the master journal file. 2418 ** 2419 ** If the error occurs during the first call to 2420 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2421 ** master journal file will be orphaned. But we cannot delete it, 2422 ** in case the master journal file name was written into the journal 2423 ** file before the failure occurred. 2424 */ 2425 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2426 Btree *pBt = db->aDb[i].pBt; 2427 if( pBt ){ 2428 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2429 } 2430 } 2431 sqlite3OsCloseFree(pMaster); 2432 assert( rc!=SQLITE_BUSY ); 2433 if( rc!=SQLITE_OK ){ 2434 sqlite3DbFree(db, zMaster); 2435 return rc; 2436 } 2437 2438 /* Delete the master journal file. This commits the transaction. After 2439 ** doing this the directory is synced again before any individual 2440 ** transaction files are deleted. 2441 */ 2442 rc = sqlite3OsDelete(pVfs, zMaster, 1); 2443 sqlite3DbFree(db, zMaster); 2444 zMaster = 0; 2445 if( rc ){ 2446 return rc; 2447 } 2448 2449 /* All files and directories have already been synced, so the following 2450 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2451 ** deleting or truncating journals. If something goes wrong while 2452 ** this is happening we don't really care. The integrity of the 2453 ** transaction is already guaranteed, but some stray 'cold' journals 2454 ** may be lying around. Returning an error code won't help matters. 2455 */ 2456 disable_simulated_io_errors(); 2457 sqlite3BeginBenignMalloc(); 2458 for(i=0; i<db->nDb; i++){ 2459 Btree *pBt = db->aDb[i].pBt; 2460 if( pBt ){ 2461 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2462 } 2463 } 2464 sqlite3EndBenignMalloc(); 2465 enable_simulated_io_errors(); 2466 2467 sqlite3VtabCommit(db); 2468 } 2469 #endif 2470 2471 return rc; 2472 } 2473 2474 /* 2475 ** This routine checks that the sqlite3.nVdbeActive count variable 2476 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2477 ** currently active. An assertion fails if the two counts do not match. 2478 ** This is an internal self-check only - it is not an essential processing 2479 ** step. 2480 ** 2481 ** This is a no-op if NDEBUG is defined. 2482 */ 2483 #ifndef NDEBUG 2484 static void checkActiveVdbeCnt(sqlite3 *db){ 2485 Vdbe *p; 2486 int cnt = 0; 2487 int nWrite = 0; 2488 int nRead = 0; 2489 p = db->pVdbe; 2490 while( p ){ 2491 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2492 cnt++; 2493 if( p->readOnly==0 ) nWrite++; 2494 if( p->bIsReader ) nRead++; 2495 } 2496 p = p->pNext; 2497 } 2498 assert( cnt==db->nVdbeActive ); 2499 assert( nWrite==db->nVdbeWrite ); 2500 assert( nRead==db->nVdbeRead ); 2501 } 2502 #else 2503 #define checkActiveVdbeCnt(x) 2504 #endif 2505 2506 /* 2507 ** If the Vdbe passed as the first argument opened a statement-transaction, 2508 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2509 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2510 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2511 ** statement transaction is committed. 2512 ** 2513 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2514 ** Otherwise SQLITE_OK. 2515 */ 2516 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 2517 sqlite3 *const db = p->db; 2518 int rc = SQLITE_OK; 2519 int i; 2520 const int iSavepoint = p->iStatement-1; 2521 2522 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2523 assert( db->nStatement>0 ); 2524 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2525 2526 for(i=0; i<db->nDb; i++){ 2527 int rc2 = SQLITE_OK; 2528 Btree *pBt = db->aDb[i].pBt; 2529 if( pBt ){ 2530 if( eOp==SAVEPOINT_ROLLBACK ){ 2531 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2532 } 2533 if( rc2==SQLITE_OK ){ 2534 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2535 } 2536 if( rc==SQLITE_OK ){ 2537 rc = rc2; 2538 } 2539 } 2540 } 2541 db->nStatement--; 2542 p->iStatement = 0; 2543 2544 if( rc==SQLITE_OK ){ 2545 if( eOp==SAVEPOINT_ROLLBACK ){ 2546 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2547 } 2548 if( rc==SQLITE_OK ){ 2549 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2550 } 2551 } 2552 2553 /* If the statement transaction is being rolled back, also restore the 2554 ** database handles deferred constraint counter to the value it had when 2555 ** the statement transaction was opened. */ 2556 if( eOp==SAVEPOINT_ROLLBACK ){ 2557 db->nDeferredCons = p->nStmtDefCons; 2558 db->nDeferredImmCons = p->nStmtDefImmCons; 2559 } 2560 return rc; 2561 } 2562 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2563 if( p->db->nStatement && p->iStatement ){ 2564 return vdbeCloseStatement(p, eOp); 2565 } 2566 return SQLITE_OK; 2567 } 2568 2569 2570 /* 2571 ** This function is called when a transaction opened by the database 2572 ** handle associated with the VM passed as an argument is about to be 2573 ** committed. If there are outstanding deferred foreign key constraint 2574 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2575 ** 2576 ** If there are outstanding FK violations and this function returns 2577 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2578 ** and write an error message to it. Then return SQLITE_ERROR. 2579 */ 2580 #ifndef SQLITE_OMIT_FOREIGN_KEY 2581 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2582 sqlite3 *db = p->db; 2583 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2584 || (!deferred && p->nFkConstraint>0) 2585 ){ 2586 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2587 p->errorAction = OE_Abort; 2588 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2589 return SQLITE_ERROR; 2590 } 2591 return SQLITE_OK; 2592 } 2593 #endif 2594 2595 /* 2596 ** This routine is called the when a VDBE tries to halt. If the VDBE 2597 ** has made changes and is in autocommit mode, then commit those 2598 ** changes. If a rollback is needed, then do the rollback. 2599 ** 2600 ** This routine is the only way to move the state of a VM from 2601 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2602 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2603 ** 2604 ** Return an error code. If the commit could not complete because of 2605 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2606 ** means the close did not happen and needs to be repeated. 2607 */ 2608 int sqlite3VdbeHalt(Vdbe *p){ 2609 int rc; /* Used to store transient return codes */ 2610 sqlite3 *db = p->db; 2611 2612 /* This function contains the logic that determines if a statement or 2613 ** transaction will be committed or rolled back as a result of the 2614 ** execution of this virtual machine. 2615 ** 2616 ** If any of the following errors occur: 2617 ** 2618 ** SQLITE_NOMEM 2619 ** SQLITE_IOERR 2620 ** SQLITE_FULL 2621 ** SQLITE_INTERRUPT 2622 ** 2623 ** Then the internal cache might have been left in an inconsistent 2624 ** state. We need to rollback the statement transaction, if there is 2625 ** one, or the complete transaction if there is no statement transaction. 2626 */ 2627 2628 if( p->magic!=VDBE_MAGIC_RUN ){ 2629 return SQLITE_OK; 2630 } 2631 if( db->mallocFailed ){ 2632 p->rc = SQLITE_NOMEM_BKPT; 2633 } 2634 closeAllCursors(p); 2635 checkActiveVdbeCnt(db); 2636 2637 /* No commit or rollback needed if the program never started or if the 2638 ** SQL statement does not read or write a database file. */ 2639 if( p->pc>=0 && p->bIsReader ){ 2640 int mrc; /* Primary error code from p->rc */ 2641 int eStatementOp = 0; 2642 int isSpecialError; /* Set to true if a 'special' error */ 2643 2644 /* Lock all btrees used by the statement */ 2645 sqlite3VdbeEnter(p); 2646 2647 /* Check for one of the special errors */ 2648 mrc = p->rc & 0xff; 2649 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2650 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2651 if( isSpecialError ){ 2652 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2653 ** no rollback is necessary. Otherwise, at least a savepoint 2654 ** transaction must be rolled back to restore the database to a 2655 ** consistent state. 2656 ** 2657 ** Even if the statement is read-only, it is important to perform 2658 ** a statement or transaction rollback operation. If the error 2659 ** occurred while writing to the journal, sub-journal or database 2660 ** file as part of an effort to free up cache space (see function 2661 ** pagerStress() in pager.c), the rollback is required to restore 2662 ** the pager to a consistent state. 2663 */ 2664 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2665 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2666 eStatementOp = SAVEPOINT_ROLLBACK; 2667 }else{ 2668 /* We are forced to roll back the active transaction. Before doing 2669 ** so, abort any other statements this handle currently has active. 2670 */ 2671 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2672 sqlite3CloseSavepoints(db); 2673 db->autoCommit = 1; 2674 p->nChange = 0; 2675 } 2676 } 2677 } 2678 2679 /* Check for immediate foreign key violations. */ 2680 if( p->rc==SQLITE_OK ){ 2681 sqlite3VdbeCheckFk(p, 0); 2682 } 2683 2684 /* If the auto-commit flag is set and this is the only active writer 2685 ** VM, then we do either a commit or rollback of the current transaction. 2686 ** 2687 ** Note: This block also runs if one of the special errors handled 2688 ** above has occurred. 2689 */ 2690 if( !sqlite3VtabInSync(db) 2691 && db->autoCommit 2692 && db->nVdbeWrite==(p->readOnly==0) 2693 ){ 2694 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2695 rc = sqlite3VdbeCheckFk(p, 1); 2696 if( rc!=SQLITE_OK ){ 2697 if( NEVER(p->readOnly) ){ 2698 sqlite3VdbeLeave(p); 2699 return SQLITE_ERROR; 2700 } 2701 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2702 }else{ 2703 /* The auto-commit flag is true, the vdbe program was successful 2704 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2705 ** key constraints to hold up the transaction. This means a commit 2706 ** is required. */ 2707 rc = vdbeCommit(db, p); 2708 } 2709 if( rc==SQLITE_BUSY && p->readOnly ){ 2710 sqlite3VdbeLeave(p); 2711 return SQLITE_BUSY; 2712 }else if( rc!=SQLITE_OK ){ 2713 p->rc = rc; 2714 sqlite3RollbackAll(db, SQLITE_OK); 2715 p->nChange = 0; 2716 }else{ 2717 db->nDeferredCons = 0; 2718 db->nDeferredImmCons = 0; 2719 db->flags &= ~SQLITE_DeferFKs; 2720 sqlite3CommitInternalChanges(db); 2721 } 2722 }else{ 2723 sqlite3RollbackAll(db, SQLITE_OK); 2724 p->nChange = 0; 2725 } 2726 db->nStatement = 0; 2727 }else if( eStatementOp==0 ){ 2728 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2729 eStatementOp = SAVEPOINT_RELEASE; 2730 }else if( p->errorAction==OE_Abort ){ 2731 eStatementOp = SAVEPOINT_ROLLBACK; 2732 }else{ 2733 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2734 sqlite3CloseSavepoints(db); 2735 db->autoCommit = 1; 2736 p->nChange = 0; 2737 } 2738 } 2739 2740 /* If eStatementOp is non-zero, then a statement transaction needs to 2741 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2742 ** do so. If this operation returns an error, and the current statement 2743 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2744 ** current statement error code. 2745 */ 2746 if( eStatementOp ){ 2747 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2748 if( rc ){ 2749 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 2750 p->rc = rc; 2751 sqlite3DbFree(db, p->zErrMsg); 2752 p->zErrMsg = 0; 2753 } 2754 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2755 sqlite3CloseSavepoints(db); 2756 db->autoCommit = 1; 2757 p->nChange = 0; 2758 } 2759 } 2760 2761 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2762 ** has been rolled back, update the database connection change-counter. 2763 */ 2764 if( p->changeCntOn ){ 2765 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2766 sqlite3VdbeSetChanges(db, p->nChange); 2767 }else{ 2768 sqlite3VdbeSetChanges(db, 0); 2769 } 2770 p->nChange = 0; 2771 } 2772 2773 /* Release the locks */ 2774 sqlite3VdbeLeave(p); 2775 } 2776 2777 /* We have successfully halted and closed the VM. Record this fact. */ 2778 if( p->pc>=0 ){ 2779 db->nVdbeActive--; 2780 if( !p->readOnly ) db->nVdbeWrite--; 2781 if( p->bIsReader ) db->nVdbeRead--; 2782 assert( db->nVdbeActive>=db->nVdbeRead ); 2783 assert( db->nVdbeRead>=db->nVdbeWrite ); 2784 assert( db->nVdbeWrite>=0 ); 2785 } 2786 p->magic = VDBE_MAGIC_HALT; 2787 checkActiveVdbeCnt(db); 2788 if( db->mallocFailed ){ 2789 p->rc = SQLITE_NOMEM_BKPT; 2790 } 2791 2792 /* If the auto-commit flag is set to true, then any locks that were held 2793 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2794 ** to invoke any required unlock-notify callbacks. 2795 */ 2796 if( db->autoCommit ){ 2797 sqlite3ConnectionUnlocked(db); 2798 } 2799 2800 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 2801 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 2802 } 2803 2804 2805 /* 2806 ** Each VDBE holds the result of the most recent sqlite3_step() call 2807 ** in p->rc. This routine sets that result back to SQLITE_OK. 2808 */ 2809 void sqlite3VdbeResetStepResult(Vdbe *p){ 2810 p->rc = SQLITE_OK; 2811 } 2812 2813 /* 2814 ** Copy the error code and error message belonging to the VDBE passed 2815 ** as the first argument to its database handle (so that they will be 2816 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 2817 ** 2818 ** This function does not clear the VDBE error code or message, just 2819 ** copies them to the database handle. 2820 */ 2821 int sqlite3VdbeTransferError(Vdbe *p){ 2822 sqlite3 *db = p->db; 2823 int rc = p->rc; 2824 if( p->zErrMsg ){ 2825 db->bBenignMalloc++; 2826 sqlite3BeginBenignMalloc(); 2827 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 2828 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 2829 sqlite3EndBenignMalloc(); 2830 db->bBenignMalloc--; 2831 }else if( db->pErr ){ 2832 sqlite3ValueSetNull(db->pErr); 2833 } 2834 db->errCode = rc; 2835 return rc; 2836 } 2837 2838 #ifdef SQLITE_ENABLE_SQLLOG 2839 /* 2840 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 2841 ** invoke it. 2842 */ 2843 static void vdbeInvokeSqllog(Vdbe *v){ 2844 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 2845 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 2846 assert( v->db->init.busy==0 ); 2847 if( zExpanded ){ 2848 sqlite3GlobalConfig.xSqllog( 2849 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 2850 ); 2851 sqlite3DbFree(v->db, zExpanded); 2852 } 2853 } 2854 } 2855 #else 2856 # define vdbeInvokeSqllog(x) 2857 #endif 2858 2859 /* 2860 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 2861 ** Write any error messages into *pzErrMsg. Return the result code. 2862 ** 2863 ** After this routine is run, the VDBE should be ready to be executed 2864 ** again. 2865 ** 2866 ** To look at it another way, this routine resets the state of the 2867 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 2868 ** VDBE_MAGIC_INIT. 2869 */ 2870 int sqlite3VdbeReset(Vdbe *p){ 2871 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 2872 int i; 2873 #endif 2874 2875 sqlite3 *db; 2876 db = p->db; 2877 2878 /* If the VM did not run to completion or if it encountered an 2879 ** error, then it might not have been halted properly. So halt 2880 ** it now. 2881 */ 2882 sqlite3VdbeHalt(p); 2883 2884 /* If the VDBE has be run even partially, then transfer the error code 2885 ** and error message from the VDBE into the main database structure. But 2886 ** if the VDBE has just been set to run but has not actually executed any 2887 ** instructions yet, leave the main database error information unchanged. 2888 */ 2889 if( p->pc>=0 ){ 2890 vdbeInvokeSqllog(p); 2891 sqlite3VdbeTransferError(p); 2892 if( p->runOnlyOnce ) p->expired = 1; 2893 }else if( p->rc && p->expired ){ 2894 /* The expired flag was set on the VDBE before the first call 2895 ** to sqlite3_step(). For consistency (since sqlite3_step() was 2896 ** called), set the database error in this case as well. 2897 */ 2898 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 2899 } 2900 2901 /* Reset register contents and reclaim error message memory. 2902 */ 2903 #ifdef SQLITE_DEBUG 2904 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 2905 ** Vdbe.aMem[] arrays have already been cleaned up. */ 2906 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 2907 if( p->aMem ){ 2908 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 2909 } 2910 #endif 2911 sqlite3DbFree(db, p->zErrMsg); 2912 p->zErrMsg = 0; 2913 p->pResultSet = 0; 2914 2915 /* Save profiling information from this VDBE run. 2916 */ 2917 #ifdef VDBE_PROFILE 2918 { 2919 FILE *out = fopen("vdbe_profile.out", "a"); 2920 if( out ){ 2921 fprintf(out, "---- "); 2922 for(i=0; i<p->nOp; i++){ 2923 fprintf(out, "%02x", p->aOp[i].opcode); 2924 } 2925 fprintf(out, "\n"); 2926 if( p->zSql ){ 2927 char c, pc = 0; 2928 fprintf(out, "-- "); 2929 for(i=0; (c = p->zSql[i])!=0; i++){ 2930 if( pc=='\n' ) fprintf(out, "-- "); 2931 putc(c, out); 2932 pc = c; 2933 } 2934 if( pc!='\n' ) fprintf(out, "\n"); 2935 } 2936 for(i=0; i<p->nOp; i++){ 2937 char zHdr[100]; 2938 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 2939 p->aOp[i].cnt, 2940 p->aOp[i].cycles, 2941 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 2942 ); 2943 fprintf(out, "%s", zHdr); 2944 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 2945 } 2946 fclose(out); 2947 } 2948 } 2949 #endif 2950 p->magic = VDBE_MAGIC_RESET; 2951 return p->rc & db->errMask; 2952 } 2953 2954 /* 2955 ** Clean up and delete a VDBE after execution. Return an integer which is 2956 ** the result code. Write any error message text into *pzErrMsg. 2957 */ 2958 int sqlite3VdbeFinalize(Vdbe *p){ 2959 int rc = SQLITE_OK; 2960 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 2961 rc = sqlite3VdbeReset(p); 2962 assert( (rc & p->db->errMask)==rc ); 2963 } 2964 sqlite3VdbeDelete(p); 2965 return rc; 2966 } 2967 2968 /* 2969 ** If parameter iOp is less than zero, then invoke the destructor for 2970 ** all auxiliary data pointers currently cached by the VM passed as 2971 ** the first argument. 2972 ** 2973 ** Or, if iOp is greater than or equal to zero, then the destructor is 2974 ** only invoked for those auxiliary data pointers created by the user 2975 ** function invoked by the OP_Function opcode at instruction iOp of 2976 ** VM pVdbe, and only then if: 2977 ** 2978 ** * the associated function parameter is the 32nd or later (counting 2979 ** from left to right), or 2980 ** 2981 ** * the corresponding bit in argument mask is clear (where the first 2982 ** function parameter corresponds to bit 0 etc.). 2983 */ 2984 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 2985 while( *pp ){ 2986 AuxData *pAux = *pp; 2987 if( (iOp<0) 2988 || (pAux->iAuxOp==iOp 2989 && pAux->iAuxArg>=0 2990 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 2991 ){ 2992 testcase( pAux->iAuxArg==31 ); 2993 if( pAux->xDeleteAux ){ 2994 pAux->xDeleteAux(pAux->pAux); 2995 } 2996 *pp = pAux->pNextAux; 2997 sqlite3DbFree(db, pAux); 2998 }else{ 2999 pp= &pAux->pNextAux; 3000 } 3001 } 3002 } 3003 3004 /* 3005 ** Free all memory associated with the Vdbe passed as the second argument, 3006 ** except for object itself, which is preserved. 3007 ** 3008 ** The difference between this function and sqlite3VdbeDelete() is that 3009 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 3010 ** the database connection and frees the object itself. 3011 */ 3012 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 3013 SubProgram *pSub, *pNext; 3014 assert( p->db==0 || p->db==db ); 3015 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 3016 for(pSub=p->pProgram; pSub; pSub=pNext){ 3017 pNext = pSub->pNext; 3018 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 3019 sqlite3DbFree(db, pSub); 3020 } 3021 if( p->magic!=VDBE_MAGIC_INIT ){ 3022 releaseMemArray(p->aVar, p->nVar); 3023 sqlite3DbFree(db, p->pVList); 3024 sqlite3DbFree(db, p->pFree); 3025 } 3026 vdbeFreeOpArray(db, p->aOp, p->nOp); 3027 sqlite3DbFree(db, p->aColName); 3028 sqlite3DbFree(db, p->zSql); 3029 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3030 { 3031 int i; 3032 for(i=0; i<p->nScan; i++){ 3033 sqlite3DbFree(db, p->aScan[i].zName); 3034 } 3035 sqlite3DbFree(db, p->aScan); 3036 } 3037 #endif 3038 } 3039 3040 /* 3041 ** Delete an entire VDBE. 3042 */ 3043 void sqlite3VdbeDelete(Vdbe *p){ 3044 sqlite3 *db; 3045 3046 assert( p!=0 ); 3047 db = p->db; 3048 assert( sqlite3_mutex_held(db->mutex) ); 3049 sqlite3VdbeClearObject(db, p); 3050 if( p->pPrev ){ 3051 p->pPrev->pNext = p->pNext; 3052 }else{ 3053 assert( db->pVdbe==p ); 3054 db->pVdbe = p->pNext; 3055 } 3056 if( p->pNext ){ 3057 p->pNext->pPrev = p->pPrev; 3058 } 3059 p->magic = VDBE_MAGIC_DEAD; 3060 p->db = 0; 3061 sqlite3DbFreeNN(db, p); 3062 } 3063 3064 /* 3065 ** The cursor "p" has a pending seek operation that has not yet been 3066 ** carried out. Seek the cursor now. If an error occurs, return 3067 ** the appropriate error code. 3068 */ 3069 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ 3070 int res, rc; 3071 #ifdef SQLITE_TEST 3072 extern int sqlite3_search_count; 3073 #endif 3074 assert( p->deferredMoveto ); 3075 assert( p->isTable ); 3076 assert( p->eCurType==CURTYPE_BTREE ); 3077 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); 3078 if( rc ) return rc; 3079 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3080 #ifdef SQLITE_TEST 3081 sqlite3_search_count++; 3082 #endif 3083 p->deferredMoveto = 0; 3084 p->cacheStatus = CACHE_STALE; 3085 return SQLITE_OK; 3086 } 3087 3088 /* 3089 ** Something has moved cursor "p" out of place. Maybe the row it was 3090 ** pointed to was deleted out from under it. Or maybe the btree was 3091 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3092 ** is supposed to be pointing. If the row was deleted out from under the 3093 ** cursor, set the cursor to point to a NULL row. 3094 */ 3095 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 3096 int isDifferentRow, rc; 3097 assert( p->eCurType==CURTYPE_BTREE ); 3098 assert( p->uc.pCursor!=0 ); 3099 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3100 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3101 p->cacheStatus = CACHE_STALE; 3102 if( isDifferentRow ) p->nullRow = 1; 3103 return rc; 3104 } 3105 3106 /* 3107 ** Check to ensure that the cursor is valid. Restore the cursor 3108 ** if need be. Return any I/O error from the restore operation. 3109 */ 3110 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3111 assert( p->eCurType==CURTYPE_BTREE ); 3112 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3113 return handleMovedCursor(p); 3114 } 3115 return SQLITE_OK; 3116 } 3117 3118 /* 3119 ** Make sure the cursor p is ready to read or write the row to which it 3120 ** was last positioned. Return an error code if an OOM fault or I/O error 3121 ** prevents us from positioning the cursor to its correct position. 3122 ** 3123 ** If a MoveTo operation is pending on the given cursor, then do that 3124 ** MoveTo now. If no move is pending, check to see if the row has been 3125 ** deleted out from under the cursor and if it has, mark the row as 3126 ** a NULL row. 3127 ** 3128 ** If the cursor is already pointing to the correct row and that row has 3129 ** not been deleted out from under the cursor, then this routine is a no-op. 3130 */ 3131 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){ 3132 VdbeCursor *p = *pp; 3133 assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO ); 3134 if( p->deferredMoveto ){ 3135 int iMap; 3136 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){ 3137 *pp = p->pAltCursor; 3138 *piCol = iMap - 1; 3139 return SQLITE_OK; 3140 } 3141 return handleDeferredMoveto(p); 3142 } 3143 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3144 return handleMovedCursor(p); 3145 } 3146 return SQLITE_OK; 3147 } 3148 3149 /* 3150 ** The following functions: 3151 ** 3152 ** sqlite3VdbeSerialType() 3153 ** sqlite3VdbeSerialTypeLen() 3154 ** sqlite3VdbeSerialLen() 3155 ** sqlite3VdbeSerialPut() 3156 ** sqlite3VdbeSerialGet() 3157 ** 3158 ** encapsulate the code that serializes values for storage in SQLite 3159 ** data and index records. Each serialized value consists of a 3160 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3161 ** integer, stored as a varint. 3162 ** 3163 ** In an SQLite index record, the serial type is stored directly before 3164 ** the blob of data that it corresponds to. In a table record, all serial 3165 ** types are stored at the start of the record, and the blobs of data at 3166 ** the end. Hence these functions allow the caller to handle the 3167 ** serial-type and data blob separately. 3168 ** 3169 ** The following table describes the various storage classes for data: 3170 ** 3171 ** serial type bytes of data type 3172 ** -------------- --------------- --------------- 3173 ** 0 0 NULL 3174 ** 1 1 signed integer 3175 ** 2 2 signed integer 3176 ** 3 3 signed integer 3177 ** 4 4 signed integer 3178 ** 5 6 signed integer 3179 ** 6 8 signed integer 3180 ** 7 8 IEEE float 3181 ** 8 0 Integer constant 0 3182 ** 9 0 Integer constant 1 3183 ** 10,11 reserved for expansion 3184 ** N>=12 and even (N-12)/2 BLOB 3185 ** N>=13 and odd (N-13)/2 text 3186 ** 3187 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3188 ** of SQLite will not understand those serial types. 3189 */ 3190 3191 /* 3192 ** Return the serial-type for the value stored in pMem. 3193 */ 3194 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3195 int flags = pMem->flags; 3196 u32 n; 3197 3198 assert( pLen!=0 ); 3199 if( flags&MEM_Null ){ 3200 *pLen = 0; 3201 return 0; 3202 } 3203 if( flags&MEM_Int ){ 3204 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3205 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3206 i64 i = pMem->u.i; 3207 u64 u; 3208 if( i<0 ){ 3209 u = ~i; 3210 }else{ 3211 u = i; 3212 } 3213 if( u<=127 ){ 3214 if( (i&1)==i && file_format>=4 ){ 3215 *pLen = 0; 3216 return 8+(u32)u; 3217 }else{ 3218 *pLen = 1; 3219 return 1; 3220 } 3221 } 3222 if( u<=32767 ){ *pLen = 2; return 2; } 3223 if( u<=8388607 ){ *pLen = 3; return 3; } 3224 if( u<=2147483647 ){ *pLen = 4; return 4; } 3225 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3226 *pLen = 8; 3227 return 6; 3228 } 3229 if( flags&MEM_Real ){ 3230 *pLen = 8; 3231 return 7; 3232 } 3233 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3234 assert( pMem->n>=0 ); 3235 n = (u32)pMem->n; 3236 if( flags & MEM_Zero ){ 3237 n += pMem->u.nZero; 3238 } 3239 *pLen = n; 3240 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3241 } 3242 3243 /* 3244 ** The sizes for serial types less than 128 3245 */ 3246 static const u8 sqlite3SmallTypeSizes[] = { 3247 /* 0 1 2 3 4 5 6 7 8 9 */ 3248 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3249 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3250 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3251 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3252 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3253 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3254 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3255 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3256 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3257 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3258 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3259 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3260 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3261 }; 3262 3263 /* 3264 ** Return the length of the data corresponding to the supplied serial-type. 3265 */ 3266 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3267 if( serial_type>=128 ){ 3268 return (serial_type-12)/2; 3269 }else{ 3270 assert( serial_type<12 3271 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3272 return sqlite3SmallTypeSizes[serial_type]; 3273 } 3274 } 3275 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3276 assert( serial_type<128 ); 3277 return sqlite3SmallTypeSizes[serial_type]; 3278 } 3279 3280 /* 3281 ** If we are on an architecture with mixed-endian floating 3282 ** points (ex: ARM7) then swap the lower 4 bytes with the 3283 ** upper 4 bytes. Return the result. 3284 ** 3285 ** For most architectures, this is a no-op. 3286 ** 3287 ** (later): It is reported to me that the mixed-endian problem 3288 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3289 ** that early versions of GCC stored the two words of a 64-bit 3290 ** float in the wrong order. And that error has been propagated 3291 ** ever since. The blame is not necessarily with GCC, though. 3292 ** GCC might have just copying the problem from a prior compiler. 3293 ** I am also told that newer versions of GCC that follow a different 3294 ** ABI get the byte order right. 3295 ** 3296 ** Developers using SQLite on an ARM7 should compile and run their 3297 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3298 ** enabled, some asserts below will ensure that the byte order of 3299 ** floating point values is correct. 3300 ** 3301 ** (2007-08-30) Frank van Vugt has studied this problem closely 3302 ** and has send his findings to the SQLite developers. Frank 3303 ** writes that some Linux kernels offer floating point hardware 3304 ** emulation that uses only 32-bit mantissas instead of a full 3305 ** 48-bits as required by the IEEE standard. (This is the 3306 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3307 ** byte swapping becomes very complicated. To avoid problems, 3308 ** the necessary byte swapping is carried out using a 64-bit integer 3309 ** rather than a 64-bit float. Frank assures us that the code here 3310 ** works for him. We, the developers, have no way to independently 3311 ** verify this, but Frank seems to know what he is talking about 3312 ** so we trust him. 3313 */ 3314 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3315 static u64 floatSwap(u64 in){ 3316 union { 3317 u64 r; 3318 u32 i[2]; 3319 } u; 3320 u32 t; 3321 3322 u.r = in; 3323 t = u.i[0]; 3324 u.i[0] = u.i[1]; 3325 u.i[1] = t; 3326 return u.r; 3327 } 3328 # define swapMixedEndianFloat(X) X = floatSwap(X) 3329 #else 3330 # define swapMixedEndianFloat(X) 3331 #endif 3332 3333 /* 3334 ** Write the serialized data blob for the value stored in pMem into 3335 ** buf. It is assumed that the caller has allocated sufficient space. 3336 ** Return the number of bytes written. 3337 ** 3338 ** nBuf is the amount of space left in buf[]. The caller is responsible 3339 ** for allocating enough space to buf[] to hold the entire field, exclusive 3340 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3341 ** 3342 ** Return the number of bytes actually written into buf[]. The number 3343 ** of bytes in the zero-filled tail is included in the return value only 3344 ** if those bytes were zeroed in buf[]. 3345 */ 3346 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3347 u32 len; 3348 3349 /* Integer and Real */ 3350 if( serial_type<=7 && serial_type>0 ){ 3351 u64 v; 3352 u32 i; 3353 if( serial_type==7 ){ 3354 assert( sizeof(v)==sizeof(pMem->u.r) ); 3355 memcpy(&v, &pMem->u.r, sizeof(v)); 3356 swapMixedEndianFloat(v); 3357 }else{ 3358 v = pMem->u.i; 3359 } 3360 len = i = sqlite3SmallTypeSizes[serial_type]; 3361 assert( i>0 ); 3362 do{ 3363 buf[--i] = (u8)(v&0xFF); 3364 v >>= 8; 3365 }while( i ); 3366 return len; 3367 } 3368 3369 /* String or blob */ 3370 if( serial_type>=12 ){ 3371 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3372 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3373 len = pMem->n; 3374 if( len>0 ) memcpy(buf, pMem->z, len); 3375 return len; 3376 } 3377 3378 /* NULL or constants 0 or 1 */ 3379 return 0; 3380 } 3381 3382 /* Input "x" is a sequence of unsigned characters that represent a 3383 ** big-endian integer. Return the equivalent native integer 3384 */ 3385 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3386 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3387 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3388 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3389 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3390 3391 /* 3392 ** Deserialize the data blob pointed to by buf as serial type serial_type 3393 ** and store the result in pMem. Return the number of bytes read. 3394 ** 3395 ** This function is implemented as two separate routines for performance. 3396 ** The few cases that require local variables are broken out into a separate 3397 ** routine so that in most cases the overhead of moving the stack pointer 3398 ** is avoided. 3399 */ 3400 static u32 SQLITE_NOINLINE serialGet( 3401 const unsigned char *buf, /* Buffer to deserialize from */ 3402 u32 serial_type, /* Serial type to deserialize */ 3403 Mem *pMem /* Memory cell to write value into */ 3404 ){ 3405 u64 x = FOUR_BYTE_UINT(buf); 3406 u32 y = FOUR_BYTE_UINT(buf+4); 3407 x = (x<<32) + y; 3408 if( serial_type==6 ){ 3409 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3410 ** twos-complement integer. */ 3411 pMem->u.i = *(i64*)&x; 3412 pMem->flags = MEM_Int; 3413 testcase( pMem->u.i<0 ); 3414 }else{ 3415 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3416 ** floating point number. */ 3417 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3418 /* Verify that integers and floating point values use the same 3419 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3420 ** defined that 64-bit floating point values really are mixed 3421 ** endian. 3422 */ 3423 static const u64 t1 = ((u64)0x3ff00000)<<32; 3424 static const double r1 = 1.0; 3425 u64 t2 = t1; 3426 swapMixedEndianFloat(t2); 3427 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3428 #endif 3429 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3430 swapMixedEndianFloat(x); 3431 memcpy(&pMem->u.r, &x, sizeof(x)); 3432 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; 3433 } 3434 return 8; 3435 } 3436 u32 sqlite3VdbeSerialGet( 3437 const unsigned char *buf, /* Buffer to deserialize from */ 3438 u32 serial_type, /* Serial type to deserialize */ 3439 Mem *pMem /* Memory cell to write value into */ 3440 ){ 3441 switch( serial_type ){ 3442 case 10: /* Reserved for future use */ 3443 case 11: /* Reserved for future use */ 3444 case 0: { /* Null */ 3445 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3446 pMem->flags = MEM_Null; 3447 break; 3448 } 3449 case 1: { 3450 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3451 ** integer. */ 3452 pMem->u.i = ONE_BYTE_INT(buf); 3453 pMem->flags = MEM_Int; 3454 testcase( pMem->u.i<0 ); 3455 return 1; 3456 } 3457 case 2: { /* 2-byte signed integer */ 3458 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3459 ** twos-complement integer. */ 3460 pMem->u.i = TWO_BYTE_INT(buf); 3461 pMem->flags = MEM_Int; 3462 testcase( pMem->u.i<0 ); 3463 return 2; 3464 } 3465 case 3: { /* 3-byte signed integer */ 3466 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3467 ** twos-complement integer. */ 3468 pMem->u.i = THREE_BYTE_INT(buf); 3469 pMem->flags = MEM_Int; 3470 testcase( pMem->u.i<0 ); 3471 return 3; 3472 } 3473 case 4: { /* 4-byte signed integer */ 3474 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3475 ** twos-complement integer. */ 3476 pMem->u.i = FOUR_BYTE_INT(buf); 3477 #ifdef __HP_cc 3478 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3479 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3480 #endif 3481 pMem->flags = MEM_Int; 3482 testcase( pMem->u.i<0 ); 3483 return 4; 3484 } 3485 case 5: { /* 6-byte signed integer */ 3486 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3487 ** twos-complement integer. */ 3488 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3489 pMem->flags = MEM_Int; 3490 testcase( pMem->u.i<0 ); 3491 return 6; 3492 } 3493 case 6: /* 8-byte signed integer */ 3494 case 7: { /* IEEE floating point */ 3495 /* These use local variables, so do them in a separate routine 3496 ** to avoid having to move the frame pointer in the common case */ 3497 return serialGet(buf,serial_type,pMem); 3498 } 3499 case 8: /* Integer 0 */ 3500 case 9: { /* Integer 1 */ 3501 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3502 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3503 pMem->u.i = serial_type-8; 3504 pMem->flags = MEM_Int; 3505 return 0; 3506 } 3507 default: { 3508 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3509 ** length. 3510 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3511 ** (N-13)/2 bytes in length. */ 3512 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3513 pMem->z = (char *)buf; 3514 pMem->n = (serial_type-12)/2; 3515 pMem->flags = aFlag[serial_type&1]; 3516 return pMem->n; 3517 } 3518 } 3519 return 0; 3520 } 3521 /* 3522 ** This routine is used to allocate sufficient space for an UnpackedRecord 3523 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3524 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3525 ** 3526 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3527 ** the unaligned buffer passed via the second and third arguments (presumably 3528 ** stack space). If the former, then *ppFree is set to a pointer that should 3529 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3530 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3531 ** before returning. 3532 ** 3533 ** If an OOM error occurs, NULL is returned. 3534 */ 3535 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3536 KeyInfo *pKeyInfo /* Description of the record */ 3537 ){ 3538 UnpackedRecord *p; /* Unpacked record to return */ 3539 int nByte; /* Number of bytes required for *p */ 3540 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 3541 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3542 if( !p ) return 0; 3543 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3544 assert( pKeyInfo->aSortOrder!=0 ); 3545 p->pKeyInfo = pKeyInfo; 3546 p->nField = pKeyInfo->nKeyField + 1; 3547 return p; 3548 } 3549 3550 /* 3551 ** Given the nKey-byte encoding of a record in pKey[], populate the 3552 ** UnpackedRecord structure indicated by the fourth argument with the 3553 ** contents of the decoded record. 3554 */ 3555 void sqlite3VdbeRecordUnpack( 3556 KeyInfo *pKeyInfo, /* Information about the record format */ 3557 int nKey, /* Size of the binary record */ 3558 const void *pKey, /* The binary record */ 3559 UnpackedRecord *p /* Populate this structure before returning. */ 3560 ){ 3561 const unsigned char *aKey = (const unsigned char *)pKey; 3562 int d; 3563 u32 idx; /* Offset in aKey[] to read from */ 3564 u16 u; /* Unsigned loop counter */ 3565 u32 szHdr; 3566 Mem *pMem = p->aMem; 3567 3568 p->default_rc = 0; 3569 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3570 idx = getVarint32(aKey, szHdr); 3571 d = szHdr; 3572 u = 0; 3573 while( idx<szHdr && d<=nKey ){ 3574 u32 serial_type; 3575 3576 idx += getVarint32(&aKey[idx], serial_type); 3577 pMem->enc = pKeyInfo->enc; 3578 pMem->db = pKeyInfo->db; 3579 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 3580 pMem->szMalloc = 0; 3581 pMem->z = 0; 3582 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3583 pMem++; 3584 if( (++u)>=p->nField ) break; 3585 } 3586 assert( u<=pKeyInfo->nKeyField + 1 ); 3587 p->nField = u; 3588 } 3589 3590 #ifdef SQLITE_DEBUG 3591 /* 3592 ** This function compares two index or table record keys in the same way 3593 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 3594 ** this function deserializes and compares values using the 3595 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 3596 ** in assert() statements to ensure that the optimized code in 3597 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 3598 ** 3599 ** Return true if the result of comparison is equivalent to desiredResult. 3600 ** Return false if there is a disagreement. 3601 */ 3602 static int vdbeRecordCompareDebug( 3603 int nKey1, const void *pKey1, /* Left key */ 3604 const UnpackedRecord *pPKey2, /* Right key */ 3605 int desiredResult /* Correct answer */ 3606 ){ 3607 u32 d1; /* Offset into aKey[] of next data element */ 3608 u32 idx1; /* Offset into aKey[] of next header element */ 3609 u32 szHdr1; /* Number of bytes in header */ 3610 int i = 0; 3611 int rc = 0; 3612 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3613 KeyInfo *pKeyInfo; 3614 Mem mem1; 3615 3616 pKeyInfo = pPKey2->pKeyInfo; 3617 if( pKeyInfo->db==0 ) return 1; 3618 mem1.enc = pKeyInfo->enc; 3619 mem1.db = pKeyInfo->db; 3620 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 3621 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3622 3623 /* Compilers may complain that mem1.u.i is potentially uninitialized. 3624 ** We could initialize it, as shown here, to silence those complaints. 3625 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 3626 ** the unnecessary initialization has a measurable negative performance 3627 ** impact, since this routine is a very high runner. And so, we choose 3628 ** to ignore the compiler warnings and leave this variable uninitialized. 3629 */ 3630 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 3631 3632 idx1 = getVarint32(aKey1, szHdr1); 3633 if( szHdr1>98307 ) return SQLITE_CORRUPT; 3634 d1 = szHdr1; 3635 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 3636 assert( pKeyInfo->aSortOrder!=0 ); 3637 assert( pKeyInfo->nKeyField>0 ); 3638 assert( idx1<=szHdr1 || CORRUPT_DB ); 3639 do{ 3640 u32 serial_type1; 3641 3642 /* Read the serial types for the next element in each key. */ 3643 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 3644 3645 /* Verify that there is enough key space remaining to avoid 3646 ** a buffer overread. The "d1+serial_type1+2" subexpression will 3647 ** always be greater than or equal to the amount of required key space. 3648 ** Use that approximation to avoid the more expensive call to 3649 ** sqlite3VdbeSerialTypeLen() in the common case. 3650 */ 3651 if( d1+serial_type1+2>(u32)nKey1 3652 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 3653 ){ 3654 break; 3655 } 3656 3657 /* Extract the values to be compared. 3658 */ 3659 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 3660 3661 /* Do the comparison 3662 */ 3663 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); 3664 if( rc!=0 ){ 3665 assert( mem1.szMalloc==0 ); /* See comment below */ 3666 if( pKeyInfo->aSortOrder[i] ){ 3667 rc = -rc; /* Invert the result for DESC sort order. */ 3668 } 3669 goto debugCompareEnd; 3670 } 3671 i++; 3672 }while( idx1<szHdr1 && i<pPKey2->nField ); 3673 3674 /* No memory allocation is ever used on mem1. Prove this using 3675 ** the following assert(). If the assert() fails, it indicates a 3676 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 3677 */ 3678 assert( mem1.szMalloc==0 ); 3679 3680 /* rc==0 here means that one of the keys ran out of fields and 3681 ** all the fields up to that point were equal. Return the default_rc 3682 ** value. */ 3683 rc = pPKey2->default_rc; 3684 3685 debugCompareEnd: 3686 if( desiredResult==0 && rc==0 ) return 1; 3687 if( desiredResult<0 && rc<0 ) return 1; 3688 if( desiredResult>0 && rc>0 ) return 1; 3689 if( CORRUPT_DB ) return 1; 3690 if( pKeyInfo->db->mallocFailed ) return 1; 3691 return 0; 3692 } 3693 #endif 3694 3695 #ifdef SQLITE_DEBUG 3696 /* 3697 ** Count the number of fields (a.k.a. columns) in the record given by 3698 ** pKey,nKey. The verify that this count is less than or equal to the 3699 ** limit given by pKeyInfo->nAllField. 3700 ** 3701 ** If this constraint is not satisfied, it means that the high-speed 3702 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 3703 ** not work correctly. If this assert() ever fires, it probably means 3704 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 3705 ** incorrectly. 3706 */ 3707 static void vdbeAssertFieldCountWithinLimits( 3708 int nKey, const void *pKey, /* The record to verify */ 3709 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 3710 ){ 3711 int nField = 0; 3712 u32 szHdr; 3713 u32 idx; 3714 u32 notUsed; 3715 const unsigned char *aKey = (const unsigned char*)pKey; 3716 3717 if( CORRUPT_DB ) return; 3718 idx = getVarint32(aKey, szHdr); 3719 assert( nKey>=0 ); 3720 assert( szHdr<=(u32)nKey ); 3721 while( idx<szHdr ){ 3722 idx += getVarint32(aKey+idx, notUsed); 3723 nField++; 3724 } 3725 assert( nField <= pKeyInfo->nAllField ); 3726 } 3727 #else 3728 # define vdbeAssertFieldCountWithinLimits(A,B,C) 3729 #endif 3730 3731 /* 3732 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 3733 ** using the collation sequence pColl. As usual, return a negative , zero 3734 ** or positive value if *pMem1 is less than, equal to or greater than 3735 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 3736 */ 3737 static int vdbeCompareMemString( 3738 const Mem *pMem1, 3739 const Mem *pMem2, 3740 const CollSeq *pColl, 3741 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 3742 ){ 3743 if( pMem1->enc==pColl->enc ){ 3744 /* The strings are already in the correct encoding. Call the 3745 ** comparison function directly */ 3746 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 3747 }else{ 3748 int rc; 3749 const void *v1, *v2; 3750 Mem c1; 3751 Mem c2; 3752 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 3753 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 3754 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 3755 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 3756 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 3757 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 3758 if( (v1==0 || v2==0) ){ 3759 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 3760 rc = 0; 3761 }else{ 3762 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 3763 } 3764 sqlite3VdbeMemRelease(&c1); 3765 sqlite3VdbeMemRelease(&c2); 3766 return rc; 3767 } 3768 } 3769 3770 /* 3771 ** The input pBlob is guaranteed to be a Blob that is not marked 3772 ** with MEM_Zero. Return true if it could be a zero-blob. 3773 */ 3774 static int isAllZero(const char *z, int n){ 3775 int i; 3776 for(i=0; i<n; i++){ 3777 if( z[i] ) return 0; 3778 } 3779 return 1; 3780 } 3781 3782 /* 3783 ** Compare two blobs. Return negative, zero, or positive if the first 3784 ** is less than, equal to, or greater than the second, respectively. 3785 ** If one blob is a prefix of the other, then the shorter is the lessor. 3786 */ 3787 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 3788 int c; 3789 int n1 = pB1->n; 3790 int n2 = pB2->n; 3791 3792 /* It is possible to have a Blob value that has some non-zero content 3793 ** followed by zero content. But that only comes up for Blobs formed 3794 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 3795 ** sqlite3MemCompare(). */ 3796 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 3797 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 3798 3799 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 3800 if( pB1->flags & pB2->flags & MEM_Zero ){ 3801 return pB1->u.nZero - pB2->u.nZero; 3802 }else if( pB1->flags & MEM_Zero ){ 3803 if( !isAllZero(pB2->z, pB2->n) ) return -1; 3804 return pB1->u.nZero - n2; 3805 }else{ 3806 if( !isAllZero(pB1->z, pB1->n) ) return +1; 3807 return n1 - pB2->u.nZero; 3808 } 3809 } 3810 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 3811 if( c ) return c; 3812 return n1 - n2; 3813 } 3814 3815 /* 3816 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 3817 ** number. Return negative, zero, or positive if the first (i64) is less than, 3818 ** equal to, or greater than the second (double). 3819 */ 3820 static int sqlite3IntFloatCompare(i64 i, double r){ 3821 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 3822 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 3823 if( x<r ) return -1; 3824 if( x>r ) return +1; 3825 return 0; 3826 }else{ 3827 i64 y; 3828 double s; 3829 if( r<-9223372036854775808.0 ) return +1; 3830 if( r>9223372036854775807.0 ) return -1; 3831 y = (i64)r; 3832 if( i<y ) return -1; 3833 if( i>y ){ 3834 if( y==SMALLEST_INT64 && r>0.0 ) return -1; 3835 return +1; 3836 } 3837 s = (double)i; 3838 if( s<r ) return -1; 3839 if( s>r ) return +1; 3840 return 0; 3841 } 3842 } 3843 3844 /* 3845 ** Compare the values contained by the two memory cells, returning 3846 ** negative, zero or positive if pMem1 is less than, equal to, or greater 3847 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 3848 ** and reals) sorted numerically, followed by text ordered by the collating 3849 ** sequence pColl and finally blob's ordered by memcmp(). 3850 ** 3851 ** Two NULL values are considered equal by this function. 3852 */ 3853 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 3854 int f1, f2; 3855 int combined_flags; 3856 3857 f1 = pMem1->flags; 3858 f2 = pMem2->flags; 3859 combined_flags = f1|f2; 3860 assert( (combined_flags & MEM_RowSet)==0 ); 3861 3862 /* If one value is NULL, it is less than the other. If both values 3863 ** are NULL, return 0. 3864 */ 3865 if( combined_flags&MEM_Null ){ 3866 return (f2&MEM_Null) - (f1&MEM_Null); 3867 } 3868 3869 /* At least one of the two values is a number 3870 */ 3871 if( combined_flags&(MEM_Int|MEM_Real) ){ 3872 if( (f1 & f2 & MEM_Int)!=0 ){ 3873 if( pMem1->u.i < pMem2->u.i ) return -1; 3874 if( pMem1->u.i > pMem2->u.i ) return +1; 3875 return 0; 3876 } 3877 if( (f1 & f2 & MEM_Real)!=0 ){ 3878 if( pMem1->u.r < pMem2->u.r ) return -1; 3879 if( pMem1->u.r > pMem2->u.r ) return +1; 3880 return 0; 3881 } 3882 if( (f1&MEM_Int)!=0 ){ 3883 if( (f2&MEM_Real)!=0 ){ 3884 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 3885 }else{ 3886 return -1; 3887 } 3888 } 3889 if( (f1&MEM_Real)!=0 ){ 3890 if( (f2&MEM_Int)!=0 ){ 3891 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 3892 }else{ 3893 return -1; 3894 } 3895 } 3896 return +1; 3897 } 3898 3899 /* If one value is a string and the other is a blob, the string is less. 3900 ** If both are strings, compare using the collating functions. 3901 */ 3902 if( combined_flags&MEM_Str ){ 3903 if( (f1 & MEM_Str)==0 ){ 3904 return 1; 3905 } 3906 if( (f2 & MEM_Str)==0 ){ 3907 return -1; 3908 } 3909 3910 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 3911 assert( pMem1->enc==SQLITE_UTF8 || 3912 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 3913 3914 /* The collation sequence must be defined at this point, even if 3915 ** the user deletes the collation sequence after the vdbe program is 3916 ** compiled (this was not always the case). 3917 */ 3918 assert( !pColl || pColl->xCmp ); 3919 3920 if( pColl ){ 3921 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 3922 } 3923 /* If a NULL pointer was passed as the collate function, fall through 3924 ** to the blob case and use memcmp(). */ 3925 } 3926 3927 /* Both values must be blobs. Compare using memcmp(). */ 3928 return sqlite3BlobCompare(pMem1, pMem2); 3929 } 3930 3931 3932 /* 3933 ** The first argument passed to this function is a serial-type that 3934 ** corresponds to an integer - all values between 1 and 9 inclusive 3935 ** except 7. The second points to a buffer containing an integer value 3936 ** serialized according to serial_type. This function deserializes 3937 ** and returns the value. 3938 */ 3939 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 3940 u32 y; 3941 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 3942 switch( serial_type ){ 3943 case 0: 3944 case 1: 3945 testcase( aKey[0]&0x80 ); 3946 return ONE_BYTE_INT(aKey); 3947 case 2: 3948 testcase( aKey[0]&0x80 ); 3949 return TWO_BYTE_INT(aKey); 3950 case 3: 3951 testcase( aKey[0]&0x80 ); 3952 return THREE_BYTE_INT(aKey); 3953 case 4: { 3954 testcase( aKey[0]&0x80 ); 3955 y = FOUR_BYTE_UINT(aKey); 3956 return (i64)*(int*)&y; 3957 } 3958 case 5: { 3959 testcase( aKey[0]&0x80 ); 3960 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 3961 } 3962 case 6: { 3963 u64 x = FOUR_BYTE_UINT(aKey); 3964 testcase( aKey[0]&0x80 ); 3965 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 3966 return (i64)*(i64*)&x; 3967 } 3968 } 3969 3970 return (serial_type - 8); 3971 } 3972 3973 /* 3974 ** This function compares the two table rows or index records 3975 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 3976 ** or positive integer if key1 is less than, equal to or 3977 ** greater than key2. The {nKey1, pKey1} key must be a blob 3978 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 3979 ** key must be a parsed key such as obtained from 3980 ** sqlite3VdbeParseRecord. 3981 ** 3982 ** If argument bSkip is non-zero, it is assumed that the caller has already 3983 ** determined that the first fields of the keys are equal. 3984 ** 3985 ** Key1 and Key2 do not have to contain the same number of fields. If all 3986 ** fields that appear in both keys are equal, then pPKey2->default_rc is 3987 ** returned. 3988 ** 3989 ** If database corruption is discovered, set pPKey2->errCode to 3990 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 3991 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 3992 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 3993 */ 3994 int sqlite3VdbeRecordCompareWithSkip( 3995 int nKey1, const void *pKey1, /* Left key */ 3996 UnpackedRecord *pPKey2, /* Right key */ 3997 int bSkip /* If true, skip the first field */ 3998 ){ 3999 u32 d1; /* Offset into aKey[] of next data element */ 4000 int i; /* Index of next field to compare */ 4001 u32 szHdr1; /* Size of record header in bytes */ 4002 u32 idx1; /* Offset of first type in header */ 4003 int rc = 0; /* Return value */ 4004 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 4005 KeyInfo *pKeyInfo = pPKey2->pKeyInfo; 4006 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4007 Mem mem1; 4008 4009 /* If bSkip is true, then the caller has already determined that the first 4010 ** two elements in the keys are equal. Fix the various stack variables so 4011 ** that this routine begins comparing at the second field. */ 4012 if( bSkip ){ 4013 u32 s1; 4014 idx1 = 1 + getVarint32(&aKey1[1], s1); 4015 szHdr1 = aKey1[0]; 4016 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 4017 i = 1; 4018 pRhs++; 4019 }else{ 4020 idx1 = getVarint32(aKey1, szHdr1); 4021 d1 = szHdr1; 4022 if( d1>(unsigned)nKey1 ){ 4023 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4024 return 0; /* Corruption */ 4025 } 4026 i = 0; 4027 } 4028 4029 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4030 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 4031 || CORRUPT_DB ); 4032 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); 4033 assert( pPKey2->pKeyInfo->nKeyField>0 ); 4034 assert( idx1<=szHdr1 || CORRUPT_DB ); 4035 do{ 4036 u32 serial_type; 4037 4038 /* RHS is an integer */ 4039 if( pRhs->flags & MEM_Int ){ 4040 serial_type = aKey1[idx1]; 4041 testcase( serial_type==12 ); 4042 if( serial_type>=10 ){ 4043 rc = +1; 4044 }else if( serial_type==0 ){ 4045 rc = -1; 4046 }else if( serial_type==7 ){ 4047 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4048 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4049 }else{ 4050 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4051 i64 rhs = pRhs->u.i; 4052 if( lhs<rhs ){ 4053 rc = -1; 4054 }else if( lhs>rhs ){ 4055 rc = +1; 4056 } 4057 } 4058 } 4059 4060 /* RHS is real */ 4061 else if( pRhs->flags & MEM_Real ){ 4062 serial_type = aKey1[idx1]; 4063 if( serial_type>=10 ){ 4064 /* Serial types 12 or greater are strings and blobs (greater than 4065 ** numbers). Types 10 and 11 are currently "reserved for future 4066 ** use", so it doesn't really matter what the results of comparing 4067 ** them to numberic values are. */ 4068 rc = +1; 4069 }else if( serial_type==0 ){ 4070 rc = -1; 4071 }else{ 4072 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4073 if( serial_type==7 ){ 4074 if( mem1.u.r<pRhs->u.r ){ 4075 rc = -1; 4076 }else if( mem1.u.r>pRhs->u.r ){ 4077 rc = +1; 4078 } 4079 }else{ 4080 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4081 } 4082 } 4083 } 4084 4085 /* RHS is a string */ 4086 else if( pRhs->flags & MEM_Str ){ 4087 getVarint32(&aKey1[idx1], serial_type); 4088 testcase( serial_type==12 ); 4089 if( serial_type<12 ){ 4090 rc = -1; 4091 }else if( !(serial_type & 0x01) ){ 4092 rc = +1; 4093 }else{ 4094 mem1.n = (serial_type - 12) / 2; 4095 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4096 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4097 if( (d1+mem1.n) > (unsigned)nKey1 ){ 4098 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4099 return 0; /* Corruption */ 4100 }else if( pKeyInfo->aColl[i] ){ 4101 mem1.enc = pKeyInfo->enc; 4102 mem1.db = pKeyInfo->db; 4103 mem1.flags = MEM_Str; 4104 mem1.z = (char*)&aKey1[d1]; 4105 rc = vdbeCompareMemString( 4106 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4107 ); 4108 }else{ 4109 int nCmp = MIN(mem1.n, pRhs->n); 4110 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4111 if( rc==0 ) rc = mem1.n - pRhs->n; 4112 } 4113 } 4114 } 4115 4116 /* RHS is a blob */ 4117 else if( pRhs->flags & MEM_Blob ){ 4118 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4119 getVarint32(&aKey1[idx1], serial_type); 4120 testcase( serial_type==12 ); 4121 if( serial_type<12 || (serial_type & 0x01) ){ 4122 rc = -1; 4123 }else{ 4124 int nStr = (serial_type - 12) / 2; 4125 testcase( (d1+nStr)==(unsigned)nKey1 ); 4126 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4127 if( (d1+nStr) > (unsigned)nKey1 ){ 4128 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4129 return 0; /* Corruption */ 4130 }else if( pRhs->flags & MEM_Zero ){ 4131 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4132 rc = 1; 4133 }else{ 4134 rc = nStr - pRhs->u.nZero; 4135 } 4136 }else{ 4137 int nCmp = MIN(nStr, pRhs->n); 4138 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4139 if( rc==0 ) rc = nStr - pRhs->n; 4140 } 4141 } 4142 } 4143 4144 /* RHS is null */ 4145 else{ 4146 serial_type = aKey1[idx1]; 4147 rc = (serial_type!=0); 4148 } 4149 4150 if( rc!=0 ){ 4151 if( pKeyInfo->aSortOrder[i] ){ 4152 rc = -rc; 4153 } 4154 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4155 assert( mem1.szMalloc==0 ); /* See comment below */ 4156 return rc; 4157 } 4158 4159 i++; 4160 pRhs++; 4161 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4162 idx1 += sqlite3VarintLen(serial_type); 4163 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); 4164 4165 /* No memory allocation is ever used on mem1. Prove this using 4166 ** the following assert(). If the assert() fails, it indicates a 4167 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4168 assert( mem1.szMalloc==0 ); 4169 4170 /* rc==0 here means that one or both of the keys ran out of fields and 4171 ** all the fields up to that point were equal. Return the default_rc 4172 ** value. */ 4173 assert( CORRUPT_DB 4174 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4175 || pKeyInfo->db->mallocFailed 4176 ); 4177 pPKey2->eqSeen = 1; 4178 return pPKey2->default_rc; 4179 } 4180 int sqlite3VdbeRecordCompare( 4181 int nKey1, const void *pKey1, /* Left key */ 4182 UnpackedRecord *pPKey2 /* Right key */ 4183 ){ 4184 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4185 } 4186 4187 4188 /* 4189 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4190 ** that (a) the first field of pPKey2 is an integer, and (b) the 4191 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4192 ** byte (i.e. is less than 128). 4193 ** 4194 ** To avoid concerns about buffer overreads, this routine is only used 4195 ** on schemas where the maximum valid header size is 63 bytes or less. 4196 */ 4197 static int vdbeRecordCompareInt( 4198 int nKey1, const void *pKey1, /* Left key */ 4199 UnpackedRecord *pPKey2 /* Right key */ 4200 ){ 4201 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4202 int serial_type = ((const u8*)pKey1)[1]; 4203 int res; 4204 u32 y; 4205 u64 x; 4206 i64 v; 4207 i64 lhs; 4208 4209 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4210 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4211 switch( serial_type ){ 4212 case 1: { /* 1-byte signed integer */ 4213 lhs = ONE_BYTE_INT(aKey); 4214 testcase( lhs<0 ); 4215 break; 4216 } 4217 case 2: { /* 2-byte signed integer */ 4218 lhs = TWO_BYTE_INT(aKey); 4219 testcase( lhs<0 ); 4220 break; 4221 } 4222 case 3: { /* 3-byte signed integer */ 4223 lhs = THREE_BYTE_INT(aKey); 4224 testcase( lhs<0 ); 4225 break; 4226 } 4227 case 4: { /* 4-byte signed integer */ 4228 y = FOUR_BYTE_UINT(aKey); 4229 lhs = (i64)*(int*)&y; 4230 testcase( lhs<0 ); 4231 break; 4232 } 4233 case 5: { /* 6-byte signed integer */ 4234 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4235 testcase( lhs<0 ); 4236 break; 4237 } 4238 case 6: { /* 8-byte signed integer */ 4239 x = FOUR_BYTE_UINT(aKey); 4240 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4241 lhs = *(i64*)&x; 4242 testcase( lhs<0 ); 4243 break; 4244 } 4245 case 8: 4246 lhs = 0; 4247 break; 4248 case 9: 4249 lhs = 1; 4250 break; 4251 4252 /* This case could be removed without changing the results of running 4253 ** this code. Including it causes gcc to generate a faster switch 4254 ** statement (since the range of switch targets now starts at zero and 4255 ** is contiguous) but does not cause any duplicate code to be generated 4256 ** (as gcc is clever enough to combine the two like cases). Other 4257 ** compilers might be similar. */ 4258 case 0: case 7: 4259 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4260 4261 default: 4262 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4263 } 4264 4265 v = pPKey2->aMem[0].u.i; 4266 if( v>lhs ){ 4267 res = pPKey2->r1; 4268 }else if( v<lhs ){ 4269 res = pPKey2->r2; 4270 }else if( pPKey2->nField>1 ){ 4271 /* The first fields of the two keys are equal. Compare the trailing 4272 ** fields. */ 4273 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4274 }else{ 4275 /* The first fields of the two keys are equal and there are no trailing 4276 ** fields. Return pPKey2->default_rc in this case. */ 4277 res = pPKey2->default_rc; 4278 pPKey2->eqSeen = 1; 4279 } 4280 4281 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4282 return res; 4283 } 4284 4285 /* 4286 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4287 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4288 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4289 ** at the start of (pKey1/nKey1) fits in a single byte. 4290 */ 4291 static int vdbeRecordCompareString( 4292 int nKey1, const void *pKey1, /* Left key */ 4293 UnpackedRecord *pPKey2 /* Right key */ 4294 ){ 4295 const u8 *aKey1 = (const u8*)pKey1; 4296 int serial_type; 4297 int res; 4298 4299 assert( pPKey2->aMem[0].flags & MEM_Str ); 4300 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4301 getVarint32(&aKey1[1], serial_type); 4302 if( serial_type<12 ){ 4303 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4304 }else if( !(serial_type & 0x01) ){ 4305 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4306 }else{ 4307 int nCmp; 4308 int nStr; 4309 int szHdr = aKey1[0]; 4310 4311 nStr = (serial_type-12) / 2; 4312 if( (szHdr + nStr) > nKey1 ){ 4313 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4314 return 0; /* Corruption */ 4315 } 4316 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4317 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4318 4319 if( res==0 ){ 4320 res = nStr - pPKey2->aMem[0].n; 4321 if( res==0 ){ 4322 if( pPKey2->nField>1 ){ 4323 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4324 }else{ 4325 res = pPKey2->default_rc; 4326 pPKey2->eqSeen = 1; 4327 } 4328 }else if( res>0 ){ 4329 res = pPKey2->r2; 4330 }else{ 4331 res = pPKey2->r1; 4332 } 4333 }else if( res>0 ){ 4334 res = pPKey2->r2; 4335 }else{ 4336 res = pPKey2->r1; 4337 } 4338 } 4339 4340 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4341 || CORRUPT_DB 4342 || pPKey2->pKeyInfo->db->mallocFailed 4343 ); 4344 return res; 4345 } 4346 4347 /* 4348 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4349 ** suitable for comparing serialized records to the unpacked record passed 4350 ** as the only argument. 4351 */ 4352 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4353 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4354 ** that the size-of-header varint that occurs at the start of each record 4355 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4356 ** also assumes that it is safe to overread a buffer by at least the 4357 ** maximum possible legal header size plus 8 bytes. Because there is 4358 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4359 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4360 ** limit the size of the header to 64 bytes in cases where the first field 4361 ** is an integer. 4362 ** 4363 ** The easiest way to enforce this limit is to consider only records with 4364 ** 13 fields or less. If the first field is an integer, the maximum legal 4365 ** header size is (12*5 + 1 + 1) bytes. */ 4366 if( p->pKeyInfo->nAllField<=13 ){ 4367 int flags = p->aMem[0].flags; 4368 if( p->pKeyInfo->aSortOrder[0] ){ 4369 p->r1 = 1; 4370 p->r2 = -1; 4371 }else{ 4372 p->r1 = -1; 4373 p->r2 = 1; 4374 } 4375 if( (flags & MEM_Int) ){ 4376 return vdbeRecordCompareInt; 4377 } 4378 testcase( flags & MEM_Real ); 4379 testcase( flags & MEM_Null ); 4380 testcase( flags & MEM_Blob ); 4381 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ 4382 assert( flags & MEM_Str ); 4383 return vdbeRecordCompareString; 4384 } 4385 } 4386 4387 return sqlite3VdbeRecordCompare; 4388 } 4389 4390 /* 4391 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4392 ** Read the rowid (the last field in the record) and store it in *rowid. 4393 ** Return SQLITE_OK if everything works, or an error code otherwise. 4394 ** 4395 ** pCur might be pointing to text obtained from a corrupt database file. 4396 ** So the content cannot be trusted. Do appropriate checks on the content. 4397 */ 4398 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4399 i64 nCellKey = 0; 4400 int rc; 4401 u32 szHdr; /* Size of the header */ 4402 u32 typeRowid; /* Serial type of the rowid */ 4403 u32 lenRowid; /* Size of the rowid */ 4404 Mem m, v; 4405 4406 /* Get the size of the index entry. Only indices entries of less 4407 ** than 2GiB are support - anything large must be database corruption. 4408 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4409 ** this code can safely assume that nCellKey is 32-bits 4410 */ 4411 assert( sqlite3BtreeCursorIsValid(pCur) ); 4412 nCellKey = sqlite3BtreePayloadSize(pCur); 4413 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4414 4415 /* Read in the complete content of the index entry */ 4416 sqlite3VdbeMemInit(&m, db, 0); 4417 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4418 if( rc ){ 4419 return rc; 4420 } 4421 4422 /* The index entry must begin with a header size */ 4423 (void)getVarint32((u8*)m.z, szHdr); 4424 testcase( szHdr==3 ); 4425 testcase( szHdr==m.n ); 4426 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ 4427 goto idx_rowid_corruption; 4428 } 4429 4430 /* The last field of the index should be an integer - the ROWID. 4431 ** Verify that the last entry really is an integer. */ 4432 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 4433 testcase( typeRowid==1 ); 4434 testcase( typeRowid==2 ); 4435 testcase( typeRowid==3 ); 4436 testcase( typeRowid==4 ); 4437 testcase( typeRowid==5 ); 4438 testcase( typeRowid==6 ); 4439 testcase( typeRowid==8 ); 4440 testcase( typeRowid==9 ); 4441 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4442 goto idx_rowid_corruption; 4443 } 4444 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4445 testcase( (u32)m.n==szHdr+lenRowid ); 4446 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4447 goto idx_rowid_corruption; 4448 } 4449 4450 /* Fetch the integer off the end of the index record */ 4451 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4452 *rowid = v.u.i; 4453 sqlite3VdbeMemRelease(&m); 4454 return SQLITE_OK; 4455 4456 /* Jump here if database corruption is detected after m has been 4457 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4458 idx_rowid_corruption: 4459 testcase( m.szMalloc!=0 ); 4460 sqlite3VdbeMemRelease(&m); 4461 return SQLITE_CORRUPT_BKPT; 4462 } 4463 4464 /* 4465 ** Compare the key of the index entry that cursor pC is pointing to against 4466 ** the key string in pUnpacked. Write into *pRes a number 4467 ** that is negative, zero, or positive if pC is less than, equal to, 4468 ** or greater than pUnpacked. Return SQLITE_OK on success. 4469 ** 4470 ** pUnpacked is either created without a rowid or is truncated so that it 4471 ** omits the rowid at the end. The rowid at the end of the index entry 4472 ** is ignored as well. Hence, this routine only compares the prefixes 4473 ** of the keys prior to the final rowid, not the entire key. 4474 */ 4475 int sqlite3VdbeIdxKeyCompare( 4476 sqlite3 *db, /* Database connection */ 4477 VdbeCursor *pC, /* The cursor to compare against */ 4478 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4479 int *res /* Write the comparison result here */ 4480 ){ 4481 i64 nCellKey = 0; 4482 int rc; 4483 BtCursor *pCur; 4484 Mem m; 4485 4486 assert( pC->eCurType==CURTYPE_BTREE ); 4487 pCur = pC->uc.pCursor; 4488 assert( sqlite3BtreeCursorIsValid(pCur) ); 4489 nCellKey = sqlite3BtreePayloadSize(pCur); 4490 /* nCellKey will always be between 0 and 0xffffffff because of the way 4491 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4492 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4493 *res = 0; 4494 return SQLITE_CORRUPT_BKPT; 4495 } 4496 sqlite3VdbeMemInit(&m, db, 0); 4497 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4498 if( rc ){ 4499 return rc; 4500 } 4501 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); 4502 sqlite3VdbeMemRelease(&m); 4503 return SQLITE_OK; 4504 } 4505 4506 /* 4507 ** This routine sets the value to be returned by subsequent calls to 4508 ** sqlite3_changes() on the database handle 'db'. 4509 */ 4510 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 4511 assert( sqlite3_mutex_held(db->mutex) ); 4512 db->nChange = nChange; 4513 db->nTotalChange += nChange; 4514 } 4515 4516 /* 4517 ** Set a flag in the vdbe to update the change counter when it is finalised 4518 ** or reset. 4519 */ 4520 void sqlite3VdbeCountChanges(Vdbe *v){ 4521 v->changeCntOn = 1; 4522 } 4523 4524 /* 4525 ** Mark every prepared statement associated with a database connection 4526 ** as expired. 4527 ** 4528 ** An expired statement means that recompilation of the statement is 4529 ** recommend. Statements expire when things happen that make their 4530 ** programs obsolete. Removing user-defined functions or collating 4531 ** sequences, or changing an authorization function are the types of 4532 ** things that make prepared statements obsolete. 4533 */ 4534 void sqlite3ExpirePreparedStatements(sqlite3 *db){ 4535 Vdbe *p; 4536 for(p = db->pVdbe; p; p=p->pNext){ 4537 p->expired = 1; 4538 } 4539 } 4540 4541 /* 4542 ** Return the database associated with the Vdbe. 4543 */ 4544 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 4545 return v->db; 4546 } 4547 4548 /* 4549 ** Return the SQLITE_PREPARE flags for a Vdbe. 4550 */ 4551 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 4552 return v->prepFlags; 4553 } 4554 4555 /* 4556 ** Return a pointer to an sqlite3_value structure containing the value bound 4557 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 4558 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 4559 ** constants) to the value before returning it. 4560 ** 4561 ** The returned value must be freed by the caller using sqlite3ValueFree(). 4562 */ 4563 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 4564 assert( iVar>0 ); 4565 if( v ){ 4566 Mem *pMem = &v->aVar[iVar-1]; 4567 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 4568 if( 0==(pMem->flags & MEM_Null) ){ 4569 sqlite3_value *pRet = sqlite3ValueNew(v->db); 4570 if( pRet ){ 4571 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 4572 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 4573 } 4574 return pRet; 4575 } 4576 } 4577 return 0; 4578 } 4579 4580 /* 4581 ** Configure SQL variable iVar so that binding a new value to it signals 4582 ** to sqlite3_reoptimize() that re-preparing the statement may result 4583 ** in a better query plan. 4584 */ 4585 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 4586 assert( iVar>0 ); 4587 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 4588 if( iVar>=32 ){ 4589 v->expmask |= 0x80000000; 4590 }else{ 4591 v->expmask |= ((u32)1 << (iVar-1)); 4592 } 4593 } 4594 4595 /* 4596 ** Cause a function to throw an error if it was call from OP_PureFunc 4597 ** rather than OP_Function. 4598 ** 4599 ** OP_PureFunc means that the function must be deterministic, and should 4600 ** throw an error if it is given inputs that would make it non-deterministic. 4601 ** This routine is invoked by date/time functions that use non-deterministic 4602 ** features such as 'now'. 4603 */ 4604 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 4605 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 4606 if( pCtx->pVdbe==0 ) return 1; 4607 #endif 4608 if( pCtx->pVdbe->aOp[pCtx->iOp].opcode==OP_PureFunc ){ 4609 sqlite3_result_error(pCtx, 4610 "non-deterministic function in index expression or CHECK constraint", 4611 -1); 4612 return 0; 4613 } 4614 return 1; 4615 } 4616 4617 #ifndef SQLITE_OMIT_VIRTUALTABLE 4618 /* 4619 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 4620 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 4621 ** in memory obtained from sqlite3DbMalloc). 4622 */ 4623 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 4624 if( pVtab->zErrMsg ){ 4625 sqlite3 *db = p->db; 4626 sqlite3DbFree(db, p->zErrMsg); 4627 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 4628 sqlite3_free(pVtab->zErrMsg); 4629 pVtab->zErrMsg = 0; 4630 } 4631 } 4632 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4633 4634 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4635 4636 /* 4637 ** If the second argument is not NULL, release any allocations associated 4638 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 4639 ** structure itself, using sqlite3DbFree(). 4640 ** 4641 ** This function is used to free UnpackedRecord structures allocated by 4642 ** the vdbeUnpackRecord() function found in vdbeapi.c. 4643 */ 4644 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 4645 if( p ){ 4646 int i; 4647 for(i=0; i<nField; i++){ 4648 Mem *pMem = &p->aMem[i]; 4649 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem); 4650 } 4651 sqlite3DbFreeNN(db, p); 4652 } 4653 } 4654 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4655 4656 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4657 /* 4658 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 4659 ** then cursor passed as the second argument should point to the row about 4660 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 4661 ** the required value will be read from the row the cursor points to. 4662 */ 4663 void sqlite3VdbePreUpdateHook( 4664 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 4665 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 4666 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 4667 const char *zDb, /* Database name */ 4668 Table *pTab, /* Modified table */ 4669 i64 iKey1, /* Initial key value */ 4670 int iReg /* Register for new.* record */ 4671 ){ 4672 sqlite3 *db = v->db; 4673 i64 iKey2; 4674 PreUpdate preupdate; 4675 const char *zTbl = pTab->zName; 4676 static const u8 fakeSortOrder = 0; 4677 4678 assert( db->pPreUpdate==0 ); 4679 memset(&preupdate, 0, sizeof(PreUpdate)); 4680 if( HasRowid(pTab)==0 ){ 4681 iKey1 = iKey2 = 0; 4682 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 4683 }else{ 4684 if( op==SQLITE_UPDATE ){ 4685 iKey2 = v->aMem[iReg].u.i; 4686 }else{ 4687 iKey2 = iKey1; 4688 } 4689 } 4690 4691 assert( pCsr->nField==pTab->nCol 4692 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 4693 ); 4694 4695 preupdate.v = v; 4696 preupdate.pCsr = pCsr; 4697 preupdate.op = op; 4698 preupdate.iNewReg = iReg; 4699 preupdate.keyinfo.db = db; 4700 preupdate.keyinfo.enc = ENC(db); 4701 preupdate.keyinfo.nKeyField = pTab->nCol; 4702 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder; 4703 preupdate.iKey1 = iKey1; 4704 preupdate.iKey2 = iKey2; 4705 preupdate.pTab = pTab; 4706 4707 db->pPreUpdate = &preupdate; 4708 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 4709 db->pPreUpdate = 0; 4710 sqlite3DbFree(db, preupdate.aRecord); 4711 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 4712 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 4713 if( preupdate.aNew ){ 4714 int i; 4715 for(i=0; i<pCsr->nField; i++){ 4716 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 4717 } 4718 sqlite3DbFreeNN(db, preupdate.aNew); 4719 } 4720 } 4721 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4722