1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* 19 ** Create a new virtual database engine. 20 */ 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 22 sqlite3 *db = pParse->db; 23 Vdbe *p; 24 p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); 25 if( p==0 ) return 0; 26 p->db = db; 27 if( db->pVdbe ){ 28 db->pVdbe->pPrev = p; 29 } 30 p->pNext = db->pVdbe; 31 p->pPrev = 0; 32 db->pVdbe = p; 33 p->magic = VDBE_MAGIC_INIT; 34 p->pParse = pParse; 35 assert( pParse->aLabel==0 ); 36 assert( pParse->nLabel==0 ); 37 assert( pParse->nOpAlloc==0 ); 38 return p; 39 } 40 41 /* 42 ** Change the error string stored in Vdbe.zErrMsg 43 */ 44 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 45 va_list ap; 46 sqlite3DbFree(p->db, p->zErrMsg); 47 va_start(ap, zFormat); 48 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 49 va_end(ap); 50 } 51 52 /* 53 ** Remember the SQL string for a prepared statement. 54 */ 55 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ 56 assert( isPrepareV2==1 || isPrepareV2==0 ); 57 if( p==0 ) return; 58 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG) 59 if( !isPrepareV2 ) return; 60 #endif 61 assert( p->zSql==0 ); 62 p->zSql = sqlite3DbStrNDup(p->db, z, n); 63 p->isPrepareV2 = (u8)isPrepareV2; 64 } 65 66 /* 67 ** Return the SQL associated with a prepared statement 68 */ 69 const char *sqlite3_sql(sqlite3_stmt *pStmt){ 70 Vdbe *p = (Vdbe *)pStmt; 71 return (p && p->isPrepareV2) ? p->zSql : 0; 72 } 73 74 /* 75 ** Swap all content between two VDBE structures. 76 */ 77 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 78 Vdbe tmp, *pTmp; 79 char *zTmp; 80 tmp = *pA; 81 *pA = *pB; 82 *pB = tmp; 83 pTmp = pA->pNext; 84 pA->pNext = pB->pNext; 85 pB->pNext = pTmp; 86 pTmp = pA->pPrev; 87 pA->pPrev = pB->pPrev; 88 pB->pPrev = pTmp; 89 zTmp = pA->zSql; 90 pA->zSql = pB->zSql; 91 pB->zSql = zTmp; 92 pB->isPrepareV2 = pA->isPrepareV2; 93 } 94 95 /* 96 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 97 ** than its current size. nOp is guaranteed to be less than or equal 98 ** to 1024/sizeof(Op). 99 ** 100 ** If an out-of-memory error occurs while resizing the array, return 101 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain 102 ** unchanged (this is so that any opcodes already allocated can be 103 ** correctly deallocated along with the rest of the Vdbe). 104 */ 105 static int growOpArray(Vdbe *v, int nOp){ 106 VdbeOp *pNew; 107 Parse *p = v->pParse; 108 109 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 110 ** more frequent reallocs and hence provide more opportunities for 111 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 112 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 113 ** by the minimum* amount required until the size reaches 512. Normal 114 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 115 ** size of the op array or add 1KB of space, whichever is smaller. */ 116 #ifdef SQLITE_TEST_REALLOC_STRESS 117 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); 118 #else 119 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 120 UNUSED_PARAMETER(nOp); 121 #endif 122 123 assert( nOp<=(1024/sizeof(Op)) ); 124 assert( nNew>=(p->nOpAlloc+nOp) ); 125 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 126 if( pNew ){ 127 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op); 128 v->aOp = pNew; 129 } 130 return (pNew ? SQLITE_OK : SQLITE_NOMEM); 131 } 132 133 #ifdef SQLITE_DEBUG 134 /* This routine is just a convenient place to set a breakpoint that will 135 ** fire after each opcode is inserted and displayed using 136 ** "PRAGMA vdbe_addoptrace=on". 137 */ 138 static void test_addop_breakpoint(void){ 139 static int n = 0; 140 n++; 141 } 142 #endif 143 144 /* 145 ** Add a new instruction to the list of instructions current in the 146 ** VDBE. Return the address of the new instruction. 147 ** 148 ** Parameters: 149 ** 150 ** p Pointer to the VDBE 151 ** 152 ** op The opcode for this instruction 153 ** 154 ** p1, p2, p3 Operands 155 ** 156 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 157 ** the sqlite3VdbeChangeP4() function to change the value of the P4 158 ** operand. 159 */ 160 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 161 int i; 162 VdbeOp *pOp; 163 164 i = p->nOp; 165 assert( p->magic==VDBE_MAGIC_INIT ); 166 assert( op>0 && op<0xff ); 167 if( p->pParse->nOpAlloc<=i ){ 168 if( growOpArray(p, 1) ){ 169 return 1; 170 } 171 } 172 p->nOp++; 173 pOp = &p->aOp[i]; 174 pOp->opcode = (u8)op; 175 pOp->p5 = 0; 176 pOp->p1 = p1; 177 pOp->p2 = p2; 178 pOp->p3 = p3; 179 pOp->p4.p = 0; 180 pOp->p4type = P4_NOTUSED; 181 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 182 pOp->zComment = 0; 183 #endif 184 #ifdef SQLITE_DEBUG 185 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 186 int jj, kk; 187 Parse *pParse = p->pParse; 188 for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){ 189 struct yColCache *x = pParse->aColCache + jj; 190 if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue; 191 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); 192 kk++; 193 } 194 if( kk ) printf("\n"); 195 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 196 test_addop_breakpoint(); 197 } 198 #endif 199 #ifdef VDBE_PROFILE 200 pOp->cycles = 0; 201 pOp->cnt = 0; 202 #endif 203 #ifdef SQLITE_VDBE_COVERAGE 204 pOp->iSrcLine = 0; 205 #endif 206 return i; 207 } 208 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 209 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 210 } 211 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 212 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 213 } 214 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 215 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 216 } 217 218 219 /* 220 ** Add an opcode that includes the p4 value as a pointer. 221 */ 222 int sqlite3VdbeAddOp4( 223 Vdbe *p, /* Add the opcode to this VM */ 224 int op, /* The new opcode */ 225 int p1, /* The P1 operand */ 226 int p2, /* The P2 operand */ 227 int p3, /* The P3 operand */ 228 const char *zP4, /* The P4 operand */ 229 int p4type /* P4 operand type */ 230 ){ 231 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 232 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 233 return addr; 234 } 235 236 /* 237 ** Add an opcode that includes the p4 value with a P4_INT64 type. 238 */ 239 int sqlite3VdbeAddOp4Dup8( 240 Vdbe *p, /* Add the opcode to this VM */ 241 int op, /* The new opcode */ 242 int p1, /* The P1 operand */ 243 int p2, /* The P2 operand */ 244 int p3, /* The P3 operand */ 245 const u8 *zP4, /* The P4 operand */ 246 int p4type /* P4 operand type */ 247 ){ 248 char *p4copy = sqlite3DbMallocRaw(sqlite3VdbeDb(p), 8); 249 if( p4copy ) memcpy(p4copy, zP4, 8); 250 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 251 } 252 253 /* 254 ** Add an OP_ParseSchema opcode. This routine is broken out from 255 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 256 ** as having been used. 257 ** 258 ** The zWhere string must have been obtained from sqlite3_malloc(). 259 ** This routine will take ownership of the allocated memory. 260 */ 261 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 262 int j; 263 int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0); 264 sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC); 265 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 266 } 267 268 /* 269 ** Add an opcode that includes the p4 value as an integer. 270 */ 271 int sqlite3VdbeAddOp4Int( 272 Vdbe *p, /* Add the opcode to this VM */ 273 int op, /* The new opcode */ 274 int p1, /* The P1 operand */ 275 int p2, /* The P2 operand */ 276 int p3, /* The P3 operand */ 277 int p4 /* The P4 operand as an integer */ 278 ){ 279 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 280 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32); 281 return addr; 282 } 283 284 /* 285 ** Create a new symbolic label for an instruction that has yet to be 286 ** coded. The symbolic label is really just a negative number. The 287 ** label can be used as the P2 value of an operation. Later, when 288 ** the label is resolved to a specific address, the VDBE will scan 289 ** through its operation list and change all values of P2 which match 290 ** the label into the resolved address. 291 ** 292 ** The VDBE knows that a P2 value is a label because labels are 293 ** always negative and P2 values are suppose to be non-negative. 294 ** Hence, a negative P2 value is a label that has yet to be resolved. 295 ** 296 ** Zero is returned if a malloc() fails. 297 */ 298 int sqlite3VdbeMakeLabel(Vdbe *v){ 299 Parse *p = v->pParse; 300 int i = p->nLabel++; 301 assert( v->magic==VDBE_MAGIC_INIT ); 302 if( (i & (i-1))==0 ){ 303 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 304 (i*2+1)*sizeof(p->aLabel[0])); 305 } 306 if( p->aLabel ){ 307 p->aLabel[i] = -1; 308 } 309 return -1-i; 310 } 311 312 /* 313 ** Resolve label "x" to be the address of the next instruction to 314 ** be inserted. The parameter "x" must have been obtained from 315 ** a prior call to sqlite3VdbeMakeLabel(). 316 */ 317 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 318 Parse *p = v->pParse; 319 int j = -1-x; 320 assert( v->magic==VDBE_MAGIC_INIT ); 321 assert( j<p->nLabel ); 322 if( ALWAYS(j>=0) && p->aLabel ){ 323 p->aLabel[j] = v->nOp; 324 } 325 p->iFixedOp = v->nOp - 1; 326 } 327 328 /* 329 ** Mark the VDBE as one that can only be run one time. 330 */ 331 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 332 p->runOnlyOnce = 1; 333 } 334 335 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 336 337 /* 338 ** The following type and function are used to iterate through all opcodes 339 ** in a Vdbe main program and each of the sub-programs (triggers) it may 340 ** invoke directly or indirectly. It should be used as follows: 341 ** 342 ** Op *pOp; 343 ** VdbeOpIter sIter; 344 ** 345 ** memset(&sIter, 0, sizeof(sIter)); 346 ** sIter.v = v; // v is of type Vdbe* 347 ** while( (pOp = opIterNext(&sIter)) ){ 348 ** // Do something with pOp 349 ** } 350 ** sqlite3DbFree(v->db, sIter.apSub); 351 ** 352 */ 353 typedef struct VdbeOpIter VdbeOpIter; 354 struct VdbeOpIter { 355 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 356 SubProgram **apSub; /* Array of subprograms */ 357 int nSub; /* Number of entries in apSub */ 358 int iAddr; /* Address of next instruction to return */ 359 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 360 }; 361 static Op *opIterNext(VdbeOpIter *p){ 362 Vdbe *v = p->v; 363 Op *pRet = 0; 364 Op *aOp; 365 int nOp; 366 367 if( p->iSub<=p->nSub ){ 368 369 if( p->iSub==0 ){ 370 aOp = v->aOp; 371 nOp = v->nOp; 372 }else{ 373 aOp = p->apSub[p->iSub-1]->aOp; 374 nOp = p->apSub[p->iSub-1]->nOp; 375 } 376 assert( p->iAddr<nOp ); 377 378 pRet = &aOp[p->iAddr]; 379 p->iAddr++; 380 if( p->iAddr==nOp ){ 381 p->iSub++; 382 p->iAddr = 0; 383 } 384 385 if( pRet->p4type==P4_SUBPROGRAM ){ 386 int nByte = (p->nSub+1)*sizeof(SubProgram*); 387 int j; 388 for(j=0; j<p->nSub; j++){ 389 if( p->apSub[j]==pRet->p4.pProgram ) break; 390 } 391 if( j==p->nSub ){ 392 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 393 if( !p->apSub ){ 394 pRet = 0; 395 }else{ 396 p->apSub[p->nSub++] = pRet->p4.pProgram; 397 } 398 } 399 } 400 } 401 402 return pRet; 403 } 404 405 /* 406 ** Check if the program stored in the VM associated with pParse may 407 ** throw an ABORT exception (causing the statement, but not entire transaction 408 ** to be rolled back). This condition is true if the main program or any 409 ** sub-programs contains any of the following: 410 ** 411 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 412 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 413 ** * OP_Destroy 414 ** * OP_VUpdate 415 ** * OP_VRename 416 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 417 ** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...) 418 ** 419 ** Then check that the value of Parse.mayAbort is true if an 420 ** ABORT may be thrown, or false otherwise. Return true if it does 421 ** match, or false otherwise. This function is intended to be used as 422 ** part of an assert statement in the compiler. Similar to: 423 ** 424 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 425 */ 426 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 427 int hasAbort = 0; 428 int hasFkCounter = 0; 429 int hasCreateTable = 0; 430 int hasInitCoroutine = 0; 431 Op *pOp; 432 VdbeOpIter sIter; 433 memset(&sIter, 0, sizeof(sIter)); 434 sIter.v = v; 435 436 while( (pOp = opIterNext(&sIter))!=0 ){ 437 int opcode = pOp->opcode; 438 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 439 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 440 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 441 ){ 442 hasAbort = 1; 443 break; 444 } 445 if( opcode==OP_CreateTable ) hasCreateTable = 1; 446 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 447 #ifndef SQLITE_OMIT_FOREIGN_KEY 448 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 449 hasFkCounter = 1; 450 } 451 #endif 452 } 453 sqlite3DbFree(v->db, sIter.apSub); 454 455 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 456 ** If malloc failed, then the while() loop above may not have iterated 457 ** through all opcodes and hasAbort may be set incorrectly. Return 458 ** true for this case to prevent the assert() in the callers frame 459 ** from failing. */ 460 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 461 || (hasCreateTable && hasInitCoroutine) ); 462 } 463 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 464 465 /* 466 ** Loop through the program looking for P2 values that are negative 467 ** on jump instructions. Each such value is a label. Resolve the 468 ** label by setting the P2 value to its correct non-zero value. 469 ** 470 ** This routine is called once after all opcodes have been inserted. 471 ** 472 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 473 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by 474 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array. 475 ** 476 ** The Op.opflags field is set on all opcodes. 477 */ 478 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 479 int i; 480 int nMaxArgs = *pMaxFuncArgs; 481 Op *pOp; 482 Parse *pParse = p->pParse; 483 int *aLabel = pParse->aLabel; 484 p->readOnly = 1; 485 p->bIsReader = 0; 486 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ 487 u8 opcode = pOp->opcode; 488 489 /* NOTE: Be sure to update mkopcodeh.awk when adding or removing 490 ** cases from this switch! */ 491 switch( opcode ){ 492 case OP_Transaction: { 493 if( pOp->p2!=0 ) p->readOnly = 0; 494 /* fall thru */ 495 } 496 case OP_AutoCommit: 497 case OP_Savepoint: { 498 p->bIsReader = 1; 499 break; 500 } 501 #ifndef SQLITE_OMIT_WAL 502 case OP_Checkpoint: 503 #endif 504 case OP_Vacuum: 505 case OP_JournalMode: { 506 p->readOnly = 0; 507 p->bIsReader = 1; 508 break; 509 } 510 #ifndef SQLITE_OMIT_VIRTUALTABLE 511 case OP_VUpdate: { 512 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 513 break; 514 } 515 case OP_VFilter: { 516 int n; 517 assert( p->nOp - i >= 3 ); 518 assert( pOp[-1].opcode==OP_Integer ); 519 n = pOp[-1].p1; 520 if( n>nMaxArgs ) nMaxArgs = n; 521 break; 522 } 523 #endif 524 case OP_Next: 525 case OP_NextIfOpen: 526 case OP_SorterNext: { 527 pOp->p4.xAdvance = sqlite3BtreeNext; 528 pOp->p4type = P4_ADVANCE; 529 break; 530 } 531 case OP_Prev: 532 case OP_PrevIfOpen: { 533 pOp->p4.xAdvance = sqlite3BtreePrevious; 534 pOp->p4type = P4_ADVANCE; 535 break; 536 } 537 } 538 539 pOp->opflags = sqlite3OpcodeProperty[opcode]; 540 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){ 541 assert( -1-pOp->p2<pParse->nLabel ); 542 pOp->p2 = aLabel[-1-pOp->p2]; 543 } 544 } 545 sqlite3DbFree(p->db, pParse->aLabel); 546 pParse->aLabel = 0; 547 pParse->nLabel = 0; 548 *pMaxFuncArgs = nMaxArgs; 549 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 550 } 551 552 /* 553 ** Return the address of the next instruction to be inserted. 554 */ 555 int sqlite3VdbeCurrentAddr(Vdbe *p){ 556 assert( p->magic==VDBE_MAGIC_INIT ); 557 return p->nOp; 558 } 559 560 /* 561 ** This function returns a pointer to the array of opcodes associated with 562 ** the Vdbe passed as the first argument. It is the callers responsibility 563 ** to arrange for the returned array to be eventually freed using the 564 ** vdbeFreeOpArray() function. 565 ** 566 ** Before returning, *pnOp is set to the number of entries in the returned 567 ** array. Also, *pnMaxArg is set to the larger of its current value and 568 ** the number of entries in the Vdbe.apArg[] array required to execute the 569 ** returned program. 570 */ 571 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 572 VdbeOp *aOp = p->aOp; 573 assert( aOp && !p->db->mallocFailed ); 574 575 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 576 assert( DbMaskAllZero(p->btreeMask) ); 577 578 resolveP2Values(p, pnMaxArg); 579 *pnOp = p->nOp; 580 p->aOp = 0; 581 return aOp; 582 } 583 584 /* 585 ** Add a whole list of operations to the operation stack. Return the 586 ** address of the first operation added. 587 */ 588 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){ 589 int addr; 590 assert( p->magic==VDBE_MAGIC_INIT ); 591 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ 592 return 0; 593 } 594 addr = p->nOp; 595 if( ALWAYS(nOp>0) ){ 596 int i; 597 VdbeOpList const *pIn = aOp; 598 for(i=0; i<nOp; i++, pIn++){ 599 int p2 = pIn->p2; 600 VdbeOp *pOut = &p->aOp[i+addr]; 601 pOut->opcode = pIn->opcode; 602 pOut->p1 = pIn->p1; 603 if( p2<0 ){ 604 assert( sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP ); 605 pOut->p2 = addr + ADDR(p2); 606 }else{ 607 pOut->p2 = p2; 608 } 609 pOut->p3 = pIn->p3; 610 pOut->p4type = P4_NOTUSED; 611 pOut->p4.p = 0; 612 pOut->p5 = 0; 613 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 614 pOut->zComment = 0; 615 #endif 616 #ifdef SQLITE_VDBE_COVERAGE 617 pOut->iSrcLine = iLineno+i; 618 #else 619 (void)iLineno; 620 #endif 621 #ifdef SQLITE_DEBUG 622 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 623 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); 624 } 625 #endif 626 } 627 p->nOp += nOp; 628 } 629 return addr; 630 } 631 632 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 633 /* 634 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 635 */ 636 void sqlite3VdbeScanStatus( 637 Vdbe *p, /* VM to add scanstatus() to */ 638 int addrExplain, /* Address of OP_Explain (or 0) */ 639 int addrLoop, /* Address of loop counter */ 640 int addrVisit, /* Address of rows visited counter */ 641 LogEst nEst, /* Estimated number of output rows */ 642 const char *zName /* Name of table or index being scanned */ 643 ){ 644 int nByte = (p->nScan+1) * sizeof(ScanStatus); 645 ScanStatus *aNew; 646 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 647 if( aNew ){ 648 ScanStatus *pNew = &aNew[p->nScan++]; 649 pNew->addrExplain = addrExplain; 650 pNew->addrLoop = addrLoop; 651 pNew->addrVisit = addrVisit; 652 pNew->nEst = nEst; 653 pNew->zName = sqlite3DbStrDup(p->db, zName); 654 p->aScan = aNew; 655 } 656 } 657 #endif 658 659 660 /* 661 ** Change the value of the P1 operand for a specific instruction. 662 ** This routine is useful when a large program is loaded from a 663 ** static array using sqlite3VdbeAddOpList but we want to make a 664 ** few minor changes to the program. 665 */ 666 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ 667 assert( p!=0 ); 668 if( ((u32)p->nOp)>addr ){ 669 p->aOp[addr].p1 = val; 670 } 671 } 672 673 /* 674 ** Change the value of the P2 operand for a specific instruction. 675 ** This routine is useful for setting a jump destination. 676 */ 677 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ 678 assert( p!=0 ); 679 if( ((u32)p->nOp)>addr ){ 680 p->aOp[addr].p2 = val; 681 } 682 } 683 684 /* 685 ** Change the value of the P3 operand for a specific instruction. 686 */ 687 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ 688 assert( p!=0 ); 689 if( ((u32)p->nOp)>addr ){ 690 p->aOp[addr].p3 = val; 691 } 692 } 693 694 /* 695 ** Change the value of the P5 operand for the most recently 696 ** added operation. 697 */ 698 void sqlite3VdbeChangeP5(Vdbe *p, u8 val){ 699 assert( p!=0 ); 700 if( p->aOp ){ 701 assert( p->nOp>0 ); 702 p->aOp[p->nOp-1].p5 = val; 703 } 704 } 705 706 /* 707 ** Change the P2 operand of instruction addr so that it points to 708 ** the address of the next instruction to be coded. 709 */ 710 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 711 sqlite3VdbeChangeP2(p, addr, p->nOp); 712 p->pParse->iFixedOp = p->nOp - 1; 713 } 714 715 716 /* 717 ** If the input FuncDef structure is ephemeral, then free it. If 718 ** the FuncDef is not ephermal, then do nothing. 719 */ 720 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 721 if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 722 sqlite3DbFree(db, pDef); 723 } 724 } 725 726 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 727 728 /* 729 ** Delete a P4 value if necessary. 730 */ 731 static void freeP4(sqlite3 *db, int p4type, void *p4){ 732 if( p4 ){ 733 assert( db ); 734 switch( p4type ){ 735 case P4_FUNCCTX: { 736 freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc); 737 /* Fall through into the next case */ 738 } 739 case P4_REAL: 740 case P4_INT64: 741 case P4_DYNAMIC: 742 case P4_INTARRAY: { 743 sqlite3DbFree(db, p4); 744 break; 745 } 746 case P4_KEYINFO: { 747 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 748 break; 749 } 750 case P4_MPRINTF: { 751 if( db->pnBytesFreed==0 ) sqlite3_free(p4); 752 break; 753 } 754 case P4_FUNCDEF: { 755 freeEphemeralFunction(db, (FuncDef*)p4); 756 break; 757 } 758 case P4_MEM: { 759 if( db->pnBytesFreed==0 ){ 760 sqlite3ValueFree((sqlite3_value*)p4); 761 }else{ 762 Mem *p = (Mem*)p4; 763 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 764 sqlite3DbFree(db, p); 765 } 766 break; 767 } 768 case P4_VTAB : { 769 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 770 break; 771 } 772 } 773 } 774 } 775 776 /* 777 ** Free the space allocated for aOp and any p4 values allocated for the 778 ** opcodes contained within. If aOp is not NULL it is assumed to contain 779 ** nOp entries. 780 */ 781 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 782 if( aOp ){ 783 Op *pOp; 784 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ 785 freeP4(db, pOp->p4type, pOp->p4.p); 786 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 787 sqlite3DbFree(db, pOp->zComment); 788 #endif 789 } 790 } 791 sqlite3DbFree(db, aOp); 792 } 793 794 /* 795 ** Link the SubProgram object passed as the second argument into the linked 796 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 797 ** objects when the VM is no longer required. 798 */ 799 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 800 p->pNext = pVdbe->pProgram; 801 pVdbe->pProgram = p; 802 } 803 804 /* 805 ** Change the opcode at addr into OP_Noop 806 */ 807 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 808 if( addr<p->nOp ){ 809 VdbeOp *pOp = &p->aOp[addr]; 810 sqlite3 *db = p->db; 811 freeP4(db, pOp->p4type, pOp->p4.p); 812 memset(pOp, 0, sizeof(pOp[0])); 813 pOp->opcode = OP_Noop; 814 if( addr==p->nOp-1 ) p->nOp--; 815 } 816 } 817 818 /* 819 ** If the last opcode is "op" and it is not a jump destination, 820 ** then remove it. Return true if and only if an opcode was removed. 821 */ 822 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 823 if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){ 824 sqlite3VdbeChangeToNoop(p, p->nOp-1); 825 return 1; 826 }else{ 827 return 0; 828 } 829 } 830 831 /* 832 ** Change the value of the P4 operand for a specific instruction. 833 ** This routine is useful when a large program is loaded from a 834 ** static array using sqlite3VdbeAddOpList but we want to make a 835 ** few minor changes to the program. 836 ** 837 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 838 ** the string is made into memory obtained from sqlite3_malloc(). 839 ** A value of n==0 means copy bytes of zP4 up to and including the 840 ** first null byte. If n>0 then copy n+1 bytes of zP4. 841 ** 842 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 843 ** to a string or structure that is guaranteed to exist for the lifetime of 844 ** the Vdbe. In these cases we can just copy the pointer. 845 ** 846 ** If addr<0 then change P4 on the most recently inserted instruction. 847 */ 848 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 849 Op *pOp; 850 sqlite3 *db; 851 assert( p!=0 ); 852 db = p->db; 853 assert( p->magic==VDBE_MAGIC_INIT ); 854 if( p->aOp==0 || db->mallocFailed ){ 855 if( n!=P4_VTAB ){ 856 freeP4(db, n, (void*)*(char**)&zP4); 857 } 858 return; 859 } 860 assert( p->nOp>0 ); 861 assert( addr<p->nOp ); 862 if( addr<0 ){ 863 addr = p->nOp - 1; 864 } 865 pOp = &p->aOp[addr]; 866 assert( pOp->p4type==P4_NOTUSED 867 || pOp->p4type==P4_INT32 868 || pOp->p4type==P4_KEYINFO ); 869 freeP4(db, pOp->p4type, pOp->p4.p); 870 pOp->p4.p = 0; 871 if( n==P4_INT32 ){ 872 /* Note: this cast is safe, because the origin data point was an int 873 ** that was cast to a (const char *). */ 874 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 875 pOp->p4type = P4_INT32; 876 }else if( zP4==0 ){ 877 pOp->p4.p = 0; 878 pOp->p4type = P4_NOTUSED; 879 }else if( n==P4_KEYINFO ){ 880 pOp->p4.p = (void*)zP4; 881 pOp->p4type = P4_KEYINFO; 882 }else if( n==P4_VTAB ){ 883 pOp->p4.p = (void*)zP4; 884 pOp->p4type = P4_VTAB; 885 sqlite3VtabLock((VTable *)zP4); 886 assert( ((VTable *)zP4)->db==p->db ); 887 }else if( n<0 ){ 888 pOp->p4.p = (void*)zP4; 889 pOp->p4type = (signed char)n; 890 }else{ 891 if( n==0 ) n = sqlite3Strlen30(zP4); 892 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 893 pOp->p4type = P4_DYNAMIC; 894 } 895 } 896 897 /* 898 ** Set the P4 on the most recently added opcode to the KeyInfo for the 899 ** index given. 900 */ 901 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 902 Vdbe *v = pParse->pVdbe; 903 assert( v!=0 ); 904 assert( pIdx!=0 ); 905 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx), 906 P4_KEYINFO); 907 } 908 909 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 910 /* 911 ** Change the comment on the most recently coded instruction. Or 912 ** insert a No-op and add the comment to that new instruction. This 913 ** makes the code easier to read during debugging. None of this happens 914 ** in a production build. 915 */ 916 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 917 assert( p->nOp>0 || p->aOp==0 ); 918 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 919 if( p->nOp ){ 920 assert( p->aOp ); 921 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 922 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 923 } 924 } 925 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 926 va_list ap; 927 if( p ){ 928 va_start(ap, zFormat); 929 vdbeVComment(p, zFormat, ap); 930 va_end(ap); 931 } 932 } 933 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 934 va_list ap; 935 if( p ){ 936 sqlite3VdbeAddOp0(p, OP_Noop); 937 va_start(ap, zFormat); 938 vdbeVComment(p, zFormat, ap); 939 va_end(ap); 940 } 941 } 942 #endif /* NDEBUG */ 943 944 #ifdef SQLITE_VDBE_COVERAGE 945 /* 946 ** Set the value if the iSrcLine field for the previously coded instruction. 947 */ 948 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 949 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 950 } 951 #endif /* SQLITE_VDBE_COVERAGE */ 952 953 /* 954 ** Return the opcode for a given address. If the address is -1, then 955 ** return the most recently inserted opcode. 956 ** 957 ** If a memory allocation error has occurred prior to the calling of this 958 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 959 ** is readable but not writable, though it is cast to a writable value. 960 ** The return of a dummy opcode allows the call to continue functioning 961 ** after an OOM fault without having to check to see if the return from 962 ** this routine is a valid pointer. But because the dummy.opcode is 0, 963 ** dummy will never be written to. This is verified by code inspection and 964 ** by running with Valgrind. 965 */ 966 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 967 /* C89 specifies that the constant "dummy" will be initialized to all 968 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 969 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 970 assert( p->magic==VDBE_MAGIC_INIT ); 971 if( addr<0 ){ 972 addr = p->nOp - 1; 973 } 974 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 975 if( p->db->mallocFailed ){ 976 return (VdbeOp*)&dummy; 977 }else{ 978 return &p->aOp[addr]; 979 } 980 } 981 982 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 983 /* 984 ** Return an integer value for one of the parameters to the opcode pOp 985 ** determined by character c. 986 */ 987 static int translateP(char c, const Op *pOp){ 988 if( c=='1' ) return pOp->p1; 989 if( c=='2' ) return pOp->p2; 990 if( c=='3' ) return pOp->p3; 991 if( c=='4' ) return pOp->p4.i; 992 return pOp->p5; 993 } 994 995 /* 996 ** Compute a string for the "comment" field of a VDBE opcode listing. 997 ** 998 ** The Synopsis: field in comments in the vdbe.c source file gets converted 999 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1000 ** absence of other comments, this synopsis becomes the comment on the opcode. 1001 ** Some translation occurs: 1002 ** 1003 ** "PX" -> "r[X]" 1004 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1005 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1006 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1007 */ 1008 static int displayComment( 1009 const Op *pOp, /* The opcode to be commented */ 1010 const char *zP4, /* Previously obtained value for P4 */ 1011 char *zTemp, /* Write result here */ 1012 int nTemp /* Space available in zTemp[] */ 1013 ){ 1014 const char *zOpName; 1015 const char *zSynopsis; 1016 int nOpName; 1017 int ii, jj; 1018 zOpName = sqlite3OpcodeName(pOp->opcode); 1019 nOpName = sqlite3Strlen30(zOpName); 1020 if( zOpName[nOpName+1] ){ 1021 int seenCom = 0; 1022 char c; 1023 zSynopsis = zOpName += nOpName + 1; 1024 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 1025 if( c=='P' ){ 1026 c = zSynopsis[++ii]; 1027 if( c=='4' ){ 1028 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 1029 }else if( c=='X' ){ 1030 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 1031 seenCom = 1; 1032 }else{ 1033 int v1 = translateP(c, pOp); 1034 int v2; 1035 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 1036 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1037 ii += 3; 1038 jj += sqlite3Strlen30(zTemp+jj); 1039 v2 = translateP(zSynopsis[ii], pOp); 1040 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1041 ii += 2; 1042 v2++; 1043 } 1044 if( v2>1 ){ 1045 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 1046 } 1047 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1048 ii += 4; 1049 } 1050 } 1051 jj += sqlite3Strlen30(zTemp+jj); 1052 }else{ 1053 zTemp[jj++] = c; 1054 } 1055 } 1056 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 1057 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 1058 jj += sqlite3Strlen30(zTemp+jj); 1059 } 1060 if( jj<nTemp ) zTemp[jj] = 0; 1061 }else if( pOp->zComment ){ 1062 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 1063 jj = sqlite3Strlen30(zTemp); 1064 }else{ 1065 zTemp[0] = 0; 1066 jj = 0; 1067 } 1068 return jj; 1069 } 1070 #endif /* SQLITE_DEBUG */ 1071 1072 1073 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ 1074 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1075 /* 1076 ** Compute a string that describes the P4 parameter for an opcode. 1077 ** Use zTemp for any required temporary buffer space. 1078 */ 1079 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 1080 char *zP4 = zTemp; 1081 assert( nTemp>=20 ); 1082 switch( pOp->p4type ){ 1083 case P4_KEYINFO: { 1084 int i, j; 1085 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1086 assert( pKeyInfo->aSortOrder!=0 ); 1087 sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField); 1088 i = sqlite3Strlen30(zTemp); 1089 for(j=0; j<pKeyInfo->nField; j++){ 1090 CollSeq *pColl = pKeyInfo->aColl[j]; 1091 const char *zColl = pColl ? pColl->zName : "nil"; 1092 int n = sqlite3Strlen30(zColl); 1093 if( n==6 && memcmp(zColl,"BINARY",6)==0 ){ 1094 zColl = "B"; 1095 n = 1; 1096 } 1097 if( i+n>nTemp-6 ){ 1098 memcpy(&zTemp[i],",...",4); 1099 break; 1100 } 1101 zTemp[i++] = ','; 1102 if( pKeyInfo->aSortOrder[j] ){ 1103 zTemp[i++] = '-'; 1104 } 1105 memcpy(&zTemp[i], zColl, n+1); 1106 i += n; 1107 } 1108 zTemp[i++] = ')'; 1109 zTemp[i] = 0; 1110 assert( i<nTemp ); 1111 break; 1112 } 1113 case P4_COLLSEQ: { 1114 CollSeq *pColl = pOp->p4.pColl; 1115 sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName); 1116 break; 1117 } 1118 case P4_FUNCDEF: { 1119 FuncDef *pDef = pOp->p4.pFunc; 1120 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); 1121 break; 1122 } 1123 #ifdef SQLITE_DEBUG 1124 case P4_FUNCCTX: { 1125 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1126 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); 1127 break; 1128 } 1129 #endif 1130 case P4_INT64: { 1131 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); 1132 break; 1133 } 1134 case P4_INT32: { 1135 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); 1136 break; 1137 } 1138 case P4_REAL: { 1139 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal); 1140 break; 1141 } 1142 case P4_MEM: { 1143 Mem *pMem = pOp->p4.pMem; 1144 if( pMem->flags & MEM_Str ){ 1145 zP4 = pMem->z; 1146 }else if( pMem->flags & MEM_Int ){ 1147 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); 1148 }else if( pMem->flags & MEM_Real ){ 1149 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r); 1150 }else if( pMem->flags & MEM_Null ){ 1151 sqlite3_snprintf(nTemp, zTemp, "NULL"); 1152 }else{ 1153 assert( pMem->flags & MEM_Blob ); 1154 zP4 = "(blob)"; 1155 } 1156 break; 1157 } 1158 #ifndef SQLITE_OMIT_VIRTUALTABLE 1159 case P4_VTAB: { 1160 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1161 sqlite3_snprintf(nTemp, zTemp, "vtab:%p", pVtab); 1162 break; 1163 } 1164 #endif 1165 case P4_INTARRAY: { 1166 sqlite3_snprintf(nTemp, zTemp, "intarray"); 1167 break; 1168 } 1169 case P4_SUBPROGRAM: { 1170 sqlite3_snprintf(nTemp, zTemp, "program"); 1171 break; 1172 } 1173 case P4_ADVANCE: { 1174 zTemp[0] = 0; 1175 break; 1176 } 1177 default: { 1178 zP4 = pOp->p4.z; 1179 if( zP4==0 ){ 1180 zP4 = zTemp; 1181 zTemp[0] = 0; 1182 } 1183 } 1184 } 1185 assert( zP4!=0 ); 1186 return zP4; 1187 } 1188 #endif 1189 1190 /* 1191 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1192 ** 1193 ** The prepared statements need to know in advance the complete set of 1194 ** attached databases that will be use. A mask of these databases 1195 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1196 ** p->btreeMask of databases that will require a lock. 1197 */ 1198 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1199 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1200 assert( i<(int)sizeof(p->btreeMask)*8 ); 1201 DbMaskSet(p->btreeMask, i); 1202 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1203 DbMaskSet(p->lockMask, i); 1204 } 1205 } 1206 1207 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1208 /* 1209 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1210 ** this routine obtains the mutex associated with each BtShared structure 1211 ** that may be accessed by the VM passed as an argument. In doing so it also 1212 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1213 ** that the correct busy-handler callback is invoked if required. 1214 ** 1215 ** If SQLite is not threadsafe but does support shared-cache mode, then 1216 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1217 ** of all of BtShared structures accessible via the database handle 1218 ** associated with the VM. 1219 ** 1220 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1221 ** function is a no-op. 1222 ** 1223 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1224 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1225 ** corresponding to btrees that use shared cache. Then the runtime of 1226 ** this routine is N*N. But as N is rarely more than 1, this should not 1227 ** be a problem. 1228 */ 1229 void sqlite3VdbeEnter(Vdbe *p){ 1230 int i; 1231 sqlite3 *db; 1232 Db *aDb; 1233 int nDb; 1234 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1235 db = p->db; 1236 aDb = db->aDb; 1237 nDb = db->nDb; 1238 for(i=0; i<nDb; i++){ 1239 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1240 sqlite3BtreeEnter(aDb[i].pBt); 1241 } 1242 } 1243 } 1244 #endif 1245 1246 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1247 /* 1248 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1249 */ 1250 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1251 int i; 1252 sqlite3 *db; 1253 Db *aDb; 1254 int nDb; 1255 db = p->db; 1256 aDb = db->aDb; 1257 nDb = db->nDb; 1258 for(i=0; i<nDb; i++){ 1259 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1260 sqlite3BtreeLeave(aDb[i].pBt); 1261 } 1262 } 1263 } 1264 void sqlite3VdbeLeave(Vdbe *p){ 1265 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1266 vdbeLeave(p); 1267 } 1268 #endif 1269 1270 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1271 /* 1272 ** Print a single opcode. This routine is used for debugging only. 1273 */ 1274 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ 1275 char *zP4; 1276 char zPtr[50]; 1277 char zCom[100]; 1278 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1279 if( pOut==0 ) pOut = stdout; 1280 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1281 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1282 displayComment(pOp, zP4, zCom, sizeof(zCom)); 1283 #else 1284 zCom[0] = 0; 1285 #endif 1286 /* NB: The sqlite3OpcodeName() function is implemented by code created 1287 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1288 ** information from the vdbe.c source text */ 1289 fprintf(pOut, zFormat1, pc, 1290 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1291 zCom 1292 ); 1293 fflush(pOut); 1294 } 1295 #endif 1296 1297 /* 1298 ** Release an array of N Mem elements 1299 */ 1300 static void releaseMemArray(Mem *p, int N){ 1301 if( p && N ){ 1302 Mem *pEnd = &p[N]; 1303 sqlite3 *db = p->db; 1304 u8 malloc_failed = db->mallocFailed; 1305 if( db->pnBytesFreed ){ 1306 do{ 1307 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1308 }while( (++p)<pEnd ); 1309 return; 1310 } 1311 do{ 1312 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1313 assert( sqlite3VdbeCheckMemInvariants(p) ); 1314 1315 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1316 ** that takes advantage of the fact that the memory cell value is 1317 ** being set to NULL after releasing any dynamic resources. 1318 ** 1319 ** The justification for duplicating code is that according to 1320 ** callgrind, this causes a certain test case to hit the CPU 4.7 1321 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1322 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1323 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1324 ** with no indexes using a single prepared INSERT statement, bind() 1325 ** and reset(). Inserts are grouped into a transaction. 1326 */ 1327 testcase( p->flags & MEM_Agg ); 1328 testcase( p->flags & MEM_Dyn ); 1329 testcase( p->flags & MEM_Frame ); 1330 testcase( p->flags & MEM_RowSet ); 1331 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ 1332 sqlite3VdbeMemRelease(p); 1333 }else if( p->szMalloc ){ 1334 sqlite3DbFree(db, p->zMalloc); 1335 p->szMalloc = 0; 1336 } 1337 1338 p->flags = MEM_Undefined; 1339 }while( (++p)<pEnd ); 1340 db->mallocFailed = malloc_failed; 1341 } 1342 } 1343 1344 /* 1345 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1346 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1347 */ 1348 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1349 int i; 1350 Mem *aMem = VdbeFrameMem(p); 1351 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1352 for(i=0; i<p->nChildCsr; i++){ 1353 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1354 } 1355 releaseMemArray(aMem, p->nChildMem); 1356 sqlite3DbFree(p->v->db, p); 1357 } 1358 1359 #ifndef SQLITE_OMIT_EXPLAIN 1360 /* 1361 ** Give a listing of the program in the virtual machine. 1362 ** 1363 ** The interface is the same as sqlite3VdbeExec(). But instead of 1364 ** running the code, it invokes the callback once for each instruction. 1365 ** This feature is used to implement "EXPLAIN". 1366 ** 1367 ** When p->explain==1, each instruction is listed. When 1368 ** p->explain==2, only OP_Explain instructions are listed and these 1369 ** are shown in a different format. p->explain==2 is used to implement 1370 ** EXPLAIN QUERY PLAN. 1371 ** 1372 ** When p->explain==1, first the main program is listed, then each of 1373 ** the trigger subprograms are listed one by one. 1374 */ 1375 int sqlite3VdbeList( 1376 Vdbe *p /* The VDBE */ 1377 ){ 1378 int nRow; /* Stop when row count reaches this */ 1379 int nSub = 0; /* Number of sub-vdbes seen so far */ 1380 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1381 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1382 sqlite3 *db = p->db; /* The database connection */ 1383 int i; /* Loop counter */ 1384 int rc = SQLITE_OK; /* Return code */ 1385 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 1386 1387 assert( p->explain ); 1388 assert( p->magic==VDBE_MAGIC_RUN ); 1389 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1390 1391 /* Even though this opcode does not use dynamic strings for 1392 ** the result, result columns may become dynamic if the user calls 1393 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1394 */ 1395 releaseMemArray(pMem, 8); 1396 p->pResultSet = 0; 1397 1398 if( p->rc==SQLITE_NOMEM ){ 1399 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1400 ** sqlite3_column_text16() failed. */ 1401 db->mallocFailed = 1; 1402 return SQLITE_ERROR; 1403 } 1404 1405 /* When the number of output rows reaches nRow, that means the 1406 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1407 ** nRow is the sum of the number of rows in the main program, plus 1408 ** the sum of the number of rows in all trigger subprograms encountered 1409 ** so far. The nRow value will increase as new trigger subprograms are 1410 ** encountered, but p->pc will eventually catch up to nRow. 1411 */ 1412 nRow = p->nOp; 1413 if( p->explain==1 ){ 1414 /* The first 8 memory cells are used for the result set. So we will 1415 ** commandeer the 9th cell to use as storage for an array of pointers 1416 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1417 ** cells. */ 1418 assert( p->nMem>9 ); 1419 pSub = &p->aMem[9]; 1420 if( pSub->flags&MEM_Blob ){ 1421 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1422 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1423 nSub = pSub->n/sizeof(Vdbe*); 1424 apSub = (SubProgram **)pSub->z; 1425 } 1426 for(i=0; i<nSub; i++){ 1427 nRow += apSub[i]->nOp; 1428 } 1429 } 1430 1431 do{ 1432 i = p->pc++; 1433 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); 1434 if( i>=nRow ){ 1435 p->rc = SQLITE_OK; 1436 rc = SQLITE_DONE; 1437 }else if( db->u1.isInterrupted ){ 1438 p->rc = SQLITE_INTERRUPT; 1439 rc = SQLITE_ERROR; 1440 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 1441 }else{ 1442 char *zP4; 1443 Op *pOp; 1444 if( i<p->nOp ){ 1445 /* The output line number is small enough that we are still in the 1446 ** main program. */ 1447 pOp = &p->aOp[i]; 1448 }else{ 1449 /* We are currently listing subprograms. Figure out which one and 1450 ** pick up the appropriate opcode. */ 1451 int j; 1452 i -= p->nOp; 1453 for(j=0; i>=apSub[j]->nOp; j++){ 1454 i -= apSub[j]->nOp; 1455 } 1456 pOp = &apSub[j]->aOp[i]; 1457 } 1458 if( p->explain==1 ){ 1459 pMem->flags = MEM_Int; 1460 pMem->u.i = i; /* Program counter */ 1461 pMem++; 1462 1463 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1464 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1465 assert( pMem->z!=0 ); 1466 pMem->n = sqlite3Strlen30(pMem->z); 1467 pMem->enc = SQLITE_UTF8; 1468 pMem++; 1469 1470 /* When an OP_Program opcode is encounter (the only opcode that has 1471 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1472 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1473 ** has not already been seen. 1474 */ 1475 if( pOp->p4type==P4_SUBPROGRAM ){ 1476 int nByte = (nSub+1)*sizeof(SubProgram*); 1477 int j; 1478 for(j=0; j<nSub; j++){ 1479 if( apSub[j]==pOp->p4.pProgram ) break; 1480 } 1481 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){ 1482 apSub = (SubProgram **)pSub->z; 1483 apSub[nSub++] = pOp->p4.pProgram; 1484 pSub->flags |= MEM_Blob; 1485 pSub->n = nSub*sizeof(SubProgram*); 1486 } 1487 } 1488 } 1489 1490 pMem->flags = MEM_Int; 1491 pMem->u.i = pOp->p1; /* P1 */ 1492 pMem++; 1493 1494 pMem->flags = MEM_Int; 1495 pMem->u.i = pOp->p2; /* P2 */ 1496 pMem++; 1497 1498 pMem->flags = MEM_Int; 1499 pMem->u.i = pOp->p3; /* P3 */ 1500 pMem++; 1501 1502 if( sqlite3VdbeMemClearAndResize(pMem, 32) ){ /* P4 */ 1503 assert( p->db->mallocFailed ); 1504 return SQLITE_ERROR; 1505 } 1506 pMem->flags = MEM_Str|MEM_Term; 1507 zP4 = displayP4(pOp, pMem->z, 32); 1508 if( zP4!=pMem->z ){ 1509 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 1510 }else{ 1511 assert( pMem->z!=0 ); 1512 pMem->n = sqlite3Strlen30(pMem->z); 1513 pMem->enc = SQLITE_UTF8; 1514 } 1515 pMem++; 1516 1517 if( p->explain==1 ){ 1518 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ 1519 assert( p->db->mallocFailed ); 1520 return SQLITE_ERROR; 1521 } 1522 pMem->flags = MEM_Str|MEM_Term; 1523 pMem->n = 2; 1524 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1525 pMem->enc = SQLITE_UTF8; 1526 pMem++; 1527 1528 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1529 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ 1530 assert( p->db->mallocFailed ); 1531 return SQLITE_ERROR; 1532 } 1533 pMem->flags = MEM_Str|MEM_Term; 1534 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 1535 pMem->enc = SQLITE_UTF8; 1536 #else 1537 pMem->flags = MEM_Null; /* Comment */ 1538 #endif 1539 } 1540 1541 p->nResColumn = 8 - 4*(p->explain-1); 1542 p->pResultSet = &p->aMem[1]; 1543 p->rc = SQLITE_OK; 1544 rc = SQLITE_ROW; 1545 } 1546 return rc; 1547 } 1548 #endif /* SQLITE_OMIT_EXPLAIN */ 1549 1550 #ifdef SQLITE_DEBUG 1551 /* 1552 ** Print the SQL that was used to generate a VDBE program. 1553 */ 1554 void sqlite3VdbePrintSql(Vdbe *p){ 1555 const char *z = 0; 1556 if( p->zSql ){ 1557 z = p->zSql; 1558 }else if( p->nOp>=1 ){ 1559 const VdbeOp *pOp = &p->aOp[0]; 1560 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1561 z = pOp->p4.z; 1562 while( sqlite3Isspace(*z) ) z++; 1563 } 1564 } 1565 if( z ) printf("SQL: [%s]\n", z); 1566 } 1567 #endif 1568 1569 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 1570 /* 1571 ** Print an IOTRACE message showing SQL content. 1572 */ 1573 void sqlite3VdbeIOTraceSql(Vdbe *p){ 1574 int nOp = p->nOp; 1575 VdbeOp *pOp; 1576 if( sqlite3IoTrace==0 ) return; 1577 if( nOp<1 ) return; 1578 pOp = &p->aOp[0]; 1579 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1580 int i, j; 1581 char z[1000]; 1582 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 1583 for(i=0; sqlite3Isspace(z[i]); i++){} 1584 for(j=0; z[i]; i++){ 1585 if( sqlite3Isspace(z[i]) ){ 1586 if( z[i-1]!=' ' ){ 1587 z[j++] = ' '; 1588 } 1589 }else{ 1590 z[j++] = z[i]; 1591 } 1592 } 1593 z[j] = 0; 1594 sqlite3IoTrace("SQL %s\n", z); 1595 } 1596 } 1597 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 1598 1599 /* 1600 ** Allocate space from a fixed size buffer and return a pointer to 1601 ** that space. If insufficient space is available, return NULL. 1602 ** 1603 ** The pBuf parameter is the initial value of a pointer which will 1604 ** receive the new memory. pBuf is normally NULL. If pBuf is not 1605 ** NULL, it means that memory space has already been allocated and that 1606 ** this routine should not allocate any new memory. When pBuf is not 1607 ** NULL simply return pBuf. Only allocate new memory space when pBuf 1608 ** is NULL. 1609 ** 1610 ** nByte is the number of bytes of space needed. 1611 ** 1612 ** *ppFrom points to available space and pEnd points to the end of the 1613 ** available space. When space is allocated, *ppFrom is advanced past 1614 ** the end of the allocated space. 1615 ** 1616 ** *pnByte is a counter of the number of bytes of space that have failed 1617 ** to allocate. If there is insufficient space in *ppFrom to satisfy the 1618 ** request, then increment *pnByte by the amount of the request. 1619 */ 1620 static void *allocSpace( 1621 void *pBuf, /* Where return pointer will be stored */ 1622 int nByte, /* Number of bytes to allocate */ 1623 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */ 1624 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */ 1625 int *pnByte /* If allocation cannot be made, increment *pnByte */ 1626 ){ 1627 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) ); 1628 if( pBuf ) return pBuf; 1629 nByte = ROUND8(nByte); 1630 if( &(*ppFrom)[nByte] <= pEnd ){ 1631 pBuf = (void*)*ppFrom; 1632 *ppFrom += nByte; 1633 }else{ 1634 *pnByte += nByte; 1635 } 1636 return pBuf; 1637 } 1638 1639 /* 1640 ** Rewind the VDBE back to the beginning in preparation for 1641 ** running it. 1642 */ 1643 void sqlite3VdbeRewind(Vdbe *p){ 1644 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1645 int i; 1646 #endif 1647 assert( p!=0 ); 1648 assert( p->magic==VDBE_MAGIC_INIT ); 1649 1650 /* There should be at least one opcode. 1651 */ 1652 assert( p->nOp>0 ); 1653 1654 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 1655 p->magic = VDBE_MAGIC_RUN; 1656 1657 #ifdef SQLITE_DEBUG 1658 for(i=1; i<p->nMem; i++){ 1659 assert( p->aMem[i].db==p->db ); 1660 } 1661 #endif 1662 p->pc = -1; 1663 p->rc = SQLITE_OK; 1664 p->errorAction = OE_Abort; 1665 p->magic = VDBE_MAGIC_RUN; 1666 p->nChange = 0; 1667 p->cacheCtr = 1; 1668 p->minWriteFileFormat = 255; 1669 p->iStatement = 0; 1670 p->nFkConstraint = 0; 1671 #ifdef VDBE_PROFILE 1672 for(i=0; i<p->nOp; i++){ 1673 p->aOp[i].cnt = 0; 1674 p->aOp[i].cycles = 0; 1675 } 1676 #endif 1677 } 1678 1679 /* 1680 ** Prepare a virtual machine for execution for the first time after 1681 ** creating the virtual machine. This involves things such 1682 ** as allocating registers and initializing the program counter. 1683 ** After the VDBE has be prepped, it can be executed by one or more 1684 ** calls to sqlite3VdbeExec(). 1685 ** 1686 ** This function may be called exactly once on each virtual machine. 1687 ** After this routine is called the VM has been "packaged" and is ready 1688 ** to run. After this routine is called, further calls to 1689 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 1690 ** the Vdbe from the Parse object that helped generate it so that the 1691 ** the Vdbe becomes an independent entity and the Parse object can be 1692 ** destroyed. 1693 ** 1694 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 1695 ** to its initial state after it has been run. 1696 */ 1697 void sqlite3VdbeMakeReady( 1698 Vdbe *p, /* The VDBE */ 1699 Parse *pParse /* Parsing context */ 1700 ){ 1701 sqlite3 *db; /* The database connection */ 1702 int nVar; /* Number of parameters */ 1703 int nMem; /* Number of VM memory registers */ 1704 int nCursor; /* Number of cursors required */ 1705 int nArg; /* Number of arguments in subprograms */ 1706 int nOnce; /* Number of OP_Once instructions */ 1707 int n; /* Loop counter */ 1708 u8 *zCsr; /* Memory available for allocation */ 1709 u8 *zEnd; /* First byte past allocated memory */ 1710 int nByte; /* How much extra memory is needed */ 1711 1712 assert( p!=0 ); 1713 assert( p->nOp>0 ); 1714 assert( pParse!=0 ); 1715 assert( p->magic==VDBE_MAGIC_INIT ); 1716 assert( pParse==p->pParse ); 1717 db = p->db; 1718 assert( db->mallocFailed==0 ); 1719 nVar = pParse->nVar; 1720 nMem = pParse->nMem; 1721 nCursor = pParse->nTab; 1722 nArg = pParse->nMaxArg; 1723 nOnce = pParse->nOnce; 1724 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */ 1725 1726 /* For each cursor required, also allocate a memory cell. Memory 1727 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by 1728 ** the vdbe program. Instead they are used to allocate space for 1729 ** VdbeCursor/BtCursor structures. The blob of memory associated with 1730 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) 1731 ** stores the blob of memory associated with cursor 1, etc. 1732 ** 1733 ** See also: allocateCursor(). 1734 */ 1735 nMem += nCursor; 1736 1737 /* Allocate space for memory registers, SQL variables, VDBE cursors and 1738 ** an array to marshal SQL function arguments in. 1739 */ 1740 zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */ 1741 zEnd = (u8*)&p->aOp[pParse->nOpAlloc]; /* First byte past end of zCsr[] */ 1742 1743 resolveP2Values(p, &nArg); 1744 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 1745 if( pParse->explain && nMem<10 ){ 1746 nMem = 10; 1747 } 1748 memset(zCsr, 0, zEnd-zCsr); 1749 zCsr += (zCsr - (u8*)0)&7; 1750 assert( EIGHT_BYTE_ALIGNMENT(zCsr) ); 1751 p->expired = 0; 1752 1753 /* Memory for registers, parameters, cursor, etc, is allocated in two 1754 ** passes. On the first pass, we try to reuse unused space at the 1755 ** end of the opcode array. If we are unable to satisfy all memory 1756 ** requirements by reusing the opcode array tail, then the second 1757 ** pass will fill in the rest using a fresh allocation. 1758 ** 1759 ** This two-pass approach that reuses as much memory as possible from 1760 ** the leftover space at the end of the opcode array can significantly 1761 ** reduce the amount of memory held by a prepared statement. 1762 */ 1763 do { 1764 nByte = 0; 1765 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte); 1766 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte); 1767 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte); 1768 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte); 1769 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*), 1770 &zCsr, zEnd, &nByte); 1771 p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte); 1772 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1773 p->anExec = allocSpace(p->anExec, p->nOp*sizeof(i64), &zCsr, zEnd, &nByte); 1774 #endif 1775 if( nByte ){ 1776 p->pFree = sqlite3DbMallocZero(db, nByte); 1777 } 1778 zCsr = p->pFree; 1779 zEnd = &zCsr[nByte]; 1780 }while( nByte && !db->mallocFailed ); 1781 1782 p->nCursor = nCursor; 1783 p->nOnceFlag = nOnce; 1784 if( p->aVar ){ 1785 p->nVar = (ynVar)nVar; 1786 for(n=0; n<nVar; n++){ 1787 p->aVar[n].flags = MEM_Null; 1788 p->aVar[n].db = db; 1789 } 1790 } 1791 if( p->azVar && pParse->nzVar>0 ){ 1792 p->nzVar = pParse->nzVar; 1793 memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0])); 1794 memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0])); 1795 } 1796 if( p->aMem ){ 1797 p->aMem--; /* aMem[] goes from 1..nMem */ 1798 p->nMem = nMem; /* not from 0..nMem-1 */ 1799 for(n=1; n<=nMem; n++){ 1800 p->aMem[n].flags = MEM_Undefined; 1801 p->aMem[n].db = db; 1802 } 1803 } 1804 p->explain = pParse->explain; 1805 sqlite3VdbeRewind(p); 1806 } 1807 1808 /* 1809 ** Close a VDBE cursor and release all the resources that cursor 1810 ** happens to hold. 1811 */ 1812 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 1813 if( pCx==0 ){ 1814 return; 1815 } 1816 sqlite3VdbeSorterClose(p->db, pCx); 1817 if( pCx->pBt ){ 1818 sqlite3BtreeClose(pCx->pBt); 1819 /* The pCx->pCursor will be close automatically, if it exists, by 1820 ** the call above. */ 1821 }else if( pCx->pCursor ){ 1822 sqlite3BtreeCloseCursor(pCx->pCursor); 1823 } 1824 #ifndef SQLITE_OMIT_VIRTUALTABLE 1825 else if( pCx->pVtabCursor ){ 1826 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; 1827 const sqlite3_module *pModule = pVtabCursor->pVtab->pModule; 1828 assert( pVtabCursor->pVtab->nRef>0 ); 1829 pVtabCursor->pVtab->nRef--; 1830 pModule->xClose(pVtabCursor); 1831 } 1832 #endif 1833 } 1834 1835 /* 1836 ** Close all cursors in the current frame. 1837 */ 1838 static void closeCursorsInFrame(Vdbe *p){ 1839 if( p->apCsr ){ 1840 int i; 1841 for(i=0; i<p->nCursor; i++){ 1842 VdbeCursor *pC = p->apCsr[i]; 1843 if( pC ){ 1844 sqlite3VdbeFreeCursor(p, pC); 1845 p->apCsr[i] = 0; 1846 } 1847 } 1848 } 1849 } 1850 1851 /* 1852 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 1853 ** is used, for example, when a trigger sub-program is halted to restore 1854 ** control to the main program. 1855 */ 1856 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 1857 Vdbe *v = pFrame->v; 1858 closeCursorsInFrame(v); 1859 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 1860 v->anExec = pFrame->anExec; 1861 #endif 1862 v->aOnceFlag = pFrame->aOnceFlag; 1863 v->nOnceFlag = pFrame->nOnceFlag; 1864 v->aOp = pFrame->aOp; 1865 v->nOp = pFrame->nOp; 1866 v->aMem = pFrame->aMem; 1867 v->nMem = pFrame->nMem; 1868 v->apCsr = pFrame->apCsr; 1869 v->nCursor = pFrame->nCursor; 1870 v->db->lastRowid = pFrame->lastRowid; 1871 v->nChange = pFrame->nChange; 1872 v->db->nChange = pFrame->nDbChange; 1873 return pFrame->pc; 1874 } 1875 1876 /* 1877 ** Close all cursors. 1878 ** 1879 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 1880 ** cell array. This is necessary as the memory cell array may contain 1881 ** pointers to VdbeFrame objects, which may in turn contain pointers to 1882 ** open cursors. 1883 */ 1884 static void closeAllCursors(Vdbe *p){ 1885 if( p->pFrame ){ 1886 VdbeFrame *pFrame; 1887 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 1888 sqlite3VdbeFrameRestore(pFrame); 1889 p->pFrame = 0; 1890 p->nFrame = 0; 1891 } 1892 assert( p->nFrame==0 ); 1893 closeCursorsInFrame(p); 1894 if( p->aMem ){ 1895 releaseMemArray(&p->aMem[1], p->nMem); 1896 } 1897 while( p->pDelFrame ){ 1898 VdbeFrame *pDel = p->pDelFrame; 1899 p->pDelFrame = pDel->pParent; 1900 sqlite3VdbeFrameDelete(pDel); 1901 } 1902 1903 /* Delete any auxdata allocations made by the VM */ 1904 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0); 1905 assert( p->pAuxData==0 ); 1906 } 1907 1908 /* 1909 ** Clean up the VM after a single run. 1910 */ 1911 static void Cleanup(Vdbe *p){ 1912 sqlite3 *db = p->db; 1913 1914 #ifdef SQLITE_DEBUG 1915 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 1916 ** Vdbe.aMem[] arrays have already been cleaned up. */ 1917 int i; 1918 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 1919 if( p->aMem ){ 1920 for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 1921 } 1922 #endif 1923 1924 sqlite3DbFree(db, p->zErrMsg); 1925 p->zErrMsg = 0; 1926 p->pResultSet = 0; 1927 } 1928 1929 /* 1930 ** Set the number of result columns that will be returned by this SQL 1931 ** statement. This is now set at compile time, rather than during 1932 ** execution of the vdbe program so that sqlite3_column_count() can 1933 ** be called on an SQL statement before sqlite3_step(). 1934 */ 1935 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 1936 Mem *pColName; 1937 int n; 1938 sqlite3 *db = p->db; 1939 1940 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 1941 sqlite3DbFree(db, p->aColName); 1942 n = nResColumn*COLNAME_N; 1943 p->nResColumn = (u16)nResColumn; 1944 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n ); 1945 if( p->aColName==0 ) return; 1946 while( n-- > 0 ){ 1947 pColName->flags = MEM_Null; 1948 pColName->db = p->db; 1949 pColName++; 1950 } 1951 } 1952 1953 /* 1954 ** Set the name of the idx'th column to be returned by the SQL statement. 1955 ** zName must be a pointer to a nul terminated string. 1956 ** 1957 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 1958 ** 1959 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 1960 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 1961 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 1962 */ 1963 int sqlite3VdbeSetColName( 1964 Vdbe *p, /* Vdbe being configured */ 1965 int idx, /* Index of column zName applies to */ 1966 int var, /* One of the COLNAME_* constants */ 1967 const char *zName, /* Pointer to buffer containing name */ 1968 void (*xDel)(void*) /* Memory management strategy for zName */ 1969 ){ 1970 int rc; 1971 Mem *pColName; 1972 assert( idx<p->nResColumn ); 1973 assert( var<COLNAME_N ); 1974 if( p->db->mallocFailed ){ 1975 assert( !zName || xDel!=SQLITE_DYNAMIC ); 1976 return SQLITE_NOMEM; 1977 } 1978 assert( p->aColName!=0 ); 1979 pColName = &(p->aColName[idx+var*p->nResColumn]); 1980 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 1981 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 1982 return rc; 1983 } 1984 1985 /* 1986 ** A read or write transaction may or may not be active on database handle 1987 ** db. If a transaction is active, commit it. If there is a 1988 ** write-transaction spanning more than one database file, this routine 1989 ** takes care of the master journal trickery. 1990 */ 1991 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 1992 int i; 1993 int nTrans = 0; /* Number of databases with an active write-transaction */ 1994 int rc = SQLITE_OK; 1995 int needXcommit = 0; 1996 1997 #ifdef SQLITE_OMIT_VIRTUALTABLE 1998 /* With this option, sqlite3VtabSync() is defined to be simply 1999 ** SQLITE_OK so p is not used. 2000 */ 2001 UNUSED_PARAMETER(p); 2002 #endif 2003 2004 /* Before doing anything else, call the xSync() callback for any 2005 ** virtual module tables written in this transaction. This has to 2006 ** be done before determining whether a master journal file is 2007 ** required, as an xSync() callback may add an attached database 2008 ** to the transaction. 2009 */ 2010 rc = sqlite3VtabSync(db, p); 2011 2012 /* This loop determines (a) if the commit hook should be invoked and 2013 ** (b) how many database files have open write transactions, not 2014 ** including the temp database. (b) is important because if more than 2015 ** one database file has an open write transaction, a master journal 2016 ** file is required for an atomic commit. 2017 */ 2018 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2019 Btree *pBt = db->aDb[i].pBt; 2020 if( sqlite3BtreeIsInTrans(pBt) ){ 2021 needXcommit = 1; 2022 if( i!=1 ) nTrans++; 2023 sqlite3BtreeEnter(pBt); 2024 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt)); 2025 sqlite3BtreeLeave(pBt); 2026 } 2027 } 2028 if( rc!=SQLITE_OK ){ 2029 return rc; 2030 } 2031 2032 /* If there are any write-transactions at all, invoke the commit hook */ 2033 if( needXcommit && db->xCommitCallback ){ 2034 rc = db->xCommitCallback(db->pCommitArg); 2035 if( rc ){ 2036 return SQLITE_CONSTRAINT_COMMITHOOK; 2037 } 2038 } 2039 2040 /* The simple case - no more than one database file (not counting the 2041 ** TEMP database) has a transaction active. There is no need for the 2042 ** master-journal. 2043 ** 2044 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2045 ** string, it means the main database is :memory: or a temp file. In 2046 ** that case we do not support atomic multi-file commits, so use the 2047 ** simple case then too. 2048 */ 2049 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2050 || nTrans<=1 2051 ){ 2052 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2053 Btree *pBt = db->aDb[i].pBt; 2054 if( pBt ){ 2055 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2056 } 2057 } 2058 2059 /* Do the commit only if all databases successfully complete phase 1. 2060 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2061 ** IO error while deleting or truncating a journal file. It is unlikely, 2062 ** but could happen. In this case abandon processing and return the error. 2063 */ 2064 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2065 Btree *pBt = db->aDb[i].pBt; 2066 if( pBt ){ 2067 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2068 } 2069 } 2070 if( rc==SQLITE_OK ){ 2071 sqlite3VtabCommit(db); 2072 } 2073 } 2074 2075 /* The complex case - There is a multi-file write-transaction active. 2076 ** This requires a master journal file to ensure the transaction is 2077 ** committed atomically. 2078 */ 2079 #ifndef SQLITE_OMIT_DISKIO 2080 else{ 2081 sqlite3_vfs *pVfs = db->pVfs; 2082 int needSync = 0; 2083 char *zMaster = 0; /* File-name for the master journal */ 2084 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2085 sqlite3_file *pMaster = 0; 2086 i64 offset = 0; 2087 int res; 2088 int retryCount = 0; 2089 int nMainFile; 2090 2091 /* Select a master journal file name */ 2092 nMainFile = sqlite3Strlen30(zMainFile); 2093 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); 2094 if( zMaster==0 ) return SQLITE_NOMEM; 2095 do { 2096 u32 iRandom; 2097 if( retryCount ){ 2098 if( retryCount>100 ){ 2099 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 2100 sqlite3OsDelete(pVfs, zMaster, 0); 2101 break; 2102 }else if( retryCount==1 ){ 2103 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2104 } 2105 } 2106 retryCount++; 2107 sqlite3_randomness(sizeof(iRandom), &iRandom); 2108 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2109 (iRandom>>8)&0xffffff, iRandom&0xff); 2110 /* The antipenultimate character of the master journal name must 2111 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2112 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2113 sqlite3FileSuffix3(zMainFile, zMaster); 2114 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2115 }while( rc==SQLITE_OK && res ); 2116 if( rc==SQLITE_OK ){ 2117 /* Open the master journal. */ 2118 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2119 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2120 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2121 ); 2122 } 2123 if( rc!=SQLITE_OK ){ 2124 sqlite3DbFree(db, zMaster); 2125 return rc; 2126 } 2127 2128 /* Write the name of each database file in the transaction into the new 2129 ** master journal file. If an error occurs at this point close 2130 ** and delete the master journal file. All the individual journal files 2131 ** still have 'null' as the master journal pointer, so they will roll 2132 ** back independently if a failure occurs. 2133 */ 2134 for(i=0; i<db->nDb; i++){ 2135 Btree *pBt = db->aDb[i].pBt; 2136 if( sqlite3BtreeIsInTrans(pBt) ){ 2137 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2138 if( zFile==0 ){ 2139 continue; /* Ignore TEMP and :memory: databases */ 2140 } 2141 assert( zFile[0]!=0 ); 2142 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){ 2143 needSync = 1; 2144 } 2145 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2146 offset += sqlite3Strlen30(zFile)+1; 2147 if( rc!=SQLITE_OK ){ 2148 sqlite3OsCloseFree(pMaster); 2149 sqlite3OsDelete(pVfs, zMaster, 0); 2150 sqlite3DbFree(db, zMaster); 2151 return rc; 2152 } 2153 } 2154 } 2155 2156 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2157 ** flag is set this is not required. 2158 */ 2159 if( needSync 2160 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2161 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2162 ){ 2163 sqlite3OsCloseFree(pMaster); 2164 sqlite3OsDelete(pVfs, zMaster, 0); 2165 sqlite3DbFree(db, zMaster); 2166 return rc; 2167 } 2168 2169 /* Sync all the db files involved in the transaction. The same call 2170 ** sets the master journal pointer in each individual journal. If 2171 ** an error occurs here, do not delete the master journal file. 2172 ** 2173 ** If the error occurs during the first call to 2174 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2175 ** master journal file will be orphaned. But we cannot delete it, 2176 ** in case the master journal file name was written into the journal 2177 ** file before the failure occurred. 2178 */ 2179 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2180 Btree *pBt = db->aDb[i].pBt; 2181 if( pBt ){ 2182 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2183 } 2184 } 2185 sqlite3OsCloseFree(pMaster); 2186 assert( rc!=SQLITE_BUSY ); 2187 if( rc!=SQLITE_OK ){ 2188 sqlite3DbFree(db, zMaster); 2189 return rc; 2190 } 2191 2192 /* Delete the master journal file. This commits the transaction. After 2193 ** doing this the directory is synced again before any individual 2194 ** transaction files are deleted. 2195 */ 2196 rc = sqlite3OsDelete(pVfs, zMaster, needSync); 2197 sqlite3DbFree(db, zMaster); 2198 zMaster = 0; 2199 if( rc ){ 2200 return rc; 2201 } 2202 2203 /* All files and directories have already been synced, so the following 2204 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2205 ** deleting or truncating journals. If something goes wrong while 2206 ** this is happening we don't really care. The integrity of the 2207 ** transaction is already guaranteed, but some stray 'cold' journals 2208 ** may be lying around. Returning an error code won't help matters. 2209 */ 2210 disable_simulated_io_errors(); 2211 sqlite3BeginBenignMalloc(); 2212 for(i=0; i<db->nDb; i++){ 2213 Btree *pBt = db->aDb[i].pBt; 2214 if( pBt ){ 2215 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2216 } 2217 } 2218 sqlite3EndBenignMalloc(); 2219 enable_simulated_io_errors(); 2220 2221 sqlite3VtabCommit(db); 2222 } 2223 #endif 2224 2225 return rc; 2226 } 2227 2228 /* 2229 ** This routine checks that the sqlite3.nVdbeActive count variable 2230 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2231 ** currently active. An assertion fails if the two counts do not match. 2232 ** This is an internal self-check only - it is not an essential processing 2233 ** step. 2234 ** 2235 ** This is a no-op if NDEBUG is defined. 2236 */ 2237 #ifndef NDEBUG 2238 static void checkActiveVdbeCnt(sqlite3 *db){ 2239 Vdbe *p; 2240 int cnt = 0; 2241 int nWrite = 0; 2242 int nRead = 0; 2243 p = db->pVdbe; 2244 while( p ){ 2245 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2246 cnt++; 2247 if( p->readOnly==0 ) nWrite++; 2248 if( p->bIsReader ) nRead++; 2249 } 2250 p = p->pNext; 2251 } 2252 assert( cnt==db->nVdbeActive ); 2253 assert( nWrite==db->nVdbeWrite ); 2254 assert( nRead==db->nVdbeRead ); 2255 } 2256 #else 2257 #define checkActiveVdbeCnt(x) 2258 #endif 2259 2260 /* 2261 ** If the Vdbe passed as the first argument opened a statement-transaction, 2262 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2263 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2264 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2265 ** statement transaction is committed. 2266 ** 2267 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2268 ** Otherwise SQLITE_OK. 2269 */ 2270 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2271 sqlite3 *const db = p->db; 2272 int rc = SQLITE_OK; 2273 2274 /* If p->iStatement is greater than zero, then this Vdbe opened a 2275 ** statement transaction that should be closed here. The only exception 2276 ** is that an IO error may have occurred, causing an emergency rollback. 2277 ** In this case (db->nStatement==0), and there is nothing to do. 2278 */ 2279 if( db->nStatement && p->iStatement ){ 2280 int i; 2281 const int iSavepoint = p->iStatement-1; 2282 2283 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2284 assert( db->nStatement>0 ); 2285 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2286 2287 for(i=0; i<db->nDb; i++){ 2288 int rc2 = SQLITE_OK; 2289 Btree *pBt = db->aDb[i].pBt; 2290 if( pBt ){ 2291 if( eOp==SAVEPOINT_ROLLBACK ){ 2292 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2293 } 2294 if( rc2==SQLITE_OK ){ 2295 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2296 } 2297 if( rc==SQLITE_OK ){ 2298 rc = rc2; 2299 } 2300 } 2301 } 2302 db->nStatement--; 2303 p->iStatement = 0; 2304 2305 if( rc==SQLITE_OK ){ 2306 if( eOp==SAVEPOINT_ROLLBACK ){ 2307 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2308 } 2309 if( rc==SQLITE_OK ){ 2310 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2311 } 2312 } 2313 2314 /* If the statement transaction is being rolled back, also restore the 2315 ** database handles deferred constraint counter to the value it had when 2316 ** the statement transaction was opened. */ 2317 if( eOp==SAVEPOINT_ROLLBACK ){ 2318 db->nDeferredCons = p->nStmtDefCons; 2319 db->nDeferredImmCons = p->nStmtDefImmCons; 2320 } 2321 } 2322 return rc; 2323 } 2324 2325 /* 2326 ** This function is called when a transaction opened by the database 2327 ** handle associated with the VM passed as an argument is about to be 2328 ** committed. If there are outstanding deferred foreign key constraint 2329 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2330 ** 2331 ** If there are outstanding FK violations and this function returns 2332 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2333 ** and write an error message to it. Then return SQLITE_ERROR. 2334 */ 2335 #ifndef SQLITE_OMIT_FOREIGN_KEY 2336 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2337 sqlite3 *db = p->db; 2338 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2339 || (!deferred && p->nFkConstraint>0) 2340 ){ 2341 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2342 p->errorAction = OE_Abort; 2343 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2344 return SQLITE_ERROR; 2345 } 2346 return SQLITE_OK; 2347 } 2348 #endif 2349 2350 /* 2351 ** This routine is called the when a VDBE tries to halt. If the VDBE 2352 ** has made changes and is in autocommit mode, then commit those 2353 ** changes. If a rollback is needed, then do the rollback. 2354 ** 2355 ** This routine is the only way to move the state of a VM from 2356 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2357 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2358 ** 2359 ** Return an error code. If the commit could not complete because of 2360 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2361 ** means the close did not happen and needs to be repeated. 2362 */ 2363 int sqlite3VdbeHalt(Vdbe *p){ 2364 int rc; /* Used to store transient return codes */ 2365 sqlite3 *db = p->db; 2366 2367 /* This function contains the logic that determines if a statement or 2368 ** transaction will be committed or rolled back as a result of the 2369 ** execution of this virtual machine. 2370 ** 2371 ** If any of the following errors occur: 2372 ** 2373 ** SQLITE_NOMEM 2374 ** SQLITE_IOERR 2375 ** SQLITE_FULL 2376 ** SQLITE_INTERRUPT 2377 ** 2378 ** Then the internal cache might have been left in an inconsistent 2379 ** state. We need to rollback the statement transaction, if there is 2380 ** one, or the complete transaction if there is no statement transaction. 2381 */ 2382 2383 if( p->db->mallocFailed ){ 2384 p->rc = SQLITE_NOMEM; 2385 } 2386 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag); 2387 closeAllCursors(p); 2388 if( p->magic!=VDBE_MAGIC_RUN ){ 2389 return SQLITE_OK; 2390 } 2391 checkActiveVdbeCnt(db); 2392 2393 /* No commit or rollback needed if the program never started or if the 2394 ** SQL statement does not read or write a database file. */ 2395 if( p->pc>=0 && p->bIsReader ){ 2396 int mrc; /* Primary error code from p->rc */ 2397 int eStatementOp = 0; 2398 int isSpecialError; /* Set to true if a 'special' error */ 2399 2400 /* Lock all btrees used by the statement */ 2401 sqlite3VdbeEnter(p); 2402 2403 /* Check for one of the special errors */ 2404 mrc = p->rc & 0xff; 2405 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2406 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2407 if( isSpecialError ){ 2408 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2409 ** no rollback is necessary. Otherwise, at least a savepoint 2410 ** transaction must be rolled back to restore the database to a 2411 ** consistent state. 2412 ** 2413 ** Even if the statement is read-only, it is important to perform 2414 ** a statement or transaction rollback operation. If the error 2415 ** occurred while writing to the journal, sub-journal or database 2416 ** file as part of an effort to free up cache space (see function 2417 ** pagerStress() in pager.c), the rollback is required to restore 2418 ** the pager to a consistent state. 2419 */ 2420 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2421 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2422 eStatementOp = SAVEPOINT_ROLLBACK; 2423 }else{ 2424 /* We are forced to roll back the active transaction. Before doing 2425 ** so, abort any other statements this handle currently has active. 2426 */ 2427 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2428 sqlite3CloseSavepoints(db); 2429 db->autoCommit = 1; 2430 p->nChange = 0; 2431 } 2432 } 2433 } 2434 2435 /* Check for immediate foreign key violations. */ 2436 if( p->rc==SQLITE_OK ){ 2437 sqlite3VdbeCheckFk(p, 0); 2438 } 2439 2440 /* If the auto-commit flag is set and this is the only active writer 2441 ** VM, then we do either a commit or rollback of the current transaction. 2442 ** 2443 ** Note: This block also runs if one of the special errors handled 2444 ** above has occurred. 2445 */ 2446 if( !sqlite3VtabInSync(db) 2447 && db->autoCommit 2448 && db->nVdbeWrite==(p->readOnly==0) 2449 ){ 2450 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2451 rc = sqlite3VdbeCheckFk(p, 1); 2452 if( rc!=SQLITE_OK ){ 2453 if( NEVER(p->readOnly) ){ 2454 sqlite3VdbeLeave(p); 2455 return SQLITE_ERROR; 2456 } 2457 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2458 }else{ 2459 /* The auto-commit flag is true, the vdbe program was successful 2460 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2461 ** key constraints to hold up the transaction. This means a commit 2462 ** is required. */ 2463 rc = vdbeCommit(db, p); 2464 } 2465 if( rc==SQLITE_BUSY && p->readOnly ){ 2466 sqlite3VdbeLeave(p); 2467 return SQLITE_BUSY; 2468 }else if( rc!=SQLITE_OK ){ 2469 p->rc = rc; 2470 sqlite3RollbackAll(db, SQLITE_OK); 2471 p->nChange = 0; 2472 }else{ 2473 db->nDeferredCons = 0; 2474 db->nDeferredImmCons = 0; 2475 db->flags &= ~SQLITE_DeferFKs; 2476 sqlite3CommitInternalChanges(db); 2477 } 2478 }else{ 2479 sqlite3RollbackAll(db, SQLITE_OK); 2480 p->nChange = 0; 2481 } 2482 db->nStatement = 0; 2483 }else if( eStatementOp==0 ){ 2484 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2485 eStatementOp = SAVEPOINT_RELEASE; 2486 }else if( p->errorAction==OE_Abort ){ 2487 eStatementOp = SAVEPOINT_ROLLBACK; 2488 }else{ 2489 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2490 sqlite3CloseSavepoints(db); 2491 db->autoCommit = 1; 2492 p->nChange = 0; 2493 } 2494 } 2495 2496 /* If eStatementOp is non-zero, then a statement transaction needs to 2497 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2498 ** do so. If this operation returns an error, and the current statement 2499 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2500 ** current statement error code. 2501 */ 2502 if( eStatementOp ){ 2503 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2504 if( rc ){ 2505 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 2506 p->rc = rc; 2507 sqlite3DbFree(db, p->zErrMsg); 2508 p->zErrMsg = 0; 2509 } 2510 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2511 sqlite3CloseSavepoints(db); 2512 db->autoCommit = 1; 2513 p->nChange = 0; 2514 } 2515 } 2516 2517 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2518 ** has been rolled back, update the database connection change-counter. 2519 */ 2520 if( p->changeCntOn ){ 2521 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2522 sqlite3VdbeSetChanges(db, p->nChange); 2523 }else{ 2524 sqlite3VdbeSetChanges(db, 0); 2525 } 2526 p->nChange = 0; 2527 } 2528 2529 /* Release the locks */ 2530 sqlite3VdbeLeave(p); 2531 } 2532 2533 /* We have successfully halted and closed the VM. Record this fact. */ 2534 if( p->pc>=0 ){ 2535 db->nVdbeActive--; 2536 if( !p->readOnly ) db->nVdbeWrite--; 2537 if( p->bIsReader ) db->nVdbeRead--; 2538 assert( db->nVdbeActive>=db->nVdbeRead ); 2539 assert( db->nVdbeRead>=db->nVdbeWrite ); 2540 assert( db->nVdbeWrite>=0 ); 2541 } 2542 p->magic = VDBE_MAGIC_HALT; 2543 checkActiveVdbeCnt(db); 2544 if( p->db->mallocFailed ){ 2545 p->rc = SQLITE_NOMEM; 2546 } 2547 2548 /* If the auto-commit flag is set to true, then any locks that were held 2549 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2550 ** to invoke any required unlock-notify callbacks. 2551 */ 2552 if( db->autoCommit ){ 2553 sqlite3ConnectionUnlocked(db); 2554 } 2555 2556 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 2557 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 2558 } 2559 2560 2561 /* 2562 ** Each VDBE holds the result of the most recent sqlite3_step() call 2563 ** in p->rc. This routine sets that result back to SQLITE_OK. 2564 */ 2565 void sqlite3VdbeResetStepResult(Vdbe *p){ 2566 p->rc = SQLITE_OK; 2567 } 2568 2569 /* 2570 ** Copy the error code and error message belonging to the VDBE passed 2571 ** as the first argument to its database handle (so that they will be 2572 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 2573 ** 2574 ** This function does not clear the VDBE error code or message, just 2575 ** copies them to the database handle. 2576 */ 2577 int sqlite3VdbeTransferError(Vdbe *p){ 2578 sqlite3 *db = p->db; 2579 int rc = p->rc; 2580 if( p->zErrMsg ){ 2581 u8 mallocFailed = db->mallocFailed; 2582 sqlite3BeginBenignMalloc(); 2583 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 2584 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 2585 sqlite3EndBenignMalloc(); 2586 db->mallocFailed = mallocFailed; 2587 db->errCode = rc; 2588 }else{ 2589 sqlite3Error(db, rc); 2590 } 2591 return rc; 2592 } 2593 2594 #ifdef SQLITE_ENABLE_SQLLOG 2595 /* 2596 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 2597 ** invoke it. 2598 */ 2599 static void vdbeInvokeSqllog(Vdbe *v){ 2600 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 2601 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 2602 assert( v->db->init.busy==0 ); 2603 if( zExpanded ){ 2604 sqlite3GlobalConfig.xSqllog( 2605 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 2606 ); 2607 sqlite3DbFree(v->db, zExpanded); 2608 } 2609 } 2610 } 2611 #else 2612 # define vdbeInvokeSqllog(x) 2613 #endif 2614 2615 /* 2616 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 2617 ** Write any error messages into *pzErrMsg. Return the result code. 2618 ** 2619 ** After this routine is run, the VDBE should be ready to be executed 2620 ** again. 2621 ** 2622 ** To look at it another way, this routine resets the state of the 2623 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 2624 ** VDBE_MAGIC_INIT. 2625 */ 2626 int sqlite3VdbeReset(Vdbe *p){ 2627 sqlite3 *db; 2628 db = p->db; 2629 2630 /* If the VM did not run to completion or if it encountered an 2631 ** error, then it might not have been halted properly. So halt 2632 ** it now. 2633 */ 2634 sqlite3VdbeHalt(p); 2635 2636 /* If the VDBE has be run even partially, then transfer the error code 2637 ** and error message from the VDBE into the main database structure. But 2638 ** if the VDBE has just been set to run but has not actually executed any 2639 ** instructions yet, leave the main database error information unchanged. 2640 */ 2641 if( p->pc>=0 ){ 2642 vdbeInvokeSqllog(p); 2643 sqlite3VdbeTransferError(p); 2644 sqlite3DbFree(db, p->zErrMsg); 2645 p->zErrMsg = 0; 2646 if( p->runOnlyOnce ) p->expired = 1; 2647 }else if( p->rc && p->expired ){ 2648 /* The expired flag was set on the VDBE before the first call 2649 ** to sqlite3_step(). For consistency (since sqlite3_step() was 2650 ** called), set the database error in this case as well. 2651 */ 2652 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 2653 sqlite3DbFree(db, p->zErrMsg); 2654 p->zErrMsg = 0; 2655 } 2656 2657 /* Reclaim all memory used by the VDBE 2658 */ 2659 Cleanup(p); 2660 2661 /* Save profiling information from this VDBE run. 2662 */ 2663 #ifdef VDBE_PROFILE 2664 { 2665 FILE *out = fopen("vdbe_profile.out", "a"); 2666 if( out ){ 2667 int i; 2668 fprintf(out, "---- "); 2669 for(i=0; i<p->nOp; i++){ 2670 fprintf(out, "%02x", p->aOp[i].opcode); 2671 } 2672 fprintf(out, "\n"); 2673 if( p->zSql ){ 2674 char c, pc = 0; 2675 fprintf(out, "-- "); 2676 for(i=0; (c = p->zSql[i])!=0; i++){ 2677 if( pc=='\n' ) fprintf(out, "-- "); 2678 putc(c, out); 2679 pc = c; 2680 } 2681 if( pc!='\n' ) fprintf(out, "\n"); 2682 } 2683 for(i=0; i<p->nOp; i++){ 2684 char zHdr[100]; 2685 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 2686 p->aOp[i].cnt, 2687 p->aOp[i].cycles, 2688 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 2689 ); 2690 fprintf(out, "%s", zHdr); 2691 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 2692 } 2693 fclose(out); 2694 } 2695 } 2696 #endif 2697 p->iCurrentTime = 0; 2698 p->magic = VDBE_MAGIC_INIT; 2699 return p->rc & db->errMask; 2700 } 2701 2702 /* 2703 ** Clean up and delete a VDBE after execution. Return an integer which is 2704 ** the result code. Write any error message text into *pzErrMsg. 2705 */ 2706 int sqlite3VdbeFinalize(Vdbe *p){ 2707 int rc = SQLITE_OK; 2708 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 2709 rc = sqlite3VdbeReset(p); 2710 assert( (rc & p->db->errMask)==rc ); 2711 } 2712 sqlite3VdbeDelete(p); 2713 return rc; 2714 } 2715 2716 /* 2717 ** If parameter iOp is less than zero, then invoke the destructor for 2718 ** all auxiliary data pointers currently cached by the VM passed as 2719 ** the first argument. 2720 ** 2721 ** Or, if iOp is greater than or equal to zero, then the destructor is 2722 ** only invoked for those auxiliary data pointers created by the user 2723 ** function invoked by the OP_Function opcode at instruction iOp of 2724 ** VM pVdbe, and only then if: 2725 ** 2726 ** * the associated function parameter is the 32nd or later (counting 2727 ** from left to right), or 2728 ** 2729 ** * the corresponding bit in argument mask is clear (where the first 2730 ** function parameter corresponds to bit 0 etc.). 2731 */ 2732 void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){ 2733 AuxData **pp = &pVdbe->pAuxData; 2734 while( *pp ){ 2735 AuxData *pAux = *pp; 2736 if( (iOp<0) 2737 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg)))) 2738 ){ 2739 testcase( pAux->iArg==31 ); 2740 if( pAux->xDelete ){ 2741 pAux->xDelete(pAux->pAux); 2742 } 2743 *pp = pAux->pNext; 2744 sqlite3DbFree(pVdbe->db, pAux); 2745 }else{ 2746 pp= &pAux->pNext; 2747 } 2748 } 2749 } 2750 2751 /* 2752 ** Free all memory associated with the Vdbe passed as the second argument, 2753 ** except for object itself, which is preserved. 2754 ** 2755 ** The difference between this function and sqlite3VdbeDelete() is that 2756 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 2757 ** the database connection and frees the object itself. 2758 */ 2759 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 2760 SubProgram *pSub, *pNext; 2761 int i; 2762 assert( p->db==0 || p->db==db ); 2763 releaseMemArray(p->aVar, p->nVar); 2764 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2765 for(pSub=p->pProgram; pSub; pSub=pNext){ 2766 pNext = pSub->pNext; 2767 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 2768 sqlite3DbFree(db, pSub); 2769 } 2770 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); 2771 vdbeFreeOpArray(db, p->aOp, p->nOp); 2772 sqlite3DbFree(db, p->aColName); 2773 sqlite3DbFree(db, p->zSql); 2774 sqlite3DbFree(db, p->pFree); 2775 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2776 for(i=0; i<p->nScan; i++){ 2777 sqlite3DbFree(db, p->aScan[i].zName); 2778 } 2779 sqlite3DbFree(db, p->aScan); 2780 #endif 2781 } 2782 2783 /* 2784 ** Delete an entire VDBE. 2785 */ 2786 void sqlite3VdbeDelete(Vdbe *p){ 2787 sqlite3 *db; 2788 2789 if( NEVER(p==0) ) return; 2790 db = p->db; 2791 assert( sqlite3_mutex_held(db->mutex) ); 2792 sqlite3VdbeClearObject(db, p); 2793 if( p->pPrev ){ 2794 p->pPrev->pNext = p->pNext; 2795 }else{ 2796 assert( db->pVdbe==p ); 2797 db->pVdbe = p->pNext; 2798 } 2799 if( p->pNext ){ 2800 p->pNext->pPrev = p->pPrev; 2801 } 2802 p->magic = VDBE_MAGIC_DEAD; 2803 p->db = 0; 2804 sqlite3DbFree(db, p); 2805 } 2806 2807 /* 2808 ** The cursor "p" has a pending seek operation that has not yet been 2809 ** carried out. Seek the cursor now. If an error occurs, return 2810 ** the appropriate error code. 2811 */ 2812 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ 2813 int res, rc; 2814 #ifdef SQLITE_TEST 2815 extern int sqlite3_search_count; 2816 #endif 2817 assert( p->deferredMoveto ); 2818 assert( p->isTable ); 2819 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res); 2820 if( rc ) return rc; 2821 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 2822 #ifdef SQLITE_TEST 2823 sqlite3_search_count++; 2824 #endif 2825 p->deferredMoveto = 0; 2826 p->cacheStatus = CACHE_STALE; 2827 return SQLITE_OK; 2828 } 2829 2830 /* 2831 ** Something has moved cursor "p" out of place. Maybe the row it was 2832 ** pointed to was deleted out from under it. Or maybe the btree was 2833 ** rebalanced. Whatever the cause, try to restore "p" to the place it 2834 ** is supposed to be pointing. If the row was deleted out from under the 2835 ** cursor, set the cursor to point to a NULL row. 2836 */ 2837 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 2838 int isDifferentRow, rc; 2839 assert( p->pCursor!=0 ); 2840 assert( sqlite3BtreeCursorHasMoved(p->pCursor) ); 2841 rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow); 2842 p->cacheStatus = CACHE_STALE; 2843 if( isDifferentRow ) p->nullRow = 1; 2844 return rc; 2845 } 2846 2847 /* 2848 ** Check to ensure that the cursor is valid. Restore the cursor 2849 ** if need be. Return any I/O error from the restore operation. 2850 */ 2851 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 2852 if( sqlite3BtreeCursorHasMoved(p->pCursor) ){ 2853 return handleMovedCursor(p); 2854 } 2855 return SQLITE_OK; 2856 } 2857 2858 /* 2859 ** Make sure the cursor p is ready to read or write the row to which it 2860 ** was last positioned. Return an error code if an OOM fault or I/O error 2861 ** prevents us from positioning the cursor to its correct position. 2862 ** 2863 ** If a MoveTo operation is pending on the given cursor, then do that 2864 ** MoveTo now. If no move is pending, check to see if the row has been 2865 ** deleted out from under the cursor and if it has, mark the row as 2866 ** a NULL row. 2867 ** 2868 ** If the cursor is already pointing to the correct row and that row has 2869 ** not been deleted out from under the cursor, then this routine is a no-op. 2870 */ 2871 int sqlite3VdbeCursorMoveto(VdbeCursor *p){ 2872 if( p->deferredMoveto ){ 2873 return handleDeferredMoveto(p); 2874 } 2875 if( p->pCursor && sqlite3BtreeCursorHasMoved(p->pCursor) ){ 2876 return handleMovedCursor(p); 2877 } 2878 return SQLITE_OK; 2879 } 2880 2881 /* 2882 ** The following functions: 2883 ** 2884 ** sqlite3VdbeSerialType() 2885 ** sqlite3VdbeSerialTypeLen() 2886 ** sqlite3VdbeSerialLen() 2887 ** sqlite3VdbeSerialPut() 2888 ** sqlite3VdbeSerialGet() 2889 ** 2890 ** encapsulate the code that serializes values for storage in SQLite 2891 ** data and index records. Each serialized value consists of a 2892 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 2893 ** integer, stored as a varint. 2894 ** 2895 ** In an SQLite index record, the serial type is stored directly before 2896 ** the blob of data that it corresponds to. In a table record, all serial 2897 ** types are stored at the start of the record, and the blobs of data at 2898 ** the end. Hence these functions allow the caller to handle the 2899 ** serial-type and data blob separately. 2900 ** 2901 ** The following table describes the various storage classes for data: 2902 ** 2903 ** serial type bytes of data type 2904 ** -------------- --------------- --------------- 2905 ** 0 0 NULL 2906 ** 1 1 signed integer 2907 ** 2 2 signed integer 2908 ** 3 3 signed integer 2909 ** 4 4 signed integer 2910 ** 5 6 signed integer 2911 ** 6 8 signed integer 2912 ** 7 8 IEEE float 2913 ** 8 0 Integer constant 0 2914 ** 9 0 Integer constant 1 2915 ** 10,11 reserved for expansion 2916 ** N>=12 and even (N-12)/2 BLOB 2917 ** N>=13 and odd (N-13)/2 text 2918 ** 2919 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 2920 ** of SQLite will not understand those serial types. 2921 */ 2922 2923 /* 2924 ** Return the serial-type for the value stored in pMem. 2925 */ 2926 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ 2927 int flags = pMem->flags; 2928 u32 n; 2929 2930 if( flags&MEM_Null ){ 2931 return 0; 2932 } 2933 if( flags&MEM_Int ){ 2934 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 2935 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 2936 i64 i = pMem->u.i; 2937 u64 u; 2938 if( i<0 ){ 2939 u = ~i; 2940 }else{ 2941 u = i; 2942 } 2943 if( u<=127 ){ 2944 return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1; 2945 } 2946 if( u<=32767 ) return 2; 2947 if( u<=8388607 ) return 3; 2948 if( u<=2147483647 ) return 4; 2949 if( u<=MAX_6BYTE ) return 5; 2950 return 6; 2951 } 2952 if( flags&MEM_Real ){ 2953 return 7; 2954 } 2955 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 2956 assert( pMem->n>=0 ); 2957 n = (u32)pMem->n; 2958 if( flags & MEM_Zero ){ 2959 n += pMem->u.nZero; 2960 } 2961 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 2962 } 2963 2964 /* 2965 ** The sizes for serial types less than 12 2966 */ 2967 static const u8 sqlite3SmallTypeSizes[] = { 2968 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 2969 }; 2970 2971 /* 2972 ** Return the length of the data corresponding to the supplied serial-type. 2973 */ 2974 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 2975 if( serial_type>=12 ){ 2976 return (serial_type-12)/2; 2977 }else{ 2978 return sqlite3SmallTypeSizes[serial_type]; 2979 } 2980 } 2981 2982 /* 2983 ** If we are on an architecture with mixed-endian floating 2984 ** points (ex: ARM7) then swap the lower 4 bytes with the 2985 ** upper 4 bytes. Return the result. 2986 ** 2987 ** For most architectures, this is a no-op. 2988 ** 2989 ** (later): It is reported to me that the mixed-endian problem 2990 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 2991 ** that early versions of GCC stored the two words of a 64-bit 2992 ** float in the wrong order. And that error has been propagated 2993 ** ever since. The blame is not necessarily with GCC, though. 2994 ** GCC might have just copying the problem from a prior compiler. 2995 ** I am also told that newer versions of GCC that follow a different 2996 ** ABI get the byte order right. 2997 ** 2998 ** Developers using SQLite on an ARM7 should compile and run their 2999 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3000 ** enabled, some asserts below will ensure that the byte order of 3001 ** floating point values is correct. 3002 ** 3003 ** (2007-08-30) Frank van Vugt has studied this problem closely 3004 ** and has send his findings to the SQLite developers. Frank 3005 ** writes that some Linux kernels offer floating point hardware 3006 ** emulation that uses only 32-bit mantissas instead of a full 3007 ** 48-bits as required by the IEEE standard. (This is the 3008 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3009 ** byte swapping becomes very complicated. To avoid problems, 3010 ** the necessary byte swapping is carried out using a 64-bit integer 3011 ** rather than a 64-bit float. Frank assures us that the code here 3012 ** works for him. We, the developers, have no way to independently 3013 ** verify this, but Frank seems to know what he is talking about 3014 ** so we trust him. 3015 */ 3016 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3017 static u64 floatSwap(u64 in){ 3018 union { 3019 u64 r; 3020 u32 i[2]; 3021 } u; 3022 u32 t; 3023 3024 u.r = in; 3025 t = u.i[0]; 3026 u.i[0] = u.i[1]; 3027 u.i[1] = t; 3028 return u.r; 3029 } 3030 # define swapMixedEndianFloat(X) X = floatSwap(X) 3031 #else 3032 # define swapMixedEndianFloat(X) 3033 #endif 3034 3035 /* 3036 ** Write the serialized data blob for the value stored in pMem into 3037 ** buf. It is assumed that the caller has allocated sufficient space. 3038 ** Return the number of bytes written. 3039 ** 3040 ** nBuf is the amount of space left in buf[]. The caller is responsible 3041 ** for allocating enough space to buf[] to hold the entire field, exclusive 3042 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3043 ** 3044 ** Return the number of bytes actually written into buf[]. The number 3045 ** of bytes in the zero-filled tail is included in the return value only 3046 ** if those bytes were zeroed in buf[]. 3047 */ 3048 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3049 u32 len; 3050 3051 /* Integer and Real */ 3052 if( serial_type<=7 && serial_type>0 ){ 3053 u64 v; 3054 u32 i; 3055 if( serial_type==7 ){ 3056 assert( sizeof(v)==sizeof(pMem->u.r) ); 3057 memcpy(&v, &pMem->u.r, sizeof(v)); 3058 swapMixedEndianFloat(v); 3059 }else{ 3060 v = pMem->u.i; 3061 } 3062 len = i = sqlite3SmallTypeSizes[serial_type]; 3063 assert( i>0 ); 3064 do{ 3065 buf[--i] = (u8)(v&0xFF); 3066 v >>= 8; 3067 }while( i ); 3068 return len; 3069 } 3070 3071 /* String or blob */ 3072 if( serial_type>=12 ){ 3073 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3074 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3075 len = pMem->n; 3076 memcpy(buf, pMem->z, len); 3077 return len; 3078 } 3079 3080 /* NULL or constants 0 or 1 */ 3081 return 0; 3082 } 3083 3084 /* Input "x" is a sequence of unsigned characters that represent a 3085 ** big-endian integer. Return the equivalent native integer 3086 */ 3087 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3088 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3089 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3090 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3091 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3092 3093 /* 3094 ** Deserialize the data blob pointed to by buf as serial type serial_type 3095 ** and store the result in pMem. Return the number of bytes read. 3096 ** 3097 ** This function is implemented as two separate routines for performance. 3098 ** The few cases that require local variables are broken out into a separate 3099 ** routine so that in most cases the overhead of moving the stack pointer 3100 ** is avoided. 3101 */ 3102 static u32 SQLITE_NOINLINE serialGet( 3103 const unsigned char *buf, /* Buffer to deserialize from */ 3104 u32 serial_type, /* Serial type to deserialize */ 3105 Mem *pMem /* Memory cell to write value into */ 3106 ){ 3107 u64 x = FOUR_BYTE_UINT(buf); 3108 u32 y = FOUR_BYTE_UINT(buf+4); 3109 x = (x<<32) + y; 3110 if( serial_type==6 ){ 3111 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3112 ** twos-complement integer. */ 3113 pMem->u.i = *(i64*)&x; 3114 pMem->flags = MEM_Int; 3115 testcase( pMem->u.i<0 ); 3116 }else{ 3117 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3118 ** floating point number. */ 3119 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3120 /* Verify that integers and floating point values use the same 3121 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3122 ** defined that 64-bit floating point values really are mixed 3123 ** endian. 3124 */ 3125 static const u64 t1 = ((u64)0x3ff00000)<<32; 3126 static const double r1 = 1.0; 3127 u64 t2 = t1; 3128 swapMixedEndianFloat(t2); 3129 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3130 #endif 3131 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3132 swapMixedEndianFloat(x); 3133 memcpy(&pMem->u.r, &x, sizeof(x)); 3134 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; 3135 } 3136 return 8; 3137 } 3138 u32 sqlite3VdbeSerialGet( 3139 const unsigned char *buf, /* Buffer to deserialize from */ 3140 u32 serial_type, /* Serial type to deserialize */ 3141 Mem *pMem /* Memory cell to write value into */ 3142 ){ 3143 switch( serial_type ){ 3144 case 10: /* Reserved for future use */ 3145 case 11: /* Reserved for future use */ 3146 case 0: { /* Null */ 3147 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3148 pMem->flags = MEM_Null; 3149 break; 3150 } 3151 case 1: { 3152 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3153 ** integer. */ 3154 pMem->u.i = ONE_BYTE_INT(buf); 3155 pMem->flags = MEM_Int; 3156 testcase( pMem->u.i<0 ); 3157 return 1; 3158 } 3159 case 2: { /* 2-byte signed integer */ 3160 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3161 ** twos-complement integer. */ 3162 pMem->u.i = TWO_BYTE_INT(buf); 3163 pMem->flags = MEM_Int; 3164 testcase( pMem->u.i<0 ); 3165 return 2; 3166 } 3167 case 3: { /* 3-byte signed integer */ 3168 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3169 ** twos-complement integer. */ 3170 pMem->u.i = THREE_BYTE_INT(buf); 3171 pMem->flags = MEM_Int; 3172 testcase( pMem->u.i<0 ); 3173 return 3; 3174 } 3175 case 4: { /* 4-byte signed integer */ 3176 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3177 ** twos-complement integer. */ 3178 pMem->u.i = FOUR_BYTE_INT(buf); 3179 pMem->flags = MEM_Int; 3180 testcase( pMem->u.i<0 ); 3181 return 4; 3182 } 3183 case 5: { /* 6-byte signed integer */ 3184 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3185 ** twos-complement integer. */ 3186 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3187 pMem->flags = MEM_Int; 3188 testcase( pMem->u.i<0 ); 3189 return 6; 3190 } 3191 case 6: /* 8-byte signed integer */ 3192 case 7: { /* IEEE floating point */ 3193 /* These use local variables, so do them in a separate routine 3194 ** to avoid having to move the frame pointer in the common case */ 3195 return serialGet(buf,serial_type,pMem); 3196 } 3197 case 8: /* Integer 0 */ 3198 case 9: { /* Integer 1 */ 3199 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3200 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3201 pMem->u.i = serial_type-8; 3202 pMem->flags = MEM_Int; 3203 return 0; 3204 } 3205 default: { 3206 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3207 ** length. 3208 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3209 ** (N-13)/2 bytes in length. */ 3210 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3211 pMem->z = (char *)buf; 3212 pMem->n = (serial_type-12)/2; 3213 pMem->flags = aFlag[serial_type&1]; 3214 return pMem->n; 3215 } 3216 } 3217 return 0; 3218 } 3219 /* 3220 ** This routine is used to allocate sufficient space for an UnpackedRecord 3221 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3222 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3223 ** 3224 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3225 ** the unaligned buffer passed via the second and third arguments (presumably 3226 ** stack space). If the former, then *ppFree is set to a pointer that should 3227 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3228 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3229 ** before returning. 3230 ** 3231 ** If an OOM error occurs, NULL is returned. 3232 */ 3233 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3234 KeyInfo *pKeyInfo, /* Description of the record */ 3235 char *pSpace, /* Unaligned space available */ 3236 int szSpace, /* Size of pSpace[] in bytes */ 3237 char **ppFree /* OUT: Caller should free this pointer */ 3238 ){ 3239 UnpackedRecord *p; /* Unpacked record to return */ 3240 int nOff; /* Increment pSpace by nOff to align it */ 3241 int nByte; /* Number of bytes required for *p */ 3242 3243 /* We want to shift the pointer pSpace up such that it is 8-byte aligned. 3244 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift 3245 ** it by. If pSpace is already 8-byte aligned, nOff should be zero. 3246 */ 3247 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7; 3248 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); 3249 if( nByte>szSpace+nOff ){ 3250 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3251 *ppFree = (char *)p; 3252 if( !p ) return 0; 3253 }else{ 3254 p = (UnpackedRecord*)&pSpace[nOff]; 3255 *ppFree = 0; 3256 } 3257 3258 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3259 assert( pKeyInfo->aSortOrder!=0 ); 3260 p->pKeyInfo = pKeyInfo; 3261 p->nField = pKeyInfo->nField + 1; 3262 return p; 3263 } 3264 3265 /* 3266 ** Given the nKey-byte encoding of a record in pKey[], populate the 3267 ** UnpackedRecord structure indicated by the fourth argument with the 3268 ** contents of the decoded record. 3269 */ 3270 void sqlite3VdbeRecordUnpack( 3271 KeyInfo *pKeyInfo, /* Information about the record format */ 3272 int nKey, /* Size of the binary record */ 3273 const void *pKey, /* The binary record */ 3274 UnpackedRecord *p /* Populate this structure before returning. */ 3275 ){ 3276 const unsigned char *aKey = (const unsigned char *)pKey; 3277 int d; 3278 u32 idx; /* Offset in aKey[] to read from */ 3279 u16 u; /* Unsigned loop counter */ 3280 u32 szHdr; 3281 Mem *pMem = p->aMem; 3282 3283 p->default_rc = 0; 3284 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3285 idx = getVarint32(aKey, szHdr); 3286 d = szHdr; 3287 u = 0; 3288 while( idx<szHdr && d<=nKey ){ 3289 u32 serial_type; 3290 3291 idx += getVarint32(&aKey[idx], serial_type); 3292 pMem->enc = pKeyInfo->enc; 3293 pMem->db = pKeyInfo->db; 3294 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 3295 pMem->szMalloc = 0; 3296 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3297 pMem++; 3298 if( (++u)>=p->nField ) break; 3299 } 3300 assert( u<=pKeyInfo->nField + 1 ); 3301 p->nField = u; 3302 } 3303 3304 #if SQLITE_DEBUG 3305 /* 3306 ** This function compares two index or table record keys in the same way 3307 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 3308 ** this function deserializes and compares values using the 3309 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 3310 ** in assert() statements to ensure that the optimized code in 3311 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 3312 ** 3313 ** Return true if the result of comparison is equivalent to desiredResult. 3314 ** Return false if there is a disagreement. 3315 */ 3316 static int vdbeRecordCompareDebug( 3317 int nKey1, const void *pKey1, /* Left key */ 3318 const UnpackedRecord *pPKey2, /* Right key */ 3319 int desiredResult /* Correct answer */ 3320 ){ 3321 u32 d1; /* Offset into aKey[] of next data element */ 3322 u32 idx1; /* Offset into aKey[] of next header element */ 3323 u32 szHdr1; /* Number of bytes in header */ 3324 int i = 0; 3325 int rc = 0; 3326 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3327 KeyInfo *pKeyInfo; 3328 Mem mem1; 3329 3330 pKeyInfo = pPKey2->pKeyInfo; 3331 if( pKeyInfo->db==0 ) return 1; 3332 mem1.enc = pKeyInfo->enc; 3333 mem1.db = pKeyInfo->db; 3334 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 3335 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3336 3337 /* Compilers may complain that mem1.u.i is potentially uninitialized. 3338 ** We could initialize it, as shown here, to silence those complaints. 3339 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 3340 ** the unnecessary initialization has a measurable negative performance 3341 ** impact, since this routine is a very high runner. And so, we choose 3342 ** to ignore the compiler warnings and leave this variable uninitialized. 3343 */ 3344 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 3345 3346 idx1 = getVarint32(aKey1, szHdr1); 3347 if( szHdr1>98307 ) return SQLITE_CORRUPT; 3348 d1 = szHdr1; 3349 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB ); 3350 assert( pKeyInfo->aSortOrder!=0 ); 3351 assert( pKeyInfo->nField>0 ); 3352 assert( idx1<=szHdr1 || CORRUPT_DB ); 3353 do{ 3354 u32 serial_type1; 3355 3356 /* Read the serial types for the next element in each key. */ 3357 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 3358 3359 /* Verify that there is enough key space remaining to avoid 3360 ** a buffer overread. The "d1+serial_type1+2" subexpression will 3361 ** always be greater than or equal to the amount of required key space. 3362 ** Use that approximation to avoid the more expensive call to 3363 ** sqlite3VdbeSerialTypeLen() in the common case. 3364 */ 3365 if( d1+serial_type1+2>(u32)nKey1 3366 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 3367 ){ 3368 break; 3369 } 3370 3371 /* Extract the values to be compared. 3372 */ 3373 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 3374 3375 /* Do the comparison 3376 */ 3377 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); 3378 if( rc!=0 ){ 3379 assert( mem1.szMalloc==0 ); /* See comment below */ 3380 if( pKeyInfo->aSortOrder[i] ){ 3381 rc = -rc; /* Invert the result for DESC sort order. */ 3382 } 3383 goto debugCompareEnd; 3384 } 3385 i++; 3386 }while( idx1<szHdr1 && i<pPKey2->nField ); 3387 3388 /* No memory allocation is ever used on mem1. Prove this using 3389 ** the following assert(). If the assert() fails, it indicates a 3390 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 3391 */ 3392 assert( mem1.szMalloc==0 ); 3393 3394 /* rc==0 here means that one of the keys ran out of fields and 3395 ** all the fields up to that point were equal. Return the default_rc 3396 ** value. */ 3397 rc = pPKey2->default_rc; 3398 3399 debugCompareEnd: 3400 if( desiredResult==0 && rc==0 ) return 1; 3401 if( desiredResult<0 && rc<0 ) return 1; 3402 if( desiredResult>0 && rc>0 ) return 1; 3403 if( CORRUPT_DB ) return 1; 3404 if( pKeyInfo->db->mallocFailed ) return 1; 3405 return 0; 3406 } 3407 #endif 3408 3409 #if SQLITE_DEBUG 3410 /* 3411 ** Count the number of fields (a.k.a. columns) in the record given by 3412 ** pKey,nKey. The verify that this count is less than or equal to the 3413 ** limit given by pKeyInfo->nField + pKeyInfo->nXField. 3414 ** 3415 ** If this constraint is not satisfied, it means that the high-speed 3416 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 3417 ** not work correctly. If this assert() ever fires, it probably means 3418 ** that the KeyInfo.nField or KeyInfo.nXField values were computed 3419 ** incorrectly. 3420 */ 3421 static void vdbeAssertFieldCountWithinLimits( 3422 int nKey, const void *pKey, /* The record to verify */ 3423 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 3424 ){ 3425 int nField = 0; 3426 u32 szHdr; 3427 u32 idx; 3428 u32 notUsed; 3429 const unsigned char *aKey = (const unsigned char*)pKey; 3430 3431 if( CORRUPT_DB ) return; 3432 idx = getVarint32(aKey, szHdr); 3433 assert( nKey>=0 ); 3434 assert( szHdr<=(u32)nKey ); 3435 while( idx<szHdr ){ 3436 idx += getVarint32(aKey+idx, notUsed); 3437 nField++; 3438 } 3439 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField ); 3440 } 3441 #else 3442 # define vdbeAssertFieldCountWithinLimits(A,B,C) 3443 #endif 3444 3445 /* 3446 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 3447 ** using the collation sequence pColl. As usual, return a negative , zero 3448 ** or positive value if *pMem1 is less than, equal to or greater than 3449 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 3450 */ 3451 static int vdbeCompareMemString( 3452 const Mem *pMem1, 3453 const Mem *pMem2, 3454 const CollSeq *pColl, 3455 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 3456 ){ 3457 if( pMem1->enc==pColl->enc ){ 3458 /* The strings are already in the correct encoding. Call the 3459 ** comparison function directly */ 3460 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 3461 }else{ 3462 int rc; 3463 const void *v1, *v2; 3464 int n1, n2; 3465 Mem c1; 3466 Mem c2; 3467 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 3468 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 3469 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 3470 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 3471 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 3472 n1 = v1==0 ? 0 : c1.n; 3473 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 3474 n2 = v2==0 ? 0 : c2.n; 3475 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); 3476 sqlite3VdbeMemRelease(&c1); 3477 sqlite3VdbeMemRelease(&c2); 3478 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM; 3479 return rc; 3480 } 3481 } 3482 3483 /* 3484 ** Compare two blobs. Return negative, zero, or positive if the first 3485 ** is less than, equal to, or greater than the second, respectively. 3486 ** If one blob is a prefix of the other, then the shorter is the lessor. 3487 */ 3488 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 3489 int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n); 3490 if( c ) return c; 3491 return pB1->n - pB2->n; 3492 } 3493 3494 3495 /* 3496 ** Compare the values contained by the two memory cells, returning 3497 ** negative, zero or positive if pMem1 is less than, equal to, or greater 3498 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 3499 ** and reals) sorted numerically, followed by text ordered by the collating 3500 ** sequence pColl and finally blob's ordered by memcmp(). 3501 ** 3502 ** Two NULL values are considered equal by this function. 3503 */ 3504 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 3505 int f1, f2; 3506 int combined_flags; 3507 3508 f1 = pMem1->flags; 3509 f2 = pMem2->flags; 3510 combined_flags = f1|f2; 3511 assert( (combined_flags & MEM_RowSet)==0 ); 3512 3513 /* If one value is NULL, it is less than the other. If both values 3514 ** are NULL, return 0. 3515 */ 3516 if( combined_flags&MEM_Null ){ 3517 return (f2&MEM_Null) - (f1&MEM_Null); 3518 } 3519 3520 /* If one value is a number and the other is not, the number is less. 3521 ** If both are numbers, compare as reals if one is a real, or as integers 3522 ** if both values are integers. 3523 */ 3524 if( combined_flags&(MEM_Int|MEM_Real) ){ 3525 double r1, r2; 3526 if( (f1 & f2 & MEM_Int)!=0 ){ 3527 if( pMem1->u.i < pMem2->u.i ) return -1; 3528 if( pMem1->u.i > pMem2->u.i ) return 1; 3529 return 0; 3530 } 3531 if( (f1&MEM_Real)!=0 ){ 3532 r1 = pMem1->u.r; 3533 }else if( (f1&MEM_Int)!=0 ){ 3534 r1 = (double)pMem1->u.i; 3535 }else{ 3536 return 1; 3537 } 3538 if( (f2&MEM_Real)!=0 ){ 3539 r2 = pMem2->u.r; 3540 }else if( (f2&MEM_Int)!=0 ){ 3541 r2 = (double)pMem2->u.i; 3542 }else{ 3543 return -1; 3544 } 3545 if( r1<r2 ) return -1; 3546 if( r1>r2 ) return 1; 3547 return 0; 3548 } 3549 3550 /* If one value is a string and the other is a blob, the string is less. 3551 ** If both are strings, compare using the collating functions. 3552 */ 3553 if( combined_flags&MEM_Str ){ 3554 if( (f1 & MEM_Str)==0 ){ 3555 return 1; 3556 } 3557 if( (f2 & MEM_Str)==0 ){ 3558 return -1; 3559 } 3560 3561 assert( pMem1->enc==pMem2->enc ); 3562 assert( pMem1->enc==SQLITE_UTF8 || 3563 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 3564 3565 /* The collation sequence must be defined at this point, even if 3566 ** the user deletes the collation sequence after the vdbe program is 3567 ** compiled (this was not always the case). 3568 */ 3569 assert( !pColl || pColl->xCmp ); 3570 3571 if( pColl ){ 3572 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 3573 } 3574 /* If a NULL pointer was passed as the collate function, fall through 3575 ** to the blob case and use memcmp(). */ 3576 } 3577 3578 /* Both values must be blobs. Compare using memcmp(). */ 3579 return sqlite3BlobCompare(pMem1, pMem2); 3580 } 3581 3582 3583 /* 3584 ** The first argument passed to this function is a serial-type that 3585 ** corresponds to an integer - all values between 1 and 9 inclusive 3586 ** except 7. The second points to a buffer containing an integer value 3587 ** serialized according to serial_type. This function deserializes 3588 ** and returns the value. 3589 */ 3590 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 3591 u32 y; 3592 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 3593 switch( serial_type ){ 3594 case 0: 3595 case 1: 3596 testcase( aKey[0]&0x80 ); 3597 return ONE_BYTE_INT(aKey); 3598 case 2: 3599 testcase( aKey[0]&0x80 ); 3600 return TWO_BYTE_INT(aKey); 3601 case 3: 3602 testcase( aKey[0]&0x80 ); 3603 return THREE_BYTE_INT(aKey); 3604 case 4: { 3605 testcase( aKey[0]&0x80 ); 3606 y = FOUR_BYTE_UINT(aKey); 3607 return (i64)*(int*)&y; 3608 } 3609 case 5: { 3610 testcase( aKey[0]&0x80 ); 3611 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 3612 } 3613 case 6: { 3614 u64 x = FOUR_BYTE_UINT(aKey); 3615 testcase( aKey[0]&0x80 ); 3616 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 3617 return (i64)*(i64*)&x; 3618 } 3619 } 3620 3621 return (serial_type - 8); 3622 } 3623 3624 /* 3625 ** This function compares the two table rows or index records 3626 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 3627 ** or positive integer if key1 is less than, equal to or 3628 ** greater than key2. The {nKey1, pKey1} key must be a blob 3629 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 3630 ** key must be a parsed key such as obtained from 3631 ** sqlite3VdbeParseRecord. 3632 ** 3633 ** If argument bSkip is non-zero, it is assumed that the caller has already 3634 ** determined that the first fields of the keys are equal. 3635 ** 3636 ** Key1 and Key2 do not have to contain the same number of fields. If all 3637 ** fields that appear in both keys are equal, then pPKey2->default_rc is 3638 ** returned. 3639 ** 3640 ** If database corruption is discovered, set pPKey2->errCode to 3641 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 3642 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 3643 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 3644 */ 3645 int sqlite3VdbeRecordCompareWithSkip( 3646 int nKey1, const void *pKey1, /* Left key */ 3647 UnpackedRecord *pPKey2, /* Right key */ 3648 int bSkip /* If true, skip the first field */ 3649 ){ 3650 u32 d1; /* Offset into aKey[] of next data element */ 3651 int i; /* Index of next field to compare */ 3652 u32 szHdr1; /* Size of record header in bytes */ 3653 u32 idx1; /* Offset of first type in header */ 3654 int rc = 0; /* Return value */ 3655 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 3656 KeyInfo *pKeyInfo = pPKey2->pKeyInfo; 3657 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3658 Mem mem1; 3659 3660 /* If bSkip is true, then the caller has already determined that the first 3661 ** two elements in the keys are equal. Fix the various stack variables so 3662 ** that this routine begins comparing at the second field. */ 3663 if( bSkip ){ 3664 u32 s1; 3665 idx1 = 1 + getVarint32(&aKey1[1], s1); 3666 szHdr1 = aKey1[0]; 3667 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 3668 i = 1; 3669 pRhs++; 3670 }else{ 3671 idx1 = getVarint32(aKey1, szHdr1); 3672 d1 = szHdr1; 3673 if( d1>(unsigned)nKey1 ){ 3674 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3675 return 0; /* Corruption */ 3676 } 3677 i = 0; 3678 } 3679 3680 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3681 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 3682 || CORRUPT_DB ); 3683 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); 3684 assert( pPKey2->pKeyInfo->nField>0 ); 3685 assert( idx1<=szHdr1 || CORRUPT_DB ); 3686 do{ 3687 u32 serial_type; 3688 3689 /* RHS is an integer */ 3690 if( pRhs->flags & MEM_Int ){ 3691 serial_type = aKey1[idx1]; 3692 testcase( serial_type==12 ); 3693 if( serial_type>=10 ){ 3694 rc = +1; 3695 }else if( serial_type==0 ){ 3696 rc = -1; 3697 }else if( serial_type==7 ){ 3698 double rhs = (double)pRhs->u.i; 3699 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 3700 if( mem1.u.r<rhs ){ 3701 rc = -1; 3702 }else if( mem1.u.r>rhs ){ 3703 rc = +1; 3704 } 3705 }else{ 3706 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 3707 i64 rhs = pRhs->u.i; 3708 if( lhs<rhs ){ 3709 rc = -1; 3710 }else if( lhs>rhs ){ 3711 rc = +1; 3712 } 3713 } 3714 } 3715 3716 /* RHS is real */ 3717 else if( pRhs->flags & MEM_Real ){ 3718 serial_type = aKey1[idx1]; 3719 if( serial_type>=10 ){ 3720 /* Serial types 12 or greater are strings and blobs (greater than 3721 ** numbers). Types 10 and 11 are currently "reserved for future 3722 ** use", so it doesn't really matter what the results of comparing 3723 ** them to numberic values are. */ 3724 rc = +1; 3725 }else if( serial_type==0 ){ 3726 rc = -1; 3727 }else{ 3728 double rhs = pRhs->u.r; 3729 double lhs; 3730 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 3731 if( serial_type==7 ){ 3732 lhs = mem1.u.r; 3733 }else{ 3734 lhs = (double)mem1.u.i; 3735 } 3736 if( lhs<rhs ){ 3737 rc = -1; 3738 }else if( lhs>rhs ){ 3739 rc = +1; 3740 } 3741 } 3742 } 3743 3744 /* RHS is a string */ 3745 else if( pRhs->flags & MEM_Str ){ 3746 getVarint32(&aKey1[idx1], serial_type); 3747 testcase( serial_type==12 ); 3748 if( serial_type<12 ){ 3749 rc = -1; 3750 }else if( !(serial_type & 0x01) ){ 3751 rc = +1; 3752 }else{ 3753 mem1.n = (serial_type - 12) / 2; 3754 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 3755 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 3756 if( (d1+mem1.n) > (unsigned)nKey1 ){ 3757 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3758 return 0; /* Corruption */ 3759 }else if( pKeyInfo->aColl[i] ){ 3760 mem1.enc = pKeyInfo->enc; 3761 mem1.db = pKeyInfo->db; 3762 mem1.flags = MEM_Str; 3763 mem1.z = (char*)&aKey1[d1]; 3764 rc = vdbeCompareMemString( 3765 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 3766 ); 3767 }else{ 3768 int nCmp = MIN(mem1.n, pRhs->n); 3769 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 3770 if( rc==0 ) rc = mem1.n - pRhs->n; 3771 } 3772 } 3773 } 3774 3775 /* RHS is a blob */ 3776 else if( pRhs->flags & MEM_Blob ){ 3777 getVarint32(&aKey1[idx1], serial_type); 3778 testcase( serial_type==12 ); 3779 if( serial_type<12 || (serial_type & 0x01) ){ 3780 rc = -1; 3781 }else{ 3782 int nStr = (serial_type - 12) / 2; 3783 testcase( (d1+nStr)==(unsigned)nKey1 ); 3784 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 3785 if( (d1+nStr) > (unsigned)nKey1 ){ 3786 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3787 return 0; /* Corruption */ 3788 }else{ 3789 int nCmp = MIN(nStr, pRhs->n); 3790 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 3791 if( rc==0 ) rc = nStr - pRhs->n; 3792 } 3793 } 3794 } 3795 3796 /* RHS is null */ 3797 else{ 3798 serial_type = aKey1[idx1]; 3799 rc = (serial_type!=0); 3800 } 3801 3802 if( rc!=0 ){ 3803 if( pKeyInfo->aSortOrder[i] ){ 3804 rc = -rc; 3805 } 3806 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 3807 assert( mem1.szMalloc==0 ); /* See comment below */ 3808 return rc; 3809 } 3810 3811 i++; 3812 pRhs++; 3813 d1 += sqlite3VdbeSerialTypeLen(serial_type); 3814 idx1 += sqlite3VarintLen(serial_type); 3815 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); 3816 3817 /* No memory allocation is ever used on mem1. Prove this using 3818 ** the following assert(). If the assert() fails, it indicates a 3819 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 3820 assert( mem1.szMalloc==0 ); 3821 3822 /* rc==0 here means that one or both of the keys ran out of fields and 3823 ** all the fields up to that point were equal. Return the default_rc 3824 ** value. */ 3825 assert( CORRUPT_DB 3826 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 3827 || pKeyInfo->db->mallocFailed 3828 ); 3829 return pPKey2->default_rc; 3830 } 3831 int sqlite3VdbeRecordCompare( 3832 int nKey1, const void *pKey1, /* Left key */ 3833 UnpackedRecord *pPKey2 /* Right key */ 3834 ){ 3835 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 3836 } 3837 3838 3839 /* 3840 ** This function is an optimized version of sqlite3VdbeRecordCompare() 3841 ** that (a) the first field of pPKey2 is an integer, and (b) the 3842 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 3843 ** byte (i.e. is less than 128). 3844 ** 3845 ** To avoid concerns about buffer overreads, this routine is only used 3846 ** on schemas where the maximum valid header size is 63 bytes or less. 3847 */ 3848 static int vdbeRecordCompareInt( 3849 int nKey1, const void *pKey1, /* Left key */ 3850 UnpackedRecord *pPKey2 /* Right key */ 3851 ){ 3852 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 3853 int serial_type = ((const u8*)pKey1)[1]; 3854 int res; 3855 u32 y; 3856 u64 x; 3857 i64 v = pPKey2->aMem[0].u.i; 3858 i64 lhs; 3859 3860 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 3861 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 3862 switch( serial_type ){ 3863 case 1: { /* 1-byte signed integer */ 3864 lhs = ONE_BYTE_INT(aKey); 3865 testcase( lhs<0 ); 3866 break; 3867 } 3868 case 2: { /* 2-byte signed integer */ 3869 lhs = TWO_BYTE_INT(aKey); 3870 testcase( lhs<0 ); 3871 break; 3872 } 3873 case 3: { /* 3-byte signed integer */ 3874 lhs = THREE_BYTE_INT(aKey); 3875 testcase( lhs<0 ); 3876 break; 3877 } 3878 case 4: { /* 4-byte signed integer */ 3879 y = FOUR_BYTE_UINT(aKey); 3880 lhs = (i64)*(int*)&y; 3881 testcase( lhs<0 ); 3882 break; 3883 } 3884 case 5: { /* 6-byte signed integer */ 3885 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 3886 testcase( lhs<0 ); 3887 break; 3888 } 3889 case 6: { /* 8-byte signed integer */ 3890 x = FOUR_BYTE_UINT(aKey); 3891 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 3892 lhs = *(i64*)&x; 3893 testcase( lhs<0 ); 3894 break; 3895 } 3896 case 8: 3897 lhs = 0; 3898 break; 3899 case 9: 3900 lhs = 1; 3901 break; 3902 3903 /* This case could be removed without changing the results of running 3904 ** this code. Including it causes gcc to generate a faster switch 3905 ** statement (since the range of switch targets now starts at zero and 3906 ** is contiguous) but does not cause any duplicate code to be generated 3907 ** (as gcc is clever enough to combine the two like cases). Other 3908 ** compilers might be similar. */ 3909 case 0: case 7: 3910 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 3911 3912 default: 3913 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 3914 } 3915 3916 if( v>lhs ){ 3917 res = pPKey2->r1; 3918 }else if( v<lhs ){ 3919 res = pPKey2->r2; 3920 }else if( pPKey2->nField>1 ){ 3921 /* The first fields of the two keys are equal. Compare the trailing 3922 ** fields. */ 3923 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 3924 }else{ 3925 /* The first fields of the two keys are equal and there are no trailing 3926 ** fields. Return pPKey2->default_rc in this case. */ 3927 res = pPKey2->default_rc; 3928 } 3929 3930 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 3931 return res; 3932 } 3933 3934 /* 3935 ** This function is an optimized version of sqlite3VdbeRecordCompare() 3936 ** that (a) the first field of pPKey2 is a string, that (b) the first field 3937 ** uses the collation sequence BINARY and (c) that the size-of-header varint 3938 ** at the start of (pKey1/nKey1) fits in a single byte. 3939 */ 3940 static int vdbeRecordCompareString( 3941 int nKey1, const void *pKey1, /* Left key */ 3942 UnpackedRecord *pPKey2 /* Right key */ 3943 ){ 3944 const u8 *aKey1 = (const u8*)pKey1; 3945 int serial_type; 3946 int res; 3947 3948 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 3949 getVarint32(&aKey1[1], serial_type); 3950 if( serial_type<12 ){ 3951 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 3952 }else if( !(serial_type & 0x01) ){ 3953 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 3954 }else{ 3955 int nCmp; 3956 int nStr; 3957 int szHdr = aKey1[0]; 3958 3959 nStr = (serial_type-12) / 2; 3960 if( (szHdr + nStr) > nKey1 ){ 3961 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 3962 return 0; /* Corruption */ 3963 } 3964 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 3965 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 3966 3967 if( res==0 ){ 3968 res = nStr - pPKey2->aMem[0].n; 3969 if( res==0 ){ 3970 if( pPKey2->nField>1 ){ 3971 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 3972 }else{ 3973 res = pPKey2->default_rc; 3974 } 3975 }else if( res>0 ){ 3976 res = pPKey2->r2; 3977 }else{ 3978 res = pPKey2->r1; 3979 } 3980 }else if( res>0 ){ 3981 res = pPKey2->r2; 3982 }else{ 3983 res = pPKey2->r1; 3984 } 3985 } 3986 3987 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 3988 || CORRUPT_DB 3989 || pPKey2->pKeyInfo->db->mallocFailed 3990 ); 3991 return res; 3992 } 3993 3994 /* 3995 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 3996 ** suitable for comparing serialized records to the unpacked record passed 3997 ** as the only argument. 3998 */ 3999 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4000 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4001 ** that the size-of-header varint that occurs at the start of each record 4002 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4003 ** also assumes that it is safe to overread a buffer by at least the 4004 ** maximum possible legal header size plus 8 bytes. Because there is 4005 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4006 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4007 ** limit the size of the header to 64 bytes in cases where the first field 4008 ** is an integer. 4009 ** 4010 ** The easiest way to enforce this limit is to consider only records with 4011 ** 13 fields or less. If the first field is an integer, the maximum legal 4012 ** header size is (12*5 + 1 + 1) bytes. */ 4013 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){ 4014 int flags = p->aMem[0].flags; 4015 if( p->pKeyInfo->aSortOrder[0] ){ 4016 p->r1 = 1; 4017 p->r2 = -1; 4018 }else{ 4019 p->r1 = -1; 4020 p->r2 = 1; 4021 } 4022 if( (flags & MEM_Int) ){ 4023 return vdbeRecordCompareInt; 4024 } 4025 testcase( flags & MEM_Real ); 4026 testcase( flags & MEM_Null ); 4027 testcase( flags & MEM_Blob ); 4028 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ 4029 assert( flags & MEM_Str ); 4030 return vdbeRecordCompareString; 4031 } 4032 } 4033 4034 return sqlite3VdbeRecordCompare; 4035 } 4036 4037 /* 4038 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4039 ** Read the rowid (the last field in the record) and store it in *rowid. 4040 ** Return SQLITE_OK if everything works, or an error code otherwise. 4041 ** 4042 ** pCur might be pointing to text obtained from a corrupt database file. 4043 ** So the content cannot be trusted. Do appropriate checks on the content. 4044 */ 4045 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4046 i64 nCellKey = 0; 4047 int rc; 4048 u32 szHdr; /* Size of the header */ 4049 u32 typeRowid; /* Serial type of the rowid */ 4050 u32 lenRowid; /* Size of the rowid */ 4051 Mem m, v; 4052 4053 /* Get the size of the index entry. Only indices entries of less 4054 ** than 2GiB are support - anything large must be database corruption. 4055 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4056 ** this code can safely assume that nCellKey is 32-bits 4057 */ 4058 assert( sqlite3BtreeCursorIsValid(pCur) ); 4059 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); 4060 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 4061 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4062 4063 /* Read in the complete content of the index entry */ 4064 sqlite3VdbeMemInit(&m, db, 0); 4065 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m); 4066 if( rc ){ 4067 return rc; 4068 } 4069 4070 /* The index entry must begin with a header size */ 4071 (void)getVarint32((u8*)m.z, szHdr); 4072 testcase( szHdr==3 ); 4073 testcase( szHdr==m.n ); 4074 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ 4075 goto idx_rowid_corruption; 4076 } 4077 4078 /* The last field of the index should be an integer - the ROWID. 4079 ** Verify that the last entry really is an integer. */ 4080 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 4081 testcase( typeRowid==1 ); 4082 testcase( typeRowid==2 ); 4083 testcase( typeRowid==3 ); 4084 testcase( typeRowid==4 ); 4085 testcase( typeRowid==5 ); 4086 testcase( typeRowid==6 ); 4087 testcase( typeRowid==8 ); 4088 testcase( typeRowid==9 ); 4089 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4090 goto idx_rowid_corruption; 4091 } 4092 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4093 testcase( (u32)m.n==szHdr+lenRowid ); 4094 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4095 goto idx_rowid_corruption; 4096 } 4097 4098 /* Fetch the integer off the end of the index record */ 4099 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4100 *rowid = v.u.i; 4101 sqlite3VdbeMemRelease(&m); 4102 return SQLITE_OK; 4103 4104 /* Jump here if database corruption is detected after m has been 4105 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4106 idx_rowid_corruption: 4107 testcase( m.szMalloc!=0 ); 4108 sqlite3VdbeMemRelease(&m); 4109 return SQLITE_CORRUPT_BKPT; 4110 } 4111 4112 /* 4113 ** Compare the key of the index entry that cursor pC is pointing to against 4114 ** the key string in pUnpacked. Write into *pRes a number 4115 ** that is negative, zero, or positive if pC is less than, equal to, 4116 ** or greater than pUnpacked. Return SQLITE_OK on success. 4117 ** 4118 ** pUnpacked is either created without a rowid or is truncated so that it 4119 ** omits the rowid at the end. The rowid at the end of the index entry 4120 ** is ignored as well. Hence, this routine only compares the prefixes 4121 ** of the keys prior to the final rowid, not the entire key. 4122 */ 4123 int sqlite3VdbeIdxKeyCompare( 4124 sqlite3 *db, /* Database connection */ 4125 VdbeCursor *pC, /* The cursor to compare against */ 4126 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4127 int *res /* Write the comparison result here */ 4128 ){ 4129 i64 nCellKey = 0; 4130 int rc; 4131 BtCursor *pCur = pC->pCursor; 4132 Mem m; 4133 4134 assert( sqlite3BtreeCursorIsValid(pCur) ); 4135 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); 4136 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ 4137 /* nCellKey will always be between 0 and 0xffffffff because of the way 4138 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4139 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4140 *res = 0; 4141 return SQLITE_CORRUPT_BKPT; 4142 } 4143 sqlite3VdbeMemInit(&m, db, 0); 4144 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m); 4145 if( rc ){ 4146 return rc; 4147 } 4148 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); 4149 sqlite3VdbeMemRelease(&m); 4150 return SQLITE_OK; 4151 } 4152 4153 /* 4154 ** This routine sets the value to be returned by subsequent calls to 4155 ** sqlite3_changes() on the database handle 'db'. 4156 */ 4157 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 4158 assert( sqlite3_mutex_held(db->mutex) ); 4159 db->nChange = nChange; 4160 db->nTotalChange += nChange; 4161 } 4162 4163 /* 4164 ** Set a flag in the vdbe to update the change counter when it is finalised 4165 ** or reset. 4166 */ 4167 void sqlite3VdbeCountChanges(Vdbe *v){ 4168 v->changeCntOn = 1; 4169 } 4170 4171 /* 4172 ** Mark every prepared statement associated with a database connection 4173 ** as expired. 4174 ** 4175 ** An expired statement means that recompilation of the statement is 4176 ** recommend. Statements expire when things happen that make their 4177 ** programs obsolete. Removing user-defined functions or collating 4178 ** sequences, or changing an authorization function are the types of 4179 ** things that make prepared statements obsolete. 4180 */ 4181 void sqlite3ExpirePreparedStatements(sqlite3 *db){ 4182 Vdbe *p; 4183 for(p = db->pVdbe; p; p=p->pNext){ 4184 p->expired = 1; 4185 } 4186 } 4187 4188 /* 4189 ** Return the database associated with the Vdbe. 4190 */ 4191 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 4192 return v->db; 4193 } 4194 4195 /* 4196 ** Return a pointer to an sqlite3_value structure containing the value bound 4197 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 4198 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 4199 ** constants) to the value before returning it. 4200 ** 4201 ** The returned value must be freed by the caller using sqlite3ValueFree(). 4202 */ 4203 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 4204 assert( iVar>0 ); 4205 if( v ){ 4206 Mem *pMem = &v->aVar[iVar-1]; 4207 if( 0==(pMem->flags & MEM_Null) ){ 4208 sqlite3_value *pRet = sqlite3ValueNew(v->db); 4209 if( pRet ){ 4210 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 4211 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 4212 } 4213 return pRet; 4214 } 4215 } 4216 return 0; 4217 } 4218 4219 /* 4220 ** Configure SQL variable iVar so that binding a new value to it signals 4221 ** to sqlite3_reoptimize() that re-preparing the statement may result 4222 ** in a better query plan. 4223 */ 4224 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 4225 assert( iVar>0 ); 4226 if( iVar>32 ){ 4227 v->expmask = 0xffffffff; 4228 }else{ 4229 v->expmask |= ((u32)1 << (iVar-1)); 4230 } 4231 } 4232 4233 #ifndef SQLITE_OMIT_VIRTUALTABLE 4234 /* 4235 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 4236 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 4237 ** in memory obtained from sqlite3DbMalloc). 4238 */ 4239 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 4240 sqlite3 *db = p->db; 4241 sqlite3DbFree(db, p->zErrMsg); 4242 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 4243 sqlite3_free(pVtab->zErrMsg); 4244 pVtab->zErrMsg = 0; 4245 } 4246 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4247