1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* 19 ** Create a new virtual database engine. 20 */ 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 22 sqlite3 *db = pParse->db; 23 Vdbe *p; 24 p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); 25 if( p==0 ) return 0; 26 p->db = db; 27 if( db->pVdbe ){ 28 db->pVdbe->pPrev = p; 29 } 30 p->pNext = db->pVdbe; 31 p->pPrev = 0; 32 db->pVdbe = p; 33 p->magic = VDBE_MAGIC_INIT; 34 p->pParse = pParse; 35 assert( pParse->aLabel==0 ); 36 assert( pParse->nLabel==0 ); 37 assert( pParse->nOpAlloc==0 ); 38 return p; 39 } 40 41 /* 42 ** Change the error string stored in Vdbe.zErrMsg 43 */ 44 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 45 va_list ap; 46 sqlite3DbFree(p->db, p->zErrMsg); 47 va_start(ap, zFormat); 48 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 49 va_end(ap); 50 } 51 52 /* 53 ** Remember the SQL string for a prepared statement. 54 */ 55 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ 56 assert( isPrepareV2==1 || isPrepareV2==0 ); 57 if( p==0 ) return; 58 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG) 59 if( !isPrepareV2 ) return; 60 #endif 61 assert( p->zSql==0 ); 62 p->zSql = sqlite3DbStrNDup(p->db, z, n); 63 p->isPrepareV2 = (u8)isPrepareV2; 64 } 65 66 /* 67 ** Return the SQL associated with a prepared statement 68 */ 69 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 70 Vdbe *p = (Vdbe *)pStmt; 71 return p ? p->zSql : 0; 72 } 73 74 /* 75 ** Swap all content between two VDBE structures. 76 */ 77 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 78 Vdbe tmp, *pTmp; 79 char *zTmp; 80 tmp = *pA; 81 *pA = *pB; 82 *pB = tmp; 83 pTmp = pA->pNext; 84 pA->pNext = pB->pNext; 85 pB->pNext = pTmp; 86 pTmp = pA->pPrev; 87 pA->pPrev = pB->pPrev; 88 pB->pPrev = pTmp; 89 zTmp = pA->zSql; 90 pA->zSql = pB->zSql; 91 pB->zSql = zTmp; 92 pB->isPrepareV2 = pA->isPrepareV2; 93 } 94 95 /* 96 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 97 ** than its current size. nOp is guaranteed to be less than or equal 98 ** to 1024/sizeof(Op). 99 ** 100 ** If an out-of-memory error occurs while resizing the array, return 101 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain 102 ** unchanged (this is so that any opcodes already allocated can be 103 ** correctly deallocated along with the rest of the Vdbe). 104 */ 105 static int growOpArray(Vdbe *v, int nOp){ 106 VdbeOp *pNew; 107 Parse *p = v->pParse; 108 109 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 110 ** more frequent reallocs and hence provide more opportunities for 111 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 112 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 113 ** by the minimum* amount required until the size reaches 512. Normal 114 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 115 ** size of the op array or add 1KB of space, whichever is smaller. */ 116 #ifdef SQLITE_TEST_REALLOC_STRESS 117 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); 118 #else 119 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 120 UNUSED_PARAMETER(nOp); 121 #endif 122 123 assert( nOp<=(1024/sizeof(Op)) ); 124 assert( nNew>=(p->nOpAlloc+nOp) ); 125 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 126 if( pNew ){ 127 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op); 128 v->aOp = pNew; 129 } 130 return (pNew ? SQLITE_OK : SQLITE_NOMEM); 131 } 132 133 #ifdef SQLITE_DEBUG 134 /* This routine is just a convenient place to set a breakpoint that will 135 ** fire after each opcode is inserted and displayed using 136 ** "PRAGMA vdbe_addoptrace=on". 137 */ 138 static void test_addop_breakpoint(void){ 139 static int n = 0; 140 n++; 141 } 142 #endif 143 144 /* 145 ** Add a new instruction to the list of instructions current in the 146 ** VDBE. Return the address of the new instruction. 147 ** 148 ** Parameters: 149 ** 150 ** p Pointer to the VDBE 151 ** 152 ** op The opcode for this instruction 153 ** 154 ** p1, p2, p3 Operands 155 ** 156 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 157 ** the sqlite3VdbeChangeP4() function to change the value of the P4 158 ** operand. 159 */ 160 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 161 int i; 162 VdbeOp *pOp; 163 164 i = p->nOp; 165 assert( p->magic==VDBE_MAGIC_INIT ); 166 assert( op>0 && op<0xff ); 167 if( p->pParse->nOpAlloc<=i ){ 168 if( growOpArray(p, 1) ){ 169 return 1; 170 } 171 } 172 p->nOp++; 173 pOp = &p->aOp[i]; 174 pOp->opcode = (u8)op; 175 pOp->p5 = 0; 176 pOp->p1 = p1; 177 pOp->p2 = p2; 178 pOp->p3 = p3; 179 pOp->p4.p = 0; 180 pOp->p4type = P4_NOTUSED; 181 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 182 pOp->zComment = 0; 183 #endif 184 #ifdef SQLITE_DEBUG 185 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 186 int jj, kk; 187 Parse *pParse = p->pParse; 188 for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){ 189 struct yColCache *x = pParse->aColCache + jj; 190 if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue; 191 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); 192 kk++; 193 } 194 if( kk ) printf("\n"); 195 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 196 test_addop_breakpoint(); 197 } 198 #endif 199 #ifdef VDBE_PROFILE 200 pOp->cycles = 0; 201 pOp->cnt = 0; 202 #endif 203 #ifdef SQLITE_VDBE_COVERAGE 204 pOp->iSrcLine = 0; 205 #endif 206 return i; 207 } 208 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 209 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 210 } 211 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 212 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 213 } 214 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 215 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 216 } 217 218 /* Generate code for an unconditional jump to instruction iDest 219 */ 220 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 221 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 222 } 223 224 /* Generate code to cause the string zStr to be loaded into 225 ** register iDest 226 */ 227 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 228 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 229 } 230 231 /* 232 ** Generate code that initializes multiple registers to string or integer 233 ** constants. The registers begin with iDest and increase consecutively. 234 ** One register is initialized for each characgter in zTypes[]. For each 235 ** "s" character in zTypes[], the register is a string if the argument is 236 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 237 ** in zTypes[], the register is initialized to an integer. 238 */ 239 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 240 va_list ap; 241 int i; 242 char c; 243 va_start(ap, zTypes); 244 for(i=0; (c = zTypes[i])!=0; i++){ 245 if( c=='s' ){ 246 const char *z = va_arg(ap, const char*); 247 int addr = sqlite3VdbeAddOp2(p, z==0 ? OP_Null : OP_String8, 0, iDest++); 248 if( z ) sqlite3VdbeChangeP4(p, addr, z, 0); 249 }else{ 250 assert( c=='i' ); 251 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++); 252 } 253 } 254 va_end(ap); 255 } 256 257 /* 258 ** Add an opcode that includes the p4 value as a pointer. 259 */ 260 int sqlite3VdbeAddOp4( 261 Vdbe *p, /* Add the opcode to this VM */ 262 int op, /* The new opcode */ 263 int p1, /* The P1 operand */ 264 int p2, /* The P2 operand */ 265 int p3, /* The P3 operand */ 266 const char *zP4, /* The P4 operand */ 267 int p4type /* P4 operand type */ 268 ){ 269 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 270 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 271 return addr; 272 } 273 274 /* 275 ** Add an opcode that includes the p4 value with a P4_INT64 or 276 ** P4_REAL type. 277 */ 278 int sqlite3VdbeAddOp4Dup8( 279 Vdbe *p, /* Add the opcode to this VM */ 280 int op, /* The new opcode */ 281 int p1, /* The P1 operand */ 282 int p2, /* The P2 operand */ 283 int p3, /* The P3 operand */ 284 const u8 *zP4, /* The P4 operand */ 285 int p4type /* P4 operand type */ 286 ){ 287 char *p4copy = sqlite3DbMallocRaw(sqlite3VdbeDb(p), 8); 288 if( p4copy ) memcpy(p4copy, zP4, 8); 289 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 290 } 291 292 /* 293 ** Add an OP_ParseSchema opcode. This routine is broken out from 294 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 295 ** as having been used. 296 ** 297 ** The zWhere string must have been obtained from sqlite3_malloc(). 298 ** This routine will take ownership of the allocated memory. 299 */ 300 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 301 int j; 302 int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0); 303 sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC); 304 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 305 } 306 307 /* 308 ** Add an opcode that includes the p4 value as an integer. 309 */ 310 int sqlite3VdbeAddOp4Int( 311 Vdbe *p, /* Add the opcode to this VM */ 312 int op, /* The new opcode */ 313 int p1, /* The P1 operand */ 314 int p2, /* The P2 operand */ 315 int p3, /* The P3 operand */ 316 int p4 /* The P4 operand as an integer */ 317 ){ 318 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 319 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32); 320 return addr; 321 } 322 323 /* 324 ** Create a new symbolic label for an instruction that has yet to be 325 ** coded. The symbolic label is really just a negative number. The 326 ** label can be used as the P2 value of an operation. Later, when 327 ** the label is resolved to a specific address, the VDBE will scan 328 ** through its operation list and change all values of P2 which match 329 ** the label into the resolved address. 330 ** 331 ** The VDBE knows that a P2 value is a label because labels are 332 ** always negative and P2 values are suppose to be non-negative. 333 ** Hence, a negative P2 value is a label that has yet to be resolved. 334 ** 335 ** Zero is returned if a malloc() fails. 336 */ 337 int sqlite3VdbeMakeLabel(Vdbe *v){ 338 Parse *p = v->pParse; 339 int i = p->nLabel++; 340 assert( v->magic==VDBE_MAGIC_INIT ); 341 if( (i & (i-1))==0 ){ 342 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 343 (i*2+1)*sizeof(p->aLabel[0])); 344 } 345 if( p->aLabel ){ 346 p->aLabel[i] = -1; 347 } 348 return -1-i; 349 } 350 351 /* 352 ** Resolve label "x" to be the address of the next instruction to 353 ** be inserted. The parameter "x" must have been obtained from 354 ** a prior call to sqlite3VdbeMakeLabel(). 355 */ 356 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 357 Parse *p = v->pParse; 358 int j = -1-x; 359 assert( v->magic==VDBE_MAGIC_INIT ); 360 assert( j<p->nLabel ); 361 assert( j>=0 ); 362 if( p->aLabel ){ 363 p->aLabel[j] = v->nOp; 364 } 365 p->iFixedOp = v->nOp - 1; 366 } 367 368 /* 369 ** Mark the VDBE as one that can only be run one time. 370 */ 371 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 372 p->runOnlyOnce = 1; 373 } 374 375 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 376 377 /* 378 ** The following type and function are used to iterate through all opcodes 379 ** in a Vdbe main program and each of the sub-programs (triggers) it may 380 ** invoke directly or indirectly. It should be used as follows: 381 ** 382 ** Op *pOp; 383 ** VdbeOpIter sIter; 384 ** 385 ** memset(&sIter, 0, sizeof(sIter)); 386 ** sIter.v = v; // v is of type Vdbe* 387 ** while( (pOp = opIterNext(&sIter)) ){ 388 ** // Do something with pOp 389 ** } 390 ** sqlite3DbFree(v->db, sIter.apSub); 391 ** 392 */ 393 typedef struct VdbeOpIter VdbeOpIter; 394 struct VdbeOpIter { 395 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 396 SubProgram **apSub; /* Array of subprograms */ 397 int nSub; /* Number of entries in apSub */ 398 int iAddr; /* Address of next instruction to return */ 399 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 400 }; 401 static Op *opIterNext(VdbeOpIter *p){ 402 Vdbe *v = p->v; 403 Op *pRet = 0; 404 Op *aOp; 405 int nOp; 406 407 if( p->iSub<=p->nSub ){ 408 409 if( p->iSub==0 ){ 410 aOp = v->aOp; 411 nOp = v->nOp; 412 }else{ 413 aOp = p->apSub[p->iSub-1]->aOp; 414 nOp = p->apSub[p->iSub-1]->nOp; 415 } 416 assert( p->iAddr<nOp ); 417 418 pRet = &aOp[p->iAddr]; 419 p->iAddr++; 420 if( p->iAddr==nOp ){ 421 p->iSub++; 422 p->iAddr = 0; 423 } 424 425 if( pRet->p4type==P4_SUBPROGRAM ){ 426 int nByte = (p->nSub+1)*sizeof(SubProgram*); 427 int j; 428 for(j=0; j<p->nSub; j++){ 429 if( p->apSub[j]==pRet->p4.pProgram ) break; 430 } 431 if( j==p->nSub ){ 432 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 433 if( !p->apSub ){ 434 pRet = 0; 435 }else{ 436 p->apSub[p->nSub++] = pRet->p4.pProgram; 437 } 438 } 439 } 440 } 441 442 return pRet; 443 } 444 445 /* 446 ** Check if the program stored in the VM associated with pParse may 447 ** throw an ABORT exception (causing the statement, but not entire transaction 448 ** to be rolled back). This condition is true if the main program or any 449 ** sub-programs contains any of the following: 450 ** 451 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 452 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 453 ** * OP_Destroy 454 ** * OP_VUpdate 455 ** * OP_VRename 456 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 457 ** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...) 458 ** 459 ** Then check that the value of Parse.mayAbort is true if an 460 ** ABORT may be thrown, or false otherwise. Return true if it does 461 ** match, or false otherwise. This function is intended to be used as 462 ** part of an assert statement in the compiler. Similar to: 463 ** 464 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 465 */ 466 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 467 int hasAbort = 0; 468 int hasFkCounter = 0; 469 int hasCreateTable = 0; 470 int hasInitCoroutine = 0; 471 Op *pOp; 472 VdbeOpIter sIter; 473 memset(&sIter, 0, sizeof(sIter)); 474 sIter.v = v; 475 476 while( (pOp = opIterNext(&sIter))!=0 ){ 477 int opcode = pOp->opcode; 478 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 479 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 480 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 481 ){ 482 hasAbort = 1; 483 break; 484 } 485 if( opcode==OP_CreateTable ) hasCreateTable = 1; 486 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 487 #ifndef SQLITE_OMIT_FOREIGN_KEY 488 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 489 hasFkCounter = 1; 490 } 491 #endif 492 } 493 sqlite3DbFree(v->db, sIter.apSub); 494 495 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 496 ** If malloc failed, then the while() loop above may not have iterated 497 ** through all opcodes and hasAbort may be set incorrectly. Return 498 ** true for this case to prevent the assert() in the callers frame 499 ** from failing. */ 500 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 501 || (hasCreateTable && hasInitCoroutine) ); 502 } 503 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 504 505 /* 506 ** This routine is called after all opcodes have been inserted. It loops 507 ** through all the opcodes and fixes up some details. 508 ** 509 ** (1) For each jump instruction with a negative P2 value (a label) 510 ** resolve the P2 value to an actual address. 511 ** 512 ** (2) Compute the maximum number of arguments used by any SQL function 513 ** and store that value in *pMaxFuncArgs. 514 ** 515 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 516 ** indicate what the prepared statement actually does. 517 ** 518 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 519 ** 520 ** (5) Reclaim the memory allocated for storing labels. 521 */ 522 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 523 int i; 524 int nMaxArgs = *pMaxFuncArgs; 525 Op *pOp; 526 Parse *pParse = p->pParse; 527 int *aLabel = pParse->aLabel; 528 p->readOnly = 1; 529 p->bIsReader = 0; 530 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ 531 u8 opcode = pOp->opcode; 532 533 /* NOTE: Be sure to update mkopcodeh.awk when adding or removing 534 ** cases from this switch! */ 535 switch( opcode ){ 536 case OP_Transaction: { 537 if( pOp->p2!=0 ) p->readOnly = 0; 538 /* fall thru */ 539 } 540 case OP_AutoCommit: 541 case OP_Savepoint: { 542 p->bIsReader = 1; 543 break; 544 } 545 #ifndef SQLITE_OMIT_WAL 546 case OP_Checkpoint: 547 #endif 548 case OP_Vacuum: 549 case OP_JournalMode: { 550 p->readOnly = 0; 551 p->bIsReader = 1; 552 break; 553 } 554 #ifndef SQLITE_OMIT_VIRTUALTABLE 555 case OP_VUpdate: { 556 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 557 break; 558 } 559 case OP_VFilter: { 560 int n; 561 assert( p->nOp - i >= 3 ); 562 assert( pOp[-1].opcode==OP_Integer ); 563 n = pOp[-1].p1; 564 if( n>nMaxArgs ) nMaxArgs = n; 565 break; 566 } 567 #endif 568 case OP_Next: 569 case OP_NextIfOpen: 570 case OP_SorterNext: { 571 pOp->p4.xAdvance = sqlite3BtreeNext; 572 pOp->p4type = P4_ADVANCE; 573 break; 574 } 575 case OP_Prev: 576 case OP_PrevIfOpen: { 577 pOp->p4.xAdvance = sqlite3BtreePrevious; 578 pOp->p4type = P4_ADVANCE; 579 break; 580 } 581 } 582 583 pOp->opflags = sqlite3OpcodeProperty[opcode]; 584 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){ 585 assert( -1-pOp->p2<pParse->nLabel ); 586 pOp->p2 = aLabel[-1-pOp->p2]; 587 } 588 } 589 sqlite3DbFree(p->db, pParse->aLabel); 590 pParse->aLabel = 0; 591 pParse->nLabel = 0; 592 *pMaxFuncArgs = nMaxArgs; 593 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 594 } 595 596 /* 597 ** Return the address of the next instruction to be inserted. 598 */ 599 int sqlite3VdbeCurrentAddr(Vdbe *p){ 600 assert( p->magic==VDBE_MAGIC_INIT ); 601 return p->nOp; 602 } 603 604 /* 605 ** This function returns a pointer to the array of opcodes associated with 606 ** the Vdbe passed as the first argument. It is the callers responsibility 607 ** to arrange for the returned array to be eventually freed using the 608 ** vdbeFreeOpArray() function. 609 ** 610 ** Before returning, *pnOp is set to the number of entries in the returned 611 ** array. Also, *pnMaxArg is set to the larger of its current value and 612 ** the number of entries in the Vdbe.apArg[] array required to execute the 613 ** returned program. 614 */ 615 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 616 VdbeOp *aOp = p->aOp; 617 assert( aOp && !p->db->mallocFailed ); 618 619 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 620 assert( DbMaskAllZero(p->btreeMask) ); 621 622 resolveP2Values(p, pnMaxArg); 623 *pnOp = p->nOp; 624 p->aOp = 0; 625 return aOp; 626 } 627 628 /* 629 ** Add a whole list of operations to the operation stack. Return the 630 ** address of the first operation added. 631 */ 632 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){ 633 int addr, i; 634 VdbeOp *pOut; 635 assert( nOp>0 ); 636 assert( p->magic==VDBE_MAGIC_INIT ); 637 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ 638 return 0; 639 } 640 addr = p->nOp; 641 pOut = &p->aOp[addr]; 642 for(i=0; i<nOp; i++, aOp++, pOut++){ 643 int p2 = aOp->p2; 644 pOut->opcode = aOp->opcode; 645 pOut->p1 = aOp->p1; 646 if( p2<0 ){ 647 assert( sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP ); 648 pOut->p2 = addr + ADDR(p2); 649 }else{ 650 pOut->p2 = p2; 651 } 652 pOut->p3 = aOp->p3; 653 pOut->p4type = P4_NOTUSED; 654 pOut->p4.p = 0; 655 pOut->p5 = 0; 656 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 657 pOut->zComment = 0; 658 #endif 659 #ifdef SQLITE_VDBE_COVERAGE 660 pOut->iSrcLine = iLineno+i; 661 #else 662 (void)iLineno; 663 #endif 664 #ifdef SQLITE_DEBUG 665 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 666 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); 667 } 668 #endif 669 } 670 p->nOp += nOp; 671 return addr; 672 } 673 674 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 675 /* 676 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 677 */ 678 void sqlite3VdbeScanStatus( 679 Vdbe *p, /* VM to add scanstatus() to */ 680 int addrExplain, /* Address of OP_Explain (or 0) */ 681 int addrLoop, /* Address of loop counter */ 682 int addrVisit, /* Address of rows visited counter */ 683 LogEst nEst, /* Estimated number of output rows */ 684 const char *zName /* Name of table or index being scanned */ 685 ){ 686 int nByte = (p->nScan+1) * sizeof(ScanStatus); 687 ScanStatus *aNew; 688 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 689 if( aNew ){ 690 ScanStatus *pNew = &aNew[p->nScan++]; 691 pNew->addrExplain = addrExplain; 692 pNew->addrLoop = addrLoop; 693 pNew->addrVisit = addrVisit; 694 pNew->nEst = nEst; 695 pNew->zName = sqlite3DbStrDup(p->db, zName); 696 p->aScan = aNew; 697 } 698 } 699 #endif 700 701 702 /* 703 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 704 ** for a specific instruction. 705 */ 706 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){ 707 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 708 } 709 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ 710 sqlite3VdbeGetOp(p,addr)->p1 = val; 711 } 712 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ 713 sqlite3VdbeGetOp(p,addr)->p2 = val; 714 } 715 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ 716 sqlite3VdbeGetOp(p,addr)->p3 = val; 717 } 718 void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){ 719 sqlite3VdbeGetOp(p,-1)->p5 = p5; 720 } 721 722 /* 723 ** Change the P2 operand of instruction addr so that it points to 724 ** the address of the next instruction to be coded. 725 */ 726 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 727 p->pParse->iFixedOp = p->nOp - 1; 728 sqlite3VdbeChangeP2(p, addr, p->nOp); 729 } 730 731 732 /* 733 ** If the input FuncDef structure is ephemeral, then free it. If 734 ** the FuncDef is not ephermal, then do nothing. 735 */ 736 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 737 if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 738 sqlite3DbFree(db, pDef); 739 } 740 } 741 742 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 743 744 /* 745 ** Delete a P4 value if necessary. 746 */ 747 static void freeP4(sqlite3 *db, int p4type, void *p4){ 748 if( p4 ){ 749 assert( db ); 750 switch( p4type ){ 751 case P4_FUNCCTX: { 752 freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc); 753 /* Fall through into the next case */ 754 } 755 case P4_REAL: 756 case P4_INT64: 757 case P4_DYNAMIC: 758 case P4_INTARRAY: { 759 sqlite3DbFree(db, p4); 760 break; 761 } 762 case P4_KEYINFO: { 763 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 764 break; 765 } 766 case P4_MPRINTF: { 767 if( db->pnBytesFreed==0 ) sqlite3_free(p4); 768 break; 769 } 770 case P4_FUNCDEF: { 771 freeEphemeralFunction(db, (FuncDef*)p4); 772 break; 773 } 774 case P4_MEM: { 775 if( db->pnBytesFreed==0 ){ 776 sqlite3ValueFree((sqlite3_value*)p4); 777 }else{ 778 Mem *p = (Mem*)p4; 779 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 780 sqlite3DbFree(db, p); 781 } 782 break; 783 } 784 case P4_VTAB : { 785 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 786 break; 787 } 788 } 789 } 790 } 791 792 /* 793 ** Free the space allocated for aOp and any p4 values allocated for the 794 ** opcodes contained within. If aOp is not NULL it is assumed to contain 795 ** nOp entries. 796 */ 797 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 798 if( aOp ){ 799 Op *pOp; 800 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ 801 freeP4(db, pOp->p4type, pOp->p4.p); 802 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 803 sqlite3DbFree(db, pOp->zComment); 804 #endif 805 } 806 } 807 sqlite3DbFree(db, aOp); 808 } 809 810 /* 811 ** Link the SubProgram object passed as the second argument into the linked 812 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 813 ** objects when the VM is no longer required. 814 */ 815 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 816 p->pNext = pVdbe->pProgram; 817 pVdbe->pProgram = p; 818 } 819 820 /* 821 ** Change the opcode at addr into OP_Noop 822 */ 823 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 824 if( addr<p->nOp ){ 825 VdbeOp *pOp = &p->aOp[addr]; 826 sqlite3 *db = p->db; 827 freeP4(db, pOp->p4type, pOp->p4.p); 828 memset(pOp, 0, sizeof(pOp[0])); 829 pOp->opcode = OP_Noop; 830 if( addr==p->nOp-1 ) p->nOp--; 831 } 832 } 833 834 /* 835 ** If the last opcode is "op" and it is not a jump destination, 836 ** then remove it. Return true if and only if an opcode was removed. 837 */ 838 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 839 if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){ 840 sqlite3VdbeChangeToNoop(p, p->nOp-1); 841 return 1; 842 }else{ 843 return 0; 844 } 845 } 846 847 /* 848 ** Change the value of the P4 operand for a specific instruction. 849 ** This routine is useful when a large program is loaded from a 850 ** static array using sqlite3VdbeAddOpList but we want to make a 851 ** few minor changes to the program. 852 ** 853 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 854 ** the string is made into memory obtained from sqlite3_malloc(). 855 ** A value of n==0 means copy bytes of zP4 up to and including the 856 ** first null byte. If n>0 then copy n+1 bytes of zP4. 857 ** 858 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 859 ** to a string or structure that is guaranteed to exist for the lifetime of 860 ** the Vdbe. In these cases we can just copy the pointer. 861 ** 862 ** If addr<0 then change P4 on the most recently inserted instruction. 863 */ 864 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 865 Op *pOp; 866 sqlite3 *db; 867 assert( p!=0 ); 868 db = p->db; 869 assert( p->magic==VDBE_MAGIC_INIT ); 870 if( p->aOp==0 || db->mallocFailed ){ 871 if( n!=P4_VTAB ){ 872 freeP4(db, n, (void*)*(char**)&zP4); 873 } 874 return; 875 } 876 assert( p->nOp>0 ); 877 assert( addr<p->nOp ); 878 if( addr<0 ){ 879 addr = p->nOp - 1; 880 } 881 pOp = &p->aOp[addr]; 882 assert( pOp->p4type==P4_NOTUSED 883 || pOp->p4type==P4_INT32 884 || pOp->p4type==P4_KEYINFO ); 885 freeP4(db, pOp->p4type, pOp->p4.p); 886 pOp->p4.p = 0; 887 if( n==P4_INT32 ){ 888 /* Note: this cast is safe, because the origin data point was an int 889 ** that was cast to a (const char *). */ 890 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 891 pOp->p4type = P4_INT32; 892 }else if( zP4==0 ){ 893 pOp->p4.p = 0; 894 pOp->p4type = P4_NOTUSED; 895 }else if( n==P4_KEYINFO ){ 896 pOp->p4.p = (void*)zP4; 897 pOp->p4type = P4_KEYINFO; 898 }else if( n==P4_VTAB ){ 899 pOp->p4.p = (void*)zP4; 900 pOp->p4type = P4_VTAB; 901 sqlite3VtabLock((VTable *)zP4); 902 assert( ((VTable *)zP4)->db==p->db ); 903 }else if( n<0 ){ 904 pOp->p4.p = (void*)zP4; 905 pOp->p4type = (signed char)n; 906 }else{ 907 if( n==0 ) n = sqlite3Strlen30(zP4); 908 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 909 pOp->p4type = P4_DYNAMIC; 910 } 911 } 912 913 /* 914 ** Set the P4 on the most recently added opcode to the KeyInfo for the 915 ** index given. 916 */ 917 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 918 Vdbe *v = pParse->pVdbe; 919 assert( v!=0 ); 920 assert( pIdx!=0 ); 921 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx), 922 P4_KEYINFO); 923 } 924 925 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 926 /* 927 ** Change the comment on the most recently coded instruction. Or 928 ** insert a No-op and add the comment to that new instruction. This 929 ** makes the code easier to read during debugging. None of this happens 930 ** in a production build. 931 */ 932 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 933 assert( p->nOp>0 || p->aOp==0 ); 934 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 935 if( p->nOp ){ 936 assert( p->aOp ); 937 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 938 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 939 } 940 } 941 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 942 va_list ap; 943 if( p ){ 944 va_start(ap, zFormat); 945 vdbeVComment(p, zFormat, ap); 946 va_end(ap); 947 } 948 } 949 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 950 va_list ap; 951 if( p ){ 952 sqlite3VdbeAddOp0(p, OP_Noop); 953 va_start(ap, zFormat); 954 vdbeVComment(p, zFormat, ap); 955 va_end(ap); 956 } 957 } 958 #endif /* NDEBUG */ 959 960 #ifdef SQLITE_VDBE_COVERAGE 961 /* 962 ** Set the value if the iSrcLine field for the previously coded instruction. 963 */ 964 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 965 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 966 } 967 #endif /* SQLITE_VDBE_COVERAGE */ 968 969 /* 970 ** Return the opcode for a given address. If the address is -1, then 971 ** return the most recently inserted opcode. 972 ** 973 ** If a memory allocation error has occurred prior to the calling of this 974 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 975 ** is readable but not writable, though it is cast to a writable value. 976 ** The return of a dummy opcode allows the call to continue functioning 977 ** after an OOM fault without having to check to see if the return from 978 ** this routine is a valid pointer. But because the dummy.opcode is 0, 979 ** dummy will never be written to. This is verified by code inspection and 980 ** by running with Valgrind. 981 */ 982 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 983 /* C89 specifies that the constant "dummy" will be initialized to all 984 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 985 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 986 assert( p->magic==VDBE_MAGIC_INIT ); 987 if( addr<0 ){ 988 addr = p->nOp - 1; 989 } 990 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 991 if( p->db->mallocFailed ){ 992 return (VdbeOp*)&dummy; 993 }else{ 994 return &p->aOp[addr]; 995 } 996 } 997 998 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 999 /* 1000 ** Return an integer value for one of the parameters to the opcode pOp 1001 ** determined by character c. 1002 */ 1003 static int translateP(char c, const Op *pOp){ 1004 if( c=='1' ) return pOp->p1; 1005 if( c=='2' ) return pOp->p2; 1006 if( c=='3' ) return pOp->p3; 1007 if( c=='4' ) return pOp->p4.i; 1008 return pOp->p5; 1009 } 1010 1011 /* 1012 ** Compute a string for the "comment" field of a VDBE opcode listing. 1013 ** 1014 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1015 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1016 ** absence of other comments, this synopsis becomes the comment on the opcode. 1017 ** Some translation occurs: 1018 ** 1019 ** "PX" -> "r[X]" 1020 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1021 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1022 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1023 */ 1024 static int displayComment( 1025 const Op *pOp, /* The opcode to be commented */ 1026 const char *zP4, /* Previously obtained value for P4 */ 1027 char *zTemp, /* Write result here */ 1028 int nTemp /* Space available in zTemp[] */ 1029 ){ 1030 const char *zOpName; 1031 const char *zSynopsis; 1032 int nOpName; 1033 int ii, jj; 1034 zOpName = sqlite3OpcodeName(pOp->opcode); 1035 nOpName = sqlite3Strlen30(zOpName); 1036 if( zOpName[nOpName+1] ){ 1037 int seenCom = 0; 1038 char c; 1039 zSynopsis = zOpName += nOpName + 1; 1040 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 1041 if( c=='P' ){ 1042 c = zSynopsis[++ii]; 1043 if( c=='4' ){ 1044 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 1045 }else if( c=='X' ){ 1046 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 1047 seenCom = 1; 1048 }else{ 1049 int v1 = translateP(c, pOp); 1050 int v2; 1051 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 1052 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1053 ii += 3; 1054 jj += sqlite3Strlen30(zTemp+jj); 1055 v2 = translateP(zSynopsis[ii], pOp); 1056 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1057 ii += 2; 1058 v2++; 1059 } 1060 if( v2>1 ){ 1061 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 1062 } 1063 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1064 ii += 4; 1065 } 1066 } 1067 jj += sqlite3Strlen30(zTemp+jj); 1068 }else{ 1069 zTemp[jj++] = c; 1070 } 1071 } 1072 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 1073 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 1074 jj += sqlite3Strlen30(zTemp+jj); 1075 } 1076 if( jj<nTemp ) zTemp[jj] = 0; 1077 }else if( pOp->zComment ){ 1078 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 1079 jj = sqlite3Strlen30(zTemp); 1080 }else{ 1081 zTemp[0] = 0; 1082 jj = 0; 1083 } 1084 return jj; 1085 } 1086 #endif /* SQLITE_DEBUG */ 1087 1088 1089 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ 1090 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1091 /* 1092 ** Compute a string that describes the P4 parameter for an opcode. 1093 ** Use zTemp for any required temporary buffer space. 1094 */ 1095 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 1096 char *zP4 = zTemp; 1097 assert( nTemp>=20 ); 1098 switch( pOp->p4type ){ 1099 case P4_KEYINFO: { 1100 int i, j; 1101 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1102 assert( pKeyInfo->aSortOrder!=0 ); 1103 sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField); 1104 i = sqlite3Strlen30(zTemp); 1105 for(j=0; j<pKeyInfo->nField; j++){ 1106 CollSeq *pColl = pKeyInfo->aColl[j]; 1107 const char *zColl = pColl ? pColl->zName : "nil"; 1108 int n = sqlite3Strlen30(zColl); 1109 if( n==6 && memcmp(zColl,"BINARY",6)==0 ){ 1110 zColl = "B"; 1111 n = 1; 1112 } 1113 if( i+n>nTemp-7 ){ 1114 memcpy(&zTemp[i],",...",4); 1115 i += 4; 1116 break; 1117 } 1118 zTemp[i++] = ','; 1119 if( pKeyInfo->aSortOrder[j] ){ 1120 zTemp[i++] = '-'; 1121 } 1122 memcpy(&zTemp[i], zColl, n+1); 1123 i += n; 1124 } 1125 zTemp[i++] = ')'; 1126 zTemp[i] = 0; 1127 assert( i<nTemp ); 1128 break; 1129 } 1130 case P4_COLLSEQ: { 1131 CollSeq *pColl = pOp->p4.pColl; 1132 sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName); 1133 break; 1134 } 1135 case P4_FUNCDEF: { 1136 FuncDef *pDef = pOp->p4.pFunc; 1137 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); 1138 break; 1139 } 1140 #ifdef SQLITE_DEBUG 1141 case P4_FUNCCTX: { 1142 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1143 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); 1144 break; 1145 } 1146 #endif 1147 case P4_INT64: { 1148 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); 1149 break; 1150 } 1151 case P4_INT32: { 1152 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); 1153 break; 1154 } 1155 case P4_REAL: { 1156 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal); 1157 break; 1158 } 1159 case P4_MEM: { 1160 Mem *pMem = pOp->p4.pMem; 1161 if( pMem->flags & MEM_Str ){ 1162 zP4 = pMem->z; 1163 }else if( pMem->flags & MEM_Int ){ 1164 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); 1165 }else if( pMem->flags & MEM_Real ){ 1166 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r); 1167 }else if( pMem->flags & MEM_Null ){ 1168 sqlite3_snprintf(nTemp, zTemp, "NULL"); 1169 }else{ 1170 assert( pMem->flags & MEM_Blob ); 1171 zP4 = "(blob)"; 1172 } 1173 break; 1174 } 1175 #ifndef SQLITE_OMIT_VIRTUALTABLE 1176 case P4_VTAB: { 1177 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1178 sqlite3_snprintf(nTemp, zTemp, "vtab:%p", pVtab); 1179 break; 1180 } 1181 #endif 1182 case P4_INTARRAY: { 1183 sqlite3_snprintf(nTemp, zTemp, "intarray"); 1184 break; 1185 } 1186 case P4_SUBPROGRAM: { 1187 sqlite3_snprintf(nTemp, zTemp, "program"); 1188 break; 1189 } 1190 case P4_ADVANCE: { 1191 zTemp[0] = 0; 1192 break; 1193 } 1194 default: { 1195 zP4 = pOp->p4.z; 1196 if( zP4==0 ){ 1197 zP4 = zTemp; 1198 zTemp[0] = 0; 1199 } 1200 } 1201 } 1202 assert( zP4!=0 ); 1203 return zP4; 1204 } 1205 #endif 1206 1207 /* 1208 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1209 ** 1210 ** The prepared statements need to know in advance the complete set of 1211 ** attached databases that will be use. A mask of these databases 1212 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1213 ** p->btreeMask of databases that will require a lock. 1214 */ 1215 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1216 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1217 assert( i<(int)sizeof(p->btreeMask)*8 ); 1218 DbMaskSet(p->btreeMask, i); 1219 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1220 DbMaskSet(p->lockMask, i); 1221 } 1222 } 1223 1224 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1225 /* 1226 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1227 ** this routine obtains the mutex associated with each BtShared structure 1228 ** that may be accessed by the VM passed as an argument. In doing so it also 1229 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1230 ** that the correct busy-handler callback is invoked if required. 1231 ** 1232 ** If SQLite is not threadsafe but does support shared-cache mode, then 1233 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1234 ** of all of BtShared structures accessible via the database handle 1235 ** associated with the VM. 1236 ** 1237 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1238 ** function is a no-op. 1239 ** 1240 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1241 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1242 ** corresponding to btrees that use shared cache. Then the runtime of 1243 ** this routine is N*N. But as N is rarely more than 1, this should not 1244 ** be a problem. 1245 */ 1246 void sqlite3VdbeEnter(Vdbe *p){ 1247 int i; 1248 sqlite3 *db; 1249 Db *aDb; 1250 int nDb; 1251 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1252 db = p->db; 1253 aDb = db->aDb; 1254 nDb = db->nDb; 1255 for(i=0; i<nDb; i++){ 1256 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1257 sqlite3BtreeEnter(aDb[i].pBt); 1258 } 1259 } 1260 } 1261 #endif 1262 1263 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1264 /* 1265 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1266 */ 1267 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1268 int i; 1269 sqlite3 *db; 1270 Db *aDb; 1271 int nDb; 1272 db = p->db; 1273 aDb = db->aDb; 1274 nDb = db->nDb; 1275 for(i=0; i<nDb; i++){ 1276 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1277 sqlite3BtreeLeave(aDb[i].pBt); 1278 } 1279 } 1280 } 1281 void sqlite3VdbeLeave(Vdbe *p){ 1282 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1283 vdbeLeave(p); 1284 } 1285 #endif 1286 1287 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1288 /* 1289 ** Print a single opcode. This routine is used for debugging only. 1290 */ 1291 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ 1292 char *zP4; 1293 char zPtr[50]; 1294 char zCom[100]; 1295 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1296 if( pOut==0 ) pOut = stdout; 1297 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1298 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1299 displayComment(pOp, zP4, zCom, sizeof(zCom)); 1300 #else 1301 zCom[0] = 0; 1302 #endif 1303 /* NB: The sqlite3OpcodeName() function is implemented by code created 1304 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1305 ** information from the vdbe.c source text */ 1306 fprintf(pOut, zFormat1, pc, 1307 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1308 zCom 1309 ); 1310 fflush(pOut); 1311 } 1312 #endif 1313 1314 /* 1315 ** Release an array of N Mem elements 1316 */ 1317 static void releaseMemArray(Mem *p, int N){ 1318 if( p && N ){ 1319 Mem *pEnd = &p[N]; 1320 sqlite3 *db = p->db; 1321 u8 malloc_failed = db->mallocFailed; 1322 if( db->pnBytesFreed ){ 1323 do{ 1324 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1325 }while( (++p)<pEnd ); 1326 return; 1327 } 1328 do{ 1329 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1330 assert( sqlite3VdbeCheckMemInvariants(p) ); 1331 1332 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1333 ** that takes advantage of the fact that the memory cell value is 1334 ** being set to NULL after releasing any dynamic resources. 1335 ** 1336 ** The justification for duplicating code is that according to 1337 ** callgrind, this causes a certain test case to hit the CPU 4.7 1338 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1339 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1340 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1341 ** with no indexes using a single prepared INSERT statement, bind() 1342 ** and reset(). Inserts are grouped into a transaction. 1343 */ 1344 testcase( p->flags & MEM_Agg ); 1345 testcase( p->flags & MEM_Dyn ); 1346 testcase( p->flags & MEM_Frame ); 1347 testcase( p->flags & MEM_RowSet ); 1348 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ 1349 sqlite3VdbeMemRelease(p); 1350 }else if( p->szMalloc ){ 1351 sqlite3DbFree(db, p->zMalloc); 1352 p->szMalloc = 0; 1353 } 1354 1355 p->flags = MEM_Undefined; 1356 }while( (++p)<pEnd ); 1357 db->mallocFailed = malloc_failed; 1358 } 1359 } 1360 1361 /* 1362 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1363 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1364 */ 1365 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1366 int i; 1367 Mem *aMem = VdbeFrameMem(p); 1368 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1369 for(i=0; i<p->nChildCsr; i++){ 1370 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1371 } 1372 releaseMemArray(aMem, p->nChildMem); 1373 sqlite3DbFree(p->v->db, p); 1374 } 1375 1376 #ifndef SQLITE_OMIT_EXPLAIN 1377 /* 1378 ** Give a listing of the program in the virtual machine. 1379 ** 1380 ** The interface is the same as sqlite3VdbeExec(). But instead of 1381 ** running the code, it invokes the callback once for each instruction. 1382 ** This feature is used to implement "EXPLAIN". 1383 ** 1384 ** When p->explain==1, each instruction is listed. When 1385 ** p->explain==2, only OP_Explain instructions are listed and these 1386 ** are shown in a different format. p->explain==2 is used to implement 1387 ** EXPLAIN QUERY PLAN. 1388 ** 1389 ** When p->explain==1, first the main program is listed, then each of 1390 ** the trigger subprograms are listed one by one. 1391 */ 1392 int sqlite3VdbeList( 1393 Vdbe *p /* The VDBE */ 1394 ){ 1395 int nRow; /* Stop when row count reaches this */ 1396 int nSub = 0; /* Number of sub-vdbes seen so far */ 1397 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1398 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1399 sqlite3 *db = p->db; /* The database connection */ 1400 int i; /* Loop counter */ 1401 int rc = SQLITE_OK; /* Return code */ 1402 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 1403 1404 assert( p->explain ); 1405 assert( p->magic==VDBE_MAGIC_RUN ); 1406 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1407 1408 /* Even though this opcode does not use dynamic strings for 1409 ** the result, result columns may become dynamic if the user calls 1410 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1411 */ 1412 releaseMemArray(pMem, 8); 1413 p->pResultSet = 0; 1414 1415 if( p->rc==SQLITE_NOMEM ){ 1416 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1417 ** sqlite3_column_text16() failed. */ 1418 db->mallocFailed = 1; 1419 return SQLITE_ERROR; 1420 } 1421 1422 /* When the number of output rows reaches nRow, that means the 1423 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1424 ** nRow is the sum of the number of rows in the main program, plus 1425 ** the sum of the number of rows in all trigger subprograms encountered 1426 ** so far. The nRow value will increase as new trigger subprograms are 1427 ** encountered, but p->pc will eventually catch up to nRow. 1428 */ 1429 nRow = p->nOp; 1430 if( p->explain==1 ){ 1431 /* The first 8 memory cells are used for the result set. So we will 1432 ** commandeer the 9th cell to use as storage for an array of pointers 1433 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1434 ** cells. */ 1435 assert( p->nMem>9 ); 1436 pSub = &p->aMem[9]; 1437 if( pSub->flags&MEM_Blob ){ 1438 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1439 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1440 nSub = pSub->n/sizeof(Vdbe*); 1441 apSub = (SubProgram **)pSub->z; 1442 } 1443 for(i=0; i<nSub; i++){ 1444 nRow += apSub[i]->nOp; 1445 } 1446 } 1447 1448 do{ 1449 i = p->pc++; 1450 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); 1451 if( i>=nRow ){ 1452 p->rc = SQLITE_OK; 1453 rc = SQLITE_DONE; 1454 }else if( db->u1.isInterrupted ){ 1455 p->rc = SQLITE_INTERRUPT; 1456 rc = SQLITE_ERROR; 1457 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 1458 }else{ 1459 char *zP4; 1460 Op *pOp; 1461 if( i<p->nOp ){ 1462 /* The output line number is small enough that we are still in the 1463 ** main program. */ 1464 pOp = &p->aOp[i]; 1465 }else{ 1466 /* We are currently listing subprograms. Figure out which one and 1467 ** pick up the appropriate opcode. */ 1468 int j; 1469 i -= p->nOp; 1470 for(j=0; i>=apSub[j]->nOp; j++){ 1471 i -= apSub[j]->nOp; 1472 } 1473 pOp = &apSub[j]->aOp[i]; 1474 } 1475 if( p->explain==1 ){ 1476 pMem->flags = MEM_Int; 1477 pMem->u.i = i; /* Program counter */ 1478 pMem++; 1479 1480 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1481 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1482 assert( pMem->z!=0 ); 1483 pMem->n = sqlite3Strlen30(pMem->z); 1484 pMem->enc = SQLITE_UTF8; 1485 pMem++; 1486 1487 /* When an OP_Program opcode is encounter (the only opcode that has 1488 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1489 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1490 ** has not already been seen. 1491 */ 1492 if( pOp->p4type==P4_SUBPROGRAM ){ 1493 int nByte = (nSub+1)*sizeof(SubProgram*); 1494 int j; 1495 for(j=0; j<nSub; j++){ 1496 if( apSub[j]==pOp->p4.pProgram ) break; 1497 } 1498 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){ 1499 apSub = (SubProgram **)pSub->z; 1500 apSub[nSub++] = pOp->p4.pProgram; 1501 pSub->flags |= MEM_Blob; 1502 pSub->n = nSub*sizeof(SubProgram*); 1503 } 1504 } 1505 } 1506 1507 pMem->flags = MEM_Int; 1508 pMem->u.i = pOp->p1; /* P1 */ 1509 pMem++; 1510 1511 pMem->flags = MEM_Int; 1512 pMem->u.i = pOp->p2; /* P2 */ 1513 pMem++; 1514 1515 pMem->flags = MEM_Int; 1516 pMem->u.i = pOp->p3; /* P3 */ 1517 pMem++; 1518 1519 if( sqlite3VdbeMemClearAndResize(pMem, 32) ){ /* P4 */ 1520 assert( p->db->mallocFailed ); 1521 return SQLITE_ERROR; 1522 } 1523 pMem->flags = MEM_Str|MEM_Term; 1524 zP4 = displayP4(pOp, pMem->z, 32); 1525 if( zP4!=pMem->z ){ 1526 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 1527 }else{ 1528 assert( pMem->z!=0 ); 1529 pMem->n = sqlite3Strlen30(pMem->z); 1530 pMem->enc = SQLITE_UTF8; 1531 } 1532 pMem++; 1533 1534 if( p->explain==1 ){ 1535 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ 1536 assert( p->db->mallocFailed ); 1537 return SQLITE_ERROR; 1538 } 1539 pMem->flags = MEM_Str|MEM_Term; 1540 pMem->n = 2; 1541 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1542 pMem->enc = SQLITE_UTF8; 1543 pMem++; 1544 1545 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1546 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ 1547 assert( p->db->mallocFailed ); 1548 return SQLITE_ERROR; 1549 } 1550 pMem->flags = MEM_Str|MEM_Term; 1551 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 1552 pMem->enc = SQLITE_UTF8; 1553 #else 1554 pMem->flags = MEM_Null; /* Comment */ 1555 #endif 1556 } 1557 1558 p->nResColumn = 8 - 4*(p->explain-1); 1559 p->pResultSet = &p->aMem[1]; 1560 p->rc = SQLITE_OK; 1561 rc = SQLITE_ROW; 1562 } 1563 return rc; 1564 } 1565 #endif /* SQLITE_OMIT_EXPLAIN */ 1566 1567 #ifdef SQLITE_DEBUG 1568 /* 1569 ** Print the SQL that was used to generate a VDBE program. 1570 */ 1571 void sqlite3VdbePrintSql(Vdbe *p){ 1572 const char *z = 0; 1573 if( p->zSql ){ 1574 z = p->zSql; 1575 }else if( p->nOp>=1 ){ 1576 const VdbeOp *pOp = &p->aOp[0]; 1577 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1578 z = pOp->p4.z; 1579 while( sqlite3Isspace(*z) ) z++; 1580 } 1581 } 1582 if( z ) printf("SQL: [%s]\n", z); 1583 } 1584 #endif 1585 1586 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 1587 /* 1588 ** Print an IOTRACE message showing SQL content. 1589 */ 1590 void sqlite3VdbeIOTraceSql(Vdbe *p){ 1591 int nOp = p->nOp; 1592 VdbeOp *pOp; 1593 if( sqlite3IoTrace==0 ) return; 1594 if( nOp<1 ) return; 1595 pOp = &p->aOp[0]; 1596 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1597 int i, j; 1598 char z[1000]; 1599 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 1600 for(i=0; sqlite3Isspace(z[i]); i++){} 1601 for(j=0; z[i]; i++){ 1602 if( sqlite3Isspace(z[i]) ){ 1603 if( z[i-1]!=' ' ){ 1604 z[j++] = ' '; 1605 } 1606 }else{ 1607 z[j++] = z[i]; 1608 } 1609 } 1610 z[j] = 0; 1611 sqlite3IoTrace("SQL %s\n", z); 1612 } 1613 } 1614 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 1615 1616 /* 1617 ** Allocate space from a fixed size buffer and return a pointer to 1618 ** that space. If insufficient space is available, return NULL. 1619 ** 1620 ** The pBuf parameter is the initial value of a pointer which will 1621 ** receive the new memory. pBuf is normally NULL. If pBuf is not 1622 ** NULL, it means that memory space has already been allocated and that 1623 ** this routine should not allocate any new memory. When pBuf is not 1624 ** NULL simply return pBuf. Only allocate new memory space when pBuf 1625 ** is NULL. 1626 ** 1627 ** nByte is the number of bytes of space needed. 1628 ** 1629 ** *ppFrom points to available space and pEnd points to the end of the 1630 ** available space. When space is allocated, *ppFrom is advanced past 1631 ** the end of the allocated space. 1632 ** 1633 ** *pnByte is a counter of the number of bytes of space that have failed 1634 ** to allocate. If there is insufficient space in *ppFrom to satisfy the 1635 ** request, then increment *pnByte by the amount of the request. 1636 */ 1637 static void *allocSpace( 1638 void *pBuf, /* Where return pointer will be stored */ 1639 int nByte, /* Number of bytes to allocate */ 1640 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */ 1641 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */ 1642 int *pnByte /* If allocation cannot be made, increment *pnByte */ 1643 ){ 1644 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) ); 1645 if( pBuf ) return pBuf; 1646 nByte = ROUND8(nByte); 1647 if( &(*ppFrom)[nByte] <= pEnd ){ 1648 pBuf = (void*)*ppFrom; 1649 *ppFrom += nByte; 1650 }else{ 1651 *pnByte += nByte; 1652 } 1653 return pBuf; 1654 } 1655 1656 /* 1657 ** Rewind the VDBE back to the beginning in preparation for 1658 ** running it. 1659 */ 1660 void sqlite3VdbeRewind(Vdbe *p){ 1661 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1662 int i; 1663 #endif 1664 assert( p!=0 ); 1665 assert( p->magic==VDBE_MAGIC_INIT ); 1666 1667 /* There should be at least one opcode. 1668 */ 1669 assert( p->nOp>0 ); 1670 1671 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 1672 p->magic = VDBE_MAGIC_RUN; 1673 1674 #ifdef SQLITE_DEBUG 1675 for(i=1; i<p->nMem; i++){ 1676 assert( p->aMem[i].db==p->db ); 1677 } 1678 #endif 1679 p->pc = -1; 1680 p->rc = SQLITE_OK; 1681 p->errorAction = OE_Abort; 1682 p->magic = VDBE_MAGIC_RUN; 1683 p->nChange = 0; 1684 p->cacheCtr = 1; 1685 p->minWriteFileFormat = 255; 1686 p->iStatement = 0; 1687 p->nFkConstraint = 0; 1688 #ifdef VDBE_PROFILE 1689 for(i=0; i<p->nOp; i++){ 1690 p->aOp[i].cnt = 0; 1691 p->aOp[i].cycles = 0; 1692 } 1693 #endif 1694 } 1695 1696 /* 1697 ** Prepare a virtual machine for execution for the first time after 1698 ** creating the virtual machine. This involves things such 1699 ** as allocating registers and initializing the program counter. 1700 ** After the VDBE has be prepped, it can be executed by one or more 1701 ** calls to sqlite3VdbeExec(). 1702 ** 1703 ** This function may be called exactly once on each virtual machine. 1704 ** After this routine is called the VM has been "packaged" and is ready 1705 ** to run. After this routine is called, further calls to 1706 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 1707 ** the Vdbe from the Parse object that helped generate it so that the 1708 ** the Vdbe becomes an independent entity and the Parse object can be 1709 ** destroyed. 1710 ** 1711 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 1712 ** to its initial state after it has been run. 1713 */ 1714 void sqlite3VdbeMakeReady( 1715 Vdbe *p, /* The VDBE */ 1716 Parse *pParse /* Parsing context */ 1717 ){ 1718 sqlite3 *db; /* The database connection */ 1719 int nVar; /* Number of parameters */ 1720 int nMem; /* Number of VM memory registers */ 1721 int nCursor; /* Number of cursors required */ 1722 int nArg; /* Number of arguments in subprograms */ 1723 int nOnce; /* Number of OP_Once instructions */ 1724 int n; /* Loop counter */ 1725 u8 *zCsr; /* Memory available for allocation */ 1726 u8 *zEnd; /* First byte past allocated memory */ 1727 int nByte; /* How much extra memory is needed */ 1728 1729 assert( p!=0 ); 1730 assert( p->nOp>0 ); 1731 assert( pParse!=0 ); 1732 assert( p->magic==VDBE_MAGIC_INIT ); 1733 assert( pParse==p->pParse ); 1734 db = p->db; 1735 assert( db->mallocFailed==0 ); 1736 nVar = pParse->nVar; 1737 nMem = pParse->nMem; 1738 nCursor = pParse->nTab; 1739 nArg = pParse->nMaxArg; 1740 nOnce = pParse->nOnce; 1741 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */ 1742 1743 /* For each cursor required, also allocate a memory cell. Memory 1744 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by 1745 ** the vdbe program. Instead they are used to allocate space for 1746 ** VdbeCursor/BtCursor structures. The blob of memory associated with 1747 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) 1748 ** stores the blob of memory associated with cursor 1, etc. 1749 ** 1750 ** See also: allocateCursor(). 1751 */ 1752 nMem += nCursor; 1753 1754 /* Allocate space for memory registers, SQL variables, VDBE cursors and 1755 ** an array to marshal SQL function arguments in. 1756 */ 1757 zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */ 1758 zEnd = (u8*)&p->aOp[pParse->nOpAlloc]; /* First byte past end of zCsr[] */ 1759 1760 resolveP2Values(p, &nArg); 1761 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 1762 if( pParse->explain && nMem<10 ){ 1763 nMem = 10; 1764 } 1765 memset(zCsr, 0, zEnd-zCsr); 1766 zCsr += (zCsr - (u8*)0)&7; 1767 assert( EIGHT_BYTE_ALIGNMENT(zCsr) ); 1768 p->expired = 0; 1769 1770 /* Memory for registers, parameters, cursor, etc, is allocated in two 1771 ** passes. On the first pass, we try to reuse unused space at the 1772 ** end of the opcode array. If we are unable to satisfy all memory 1773 ** requirements by reusing the opcode array tail, then the second 1774 ** pass will fill in the rest using a fresh allocation. 1775 ** 1776 ** This two-pass approach that reuses as much memory as possible from 1777 ** the leftover space at the end of the opcode array can significantly 1778 ** reduce the amount of memory held by a prepared statement. 1779 */ 1780 do { 1781 nByte = 0; 1782 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte); 1783 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte); 1784 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte); 1785 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte); 1786 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*), 1787 &zCsr, zEnd, &nByte); 1788 p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte); 1789 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1790 p->anExec = allocSpace(p->anExec, p->nOp*sizeof(i64), &zCsr, zEnd, &nByte); 1791 #endif 1792 if( nByte ){ 1793 p->pFree = sqlite3DbMallocZero(db, nByte); 1794 } 1795 zCsr = p->pFree; 1796 zEnd = &zCsr[nByte]; 1797 }while( nByte && !db->mallocFailed ); 1798 1799 p->nCursor = nCursor; 1800 p->nOnceFlag = nOnce; 1801 if( p->aVar ){ 1802 p->nVar = (ynVar)nVar; 1803 for(n=0; n<nVar; n++){ 1804 p->aVar[n].flags = MEM_Null; 1805 p->aVar[n].db = db; 1806 } 1807 } 1808 if( p->azVar && pParse->nzVar>0 ){ 1809 p->nzVar = pParse->nzVar; 1810 memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0])); 1811 memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0])); 1812 } 1813 if( p->aMem ){ 1814 p->aMem--; /* aMem[] goes from 1..nMem */ 1815 p->nMem = nMem; /* not from 0..nMem-1 */ 1816 for(n=1; n<=nMem; n++){ 1817 p->aMem[n].flags = MEM_Undefined; 1818 p->aMem[n].db = db; 1819 } 1820 } 1821 p->explain = pParse->explain; 1822 sqlite3VdbeRewind(p); 1823 } 1824 1825 /* 1826 ** Close a VDBE cursor and release all the resources that cursor 1827 ** happens to hold. 1828 */ 1829 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 1830 if( pCx==0 ){ 1831 return; 1832 } 1833 sqlite3VdbeSorterClose(p->db, pCx); 1834 if( pCx->pBt ){ 1835 sqlite3BtreeClose(pCx->pBt); 1836 /* The pCx->pCursor will be close automatically, if it exists, by 1837 ** the call above. */ 1838 }else if( pCx->pCursor ){ 1839 sqlite3BtreeCloseCursor(pCx->pCursor); 1840 } 1841 #ifndef SQLITE_OMIT_VIRTUALTABLE 1842 else if( pCx->pVtabCursor ){ 1843 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; 1844 const sqlite3_module *pModule = pVtabCursor->pVtab->pModule; 1845 assert( pVtabCursor->pVtab->nRef>0 ); 1846 pVtabCursor->pVtab->nRef--; 1847 pModule->xClose(pVtabCursor); 1848 } 1849 #endif 1850 } 1851 1852 /* 1853 ** Close all cursors in the current frame. 1854 */ 1855 static void closeCursorsInFrame(Vdbe *p){ 1856 if( p->apCsr ){ 1857 int i; 1858 for(i=0; i<p->nCursor; i++){ 1859 VdbeCursor *pC = p->apCsr[i]; 1860 if( pC ){ 1861 sqlite3VdbeFreeCursor(p, pC); 1862 p->apCsr[i] = 0; 1863 } 1864 } 1865 } 1866 } 1867 1868 /* 1869 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 1870 ** is used, for example, when a trigger sub-program is halted to restore 1871 ** control to the main program. 1872 */ 1873 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 1874 Vdbe *v = pFrame->v; 1875 closeCursorsInFrame(v); 1876 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1877 v->anExec = pFrame->anExec; 1878 #endif 1879 v->aOnceFlag = pFrame->aOnceFlag; 1880 v->nOnceFlag = pFrame->nOnceFlag; 1881 v->aOp = pFrame->aOp; 1882 v->nOp = pFrame->nOp; 1883 v->aMem = pFrame->aMem; 1884 v->nMem = pFrame->nMem; 1885 v->apCsr = pFrame->apCsr; 1886 v->nCursor = pFrame->nCursor; 1887 v->db->lastRowid = pFrame->lastRowid; 1888 v->nChange = pFrame->nChange; 1889 v->db->nChange = pFrame->nDbChange; 1890 return pFrame->pc; 1891 } 1892 1893 /* 1894 ** Close all cursors. 1895 ** 1896 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 1897 ** cell array. This is necessary as the memory cell array may contain 1898 ** pointers to VdbeFrame objects, which may in turn contain pointers to 1899 ** open cursors. 1900 */ 1901 static void closeAllCursors(Vdbe *p){ 1902 if( p->pFrame ){ 1903 VdbeFrame *pFrame; 1904 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 1905 sqlite3VdbeFrameRestore(pFrame); 1906 p->pFrame = 0; 1907 p->nFrame = 0; 1908 } 1909 assert( p->nFrame==0 ); 1910 closeCursorsInFrame(p); 1911 if( p->aMem ){ 1912 releaseMemArray(&p->aMem[1], p->nMem); 1913 } 1914 while( p->pDelFrame ){ 1915 VdbeFrame *pDel = p->pDelFrame; 1916 p->pDelFrame = pDel->pParent; 1917 sqlite3VdbeFrameDelete(pDel); 1918 } 1919 1920 /* Delete any auxdata allocations made by the VM */ 1921 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0); 1922 assert( p->pAuxData==0 ); 1923 } 1924 1925 /* 1926 ** Clean up the VM after a single run. 1927 */ 1928 static void Cleanup(Vdbe *p){ 1929 sqlite3 *db = p->db; 1930 1931 #ifdef SQLITE_DEBUG 1932 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 1933 ** Vdbe.aMem[] arrays have already been cleaned up. */ 1934 int i; 1935 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 1936 if( p->aMem ){ 1937 for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 1938 } 1939 #endif 1940 1941 sqlite3DbFree(db, p->zErrMsg); 1942 p->zErrMsg = 0; 1943 p->pResultSet = 0; 1944 } 1945 1946 /* 1947 ** Set the number of result columns that will be returned by this SQL 1948 ** statement. This is now set at compile time, rather than during 1949 ** execution of the vdbe program so that sqlite3_column_count() can 1950 ** be called on an SQL statement before sqlite3_step(). 1951 */ 1952 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 1953 Mem *pColName; 1954 int n; 1955 sqlite3 *db = p->db; 1956 1957 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 1958 sqlite3DbFree(db, p->aColName); 1959 n = nResColumn*COLNAME_N; 1960 p->nResColumn = (u16)nResColumn; 1961 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n ); 1962 if( p->aColName==0 ) return; 1963 while( n-- > 0 ){ 1964 pColName->flags = MEM_Null; 1965 pColName->db = p->db; 1966 pColName++; 1967 } 1968 } 1969 1970 /* 1971 ** Set the name of the idx'th column to be returned by the SQL statement. 1972 ** zName must be a pointer to a nul terminated string. 1973 ** 1974 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 1975 ** 1976 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 1977 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 1978 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 1979 */ 1980 int sqlite3VdbeSetColName( 1981 Vdbe *p, /* Vdbe being configured */ 1982 int idx, /* Index of column zName applies to */ 1983 int var, /* One of the COLNAME_* constants */ 1984 const char *zName, /* Pointer to buffer containing name */ 1985 void (*xDel)(void*) /* Memory management strategy for zName */ 1986 ){ 1987 int rc; 1988 Mem *pColName; 1989 assert( idx<p->nResColumn ); 1990 assert( var<COLNAME_N ); 1991 if( p->db->mallocFailed ){ 1992 assert( !zName || xDel!=SQLITE_DYNAMIC ); 1993 return SQLITE_NOMEM; 1994 } 1995 assert( p->aColName!=0 ); 1996 pColName = &(p->aColName[idx+var*p->nResColumn]); 1997 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 1998 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 1999 return rc; 2000 } 2001 2002 /* 2003 ** A read or write transaction may or may not be active on database handle 2004 ** db. If a transaction is active, commit it. If there is a 2005 ** write-transaction spanning more than one database file, this routine 2006 ** takes care of the master journal trickery. 2007 */ 2008 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2009 int i; 2010 int nTrans = 0; /* Number of databases with an active write-transaction */ 2011 int rc = SQLITE_OK; 2012 int needXcommit = 0; 2013 2014 #ifdef SQLITE_OMIT_VIRTUALTABLE 2015 /* With this option, sqlite3VtabSync() is defined to be simply 2016 ** SQLITE_OK so p is not used. 2017 */ 2018 UNUSED_PARAMETER(p); 2019 #endif 2020 2021 /* Before doing anything else, call the xSync() callback for any 2022 ** virtual module tables written in this transaction. This has to 2023 ** be done before determining whether a master journal file is 2024 ** required, as an xSync() callback may add an attached database 2025 ** to the transaction. 2026 */ 2027 rc = sqlite3VtabSync(db, p); 2028 2029 /* This loop determines (a) if the commit hook should be invoked and 2030 ** (b) how many database files have open write transactions, not 2031 ** including the temp database. (b) is important because if more than 2032 ** one database file has an open write transaction, a master journal 2033 ** file is required for an atomic commit. 2034 */ 2035 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2036 Btree *pBt = db->aDb[i].pBt; 2037 if( sqlite3BtreeIsInTrans(pBt) ){ 2038 needXcommit = 1; 2039 if( i!=1 ) nTrans++; 2040 sqlite3BtreeEnter(pBt); 2041 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt)); 2042 sqlite3BtreeLeave(pBt); 2043 } 2044 } 2045 if( rc!=SQLITE_OK ){ 2046 return rc; 2047 } 2048 2049 /* If there are any write-transactions at all, invoke the commit hook */ 2050 if( needXcommit && db->xCommitCallback ){ 2051 rc = db->xCommitCallback(db->pCommitArg); 2052 if( rc ){ 2053 return SQLITE_CONSTRAINT_COMMITHOOK; 2054 } 2055 } 2056 2057 /* The simple case - no more than one database file (not counting the 2058 ** TEMP database) has a transaction active. There is no need for the 2059 ** master-journal. 2060 ** 2061 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2062 ** string, it means the main database is :memory: or a temp file. In 2063 ** that case we do not support atomic multi-file commits, so use the 2064 ** simple case then too. 2065 */ 2066 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2067 || nTrans<=1 2068 ){ 2069 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2070 Btree *pBt = db->aDb[i].pBt; 2071 if( pBt ){ 2072 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2073 } 2074 } 2075 2076 /* Do the commit only if all databases successfully complete phase 1. 2077 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2078 ** IO error while deleting or truncating a journal file. It is unlikely, 2079 ** but could happen. In this case abandon processing and return the error. 2080 */ 2081 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2082 Btree *pBt = db->aDb[i].pBt; 2083 if( pBt ){ 2084 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2085 } 2086 } 2087 if( rc==SQLITE_OK ){ 2088 sqlite3VtabCommit(db); 2089 } 2090 } 2091 2092 /* The complex case - There is a multi-file write-transaction active. 2093 ** This requires a master journal file to ensure the transaction is 2094 ** committed atomically. 2095 */ 2096 #ifndef SQLITE_OMIT_DISKIO 2097 else{ 2098 sqlite3_vfs *pVfs = db->pVfs; 2099 int needSync = 0; 2100 char *zMaster = 0; /* File-name for the master journal */ 2101 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2102 sqlite3_file *pMaster = 0; 2103 i64 offset = 0; 2104 int res; 2105 int retryCount = 0; 2106 int nMainFile; 2107 2108 /* Select a master journal file name */ 2109 nMainFile = sqlite3Strlen30(zMainFile); 2110 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); 2111 if( zMaster==0 ) return SQLITE_NOMEM; 2112 do { 2113 u32 iRandom; 2114 if( retryCount ){ 2115 if( retryCount>100 ){ 2116 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 2117 sqlite3OsDelete(pVfs, zMaster, 0); 2118 break; 2119 }else if( retryCount==1 ){ 2120 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2121 } 2122 } 2123 retryCount++; 2124 sqlite3_randomness(sizeof(iRandom), &iRandom); 2125 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2126 (iRandom>>8)&0xffffff, iRandom&0xff); 2127 /* The antipenultimate character of the master journal name must 2128 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2129 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2130 sqlite3FileSuffix3(zMainFile, zMaster); 2131 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2132 }while( rc==SQLITE_OK && res ); 2133 if( rc==SQLITE_OK ){ 2134 /* Open the master journal. */ 2135 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2136 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2137 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2138 ); 2139 } 2140 if( rc!=SQLITE_OK ){ 2141 sqlite3DbFree(db, zMaster); 2142 return rc; 2143 } 2144 2145 /* Write the name of each database file in the transaction into the new 2146 ** master journal file. If an error occurs at this point close 2147 ** and delete the master journal file. All the individual journal files 2148 ** still have 'null' as the master journal pointer, so they will roll 2149 ** back independently if a failure occurs. 2150 */ 2151 for(i=0; i<db->nDb; i++){ 2152 Btree *pBt = db->aDb[i].pBt; 2153 if( sqlite3BtreeIsInTrans(pBt) ){ 2154 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2155 if( zFile==0 ){ 2156 continue; /* Ignore TEMP and :memory: databases */ 2157 } 2158 assert( zFile[0]!=0 ); 2159 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){ 2160 needSync = 1; 2161 } 2162 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2163 offset += sqlite3Strlen30(zFile)+1; 2164 if( rc!=SQLITE_OK ){ 2165 sqlite3OsCloseFree(pMaster); 2166 sqlite3OsDelete(pVfs, zMaster, 0); 2167 sqlite3DbFree(db, zMaster); 2168 return rc; 2169 } 2170 } 2171 } 2172 2173 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2174 ** flag is set this is not required. 2175 */ 2176 if( needSync 2177 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2178 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2179 ){ 2180 sqlite3OsCloseFree(pMaster); 2181 sqlite3OsDelete(pVfs, zMaster, 0); 2182 sqlite3DbFree(db, zMaster); 2183 return rc; 2184 } 2185 2186 /* Sync all the db files involved in the transaction. The same call 2187 ** sets the master journal pointer in each individual journal. If 2188 ** an error occurs here, do not delete the master journal file. 2189 ** 2190 ** If the error occurs during the first call to 2191 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2192 ** master journal file will be orphaned. But we cannot delete it, 2193 ** in case the master journal file name was written into the journal 2194 ** file before the failure occurred. 2195 */ 2196 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2197 Btree *pBt = db->aDb[i].pBt; 2198 if( pBt ){ 2199 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2200 } 2201 } 2202 sqlite3OsCloseFree(pMaster); 2203 assert( rc!=SQLITE_BUSY ); 2204 if( rc!=SQLITE_OK ){ 2205 sqlite3DbFree(db, zMaster); 2206 return rc; 2207 } 2208 2209 /* Delete the master journal file. This commits the transaction. After 2210 ** doing this the directory is synced again before any individual 2211 ** transaction files are deleted. 2212 */ 2213 rc = sqlite3OsDelete(pVfs, zMaster, needSync); 2214 sqlite3DbFree(db, zMaster); 2215 zMaster = 0; 2216 if( rc ){ 2217 return rc; 2218 } 2219 2220 /* All files and directories have already been synced, so the following 2221 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2222 ** deleting or truncating journals. If something goes wrong while 2223 ** this is happening we don't really care. The integrity of the 2224 ** transaction is already guaranteed, but some stray 'cold' journals 2225 ** may be lying around. Returning an error code won't help matters. 2226 */ 2227 disable_simulated_io_errors(); 2228 sqlite3BeginBenignMalloc(); 2229 for(i=0; i<db->nDb; i++){ 2230 Btree *pBt = db->aDb[i].pBt; 2231 if( pBt ){ 2232 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2233 } 2234 } 2235 sqlite3EndBenignMalloc(); 2236 enable_simulated_io_errors(); 2237 2238 sqlite3VtabCommit(db); 2239 } 2240 #endif 2241 2242 return rc; 2243 } 2244 2245 /* 2246 ** This routine checks that the sqlite3.nVdbeActive count variable 2247 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2248 ** currently active. An assertion fails if the two counts do not match. 2249 ** This is an internal self-check only - it is not an essential processing 2250 ** step. 2251 ** 2252 ** This is a no-op if NDEBUG is defined. 2253 */ 2254 #ifndef NDEBUG 2255 static void checkActiveVdbeCnt(sqlite3 *db){ 2256 Vdbe *p; 2257 int cnt = 0; 2258 int nWrite = 0; 2259 int nRead = 0; 2260 p = db->pVdbe; 2261 while( p ){ 2262 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2263 cnt++; 2264 if( p->readOnly==0 ) nWrite++; 2265 if( p->bIsReader ) nRead++; 2266 } 2267 p = p->pNext; 2268 } 2269 assert( cnt==db->nVdbeActive ); 2270 assert( nWrite==db->nVdbeWrite ); 2271 assert( nRead==db->nVdbeRead ); 2272 } 2273 #else 2274 #define checkActiveVdbeCnt(x) 2275 #endif 2276 2277 /* 2278 ** If the Vdbe passed as the first argument opened a statement-transaction, 2279 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2280 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2281 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2282 ** statement transaction is committed. 2283 ** 2284 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2285 ** Otherwise SQLITE_OK. 2286 */ 2287 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2288 sqlite3 *const db = p->db; 2289 int rc = SQLITE_OK; 2290 2291 /* If p->iStatement is greater than zero, then this Vdbe opened a 2292 ** statement transaction that should be closed here. The only exception 2293 ** is that an IO error may have occurred, causing an emergency rollback. 2294 ** In this case (db->nStatement==0), and there is nothing to do. 2295 */ 2296 if( db->nStatement && p->iStatement ){ 2297 int i; 2298 const int iSavepoint = p->iStatement-1; 2299 2300 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2301 assert( db->nStatement>0 ); 2302 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2303 2304 for(i=0; i<db->nDb; i++){ 2305 int rc2 = SQLITE_OK; 2306 Btree *pBt = db->aDb[i].pBt; 2307 if( pBt ){ 2308 if( eOp==SAVEPOINT_ROLLBACK ){ 2309 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2310 } 2311 if( rc2==SQLITE_OK ){ 2312 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2313 } 2314 if( rc==SQLITE_OK ){ 2315 rc = rc2; 2316 } 2317 } 2318 } 2319 db->nStatement--; 2320 p->iStatement = 0; 2321 2322 if( rc==SQLITE_OK ){ 2323 if( eOp==SAVEPOINT_ROLLBACK ){ 2324 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2325 } 2326 if( rc==SQLITE_OK ){ 2327 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2328 } 2329 } 2330 2331 /* If the statement transaction is being rolled back, also restore the 2332 ** database handles deferred constraint counter to the value it had when 2333 ** the statement transaction was opened. */ 2334 if( eOp==SAVEPOINT_ROLLBACK ){ 2335 db->nDeferredCons = p->nStmtDefCons; 2336 db->nDeferredImmCons = p->nStmtDefImmCons; 2337 } 2338 } 2339 return rc; 2340 } 2341 2342 /* 2343 ** This function is called when a transaction opened by the database 2344 ** handle associated with the VM passed as an argument is about to be 2345 ** committed. If there are outstanding deferred foreign key constraint 2346 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2347 ** 2348 ** If there are outstanding FK violations and this function returns 2349 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2350 ** and write an error message to it. Then return SQLITE_ERROR. 2351 */ 2352 #ifndef SQLITE_OMIT_FOREIGN_KEY 2353 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2354 sqlite3 *db = p->db; 2355 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2356 || (!deferred && p->nFkConstraint>0) 2357 ){ 2358 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2359 p->errorAction = OE_Abort; 2360 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2361 return SQLITE_ERROR; 2362 } 2363 return SQLITE_OK; 2364 } 2365 #endif 2366 2367 /* 2368 ** This routine is called the when a VDBE tries to halt. If the VDBE 2369 ** has made changes and is in autocommit mode, then commit those 2370 ** changes. If a rollback is needed, then do the rollback. 2371 ** 2372 ** This routine is the only way to move the state of a VM from 2373 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2374 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2375 ** 2376 ** Return an error code. If the commit could not complete because of 2377 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2378 ** means the close did not happen and needs to be repeated. 2379 */ 2380 int sqlite3VdbeHalt(Vdbe *p){ 2381 int rc; /* Used to store transient return codes */ 2382 sqlite3 *db = p->db; 2383 2384 /* This function contains the logic that determines if a statement or 2385 ** transaction will be committed or rolled back as a result of the 2386 ** execution of this virtual machine. 2387 ** 2388 ** If any of the following errors occur: 2389 ** 2390 ** SQLITE_NOMEM 2391 ** SQLITE_IOERR 2392 ** SQLITE_FULL 2393 ** SQLITE_INTERRUPT 2394 ** 2395 ** Then the internal cache might have been left in an inconsistent 2396 ** state. We need to rollback the statement transaction, if there is 2397 ** one, or the complete transaction if there is no statement transaction. 2398 */ 2399 2400 if( p->db->mallocFailed ){ 2401 p->rc = SQLITE_NOMEM; 2402 } 2403 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag); 2404 closeAllCursors(p); 2405 if( p->magic!=VDBE_MAGIC_RUN ){ 2406 return SQLITE_OK; 2407 } 2408 checkActiveVdbeCnt(db); 2409 2410 /* No commit or rollback needed if the program never started or if the 2411 ** SQL statement does not read or write a database file. */ 2412 if( p->pc>=0 && p->bIsReader ){ 2413 int mrc; /* Primary error code from p->rc */ 2414 int eStatementOp = 0; 2415 int isSpecialError; /* Set to true if a 'special' error */ 2416 2417 /* Lock all btrees used by the statement */ 2418 sqlite3VdbeEnter(p); 2419 2420 /* Check for one of the special errors */ 2421 mrc = p->rc & 0xff; 2422 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2423 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2424 if( isSpecialError ){ 2425 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2426 ** no rollback is necessary. Otherwise, at least a savepoint 2427 ** transaction must be rolled back to restore the database to a 2428 ** consistent state. 2429 ** 2430 ** Even if the statement is read-only, it is important to perform 2431 ** a statement or transaction rollback operation. If the error 2432 ** occurred while writing to the journal, sub-journal or database 2433 ** file as part of an effort to free up cache space (see function 2434 ** pagerStress() in pager.c), the rollback is required to restore 2435 ** the pager to a consistent state. 2436 */ 2437 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2438 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2439 eStatementOp = SAVEPOINT_ROLLBACK; 2440 }else{ 2441 /* We are forced to roll back the active transaction. Before doing 2442 ** so, abort any other statements this handle currently has active. 2443 */ 2444 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2445 sqlite3CloseSavepoints(db); 2446 db->autoCommit = 1; 2447 p->nChange = 0; 2448 } 2449 } 2450 } 2451 2452 /* Check for immediate foreign key violations. */ 2453 if( p->rc==SQLITE_OK ){ 2454 sqlite3VdbeCheckFk(p, 0); 2455 } 2456 2457 /* If the auto-commit flag is set and this is the only active writer 2458 ** VM, then we do either a commit or rollback of the current transaction. 2459 ** 2460 ** Note: This block also runs if one of the special errors handled 2461 ** above has occurred. 2462 */ 2463 if( !sqlite3VtabInSync(db) 2464 && db->autoCommit 2465 && db->nVdbeWrite==(p->readOnly==0) 2466 ){ 2467 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2468 rc = sqlite3VdbeCheckFk(p, 1); 2469 if( rc!=SQLITE_OK ){ 2470 if( NEVER(p->readOnly) ){ 2471 sqlite3VdbeLeave(p); 2472 return SQLITE_ERROR; 2473 } 2474 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2475 }else{ 2476 /* The auto-commit flag is true, the vdbe program was successful 2477 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2478 ** key constraints to hold up the transaction. This means a commit 2479 ** is required. */ 2480 rc = vdbeCommit(db, p); 2481 } 2482 if( rc==SQLITE_BUSY && p->readOnly ){ 2483 sqlite3VdbeLeave(p); 2484 return SQLITE_BUSY; 2485 }else if( rc!=SQLITE_OK ){ 2486 p->rc = rc; 2487 sqlite3RollbackAll(db, SQLITE_OK); 2488 p->nChange = 0; 2489 }else{ 2490 db->nDeferredCons = 0; 2491 db->nDeferredImmCons = 0; 2492 db->flags &= ~SQLITE_DeferFKs; 2493 sqlite3CommitInternalChanges(db); 2494 } 2495 }else{ 2496 sqlite3RollbackAll(db, SQLITE_OK); 2497 p->nChange = 0; 2498 } 2499 db->nStatement = 0; 2500 }else if( eStatementOp==0 ){ 2501 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2502 eStatementOp = SAVEPOINT_RELEASE; 2503 }else if( p->errorAction==OE_Abort ){ 2504 eStatementOp = SAVEPOINT_ROLLBACK; 2505 }else{ 2506 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2507 sqlite3CloseSavepoints(db); 2508 db->autoCommit = 1; 2509 p->nChange = 0; 2510 } 2511 } 2512 2513 /* If eStatementOp is non-zero, then a statement transaction needs to 2514 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2515 ** do so. If this operation returns an error, and the current statement 2516 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2517 ** current statement error code. 2518 */ 2519 if( eStatementOp ){ 2520 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2521 if( rc ){ 2522 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 2523 p->rc = rc; 2524 sqlite3DbFree(db, p->zErrMsg); 2525 p->zErrMsg = 0; 2526 } 2527 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2528 sqlite3CloseSavepoints(db); 2529 db->autoCommit = 1; 2530 p->nChange = 0; 2531 } 2532 } 2533 2534 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2535 ** has been rolled back, update the database connection change-counter. 2536 */ 2537 if( p->changeCntOn ){ 2538 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2539 sqlite3VdbeSetChanges(db, p->nChange); 2540 }else{ 2541 sqlite3VdbeSetChanges(db, 0); 2542 } 2543 p->nChange = 0; 2544 } 2545 2546 /* Release the locks */ 2547 sqlite3VdbeLeave(p); 2548 } 2549 2550 /* We have successfully halted and closed the VM. Record this fact. */ 2551 if( p->pc>=0 ){ 2552 db->nVdbeActive--; 2553 if( !p->readOnly ) db->nVdbeWrite--; 2554 if( p->bIsReader ) db->nVdbeRead--; 2555 assert( db->nVdbeActive>=db->nVdbeRead ); 2556 assert( db->nVdbeRead>=db->nVdbeWrite ); 2557 assert( db->nVdbeWrite>=0 ); 2558 } 2559 p->magic = VDBE_MAGIC_HALT; 2560 checkActiveVdbeCnt(db); 2561 if( p->db->mallocFailed ){ 2562 p->rc = SQLITE_NOMEM; 2563 } 2564 2565 /* If the auto-commit flag is set to true, then any locks that were held 2566 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2567 ** to invoke any required unlock-notify callbacks. 2568 */ 2569 if( db->autoCommit ){ 2570 sqlite3ConnectionUnlocked(db); 2571 } 2572 2573 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 2574 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 2575 } 2576 2577 2578 /* 2579 ** Each VDBE holds the result of the most recent sqlite3_step() call 2580 ** in p->rc. This routine sets that result back to SQLITE_OK. 2581 */ 2582 void sqlite3VdbeResetStepResult(Vdbe *p){ 2583 p->rc = SQLITE_OK; 2584 } 2585 2586 /* 2587 ** Copy the error code and error message belonging to the VDBE passed 2588 ** as the first argument to its database handle (so that they will be 2589 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 2590 ** 2591 ** This function does not clear the VDBE error code or message, just 2592 ** copies them to the database handle. 2593 */ 2594 int sqlite3VdbeTransferError(Vdbe *p){ 2595 sqlite3 *db = p->db; 2596 int rc = p->rc; 2597 if( p->zErrMsg ){ 2598 u8 mallocFailed = db->mallocFailed; 2599 sqlite3BeginBenignMalloc(); 2600 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 2601 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 2602 sqlite3EndBenignMalloc(); 2603 db->mallocFailed = mallocFailed; 2604 db->errCode = rc; 2605 }else{ 2606 sqlite3Error(db, rc); 2607 } 2608 return rc; 2609 } 2610 2611 #ifdef SQLITE_ENABLE_SQLLOG 2612 /* 2613 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 2614 ** invoke it. 2615 */ 2616 static void vdbeInvokeSqllog(Vdbe *v){ 2617 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 2618 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 2619 assert( v->db->init.busy==0 ); 2620 if( zExpanded ){ 2621 sqlite3GlobalConfig.xSqllog( 2622 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 2623 ); 2624 sqlite3DbFree(v->db, zExpanded); 2625 } 2626 } 2627 } 2628 #else 2629 # define vdbeInvokeSqllog(x) 2630 #endif 2631 2632 /* 2633 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 2634 ** Write any error messages into *pzErrMsg. Return the result code. 2635 ** 2636 ** After this routine is run, the VDBE should be ready to be executed 2637 ** again. 2638 ** 2639 ** To look at it another way, this routine resets the state of the 2640 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 2641 ** VDBE_MAGIC_INIT. 2642 */ 2643 int sqlite3VdbeReset(Vdbe *p){ 2644 sqlite3 *db; 2645 db = p->db; 2646 2647 /* If the VM did not run to completion or if it encountered an 2648 ** error, then it might not have been halted properly. So halt 2649 ** it now. 2650 */ 2651 sqlite3VdbeHalt(p); 2652 2653 /* If the VDBE has be run even partially, then transfer the error code 2654 ** and error message from the VDBE into the main database structure. But 2655 ** if the VDBE has just been set to run but has not actually executed any 2656 ** instructions yet, leave the main database error information unchanged. 2657 */ 2658 if( p->pc>=0 ){ 2659 vdbeInvokeSqllog(p); 2660 sqlite3VdbeTransferError(p); 2661 sqlite3DbFree(db, p->zErrMsg); 2662 p->zErrMsg = 0; 2663 if( p->runOnlyOnce ) p->expired = 1; 2664 }else if( p->rc && p->expired ){ 2665 /* The expired flag was set on the VDBE before the first call 2666 ** to sqlite3_step(). For consistency (since sqlite3_step() was 2667 ** called), set the database error in this case as well. 2668 */ 2669 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 2670 sqlite3DbFree(db, p->zErrMsg); 2671 p->zErrMsg = 0; 2672 } 2673 2674 /* Reclaim all memory used by the VDBE 2675 */ 2676 Cleanup(p); 2677 2678 /* Save profiling information from this VDBE run. 2679 */ 2680 #ifdef VDBE_PROFILE 2681 { 2682 FILE *out = fopen("vdbe_profile.out", "a"); 2683 if( out ){ 2684 int i; 2685 fprintf(out, "---- "); 2686 for(i=0; i<p->nOp; i++){ 2687 fprintf(out, "%02x", p->aOp[i].opcode); 2688 } 2689 fprintf(out, "\n"); 2690 if( p->zSql ){ 2691 char c, pc = 0; 2692 fprintf(out, "-- "); 2693 for(i=0; (c = p->zSql[i])!=0; i++){ 2694 if( pc=='\n' ) fprintf(out, "-- "); 2695 putc(c, out); 2696 pc = c; 2697 } 2698 if( pc!='\n' ) fprintf(out, "\n"); 2699 } 2700 for(i=0; i<p->nOp; i++){ 2701 char zHdr[100]; 2702 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 2703 p->aOp[i].cnt, 2704 p->aOp[i].cycles, 2705 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 2706 ); 2707 fprintf(out, "%s", zHdr); 2708 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 2709 } 2710 fclose(out); 2711 } 2712 } 2713 #endif 2714 p->iCurrentTime = 0; 2715 p->magic = VDBE_MAGIC_INIT; 2716 return p->rc & db->errMask; 2717 } 2718 2719 /* 2720 ** Clean up and delete a VDBE after execution. Return an integer which is 2721 ** the result code. Write any error message text into *pzErrMsg. 2722 */ 2723 int sqlite3VdbeFinalize(Vdbe *p){ 2724 int rc = SQLITE_OK; 2725 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 2726 rc = sqlite3VdbeReset(p); 2727 assert( (rc & p->db->errMask)==rc ); 2728 } 2729 sqlite3VdbeDelete(p); 2730 return rc; 2731 } 2732 2733 /* 2734 ** If parameter iOp is less than zero, then invoke the destructor for 2735 ** all auxiliary data pointers currently cached by the VM passed as 2736 ** the first argument. 2737 ** 2738 ** Or, if iOp is greater than or equal to zero, then the destructor is 2739 ** only invoked for those auxiliary data pointers created by the user 2740 ** function invoked by the OP_Function opcode at instruction iOp of 2741 ** VM pVdbe, and only then if: 2742 ** 2743 ** * the associated function parameter is the 32nd or later (counting 2744 ** from left to right), or 2745 ** 2746 ** * the corresponding bit in argument mask is clear (where the first 2747 ** function parameter corresponds to bit 0 etc.). 2748 */ 2749 void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){ 2750 AuxData **pp = &pVdbe->pAuxData; 2751 while( *pp ){ 2752 AuxData *pAux = *pp; 2753 if( (iOp<0) 2754 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg)))) 2755 ){ 2756 testcase( pAux->iArg==31 ); 2757 if( pAux->xDelete ){ 2758 pAux->xDelete(pAux->pAux); 2759 } 2760 *pp = pAux->pNext; 2761 sqlite3DbFree(pVdbe->db, pAux); 2762 }else{ 2763 pp= &pAux->pNext; 2764 } 2765 } 2766 } 2767 2768 /* 2769 ** Free all memory associated with the Vdbe passed as the second argument, 2770 ** except for object itself, which is preserved. 2771 ** 2772 ** The difference between this function and sqlite3VdbeDelete() is that 2773 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 2774 ** the database connection and frees the object itself. 2775 */ 2776 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 2777 SubProgram *pSub, *pNext; 2778 int i; 2779 assert( p->db==0 || p->db==db ); 2780 releaseMemArray(p->aVar, p->nVar); 2781 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2782 for(pSub=p->pProgram; pSub; pSub=pNext){ 2783 pNext = pSub->pNext; 2784 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 2785 sqlite3DbFree(db, pSub); 2786 } 2787 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); 2788 vdbeFreeOpArray(db, p->aOp, p->nOp); 2789 sqlite3DbFree(db, p->aColName); 2790 sqlite3DbFree(db, p->zSql); 2791 sqlite3DbFree(db, p->pFree); 2792 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2793 for(i=0; i<p->nScan; i++){ 2794 sqlite3DbFree(db, p->aScan[i].zName); 2795 } 2796 sqlite3DbFree(db, p->aScan); 2797 #endif 2798 } 2799 2800 /* 2801 ** Delete an entire VDBE. 2802 */ 2803 void sqlite3VdbeDelete(Vdbe *p){ 2804 sqlite3 *db; 2805 2806 if( NEVER(p==0) ) return; 2807 db = p->db; 2808 assert( sqlite3_mutex_held(db->mutex) ); 2809 sqlite3VdbeClearObject(db, p); 2810 if( p->pPrev ){ 2811 p->pPrev->pNext = p->pNext; 2812 }else{ 2813 assert( db->pVdbe==p ); 2814 db->pVdbe = p->pNext; 2815 } 2816 if( p->pNext ){ 2817 p->pNext->pPrev = p->pPrev; 2818 } 2819 p->magic = VDBE_MAGIC_DEAD; 2820 p->db = 0; 2821 sqlite3DbFree(db, p); 2822 } 2823 2824 /* 2825 ** The cursor "p" has a pending seek operation that has not yet been 2826 ** carried out. Seek the cursor now. If an error occurs, return 2827 ** the appropriate error code. 2828 */ 2829 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ 2830 int res, rc; 2831 #ifdef SQLITE_TEST 2832 extern int sqlite3_search_count; 2833 #endif 2834 assert( p->deferredMoveto ); 2835 assert( p->isTable ); 2836 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res); 2837 if( rc ) return rc; 2838 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 2839 #ifdef SQLITE_TEST 2840 sqlite3_search_count++; 2841 #endif 2842 p->deferredMoveto = 0; 2843 p->cacheStatus = CACHE_STALE; 2844 return SQLITE_OK; 2845 } 2846 2847 /* 2848 ** Something has moved cursor "p" out of place. Maybe the row it was 2849 ** pointed to was deleted out from under it. Or maybe the btree was 2850 ** rebalanced. Whatever the cause, try to restore "p" to the place it 2851 ** is supposed to be pointing. If the row was deleted out from under the 2852 ** cursor, set the cursor to point to a NULL row. 2853 */ 2854 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 2855 int isDifferentRow, rc; 2856 assert( p->pCursor!=0 ); 2857 assert( sqlite3BtreeCursorHasMoved(p->pCursor) ); 2858 rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow); 2859 p->cacheStatus = CACHE_STALE; 2860 if( isDifferentRow ) p->nullRow = 1; 2861 return rc; 2862 } 2863 2864 /* 2865 ** Check to ensure that the cursor is valid. Restore the cursor 2866 ** if need be. Return any I/O error from the restore operation. 2867 */ 2868 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 2869 if( sqlite3BtreeCursorHasMoved(p->pCursor) ){ 2870 return handleMovedCursor(p); 2871 } 2872 return SQLITE_OK; 2873 } 2874 2875 /* 2876 ** Make sure the cursor p is ready to read or write the row to which it 2877 ** was last positioned. Return an error code if an OOM fault or I/O error 2878 ** prevents us from positioning the cursor to its correct position. 2879 ** 2880 ** If a MoveTo operation is pending on the given cursor, then do that 2881 ** MoveTo now. If no move is pending, check to see if the row has been 2882 ** deleted out from under the cursor and if it has, mark the row as 2883 ** a NULL row. 2884 ** 2885 ** If the cursor is already pointing to the correct row and that row has 2886 ** not been deleted out from under the cursor, then this routine is a no-op. 2887 */ 2888 int sqlite3VdbeCursorMoveto(VdbeCursor *p){ 2889 if( p->deferredMoveto ){ 2890 return handleDeferredMoveto(p); 2891 } 2892 if( p->pCursor && sqlite3BtreeCursorHasMoved(p->pCursor) ){ 2893 return handleMovedCursor(p); 2894 } 2895 return SQLITE_OK; 2896 } 2897 2898 /* 2899 ** The following functions: 2900 ** 2901 ** sqlite3VdbeSerialType() 2902 ** sqlite3VdbeSerialTypeLen() 2903 ** sqlite3VdbeSerialLen() 2904 ** sqlite3VdbeSerialPut() 2905 ** sqlite3VdbeSerialGet() 2906 ** 2907 ** encapsulate the code that serializes values for storage in SQLite 2908 ** data and index records. Each serialized value consists of a 2909 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 2910 ** integer, stored as a varint. 2911 ** 2912 ** In an SQLite index record, the serial type is stored directly before 2913 ** the blob of data that it corresponds to. In a table record, all serial 2914 ** types are stored at the start of the record, and the blobs of data at 2915 ** the end. Hence these functions allow the caller to handle the 2916 ** serial-type and data blob separately. 2917 ** 2918 ** The following table describes the various storage classes for data: 2919 ** 2920 ** serial type bytes of data type 2921 ** -------------- --------------- --------------- 2922 ** 0 0 NULL 2923 ** 1 1 signed integer 2924 ** 2 2 signed integer 2925 ** 3 3 signed integer 2926 ** 4 4 signed integer 2927 ** 5 6 signed integer 2928 ** 6 8 signed integer 2929 ** 7 8 IEEE float 2930 ** 8 0 Integer constant 0 2931 ** 9 0 Integer constant 1 2932 ** 10,11 reserved for expansion 2933 ** N>=12 and even (N-12)/2 BLOB 2934 ** N>=13 and odd (N-13)/2 text 2935 ** 2936 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 2937 ** of SQLite will not understand those serial types. 2938 */ 2939 2940 /* 2941 ** Return the serial-type for the value stored in pMem. 2942 */ 2943 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ 2944 int flags = pMem->flags; 2945 u32 n; 2946 2947 if( flags&MEM_Null ){ 2948 return 0; 2949 } 2950 if( flags&MEM_Int ){ 2951 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 2952 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 2953 i64 i = pMem->u.i; 2954 u64 u; 2955 if( i<0 ){ 2956 u = ~i; 2957 }else{ 2958 u = i; 2959 } 2960 if( u<=127 ){ 2961 return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1; 2962 } 2963 if( u<=32767 ) return 2; 2964 if( u<=8388607 ) return 3; 2965 if( u<=2147483647 ) return 4; 2966 if( u<=MAX_6BYTE ) return 5; 2967 return 6; 2968 } 2969 if( flags&MEM_Real ){ 2970 return 7; 2971 } 2972 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 2973 assert( pMem->n>=0 ); 2974 n = (u32)pMem->n; 2975 if( flags & MEM_Zero ){ 2976 n += pMem->u.nZero; 2977 } 2978 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 2979 } 2980 2981 /* 2982 ** The sizes for serial types less than 12 2983 */ 2984 static const u8 sqlite3SmallTypeSizes[] = { 2985 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 2986 }; 2987 2988 /* 2989 ** Return the length of the data corresponding to the supplied serial-type. 2990 */ 2991 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 2992 if( serial_type>=12 ){ 2993 return (serial_type-12)/2; 2994 }else{ 2995 return sqlite3SmallTypeSizes[serial_type]; 2996 } 2997 } 2998 2999 /* 3000 ** If we are on an architecture with mixed-endian floating 3001 ** points (ex: ARM7) then swap the lower 4 bytes with the 3002 ** upper 4 bytes. Return the result. 3003 ** 3004 ** For most architectures, this is a no-op. 3005 ** 3006 ** (later): It is reported to me that the mixed-endian problem 3007 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3008 ** that early versions of GCC stored the two words of a 64-bit 3009 ** float in the wrong order. And that error has been propagated 3010 ** ever since. The blame is not necessarily with GCC, though. 3011 ** GCC might have just copying the problem from a prior compiler. 3012 ** I am also told that newer versions of GCC that follow a different 3013 ** ABI get the byte order right. 3014 ** 3015 ** Developers using SQLite on an ARM7 should compile and run their 3016 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3017 ** enabled, some asserts below will ensure that the byte order of 3018 ** floating point values is correct. 3019 ** 3020 ** (2007-08-30) Frank van Vugt has studied this problem closely 3021 ** and has send his findings to the SQLite developers. Frank 3022 ** writes that some Linux kernels offer floating point hardware 3023 ** emulation that uses only 32-bit mantissas instead of a full 3024 ** 48-bits as required by the IEEE standard. (This is the 3025 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3026 ** byte swapping becomes very complicated. To avoid problems, 3027 ** the necessary byte swapping is carried out using a 64-bit integer 3028 ** rather than a 64-bit float. Frank assures us that the code here 3029 ** works for him. We, the developers, have no way to independently 3030 ** verify this, but Frank seems to know what he is talking about 3031 ** so we trust him. 3032 */ 3033 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3034 static u64 floatSwap(u64 in){ 3035 union { 3036 u64 r; 3037 u32 i[2]; 3038 } u; 3039 u32 t; 3040 3041 u.r = in; 3042 t = u.i[0]; 3043 u.i[0] = u.i[1]; 3044 u.i[1] = t; 3045 return u.r; 3046 } 3047 # define swapMixedEndianFloat(X) X = floatSwap(X) 3048 #else 3049 # define swapMixedEndianFloat(X) 3050 #endif 3051 3052 /* 3053 ** Write the serialized data blob for the value stored in pMem into 3054 ** buf. It is assumed that the caller has allocated sufficient space. 3055 ** Return the number of bytes written. 3056 ** 3057 ** nBuf is the amount of space left in buf[]. The caller is responsible 3058 ** for allocating enough space to buf[] to hold the entire field, exclusive 3059 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3060 ** 3061 ** Return the number of bytes actually written into buf[]. The number 3062 ** of bytes in the zero-filled tail is included in the return value only 3063 ** if those bytes were zeroed in buf[]. 3064 */ 3065 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3066 u32 len; 3067 3068 /* Integer and Real */ 3069 if( serial_type<=7 && serial_type>0 ){ 3070 u64 v; 3071 u32 i; 3072 if( serial_type==7 ){ 3073 assert( sizeof(v)==sizeof(pMem->u.r) ); 3074 memcpy(&v, &pMem->u.r, sizeof(v)); 3075 swapMixedEndianFloat(v); 3076 }else{ 3077 v = pMem->u.i; 3078 } 3079 len = i = sqlite3SmallTypeSizes[serial_type]; 3080 assert( i>0 ); 3081 do{ 3082 buf[--i] = (u8)(v&0xFF); 3083 v >>= 8; 3084 }while( i ); 3085 return len; 3086 } 3087 3088 /* String or blob */ 3089 if( serial_type>=12 ){ 3090 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3091 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3092 len = pMem->n; 3093 memcpy(buf, pMem->z, len); 3094 return len; 3095 } 3096 3097 /* NULL or constants 0 or 1 */ 3098 return 0; 3099 } 3100 3101 /* Input "x" is a sequence of unsigned characters that represent a 3102 ** big-endian integer. Return the equivalent native integer 3103 */ 3104 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3105 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3106 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3107 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3108 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3109 3110 /* 3111 ** Deserialize the data blob pointed to by buf as serial type serial_type 3112 ** and store the result in pMem. Return the number of bytes read. 3113 ** 3114 ** This function is implemented as two separate routines for performance. 3115 ** The few cases that require local variables are broken out into a separate 3116 ** routine so that in most cases the overhead of moving the stack pointer 3117 ** is avoided. 3118 */ 3119 static u32 SQLITE_NOINLINE serialGet( 3120 const unsigned char *buf, /* Buffer to deserialize from */ 3121 u32 serial_type, /* Serial type to deserialize */ 3122 Mem *pMem /* Memory cell to write value into */ 3123 ){ 3124 u64 x = FOUR_BYTE_UINT(buf); 3125 u32 y = FOUR_BYTE_UINT(buf+4); 3126 x = (x<<32) + y; 3127 if( serial_type==6 ){ 3128 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3129 ** twos-complement integer. */ 3130 pMem->u.i = *(i64*)&x; 3131 pMem->flags = MEM_Int; 3132 testcase( pMem->u.i<0 ); 3133 }else{ 3134 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3135 ** floating point number. */ 3136 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3137 /* Verify that integers and floating point values use the same 3138 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3139 ** defined that 64-bit floating point values really are mixed 3140 ** endian. 3141 */ 3142 static const u64 t1 = ((u64)0x3ff00000)<<32; 3143 static const double r1 = 1.0; 3144 u64 t2 = t1; 3145 swapMixedEndianFloat(t2); 3146 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3147 #endif 3148 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3149 swapMixedEndianFloat(x); 3150 memcpy(&pMem->u.r, &x, sizeof(x)); 3151 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; 3152 } 3153 return 8; 3154 } 3155 u32 sqlite3VdbeSerialGet( 3156 const unsigned char *buf, /* Buffer to deserialize from */ 3157 u32 serial_type, /* Serial type to deserialize */ 3158 Mem *pMem /* Memory cell to write value into */ 3159 ){ 3160 switch( serial_type ){ 3161 case 10: /* Reserved for future use */ 3162 case 11: /* Reserved for future use */ 3163 case 0: { /* Null */ 3164 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3165 pMem->flags = MEM_Null; 3166 break; 3167 } 3168 case 1: { 3169 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3170 ** integer. */ 3171 pMem->u.i = ONE_BYTE_INT(buf); 3172 pMem->flags = MEM_Int; 3173 testcase( pMem->u.i<0 ); 3174 return 1; 3175 } 3176 case 2: { /* 2-byte signed integer */ 3177 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3178 ** twos-complement integer. */ 3179 pMem->u.i = TWO_BYTE_INT(buf); 3180 pMem->flags = MEM_Int; 3181 testcase( pMem->u.i<0 ); 3182 return 2; 3183 } 3184 case 3: { /* 3-byte signed integer */ 3185 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3186 ** twos-complement integer. */ 3187 pMem->u.i = THREE_BYTE_INT(buf); 3188 pMem->flags = MEM_Int; 3189 testcase( pMem->u.i<0 ); 3190 return 3; 3191 } 3192 case 4: { /* 4-byte signed integer */ 3193 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3194 ** twos-complement integer. */ 3195 pMem->u.i = FOUR_BYTE_INT(buf); 3196 pMem->flags = MEM_Int; 3197 testcase( pMem->u.i<0 ); 3198 return 4; 3199 } 3200 case 5: { /* 6-byte signed integer */ 3201 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3202 ** twos-complement integer. */ 3203 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3204 pMem->flags = MEM_Int; 3205 testcase( pMem->u.i<0 ); 3206 return 6; 3207 } 3208 case 6: /* 8-byte signed integer */ 3209 case 7: { /* IEEE floating point */ 3210 /* These use local variables, so do them in a separate routine 3211 ** to avoid having to move the frame pointer in the common case */ 3212 return serialGet(buf,serial_type,pMem); 3213 } 3214 case 8: /* Integer 0 */ 3215 case 9: { /* Integer 1 */ 3216 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3217 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3218 pMem->u.i = serial_type-8; 3219 pMem->flags = MEM_Int; 3220 return 0; 3221 } 3222 default: { 3223 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3224 ** length. 3225 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3226 ** (N-13)/2 bytes in length. */ 3227 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3228 pMem->z = (char *)buf; 3229 pMem->n = (serial_type-12)/2; 3230 pMem->flags = aFlag[serial_type&1]; 3231 return pMem->n; 3232 } 3233 } 3234 return 0; 3235 } 3236 /* 3237 ** This routine is used to allocate sufficient space for an UnpackedRecord 3238 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3239 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3240 ** 3241 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3242 ** the unaligned buffer passed via the second and third arguments (presumably 3243 ** stack space). If the former, then *ppFree is set to a pointer that should 3244 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3245 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3246 ** before returning. 3247 ** 3248 ** If an OOM error occurs, NULL is returned. 3249 */ 3250 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3251 KeyInfo *pKeyInfo, /* Description of the record */ 3252 char *pSpace, /* Unaligned space available */ 3253 int szSpace, /* Size of pSpace[] in bytes */ 3254 char **ppFree /* OUT: Caller should free this pointer */ 3255 ){ 3256 UnpackedRecord *p; /* Unpacked record to return */ 3257 int nOff; /* Increment pSpace by nOff to align it */ 3258 int nByte; /* Number of bytes required for *p */ 3259 3260 /* We want to shift the pointer pSpace up such that it is 8-byte aligned. 3261 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift 3262 ** it by. If pSpace is already 8-byte aligned, nOff should be zero. 3263 */ 3264 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7; 3265 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); 3266 if( nByte>szSpace+nOff ){ 3267 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3268 *ppFree = (char *)p; 3269 if( !p ) return 0; 3270 }else{ 3271 p = (UnpackedRecord*)&pSpace[nOff]; 3272 *ppFree = 0; 3273 } 3274 3275 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3276 assert( pKeyInfo->aSortOrder!=0 ); 3277 p->pKeyInfo = pKeyInfo; 3278 p->nField = pKeyInfo->nField + 1; 3279 return p; 3280 } 3281 3282 /* 3283 ** Given the nKey-byte encoding of a record in pKey[], populate the 3284 ** UnpackedRecord structure indicated by the fourth argument with the 3285 ** contents of the decoded record. 3286 */ 3287 void sqlite3VdbeRecordUnpack( 3288 KeyInfo *pKeyInfo, /* Information about the record format */ 3289 int nKey, /* Size of the binary record */ 3290 const void *pKey, /* The binary record */ 3291 UnpackedRecord *p /* Populate this structure before returning. */ 3292 ){ 3293 const unsigned char *aKey = (const unsigned char *)pKey; 3294 int d; 3295 u32 idx; /* Offset in aKey[] to read from */ 3296 u16 u; /* Unsigned loop counter */ 3297 u32 szHdr; 3298 Mem *pMem = p->aMem; 3299 3300 p->default_rc = 0; 3301 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3302 idx = getVarint32(aKey, szHdr); 3303 d = szHdr; 3304 u = 0; 3305 while( idx<szHdr && d<=nKey ){ 3306 u32 serial_type; 3307 3308 idx += getVarint32(&aKey[idx], serial_type); 3309 pMem->enc = pKeyInfo->enc; 3310 pMem->db = pKeyInfo->db; 3311 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 3312 pMem->szMalloc = 0; 3313 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3314 pMem++; 3315 if( (++u)>=p->nField ) break; 3316 } 3317 assert( u<=pKeyInfo->nField + 1 ); 3318 p->nField = u; 3319 } 3320 3321 #if SQLITE_DEBUG 3322 /* 3323 ** This function compares two index or table record keys in the same way 3324 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 3325 ** this function deserializes and compares values using the 3326 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 3327 ** in assert() statements to ensure that the optimized code in 3328 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 3329 ** 3330 ** Return true if the result of comparison is equivalent to desiredResult. 3331 ** Return false if there is a disagreement. 3332 */ 3333 static int vdbeRecordCompareDebug( 3334 int nKey1, const void *pKey1, /* Left key */ 3335 const UnpackedRecord *pPKey2, /* Right key */ 3336 int desiredResult /* Correct answer */ 3337 ){ 3338 u32 d1; /* Offset into aKey[] of next data element */ 3339 u32 idx1; /* Offset into aKey[] of next header element */ 3340 u32 szHdr1; /* Number of bytes in header */ 3341 int i = 0; 3342 int rc = 0; 3343 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3344 KeyInfo *pKeyInfo; 3345 Mem mem1; 3346 3347 pKeyInfo = pPKey2->pKeyInfo; 3348 if( pKeyInfo->db==0 ) return 1; 3349 mem1.enc = pKeyInfo->enc; 3350 mem1.db = pKeyInfo->db; 3351 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 3352 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3353 3354 /* Compilers may complain that mem1.u.i is potentially uninitialized. 3355 ** We could initialize it, as shown here, to silence those complaints. 3356 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 3357 ** the unnecessary initialization has a measurable negative performance 3358 ** impact, since this routine is a very high runner. And so, we choose 3359 ** to ignore the compiler warnings and leave this variable uninitialized. 3360 */ 3361 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 3362 3363 idx1 = getVarint32(aKey1, szHdr1); 3364 if( szHdr1>98307 ) return SQLITE_CORRUPT; 3365 d1 = szHdr1; 3366 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB ); 3367 assert( pKeyInfo->aSortOrder!=0 ); 3368 assert( pKeyInfo->nField>0 ); 3369 assert( idx1<=szHdr1 || CORRUPT_DB ); 3370 do{ 3371 u32 serial_type1; 3372 3373 /* Read the serial types for the next element in each key. */ 3374 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 3375 3376 /* Verify that there is enough key space remaining to avoid 3377 ** a buffer overread. The "d1+serial_type1+2" subexpression will 3378 ** always be greater than or equal to the amount of required key space. 3379 ** Use that approximation to avoid the more expensive call to 3380 ** sqlite3VdbeSerialTypeLen() in the common case. 3381 */ 3382 if( d1+serial_type1+2>(u32)nKey1 3383 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 3384 ){ 3385 break; 3386 } 3387 3388 /* Extract the values to be compared. 3389 */ 3390 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 3391 3392 /* Do the comparison 3393 */ 3394 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); 3395 if( rc!=0 ){ 3396 assert( mem1.szMalloc==0 ); /* See comment below */ 3397 if( pKeyInfo->aSortOrder[i] ){ 3398 rc = -rc; /* Invert the result for DESC sort order. */ 3399 } 3400 goto debugCompareEnd; 3401 } 3402 i++; 3403 }while( idx1<szHdr1 && i<pPKey2->nField ); 3404 3405 /* No memory allocation is ever used on mem1. Prove this using 3406 ** the following assert(). If the assert() fails, it indicates a 3407 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 3408 */ 3409 assert( mem1.szMalloc==0 ); 3410 3411 /* rc==0 here means that one of the keys ran out of fields and 3412 ** all the fields up to that point were equal. Return the default_rc 3413 ** value. */ 3414 rc = pPKey2->default_rc; 3415 3416 debugCompareEnd: 3417 if( desiredResult==0 && rc==0 ) return 1; 3418 if( desiredResult<0 && rc<0 ) return 1; 3419 if( desiredResult>0 && rc>0 ) return 1; 3420 if( CORRUPT_DB ) return 1; 3421 if( pKeyInfo->db->mallocFailed ) return 1; 3422 return 0; 3423 } 3424 #endif 3425 3426 #if SQLITE_DEBUG 3427 /* 3428 ** Count the number of fields (a.k.a. columns) in the record given by 3429 ** pKey,nKey. The verify that this count is less than or equal to the 3430 ** limit given by pKeyInfo->nField + pKeyInfo->nXField. 3431 ** 3432 ** If this constraint is not satisfied, it means that the high-speed 3433 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 3434 ** not work correctly. If this assert() ever fires, it probably means 3435 ** that the KeyInfo.nField or KeyInfo.nXField values were computed 3436 ** incorrectly. 3437 */ 3438 static void vdbeAssertFieldCountWithinLimits( 3439 int nKey, const void *pKey, /* The record to verify */ 3440 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 3441 ){ 3442 int nField = 0; 3443 u32 szHdr; 3444 u32 idx; 3445 u32 notUsed; 3446 const unsigned char *aKey = (const unsigned char*)pKey; 3447 3448 if( CORRUPT_DB ) return; 3449 idx = getVarint32(aKey, szHdr); 3450 assert( nKey>=0 ); 3451 assert( szHdr<=(u32)nKey ); 3452 while( idx<szHdr ){ 3453 idx += getVarint32(aKey+idx, notUsed); 3454 nField++; 3455 } 3456 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField ); 3457 } 3458 #else 3459 # define vdbeAssertFieldCountWithinLimits(A,B,C) 3460 #endif 3461 3462 /* 3463 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 3464 ** using the collation sequence pColl. As usual, return a negative , zero 3465 ** or positive value if *pMem1 is less than, equal to or greater than 3466 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 3467 */ 3468 static int vdbeCompareMemString( 3469 const Mem *pMem1, 3470 const Mem *pMem2, 3471 const CollSeq *pColl, 3472 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 3473 ){ 3474 if( pMem1->enc==pColl->enc ){ 3475 /* The strings are already in the correct encoding. Call the 3476 ** comparison function directly */ 3477 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 3478 }else{ 3479 int rc; 3480 const void *v1, *v2; 3481 int n1, n2; 3482 Mem c1; 3483 Mem c2; 3484 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 3485 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 3486 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 3487 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 3488 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 3489 n1 = v1==0 ? 0 : c1.n; 3490 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 3491 n2 = v2==0 ? 0 : c2.n; 3492 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); 3493 sqlite3VdbeMemRelease(&c1); 3494 sqlite3VdbeMemRelease(&c2); 3495 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM; 3496 return rc; 3497 } 3498 } 3499 3500 /* 3501 ** Compare two blobs. Return negative, zero, or positive if the first 3502 ** is less than, equal to, or greater than the second, respectively. 3503 ** If one blob is a prefix of the other, then the shorter is the lessor. 3504 */ 3505 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 3506 int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n); 3507 if( c ) return c; 3508 return pB1->n - pB2->n; 3509 } 3510 3511 3512 /* 3513 ** Compare the values contained by the two memory cells, returning 3514 ** negative, zero or positive if pMem1 is less than, equal to, or greater 3515 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 3516 ** and reals) sorted numerically, followed by text ordered by the collating 3517 ** sequence pColl and finally blob's ordered by memcmp(). 3518 ** 3519 ** Two NULL values are considered equal by this function. 3520 */ 3521 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 3522 int f1, f2; 3523 int combined_flags; 3524 3525 f1 = pMem1->flags; 3526 f2 = pMem2->flags; 3527 combined_flags = f1|f2; 3528 assert( (combined_flags & MEM_RowSet)==0 ); 3529 3530 /* If one value is NULL, it is less than the other. If both values 3531 ** are NULL, return 0. 3532 */ 3533 if( combined_flags&MEM_Null ){ 3534 return (f2&MEM_Null) - (f1&MEM_Null); 3535 } 3536 3537 /* If one value is a number and the other is not, the number is less. 3538 ** If both are numbers, compare as reals if one is a real, or as integers 3539 ** if both values are integers. 3540 */ 3541 if( combined_flags&(MEM_Int|MEM_Real) ){ 3542 double r1, r2; 3543 if( (f1 & f2 & MEM_Int)!=0 ){ 3544 if( pMem1->u.i < pMem2->u.i ) return -1; 3545 if( pMem1->u.i > pMem2->u.i ) return 1; 3546 return 0; 3547 } 3548 if( (f1&MEM_Real)!=0 ){ 3549 r1 = pMem1->u.r; 3550 }else if( (f1&MEM_Int)!=0 ){ 3551 r1 = (double)pMem1->u.i; 3552 }else{ 3553 return 1; 3554 } 3555 if( (f2&MEM_Real)!=0 ){ 3556 r2 = pMem2->u.r; 3557 }else if( (f2&MEM_Int)!=0 ){ 3558 r2 = (double)pMem2->u.i; 3559 }else{ 3560 return -1; 3561 } 3562 if( r1<r2 ) return -1; 3563 if( r1>r2 ) return 1; 3564 return 0; 3565 } 3566 3567 /* If one value is a string and the other is a blob, the string is less. 3568 ** If both are strings, compare using the collating functions. 3569 */ 3570 if( combined_flags&MEM_Str ){ 3571 if( (f1 & MEM_Str)==0 ){ 3572 return 1; 3573 } 3574 if( (f2 & MEM_Str)==0 ){ 3575 return -1; 3576 } 3577 3578 assert( pMem1->enc==pMem2->enc ); 3579 assert( pMem1->enc==SQLITE_UTF8 || 3580 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 3581 3582 /* The collation sequence must be defined at this point, even if 3583 ** the user deletes the collation sequence after the vdbe program is 3584 ** compiled (this was not always the case). 3585 */ 3586 assert( !pColl || pColl->xCmp ); 3587 3588 if( pColl ){ 3589 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 3590 } 3591 /* If a NULL pointer was passed as the collate function, fall through 3592 ** to the blob case and use memcmp(). */ 3593 } 3594 3595 /* Both values must be blobs. Compare using memcmp(). */ 3596 return sqlite3BlobCompare(pMem1, pMem2); 3597 } 3598 3599 3600 /* 3601 ** The first argument passed to this function is a serial-type that 3602 ** corresponds to an integer - all values between 1 and 9 inclusive 3603 ** except 7. The second points to a buffer containing an integer value 3604 ** serialized according to serial_type. This function deserializes 3605 ** and returns the value. 3606 */ 3607 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 3608 u32 y; 3609 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 3610 switch( serial_type ){ 3611 case 0: 3612 case 1: 3613 testcase( aKey[0]&0x80 ); 3614 return ONE_BYTE_INT(aKey); 3615 case 2: 3616 testcase( aKey[0]&0x80 ); 3617 return TWO_BYTE_INT(aKey); 3618 case 3: 3619 testcase( aKey[0]&0x80 ); 3620 return THREE_BYTE_INT(aKey); 3621 case 4: { 3622 testcase( aKey[0]&0x80 ); 3623 y = FOUR_BYTE_UINT(aKey); 3624 return (i64)*(int*)&y; 3625 } 3626 case 5: { 3627 testcase( aKey[0]&0x80 ); 3628 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 3629 } 3630 case 6: { 3631 u64 x = FOUR_BYTE_UINT(aKey); 3632 testcase( aKey[0]&0x80 ); 3633 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 3634 return (i64)*(i64*)&x; 3635 } 3636 } 3637 3638 return (serial_type - 8); 3639 } 3640 3641 /* 3642 ** This function compares the two table rows or index records 3643 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 3644 ** or positive integer if key1 is less than, equal to or 3645 ** greater than key2. The {nKey1, pKey1} key must be a blob 3646 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 3647 ** key must be a parsed key such as obtained from 3648 ** sqlite3VdbeParseRecord. 3649 ** 3650 ** If argument bSkip is non-zero, it is assumed that the caller has already 3651 ** determined that the first fields of the keys are equal. 3652 ** 3653 ** Key1 and Key2 do not have to contain the same number of fields. If all 3654 ** fields that appear in both keys are equal, then pPKey2->default_rc is 3655 ** returned. 3656 ** 3657 ** If database corruption is discovered, set pPKey2->errCode to 3658 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 3659 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 3660 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 3661 */ 3662 int sqlite3VdbeRecordCompareWithSkip( 3663 int nKey1, const void *pKey1, /* Left key */ 3664 UnpackedRecord *pPKey2, /* Right key */ 3665 int bSkip /* If true, skip the first field */ 3666 ){ 3667 u32 d1; /* Offset into aKey[] of next data element */ 3668 int i; /* Index of next field to compare */ 3669 u32 szHdr1; /* Size of record header in bytes */ 3670 u32 idx1; /* Offset of first type in header */ 3671 int rc = 0; /* Return value */ 3672 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 3673 KeyInfo *pKeyInfo = pPKey2->pKeyInfo; 3674 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3675 Mem mem1; 3676 3677 /* If bSkip is true, then the caller has already determined that the first 3678 ** two elements in the keys are equal. Fix the various stack variables so 3679 ** that this routine begins comparing at the second field. */ 3680 if( bSkip ){ 3681 u32 s1; 3682 idx1 = 1 + getVarint32(&aKey1[1], s1); 3683 szHdr1 = aKey1[0]; 3684 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 3685 i = 1; 3686 pRhs++; 3687 }else{ 3688 idx1 = getVarint32(aKey1, szHdr1); 3689 d1 = szHdr1; 3690 if( d1>(unsigned)nKey1 ){ 3691 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3692 return 0; /* Corruption */ 3693 } 3694 i = 0; 3695 } 3696 3697 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3698 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 3699 || CORRUPT_DB ); 3700 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); 3701 assert( pPKey2->pKeyInfo->nField>0 ); 3702 assert( idx1<=szHdr1 || CORRUPT_DB ); 3703 do{ 3704 u32 serial_type; 3705 3706 /* RHS is an integer */ 3707 if( pRhs->flags & MEM_Int ){ 3708 serial_type = aKey1[idx1]; 3709 testcase( serial_type==12 ); 3710 if( serial_type>=10 ){ 3711 rc = +1; 3712 }else if( serial_type==0 ){ 3713 rc = -1; 3714 }else if( serial_type==7 ){ 3715 double rhs = (double)pRhs->u.i; 3716 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 3717 if( mem1.u.r<rhs ){ 3718 rc = -1; 3719 }else if( mem1.u.r>rhs ){ 3720 rc = +1; 3721 } 3722 }else{ 3723 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 3724 i64 rhs = pRhs->u.i; 3725 if( lhs<rhs ){ 3726 rc = -1; 3727 }else if( lhs>rhs ){ 3728 rc = +1; 3729 } 3730 } 3731 } 3732 3733 /* RHS is real */ 3734 else if( pRhs->flags & MEM_Real ){ 3735 serial_type = aKey1[idx1]; 3736 if( serial_type>=10 ){ 3737 /* Serial types 12 or greater are strings and blobs (greater than 3738 ** numbers). Types 10 and 11 are currently "reserved for future 3739 ** use", so it doesn't really matter what the results of comparing 3740 ** them to numberic values are. */ 3741 rc = +1; 3742 }else if( serial_type==0 ){ 3743 rc = -1; 3744 }else{ 3745 double rhs = pRhs->u.r; 3746 double lhs; 3747 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 3748 if( serial_type==7 ){ 3749 lhs = mem1.u.r; 3750 }else{ 3751 lhs = (double)mem1.u.i; 3752 } 3753 if( lhs<rhs ){ 3754 rc = -1; 3755 }else if( lhs>rhs ){ 3756 rc = +1; 3757 } 3758 } 3759 } 3760 3761 /* RHS is a string */ 3762 else if( pRhs->flags & MEM_Str ){ 3763 getVarint32(&aKey1[idx1], serial_type); 3764 testcase( serial_type==12 ); 3765 if( serial_type<12 ){ 3766 rc = -1; 3767 }else if( !(serial_type & 0x01) ){ 3768 rc = +1; 3769 }else{ 3770 mem1.n = (serial_type - 12) / 2; 3771 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 3772 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 3773 if( (d1+mem1.n) > (unsigned)nKey1 ){ 3774 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3775 return 0; /* Corruption */ 3776 }else if( pKeyInfo->aColl[i] ){ 3777 mem1.enc = pKeyInfo->enc; 3778 mem1.db = pKeyInfo->db; 3779 mem1.flags = MEM_Str; 3780 mem1.z = (char*)&aKey1[d1]; 3781 rc = vdbeCompareMemString( 3782 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 3783 ); 3784 }else{ 3785 int nCmp = MIN(mem1.n, pRhs->n); 3786 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 3787 if( rc==0 ) rc = mem1.n - pRhs->n; 3788 } 3789 } 3790 } 3791 3792 /* RHS is a blob */ 3793 else if( pRhs->flags & MEM_Blob ){ 3794 getVarint32(&aKey1[idx1], serial_type); 3795 testcase( serial_type==12 ); 3796 if( serial_type<12 || (serial_type & 0x01) ){ 3797 rc = -1; 3798 }else{ 3799 int nStr = (serial_type - 12) / 2; 3800 testcase( (d1+nStr)==(unsigned)nKey1 ); 3801 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 3802 if( (d1+nStr) > (unsigned)nKey1 ){ 3803 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3804 return 0; /* Corruption */ 3805 }else{ 3806 int nCmp = MIN(nStr, pRhs->n); 3807 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 3808 if( rc==0 ) rc = nStr - pRhs->n; 3809 } 3810 } 3811 } 3812 3813 /* RHS is null */ 3814 else{ 3815 serial_type = aKey1[idx1]; 3816 rc = (serial_type!=0); 3817 } 3818 3819 if( rc!=0 ){ 3820 if( pKeyInfo->aSortOrder[i] ){ 3821 rc = -rc; 3822 } 3823 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 3824 assert( mem1.szMalloc==0 ); /* See comment below */ 3825 return rc; 3826 } 3827 3828 i++; 3829 pRhs++; 3830 d1 += sqlite3VdbeSerialTypeLen(serial_type); 3831 idx1 += sqlite3VarintLen(serial_type); 3832 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); 3833 3834 /* No memory allocation is ever used on mem1. Prove this using 3835 ** the following assert(). If the assert() fails, it indicates a 3836 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 3837 assert( mem1.szMalloc==0 ); 3838 3839 /* rc==0 here means that one or both of the keys ran out of fields and 3840 ** all the fields up to that point were equal. Return the default_rc 3841 ** value. */ 3842 assert( CORRUPT_DB 3843 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 3844 || pKeyInfo->db->mallocFailed 3845 ); 3846 return pPKey2->default_rc; 3847 } 3848 int sqlite3VdbeRecordCompare( 3849 int nKey1, const void *pKey1, /* Left key */ 3850 UnpackedRecord *pPKey2 /* Right key */ 3851 ){ 3852 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 3853 } 3854 3855 3856 /* 3857 ** This function is an optimized version of sqlite3VdbeRecordCompare() 3858 ** that (a) the first field of pPKey2 is an integer, and (b) the 3859 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 3860 ** byte (i.e. is less than 128). 3861 ** 3862 ** To avoid concerns about buffer overreads, this routine is only used 3863 ** on schemas where the maximum valid header size is 63 bytes or less. 3864 */ 3865 static int vdbeRecordCompareInt( 3866 int nKey1, const void *pKey1, /* Left key */ 3867 UnpackedRecord *pPKey2 /* Right key */ 3868 ){ 3869 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 3870 int serial_type = ((const u8*)pKey1)[1]; 3871 int res; 3872 u32 y; 3873 u64 x; 3874 i64 v = pPKey2->aMem[0].u.i; 3875 i64 lhs; 3876 3877 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 3878 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 3879 switch( serial_type ){ 3880 case 1: { /* 1-byte signed integer */ 3881 lhs = ONE_BYTE_INT(aKey); 3882 testcase( lhs<0 ); 3883 break; 3884 } 3885 case 2: { /* 2-byte signed integer */ 3886 lhs = TWO_BYTE_INT(aKey); 3887 testcase( lhs<0 ); 3888 break; 3889 } 3890 case 3: { /* 3-byte signed integer */ 3891 lhs = THREE_BYTE_INT(aKey); 3892 testcase( lhs<0 ); 3893 break; 3894 } 3895 case 4: { /* 4-byte signed integer */ 3896 y = FOUR_BYTE_UINT(aKey); 3897 lhs = (i64)*(int*)&y; 3898 testcase( lhs<0 ); 3899 break; 3900 } 3901 case 5: { /* 6-byte signed integer */ 3902 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 3903 testcase( lhs<0 ); 3904 break; 3905 } 3906 case 6: { /* 8-byte signed integer */ 3907 x = FOUR_BYTE_UINT(aKey); 3908 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 3909 lhs = *(i64*)&x; 3910 testcase( lhs<0 ); 3911 break; 3912 } 3913 case 8: 3914 lhs = 0; 3915 break; 3916 case 9: 3917 lhs = 1; 3918 break; 3919 3920 /* This case could be removed without changing the results of running 3921 ** this code. Including it causes gcc to generate a faster switch 3922 ** statement (since the range of switch targets now starts at zero and 3923 ** is contiguous) but does not cause any duplicate code to be generated 3924 ** (as gcc is clever enough to combine the two like cases). Other 3925 ** compilers might be similar. */ 3926 case 0: case 7: 3927 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 3928 3929 default: 3930 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 3931 } 3932 3933 if( v>lhs ){ 3934 res = pPKey2->r1; 3935 }else if( v<lhs ){ 3936 res = pPKey2->r2; 3937 }else if( pPKey2->nField>1 ){ 3938 /* The first fields of the two keys are equal. Compare the trailing 3939 ** fields. */ 3940 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 3941 }else{ 3942 /* The first fields of the two keys are equal and there are no trailing 3943 ** fields. Return pPKey2->default_rc in this case. */ 3944 res = pPKey2->default_rc; 3945 } 3946 3947 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 3948 return res; 3949 } 3950 3951 /* 3952 ** This function is an optimized version of sqlite3VdbeRecordCompare() 3953 ** that (a) the first field of pPKey2 is a string, that (b) the first field 3954 ** uses the collation sequence BINARY and (c) that the size-of-header varint 3955 ** at the start of (pKey1/nKey1) fits in a single byte. 3956 */ 3957 static int vdbeRecordCompareString( 3958 int nKey1, const void *pKey1, /* Left key */ 3959 UnpackedRecord *pPKey2 /* Right key */ 3960 ){ 3961 const u8 *aKey1 = (const u8*)pKey1; 3962 int serial_type; 3963 int res; 3964 3965 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 3966 getVarint32(&aKey1[1], serial_type); 3967 if( serial_type<12 ){ 3968 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 3969 }else if( !(serial_type & 0x01) ){ 3970 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 3971 }else{ 3972 int nCmp; 3973 int nStr; 3974 int szHdr = aKey1[0]; 3975 3976 nStr = (serial_type-12) / 2; 3977 if( (szHdr + nStr) > nKey1 ){ 3978 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3979 return 0; /* Corruption */ 3980 } 3981 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 3982 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 3983 3984 if( res==0 ){ 3985 res = nStr - pPKey2->aMem[0].n; 3986 if( res==0 ){ 3987 if( pPKey2->nField>1 ){ 3988 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 3989 }else{ 3990 res = pPKey2->default_rc; 3991 } 3992 }else if( res>0 ){ 3993 res = pPKey2->r2; 3994 }else{ 3995 res = pPKey2->r1; 3996 } 3997 }else if( res>0 ){ 3998 res = pPKey2->r2; 3999 }else{ 4000 res = pPKey2->r1; 4001 } 4002 } 4003 4004 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4005 || CORRUPT_DB 4006 || pPKey2->pKeyInfo->db->mallocFailed 4007 ); 4008 return res; 4009 } 4010 4011 /* 4012 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4013 ** suitable for comparing serialized records to the unpacked record passed 4014 ** as the only argument. 4015 */ 4016 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4017 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4018 ** that the size-of-header varint that occurs at the start of each record 4019 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4020 ** also assumes that it is safe to overread a buffer by at least the 4021 ** maximum possible legal header size plus 8 bytes. Because there is 4022 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4023 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4024 ** limit the size of the header to 64 bytes in cases where the first field 4025 ** is an integer. 4026 ** 4027 ** The easiest way to enforce this limit is to consider only records with 4028 ** 13 fields or less. If the first field is an integer, the maximum legal 4029 ** header size is (12*5 + 1 + 1) bytes. */ 4030 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){ 4031 int flags = p->aMem[0].flags; 4032 if( p->pKeyInfo->aSortOrder[0] ){ 4033 p->r1 = 1; 4034 p->r2 = -1; 4035 }else{ 4036 p->r1 = -1; 4037 p->r2 = 1; 4038 } 4039 if( (flags & MEM_Int) ){ 4040 return vdbeRecordCompareInt; 4041 } 4042 testcase( flags & MEM_Real ); 4043 testcase( flags & MEM_Null ); 4044 testcase( flags & MEM_Blob ); 4045 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ 4046 assert( flags & MEM_Str ); 4047 return vdbeRecordCompareString; 4048 } 4049 } 4050 4051 return sqlite3VdbeRecordCompare; 4052 } 4053 4054 /* 4055 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4056 ** Read the rowid (the last field in the record) and store it in *rowid. 4057 ** Return SQLITE_OK if everything works, or an error code otherwise. 4058 ** 4059 ** pCur might be pointing to text obtained from a corrupt database file. 4060 ** So the content cannot be trusted. Do appropriate checks on the content. 4061 */ 4062 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4063 i64 nCellKey = 0; 4064 int rc; 4065 u32 szHdr; /* Size of the header */ 4066 u32 typeRowid; /* Serial type of the rowid */ 4067 u32 lenRowid; /* Size of the rowid */ 4068 Mem m, v; 4069 4070 /* Get the size of the index entry. Only indices entries of less 4071 ** than 2GiB are support - anything large must be database corruption. 4072 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4073 ** this code can safely assume that nCellKey is 32-bits 4074 */ 4075 assert( sqlite3BtreeCursorIsValid(pCur) ); 4076 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); 4077 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 4078 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4079 4080 /* Read in the complete content of the index entry */ 4081 sqlite3VdbeMemInit(&m, db, 0); 4082 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m); 4083 if( rc ){ 4084 return rc; 4085 } 4086 4087 /* The index entry must begin with a header size */ 4088 (void)getVarint32((u8*)m.z, szHdr); 4089 testcase( szHdr==3 ); 4090 testcase( szHdr==m.n ); 4091 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ 4092 goto idx_rowid_corruption; 4093 } 4094 4095 /* The last field of the index should be an integer - the ROWID. 4096 ** Verify that the last entry really is an integer. */ 4097 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 4098 testcase( typeRowid==1 ); 4099 testcase( typeRowid==2 ); 4100 testcase( typeRowid==3 ); 4101 testcase( typeRowid==4 ); 4102 testcase( typeRowid==5 ); 4103 testcase( typeRowid==6 ); 4104 testcase( typeRowid==8 ); 4105 testcase( typeRowid==9 ); 4106 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4107 goto idx_rowid_corruption; 4108 } 4109 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4110 testcase( (u32)m.n==szHdr+lenRowid ); 4111 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4112 goto idx_rowid_corruption; 4113 } 4114 4115 /* Fetch the integer off the end of the index record */ 4116 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4117 *rowid = v.u.i; 4118 sqlite3VdbeMemRelease(&m); 4119 return SQLITE_OK; 4120 4121 /* Jump here if database corruption is detected after m has been 4122 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4123 idx_rowid_corruption: 4124 testcase( m.szMalloc!=0 ); 4125 sqlite3VdbeMemRelease(&m); 4126 return SQLITE_CORRUPT_BKPT; 4127 } 4128 4129 /* 4130 ** Compare the key of the index entry that cursor pC is pointing to against 4131 ** the key string in pUnpacked. Write into *pRes a number 4132 ** that is negative, zero, or positive if pC is less than, equal to, 4133 ** or greater than pUnpacked. Return SQLITE_OK on success. 4134 ** 4135 ** pUnpacked is either created without a rowid or is truncated so that it 4136 ** omits the rowid at the end. The rowid at the end of the index entry 4137 ** is ignored as well. Hence, this routine only compares the prefixes 4138 ** of the keys prior to the final rowid, not the entire key. 4139 */ 4140 int sqlite3VdbeIdxKeyCompare( 4141 sqlite3 *db, /* Database connection */ 4142 VdbeCursor *pC, /* The cursor to compare against */ 4143 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4144 int *res /* Write the comparison result here */ 4145 ){ 4146 i64 nCellKey = 0; 4147 int rc; 4148 BtCursor *pCur = pC->pCursor; 4149 Mem m; 4150 4151 assert( sqlite3BtreeCursorIsValid(pCur) ); 4152 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); 4153 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 4154 /* nCellKey will always be between 0 and 0xffffffff because of the way 4155 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4156 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4157 *res = 0; 4158 return SQLITE_CORRUPT_BKPT; 4159 } 4160 sqlite3VdbeMemInit(&m, db, 0); 4161 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m); 4162 if( rc ){ 4163 return rc; 4164 } 4165 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); 4166 sqlite3VdbeMemRelease(&m); 4167 return SQLITE_OK; 4168 } 4169 4170 /* 4171 ** This routine sets the value to be returned by subsequent calls to 4172 ** sqlite3_changes() on the database handle 'db'. 4173 */ 4174 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 4175 assert( sqlite3_mutex_held(db->mutex) ); 4176 db->nChange = nChange; 4177 db->nTotalChange += nChange; 4178 } 4179 4180 /* 4181 ** Set a flag in the vdbe to update the change counter when it is finalised 4182 ** or reset. 4183 */ 4184 void sqlite3VdbeCountChanges(Vdbe *v){ 4185 v->changeCntOn = 1; 4186 } 4187 4188 /* 4189 ** Mark every prepared statement associated with a database connection 4190 ** as expired. 4191 ** 4192 ** An expired statement means that recompilation of the statement is 4193 ** recommend. Statements expire when things happen that make their 4194 ** programs obsolete. Removing user-defined functions or collating 4195 ** sequences, or changing an authorization function are the types of 4196 ** things that make prepared statements obsolete. 4197 */ 4198 void sqlite3ExpirePreparedStatements(sqlite3 *db){ 4199 Vdbe *p; 4200 for(p = db->pVdbe; p; p=p->pNext){ 4201 p->expired = 1; 4202 } 4203 } 4204 4205 /* 4206 ** Return the database associated with the Vdbe. 4207 */ 4208 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 4209 return v->db; 4210 } 4211 4212 /* 4213 ** Return a pointer to an sqlite3_value structure containing the value bound 4214 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 4215 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 4216 ** constants) to the value before returning it. 4217 ** 4218 ** The returned value must be freed by the caller using sqlite3ValueFree(). 4219 */ 4220 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 4221 assert( iVar>0 ); 4222 if( v ){ 4223 Mem *pMem = &v->aVar[iVar-1]; 4224 if( 0==(pMem->flags & MEM_Null) ){ 4225 sqlite3_value *pRet = sqlite3ValueNew(v->db); 4226 if( pRet ){ 4227 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 4228 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 4229 } 4230 return pRet; 4231 } 4232 } 4233 return 0; 4234 } 4235 4236 /* 4237 ** Configure SQL variable iVar so that binding a new value to it signals 4238 ** to sqlite3_reoptimize() that re-preparing the statement may result 4239 ** in a better query plan. 4240 */ 4241 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 4242 assert( iVar>0 ); 4243 if( iVar>32 ){ 4244 v->expmask = 0xffffffff; 4245 }else{ 4246 v->expmask |= ((u32)1 << (iVar-1)); 4247 } 4248 } 4249 4250 #ifndef SQLITE_OMIT_VIRTUALTABLE 4251 /* 4252 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 4253 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 4254 ** in memory obtained from sqlite3DbMalloc). 4255 */ 4256 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 4257 sqlite3 *db = p->db; 4258 sqlite3DbFree(db, p->zErrMsg); 4259 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 4260 sqlite3_free(pVtab->zErrMsg); 4261 pVtab->zErrMsg = 0; 4262 } 4263 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4264