xref: /sqlite-3.40.0/src/vdbeaux.c (revision 2e27d28f)
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
14 */
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
17 
18 /*
19 ** Create a new virtual database engine.
20 */
21 Vdbe *sqlite3VdbeCreate(Parse *pParse){
22   sqlite3 *db = pParse->db;
23   Vdbe *p;
24   p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
25   if( p==0 ) return 0;
26   memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
27   p->db = db;
28   if( db->pVdbe ){
29     db->pVdbe->pPrev = p;
30   }
31   p->pNext = db->pVdbe;
32   p->pPrev = 0;
33   db->pVdbe = p;
34   p->magic = VDBE_MAGIC_INIT;
35   p->pParse = pParse;
36   assert( pParse->aLabel==0 );
37   assert( pParse->nLabel==0 );
38   assert( pParse->nOpAlloc==0 );
39   assert( pParse->szOpAlloc==0 );
40   return p;
41 }
42 
43 /*
44 ** Change the error string stored in Vdbe.zErrMsg
45 */
46 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
47   va_list ap;
48   sqlite3DbFree(p->db, p->zErrMsg);
49   va_start(ap, zFormat);
50   p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
51   va_end(ap);
52 }
53 
54 /*
55 ** Remember the SQL string for a prepared statement.
56 */
57 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
58   if( p==0 ) return;
59   p->prepFlags = prepFlags;
60   if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
61     p->expmask = 0;
62   }
63   assert( p->zSql==0 );
64   p->zSql = sqlite3DbStrNDup(p->db, z, n);
65 }
66 
67 /*
68 ** Swap all content between two VDBE structures.
69 */
70 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
71   Vdbe tmp, *pTmp;
72   char *zTmp;
73   assert( pA->db==pB->db );
74   tmp = *pA;
75   *pA = *pB;
76   *pB = tmp;
77   pTmp = pA->pNext;
78   pA->pNext = pB->pNext;
79   pB->pNext = pTmp;
80   pTmp = pA->pPrev;
81   pA->pPrev = pB->pPrev;
82   pB->pPrev = pTmp;
83   zTmp = pA->zSql;
84   pA->zSql = pB->zSql;
85   pB->zSql = zTmp;
86   pB->expmask = pA->expmask;
87   pB->prepFlags = pA->prepFlags;
88   memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
89   pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
90 }
91 
92 /*
93 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
94 ** than its current size. nOp is guaranteed to be less than or equal
95 ** to 1024/sizeof(Op).
96 **
97 ** If an out-of-memory error occurs while resizing the array, return
98 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
99 ** unchanged (this is so that any opcodes already allocated can be
100 ** correctly deallocated along with the rest of the Vdbe).
101 */
102 static int growOpArray(Vdbe *v, int nOp){
103   VdbeOp *pNew;
104   Parse *p = v->pParse;
105 
106   /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
107   ** more frequent reallocs and hence provide more opportunities for
108   ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used
109   ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array
110   ** by the minimum* amount required until the size reaches 512.  Normal
111   ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
112   ** size of the op array or add 1KB of space, whichever is smaller. */
113 #ifdef SQLITE_TEST_REALLOC_STRESS
114   int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
115 #else
116   int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
117   UNUSED_PARAMETER(nOp);
118 #endif
119 
120   /* Ensure that the size of a VDBE does not grow too large */
121   if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
122     sqlite3OomFault(p->db);
123     return SQLITE_NOMEM;
124   }
125 
126   assert( nOp<=(1024/sizeof(Op)) );
127   assert( nNew>=(p->nOpAlloc+nOp) );
128   pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
129   if( pNew ){
130     p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
131     p->nOpAlloc = p->szOpAlloc/sizeof(Op);
132     v->aOp = pNew;
133   }
134   return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
135 }
136 
137 #ifdef SQLITE_DEBUG
138 /* This routine is just a convenient place to set a breakpoint that will
139 ** fire after each opcode is inserted and displayed using
140 ** "PRAGMA vdbe_addoptrace=on".
141 */
142 static void test_addop_breakpoint(void){
143   static int n = 0;
144   n++;
145 }
146 #endif
147 
148 /*
149 ** Add a new instruction to the list of instructions current in the
150 ** VDBE.  Return the address of the new instruction.
151 **
152 ** Parameters:
153 **
154 **    p               Pointer to the VDBE
155 **
156 **    op              The opcode for this instruction
157 **
158 **    p1, p2, p3      Operands
159 **
160 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
161 ** the sqlite3VdbeChangeP4() function to change the value of the P4
162 ** operand.
163 */
164 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
165   assert( p->pParse->nOpAlloc<=p->nOp );
166   if( growOpArray(p, 1) ) return 1;
167   assert( p->pParse->nOpAlloc>p->nOp );
168   return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
169 }
170 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
171   int i;
172   VdbeOp *pOp;
173 
174   i = p->nOp;
175   assert( p->magic==VDBE_MAGIC_INIT );
176   assert( op>=0 && op<0xff );
177   if( p->pParse->nOpAlloc<=i ){
178     return growOp3(p, op, p1, p2, p3);
179   }
180   p->nOp++;
181   pOp = &p->aOp[i];
182   pOp->opcode = (u8)op;
183   pOp->p5 = 0;
184   pOp->p1 = p1;
185   pOp->p2 = p2;
186   pOp->p3 = p3;
187   pOp->p4.p = 0;
188   pOp->p4type = P4_NOTUSED;
189 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
190   pOp->zComment = 0;
191 #endif
192 #ifdef SQLITE_DEBUG
193   if( p->db->flags & SQLITE_VdbeAddopTrace ){
194     int jj, kk;
195     Parse *pParse = p->pParse;
196     for(jj=kk=0; jj<pParse->nColCache; jj++){
197       struct yColCache *x = pParse->aColCache + jj;
198       printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
199       kk++;
200     }
201     if( kk ) printf("\n");
202     sqlite3VdbePrintOp(0, i, &p->aOp[i]);
203     test_addop_breakpoint();
204   }
205 #endif
206 #ifdef VDBE_PROFILE
207   pOp->cycles = 0;
208   pOp->cnt = 0;
209 #endif
210 #ifdef SQLITE_VDBE_COVERAGE
211   pOp->iSrcLine = 0;
212 #endif
213   return i;
214 }
215 int sqlite3VdbeAddOp0(Vdbe *p, int op){
216   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
217 }
218 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
219   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
220 }
221 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
222   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
223 }
224 
225 /* Generate code for an unconditional jump to instruction iDest
226 */
227 int sqlite3VdbeGoto(Vdbe *p, int iDest){
228   return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
229 }
230 
231 /* Generate code to cause the string zStr to be loaded into
232 ** register iDest
233 */
234 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
235   return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
236 }
237 
238 /*
239 ** Generate code that initializes multiple registers to string or integer
240 ** constants.  The registers begin with iDest and increase consecutively.
241 ** One register is initialized for each characgter in zTypes[].  For each
242 ** "s" character in zTypes[], the register is a string if the argument is
243 ** not NULL, or OP_Null if the value is a null pointer.  For each "i" character
244 ** in zTypes[], the register is initialized to an integer.
245 **
246 ** If the input string does not end with "X" then an OP_ResultRow instruction
247 ** is generated for the values inserted.
248 */
249 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
250   va_list ap;
251   int i;
252   char c;
253   va_start(ap, zTypes);
254   for(i=0; (c = zTypes[i])!=0; i++){
255     if( c=='s' ){
256       const char *z = va_arg(ap, const char*);
257       sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
258     }else if( c=='i' ){
259       sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
260     }else{
261       goto skip_op_resultrow;
262     }
263   }
264   sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
265 skip_op_resultrow:
266   va_end(ap);
267 }
268 
269 /*
270 ** Add an opcode that includes the p4 value as a pointer.
271 */
272 int sqlite3VdbeAddOp4(
273   Vdbe *p,            /* Add the opcode to this VM */
274   int op,             /* The new opcode */
275   int p1,             /* The P1 operand */
276   int p2,             /* The P2 operand */
277   int p3,             /* The P3 operand */
278   const char *zP4,    /* The P4 operand */
279   int p4type          /* P4 operand type */
280 ){
281   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
282   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
283   return addr;
284 }
285 
286 /*
287 ** Add an opcode that includes the p4 value with a P4_INT64 or
288 ** P4_REAL type.
289 */
290 int sqlite3VdbeAddOp4Dup8(
291   Vdbe *p,            /* Add the opcode to this VM */
292   int op,             /* The new opcode */
293   int p1,             /* The P1 operand */
294   int p2,             /* The P2 operand */
295   int p3,             /* The P3 operand */
296   const u8 *zP4,      /* The P4 operand */
297   int p4type          /* P4 operand type */
298 ){
299   char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
300   if( p4copy ) memcpy(p4copy, zP4, 8);
301   return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
302 }
303 
304 /*
305 ** Add an OP_ParseSchema opcode.  This routine is broken out from
306 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
307 ** as having been used.
308 **
309 ** The zWhere string must have been obtained from sqlite3_malloc().
310 ** This routine will take ownership of the allocated memory.
311 */
312 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
313   int j;
314   sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
315   for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
316 }
317 
318 /*
319 ** Add an opcode that includes the p4 value as an integer.
320 */
321 int sqlite3VdbeAddOp4Int(
322   Vdbe *p,            /* Add the opcode to this VM */
323   int op,             /* The new opcode */
324   int p1,             /* The P1 operand */
325   int p2,             /* The P2 operand */
326   int p3,             /* The P3 operand */
327   int p4              /* The P4 operand as an integer */
328 ){
329   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
330   if( p->db->mallocFailed==0 ){
331     VdbeOp *pOp = &p->aOp[addr];
332     pOp->p4type = P4_INT32;
333     pOp->p4.i = p4;
334   }
335   return addr;
336 }
337 
338 /* Insert the end of a co-routine
339 */
340 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
341   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
342 
343   /* Clear the temporary register cache, thereby ensuring that each
344   ** co-routine has its own independent set of registers, because co-routines
345   ** might expect their registers to be preserved across an OP_Yield, and
346   ** that could cause problems if two or more co-routines are using the same
347   ** temporary register.
348   */
349   v->pParse->nTempReg = 0;
350   v->pParse->nRangeReg = 0;
351 }
352 
353 /*
354 ** Create a new symbolic label for an instruction that has yet to be
355 ** coded.  The symbolic label is really just a negative number.  The
356 ** label can be used as the P2 value of an operation.  Later, when
357 ** the label is resolved to a specific address, the VDBE will scan
358 ** through its operation list and change all values of P2 which match
359 ** the label into the resolved address.
360 **
361 ** The VDBE knows that a P2 value is a label because labels are
362 ** always negative and P2 values are suppose to be non-negative.
363 ** Hence, a negative P2 value is a label that has yet to be resolved.
364 **
365 ** Zero is returned if a malloc() fails.
366 */
367 int sqlite3VdbeMakeLabel(Vdbe *v){
368   Parse *p = v->pParse;
369   int i = p->nLabel++;
370   assert( v->magic==VDBE_MAGIC_INIT );
371   if( (i & (i-1))==0 ){
372     p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
373                                        (i*2+1)*sizeof(p->aLabel[0]));
374   }
375   if( p->aLabel ){
376     p->aLabel[i] = -1;
377   }
378   return ADDR(i);
379 }
380 
381 /*
382 ** Resolve label "x" to be the address of the next instruction to
383 ** be inserted.  The parameter "x" must have been obtained from
384 ** a prior call to sqlite3VdbeMakeLabel().
385 */
386 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
387   Parse *p = v->pParse;
388   int j = ADDR(x);
389   assert( v->magic==VDBE_MAGIC_INIT );
390   assert( j<p->nLabel );
391   assert( j>=0 );
392   if( p->aLabel ){
393     p->aLabel[j] = v->nOp;
394   }
395 }
396 
397 /*
398 ** Mark the VDBE as one that can only be run one time.
399 */
400 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
401   p->runOnlyOnce = 1;
402 }
403 
404 /*
405 ** Mark the VDBE as one that can only be run multiple times.
406 */
407 void sqlite3VdbeReusable(Vdbe *p){
408   p->runOnlyOnce = 0;
409 }
410 
411 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
412 
413 /*
414 ** The following type and function are used to iterate through all opcodes
415 ** in a Vdbe main program and each of the sub-programs (triggers) it may
416 ** invoke directly or indirectly. It should be used as follows:
417 **
418 **   Op *pOp;
419 **   VdbeOpIter sIter;
420 **
421 **   memset(&sIter, 0, sizeof(sIter));
422 **   sIter.v = v;                            // v is of type Vdbe*
423 **   while( (pOp = opIterNext(&sIter)) ){
424 **     // Do something with pOp
425 **   }
426 **   sqlite3DbFree(v->db, sIter.apSub);
427 **
428 */
429 typedef struct VdbeOpIter VdbeOpIter;
430 struct VdbeOpIter {
431   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
432   SubProgram **apSub;        /* Array of subprograms */
433   int nSub;                  /* Number of entries in apSub */
434   int iAddr;                 /* Address of next instruction to return */
435   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
436 };
437 static Op *opIterNext(VdbeOpIter *p){
438   Vdbe *v = p->v;
439   Op *pRet = 0;
440   Op *aOp;
441   int nOp;
442 
443   if( p->iSub<=p->nSub ){
444 
445     if( p->iSub==0 ){
446       aOp = v->aOp;
447       nOp = v->nOp;
448     }else{
449       aOp = p->apSub[p->iSub-1]->aOp;
450       nOp = p->apSub[p->iSub-1]->nOp;
451     }
452     assert( p->iAddr<nOp );
453 
454     pRet = &aOp[p->iAddr];
455     p->iAddr++;
456     if( p->iAddr==nOp ){
457       p->iSub++;
458       p->iAddr = 0;
459     }
460 
461     if( pRet->p4type==P4_SUBPROGRAM ){
462       int nByte = (p->nSub+1)*sizeof(SubProgram*);
463       int j;
464       for(j=0; j<p->nSub; j++){
465         if( p->apSub[j]==pRet->p4.pProgram ) break;
466       }
467       if( j==p->nSub ){
468         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
469         if( !p->apSub ){
470           pRet = 0;
471         }else{
472           p->apSub[p->nSub++] = pRet->p4.pProgram;
473         }
474       }
475     }
476   }
477 
478   return pRet;
479 }
480 
481 /*
482 ** Check if the program stored in the VM associated with pParse may
483 ** throw an ABORT exception (causing the statement, but not entire transaction
484 ** to be rolled back). This condition is true if the main program or any
485 ** sub-programs contains any of the following:
486 **
487 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
488 **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
489 **   *  OP_Destroy
490 **   *  OP_VUpdate
491 **   *  OP_VRename
492 **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
493 **   *  OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...)
494 **
495 ** Then check that the value of Parse.mayAbort is true if an
496 ** ABORT may be thrown, or false otherwise. Return true if it does
497 ** match, or false otherwise. This function is intended to be used as
498 ** part of an assert statement in the compiler. Similar to:
499 **
500 **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
501 */
502 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
503   int hasAbort = 0;
504   int hasFkCounter = 0;
505   int hasCreateTable = 0;
506   int hasInitCoroutine = 0;
507   Op *pOp;
508   VdbeOpIter sIter;
509   memset(&sIter, 0, sizeof(sIter));
510   sIter.v = v;
511 
512   while( (pOp = opIterNext(&sIter))!=0 ){
513     int opcode = pOp->opcode;
514     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
515      || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
516       && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
517     ){
518       hasAbort = 1;
519       break;
520     }
521     if( opcode==OP_CreateTable ) hasCreateTable = 1;
522     if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
523 #ifndef SQLITE_OMIT_FOREIGN_KEY
524     if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
525       hasFkCounter = 1;
526     }
527 #endif
528   }
529   sqlite3DbFree(v->db, sIter.apSub);
530 
531   /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
532   ** If malloc failed, then the while() loop above may not have iterated
533   ** through all opcodes and hasAbort may be set incorrectly. Return
534   ** true for this case to prevent the assert() in the callers frame
535   ** from failing.  */
536   return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
537               || (hasCreateTable && hasInitCoroutine) );
538 }
539 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
540 
541 /*
542 ** This routine is called after all opcodes have been inserted.  It loops
543 ** through all the opcodes and fixes up some details.
544 **
545 ** (1) For each jump instruction with a negative P2 value (a label)
546 **     resolve the P2 value to an actual address.
547 **
548 ** (2) Compute the maximum number of arguments used by any SQL function
549 **     and store that value in *pMaxFuncArgs.
550 **
551 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
552 **     indicate what the prepared statement actually does.
553 **
554 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
555 **
556 ** (5) Reclaim the memory allocated for storing labels.
557 **
558 ** This routine will only function correctly if the mkopcodeh.tcl generator
559 ** script numbers the opcodes correctly.  Changes to this routine must be
560 ** coordinated with changes to mkopcodeh.tcl.
561 */
562 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
563   int nMaxArgs = *pMaxFuncArgs;
564   Op *pOp;
565   Parse *pParse = p->pParse;
566   int *aLabel = pParse->aLabel;
567   p->readOnly = 1;
568   p->bIsReader = 0;
569   pOp = &p->aOp[p->nOp-1];
570   while(1){
571 
572     /* Only JUMP opcodes and the short list of special opcodes in the switch
573     ** below need to be considered.  The mkopcodeh.tcl generator script groups
574     ** all these opcodes together near the front of the opcode list.  Skip
575     ** any opcode that does not need processing by virtual of the fact that
576     ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
577     */
578     if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
579       /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
580       ** cases from this switch! */
581       switch( pOp->opcode ){
582         case OP_Transaction: {
583           if( pOp->p2!=0 ) p->readOnly = 0;
584           /* fall thru */
585         }
586         case OP_AutoCommit:
587         case OP_Savepoint: {
588           p->bIsReader = 1;
589           break;
590         }
591 #ifndef SQLITE_OMIT_WAL
592         case OP_Checkpoint:
593 #endif
594         case OP_Vacuum:
595         case OP_JournalMode: {
596           p->readOnly = 0;
597           p->bIsReader = 1;
598           break;
599         }
600         case OP_Next:
601         case OP_NextIfOpen:
602         case OP_SorterNext: {
603           pOp->p4.xAdvance = sqlite3BtreeNext;
604           pOp->p4type = P4_ADVANCE;
605           /* The code generator never codes any of these opcodes as a jump
606           ** to a label.  They are always coded as a jump backwards to a
607           ** known address */
608           assert( pOp->p2>=0 );
609           break;
610         }
611         case OP_Prev:
612         case OP_PrevIfOpen: {
613           pOp->p4.xAdvance = sqlite3BtreePrevious;
614           pOp->p4type = P4_ADVANCE;
615           /* The code generator never codes any of these opcodes as a jump
616           ** to a label.  They are always coded as a jump backwards to a
617           ** known address */
618           assert( pOp->p2>=0 );
619           break;
620         }
621 #ifndef SQLITE_OMIT_VIRTUALTABLE
622         case OP_VUpdate: {
623           if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
624           break;
625         }
626         case OP_VFilter: {
627           int n;
628           assert( (pOp - p->aOp) >= 3 );
629           assert( pOp[-1].opcode==OP_Integer );
630           n = pOp[-1].p1;
631           if( n>nMaxArgs ) nMaxArgs = n;
632           /* Fall through into the default case */
633         }
634 #endif
635         default: {
636           if( pOp->p2<0 ){
637             /* The mkopcodeh.tcl script has so arranged things that the only
638             ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
639             ** have non-negative values for P2. */
640             assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
641             assert( ADDR(pOp->p2)<pParse->nLabel );
642             pOp->p2 = aLabel[ADDR(pOp->p2)];
643           }
644           break;
645         }
646       }
647       /* The mkopcodeh.tcl script has so arranged things that the only
648       ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
649       ** have non-negative values for P2. */
650       assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
651     }
652     if( pOp==p->aOp ) break;
653     pOp--;
654   }
655   sqlite3DbFree(p->db, pParse->aLabel);
656   pParse->aLabel = 0;
657   pParse->nLabel = 0;
658   *pMaxFuncArgs = nMaxArgs;
659   assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
660 }
661 
662 /*
663 ** Return the address of the next instruction to be inserted.
664 */
665 int sqlite3VdbeCurrentAddr(Vdbe *p){
666   assert( p->magic==VDBE_MAGIC_INIT );
667   return p->nOp;
668 }
669 
670 /*
671 ** Verify that at least N opcode slots are available in p without
672 ** having to malloc for more space (except when compiled using
673 ** SQLITE_TEST_REALLOC_STRESS).  This interface is used during testing
674 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
675 ** fail due to a OOM fault and hence that the return value from
676 ** sqlite3VdbeAddOpList() will always be non-NULL.
677 */
678 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
679 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
680   assert( p->nOp + N <= p->pParse->nOpAlloc );
681 }
682 #endif
683 
684 /*
685 ** Verify that the VM passed as the only argument does not contain
686 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
687 ** by code in pragma.c to ensure that the implementation of certain
688 ** pragmas comports with the flags specified in the mkpragmatab.tcl
689 ** script.
690 */
691 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
692 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
693   int i;
694   for(i=0; i<p->nOp; i++){
695     assert( p->aOp[i].opcode!=OP_ResultRow );
696   }
697 }
698 #endif
699 
700 /*
701 ** This function returns a pointer to the array of opcodes associated with
702 ** the Vdbe passed as the first argument. It is the callers responsibility
703 ** to arrange for the returned array to be eventually freed using the
704 ** vdbeFreeOpArray() function.
705 **
706 ** Before returning, *pnOp is set to the number of entries in the returned
707 ** array. Also, *pnMaxArg is set to the larger of its current value and
708 ** the number of entries in the Vdbe.apArg[] array required to execute the
709 ** returned program.
710 */
711 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
712   VdbeOp *aOp = p->aOp;
713   assert( aOp && !p->db->mallocFailed );
714 
715   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
716   assert( DbMaskAllZero(p->btreeMask) );
717 
718   resolveP2Values(p, pnMaxArg);
719   *pnOp = p->nOp;
720   p->aOp = 0;
721   return aOp;
722 }
723 
724 /*
725 ** Add a whole list of operations to the operation stack.  Return a
726 ** pointer to the first operation inserted.
727 **
728 ** Non-zero P2 arguments to jump instructions are automatically adjusted
729 ** so that the jump target is relative to the first operation inserted.
730 */
731 VdbeOp *sqlite3VdbeAddOpList(
732   Vdbe *p,                     /* Add opcodes to the prepared statement */
733   int nOp,                     /* Number of opcodes to add */
734   VdbeOpList const *aOp,       /* The opcodes to be added */
735   int iLineno                  /* Source-file line number of first opcode */
736 ){
737   int i;
738   VdbeOp *pOut, *pFirst;
739   assert( nOp>0 );
740   assert( p->magic==VDBE_MAGIC_INIT );
741   if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
742     return 0;
743   }
744   pFirst = pOut = &p->aOp[p->nOp];
745   for(i=0; i<nOp; i++, aOp++, pOut++){
746     pOut->opcode = aOp->opcode;
747     pOut->p1 = aOp->p1;
748     pOut->p2 = aOp->p2;
749     assert( aOp->p2>=0 );
750     if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
751       pOut->p2 += p->nOp;
752     }
753     pOut->p3 = aOp->p3;
754     pOut->p4type = P4_NOTUSED;
755     pOut->p4.p = 0;
756     pOut->p5 = 0;
757 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
758     pOut->zComment = 0;
759 #endif
760 #ifdef SQLITE_VDBE_COVERAGE
761     pOut->iSrcLine = iLineno+i;
762 #else
763     (void)iLineno;
764 #endif
765 #ifdef SQLITE_DEBUG
766     if( p->db->flags & SQLITE_VdbeAddopTrace ){
767       sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
768     }
769 #endif
770   }
771   p->nOp += nOp;
772   return pFirst;
773 }
774 
775 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
776 /*
777 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
778 */
779 void sqlite3VdbeScanStatus(
780   Vdbe *p,                        /* VM to add scanstatus() to */
781   int addrExplain,                /* Address of OP_Explain (or 0) */
782   int addrLoop,                   /* Address of loop counter */
783   int addrVisit,                  /* Address of rows visited counter */
784   LogEst nEst,                    /* Estimated number of output rows */
785   const char *zName               /* Name of table or index being scanned */
786 ){
787   int nByte = (p->nScan+1) * sizeof(ScanStatus);
788   ScanStatus *aNew;
789   aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
790   if( aNew ){
791     ScanStatus *pNew = &aNew[p->nScan++];
792     pNew->addrExplain = addrExplain;
793     pNew->addrLoop = addrLoop;
794     pNew->addrVisit = addrVisit;
795     pNew->nEst = nEst;
796     pNew->zName = sqlite3DbStrDup(p->db, zName);
797     p->aScan = aNew;
798   }
799 }
800 #endif
801 
802 
803 /*
804 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
805 ** for a specific instruction.
806 */
807 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){
808   sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
809 }
810 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
811   sqlite3VdbeGetOp(p,addr)->p1 = val;
812 }
813 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
814   sqlite3VdbeGetOp(p,addr)->p2 = val;
815 }
816 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
817   sqlite3VdbeGetOp(p,addr)->p3 = val;
818 }
819 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
820   assert( p->nOp>0 || p->db->mallocFailed );
821   if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
822 }
823 
824 /*
825 ** Change the P2 operand of instruction addr so that it points to
826 ** the address of the next instruction to be coded.
827 */
828 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
829   sqlite3VdbeChangeP2(p, addr, p->nOp);
830 }
831 
832 
833 /*
834 ** If the input FuncDef structure is ephemeral, then free it.  If
835 ** the FuncDef is not ephermal, then do nothing.
836 */
837 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
838   if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
839     sqlite3DbFreeNN(db, pDef);
840   }
841 }
842 
843 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
844 
845 /*
846 ** Delete a P4 value if necessary.
847 */
848 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
849   if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
850   sqlite3DbFreeNN(db, p);
851 }
852 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
853   freeEphemeralFunction(db, p->pFunc);
854  sqlite3DbFreeNN(db, p);
855 }
856 static void freeP4(sqlite3 *db, int p4type, void *p4){
857   assert( db );
858   switch( p4type ){
859     case P4_FUNCCTX: {
860       freeP4FuncCtx(db, (sqlite3_context*)p4);
861       break;
862     }
863     case P4_REAL:
864     case P4_INT64:
865     case P4_DYNAMIC:
866     case P4_INTARRAY: {
867       sqlite3DbFree(db, p4);
868       break;
869     }
870     case P4_KEYINFO: {
871       if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
872       break;
873     }
874 #ifdef SQLITE_ENABLE_CURSOR_HINTS
875     case P4_EXPR: {
876       sqlite3ExprDelete(db, (Expr*)p4);
877       break;
878     }
879 #endif
880     case P4_FUNCDEF: {
881       freeEphemeralFunction(db, (FuncDef*)p4);
882       break;
883     }
884     case P4_MEM: {
885       if( db->pnBytesFreed==0 ){
886         sqlite3ValueFree((sqlite3_value*)p4);
887       }else{
888         freeP4Mem(db, (Mem*)p4);
889       }
890       break;
891     }
892     case P4_VTAB : {
893       if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
894       break;
895     }
896   }
897 }
898 
899 /*
900 ** Free the space allocated for aOp and any p4 values allocated for the
901 ** opcodes contained within. If aOp is not NULL it is assumed to contain
902 ** nOp entries.
903 */
904 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
905   if( aOp ){
906     Op *pOp;
907     for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
908       if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
909 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
910       sqlite3DbFree(db, pOp->zComment);
911 #endif
912     }
913     sqlite3DbFreeNN(db, aOp);
914   }
915 }
916 
917 /*
918 ** Link the SubProgram object passed as the second argument into the linked
919 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
920 ** objects when the VM is no longer required.
921 */
922 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
923   p->pNext = pVdbe->pProgram;
924   pVdbe->pProgram = p;
925 }
926 
927 /*
928 ** Change the opcode at addr into OP_Noop
929 */
930 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
931   VdbeOp *pOp;
932   if( p->db->mallocFailed ) return 0;
933   assert( addr>=0 && addr<p->nOp );
934   pOp = &p->aOp[addr];
935   freeP4(p->db, pOp->p4type, pOp->p4.p);
936   pOp->p4type = P4_NOTUSED;
937   pOp->p4.z = 0;
938   pOp->opcode = OP_Noop;
939   return 1;
940 }
941 
942 /*
943 ** If the last opcode is "op" and it is not a jump destination,
944 ** then remove it.  Return true if and only if an opcode was removed.
945 */
946 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
947   if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
948     return sqlite3VdbeChangeToNoop(p, p->nOp-1);
949   }else{
950     return 0;
951   }
952 }
953 
954 /*
955 ** Change the value of the P4 operand for a specific instruction.
956 ** This routine is useful when a large program is loaded from a
957 ** static array using sqlite3VdbeAddOpList but we want to make a
958 ** few minor changes to the program.
959 **
960 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
961 ** the string is made into memory obtained from sqlite3_malloc().
962 ** A value of n==0 means copy bytes of zP4 up to and including the
963 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
964 **
965 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
966 ** to a string or structure that is guaranteed to exist for the lifetime of
967 ** the Vdbe. In these cases we can just copy the pointer.
968 **
969 ** If addr<0 then change P4 on the most recently inserted instruction.
970 */
971 static void SQLITE_NOINLINE vdbeChangeP4Full(
972   Vdbe *p,
973   Op *pOp,
974   const char *zP4,
975   int n
976 ){
977   if( pOp->p4type ){
978     freeP4(p->db, pOp->p4type, pOp->p4.p);
979     pOp->p4type = 0;
980     pOp->p4.p = 0;
981   }
982   if( n<0 ){
983     sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
984   }else{
985     if( n==0 ) n = sqlite3Strlen30(zP4);
986     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
987     pOp->p4type = P4_DYNAMIC;
988   }
989 }
990 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
991   Op *pOp;
992   sqlite3 *db;
993   assert( p!=0 );
994   db = p->db;
995   assert( p->magic==VDBE_MAGIC_INIT );
996   assert( p->aOp!=0 || db->mallocFailed );
997   if( db->mallocFailed ){
998     if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
999     return;
1000   }
1001   assert( p->nOp>0 );
1002   assert( addr<p->nOp );
1003   if( addr<0 ){
1004     addr = p->nOp - 1;
1005   }
1006   pOp = &p->aOp[addr];
1007   if( n>=0 || pOp->p4type ){
1008     vdbeChangeP4Full(p, pOp, zP4, n);
1009     return;
1010   }
1011   if( n==P4_INT32 ){
1012     /* Note: this cast is safe, because the origin data point was an int
1013     ** that was cast to a (const char *). */
1014     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1015     pOp->p4type = P4_INT32;
1016   }else if( zP4!=0 ){
1017     assert( n<0 );
1018     pOp->p4.p = (void*)zP4;
1019     pOp->p4type = (signed char)n;
1020     if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1021   }
1022 }
1023 
1024 /*
1025 ** Change the P4 operand of the most recently coded instruction
1026 ** to the value defined by the arguments.  This is a high-speed
1027 ** version of sqlite3VdbeChangeP4().
1028 **
1029 ** The P4 operand must not have been previously defined.  And the new
1030 ** P4 must not be P4_INT32.  Use sqlite3VdbeChangeP4() in either of
1031 ** those cases.
1032 */
1033 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1034   VdbeOp *pOp;
1035   assert( n!=P4_INT32 && n!=P4_VTAB );
1036   assert( n<=0 );
1037   if( p->db->mallocFailed ){
1038     freeP4(p->db, n, pP4);
1039   }else{
1040     assert( pP4!=0 );
1041     assert( p->nOp>0 );
1042     pOp = &p->aOp[p->nOp-1];
1043     assert( pOp->p4type==P4_NOTUSED );
1044     pOp->p4type = n;
1045     pOp->p4.p = pP4;
1046   }
1047 }
1048 
1049 /*
1050 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1051 ** index given.
1052 */
1053 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1054   Vdbe *v = pParse->pVdbe;
1055   KeyInfo *pKeyInfo;
1056   assert( v!=0 );
1057   assert( pIdx!=0 );
1058   pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1059   if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1060 }
1061 
1062 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1063 /*
1064 ** Change the comment on the most recently coded instruction.  Or
1065 ** insert a No-op and add the comment to that new instruction.  This
1066 ** makes the code easier to read during debugging.  None of this happens
1067 ** in a production build.
1068 */
1069 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1070   assert( p->nOp>0 || p->aOp==0 );
1071   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
1072   if( p->nOp ){
1073     assert( p->aOp );
1074     sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1075     p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1076   }
1077 }
1078 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1079   va_list ap;
1080   if( p ){
1081     va_start(ap, zFormat);
1082     vdbeVComment(p, zFormat, ap);
1083     va_end(ap);
1084   }
1085 }
1086 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1087   va_list ap;
1088   if( p ){
1089     sqlite3VdbeAddOp0(p, OP_Noop);
1090     va_start(ap, zFormat);
1091     vdbeVComment(p, zFormat, ap);
1092     va_end(ap);
1093   }
1094 }
1095 #endif  /* NDEBUG */
1096 
1097 #ifdef SQLITE_VDBE_COVERAGE
1098 /*
1099 ** Set the value if the iSrcLine field for the previously coded instruction.
1100 */
1101 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1102   sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1103 }
1104 #endif /* SQLITE_VDBE_COVERAGE */
1105 
1106 /*
1107 ** Return the opcode for a given address.  If the address is -1, then
1108 ** return the most recently inserted opcode.
1109 **
1110 ** If a memory allocation error has occurred prior to the calling of this
1111 ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
1112 ** is readable but not writable, though it is cast to a writable value.
1113 ** The return of a dummy opcode allows the call to continue functioning
1114 ** after an OOM fault without having to check to see if the return from
1115 ** this routine is a valid pointer.  But because the dummy.opcode is 0,
1116 ** dummy will never be written to.  This is verified by code inspection and
1117 ** by running with Valgrind.
1118 */
1119 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1120   /* C89 specifies that the constant "dummy" will be initialized to all
1121   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
1122   static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
1123   assert( p->magic==VDBE_MAGIC_INIT );
1124   if( addr<0 ){
1125     addr = p->nOp - 1;
1126   }
1127   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1128   if( p->db->mallocFailed ){
1129     return (VdbeOp*)&dummy;
1130   }else{
1131     return &p->aOp[addr];
1132   }
1133 }
1134 
1135 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1136 /*
1137 ** Return an integer value for one of the parameters to the opcode pOp
1138 ** determined by character c.
1139 */
1140 static int translateP(char c, const Op *pOp){
1141   if( c=='1' ) return pOp->p1;
1142   if( c=='2' ) return pOp->p2;
1143   if( c=='3' ) return pOp->p3;
1144   if( c=='4' ) return pOp->p4.i;
1145   return pOp->p5;
1146 }
1147 
1148 /*
1149 ** Compute a string for the "comment" field of a VDBE opcode listing.
1150 **
1151 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1152 ** to an extra string that is appended to the sqlite3OpcodeName().  In the
1153 ** absence of other comments, this synopsis becomes the comment on the opcode.
1154 ** Some translation occurs:
1155 **
1156 **       "PX"      ->  "r[X]"
1157 **       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1
1158 **       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0
1159 **       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x
1160 */
1161 static int displayComment(
1162   const Op *pOp,     /* The opcode to be commented */
1163   const char *zP4,   /* Previously obtained value for P4 */
1164   char *zTemp,       /* Write result here */
1165   int nTemp          /* Space available in zTemp[] */
1166 ){
1167   const char *zOpName;
1168   const char *zSynopsis;
1169   int nOpName;
1170   int ii, jj;
1171   char zAlt[50];
1172   zOpName = sqlite3OpcodeName(pOp->opcode);
1173   nOpName = sqlite3Strlen30(zOpName);
1174   if( zOpName[nOpName+1] ){
1175     int seenCom = 0;
1176     char c;
1177     zSynopsis = zOpName += nOpName + 1;
1178     if( strncmp(zSynopsis,"IF ",3)==0 ){
1179       if( pOp->p5 & SQLITE_STOREP2 ){
1180         sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
1181       }else{
1182         sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1183       }
1184       zSynopsis = zAlt;
1185     }
1186     for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1187       if( c=='P' ){
1188         c = zSynopsis[++ii];
1189         if( c=='4' ){
1190           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1191         }else if( c=='X' ){
1192           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1193           seenCom = 1;
1194         }else{
1195           int v1 = translateP(c, pOp);
1196           int v2;
1197           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1198           if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1199             ii += 3;
1200             jj += sqlite3Strlen30(zTemp+jj);
1201             v2 = translateP(zSynopsis[ii], pOp);
1202             if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1203               ii += 2;
1204               v2++;
1205             }
1206             if( v2>1 ){
1207               sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1208             }
1209           }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1210             ii += 4;
1211           }
1212         }
1213         jj += sqlite3Strlen30(zTemp+jj);
1214       }else{
1215         zTemp[jj++] = c;
1216       }
1217     }
1218     if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1219       sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1220       jj += sqlite3Strlen30(zTemp+jj);
1221     }
1222     if( jj<nTemp ) zTemp[jj] = 0;
1223   }else if( pOp->zComment ){
1224     sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1225     jj = sqlite3Strlen30(zTemp);
1226   }else{
1227     zTemp[0] = 0;
1228     jj = 0;
1229   }
1230   return jj;
1231 }
1232 #endif /* SQLITE_DEBUG */
1233 
1234 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1235 /*
1236 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1237 ** that can be displayed in the P4 column of EXPLAIN output.
1238 */
1239 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1240   const char *zOp = 0;
1241   switch( pExpr->op ){
1242     case TK_STRING:
1243       sqlite3XPrintf(p, "%Q", pExpr->u.zToken);
1244       break;
1245     case TK_INTEGER:
1246       sqlite3XPrintf(p, "%d", pExpr->u.iValue);
1247       break;
1248     case TK_NULL:
1249       sqlite3XPrintf(p, "NULL");
1250       break;
1251     case TK_REGISTER: {
1252       sqlite3XPrintf(p, "r[%d]", pExpr->iTable);
1253       break;
1254     }
1255     case TK_COLUMN: {
1256       if( pExpr->iColumn<0 ){
1257         sqlite3XPrintf(p, "rowid");
1258       }else{
1259         sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn);
1260       }
1261       break;
1262     }
1263     case TK_LT:      zOp = "LT";      break;
1264     case TK_LE:      zOp = "LE";      break;
1265     case TK_GT:      zOp = "GT";      break;
1266     case TK_GE:      zOp = "GE";      break;
1267     case TK_NE:      zOp = "NE";      break;
1268     case TK_EQ:      zOp = "EQ";      break;
1269     case TK_IS:      zOp = "IS";      break;
1270     case TK_ISNOT:   zOp = "ISNOT";   break;
1271     case TK_AND:     zOp = "AND";     break;
1272     case TK_OR:      zOp = "OR";      break;
1273     case TK_PLUS:    zOp = "ADD";     break;
1274     case TK_STAR:    zOp = "MUL";     break;
1275     case TK_MINUS:   zOp = "SUB";     break;
1276     case TK_REM:     zOp = "REM";     break;
1277     case TK_BITAND:  zOp = "BITAND";  break;
1278     case TK_BITOR:   zOp = "BITOR";   break;
1279     case TK_SLASH:   zOp = "DIV";     break;
1280     case TK_LSHIFT:  zOp = "LSHIFT";  break;
1281     case TK_RSHIFT:  zOp = "RSHIFT";  break;
1282     case TK_CONCAT:  zOp = "CONCAT";  break;
1283     case TK_UMINUS:  zOp = "MINUS";   break;
1284     case TK_UPLUS:   zOp = "PLUS";    break;
1285     case TK_BITNOT:  zOp = "BITNOT";  break;
1286     case TK_NOT:     zOp = "NOT";     break;
1287     case TK_ISNULL:  zOp = "ISNULL";  break;
1288     case TK_NOTNULL: zOp = "NOTNULL"; break;
1289 
1290     default:
1291       sqlite3XPrintf(p, "%s", "expr");
1292       break;
1293   }
1294 
1295   if( zOp ){
1296     sqlite3XPrintf(p, "%s(", zOp);
1297     displayP4Expr(p, pExpr->pLeft);
1298     if( pExpr->pRight ){
1299       sqlite3StrAccumAppend(p, ",", 1);
1300       displayP4Expr(p, pExpr->pRight);
1301     }
1302     sqlite3StrAccumAppend(p, ")", 1);
1303   }
1304 }
1305 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1306 
1307 
1308 #if VDBE_DISPLAY_P4
1309 /*
1310 ** Compute a string that describes the P4 parameter for an opcode.
1311 ** Use zTemp for any required temporary buffer space.
1312 */
1313 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1314   char *zP4 = zTemp;
1315   StrAccum x;
1316   assert( nTemp>=20 );
1317   sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
1318   switch( pOp->p4type ){
1319     case P4_KEYINFO: {
1320       int j;
1321       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1322       assert( pKeyInfo->aSortOrder!=0 );
1323       sqlite3XPrintf(&x, "k(%d", pKeyInfo->nKeyField);
1324       for(j=0; j<pKeyInfo->nKeyField; j++){
1325         CollSeq *pColl = pKeyInfo->aColl[j];
1326         const char *zColl = pColl ? pColl->zName : "";
1327         if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1328         sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl);
1329       }
1330       sqlite3StrAccumAppend(&x, ")", 1);
1331       break;
1332     }
1333 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1334     case P4_EXPR: {
1335       displayP4Expr(&x, pOp->p4.pExpr);
1336       break;
1337     }
1338 #endif
1339     case P4_COLLSEQ: {
1340       CollSeq *pColl = pOp->p4.pColl;
1341       sqlite3XPrintf(&x, "(%.20s)", pColl->zName);
1342       break;
1343     }
1344     case P4_FUNCDEF: {
1345       FuncDef *pDef = pOp->p4.pFunc;
1346       sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1347       break;
1348     }
1349 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1350     case P4_FUNCCTX: {
1351       FuncDef *pDef = pOp->p4.pCtx->pFunc;
1352       sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1353       break;
1354     }
1355 #endif
1356     case P4_INT64: {
1357       sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64);
1358       break;
1359     }
1360     case P4_INT32: {
1361       sqlite3XPrintf(&x, "%d", pOp->p4.i);
1362       break;
1363     }
1364     case P4_REAL: {
1365       sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal);
1366       break;
1367     }
1368     case P4_MEM: {
1369       Mem *pMem = pOp->p4.pMem;
1370       if( pMem->flags & MEM_Str ){
1371         zP4 = pMem->z;
1372       }else if( pMem->flags & MEM_Int ){
1373         sqlite3XPrintf(&x, "%lld", pMem->u.i);
1374       }else if( pMem->flags & MEM_Real ){
1375         sqlite3XPrintf(&x, "%.16g", pMem->u.r);
1376       }else if( pMem->flags & MEM_Null ){
1377         zP4 = "NULL";
1378       }else{
1379         assert( pMem->flags & MEM_Blob );
1380         zP4 = "(blob)";
1381       }
1382       break;
1383     }
1384 #ifndef SQLITE_OMIT_VIRTUALTABLE
1385     case P4_VTAB: {
1386       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1387       sqlite3XPrintf(&x, "vtab:%p", pVtab);
1388       break;
1389     }
1390 #endif
1391     case P4_INTARRAY: {
1392       int i;
1393       int *ai = pOp->p4.ai;
1394       int n = ai[0];   /* The first element of an INTARRAY is always the
1395                        ** count of the number of elements to follow */
1396       for(i=1; i<n; i++){
1397         sqlite3XPrintf(&x, ",%d", ai[i]);
1398       }
1399       zTemp[0] = '[';
1400       sqlite3StrAccumAppend(&x, "]", 1);
1401       break;
1402     }
1403     case P4_SUBPROGRAM: {
1404       sqlite3XPrintf(&x, "program");
1405       break;
1406     }
1407     case P4_ADVANCE: {
1408       zTemp[0] = 0;
1409       break;
1410     }
1411     case P4_TABLE: {
1412       sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName);
1413       break;
1414     }
1415     default: {
1416       zP4 = pOp->p4.z;
1417       if( zP4==0 ){
1418         zP4 = zTemp;
1419         zTemp[0] = 0;
1420       }
1421     }
1422   }
1423   sqlite3StrAccumFinish(&x);
1424   assert( zP4!=0 );
1425   return zP4;
1426 }
1427 #endif /* VDBE_DISPLAY_P4 */
1428 
1429 /*
1430 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1431 **
1432 ** The prepared statements need to know in advance the complete set of
1433 ** attached databases that will be use.  A mask of these databases
1434 ** is maintained in p->btreeMask.  The p->lockMask value is the subset of
1435 ** p->btreeMask of databases that will require a lock.
1436 */
1437 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1438   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1439   assert( i<(int)sizeof(p->btreeMask)*8 );
1440   DbMaskSet(p->btreeMask, i);
1441   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1442     DbMaskSet(p->lockMask, i);
1443   }
1444 }
1445 
1446 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1447 /*
1448 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1449 ** this routine obtains the mutex associated with each BtShared structure
1450 ** that may be accessed by the VM passed as an argument. In doing so it also
1451 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1452 ** that the correct busy-handler callback is invoked if required.
1453 **
1454 ** If SQLite is not threadsafe but does support shared-cache mode, then
1455 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1456 ** of all of BtShared structures accessible via the database handle
1457 ** associated with the VM.
1458 **
1459 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1460 ** function is a no-op.
1461 **
1462 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1463 ** statement p will ever use.  Let N be the number of bits in p->btreeMask
1464 ** corresponding to btrees that use shared cache.  Then the runtime of
1465 ** this routine is N*N.  But as N is rarely more than 1, this should not
1466 ** be a problem.
1467 */
1468 void sqlite3VdbeEnter(Vdbe *p){
1469   int i;
1470   sqlite3 *db;
1471   Db *aDb;
1472   int nDb;
1473   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1474   db = p->db;
1475   aDb = db->aDb;
1476   nDb = db->nDb;
1477   for(i=0; i<nDb; i++){
1478     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1479       sqlite3BtreeEnter(aDb[i].pBt);
1480     }
1481   }
1482 }
1483 #endif
1484 
1485 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1486 /*
1487 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1488 */
1489 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1490   int i;
1491   sqlite3 *db;
1492   Db *aDb;
1493   int nDb;
1494   db = p->db;
1495   aDb = db->aDb;
1496   nDb = db->nDb;
1497   for(i=0; i<nDb; i++){
1498     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1499       sqlite3BtreeLeave(aDb[i].pBt);
1500     }
1501   }
1502 }
1503 void sqlite3VdbeLeave(Vdbe *p){
1504   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1505   vdbeLeave(p);
1506 }
1507 #endif
1508 
1509 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1510 /*
1511 ** Print a single opcode.  This routine is used for debugging only.
1512 */
1513 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
1514   char *zP4;
1515   char zPtr[50];
1516   char zCom[100];
1517   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1518   if( pOut==0 ) pOut = stdout;
1519   zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1520 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1521   displayComment(pOp, zP4, zCom, sizeof(zCom));
1522 #else
1523   zCom[0] = 0;
1524 #endif
1525   /* NB:  The sqlite3OpcodeName() function is implemented by code created
1526   ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1527   ** information from the vdbe.c source text */
1528   fprintf(pOut, zFormat1, pc,
1529       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1530       zCom
1531   );
1532   fflush(pOut);
1533 }
1534 #endif
1535 
1536 /*
1537 ** Initialize an array of N Mem element.
1538 */
1539 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1540   while( (N--)>0 ){
1541     p->db = db;
1542     p->flags = flags;
1543     p->szMalloc = 0;
1544 #ifdef SQLITE_DEBUG
1545     p->pScopyFrom = 0;
1546 #endif
1547     p++;
1548   }
1549 }
1550 
1551 /*
1552 ** Release an array of N Mem elements
1553 */
1554 static void releaseMemArray(Mem *p, int N){
1555   if( p && N ){
1556     Mem *pEnd = &p[N];
1557     sqlite3 *db = p->db;
1558     if( db->pnBytesFreed ){
1559       do{
1560         if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1561       }while( (++p)<pEnd );
1562       return;
1563     }
1564     do{
1565       assert( (&p[1])==pEnd || p[0].db==p[1].db );
1566       assert( sqlite3VdbeCheckMemInvariants(p) );
1567 
1568       /* This block is really an inlined version of sqlite3VdbeMemRelease()
1569       ** that takes advantage of the fact that the memory cell value is
1570       ** being set to NULL after releasing any dynamic resources.
1571       **
1572       ** The justification for duplicating code is that according to
1573       ** callgrind, this causes a certain test case to hit the CPU 4.7
1574       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1575       ** sqlite3MemRelease() were called from here. With -O2, this jumps
1576       ** to 6.6 percent. The test case is inserting 1000 rows into a table
1577       ** with no indexes using a single prepared INSERT statement, bind()
1578       ** and reset(). Inserts are grouped into a transaction.
1579       */
1580       testcase( p->flags & MEM_Agg );
1581       testcase( p->flags & MEM_Dyn );
1582       testcase( p->flags & MEM_Frame );
1583       testcase( p->flags & MEM_RowSet );
1584       if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
1585         sqlite3VdbeMemRelease(p);
1586       }else if( p->szMalloc ){
1587         sqlite3DbFreeNN(db, p->zMalloc);
1588         p->szMalloc = 0;
1589       }
1590 
1591       p->flags = MEM_Undefined;
1592     }while( (++p)<pEnd );
1593   }
1594 }
1595 
1596 /*
1597 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1598 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1599 */
1600 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1601   int i;
1602   Mem *aMem = VdbeFrameMem(p);
1603   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1604   for(i=0; i<p->nChildCsr; i++){
1605     sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1606   }
1607   releaseMemArray(aMem, p->nChildMem);
1608   sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
1609   sqlite3DbFree(p->v->db, p);
1610 }
1611 
1612 #ifndef SQLITE_OMIT_EXPLAIN
1613 /*
1614 ** Give a listing of the program in the virtual machine.
1615 **
1616 ** The interface is the same as sqlite3VdbeExec().  But instead of
1617 ** running the code, it invokes the callback once for each instruction.
1618 ** This feature is used to implement "EXPLAIN".
1619 **
1620 ** When p->explain==1, each instruction is listed.  When
1621 ** p->explain==2, only OP_Explain instructions are listed and these
1622 ** are shown in a different format.  p->explain==2 is used to implement
1623 ** EXPLAIN QUERY PLAN.
1624 **
1625 ** When p->explain==1, first the main program is listed, then each of
1626 ** the trigger subprograms are listed one by one.
1627 */
1628 int sqlite3VdbeList(
1629   Vdbe *p                   /* The VDBE */
1630 ){
1631   int nRow;                            /* Stop when row count reaches this */
1632   int nSub = 0;                        /* Number of sub-vdbes seen so far */
1633   SubProgram **apSub = 0;              /* Array of sub-vdbes */
1634   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
1635   sqlite3 *db = p->db;                 /* The database connection */
1636   int i;                               /* Loop counter */
1637   int rc = SQLITE_OK;                  /* Return code */
1638   Mem *pMem = &p->aMem[1];             /* First Mem of result set */
1639 
1640   assert( p->explain );
1641   assert( p->magic==VDBE_MAGIC_RUN );
1642   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1643 
1644   /* Even though this opcode does not use dynamic strings for
1645   ** the result, result columns may become dynamic if the user calls
1646   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1647   */
1648   releaseMemArray(pMem, 8);
1649   p->pResultSet = 0;
1650 
1651   if( p->rc==SQLITE_NOMEM_BKPT ){
1652     /* This happens if a malloc() inside a call to sqlite3_column_text() or
1653     ** sqlite3_column_text16() failed.  */
1654     sqlite3OomFault(db);
1655     return SQLITE_ERROR;
1656   }
1657 
1658   /* When the number of output rows reaches nRow, that means the
1659   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1660   ** nRow is the sum of the number of rows in the main program, plus
1661   ** the sum of the number of rows in all trigger subprograms encountered
1662   ** so far.  The nRow value will increase as new trigger subprograms are
1663   ** encountered, but p->pc will eventually catch up to nRow.
1664   */
1665   nRow = p->nOp;
1666   if( p->explain==1 ){
1667     /* The first 8 memory cells are used for the result set.  So we will
1668     ** commandeer the 9th cell to use as storage for an array of pointers
1669     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
1670     ** cells.  */
1671     assert( p->nMem>9 );
1672     pSub = &p->aMem[9];
1673     if( pSub->flags&MEM_Blob ){
1674       /* On the first call to sqlite3_step(), pSub will hold a NULL.  It is
1675       ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1676       nSub = pSub->n/sizeof(Vdbe*);
1677       apSub = (SubProgram **)pSub->z;
1678     }
1679     for(i=0; i<nSub; i++){
1680       nRow += apSub[i]->nOp;
1681     }
1682   }
1683 
1684   do{
1685     i = p->pc++;
1686   }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1687   if( i>=nRow ){
1688     p->rc = SQLITE_OK;
1689     rc = SQLITE_DONE;
1690   }else if( db->u1.isInterrupted ){
1691     p->rc = SQLITE_INTERRUPT;
1692     rc = SQLITE_ERROR;
1693     sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
1694   }else{
1695     char *zP4;
1696     Op *pOp;
1697     if( i<p->nOp ){
1698       /* The output line number is small enough that we are still in the
1699       ** main program. */
1700       pOp = &p->aOp[i];
1701     }else{
1702       /* We are currently listing subprograms.  Figure out which one and
1703       ** pick up the appropriate opcode. */
1704       int j;
1705       i -= p->nOp;
1706       for(j=0; i>=apSub[j]->nOp; j++){
1707         i -= apSub[j]->nOp;
1708       }
1709       pOp = &apSub[j]->aOp[i];
1710     }
1711     if( p->explain==1 ){
1712       pMem->flags = MEM_Int;
1713       pMem->u.i = i;                                /* Program counter */
1714       pMem++;
1715 
1716       pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1717       pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1718       assert( pMem->z!=0 );
1719       pMem->n = sqlite3Strlen30(pMem->z);
1720       pMem->enc = SQLITE_UTF8;
1721       pMem++;
1722 
1723       /* When an OP_Program opcode is encounter (the only opcode that has
1724       ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1725       ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1726       ** has not already been seen.
1727       */
1728       if( pOp->p4type==P4_SUBPROGRAM ){
1729         int nByte = (nSub+1)*sizeof(SubProgram*);
1730         int j;
1731         for(j=0; j<nSub; j++){
1732           if( apSub[j]==pOp->p4.pProgram ) break;
1733         }
1734         if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
1735           apSub = (SubProgram **)pSub->z;
1736           apSub[nSub++] = pOp->p4.pProgram;
1737           pSub->flags |= MEM_Blob;
1738           pSub->n = nSub*sizeof(SubProgram*);
1739         }
1740       }
1741     }
1742 
1743     pMem->flags = MEM_Int;
1744     pMem->u.i = pOp->p1;                          /* P1 */
1745     pMem++;
1746 
1747     pMem->flags = MEM_Int;
1748     pMem->u.i = pOp->p2;                          /* P2 */
1749     pMem++;
1750 
1751     pMem->flags = MEM_Int;
1752     pMem->u.i = pOp->p3;                          /* P3 */
1753     pMem++;
1754 
1755     if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
1756       assert( p->db->mallocFailed );
1757       return SQLITE_ERROR;
1758     }
1759     pMem->flags = MEM_Str|MEM_Term;
1760     zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
1761     if( zP4!=pMem->z ){
1762       pMem->n = 0;
1763       sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
1764     }else{
1765       assert( pMem->z!=0 );
1766       pMem->n = sqlite3Strlen30(pMem->z);
1767       pMem->enc = SQLITE_UTF8;
1768     }
1769     pMem++;
1770 
1771     if( p->explain==1 ){
1772       if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
1773         assert( p->db->mallocFailed );
1774         return SQLITE_ERROR;
1775       }
1776       pMem->flags = MEM_Str|MEM_Term;
1777       pMem->n = 2;
1778       sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
1779       pMem->enc = SQLITE_UTF8;
1780       pMem++;
1781 
1782 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1783       if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
1784         assert( p->db->mallocFailed );
1785         return SQLITE_ERROR;
1786       }
1787       pMem->flags = MEM_Str|MEM_Term;
1788       pMem->n = displayComment(pOp, zP4, pMem->z, 500);
1789       pMem->enc = SQLITE_UTF8;
1790 #else
1791       pMem->flags = MEM_Null;                       /* Comment */
1792 #endif
1793     }
1794 
1795     p->nResColumn = 8 - 4*(p->explain-1);
1796     p->pResultSet = &p->aMem[1];
1797     p->rc = SQLITE_OK;
1798     rc = SQLITE_ROW;
1799   }
1800   return rc;
1801 }
1802 #endif /* SQLITE_OMIT_EXPLAIN */
1803 
1804 #ifdef SQLITE_DEBUG
1805 /*
1806 ** Print the SQL that was used to generate a VDBE program.
1807 */
1808 void sqlite3VdbePrintSql(Vdbe *p){
1809   const char *z = 0;
1810   if( p->zSql ){
1811     z = p->zSql;
1812   }else if( p->nOp>=1 ){
1813     const VdbeOp *pOp = &p->aOp[0];
1814     if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1815       z = pOp->p4.z;
1816       while( sqlite3Isspace(*z) ) z++;
1817     }
1818   }
1819   if( z ) printf("SQL: [%s]\n", z);
1820 }
1821 #endif
1822 
1823 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1824 /*
1825 ** Print an IOTRACE message showing SQL content.
1826 */
1827 void sqlite3VdbeIOTraceSql(Vdbe *p){
1828   int nOp = p->nOp;
1829   VdbeOp *pOp;
1830   if( sqlite3IoTrace==0 ) return;
1831   if( nOp<1 ) return;
1832   pOp = &p->aOp[0];
1833   if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1834     int i, j;
1835     char z[1000];
1836     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1837     for(i=0; sqlite3Isspace(z[i]); i++){}
1838     for(j=0; z[i]; i++){
1839       if( sqlite3Isspace(z[i]) ){
1840         if( z[i-1]!=' ' ){
1841           z[j++] = ' ';
1842         }
1843       }else{
1844         z[j++] = z[i];
1845       }
1846     }
1847     z[j] = 0;
1848     sqlite3IoTrace("SQL %s\n", z);
1849   }
1850 }
1851 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1852 
1853 /* An instance of this object describes bulk memory available for use
1854 ** by subcomponents of a prepared statement.  Space is allocated out
1855 ** of a ReusableSpace object by the allocSpace() routine below.
1856 */
1857 struct ReusableSpace {
1858   u8 *pSpace;          /* Available memory */
1859   int nFree;           /* Bytes of available memory */
1860   int nNeeded;         /* Total bytes that could not be allocated */
1861 };
1862 
1863 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
1864 ** from the ReusableSpace object.  Return a pointer to the allocated
1865 ** memory on success.  If insufficient memory is available in the
1866 ** ReusableSpace object, increase the ReusableSpace.nNeeded
1867 ** value by the amount needed and return NULL.
1868 **
1869 ** If pBuf is not initially NULL, that means that the memory has already
1870 ** been allocated by a prior call to this routine, so just return a copy
1871 ** of pBuf and leave ReusableSpace unchanged.
1872 **
1873 ** This allocator is employed to repurpose unused slots at the end of the
1874 ** opcode array of prepared state for other memory needs of the prepared
1875 ** statement.
1876 */
1877 static void *allocSpace(
1878   struct ReusableSpace *p,  /* Bulk memory available for allocation */
1879   void *pBuf,               /* Pointer to a prior allocation */
1880   int nByte                 /* Bytes of memory needed */
1881 ){
1882   assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
1883   if( pBuf==0 ){
1884     nByte = ROUND8(nByte);
1885     if( nByte <= p->nFree ){
1886       p->nFree -= nByte;
1887       pBuf = &p->pSpace[p->nFree];
1888     }else{
1889       p->nNeeded += nByte;
1890     }
1891   }
1892   assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
1893   return pBuf;
1894 }
1895 
1896 /*
1897 ** Rewind the VDBE back to the beginning in preparation for
1898 ** running it.
1899 */
1900 void sqlite3VdbeRewind(Vdbe *p){
1901 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1902   int i;
1903 #endif
1904   assert( p!=0 );
1905   assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET );
1906 
1907   /* There should be at least one opcode.
1908   */
1909   assert( p->nOp>0 );
1910 
1911   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
1912   p->magic = VDBE_MAGIC_RUN;
1913 
1914 #ifdef SQLITE_DEBUG
1915   for(i=0; i<p->nMem; i++){
1916     assert( p->aMem[i].db==p->db );
1917   }
1918 #endif
1919   p->pc = -1;
1920   p->rc = SQLITE_OK;
1921   p->errorAction = OE_Abort;
1922   p->nChange = 0;
1923   p->cacheCtr = 1;
1924   p->minWriteFileFormat = 255;
1925   p->iStatement = 0;
1926   p->nFkConstraint = 0;
1927 #ifdef VDBE_PROFILE
1928   for(i=0; i<p->nOp; i++){
1929     p->aOp[i].cnt = 0;
1930     p->aOp[i].cycles = 0;
1931   }
1932 #endif
1933 }
1934 
1935 /*
1936 ** Prepare a virtual machine for execution for the first time after
1937 ** creating the virtual machine.  This involves things such
1938 ** as allocating registers and initializing the program counter.
1939 ** After the VDBE has be prepped, it can be executed by one or more
1940 ** calls to sqlite3VdbeExec().
1941 **
1942 ** This function may be called exactly once on each virtual machine.
1943 ** After this routine is called the VM has been "packaged" and is ready
1944 ** to run.  After this routine is called, further calls to
1945 ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
1946 ** the Vdbe from the Parse object that helped generate it so that the
1947 ** the Vdbe becomes an independent entity and the Parse object can be
1948 ** destroyed.
1949 **
1950 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1951 ** to its initial state after it has been run.
1952 */
1953 void sqlite3VdbeMakeReady(
1954   Vdbe *p,                       /* The VDBE */
1955   Parse *pParse                  /* Parsing context */
1956 ){
1957   sqlite3 *db;                   /* The database connection */
1958   int nVar;                      /* Number of parameters */
1959   int nMem;                      /* Number of VM memory registers */
1960   int nCursor;                   /* Number of cursors required */
1961   int nArg;                      /* Number of arguments in subprograms */
1962   int n;                         /* Loop counter */
1963   struct ReusableSpace x;        /* Reusable bulk memory */
1964 
1965   assert( p!=0 );
1966   assert( p->nOp>0 );
1967   assert( pParse!=0 );
1968   assert( p->magic==VDBE_MAGIC_INIT );
1969   assert( pParse==p->pParse );
1970   db = p->db;
1971   assert( db->mallocFailed==0 );
1972   nVar = pParse->nVar;
1973   nMem = pParse->nMem;
1974   nCursor = pParse->nTab;
1975   nArg = pParse->nMaxArg;
1976 
1977   /* Each cursor uses a memory cell.  The first cursor (cursor 0) can
1978   ** use aMem[0] which is not otherwise used by the VDBE program.  Allocate
1979   ** space at the end of aMem[] for cursors 1 and greater.
1980   ** See also: allocateCursor().
1981   */
1982   nMem += nCursor;
1983   if( nCursor==0 && nMem>0 ) nMem++;  /* Space for aMem[0] even if not used */
1984 
1985   /* Figure out how much reusable memory is available at the end of the
1986   ** opcode array.  This extra memory will be reallocated for other elements
1987   ** of the prepared statement.
1988   */
1989   n = ROUND8(sizeof(Op)*p->nOp);              /* Bytes of opcode memory used */
1990   x.pSpace = &((u8*)p->aOp)[n];               /* Unused opcode memory */
1991   assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
1992   x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */
1993   assert( x.nFree>=0 );
1994   assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
1995 
1996   resolveP2Values(p, &nArg);
1997   p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1998   if( pParse->explain && nMem<10 ){
1999     nMem = 10;
2000   }
2001   p->expired = 0;
2002 
2003   /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2004   ** passes.  On the first pass, we try to reuse unused memory at the
2005   ** end of the opcode array.  If we are unable to satisfy all memory
2006   ** requirements by reusing the opcode array tail, then the second
2007   ** pass will fill in the remainder using a fresh memory allocation.
2008   **
2009   ** This two-pass approach that reuses as much memory as possible from
2010   ** the leftover memory at the end of the opcode array.  This can significantly
2011   ** reduce the amount of memory held by a prepared statement.
2012   */
2013   do {
2014     x.nNeeded = 0;
2015     p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2016     p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2017     p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2018     p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2019 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2020     p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2021 #endif
2022     if( x.nNeeded==0 ) break;
2023     x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2024     x.nFree = x.nNeeded;
2025   }while( !db->mallocFailed );
2026 
2027   p->pVList = pParse->pVList;
2028   pParse->pVList =  0;
2029   p->explain = pParse->explain;
2030   if( db->mallocFailed ){
2031     p->nVar = 0;
2032     p->nCursor = 0;
2033     p->nMem = 0;
2034   }else{
2035     p->nCursor = nCursor;
2036     p->nVar = (ynVar)nVar;
2037     initMemArray(p->aVar, nVar, db, MEM_Null);
2038     p->nMem = nMem;
2039     initMemArray(p->aMem, nMem, db, MEM_Undefined);
2040     memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2041 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2042     memset(p->anExec, 0, p->nOp*sizeof(i64));
2043 #endif
2044   }
2045   sqlite3VdbeRewind(p);
2046 }
2047 
2048 /*
2049 ** Close a VDBE cursor and release all the resources that cursor
2050 ** happens to hold.
2051 */
2052 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2053   if( pCx==0 ){
2054     return;
2055   }
2056   assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2057   switch( pCx->eCurType ){
2058     case CURTYPE_SORTER: {
2059       sqlite3VdbeSorterClose(p->db, pCx);
2060       break;
2061     }
2062     case CURTYPE_BTREE: {
2063       if( pCx->isEphemeral ){
2064         if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx);
2065         /* The pCx->pCursor will be close automatically, if it exists, by
2066         ** the call above. */
2067       }else{
2068         assert( pCx->uc.pCursor!=0 );
2069         sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2070       }
2071       break;
2072     }
2073 #ifndef SQLITE_OMIT_VIRTUALTABLE
2074     case CURTYPE_VTAB: {
2075       sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2076       const sqlite3_module *pModule = pVCur->pVtab->pModule;
2077       assert( pVCur->pVtab->nRef>0 );
2078       pVCur->pVtab->nRef--;
2079       pModule->xClose(pVCur);
2080       break;
2081     }
2082 #endif
2083   }
2084 }
2085 
2086 /*
2087 ** Close all cursors in the current frame.
2088 */
2089 static void closeCursorsInFrame(Vdbe *p){
2090   if( p->apCsr ){
2091     int i;
2092     for(i=0; i<p->nCursor; i++){
2093       VdbeCursor *pC = p->apCsr[i];
2094       if( pC ){
2095         sqlite3VdbeFreeCursor(p, pC);
2096         p->apCsr[i] = 0;
2097       }
2098     }
2099   }
2100 }
2101 
2102 /*
2103 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2104 ** is used, for example, when a trigger sub-program is halted to restore
2105 ** control to the main program.
2106 */
2107 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2108   Vdbe *v = pFrame->v;
2109   closeCursorsInFrame(v);
2110 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2111   v->anExec = pFrame->anExec;
2112 #endif
2113   v->aOp = pFrame->aOp;
2114   v->nOp = pFrame->nOp;
2115   v->aMem = pFrame->aMem;
2116   v->nMem = pFrame->nMem;
2117   v->apCsr = pFrame->apCsr;
2118   v->nCursor = pFrame->nCursor;
2119   v->db->lastRowid = pFrame->lastRowid;
2120   v->nChange = pFrame->nChange;
2121   v->db->nChange = pFrame->nDbChange;
2122   sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2123   v->pAuxData = pFrame->pAuxData;
2124   pFrame->pAuxData = 0;
2125   return pFrame->pc;
2126 }
2127 
2128 /*
2129 ** Close all cursors.
2130 **
2131 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2132 ** cell array. This is necessary as the memory cell array may contain
2133 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2134 ** open cursors.
2135 */
2136 static void closeAllCursors(Vdbe *p){
2137   if( p->pFrame ){
2138     VdbeFrame *pFrame;
2139     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2140     sqlite3VdbeFrameRestore(pFrame);
2141     p->pFrame = 0;
2142     p->nFrame = 0;
2143   }
2144   assert( p->nFrame==0 );
2145   closeCursorsInFrame(p);
2146   if( p->aMem ){
2147     releaseMemArray(p->aMem, p->nMem);
2148   }
2149   while( p->pDelFrame ){
2150     VdbeFrame *pDel = p->pDelFrame;
2151     p->pDelFrame = pDel->pParent;
2152     sqlite3VdbeFrameDelete(pDel);
2153   }
2154 
2155   /* Delete any auxdata allocations made by the VM */
2156   if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2157   assert( p->pAuxData==0 );
2158 }
2159 
2160 /*
2161 ** Clean up the VM after a single run.
2162 */
2163 static void Cleanup(Vdbe *p){
2164   sqlite3 *db = p->db;
2165 
2166 #ifdef SQLITE_DEBUG
2167   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
2168   ** Vdbe.aMem[] arrays have already been cleaned up.  */
2169   int i;
2170   if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
2171   if( p->aMem ){
2172     for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
2173   }
2174 #endif
2175 
2176   sqlite3DbFree(db, p->zErrMsg);
2177   p->zErrMsg = 0;
2178   p->pResultSet = 0;
2179 }
2180 
2181 /*
2182 ** Set the number of result columns that will be returned by this SQL
2183 ** statement. This is now set at compile time, rather than during
2184 ** execution of the vdbe program so that sqlite3_column_count() can
2185 ** be called on an SQL statement before sqlite3_step().
2186 */
2187 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2188   int n;
2189   sqlite3 *db = p->db;
2190 
2191   if( p->nResColumn ){
2192     releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2193     sqlite3DbFree(db, p->aColName);
2194   }
2195   n = nResColumn*COLNAME_N;
2196   p->nResColumn = (u16)nResColumn;
2197   p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2198   if( p->aColName==0 ) return;
2199   initMemArray(p->aColName, n, db, MEM_Null);
2200 }
2201 
2202 /*
2203 ** Set the name of the idx'th column to be returned by the SQL statement.
2204 ** zName must be a pointer to a nul terminated string.
2205 **
2206 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2207 **
2208 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2209 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2210 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2211 */
2212 int sqlite3VdbeSetColName(
2213   Vdbe *p,                         /* Vdbe being configured */
2214   int idx,                         /* Index of column zName applies to */
2215   int var,                         /* One of the COLNAME_* constants */
2216   const char *zName,               /* Pointer to buffer containing name */
2217   void (*xDel)(void*)              /* Memory management strategy for zName */
2218 ){
2219   int rc;
2220   Mem *pColName;
2221   assert( idx<p->nResColumn );
2222   assert( var<COLNAME_N );
2223   if( p->db->mallocFailed ){
2224     assert( !zName || xDel!=SQLITE_DYNAMIC );
2225     return SQLITE_NOMEM_BKPT;
2226   }
2227   assert( p->aColName!=0 );
2228   pColName = &(p->aColName[idx+var*p->nResColumn]);
2229   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2230   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2231   return rc;
2232 }
2233 
2234 /*
2235 ** A read or write transaction may or may not be active on database handle
2236 ** db. If a transaction is active, commit it. If there is a
2237 ** write-transaction spanning more than one database file, this routine
2238 ** takes care of the master journal trickery.
2239 */
2240 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2241   int i;
2242   int nTrans = 0;  /* Number of databases with an active write-transaction
2243                    ** that are candidates for a two-phase commit using a
2244                    ** master-journal */
2245   int rc = SQLITE_OK;
2246   int needXcommit = 0;
2247 
2248 #ifdef SQLITE_OMIT_VIRTUALTABLE
2249   /* With this option, sqlite3VtabSync() is defined to be simply
2250   ** SQLITE_OK so p is not used.
2251   */
2252   UNUSED_PARAMETER(p);
2253 #endif
2254 
2255   /* Before doing anything else, call the xSync() callback for any
2256   ** virtual module tables written in this transaction. This has to
2257   ** be done before determining whether a master journal file is
2258   ** required, as an xSync() callback may add an attached database
2259   ** to the transaction.
2260   */
2261   rc = sqlite3VtabSync(db, p);
2262 
2263   /* This loop determines (a) if the commit hook should be invoked and
2264   ** (b) how many database files have open write transactions, not
2265   ** including the temp database. (b) is important because if more than
2266   ** one database file has an open write transaction, a master journal
2267   ** file is required for an atomic commit.
2268   */
2269   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2270     Btree *pBt = db->aDb[i].pBt;
2271     if( sqlite3BtreeIsInTrans(pBt) ){
2272       /* Whether or not a database might need a master journal depends upon
2273       ** its journal mode (among other things).  This matrix determines which
2274       ** journal modes use a master journal and which do not */
2275       static const u8 aMJNeeded[] = {
2276         /* DELETE   */  1,
2277         /* PERSIST   */ 1,
2278         /* OFF       */ 0,
2279         /* TRUNCATE  */ 1,
2280         /* MEMORY    */ 0,
2281         /* WAL       */ 0
2282       };
2283       Pager *pPager;   /* Pager associated with pBt */
2284       needXcommit = 1;
2285       sqlite3BtreeEnter(pBt);
2286       pPager = sqlite3BtreePager(pBt);
2287       if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2288        && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2289       ){
2290         assert( i!=1 );
2291         nTrans++;
2292       }
2293       rc = sqlite3PagerExclusiveLock(pPager);
2294       sqlite3BtreeLeave(pBt);
2295     }
2296   }
2297   if( rc!=SQLITE_OK ){
2298     return rc;
2299   }
2300 
2301   /* If there are any write-transactions at all, invoke the commit hook */
2302   if( needXcommit && db->xCommitCallback ){
2303     rc = db->xCommitCallback(db->pCommitArg);
2304     if( rc ){
2305       return SQLITE_CONSTRAINT_COMMITHOOK;
2306     }
2307   }
2308 
2309   /* The simple case - no more than one database file (not counting the
2310   ** TEMP database) has a transaction active.   There is no need for the
2311   ** master-journal.
2312   **
2313   ** If the return value of sqlite3BtreeGetFilename() is a zero length
2314   ** string, it means the main database is :memory: or a temp file.  In
2315   ** that case we do not support atomic multi-file commits, so use the
2316   ** simple case then too.
2317   */
2318   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2319    || nTrans<=1
2320   ){
2321     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2322       Btree *pBt = db->aDb[i].pBt;
2323       if( pBt ){
2324         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2325       }
2326     }
2327 
2328     /* Do the commit only if all databases successfully complete phase 1.
2329     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2330     ** IO error while deleting or truncating a journal file. It is unlikely,
2331     ** but could happen. In this case abandon processing and return the error.
2332     */
2333     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2334       Btree *pBt = db->aDb[i].pBt;
2335       if( pBt ){
2336         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2337       }
2338     }
2339     if( rc==SQLITE_OK ){
2340       sqlite3VtabCommit(db);
2341     }
2342   }
2343 
2344   /* The complex case - There is a multi-file write-transaction active.
2345   ** This requires a master journal file to ensure the transaction is
2346   ** committed atomically.
2347   */
2348 #ifndef SQLITE_OMIT_DISKIO
2349   else{
2350     sqlite3_vfs *pVfs = db->pVfs;
2351     char *zMaster = 0;   /* File-name for the master journal */
2352     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2353     sqlite3_file *pMaster = 0;
2354     i64 offset = 0;
2355     int res;
2356     int retryCount = 0;
2357     int nMainFile;
2358 
2359     /* Select a master journal file name */
2360     nMainFile = sqlite3Strlen30(zMainFile);
2361     zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
2362     if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
2363     do {
2364       u32 iRandom;
2365       if( retryCount ){
2366         if( retryCount>100 ){
2367           sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2368           sqlite3OsDelete(pVfs, zMaster, 0);
2369           break;
2370         }else if( retryCount==1 ){
2371           sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2372         }
2373       }
2374       retryCount++;
2375       sqlite3_randomness(sizeof(iRandom), &iRandom);
2376       sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
2377                                (iRandom>>8)&0xffffff, iRandom&0xff);
2378       /* The antipenultimate character of the master journal name must
2379       ** be "9" to avoid name collisions when using 8+3 filenames. */
2380       assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2381       sqlite3FileSuffix3(zMainFile, zMaster);
2382       rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2383     }while( rc==SQLITE_OK && res );
2384     if( rc==SQLITE_OK ){
2385       /* Open the master journal. */
2386       rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2387           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2388           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2389       );
2390     }
2391     if( rc!=SQLITE_OK ){
2392       sqlite3DbFree(db, zMaster);
2393       return rc;
2394     }
2395 
2396     /* Write the name of each database file in the transaction into the new
2397     ** master journal file. If an error occurs at this point close
2398     ** and delete the master journal file. All the individual journal files
2399     ** still have 'null' as the master journal pointer, so they will roll
2400     ** back independently if a failure occurs.
2401     */
2402     for(i=0; i<db->nDb; i++){
2403       Btree *pBt = db->aDb[i].pBt;
2404       if( sqlite3BtreeIsInTrans(pBt) ){
2405         char const *zFile = sqlite3BtreeGetJournalname(pBt);
2406         if( zFile==0 ){
2407           continue;  /* Ignore TEMP and :memory: databases */
2408         }
2409         assert( zFile[0]!=0 );
2410         rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2411         offset += sqlite3Strlen30(zFile)+1;
2412         if( rc!=SQLITE_OK ){
2413           sqlite3OsCloseFree(pMaster);
2414           sqlite3OsDelete(pVfs, zMaster, 0);
2415           sqlite3DbFree(db, zMaster);
2416           return rc;
2417         }
2418       }
2419     }
2420 
2421     /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2422     ** flag is set this is not required.
2423     */
2424     if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2425      && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2426     ){
2427       sqlite3OsCloseFree(pMaster);
2428       sqlite3OsDelete(pVfs, zMaster, 0);
2429       sqlite3DbFree(db, zMaster);
2430       return rc;
2431     }
2432 
2433     /* Sync all the db files involved in the transaction. The same call
2434     ** sets the master journal pointer in each individual journal. If
2435     ** an error occurs here, do not delete the master journal file.
2436     **
2437     ** If the error occurs during the first call to
2438     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2439     ** master journal file will be orphaned. But we cannot delete it,
2440     ** in case the master journal file name was written into the journal
2441     ** file before the failure occurred.
2442     */
2443     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2444       Btree *pBt = db->aDb[i].pBt;
2445       if( pBt ){
2446         rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
2447       }
2448     }
2449     sqlite3OsCloseFree(pMaster);
2450     assert( rc!=SQLITE_BUSY );
2451     if( rc!=SQLITE_OK ){
2452       sqlite3DbFree(db, zMaster);
2453       return rc;
2454     }
2455 
2456     /* Delete the master journal file. This commits the transaction. After
2457     ** doing this the directory is synced again before any individual
2458     ** transaction files are deleted.
2459     */
2460     rc = sqlite3OsDelete(pVfs, zMaster, 1);
2461     sqlite3DbFree(db, zMaster);
2462     zMaster = 0;
2463     if( rc ){
2464       return rc;
2465     }
2466 
2467     /* All files and directories have already been synced, so the following
2468     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2469     ** deleting or truncating journals. If something goes wrong while
2470     ** this is happening we don't really care. The integrity of the
2471     ** transaction is already guaranteed, but some stray 'cold' journals
2472     ** may be lying around. Returning an error code won't help matters.
2473     */
2474     disable_simulated_io_errors();
2475     sqlite3BeginBenignMalloc();
2476     for(i=0; i<db->nDb; i++){
2477       Btree *pBt = db->aDb[i].pBt;
2478       if( pBt ){
2479         sqlite3BtreeCommitPhaseTwo(pBt, 1);
2480       }
2481     }
2482     sqlite3EndBenignMalloc();
2483     enable_simulated_io_errors();
2484 
2485     sqlite3VtabCommit(db);
2486   }
2487 #endif
2488 
2489   return rc;
2490 }
2491 
2492 /*
2493 ** This routine checks that the sqlite3.nVdbeActive count variable
2494 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2495 ** currently active. An assertion fails if the two counts do not match.
2496 ** This is an internal self-check only - it is not an essential processing
2497 ** step.
2498 **
2499 ** This is a no-op if NDEBUG is defined.
2500 */
2501 #ifndef NDEBUG
2502 static void checkActiveVdbeCnt(sqlite3 *db){
2503   Vdbe *p;
2504   int cnt = 0;
2505   int nWrite = 0;
2506   int nRead = 0;
2507   p = db->pVdbe;
2508   while( p ){
2509     if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2510       cnt++;
2511       if( p->readOnly==0 ) nWrite++;
2512       if( p->bIsReader ) nRead++;
2513     }
2514     p = p->pNext;
2515   }
2516   assert( cnt==db->nVdbeActive );
2517   assert( nWrite==db->nVdbeWrite );
2518   assert( nRead==db->nVdbeRead );
2519 }
2520 #else
2521 #define checkActiveVdbeCnt(x)
2522 #endif
2523 
2524 /*
2525 ** If the Vdbe passed as the first argument opened a statement-transaction,
2526 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2527 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2528 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2529 ** statement transaction is committed.
2530 **
2531 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2532 ** Otherwise SQLITE_OK.
2533 */
2534 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2535   sqlite3 *const db = p->db;
2536   int rc = SQLITE_OK;
2537   int i;
2538   const int iSavepoint = p->iStatement-1;
2539 
2540   assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2541   assert( db->nStatement>0 );
2542   assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2543 
2544   for(i=0; i<db->nDb; i++){
2545     int rc2 = SQLITE_OK;
2546     Btree *pBt = db->aDb[i].pBt;
2547     if( pBt ){
2548       if( eOp==SAVEPOINT_ROLLBACK ){
2549         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2550       }
2551       if( rc2==SQLITE_OK ){
2552         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2553       }
2554       if( rc==SQLITE_OK ){
2555         rc = rc2;
2556       }
2557     }
2558   }
2559   db->nStatement--;
2560   p->iStatement = 0;
2561 
2562   if( rc==SQLITE_OK ){
2563     if( eOp==SAVEPOINT_ROLLBACK ){
2564       rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2565     }
2566     if( rc==SQLITE_OK ){
2567       rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2568     }
2569   }
2570 
2571   /* If the statement transaction is being rolled back, also restore the
2572   ** database handles deferred constraint counter to the value it had when
2573   ** the statement transaction was opened.  */
2574   if( eOp==SAVEPOINT_ROLLBACK ){
2575     db->nDeferredCons = p->nStmtDefCons;
2576     db->nDeferredImmCons = p->nStmtDefImmCons;
2577   }
2578   return rc;
2579 }
2580 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2581   if( p->db->nStatement && p->iStatement ){
2582     return vdbeCloseStatement(p, eOp);
2583   }
2584   return SQLITE_OK;
2585 }
2586 
2587 
2588 /*
2589 ** This function is called when a transaction opened by the database
2590 ** handle associated with the VM passed as an argument is about to be
2591 ** committed. If there are outstanding deferred foreign key constraint
2592 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2593 **
2594 ** If there are outstanding FK violations and this function returns
2595 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2596 ** and write an error message to it. Then return SQLITE_ERROR.
2597 */
2598 #ifndef SQLITE_OMIT_FOREIGN_KEY
2599 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2600   sqlite3 *db = p->db;
2601   if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2602    || (!deferred && p->nFkConstraint>0)
2603   ){
2604     p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2605     p->errorAction = OE_Abort;
2606     sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
2607     return SQLITE_ERROR;
2608   }
2609   return SQLITE_OK;
2610 }
2611 #endif
2612 
2613 /*
2614 ** This routine is called the when a VDBE tries to halt.  If the VDBE
2615 ** has made changes and is in autocommit mode, then commit those
2616 ** changes.  If a rollback is needed, then do the rollback.
2617 **
2618 ** This routine is the only way to move the state of a VM from
2619 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
2620 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2621 **
2622 ** Return an error code.  If the commit could not complete because of
2623 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
2624 ** means the close did not happen and needs to be repeated.
2625 */
2626 int sqlite3VdbeHalt(Vdbe *p){
2627   int rc;                         /* Used to store transient return codes */
2628   sqlite3 *db = p->db;
2629 
2630   /* This function contains the logic that determines if a statement or
2631   ** transaction will be committed or rolled back as a result of the
2632   ** execution of this virtual machine.
2633   **
2634   ** If any of the following errors occur:
2635   **
2636   **     SQLITE_NOMEM
2637   **     SQLITE_IOERR
2638   **     SQLITE_FULL
2639   **     SQLITE_INTERRUPT
2640   **
2641   ** Then the internal cache might have been left in an inconsistent
2642   ** state.  We need to rollback the statement transaction, if there is
2643   ** one, or the complete transaction if there is no statement transaction.
2644   */
2645 
2646   if( p->magic!=VDBE_MAGIC_RUN ){
2647     return SQLITE_OK;
2648   }
2649   if( db->mallocFailed ){
2650     p->rc = SQLITE_NOMEM_BKPT;
2651   }
2652   closeAllCursors(p);
2653   checkActiveVdbeCnt(db);
2654 
2655   /* No commit or rollback needed if the program never started or if the
2656   ** SQL statement does not read or write a database file.  */
2657   if( p->pc>=0 && p->bIsReader ){
2658     int mrc;   /* Primary error code from p->rc */
2659     int eStatementOp = 0;
2660     int isSpecialError;            /* Set to true if a 'special' error */
2661 
2662     /* Lock all btrees used by the statement */
2663     sqlite3VdbeEnter(p);
2664 
2665     /* Check for one of the special errors */
2666     mrc = p->rc & 0xff;
2667     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2668                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2669     if( isSpecialError ){
2670       /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2671       ** no rollback is necessary. Otherwise, at least a savepoint
2672       ** transaction must be rolled back to restore the database to a
2673       ** consistent state.
2674       **
2675       ** Even if the statement is read-only, it is important to perform
2676       ** a statement or transaction rollback operation. If the error
2677       ** occurred while writing to the journal, sub-journal or database
2678       ** file as part of an effort to free up cache space (see function
2679       ** pagerStress() in pager.c), the rollback is required to restore
2680       ** the pager to a consistent state.
2681       */
2682       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2683         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2684           eStatementOp = SAVEPOINT_ROLLBACK;
2685         }else{
2686           /* We are forced to roll back the active transaction. Before doing
2687           ** so, abort any other statements this handle currently has active.
2688           */
2689           sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2690           sqlite3CloseSavepoints(db);
2691           db->autoCommit = 1;
2692           p->nChange = 0;
2693         }
2694       }
2695     }
2696 
2697     /* Check for immediate foreign key violations. */
2698     if( p->rc==SQLITE_OK ){
2699       sqlite3VdbeCheckFk(p, 0);
2700     }
2701 
2702     /* If the auto-commit flag is set and this is the only active writer
2703     ** VM, then we do either a commit or rollback of the current transaction.
2704     **
2705     ** Note: This block also runs if one of the special errors handled
2706     ** above has occurred.
2707     */
2708     if( !sqlite3VtabInSync(db)
2709      && db->autoCommit
2710      && db->nVdbeWrite==(p->readOnly==0)
2711     ){
2712       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2713         rc = sqlite3VdbeCheckFk(p, 1);
2714         if( rc!=SQLITE_OK ){
2715           if( NEVER(p->readOnly) ){
2716             sqlite3VdbeLeave(p);
2717             return SQLITE_ERROR;
2718           }
2719           rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2720         }else{
2721           /* The auto-commit flag is true, the vdbe program was successful
2722           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2723           ** key constraints to hold up the transaction. This means a commit
2724           ** is required. */
2725           rc = vdbeCommit(db, p);
2726         }
2727         if( rc==SQLITE_BUSY && p->readOnly ){
2728           sqlite3VdbeLeave(p);
2729           return SQLITE_BUSY;
2730         }else if( rc!=SQLITE_OK ){
2731           p->rc = rc;
2732           sqlite3RollbackAll(db, SQLITE_OK);
2733           p->nChange = 0;
2734         }else{
2735           db->nDeferredCons = 0;
2736           db->nDeferredImmCons = 0;
2737           db->flags &= ~SQLITE_DeferFKs;
2738           sqlite3CommitInternalChanges(db);
2739         }
2740       }else{
2741         sqlite3RollbackAll(db, SQLITE_OK);
2742         p->nChange = 0;
2743       }
2744       db->nStatement = 0;
2745     }else if( eStatementOp==0 ){
2746       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2747         eStatementOp = SAVEPOINT_RELEASE;
2748       }else if( p->errorAction==OE_Abort ){
2749         eStatementOp = SAVEPOINT_ROLLBACK;
2750       }else{
2751         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2752         sqlite3CloseSavepoints(db);
2753         db->autoCommit = 1;
2754         p->nChange = 0;
2755       }
2756     }
2757 
2758     /* If eStatementOp is non-zero, then a statement transaction needs to
2759     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2760     ** do so. If this operation returns an error, and the current statement
2761     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2762     ** current statement error code.
2763     */
2764     if( eStatementOp ){
2765       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2766       if( rc ){
2767         if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
2768           p->rc = rc;
2769           sqlite3DbFree(db, p->zErrMsg);
2770           p->zErrMsg = 0;
2771         }
2772         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2773         sqlite3CloseSavepoints(db);
2774         db->autoCommit = 1;
2775         p->nChange = 0;
2776       }
2777     }
2778 
2779     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2780     ** has been rolled back, update the database connection change-counter.
2781     */
2782     if( p->changeCntOn ){
2783       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2784         sqlite3VdbeSetChanges(db, p->nChange);
2785       }else{
2786         sqlite3VdbeSetChanges(db, 0);
2787       }
2788       p->nChange = 0;
2789     }
2790 
2791     /* Release the locks */
2792     sqlite3VdbeLeave(p);
2793   }
2794 
2795   /* We have successfully halted and closed the VM.  Record this fact. */
2796   if( p->pc>=0 ){
2797     db->nVdbeActive--;
2798     if( !p->readOnly ) db->nVdbeWrite--;
2799     if( p->bIsReader ) db->nVdbeRead--;
2800     assert( db->nVdbeActive>=db->nVdbeRead );
2801     assert( db->nVdbeRead>=db->nVdbeWrite );
2802     assert( db->nVdbeWrite>=0 );
2803   }
2804   p->magic = VDBE_MAGIC_HALT;
2805   checkActiveVdbeCnt(db);
2806   if( db->mallocFailed ){
2807     p->rc = SQLITE_NOMEM_BKPT;
2808   }
2809 
2810   /* If the auto-commit flag is set to true, then any locks that were held
2811   ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2812   ** to invoke any required unlock-notify callbacks.
2813   */
2814   if( db->autoCommit ){
2815     sqlite3ConnectionUnlocked(db);
2816   }
2817 
2818   assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
2819   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
2820 }
2821 
2822 
2823 /*
2824 ** Each VDBE holds the result of the most recent sqlite3_step() call
2825 ** in p->rc.  This routine sets that result back to SQLITE_OK.
2826 */
2827 void sqlite3VdbeResetStepResult(Vdbe *p){
2828   p->rc = SQLITE_OK;
2829 }
2830 
2831 /*
2832 ** Copy the error code and error message belonging to the VDBE passed
2833 ** as the first argument to its database handle (so that they will be
2834 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2835 **
2836 ** This function does not clear the VDBE error code or message, just
2837 ** copies them to the database handle.
2838 */
2839 int sqlite3VdbeTransferError(Vdbe *p){
2840   sqlite3 *db = p->db;
2841   int rc = p->rc;
2842   if( p->zErrMsg ){
2843     db->bBenignMalloc++;
2844     sqlite3BeginBenignMalloc();
2845     if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
2846     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2847     sqlite3EndBenignMalloc();
2848     db->bBenignMalloc--;
2849   }else if( db->pErr ){
2850     sqlite3ValueSetNull(db->pErr);
2851   }
2852   db->errCode = rc;
2853   return rc;
2854 }
2855 
2856 #ifdef SQLITE_ENABLE_SQLLOG
2857 /*
2858 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2859 ** invoke it.
2860 */
2861 static void vdbeInvokeSqllog(Vdbe *v){
2862   if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2863     char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2864     assert( v->db->init.busy==0 );
2865     if( zExpanded ){
2866       sqlite3GlobalConfig.xSqllog(
2867           sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2868       );
2869       sqlite3DbFree(v->db, zExpanded);
2870     }
2871   }
2872 }
2873 #else
2874 # define vdbeInvokeSqllog(x)
2875 #endif
2876 
2877 /*
2878 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
2879 ** Write any error messages into *pzErrMsg.  Return the result code.
2880 **
2881 ** After this routine is run, the VDBE should be ready to be executed
2882 ** again.
2883 **
2884 ** To look at it another way, this routine resets the state of the
2885 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2886 ** VDBE_MAGIC_INIT.
2887 */
2888 int sqlite3VdbeReset(Vdbe *p){
2889   sqlite3 *db;
2890   db = p->db;
2891 
2892   /* If the VM did not run to completion or if it encountered an
2893   ** error, then it might not have been halted properly.  So halt
2894   ** it now.
2895   */
2896   sqlite3VdbeHalt(p);
2897 
2898   /* If the VDBE has be run even partially, then transfer the error code
2899   ** and error message from the VDBE into the main database structure.  But
2900   ** if the VDBE has just been set to run but has not actually executed any
2901   ** instructions yet, leave the main database error information unchanged.
2902   */
2903   if( p->pc>=0 ){
2904     vdbeInvokeSqllog(p);
2905     sqlite3VdbeTransferError(p);
2906     sqlite3DbFree(db, p->zErrMsg);
2907     p->zErrMsg = 0;
2908     if( p->runOnlyOnce ) p->expired = 1;
2909   }else if( p->rc && p->expired ){
2910     /* The expired flag was set on the VDBE before the first call
2911     ** to sqlite3_step(). For consistency (since sqlite3_step() was
2912     ** called), set the database error in this case as well.
2913     */
2914     sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
2915     sqlite3DbFree(db, p->zErrMsg);
2916     p->zErrMsg = 0;
2917   }
2918 
2919   /* Reclaim all memory used by the VDBE
2920   */
2921   Cleanup(p);
2922 
2923   /* Save profiling information from this VDBE run.
2924   */
2925 #ifdef VDBE_PROFILE
2926   {
2927     FILE *out = fopen("vdbe_profile.out", "a");
2928     if( out ){
2929       int i;
2930       fprintf(out, "---- ");
2931       for(i=0; i<p->nOp; i++){
2932         fprintf(out, "%02x", p->aOp[i].opcode);
2933       }
2934       fprintf(out, "\n");
2935       if( p->zSql ){
2936         char c, pc = 0;
2937         fprintf(out, "-- ");
2938         for(i=0; (c = p->zSql[i])!=0; i++){
2939           if( pc=='\n' ) fprintf(out, "-- ");
2940           putc(c, out);
2941           pc = c;
2942         }
2943         if( pc!='\n' ) fprintf(out, "\n");
2944       }
2945       for(i=0; i<p->nOp; i++){
2946         char zHdr[100];
2947         sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
2948            p->aOp[i].cnt,
2949            p->aOp[i].cycles,
2950            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2951         );
2952         fprintf(out, "%s", zHdr);
2953         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
2954       }
2955       fclose(out);
2956     }
2957   }
2958 #endif
2959   p->magic = VDBE_MAGIC_RESET;
2960   return p->rc & db->errMask;
2961 }
2962 
2963 /*
2964 ** Clean up and delete a VDBE after execution.  Return an integer which is
2965 ** the result code.  Write any error message text into *pzErrMsg.
2966 */
2967 int sqlite3VdbeFinalize(Vdbe *p){
2968   int rc = SQLITE_OK;
2969   if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
2970     rc = sqlite3VdbeReset(p);
2971     assert( (rc & p->db->errMask)==rc );
2972   }
2973   sqlite3VdbeDelete(p);
2974   return rc;
2975 }
2976 
2977 /*
2978 ** If parameter iOp is less than zero, then invoke the destructor for
2979 ** all auxiliary data pointers currently cached by the VM passed as
2980 ** the first argument.
2981 **
2982 ** Or, if iOp is greater than or equal to zero, then the destructor is
2983 ** only invoked for those auxiliary data pointers created by the user
2984 ** function invoked by the OP_Function opcode at instruction iOp of
2985 ** VM pVdbe, and only then if:
2986 **
2987 **    * the associated function parameter is the 32nd or later (counting
2988 **      from left to right), or
2989 **
2990 **    * the corresponding bit in argument mask is clear (where the first
2991 **      function parameter corresponds to bit 0 etc.).
2992 */
2993 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
2994   while( *pp ){
2995     AuxData *pAux = *pp;
2996     if( (iOp<0)
2997      || (pAux->iAuxOp==iOp
2998           && pAux->iAuxArg>=0
2999           && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3000     ){
3001       testcase( pAux->iAuxArg==31 );
3002       if( pAux->xDeleteAux ){
3003         pAux->xDeleteAux(pAux->pAux);
3004       }
3005       *pp = pAux->pNextAux;
3006       sqlite3DbFree(db, pAux);
3007     }else{
3008       pp= &pAux->pNextAux;
3009     }
3010   }
3011 }
3012 
3013 /*
3014 ** Free all memory associated with the Vdbe passed as the second argument,
3015 ** except for object itself, which is preserved.
3016 **
3017 ** The difference between this function and sqlite3VdbeDelete() is that
3018 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3019 ** the database connection and frees the object itself.
3020 */
3021 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3022   SubProgram *pSub, *pNext;
3023   assert( p->db==0 || p->db==db );
3024   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3025   for(pSub=p->pProgram; pSub; pSub=pNext){
3026     pNext = pSub->pNext;
3027     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3028     sqlite3DbFree(db, pSub);
3029   }
3030   if( p->magic!=VDBE_MAGIC_INIT ){
3031     releaseMemArray(p->aVar, p->nVar);
3032     sqlite3DbFree(db, p->pVList);
3033     sqlite3DbFree(db, p->pFree);
3034   }
3035   vdbeFreeOpArray(db, p->aOp, p->nOp);
3036   sqlite3DbFree(db, p->aColName);
3037   sqlite3DbFree(db, p->zSql);
3038 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3039   {
3040     int i;
3041     for(i=0; i<p->nScan; i++){
3042       sqlite3DbFree(db, p->aScan[i].zName);
3043     }
3044     sqlite3DbFree(db, p->aScan);
3045   }
3046 #endif
3047 }
3048 
3049 /*
3050 ** Delete an entire VDBE.
3051 */
3052 void sqlite3VdbeDelete(Vdbe *p){
3053   sqlite3 *db;
3054 
3055   if( NEVER(p==0) ) return;
3056   db = p->db;
3057   assert( sqlite3_mutex_held(db->mutex) );
3058   sqlite3VdbeClearObject(db, p);
3059   if( p->pPrev ){
3060     p->pPrev->pNext = p->pNext;
3061   }else{
3062     assert( db->pVdbe==p );
3063     db->pVdbe = p->pNext;
3064   }
3065   if( p->pNext ){
3066     p->pNext->pPrev = p->pPrev;
3067   }
3068   p->magic = VDBE_MAGIC_DEAD;
3069   p->db = 0;
3070   sqlite3DbFreeNN(db, p);
3071 }
3072 
3073 /*
3074 ** The cursor "p" has a pending seek operation that has not yet been
3075 ** carried out.  Seek the cursor now.  If an error occurs, return
3076 ** the appropriate error code.
3077 */
3078 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
3079   int res, rc;
3080 #ifdef SQLITE_TEST
3081   extern int sqlite3_search_count;
3082 #endif
3083   assert( p->deferredMoveto );
3084   assert( p->isTable );
3085   assert( p->eCurType==CURTYPE_BTREE );
3086   rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
3087   if( rc ) return rc;
3088   if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3089 #ifdef SQLITE_TEST
3090   sqlite3_search_count++;
3091 #endif
3092   p->deferredMoveto = 0;
3093   p->cacheStatus = CACHE_STALE;
3094   return SQLITE_OK;
3095 }
3096 
3097 /*
3098 ** Something has moved cursor "p" out of place.  Maybe the row it was
3099 ** pointed to was deleted out from under it.  Or maybe the btree was
3100 ** rebalanced.  Whatever the cause, try to restore "p" to the place it
3101 ** is supposed to be pointing.  If the row was deleted out from under the
3102 ** cursor, set the cursor to point to a NULL row.
3103 */
3104 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3105   int isDifferentRow, rc;
3106   assert( p->eCurType==CURTYPE_BTREE );
3107   assert( p->uc.pCursor!=0 );
3108   assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3109   rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3110   p->cacheStatus = CACHE_STALE;
3111   if( isDifferentRow ) p->nullRow = 1;
3112   return rc;
3113 }
3114 
3115 /*
3116 ** Check to ensure that the cursor is valid.  Restore the cursor
3117 ** if need be.  Return any I/O error from the restore operation.
3118 */
3119 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3120   assert( p->eCurType==CURTYPE_BTREE );
3121   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3122     return handleMovedCursor(p);
3123   }
3124   return SQLITE_OK;
3125 }
3126 
3127 /*
3128 ** Make sure the cursor p is ready to read or write the row to which it
3129 ** was last positioned.  Return an error code if an OOM fault or I/O error
3130 ** prevents us from positioning the cursor to its correct position.
3131 **
3132 ** If a MoveTo operation is pending on the given cursor, then do that
3133 ** MoveTo now.  If no move is pending, check to see if the row has been
3134 ** deleted out from under the cursor and if it has, mark the row as
3135 ** a NULL row.
3136 **
3137 ** If the cursor is already pointing to the correct row and that row has
3138 ** not been deleted out from under the cursor, then this routine is a no-op.
3139 */
3140 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
3141   VdbeCursor *p = *pp;
3142   if( p->eCurType==CURTYPE_BTREE ){
3143     if( p->deferredMoveto ){
3144       int iMap;
3145       if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
3146         *pp = p->pAltCursor;
3147         *piCol = iMap - 1;
3148         return SQLITE_OK;
3149       }
3150       return handleDeferredMoveto(p);
3151     }
3152     if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3153       return handleMovedCursor(p);
3154     }
3155   }
3156   return SQLITE_OK;
3157 }
3158 
3159 /*
3160 ** The following functions:
3161 **
3162 ** sqlite3VdbeSerialType()
3163 ** sqlite3VdbeSerialTypeLen()
3164 ** sqlite3VdbeSerialLen()
3165 ** sqlite3VdbeSerialPut()
3166 ** sqlite3VdbeSerialGet()
3167 **
3168 ** encapsulate the code that serializes values for storage in SQLite
3169 ** data and index records. Each serialized value consists of a
3170 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3171 ** integer, stored as a varint.
3172 **
3173 ** In an SQLite index record, the serial type is stored directly before
3174 ** the blob of data that it corresponds to. In a table record, all serial
3175 ** types are stored at the start of the record, and the blobs of data at
3176 ** the end. Hence these functions allow the caller to handle the
3177 ** serial-type and data blob separately.
3178 **
3179 ** The following table describes the various storage classes for data:
3180 **
3181 **   serial type        bytes of data      type
3182 **   --------------     ---------------    ---------------
3183 **      0                     0            NULL
3184 **      1                     1            signed integer
3185 **      2                     2            signed integer
3186 **      3                     3            signed integer
3187 **      4                     4            signed integer
3188 **      5                     6            signed integer
3189 **      6                     8            signed integer
3190 **      7                     8            IEEE float
3191 **      8                     0            Integer constant 0
3192 **      9                     0            Integer constant 1
3193 **     10,11                               reserved for expansion
3194 **    N>=12 and even       (N-12)/2        BLOB
3195 **    N>=13 and odd        (N-13)/2        text
3196 **
3197 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
3198 ** of SQLite will not understand those serial types.
3199 */
3200 
3201 /*
3202 ** Return the serial-type for the value stored in pMem.
3203 */
3204 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3205   int flags = pMem->flags;
3206   u32 n;
3207 
3208   assert( pLen!=0 );
3209   if( flags&MEM_Null ){
3210     *pLen = 0;
3211     return 0;
3212   }
3213   if( flags&MEM_Int ){
3214     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3215 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3216     i64 i = pMem->u.i;
3217     u64 u;
3218     if( i<0 ){
3219       u = ~i;
3220     }else{
3221       u = i;
3222     }
3223     if( u<=127 ){
3224       if( (i&1)==i && file_format>=4 ){
3225         *pLen = 0;
3226         return 8+(u32)u;
3227       }else{
3228         *pLen = 1;
3229         return 1;
3230       }
3231     }
3232     if( u<=32767 ){ *pLen = 2; return 2; }
3233     if( u<=8388607 ){ *pLen = 3; return 3; }
3234     if( u<=2147483647 ){ *pLen = 4; return 4; }
3235     if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3236     *pLen = 8;
3237     return 6;
3238   }
3239   if( flags&MEM_Real ){
3240     *pLen = 8;
3241     return 7;
3242   }
3243   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3244   assert( pMem->n>=0 );
3245   n = (u32)pMem->n;
3246   if( flags & MEM_Zero ){
3247     n += pMem->u.nZero;
3248   }
3249   *pLen = n;
3250   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3251 }
3252 
3253 /*
3254 ** The sizes for serial types less than 128
3255 */
3256 static const u8 sqlite3SmallTypeSizes[] = {
3257         /*  0   1   2   3   4   5   6   7   8   9 */
3258 /*   0 */   0,  1,  2,  3,  4,  6,  8,  8,  0,  0,
3259 /*  10 */   0,  0,  0,  0,  1,  1,  2,  2,  3,  3,
3260 /*  20 */   4,  4,  5,  5,  6,  6,  7,  7,  8,  8,
3261 /*  30 */   9,  9, 10, 10, 11, 11, 12, 12, 13, 13,
3262 /*  40 */  14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3263 /*  50 */  19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3264 /*  60 */  24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3265 /*  70 */  29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3266 /*  80 */  34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3267 /*  90 */  39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3268 /* 100 */  44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3269 /* 110 */  49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3270 /* 120 */  54, 54, 55, 55, 56, 56, 57, 57
3271 };
3272 
3273 /*
3274 ** Return the length of the data corresponding to the supplied serial-type.
3275 */
3276 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3277   if( serial_type>=128 ){
3278     return (serial_type-12)/2;
3279   }else{
3280     assert( serial_type<12
3281             || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3282     return sqlite3SmallTypeSizes[serial_type];
3283   }
3284 }
3285 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3286   assert( serial_type<128 );
3287   return sqlite3SmallTypeSizes[serial_type];
3288 }
3289 
3290 /*
3291 ** If we are on an architecture with mixed-endian floating
3292 ** points (ex: ARM7) then swap the lower 4 bytes with the
3293 ** upper 4 bytes.  Return the result.
3294 **
3295 ** For most architectures, this is a no-op.
3296 **
3297 ** (later):  It is reported to me that the mixed-endian problem
3298 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
3299 ** that early versions of GCC stored the two words of a 64-bit
3300 ** float in the wrong order.  And that error has been propagated
3301 ** ever since.  The blame is not necessarily with GCC, though.
3302 ** GCC might have just copying the problem from a prior compiler.
3303 ** I am also told that newer versions of GCC that follow a different
3304 ** ABI get the byte order right.
3305 **
3306 ** Developers using SQLite on an ARM7 should compile and run their
3307 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
3308 ** enabled, some asserts below will ensure that the byte order of
3309 ** floating point values is correct.
3310 **
3311 ** (2007-08-30)  Frank van Vugt has studied this problem closely
3312 ** and has send his findings to the SQLite developers.  Frank
3313 ** writes that some Linux kernels offer floating point hardware
3314 ** emulation that uses only 32-bit mantissas instead of a full
3315 ** 48-bits as required by the IEEE standard.  (This is the
3316 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
3317 ** byte swapping becomes very complicated.  To avoid problems,
3318 ** the necessary byte swapping is carried out using a 64-bit integer
3319 ** rather than a 64-bit float.  Frank assures us that the code here
3320 ** works for him.  We, the developers, have no way to independently
3321 ** verify this, but Frank seems to know what he is talking about
3322 ** so we trust him.
3323 */
3324 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3325 static u64 floatSwap(u64 in){
3326   union {
3327     u64 r;
3328     u32 i[2];
3329   } u;
3330   u32 t;
3331 
3332   u.r = in;
3333   t = u.i[0];
3334   u.i[0] = u.i[1];
3335   u.i[1] = t;
3336   return u.r;
3337 }
3338 # define swapMixedEndianFloat(X)  X = floatSwap(X)
3339 #else
3340 # define swapMixedEndianFloat(X)
3341 #endif
3342 
3343 /*
3344 ** Write the serialized data blob for the value stored in pMem into
3345 ** buf. It is assumed that the caller has allocated sufficient space.
3346 ** Return the number of bytes written.
3347 **
3348 ** nBuf is the amount of space left in buf[].  The caller is responsible
3349 ** for allocating enough space to buf[] to hold the entire field, exclusive
3350 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3351 **
3352 ** Return the number of bytes actually written into buf[].  The number
3353 ** of bytes in the zero-filled tail is included in the return value only
3354 ** if those bytes were zeroed in buf[].
3355 */
3356 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3357   u32 len;
3358 
3359   /* Integer and Real */
3360   if( serial_type<=7 && serial_type>0 ){
3361     u64 v;
3362     u32 i;
3363     if( serial_type==7 ){
3364       assert( sizeof(v)==sizeof(pMem->u.r) );
3365       memcpy(&v, &pMem->u.r, sizeof(v));
3366       swapMixedEndianFloat(v);
3367     }else{
3368       v = pMem->u.i;
3369     }
3370     len = i = sqlite3SmallTypeSizes[serial_type];
3371     assert( i>0 );
3372     do{
3373       buf[--i] = (u8)(v&0xFF);
3374       v >>= 8;
3375     }while( i );
3376     return len;
3377   }
3378 
3379   /* String or blob */
3380   if( serial_type>=12 ){
3381     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3382              == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3383     len = pMem->n;
3384     if( len>0 ) memcpy(buf, pMem->z, len);
3385     return len;
3386   }
3387 
3388   /* NULL or constants 0 or 1 */
3389   return 0;
3390 }
3391 
3392 /* Input "x" is a sequence of unsigned characters that represent a
3393 ** big-endian integer.  Return the equivalent native integer
3394 */
3395 #define ONE_BYTE_INT(x)    ((i8)(x)[0])
3396 #define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
3397 #define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3398 #define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3399 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3400 
3401 /*
3402 ** Deserialize the data blob pointed to by buf as serial type serial_type
3403 ** and store the result in pMem.  Return the number of bytes read.
3404 **
3405 ** This function is implemented as two separate routines for performance.
3406 ** The few cases that require local variables are broken out into a separate
3407 ** routine so that in most cases the overhead of moving the stack pointer
3408 ** is avoided.
3409 */
3410 static u32 SQLITE_NOINLINE serialGet(
3411   const unsigned char *buf,     /* Buffer to deserialize from */
3412   u32 serial_type,              /* Serial type to deserialize */
3413   Mem *pMem                     /* Memory cell to write value into */
3414 ){
3415   u64 x = FOUR_BYTE_UINT(buf);
3416   u32 y = FOUR_BYTE_UINT(buf+4);
3417   x = (x<<32) + y;
3418   if( serial_type==6 ){
3419     /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3420     ** twos-complement integer. */
3421     pMem->u.i = *(i64*)&x;
3422     pMem->flags = MEM_Int;
3423     testcase( pMem->u.i<0 );
3424   }else{
3425     /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3426     ** floating point number. */
3427 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3428     /* Verify that integers and floating point values use the same
3429     ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3430     ** defined that 64-bit floating point values really are mixed
3431     ** endian.
3432     */
3433     static const u64 t1 = ((u64)0x3ff00000)<<32;
3434     static const double r1 = 1.0;
3435     u64 t2 = t1;
3436     swapMixedEndianFloat(t2);
3437     assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3438 #endif
3439     assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3440     swapMixedEndianFloat(x);
3441     memcpy(&pMem->u.r, &x, sizeof(x));
3442     pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
3443   }
3444   return 8;
3445 }
3446 u32 sqlite3VdbeSerialGet(
3447   const unsigned char *buf,     /* Buffer to deserialize from */
3448   u32 serial_type,              /* Serial type to deserialize */
3449   Mem *pMem                     /* Memory cell to write value into */
3450 ){
3451   switch( serial_type ){
3452     case 10:   /* Reserved for future use */
3453     case 11:   /* Reserved for future use */
3454     case 0: {  /* Null */
3455       /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3456       pMem->flags = MEM_Null;
3457       break;
3458     }
3459     case 1: {
3460       /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3461       ** integer. */
3462       pMem->u.i = ONE_BYTE_INT(buf);
3463       pMem->flags = MEM_Int;
3464       testcase( pMem->u.i<0 );
3465       return 1;
3466     }
3467     case 2: { /* 2-byte signed integer */
3468       /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3469       ** twos-complement integer. */
3470       pMem->u.i = TWO_BYTE_INT(buf);
3471       pMem->flags = MEM_Int;
3472       testcase( pMem->u.i<0 );
3473       return 2;
3474     }
3475     case 3: { /* 3-byte signed integer */
3476       /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3477       ** twos-complement integer. */
3478       pMem->u.i = THREE_BYTE_INT(buf);
3479       pMem->flags = MEM_Int;
3480       testcase( pMem->u.i<0 );
3481       return 3;
3482     }
3483     case 4: { /* 4-byte signed integer */
3484       /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3485       ** twos-complement integer. */
3486       pMem->u.i = FOUR_BYTE_INT(buf);
3487 #ifdef __HP_cc
3488       /* Work around a sign-extension bug in the HP compiler for HP/UX */
3489       if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3490 #endif
3491       pMem->flags = MEM_Int;
3492       testcase( pMem->u.i<0 );
3493       return 4;
3494     }
3495     case 5: { /* 6-byte signed integer */
3496       /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3497       ** twos-complement integer. */
3498       pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3499       pMem->flags = MEM_Int;
3500       testcase( pMem->u.i<0 );
3501       return 6;
3502     }
3503     case 6:   /* 8-byte signed integer */
3504     case 7: { /* IEEE floating point */
3505       /* These use local variables, so do them in a separate routine
3506       ** to avoid having to move the frame pointer in the common case */
3507       return serialGet(buf,serial_type,pMem);
3508     }
3509     case 8:    /* Integer 0 */
3510     case 9: {  /* Integer 1 */
3511       /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3512       /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3513       pMem->u.i = serial_type-8;
3514       pMem->flags = MEM_Int;
3515       return 0;
3516     }
3517     default: {
3518       /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3519       ** length.
3520       ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3521       ** (N-13)/2 bytes in length. */
3522       static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3523       pMem->z = (char *)buf;
3524       pMem->n = (serial_type-12)/2;
3525       pMem->flags = aFlag[serial_type&1];
3526       return pMem->n;
3527     }
3528   }
3529   return 0;
3530 }
3531 /*
3532 ** This routine is used to allocate sufficient space for an UnpackedRecord
3533 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3534 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3535 **
3536 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3537 ** the unaligned buffer passed via the second and third arguments (presumably
3538 ** stack space). If the former, then *ppFree is set to a pointer that should
3539 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3540 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3541 ** before returning.
3542 **
3543 ** If an OOM error occurs, NULL is returned.
3544 */
3545 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3546   KeyInfo *pKeyInfo               /* Description of the record */
3547 ){
3548   UnpackedRecord *p;              /* Unpacked record to return */
3549   int nByte;                      /* Number of bytes required for *p */
3550   nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
3551   p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3552   if( !p ) return 0;
3553   p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3554   assert( pKeyInfo->aSortOrder!=0 );
3555   p->pKeyInfo = pKeyInfo;
3556   p->nField = pKeyInfo->nKeyField + 1;
3557   return p;
3558 }
3559 
3560 /*
3561 ** Given the nKey-byte encoding of a record in pKey[], populate the
3562 ** UnpackedRecord structure indicated by the fourth argument with the
3563 ** contents of the decoded record.
3564 */
3565 void sqlite3VdbeRecordUnpack(
3566   KeyInfo *pKeyInfo,     /* Information about the record format */
3567   int nKey,              /* Size of the binary record */
3568   const void *pKey,      /* The binary record */
3569   UnpackedRecord *p      /* Populate this structure before returning. */
3570 ){
3571   const unsigned char *aKey = (const unsigned char *)pKey;
3572   int d;
3573   u32 idx;                        /* Offset in aKey[] to read from */
3574   u16 u;                          /* Unsigned loop counter */
3575   u32 szHdr;
3576   Mem *pMem = p->aMem;
3577 
3578   p->default_rc = 0;
3579   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
3580   idx = getVarint32(aKey, szHdr);
3581   d = szHdr;
3582   u = 0;
3583   while( idx<szHdr && d<=nKey ){
3584     u32 serial_type;
3585 
3586     idx += getVarint32(&aKey[idx], serial_type);
3587     pMem->enc = pKeyInfo->enc;
3588     pMem->db = pKeyInfo->db;
3589     /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
3590     pMem->szMalloc = 0;
3591     pMem->z = 0;
3592     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
3593     pMem++;
3594     if( (++u)>=p->nField ) break;
3595   }
3596   assert( u<=pKeyInfo->nKeyField + 1 );
3597   p->nField = u;
3598 }
3599 
3600 #ifdef SQLITE_DEBUG
3601 /*
3602 ** This function compares two index or table record keys in the same way
3603 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3604 ** this function deserializes and compares values using the
3605 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3606 ** in assert() statements to ensure that the optimized code in
3607 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
3608 **
3609 ** Return true if the result of comparison is equivalent to desiredResult.
3610 ** Return false if there is a disagreement.
3611 */
3612 static int vdbeRecordCompareDebug(
3613   int nKey1, const void *pKey1, /* Left key */
3614   const UnpackedRecord *pPKey2, /* Right key */
3615   int desiredResult             /* Correct answer */
3616 ){
3617   u32 d1;            /* Offset into aKey[] of next data element */
3618   u32 idx1;          /* Offset into aKey[] of next header element */
3619   u32 szHdr1;        /* Number of bytes in header */
3620   int i = 0;
3621   int rc = 0;
3622   const unsigned char *aKey1 = (const unsigned char *)pKey1;
3623   KeyInfo *pKeyInfo;
3624   Mem mem1;
3625 
3626   pKeyInfo = pPKey2->pKeyInfo;
3627   if( pKeyInfo->db==0 ) return 1;
3628   mem1.enc = pKeyInfo->enc;
3629   mem1.db = pKeyInfo->db;
3630   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
3631   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3632 
3633   /* Compilers may complain that mem1.u.i is potentially uninitialized.
3634   ** We could initialize it, as shown here, to silence those complaints.
3635   ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
3636   ** the unnecessary initialization has a measurable negative performance
3637   ** impact, since this routine is a very high runner.  And so, we choose
3638   ** to ignore the compiler warnings and leave this variable uninitialized.
3639   */
3640   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
3641 
3642   idx1 = getVarint32(aKey1, szHdr1);
3643   if( szHdr1>98307 ) return SQLITE_CORRUPT;
3644   d1 = szHdr1;
3645   assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
3646   assert( pKeyInfo->aSortOrder!=0 );
3647   assert( pKeyInfo->nKeyField>0 );
3648   assert( idx1<=szHdr1 || CORRUPT_DB );
3649   do{
3650     u32 serial_type1;
3651 
3652     /* Read the serial types for the next element in each key. */
3653     idx1 += getVarint32( aKey1+idx1, serial_type1 );
3654 
3655     /* Verify that there is enough key space remaining to avoid
3656     ** a buffer overread.  The "d1+serial_type1+2" subexpression will
3657     ** always be greater than or equal to the amount of required key space.
3658     ** Use that approximation to avoid the more expensive call to
3659     ** sqlite3VdbeSerialTypeLen() in the common case.
3660     */
3661     if( d1+serial_type1+2>(u32)nKey1
3662      && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3663     ){
3664       break;
3665     }
3666 
3667     /* Extract the values to be compared.
3668     */
3669     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3670 
3671     /* Do the comparison
3672     */
3673     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
3674     if( rc!=0 ){
3675       assert( mem1.szMalloc==0 );  /* See comment below */
3676       if( pKeyInfo->aSortOrder[i] ){
3677         rc = -rc;  /* Invert the result for DESC sort order. */
3678       }
3679       goto debugCompareEnd;
3680     }
3681     i++;
3682   }while( idx1<szHdr1 && i<pPKey2->nField );
3683 
3684   /* No memory allocation is ever used on mem1.  Prove this using
3685   ** the following assert().  If the assert() fails, it indicates a
3686   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
3687   */
3688   assert( mem1.szMalloc==0 );
3689 
3690   /* rc==0 here means that one of the keys ran out of fields and
3691   ** all the fields up to that point were equal. Return the default_rc
3692   ** value.  */
3693   rc = pPKey2->default_rc;
3694 
3695 debugCompareEnd:
3696   if( desiredResult==0 && rc==0 ) return 1;
3697   if( desiredResult<0 && rc<0 ) return 1;
3698   if( desiredResult>0 && rc>0 ) return 1;
3699   if( CORRUPT_DB ) return 1;
3700   if( pKeyInfo->db->mallocFailed ) return 1;
3701   return 0;
3702 }
3703 #endif
3704 
3705 #ifdef SQLITE_DEBUG
3706 /*
3707 ** Count the number of fields (a.k.a. columns) in the record given by
3708 ** pKey,nKey.  The verify that this count is less than or equal to the
3709 ** limit given by pKeyInfo->nAllField.
3710 **
3711 ** If this constraint is not satisfied, it means that the high-speed
3712 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3713 ** not work correctly.  If this assert() ever fires, it probably means
3714 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
3715 ** incorrectly.
3716 */
3717 static void vdbeAssertFieldCountWithinLimits(
3718   int nKey, const void *pKey,   /* The record to verify */
3719   const KeyInfo *pKeyInfo       /* Compare size with this KeyInfo */
3720 ){
3721   int nField = 0;
3722   u32 szHdr;
3723   u32 idx;
3724   u32 notUsed;
3725   const unsigned char *aKey = (const unsigned char*)pKey;
3726 
3727   if( CORRUPT_DB ) return;
3728   idx = getVarint32(aKey, szHdr);
3729   assert( nKey>=0 );
3730   assert( szHdr<=(u32)nKey );
3731   while( idx<szHdr ){
3732     idx += getVarint32(aKey+idx, notUsed);
3733     nField++;
3734   }
3735   assert( nField <= pKeyInfo->nAllField );
3736 }
3737 #else
3738 # define vdbeAssertFieldCountWithinLimits(A,B,C)
3739 #endif
3740 
3741 /*
3742 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
3743 ** using the collation sequence pColl. As usual, return a negative , zero
3744 ** or positive value if *pMem1 is less than, equal to or greater than
3745 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3746 */
3747 static int vdbeCompareMemString(
3748   const Mem *pMem1,
3749   const Mem *pMem2,
3750   const CollSeq *pColl,
3751   u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */
3752 ){
3753   if( pMem1->enc==pColl->enc ){
3754     /* The strings are already in the correct encoding.  Call the
3755      ** comparison function directly */
3756     return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3757   }else{
3758     int rc;
3759     const void *v1, *v2;
3760     Mem c1;
3761     Mem c2;
3762     sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3763     sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
3764     sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3765     sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3766     v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3767     v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3768     if( (v1==0 || v2==0) ){
3769       if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
3770       rc = 0;
3771     }else{
3772       rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
3773     }
3774     sqlite3VdbeMemRelease(&c1);
3775     sqlite3VdbeMemRelease(&c2);
3776     return rc;
3777   }
3778 }
3779 
3780 /*
3781 ** The input pBlob is guaranteed to be a Blob that is not marked
3782 ** with MEM_Zero.  Return true if it could be a zero-blob.
3783 */
3784 static int isAllZero(const char *z, int n){
3785   int i;
3786   for(i=0; i<n; i++){
3787     if( z[i] ) return 0;
3788   }
3789   return 1;
3790 }
3791 
3792 /*
3793 ** Compare two blobs.  Return negative, zero, or positive if the first
3794 ** is less than, equal to, or greater than the second, respectively.
3795 ** If one blob is a prefix of the other, then the shorter is the lessor.
3796 */
3797 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3798   int c;
3799   int n1 = pB1->n;
3800   int n2 = pB2->n;
3801 
3802   /* It is possible to have a Blob value that has some non-zero content
3803   ** followed by zero content.  But that only comes up for Blobs formed
3804   ** by the OP_MakeRecord opcode, and such Blobs never get passed into
3805   ** sqlite3MemCompare(). */
3806   assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
3807   assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
3808 
3809   if( (pB1->flags|pB2->flags) & MEM_Zero ){
3810     if( pB1->flags & pB2->flags & MEM_Zero ){
3811       return pB1->u.nZero - pB2->u.nZero;
3812     }else if( pB1->flags & MEM_Zero ){
3813       if( !isAllZero(pB2->z, pB2->n) ) return -1;
3814       return pB1->u.nZero - n2;
3815     }else{
3816       if( !isAllZero(pB1->z, pB1->n) ) return +1;
3817       return n1 - pB2->u.nZero;
3818     }
3819   }
3820   c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
3821   if( c ) return c;
3822   return n1 - n2;
3823 }
3824 
3825 /*
3826 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
3827 ** number.  Return negative, zero, or positive if the first (i64) is less than,
3828 ** equal to, or greater than the second (double).
3829 */
3830 static int sqlite3IntFloatCompare(i64 i, double r){
3831   if( sizeof(LONGDOUBLE_TYPE)>8 ){
3832     LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
3833     if( x<r ) return -1;
3834     if( x>r ) return +1;
3835     return 0;
3836   }else{
3837     i64 y;
3838     double s;
3839     if( r<-9223372036854775808.0 ) return +1;
3840     if( r>9223372036854775807.0 ) return -1;
3841     y = (i64)r;
3842     if( i<y ) return -1;
3843     if( i>y ){
3844       if( y==SMALLEST_INT64 && r>0.0 ) return -1;
3845       return +1;
3846     }
3847     s = (double)i;
3848     if( s<r ) return -1;
3849     if( s>r ) return +1;
3850     return 0;
3851   }
3852 }
3853 
3854 /*
3855 ** Compare the values contained by the two memory cells, returning
3856 ** negative, zero or positive if pMem1 is less than, equal to, or greater
3857 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3858 ** and reals) sorted numerically, followed by text ordered by the collating
3859 ** sequence pColl and finally blob's ordered by memcmp().
3860 **
3861 ** Two NULL values are considered equal by this function.
3862 */
3863 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
3864   int f1, f2;
3865   int combined_flags;
3866 
3867   f1 = pMem1->flags;
3868   f2 = pMem2->flags;
3869   combined_flags = f1|f2;
3870   assert( (combined_flags & MEM_RowSet)==0 );
3871 
3872   /* If one value is NULL, it is less than the other. If both values
3873   ** are NULL, return 0.
3874   */
3875   if( combined_flags&MEM_Null ){
3876     return (f2&MEM_Null) - (f1&MEM_Null);
3877   }
3878 
3879   /* At least one of the two values is a number
3880   */
3881   if( combined_flags&(MEM_Int|MEM_Real) ){
3882     if( (f1 & f2 & MEM_Int)!=0 ){
3883       if( pMem1->u.i < pMem2->u.i ) return -1;
3884       if( pMem1->u.i > pMem2->u.i ) return +1;
3885       return 0;
3886     }
3887     if( (f1 & f2 & MEM_Real)!=0 ){
3888       if( pMem1->u.r < pMem2->u.r ) return -1;
3889       if( pMem1->u.r > pMem2->u.r ) return +1;
3890       return 0;
3891     }
3892     if( (f1&MEM_Int)!=0 ){
3893       if( (f2&MEM_Real)!=0 ){
3894         return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
3895       }else{
3896         return -1;
3897       }
3898     }
3899     if( (f1&MEM_Real)!=0 ){
3900       if( (f2&MEM_Int)!=0 ){
3901         return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
3902       }else{
3903         return -1;
3904       }
3905     }
3906     return +1;
3907   }
3908 
3909   /* If one value is a string and the other is a blob, the string is less.
3910   ** If both are strings, compare using the collating functions.
3911   */
3912   if( combined_flags&MEM_Str ){
3913     if( (f1 & MEM_Str)==0 ){
3914       return 1;
3915     }
3916     if( (f2 & MEM_Str)==0 ){
3917       return -1;
3918     }
3919 
3920     assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
3921     assert( pMem1->enc==SQLITE_UTF8 ||
3922             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3923 
3924     /* The collation sequence must be defined at this point, even if
3925     ** the user deletes the collation sequence after the vdbe program is
3926     ** compiled (this was not always the case).
3927     */
3928     assert( !pColl || pColl->xCmp );
3929 
3930     if( pColl ){
3931       return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
3932     }
3933     /* If a NULL pointer was passed as the collate function, fall through
3934     ** to the blob case and use memcmp().  */
3935   }
3936 
3937   /* Both values must be blobs.  Compare using memcmp().  */
3938   return sqlite3BlobCompare(pMem1, pMem2);
3939 }
3940 
3941 
3942 /*
3943 ** The first argument passed to this function is a serial-type that
3944 ** corresponds to an integer - all values between 1 and 9 inclusive
3945 ** except 7. The second points to a buffer containing an integer value
3946 ** serialized according to serial_type. This function deserializes
3947 ** and returns the value.
3948 */
3949 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
3950   u32 y;
3951   assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
3952   switch( serial_type ){
3953     case 0:
3954     case 1:
3955       testcase( aKey[0]&0x80 );
3956       return ONE_BYTE_INT(aKey);
3957     case 2:
3958       testcase( aKey[0]&0x80 );
3959       return TWO_BYTE_INT(aKey);
3960     case 3:
3961       testcase( aKey[0]&0x80 );
3962       return THREE_BYTE_INT(aKey);
3963     case 4: {
3964       testcase( aKey[0]&0x80 );
3965       y = FOUR_BYTE_UINT(aKey);
3966       return (i64)*(int*)&y;
3967     }
3968     case 5: {
3969       testcase( aKey[0]&0x80 );
3970       return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
3971     }
3972     case 6: {
3973       u64 x = FOUR_BYTE_UINT(aKey);
3974       testcase( aKey[0]&0x80 );
3975       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3976       return (i64)*(i64*)&x;
3977     }
3978   }
3979 
3980   return (serial_type - 8);
3981 }
3982 
3983 /*
3984 ** This function compares the two table rows or index records
3985 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
3986 ** or positive integer if key1 is less than, equal to or
3987 ** greater than key2.  The {nKey1, pKey1} key must be a blob
3988 ** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2
3989 ** key must be a parsed key such as obtained from
3990 ** sqlite3VdbeParseRecord.
3991 **
3992 ** If argument bSkip is non-zero, it is assumed that the caller has already
3993 ** determined that the first fields of the keys are equal.
3994 **
3995 ** Key1 and Key2 do not have to contain the same number of fields. If all
3996 ** fields that appear in both keys are equal, then pPKey2->default_rc is
3997 ** returned.
3998 **
3999 ** If database corruption is discovered, set pPKey2->errCode to
4000 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4001 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4002 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4003 */
4004 int sqlite3VdbeRecordCompareWithSkip(
4005   int nKey1, const void *pKey1,   /* Left key */
4006   UnpackedRecord *pPKey2,         /* Right key */
4007   int bSkip                       /* If true, skip the first field */
4008 ){
4009   u32 d1;                         /* Offset into aKey[] of next data element */
4010   int i;                          /* Index of next field to compare */
4011   u32 szHdr1;                     /* Size of record header in bytes */
4012   u32 idx1;                       /* Offset of first type in header */
4013   int rc = 0;                     /* Return value */
4014   Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
4015   KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
4016   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4017   Mem mem1;
4018 
4019   /* If bSkip is true, then the caller has already determined that the first
4020   ** two elements in the keys are equal. Fix the various stack variables so
4021   ** that this routine begins comparing at the second field. */
4022   if( bSkip ){
4023     u32 s1;
4024     idx1 = 1 + getVarint32(&aKey1[1], s1);
4025     szHdr1 = aKey1[0];
4026     d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4027     i = 1;
4028     pRhs++;
4029   }else{
4030     idx1 = getVarint32(aKey1, szHdr1);
4031     d1 = szHdr1;
4032     if( d1>(unsigned)nKey1 ){
4033       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4034       return 0;  /* Corruption */
4035     }
4036     i = 0;
4037   }
4038 
4039   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4040   assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4041        || CORRUPT_DB );
4042   assert( pPKey2->pKeyInfo->aSortOrder!=0 );
4043   assert( pPKey2->pKeyInfo->nKeyField>0 );
4044   assert( idx1<=szHdr1 || CORRUPT_DB );
4045   do{
4046     u32 serial_type;
4047 
4048     /* RHS is an integer */
4049     if( pRhs->flags & MEM_Int ){
4050       serial_type = aKey1[idx1];
4051       testcase( serial_type==12 );
4052       if( serial_type>=10 ){
4053         rc = +1;
4054       }else if( serial_type==0 ){
4055         rc = -1;
4056       }else if( serial_type==7 ){
4057         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4058         rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4059       }else{
4060         i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4061         i64 rhs = pRhs->u.i;
4062         if( lhs<rhs ){
4063           rc = -1;
4064         }else if( lhs>rhs ){
4065           rc = +1;
4066         }
4067       }
4068     }
4069 
4070     /* RHS is real */
4071     else if( pRhs->flags & MEM_Real ){
4072       serial_type = aKey1[idx1];
4073       if( serial_type>=10 ){
4074         /* Serial types 12 or greater are strings and blobs (greater than
4075         ** numbers). Types 10 and 11 are currently "reserved for future
4076         ** use", so it doesn't really matter what the results of comparing
4077         ** them to numberic values are.  */
4078         rc = +1;
4079       }else if( serial_type==0 ){
4080         rc = -1;
4081       }else{
4082         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4083         if( serial_type==7 ){
4084           if( mem1.u.r<pRhs->u.r ){
4085             rc = -1;
4086           }else if( mem1.u.r>pRhs->u.r ){
4087             rc = +1;
4088           }
4089         }else{
4090           rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4091         }
4092       }
4093     }
4094 
4095     /* RHS is a string */
4096     else if( pRhs->flags & MEM_Str ){
4097       getVarint32(&aKey1[idx1], serial_type);
4098       testcase( serial_type==12 );
4099       if( serial_type<12 ){
4100         rc = -1;
4101       }else if( !(serial_type & 0x01) ){
4102         rc = +1;
4103       }else{
4104         mem1.n = (serial_type - 12) / 2;
4105         testcase( (d1+mem1.n)==(unsigned)nKey1 );
4106         testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4107         if( (d1+mem1.n) > (unsigned)nKey1 ){
4108           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4109           return 0;                /* Corruption */
4110         }else if( pKeyInfo->aColl[i] ){
4111           mem1.enc = pKeyInfo->enc;
4112           mem1.db = pKeyInfo->db;
4113           mem1.flags = MEM_Str;
4114           mem1.z = (char*)&aKey1[d1];
4115           rc = vdbeCompareMemString(
4116               &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4117           );
4118         }else{
4119           int nCmp = MIN(mem1.n, pRhs->n);
4120           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4121           if( rc==0 ) rc = mem1.n - pRhs->n;
4122         }
4123       }
4124     }
4125 
4126     /* RHS is a blob */
4127     else if( pRhs->flags & MEM_Blob ){
4128       assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4129       getVarint32(&aKey1[idx1], serial_type);
4130       testcase( serial_type==12 );
4131       if( serial_type<12 || (serial_type & 0x01) ){
4132         rc = -1;
4133       }else{
4134         int nStr = (serial_type - 12) / 2;
4135         testcase( (d1+nStr)==(unsigned)nKey1 );
4136         testcase( (d1+nStr+1)==(unsigned)nKey1 );
4137         if( (d1+nStr) > (unsigned)nKey1 ){
4138           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4139           return 0;                /* Corruption */
4140         }else if( pRhs->flags & MEM_Zero ){
4141           if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4142             rc = 1;
4143           }else{
4144             rc = nStr - pRhs->u.nZero;
4145           }
4146         }else{
4147           int nCmp = MIN(nStr, pRhs->n);
4148           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4149           if( rc==0 ) rc = nStr - pRhs->n;
4150         }
4151       }
4152     }
4153 
4154     /* RHS is null */
4155     else{
4156       serial_type = aKey1[idx1];
4157       rc = (serial_type!=0);
4158     }
4159 
4160     if( rc!=0 ){
4161       if( pKeyInfo->aSortOrder[i] ){
4162         rc = -rc;
4163       }
4164       assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4165       assert( mem1.szMalloc==0 );  /* See comment below */
4166       return rc;
4167     }
4168 
4169     i++;
4170     pRhs++;
4171     d1 += sqlite3VdbeSerialTypeLen(serial_type);
4172     idx1 += sqlite3VarintLen(serial_type);
4173   }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
4174 
4175   /* No memory allocation is ever used on mem1.  Prove this using
4176   ** the following assert().  If the assert() fails, it indicates a
4177   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
4178   assert( mem1.szMalloc==0 );
4179 
4180   /* rc==0 here means that one or both of the keys ran out of fields and
4181   ** all the fields up to that point were equal. Return the default_rc
4182   ** value.  */
4183   assert( CORRUPT_DB
4184        || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4185        || pKeyInfo->db->mallocFailed
4186   );
4187   pPKey2->eqSeen = 1;
4188   return pPKey2->default_rc;
4189 }
4190 int sqlite3VdbeRecordCompare(
4191   int nKey1, const void *pKey1,   /* Left key */
4192   UnpackedRecord *pPKey2          /* Right key */
4193 ){
4194   return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4195 }
4196 
4197 
4198 /*
4199 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4200 ** that (a) the first field of pPKey2 is an integer, and (b) the
4201 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4202 ** byte (i.e. is less than 128).
4203 **
4204 ** To avoid concerns about buffer overreads, this routine is only used
4205 ** on schemas where the maximum valid header size is 63 bytes or less.
4206 */
4207 static int vdbeRecordCompareInt(
4208   int nKey1, const void *pKey1, /* Left key */
4209   UnpackedRecord *pPKey2        /* Right key */
4210 ){
4211   const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4212   int serial_type = ((const u8*)pKey1)[1];
4213   int res;
4214   u32 y;
4215   u64 x;
4216   i64 v;
4217   i64 lhs;
4218 
4219   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4220   assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4221   switch( serial_type ){
4222     case 1: { /* 1-byte signed integer */
4223       lhs = ONE_BYTE_INT(aKey);
4224       testcase( lhs<0 );
4225       break;
4226     }
4227     case 2: { /* 2-byte signed integer */
4228       lhs = TWO_BYTE_INT(aKey);
4229       testcase( lhs<0 );
4230       break;
4231     }
4232     case 3: { /* 3-byte signed integer */
4233       lhs = THREE_BYTE_INT(aKey);
4234       testcase( lhs<0 );
4235       break;
4236     }
4237     case 4: { /* 4-byte signed integer */
4238       y = FOUR_BYTE_UINT(aKey);
4239       lhs = (i64)*(int*)&y;
4240       testcase( lhs<0 );
4241       break;
4242     }
4243     case 5: { /* 6-byte signed integer */
4244       lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4245       testcase( lhs<0 );
4246       break;
4247     }
4248     case 6: { /* 8-byte signed integer */
4249       x = FOUR_BYTE_UINT(aKey);
4250       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4251       lhs = *(i64*)&x;
4252       testcase( lhs<0 );
4253       break;
4254     }
4255     case 8:
4256       lhs = 0;
4257       break;
4258     case 9:
4259       lhs = 1;
4260       break;
4261 
4262     /* This case could be removed without changing the results of running
4263     ** this code. Including it causes gcc to generate a faster switch
4264     ** statement (since the range of switch targets now starts at zero and
4265     ** is contiguous) but does not cause any duplicate code to be generated
4266     ** (as gcc is clever enough to combine the two like cases). Other
4267     ** compilers might be similar.  */
4268     case 0: case 7:
4269       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4270 
4271     default:
4272       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4273   }
4274 
4275   v = pPKey2->aMem[0].u.i;
4276   if( v>lhs ){
4277     res = pPKey2->r1;
4278   }else if( v<lhs ){
4279     res = pPKey2->r2;
4280   }else if( pPKey2->nField>1 ){
4281     /* The first fields of the two keys are equal. Compare the trailing
4282     ** fields.  */
4283     res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4284   }else{
4285     /* The first fields of the two keys are equal and there are no trailing
4286     ** fields. Return pPKey2->default_rc in this case. */
4287     res = pPKey2->default_rc;
4288     pPKey2->eqSeen = 1;
4289   }
4290 
4291   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4292   return res;
4293 }
4294 
4295 /*
4296 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4297 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4298 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4299 ** at the start of (pKey1/nKey1) fits in a single byte.
4300 */
4301 static int vdbeRecordCompareString(
4302   int nKey1, const void *pKey1, /* Left key */
4303   UnpackedRecord *pPKey2        /* Right key */
4304 ){
4305   const u8 *aKey1 = (const u8*)pKey1;
4306   int serial_type;
4307   int res;
4308 
4309   assert( pPKey2->aMem[0].flags & MEM_Str );
4310   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4311   getVarint32(&aKey1[1], serial_type);
4312   if( serial_type<12 ){
4313     res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
4314   }else if( !(serial_type & 0x01) ){
4315     res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
4316   }else{
4317     int nCmp;
4318     int nStr;
4319     int szHdr = aKey1[0];
4320 
4321     nStr = (serial_type-12) / 2;
4322     if( (szHdr + nStr) > nKey1 ){
4323       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4324       return 0;    /* Corruption */
4325     }
4326     nCmp = MIN( pPKey2->aMem[0].n, nStr );
4327     res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4328 
4329     if( res==0 ){
4330       res = nStr - pPKey2->aMem[0].n;
4331       if( res==0 ){
4332         if( pPKey2->nField>1 ){
4333           res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4334         }else{
4335           res = pPKey2->default_rc;
4336           pPKey2->eqSeen = 1;
4337         }
4338       }else if( res>0 ){
4339         res = pPKey2->r2;
4340       }else{
4341         res = pPKey2->r1;
4342       }
4343     }else if( res>0 ){
4344       res = pPKey2->r2;
4345     }else{
4346       res = pPKey2->r1;
4347     }
4348   }
4349 
4350   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4351        || CORRUPT_DB
4352        || pPKey2->pKeyInfo->db->mallocFailed
4353   );
4354   return res;
4355 }
4356 
4357 /*
4358 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4359 ** suitable for comparing serialized records to the unpacked record passed
4360 ** as the only argument.
4361 */
4362 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4363   /* varintRecordCompareInt() and varintRecordCompareString() both assume
4364   ** that the size-of-header varint that occurs at the start of each record
4365   ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4366   ** also assumes that it is safe to overread a buffer by at least the
4367   ** maximum possible legal header size plus 8 bytes. Because there is
4368   ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4369   ** buffer passed to varintRecordCompareInt() this makes it convenient to
4370   ** limit the size of the header to 64 bytes in cases where the first field
4371   ** is an integer.
4372   **
4373   ** The easiest way to enforce this limit is to consider only records with
4374   ** 13 fields or less. If the first field is an integer, the maximum legal
4375   ** header size is (12*5 + 1 + 1) bytes.  */
4376   if( p->pKeyInfo->nAllField<=13 ){
4377     int flags = p->aMem[0].flags;
4378     if( p->pKeyInfo->aSortOrder[0] ){
4379       p->r1 = 1;
4380       p->r2 = -1;
4381     }else{
4382       p->r1 = -1;
4383       p->r2 = 1;
4384     }
4385     if( (flags & MEM_Int) ){
4386       return vdbeRecordCompareInt;
4387     }
4388     testcase( flags & MEM_Real );
4389     testcase( flags & MEM_Null );
4390     testcase( flags & MEM_Blob );
4391     if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
4392       assert( flags & MEM_Str );
4393       return vdbeRecordCompareString;
4394     }
4395   }
4396 
4397   return sqlite3VdbeRecordCompare;
4398 }
4399 
4400 /*
4401 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4402 ** Read the rowid (the last field in the record) and store it in *rowid.
4403 ** Return SQLITE_OK if everything works, or an error code otherwise.
4404 **
4405 ** pCur might be pointing to text obtained from a corrupt database file.
4406 ** So the content cannot be trusted.  Do appropriate checks on the content.
4407 */
4408 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4409   i64 nCellKey = 0;
4410   int rc;
4411   u32 szHdr;        /* Size of the header */
4412   u32 typeRowid;    /* Serial type of the rowid */
4413   u32 lenRowid;     /* Size of the rowid */
4414   Mem m, v;
4415 
4416   /* Get the size of the index entry.  Only indices entries of less
4417   ** than 2GiB are support - anything large must be database corruption.
4418   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4419   ** this code can safely assume that nCellKey is 32-bits
4420   */
4421   assert( sqlite3BtreeCursorIsValid(pCur) );
4422   nCellKey = sqlite3BtreePayloadSize(pCur);
4423   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4424 
4425   /* Read in the complete content of the index entry */
4426   sqlite3VdbeMemInit(&m, db, 0);
4427   rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4428   if( rc ){
4429     return rc;
4430   }
4431 
4432   /* The index entry must begin with a header size */
4433   (void)getVarint32((u8*)m.z, szHdr);
4434   testcase( szHdr==3 );
4435   testcase( szHdr==m.n );
4436   if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
4437     goto idx_rowid_corruption;
4438   }
4439 
4440   /* The last field of the index should be an integer - the ROWID.
4441   ** Verify that the last entry really is an integer. */
4442   (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
4443   testcase( typeRowid==1 );
4444   testcase( typeRowid==2 );
4445   testcase( typeRowid==3 );
4446   testcase( typeRowid==4 );
4447   testcase( typeRowid==5 );
4448   testcase( typeRowid==6 );
4449   testcase( typeRowid==8 );
4450   testcase( typeRowid==9 );
4451   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4452     goto idx_rowid_corruption;
4453   }
4454   lenRowid = sqlite3SmallTypeSizes[typeRowid];
4455   testcase( (u32)m.n==szHdr+lenRowid );
4456   if( unlikely((u32)m.n<szHdr+lenRowid) ){
4457     goto idx_rowid_corruption;
4458   }
4459 
4460   /* Fetch the integer off the end of the index record */
4461   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4462   *rowid = v.u.i;
4463   sqlite3VdbeMemRelease(&m);
4464   return SQLITE_OK;
4465 
4466   /* Jump here if database corruption is detected after m has been
4467   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
4468 idx_rowid_corruption:
4469   testcase( m.szMalloc!=0 );
4470   sqlite3VdbeMemRelease(&m);
4471   return SQLITE_CORRUPT_BKPT;
4472 }
4473 
4474 /*
4475 ** Compare the key of the index entry that cursor pC is pointing to against
4476 ** the key string in pUnpacked.  Write into *pRes a number
4477 ** that is negative, zero, or positive if pC is less than, equal to,
4478 ** or greater than pUnpacked.  Return SQLITE_OK on success.
4479 **
4480 ** pUnpacked is either created without a rowid or is truncated so that it
4481 ** omits the rowid at the end.  The rowid at the end of the index entry
4482 ** is ignored as well.  Hence, this routine only compares the prefixes
4483 ** of the keys prior to the final rowid, not the entire key.
4484 */
4485 int sqlite3VdbeIdxKeyCompare(
4486   sqlite3 *db,                     /* Database connection */
4487   VdbeCursor *pC,                  /* The cursor to compare against */
4488   UnpackedRecord *pUnpacked,       /* Unpacked version of key */
4489   int *res                         /* Write the comparison result here */
4490 ){
4491   i64 nCellKey = 0;
4492   int rc;
4493   BtCursor *pCur;
4494   Mem m;
4495 
4496   assert( pC->eCurType==CURTYPE_BTREE );
4497   pCur = pC->uc.pCursor;
4498   assert( sqlite3BtreeCursorIsValid(pCur) );
4499   nCellKey = sqlite3BtreePayloadSize(pCur);
4500   /* nCellKey will always be between 0 and 0xffffffff because of the way
4501   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4502   if( nCellKey<=0 || nCellKey>0x7fffffff ){
4503     *res = 0;
4504     return SQLITE_CORRUPT_BKPT;
4505   }
4506   sqlite3VdbeMemInit(&m, db, 0);
4507   rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4508   if( rc ){
4509     return rc;
4510   }
4511   *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
4512   sqlite3VdbeMemRelease(&m);
4513   return SQLITE_OK;
4514 }
4515 
4516 /*
4517 ** This routine sets the value to be returned by subsequent calls to
4518 ** sqlite3_changes() on the database handle 'db'.
4519 */
4520 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
4521   assert( sqlite3_mutex_held(db->mutex) );
4522   db->nChange = nChange;
4523   db->nTotalChange += nChange;
4524 }
4525 
4526 /*
4527 ** Set a flag in the vdbe to update the change counter when it is finalised
4528 ** or reset.
4529 */
4530 void sqlite3VdbeCountChanges(Vdbe *v){
4531   v->changeCntOn = 1;
4532 }
4533 
4534 /*
4535 ** Mark every prepared statement associated with a database connection
4536 ** as expired.
4537 **
4538 ** An expired statement means that recompilation of the statement is
4539 ** recommend.  Statements expire when things happen that make their
4540 ** programs obsolete.  Removing user-defined functions or collating
4541 ** sequences, or changing an authorization function are the types of
4542 ** things that make prepared statements obsolete.
4543 */
4544 void sqlite3ExpirePreparedStatements(sqlite3 *db){
4545   Vdbe *p;
4546   for(p = db->pVdbe; p; p=p->pNext){
4547     p->expired = 1;
4548   }
4549 }
4550 
4551 /*
4552 ** Return the database associated with the Vdbe.
4553 */
4554 sqlite3 *sqlite3VdbeDb(Vdbe *v){
4555   return v->db;
4556 }
4557 
4558 /*
4559 ** Return the SQLITE_PREPARE flags for a Vdbe.
4560 */
4561 u8 sqlite3VdbePrepareFlags(Vdbe *v){
4562   return v->prepFlags;
4563 }
4564 
4565 /*
4566 ** Return a pointer to an sqlite3_value structure containing the value bound
4567 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4568 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4569 ** constants) to the value before returning it.
4570 **
4571 ** The returned value must be freed by the caller using sqlite3ValueFree().
4572 */
4573 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
4574   assert( iVar>0 );
4575   if( v ){
4576     Mem *pMem = &v->aVar[iVar-1];
4577     assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
4578     if( 0==(pMem->flags & MEM_Null) ){
4579       sqlite3_value *pRet = sqlite3ValueNew(v->db);
4580       if( pRet ){
4581         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4582         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
4583       }
4584       return pRet;
4585     }
4586   }
4587   return 0;
4588 }
4589 
4590 /*
4591 ** Configure SQL variable iVar so that binding a new value to it signals
4592 ** to sqlite3_reoptimize() that re-preparing the statement may result
4593 ** in a better query plan.
4594 */
4595 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
4596   assert( iVar>0 );
4597   assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
4598   if( iVar>=32 ){
4599     v->expmask |= 0x80000000;
4600   }else{
4601     v->expmask |= ((u32)1 << (iVar-1));
4602   }
4603 }
4604 
4605 /*
4606 ** Cause a function to throw an error if it was call from OP_PureFunc
4607 ** rather than OP_Function.
4608 **
4609 ** OP_PureFunc means that the function must be deterministic, and should
4610 ** throw an error if it is given inputs that would make it non-deterministic.
4611 ** This routine is invoked by date/time functions that use non-deterministic
4612 ** features such as 'now'.
4613 */
4614 int sqlite3NotPureFunc(sqlite3_context *pCtx){
4615 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
4616   if( pCtx->pVdbe==0 ) return 1;
4617 #endif
4618   if( pCtx->pVdbe->aOp[pCtx->iOp].opcode==OP_PureFunc ){
4619     sqlite3_result_error(pCtx,
4620        "non-deterministic function in index expression or CHECK constraint",
4621        -1);
4622     return 0;
4623   }
4624   return 1;
4625 }
4626 
4627 #ifndef SQLITE_OMIT_VIRTUALTABLE
4628 /*
4629 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4630 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4631 ** in memory obtained from sqlite3DbMalloc).
4632 */
4633 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4634   if( pVtab->zErrMsg ){
4635     sqlite3 *db = p->db;
4636     sqlite3DbFree(db, p->zErrMsg);
4637     p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4638     sqlite3_free(pVtab->zErrMsg);
4639     pVtab->zErrMsg = 0;
4640   }
4641 }
4642 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4643 
4644 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4645 
4646 /*
4647 ** If the second argument is not NULL, release any allocations associated
4648 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
4649 ** structure itself, using sqlite3DbFree().
4650 **
4651 ** This function is used to free UnpackedRecord structures allocated by
4652 ** the vdbeUnpackRecord() function found in vdbeapi.c.
4653 */
4654 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
4655   if( p ){
4656     int i;
4657     for(i=0; i<nField; i++){
4658       Mem *pMem = &p->aMem[i];
4659       if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
4660     }
4661     sqlite3DbFreeNN(db, p);
4662   }
4663 }
4664 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
4665 
4666 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4667 /*
4668 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
4669 ** then cursor passed as the second argument should point to the row about
4670 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
4671 ** the required value will be read from the row the cursor points to.
4672 */
4673 void sqlite3VdbePreUpdateHook(
4674   Vdbe *v,                        /* Vdbe pre-update hook is invoked by */
4675   VdbeCursor *pCsr,               /* Cursor to grab old.* values from */
4676   int op,                         /* SQLITE_INSERT, UPDATE or DELETE */
4677   const char *zDb,                /* Database name */
4678   Table *pTab,                    /* Modified table */
4679   i64 iKey1,                      /* Initial key value */
4680   int iReg                        /* Register for new.* record */
4681 ){
4682   sqlite3 *db = v->db;
4683   i64 iKey2;
4684   PreUpdate preupdate;
4685   const char *zTbl = pTab->zName;
4686   static const u8 fakeSortOrder = 0;
4687 
4688   assert( db->pPreUpdate==0 );
4689   memset(&preupdate, 0, sizeof(PreUpdate));
4690   if( HasRowid(pTab)==0 ){
4691     iKey1 = iKey2 = 0;
4692     preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
4693   }else{
4694     if( op==SQLITE_UPDATE ){
4695       iKey2 = v->aMem[iReg].u.i;
4696     }else{
4697       iKey2 = iKey1;
4698     }
4699   }
4700 
4701   assert( pCsr->nField==pTab->nCol
4702        || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
4703   );
4704 
4705   preupdate.v = v;
4706   preupdate.pCsr = pCsr;
4707   preupdate.op = op;
4708   preupdate.iNewReg = iReg;
4709   preupdate.keyinfo.db = db;
4710   preupdate.keyinfo.enc = ENC(db);
4711   preupdate.keyinfo.nKeyField = pTab->nCol;
4712   preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder;
4713   preupdate.iKey1 = iKey1;
4714   preupdate.iKey2 = iKey2;
4715   preupdate.pTab = pTab;
4716 
4717   db->pPreUpdate = &preupdate;
4718   db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
4719   db->pPreUpdate = 0;
4720   sqlite3DbFree(db, preupdate.aRecord);
4721   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
4722   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
4723   if( preupdate.aNew ){
4724     int i;
4725     for(i=0; i<pCsr->nField; i++){
4726       sqlite3VdbeMemRelease(&preupdate.aNew[i]);
4727     }
4728     sqlite3DbFreeNN(db, preupdate.aNew);
4729   }
4730 }
4731 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
4732