1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* 19 ** Create a new virtual database engine. 20 */ 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 22 sqlite3 *db = pParse->db; 23 Vdbe *p; 24 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 25 if( p==0 ) return 0; 26 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 27 p->db = db; 28 if( db->pVdbe ){ 29 db->pVdbe->pPrev = p; 30 } 31 p->pNext = db->pVdbe; 32 p->pPrev = 0; 33 db->pVdbe = p; 34 p->magic = VDBE_MAGIC_INIT; 35 p->pParse = pParse; 36 assert( pParse->aLabel==0 ); 37 assert( pParse->nLabel==0 ); 38 assert( pParse->nOpAlloc==0 ); 39 assert( pParse->szOpAlloc==0 ); 40 return p; 41 } 42 43 /* 44 ** Change the error string stored in Vdbe.zErrMsg 45 */ 46 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 47 va_list ap; 48 sqlite3DbFree(p->db, p->zErrMsg); 49 va_start(ap, zFormat); 50 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 51 va_end(ap); 52 } 53 54 /* 55 ** Remember the SQL string for a prepared statement. 56 */ 57 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 58 if( p==0 ) return; 59 p->prepFlags = prepFlags; 60 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 61 p->expmask = 0; 62 } 63 assert( p->zSql==0 ); 64 p->zSql = sqlite3DbStrNDup(p->db, z, n); 65 } 66 67 /* 68 ** Swap all content between two VDBE structures. 69 */ 70 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 71 Vdbe tmp, *pTmp; 72 char *zTmp; 73 assert( pA->db==pB->db ); 74 tmp = *pA; 75 *pA = *pB; 76 *pB = tmp; 77 pTmp = pA->pNext; 78 pA->pNext = pB->pNext; 79 pB->pNext = pTmp; 80 pTmp = pA->pPrev; 81 pA->pPrev = pB->pPrev; 82 pB->pPrev = pTmp; 83 zTmp = pA->zSql; 84 pA->zSql = pB->zSql; 85 pB->zSql = zTmp; 86 pB->expmask = pA->expmask; 87 pB->prepFlags = pA->prepFlags; 88 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 89 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 90 } 91 92 /* 93 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 94 ** than its current size. nOp is guaranteed to be less than or equal 95 ** to 1024/sizeof(Op). 96 ** 97 ** If an out-of-memory error occurs while resizing the array, return 98 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain 99 ** unchanged (this is so that any opcodes already allocated can be 100 ** correctly deallocated along with the rest of the Vdbe). 101 */ 102 static int growOpArray(Vdbe *v, int nOp){ 103 VdbeOp *pNew; 104 Parse *p = v->pParse; 105 106 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 107 ** more frequent reallocs and hence provide more opportunities for 108 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 109 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 110 ** by the minimum* amount required until the size reaches 512. Normal 111 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 112 ** size of the op array or add 1KB of space, whichever is smaller. */ 113 #ifdef SQLITE_TEST_REALLOC_STRESS 114 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); 115 #else 116 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); 117 UNUSED_PARAMETER(nOp); 118 #endif 119 120 /* Ensure that the size of a VDBE does not grow too large */ 121 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 122 sqlite3OomFault(p->db); 123 return SQLITE_NOMEM; 124 } 125 126 assert( nOp<=(1024/sizeof(Op)) ); 127 assert( nNew>=(p->nOpAlloc+nOp) ); 128 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 129 if( pNew ){ 130 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 131 p->nOpAlloc = p->szOpAlloc/sizeof(Op); 132 v->aOp = pNew; 133 } 134 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 135 } 136 137 #ifdef SQLITE_DEBUG 138 /* This routine is just a convenient place to set a breakpoint that will 139 ** fire after each opcode is inserted and displayed using 140 ** "PRAGMA vdbe_addoptrace=on". 141 */ 142 static void test_addop_breakpoint(void){ 143 static int n = 0; 144 n++; 145 } 146 #endif 147 148 /* 149 ** Add a new instruction to the list of instructions current in the 150 ** VDBE. Return the address of the new instruction. 151 ** 152 ** Parameters: 153 ** 154 ** p Pointer to the VDBE 155 ** 156 ** op The opcode for this instruction 157 ** 158 ** p1, p2, p3 Operands 159 ** 160 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 161 ** the sqlite3VdbeChangeP4() function to change the value of the P4 162 ** operand. 163 */ 164 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 165 assert( p->pParse->nOpAlloc<=p->nOp ); 166 if( growOpArray(p, 1) ) return 1; 167 assert( p->pParse->nOpAlloc>p->nOp ); 168 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 169 } 170 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 171 int i; 172 VdbeOp *pOp; 173 174 i = p->nOp; 175 assert( p->magic==VDBE_MAGIC_INIT ); 176 assert( op>=0 && op<0xff ); 177 if( p->pParse->nOpAlloc<=i ){ 178 return growOp3(p, op, p1, p2, p3); 179 } 180 p->nOp++; 181 pOp = &p->aOp[i]; 182 pOp->opcode = (u8)op; 183 pOp->p5 = 0; 184 pOp->p1 = p1; 185 pOp->p2 = p2; 186 pOp->p3 = p3; 187 pOp->p4.p = 0; 188 pOp->p4type = P4_NOTUSED; 189 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 190 pOp->zComment = 0; 191 #endif 192 #ifdef SQLITE_DEBUG 193 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 194 int jj, kk; 195 Parse *pParse = p->pParse; 196 for(jj=kk=0; jj<pParse->nColCache; jj++){ 197 struct yColCache *x = pParse->aColCache + jj; 198 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); 199 kk++; 200 } 201 if( kk ) printf("\n"); 202 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 203 test_addop_breakpoint(); 204 } 205 #endif 206 #ifdef VDBE_PROFILE 207 pOp->cycles = 0; 208 pOp->cnt = 0; 209 #endif 210 #ifdef SQLITE_VDBE_COVERAGE 211 pOp->iSrcLine = 0; 212 #endif 213 return i; 214 } 215 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 216 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 217 } 218 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 219 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 220 } 221 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 222 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 223 } 224 225 /* Generate code for an unconditional jump to instruction iDest 226 */ 227 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 228 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 229 } 230 231 /* Generate code to cause the string zStr to be loaded into 232 ** register iDest 233 */ 234 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 235 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 236 } 237 238 /* 239 ** Generate code that initializes multiple registers to string or integer 240 ** constants. The registers begin with iDest and increase consecutively. 241 ** One register is initialized for each characgter in zTypes[]. For each 242 ** "s" character in zTypes[], the register is a string if the argument is 243 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 244 ** in zTypes[], the register is initialized to an integer. 245 ** 246 ** If the input string does not end with "X" then an OP_ResultRow instruction 247 ** is generated for the values inserted. 248 */ 249 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 250 va_list ap; 251 int i; 252 char c; 253 va_start(ap, zTypes); 254 for(i=0; (c = zTypes[i])!=0; i++){ 255 if( c=='s' ){ 256 const char *z = va_arg(ap, const char*); 257 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 258 }else if( c=='i' ){ 259 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 260 }else{ 261 goto skip_op_resultrow; 262 } 263 } 264 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 265 skip_op_resultrow: 266 va_end(ap); 267 } 268 269 /* 270 ** Add an opcode that includes the p4 value as a pointer. 271 */ 272 int sqlite3VdbeAddOp4( 273 Vdbe *p, /* Add the opcode to this VM */ 274 int op, /* The new opcode */ 275 int p1, /* The P1 operand */ 276 int p2, /* The P2 operand */ 277 int p3, /* The P3 operand */ 278 const char *zP4, /* The P4 operand */ 279 int p4type /* P4 operand type */ 280 ){ 281 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 282 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 283 return addr; 284 } 285 286 /* 287 ** Add an opcode that includes the p4 value with a P4_INT64 or 288 ** P4_REAL type. 289 */ 290 int sqlite3VdbeAddOp4Dup8( 291 Vdbe *p, /* Add the opcode to this VM */ 292 int op, /* The new opcode */ 293 int p1, /* The P1 operand */ 294 int p2, /* The P2 operand */ 295 int p3, /* The P3 operand */ 296 const u8 *zP4, /* The P4 operand */ 297 int p4type /* P4 operand type */ 298 ){ 299 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 300 if( p4copy ) memcpy(p4copy, zP4, 8); 301 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 302 } 303 304 /* 305 ** Add an OP_ParseSchema opcode. This routine is broken out from 306 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 307 ** as having been used. 308 ** 309 ** The zWhere string must have been obtained from sqlite3_malloc(). 310 ** This routine will take ownership of the allocated memory. 311 */ 312 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ 313 int j; 314 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 315 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 316 } 317 318 /* 319 ** Add an opcode that includes the p4 value as an integer. 320 */ 321 int sqlite3VdbeAddOp4Int( 322 Vdbe *p, /* Add the opcode to this VM */ 323 int op, /* The new opcode */ 324 int p1, /* The P1 operand */ 325 int p2, /* The P2 operand */ 326 int p3, /* The P3 operand */ 327 int p4 /* The P4 operand as an integer */ 328 ){ 329 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 330 if( p->db->mallocFailed==0 ){ 331 VdbeOp *pOp = &p->aOp[addr]; 332 pOp->p4type = P4_INT32; 333 pOp->p4.i = p4; 334 } 335 return addr; 336 } 337 338 /* Insert the end of a co-routine 339 */ 340 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 341 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 342 343 /* Clear the temporary register cache, thereby ensuring that each 344 ** co-routine has its own independent set of registers, because co-routines 345 ** might expect their registers to be preserved across an OP_Yield, and 346 ** that could cause problems if two or more co-routines are using the same 347 ** temporary register. 348 */ 349 v->pParse->nTempReg = 0; 350 v->pParse->nRangeReg = 0; 351 } 352 353 /* 354 ** Create a new symbolic label for an instruction that has yet to be 355 ** coded. The symbolic label is really just a negative number. The 356 ** label can be used as the P2 value of an operation. Later, when 357 ** the label is resolved to a specific address, the VDBE will scan 358 ** through its operation list and change all values of P2 which match 359 ** the label into the resolved address. 360 ** 361 ** The VDBE knows that a P2 value is a label because labels are 362 ** always negative and P2 values are suppose to be non-negative. 363 ** Hence, a negative P2 value is a label that has yet to be resolved. 364 ** 365 ** Zero is returned if a malloc() fails. 366 */ 367 int sqlite3VdbeMakeLabel(Vdbe *v){ 368 Parse *p = v->pParse; 369 int i = p->nLabel++; 370 assert( v->magic==VDBE_MAGIC_INIT ); 371 if( (i & (i-1))==0 ){ 372 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 373 (i*2+1)*sizeof(p->aLabel[0])); 374 } 375 if( p->aLabel ){ 376 p->aLabel[i] = -1; 377 } 378 return ADDR(i); 379 } 380 381 /* 382 ** Resolve label "x" to be the address of the next instruction to 383 ** be inserted. The parameter "x" must have been obtained from 384 ** a prior call to sqlite3VdbeMakeLabel(). 385 */ 386 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 387 Parse *p = v->pParse; 388 int j = ADDR(x); 389 assert( v->magic==VDBE_MAGIC_INIT ); 390 assert( j<p->nLabel ); 391 assert( j>=0 ); 392 if( p->aLabel ){ 393 p->aLabel[j] = v->nOp; 394 } 395 } 396 397 /* 398 ** Mark the VDBE as one that can only be run one time. 399 */ 400 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 401 p->runOnlyOnce = 1; 402 } 403 404 /* 405 ** Mark the VDBE as one that can only be run multiple times. 406 */ 407 void sqlite3VdbeReusable(Vdbe *p){ 408 p->runOnlyOnce = 0; 409 } 410 411 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 412 413 /* 414 ** The following type and function are used to iterate through all opcodes 415 ** in a Vdbe main program and each of the sub-programs (triggers) it may 416 ** invoke directly or indirectly. It should be used as follows: 417 ** 418 ** Op *pOp; 419 ** VdbeOpIter sIter; 420 ** 421 ** memset(&sIter, 0, sizeof(sIter)); 422 ** sIter.v = v; // v is of type Vdbe* 423 ** while( (pOp = opIterNext(&sIter)) ){ 424 ** // Do something with pOp 425 ** } 426 ** sqlite3DbFree(v->db, sIter.apSub); 427 ** 428 */ 429 typedef struct VdbeOpIter VdbeOpIter; 430 struct VdbeOpIter { 431 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 432 SubProgram **apSub; /* Array of subprograms */ 433 int nSub; /* Number of entries in apSub */ 434 int iAddr; /* Address of next instruction to return */ 435 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 436 }; 437 static Op *opIterNext(VdbeOpIter *p){ 438 Vdbe *v = p->v; 439 Op *pRet = 0; 440 Op *aOp; 441 int nOp; 442 443 if( p->iSub<=p->nSub ){ 444 445 if( p->iSub==0 ){ 446 aOp = v->aOp; 447 nOp = v->nOp; 448 }else{ 449 aOp = p->apSub[p->iSub-1]->aOp; 450 nOp = p->apSub[p->iSub-1]->nOp; 451 } 452 assert( p->iAddr<nOp ); 453 454 pRet = &aOp[p->iAddr]; 455 p->iAddr++; 456 if( p->iAddr==nOp ){ 457 p->iSub++; 458 p->iAddr = 0; 459 } 460 461 if( pRet->p4type==P4_SUBPROGRAM ){ 462 int nByte = (p->nSub+1)*sizeof(SubProgram*); 463 int j; 464 for(j=0; j<p->nSub; j++){ 465 if( p->apSub[j]==pRet->p4.pProgram ) break; 466 } 467 if( j==p->nSub ){ 468 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 469 if( !p->apSub ){ 470 pRet = 0; 471 }else{ 472 p->apSub[p->nSub++] = pRet->p4.pProgram; 473 } 474 } 475 } 476 } 477 478 return pRet; 479 } 480 481 /* 482 ** Check if the program stored in the VM associated with pParse may 483 ** throw an ABORT exception (causing the statement, but not entire transaction 484 ** to be rolled back). This condition is true if the main program or any 485 ** sub-programs contains any of the following: 486 ** 487 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 488 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 489 ** * OP_Destroy 490 ** * OP_VUpdate 491 ** * OP_VRename 492 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 493 ** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...) 494 ** 495 ** Then check that the value of Parse.mayAbort is true if an 496 ** ABORT may be thrown, or false otherwise. Return true if it does 497 ** match, or false otherwise. This function is intended to be used as 498 ** part of an assert statement in the compiler. Similar to: 499 ** 500 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 501 */ 502 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 503 int hasAbort = 0; 504 int hasFkCounter = 0; 505 int hasCreateTable = 0; 506 int hasInitCoroutine = 0; 507 Op *pOp; 508 VdbeOpIter sIter; 509 memset(&sIter, 0, sizeof(sIter)); 510 sIter.v = v; 511 512 while( (pOp = opIterNext(&sIter))!=0 ){ 513 int opcode = pOp->opcode; 514 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 515 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 516 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) 517 ){ 518 hasAbort = 1; 519 break; 520 } 521 if( opcode==OP_CreateTable ) hasCreateTable = 1; 522 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 523 #ifndef SQLITE_OMIT_FOREIGN_KEY 524 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 525 hasFkCounter = 1; 526 } 527 #endif 528 } 529 sqlite3DbFree(v->db, sIter.apSub); 530 531 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 532 ** If malloc failed, then the while() loop above may not have iterated 533 ** through all opcodes and hasAbort may be set incorrectly. Return 534 ** true for this case to prevent the assert() in the callers frame 535 ** from failing. */ 536 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 537 || (hasCreateTable && hasInitCoroutine) ); 538 } 539 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 540 541 /* 542 ** This routine is called after all opcodes have been inserted. It loops 543 ** through all the opcodes and fixes up some details. 544 ** 545 ** (1) For each jump instruction with a negative P2 value (a label) 546 ** resolve the P2 value to an actual address. 547 ** 548 ** (2) Compute the maximum number of arguments used by any SQL function 549 ** and store that value in *pMaxFuncArgs. 550 ** 551 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 552 ** indicate what the prepared statement actually does. 553 ** 554 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. 555 ** 556 ** (5) Reclaim the memory allocated for storing labels. 557 ** 558 ** This routine will only function correctly if the mkopcodeh.tcl generator 559 ** script numbers the opcodes correctly. Changes to this routine must be 560 ** coordinated with changes to mkopcodeh.tcl. 561 */ 562 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 563 int nMaxArgs = *pMaxFuncArgs; 564 Op *pOp; 565 Parse *pParse = p->pParse; 566 int *aLabel = pParse->aLabel; 567 p->readOnly = 1; 568 p->bIsReader = 0; 569 pOp = &p->aOp[p->nOp-1]; 570 while(1){ 571 572 /* Only JUMP opcodes and the short list of special opcodes in the switch 573 ** below need to be considered. The mkopcodeh.tcl generator script groups 574 ** all these opcodes together near the front of the opcode list. Skip 575 ** any opcode that does not need processing by virtual of the fact that 576 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 577 */ 578 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 579 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 580 ** cases from this switch! */ 581 switch( pOp->opcode ){ 582 case OP_Transaction: { 583 if( pOp->p2!=0 ) p->readOnly = 0; 584 /* fall thru */ 585 } 586 case OP_AutoCommit: 587 case OP_Savepoint: { 588 p->bIsReader = 1; 589 break; 590 } 591 #ifndef SQLITE_OMIT_WAL 592 case OP_Checkpoint: 593 #endif 594 case OP_Vacuum: 595 case OP_JournalMode: { 596 p->readOnly = 0; 597 p->bIsReader = 1; 598 break; 599 } 600 case OP_Next: 601 case OP_NextIfOpen: 602 case OP_SorterNext: { 603 pOp->p4.xAdvance = sqlite3BtreeNext; 604 pOp->p4type = P4_ADVANCE; 605 /* The code generator never codes any of these opcodes as a jump 606 ** to a label. They are always coded as a jump backwards to a 607 ** known address */ 608 assert( pOp->p2>=0 ); 609 break; 610 } 611 case OP_Prev: 612 case OP_PrevIfOpen: { 613 pOp->p4.xAdvance = sqlite3BtreePrevious; 614 pOp->p4type = P4_ADVANCE; 615 /* The code generator never codes any of these opcodes as a jump 616 ** to a label. They are always coded as a jump backwards to a 617 ** known address */ 618 assert( pOp->p2>=0 ); 619 break; 620 } 621 #ifndef SQLITE_OMIT_VIRTUALTABLE 622 case OP_VUpdate: { 623 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 624 break; 625 } 626 case OP_VFilter: { 627 int n; 628 assert( (pOp - p->aOp) >= 3 ); 629 assert( pOp[-1].opcode==OP_Integer ); 630 n = pOp[-1].p1; 631 if( n>nMaxArgs ) nMaxArgs = n; 632 /* Fall through into the default case */ 633 } 634 #endif 635 default: { 636 if( pOp->p2<0 ){ 637 /* The mkopcodeh.tcl script has so arranged things that the only 638 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 639 ** have non-negative values for P2. */ 640 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 641 assert( ADDR(pOp->p2)<pParse->nLabel ); 642 pOp->p2 = aLabel[ADDR(pOp->p2)]; 643 } 644 break; 645 } 646 } 647 /* The mkopcodeh.tcl script has so arranged things that the only 648 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 649 ** have non-negative values for P2. */ 650 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 651 } 652 if( pOp==p->aOp ) break; 653 pOp--; 654 } 655 sqlite3DbFree(p->db, pParse->aLabel); 656 pParse->aLabel = 0; 657 pParse->nLabel = 0; 658 *pMaxFuncArgs = nMaxArgs; 659 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 660 } 661 662 /* 663 ** Return the address of the next instruction to be inserted. 664 */ 665 int sqlite3VdbeCurrentAddr(Vdbe *p){ 666 assert( p->magic==VDBE_MAGIC_INIT ); 667 return p->nOp; 668 } 669 670 /* 671 ** Verify that at least N opcode slots are available in p without 672 ** having to malloc for more space (except when compiled using 673 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 674 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 675 ** fail due to a OOM fault and hence that the return value from 676 ** sqlite3VdbeAddOpList() will always be non-NULL. 677 */ 678 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 679 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 680 assert( p->nOp + N <= p->pParse->nOpAlloc ); 681 } 682 #endif 683 684 /* 685 ** Verify that the VM passed as the only argument does not contain 686 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 687 ** by code in pragma.c to ensure that the implementation of certain 688 ** pragmas comports with the flags specified in the mkpragmatab.tcl 689 ** script. 690 */ 691 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 692 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 693 int i; 694 for(i=0; i<p->nOp; i++){ 695 assert( p->aOp[i].opcode!=OP_ResultRow ); 696 } 697 } 698 #endif 699 700 /* 701 ** This function returns a pointer to the array of opcodes associated with 702 ** the Vdbe passed as the first argument. It is the callers responsibility 703 ** to arrange for the returned array to be eventually freed using the 704 ** vdbeFreeOpArray() function. 705 ** 706 ** Before returning, *pnOp is set to the number of entries in the returned 707 ** array. Also, *pnMaxArg is set to the larger of its current value and 708 ** the number of entries in the Vdbe.apArg[] array required to execute the 709 ** returned program. 710 */ 711 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 712 VdbeOp *aOp = p->aOp; 713 assert( aOp && !p->db->mallocFailed ); 714 715 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 716 assert( DbMaskAllZero(p->btreeMask) ); 717 718 resolveP2Values(p, pnMaxArg); 719 *pnOp = p->nOp; 720 p->aOp = 0; 721 return aOp; 722 } 723 724 /* 725 ** Add a whole list of operations to the operation stack. Return a 726 ** pointer to the first operation inserted. 727 ** 728 ** Non-zero P2 arguments to jump instructions are automatically adjusted 729 ** so that the jump target is relative to the first operation inserted. 730 */ 731 VdbeOp *sqlite3VdbeAddOpList( 732 Vdbe *p, /* Add opcodes to the prepared statement */ 733 int nOp, /* Number of opcodes to add */ 734 VdbeOpList const *aOp, /* The opcodes to be added */ 735 int iLineno /* Source-file line number of first opcode */ 736 ){ 737 int i; 738 VdbeOp *pOut, *pFirst; 739 assert( nOp>0 ); 740 assert( p->magic==VDBE_MAGIC_INIT ); 741 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ 742 return 0; 743 } 744 pFirst = pOut = &p->aOp[p->nOp]; 745 for(i=0; i<nOp; i++, aOp++, pOut++){ 746 pOut->opcode = aOp->opcode; 747 pOut->p1 = aOp->p1; 748 pOut->p2 = aOp->p2; 749 assert( aOp->p2>=0 ); 750 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 751 pOut->p2 += p->nOp; 752 } 753 pOut->p3 = aOp->p3; 754 pOut->p4type = P4_NOTUSED; 755 pOut->p4.p = 0; 756 pOut->p5 = 0; 757 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 758 pOut->zComment = 0; 759 #endif 760 #ifdef SQLITE_VDBE_COVERAGE 761 pOut->iSrcLine = iLineno+i; 762 #else 763 (void)iLineno; 764 #endif 765 #ifdef SQLITE_DEBUG 766 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 767 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 768 } 769 #endif 770 } 771 p->nOp += nOp; 772 return pFirst; 773 } 774 775 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 776 /* 777 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 778 */ 779 void sqlite3VdbeScanStatus( 780 Vdbe *p, /* VM to add scanstatus() to */ 781 int addrExplain, /* Address of OP_Explain (or 0) */ 782 int addrLoop, /* Address of loop counter */ 783 int addrVisit, /* Address of rows visited counter */ 784 LogEst nEst, /* Estimated number of output rows */ 785 const char *zName /* Name of table or index being scanned */ 786 ){ 787 int nByte = (p->nScan+1) * sizeof(ScanStatus); 788 ScanStatus *aNew; 789 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 790 if( aNew ){ 791 ScanStatus *pNew = &aNew[p->nScan++]; 792 pNew->addrExplain = addrExplain; 793 pNew->addrLoop = addrLoop; 794 pNew->addrVisit = addrVisit; 795 pNew->nEst = nEst; 796 pNew->zName = sqlite3DbStrDup(p->db, zName); 797 p->aScan = aNew; 798 } 799 } 800 #endif 801 802 803 /* 804 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 805 ** for a specific instruction. 806 */ 807 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){ 808 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 809 } 810 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ 811 sqlite3VdbeGetOp(p,addr)->p1 = val; 812 } 813 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ 814 sqlite3VdbeGetOp(p,addr)->p2 = val; 815 } 816 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ 817 sqlite3VdbeGetOp(p,addr)->p3 = val; 818 } 819 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 820 assert( p->nOp>0 || p->db->mallocFailed ); 821 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 822 } 823 824 /* 825 ** Change the P2 operand of instruction addr so that it points to 826 ** the address of the next instruction to be coded. 827 */ 828 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 829 sqlite3VdbeChangeP2(p, addr, p->nOp); 830 } 831 832 833 /* 834 ** If the input FuncDef structure is ephemeral, then free it. If 835 ** the FuncDef is not ephermal, then do nothing. 836 */ 837 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 838 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 839 sqlite3DbFreeNN(db, pDef); 840 } 841 } 842 843 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 844 845 /* 846 ** Delete a P4 value if necessary. 847 */ 848 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 849 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 850 sqlite3DbFreeNN(db, p); 851 } 852 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 853 freeEphemeralFunction(db, p->pFunc); 854 sqlite3DbFreeNN(db, p); 855 } 856 static void freeP4(sqlite3 *db, int p4type, void *p4){ 857 assert( db ); 858 switch( p4type ){ 859 case P4_FUNCCTX: { 860 freeP4FuncCtx(db, (sqlite3_context*)p4); 861 break; 862 } 863 case P4_REAL: 864 case P4_INT64: 865 case P4_DYNAMIC: 866 case P4_INTARRAY: { 867 sqlite3DbFree(db, p4); 868 break; 869 } 870 case P4_KEYINFO: { 871 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 872 break; 873 } 874 #ifdef SQLITE_ENABLE_CURSOR_HINTS 875 case P4_EXPR: { 876 sqlite3ExprDelete(db, (Expr*)p4); 877 break; 878 } 879 #endif 880 case P4_FUNCDEF: { 881 freeEphemeralFunction(db, (FuncDef*)p4); 882 break; 883 } 884 case P4_MEM: { 885 if( db->pnBytesFreed==0 ){ 886 sqlite3ValueFree((sqlite3_value*)p4); 887 }else{ 888 freeP4Mem(db, (Mem*)p4); 889 } 890 break; 891 } 892 case P4_VTAB : { 893 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 894 break; 895 } 896 } 897 } 898 899 /* 900 ** Free the space allocated for aOp and any p4 values allocated for the 901 ** opcodes contained within. If aOp is not NULL it is assumed to contain 902 ** nOp entries. 903 */ 904 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 905 if( aOp ){ 906 Op *pOp; 907 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){ 908 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 909 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 910 sqlite3DbFree(db, pOp->zComment); 911 #endif 912 } 913 sqlite3DbFreeNN(db, aOp); 914 } 915 } 916 917 /* 918 ** Link the SubProgram object passed as the second argument into the linked 919 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 920 ** objects when the VM is no longer required. 921 */ 922 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 923 p->pNext = pVdbe->pProgram; 924 pVdbe->pProgram = p; 925 } 926 927 /* 928 ** Change the opcode at addr into OP_Noop 929 */ 930 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 931 VdbeOp *pOp; 932 if( p->db->mallocFailed ) return 0; 933 assert( addr>=0 && addr<p->nOp ); 934 pOp = &p->aOp[addr]; 935 freeP4(p->db, pOp->p4type, pOp->p4.p); 936 pOp->p4type = P4_NOTUSED; 937 pOp->p4.z = 0; 938 pOp->opcode = OP_Noop; 939 return 1; 940 } 941 942 /* 943 ** If the last opcode is "op" and it is not a jump destination, 944 ** then remove it. Return true if and only if an opcode was removed. 945 */ 946 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 947 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 948 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 949 }else{ 950 return 0; 951 } 952 } 953 954 /* 955 ** Change the value of the P4 operand for a specific instruction. 956 ** This routine is useful when a large program is loaded from a 957 ** static array using sqlite3VdbeAddOpList but we want to make a 958 ** few minor changes to the program. 959 ** 960 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 961 ** the string is made into memory obtained from sqlite3_malloc(). 962 ** A value of n==0 means copy bytes of zP4 up to and including the 963 ** first null byte. If n>0 then copy n+1 bytes of zP4. 964 ** 965 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 966 ** to a string or structure that is guaranteed to exist for the lifetime of 967 ** the Vdbe. In these cases we can just copy the pointer. 968 ** 969 ** If addr<0 then change P4 on the most recently inserted instruction. 970 */ 971 static void SQLITE_NOINLINE vdbeChangeP4Full( 972 Vdbe *p, 973 Op *pOp, 974 const char *zP4, 975 int n 976 ){ 977 if( pOp->p4type ){ 978 freeP4(p->db, pOp->p4type, pOp->p4.p); 979 pOp->p4type = 0; 980 pOp->p4.p = 0; 981 } 982 if( n<0 ){ 983 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 984 }else{ 985 if( n==0 ) n = sqlite3Strlen30(zP4); 986 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 987 pOp->p4type = P4_DYNAMIC; 988 } 989 } 990 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 991 Op *pOp; 992 sqlite3 *db; 993 assert( p!=0 ); 994 db = p->db; 995 assert( p->magic==VDBE_MAGIC_INIT ); 996 assert( p->aOp!=0 || db->mallocFailed ); 997 if( db->mallocFailed ){ 998 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 999 return; 1000 } 1001 assert( p->nOp>0 ); 1002 assert( addr<p->nOp ); 1003 if( addr<0 ){ 1004 addr = p->nOp - 1; 1005 } 1006 pOp = &p->aOp[addr]; 1007 if( n>=0 || pOp->p4type ){ 1008 vdbeChangeP4Full(p, pOp, zP4, n); 1009 return; 1010 } 1011 if( n==P4_INT32 ){ 1012 /* Note: this cast is safe, because the origin data point was an int 1013 ** that was cast to a (const char *). */ 1014 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 1015 pOp->p4type = P4_INT32; 1016 }else if( zP4!=0 ){ 1017 assert( n<0 ); 1018 pOp->p4.p = (void*)zP4; 1019 pOp->p4type = (signed char)n; 1020 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 1021 } 1022 } 1023 1024 /* 1025 ** Change the P4 operand of the most recently coded instruction 1026 ** to the value defined by the arguments. This is a high-speed 1027 ** version of sqlite3VdbeChangeP4(). 1028 ** 1029 ** The P4 operand must not have been previously defined. And the new 1030 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 1031 ** those cases. 1032 */ 1033 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1034 VdbeOp *pOp; 1035 assert( n!=P4_INT32 && n!=P4_VTAB ); 1036 assert( n<=0 ); 1037 if( p->db->mallocFailed ){ 1038 freeP4(p->db, n, pP4); 1039 }else{ 1040 assert( pP4!=0 ); 1041 assert( p->nOp>0 ); 1042 pOp = &p->aOp[p->nOp-1]; 1043 assert( pOp->p4type==P4_NOTUSED ); 1044 pOp->p4type = n; 1045 pOp->p4.p = pP4; 1046 } 1047 } 1048 1049 /* 1050 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1051 ** index given. 1052 */ 1053 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1054 Vdbe *v = pParse->pVdbe; 1055 KeyInfo *pKeyInfo; 1056 assert( v!=0 ); 1057 assert( pIdx!=0 ); 1058 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1059 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1060 } 1061 1062 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1063 /* 1064 ** Change the comment on the most recently coded instruction. Or 1065 ** insert a No-op and add the comment to that new instruction. This 1066 ** makes the code easier to read during debugging. None of this happens 1067 ** in a production build. 1068 */ 1069 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1070 assert( p->nOp>0 || p->aOp==0 ); 1071 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); 1072 if( p->nOp ){ 1073 assert( p->aOp ); 1074 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1075 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1076 } 1077 } 1078 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1079 va_list ap; 1080 if( p ){ 1081 va_start(ap, zFormat); 1082 vdbeVComment(p, zFormat, ap); 1083 va_end(ap); 1084 } 1085 } 1086 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1087 va_list ap; 1088 if( p ){ 1089 sqlite3VdbeAddOp0(p, OP_Noop); 1090 va_start(ap, zFormat); 1091 vdbeVComment(p, zFormat, ap); 1092 va_end(ap); 1093 } 1094 } 1095 #endif /* NDEBUG */ 1096 1097 #ifdef SQLITE_VDBE_COVERAGE 1098 /* 1099 ** Set the value if the iSrcLine field for the previously coded instruction. 1100 */ 1101 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1102 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1103 } 1104 #endif /* SQLITE_VDBE_COVERAGE */ 1105 1106 /* 1107 ** Return the opcode for a given address. If the address is -1, then 1108 ** return the most recently inserted opcode. 1109 ** 1110 ** If a memory allocation error has occurred prior to the calling of this 1111 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1112 ** is readable but not writable, though it is cast to a writable value. 1113 ** The return of a dummy opcode allows the call to continue functioning 1114 ** after an OOM fault without having to check to see if the return from 1115 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1116 ** dummy will never be written to. This is verified by code inspection and 1117 ** by running with Valgrind. 1118 */ 1119 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1120 /* C89 specifies that the constant "dummy" will be initialized to all 1121 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1122 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1123 assert( p->magic==VDBE_MAGIC_INIT ); 1124 if( addr<0 ){ 1125 addr = p->nOp - 1; 1126 } 1127 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1128 if( p->db->mallocFailed ){ 1129 return (VdbeOp*)&dummy; 1130 }else{ 1131 return &p->aOp[addr]; 1132 } 1133 } 1134 1135 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1136 /* 1137 ** Return an integer value for one of the parameters to the opcode pOp 1138 ** determined by character c. 1139 */ 1140 static int translateP(char c, const Op *pOp){ 1141 if( c=='1' ) return pOp->p1; 1142 if( c=='2' ) return pOp->p2; 1143 if( c=='3' ) return pOp->p3; 1144 if( c=='4' ) return pOp->p4.i; 1145 return pOp->p5; 1146 } 1147 1148 /* 1149 ** Compute a string for the "comment" field of a VDBE opcode listing. 1150 ** 1151 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1152 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1153 ** absence of other comments, this synopsis becomes the comment on the opcode. 1154 ** Some translation occurs: 1155 ** 1156 ** "PX" -> "r[X]" 1157 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1158 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1159 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1160 */ 1161 static int displayComment( 1162 const Op *pOp, /* The opcode to be commented */ 1163 const char *zP4, /* Previously obtained value for P4 */ 1164 char *zTemp, /* Write result here */ 1165 int nTemp /* Space available in zTemp[] */ 1166 ){ 1167 const char *zOpName; 1168 const char *zSynopsis; 1169 int nOpName; 1170 int ii, jj; 1171 char zAlt[50]; 1172 zOpName = sqlite3OpcodeName(pOp->opcode); 1173 nOpName = sqlite3Strlen30(zOpName); 1174 if( zOpName[nOpName+1] ){ 1175 int seenCom = 0; 1176 char c; 1177 zSynopsis = zOpName += nOpName + 1; 1178 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1179 if( pOp->p5 & SQLITE_STOREP2 ){ 1180 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3); 1181 }else{ 1182 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1183 } 1184 zSynopsis = zAlt; 1185 } 1186 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ 1187 if( c=='P' ){ 1188 c = zSynopsis[++ii]; 1189 if( c=='4' ){ 1190 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); 1191 }else if( c=='X' ){ 1192 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); 1193 seenCom = 1; 1194 }else{ 1195 int v1 = translateP(c, pOp); 1196 int v2; 1197 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); 1198 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1199 ii += 3; 1200 jj += sqlite3Strlen30(zTemp+jj); 1201 v2 = translateP(zSynopsis[ii], pOp); 1202 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1203 ii += 2; 1204 v2++; 1205 } 1206 if( v2>1 ){ 1207 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); 1208 } 1209 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1210 ii += 4; 1211 } 1212 } 1213 jj += sqlite3Strlen30(zTemp+jj); 1214 }else{ 1215 zTemp[jj++] = c; 1216 } 1217 } 1218 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ 1219 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); 1220 jj += sqlite3Strlen30(zTemp+jj); 1221 } 1222 if( jj<nTemp ) zTemp[jj] = 0; 1223 }else if( pOp->zComment ){ 1224 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); 1225 jj = sqlite3Strlen30(zTemp); 1226 }else{ 1227 zTemp[0] = 0; 1228 jj = 0; 1229 } 1230 return jj; 1231 } 1232 #endif /* SQLITE_DEBUG */ 1233 1234 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1235 /* 1236 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1237 ** that can be displayed in the P4 column of EXPLAIN output. 1238 */ 1239 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1240 const char *zOp = 0; 1241 switch( pExpr->op ){ 1242 case TK_STRING: 1243 sqlite3XPrintf(p, "%Q", pExpr->u.zToken); 1244 break; 1245 case TK_INTEGER: 1246 sqlite3XPrintf(p, "%d", pExpr->u.iValue); 1247 break; 1248 case TK_NULL: 1249 sqlite3XPrintf(p, "NULL"); 1250 break; 1251 case TK_REGISTER: { 1252 sqlite3XPrintf(p, "r[%d]", pExpr->iTable); 1253 break; 1254 } 1255 case TK_COLUMN: { 1256 if( pExpr->iColumn<0 ){ 1257 sqlite3XPrintf(p, "rowid"); 1258 }else{ 1259 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn); 1260 } 1261 break; 1262 } 1263 case TK_LT: zOp = "LT"; break; 1264 case TK_LE: zOp = "LE"; break; 1265 case TK_GT: zOp = "GT"; break; 1266 case TK_GE: zOp = "GE"; break; 1267 case TK_NE: zOp = "NE"; break; 1268 case TK_EQ: zOp = "EQ"; break; 1269 case TK_IS: zOp = "IS"; break; 1270 case TK_ISNOT: zOp = "ISNOT"; break; 1271 case TK_AND: zOp = "AND"; break; 1272 case TK_OR: zOp = "OR"; break; 1273 case TK_PLUS: zOp = "ADD"; break; 1274 case TK_STAR: zOp = "MUL"; break; 1275 case TK_MINUS: zOp = "SUB"; break; 1276 case TK_REM: zOp = "REM"; break; 1277 case TK_BITAND: zOp = "BITAND"; break; 1278 case TK_BITOR: zOp = "BITOR"; break; 1279 case TK_SLASH: zOp = "DIV"; break; 1280 case TK_LSHIFT: zOp = "LSHIFT"; break; 1281 case TK_RSHIFT: zOp = "RSHIFT"; break; 1282 case TK_CONCAT: zOp = "CONCAT"; break; 1283 case TK_UMINUS: zOp = "MINUS"; break; 1284 case TK_UPLUS: zOp = "PLUS"; break; 1285 case TK_BITNOT: zOp = "BITNOT"; break; 1286 case TK_NOT: zOp = "NOT"; break; 1287 case TK_ISNULL: zOp = "ISNULL"; break; 1288 case TK_NOTNULL: zOp = "NOTNULL"; break; 1289 1290 default: 1291 sqlite3XPrintf(p, "%s", "expr"); 1292 break; 1293 } 1294 1295 if( zOp ){ 1296 sqlite3XPrintf(p, "%s(", zOp); 1297 displayP4Expr(p, pExpr->pLeft); 1298 if( pExpr->pRight ){ 1299 sqlite3StrAccumAppend(p, ",", 1); 1300 displayP4Expr(p, pExpr->pRight); 1301 } 1302 sqlite3StrAccumAppend(p, ")", 1); 1303 } 1304 } 1305 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1306 1307 1308 #if VDBE_DISPLAY_P4 1309 /* 1310 ** Compute a string that describes the P4 parameter for an opcode. 1311 ** Use zTemp for any required temporary buffer space. 1312 */ 1313 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ 1314 char *zP4 = zTemp; 1315 StrAccum x; 1316 assert( nTemp>=20 ); 1317 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0); 1318 switch( pOp->p4type ){ 1319 case P4_KEYINFO: { 1320 int j; 1321 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1322 assert( pKeyInfo->aSortOrder!=0 ); 1323 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nKeyField); 1324 for(j=0; j<pKeyInfo->nKeyField; j++){ 1325 CollSeq *pColl = pKeyInfo->aColl[j]; 1326 const char *zColl = pColl ? pColl->zName : ""; 1327 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1328 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl); 1329 } 1330 sqlite3StrAccumAppend(&x, ")", 1); 1331 break; 1332 } 1333 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1334 case P4_EXPR: { 1335 displayP4Expr(&x, pOp->p4.pExpr); 1336 break; 1337 } 1338 #endif 1339 case P4_COLLSEQ: { 1340 CollSeq *pColl = pOp->p4.pColl; 1341 sqlite3XPrintf(&x, "(%.20s)", pColl->zName); 1342 break; 1343 } 1344 case P4_FUNCDEF: { 1345 FuncDef *pDef = pOp->p4.pFunc; 1346 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1347 break; 1348 } 1349 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1350 case P4_FUNCCTX: { 1351 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1352 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1353 break; 1354 } 1355 #endif 1356 case P4_INT64: { 1357 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64); 1358 break; 1359 } 1360 case P4_INT32: { 1361 sqlite3XPrintf(&x, "%d", pOp->p4.i); 1362 break; 1363 } 1364 case P4_REAL: { 1365 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal); 1366 break; 1367 } 1368 case P4_MEM: { 1369 Mem *pMem = pOp->p4.pMem; 1370 if( pMem->flags & MEM_Str ){ 1371 zP4 = pMem->z; 1372 }else if( pMem->flags & MEM_Int ){ 1373 sqlite3XPrintf(&x, "%lld", pMem->u.i); 1374 }else if( pMem->flags & MEM_Real ){ 1375 sqlite3XPrintf(&x, "%.16g", pMem->u.r); 1376 }else if( pMem->flags & MEM_Null ){ 1377 zP4 = "NULL"; 1378 }else{ 1379 assert( pMem->flags & MEM_Blob ); 1380 zP4 = "(blob)"; 1381 } 1382 break; 1383 } 1384 #ifndef SQLITE_OMIT_VIRTUALTABLE 1385 case P4_VTAB: { 1386 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1387 sqlite3XPrintf(&x, "vtab:%p", pVtab); 1388 break; 1389 } 1390 #endif 1391 case P4_INTARRAY: { 1392 int i; 1393 int *ai = pOp->p4.ai; 1394 int n = ai[0]; /* The first element of an INTARRAY is always the 1395 ** count of the number of elements to follow */ 1396 for(i=1; i<n; i++){ 1397 sqlite3XPrintf(&x, ",%d", ai[i]); 1398 } 1399 zTemp[0] = '['; 1400 sqlite3StrAccumAppend(&x, "]", 1); 1401 break; 1402 } 1403 case P4_SUBPROGRAM: { 1404 sqlite3XPrintf(&x, "program"); 1405 break; 1406 } 1407 case P4_ADVANCE: { 1408 zTemp[0] = 0; 1409 break; 1410 } 1411 case P4_TABLE: { 1412 sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName); 1413 break; 1414 } 1415 default: { 1416 zP4 = pOp->p4.z; 1417 if( zP4==0 ){ 1418 zP4 = zTemp; 1419 zTemp[0] = 0; 1420 } 1421 } 1422 } 1423 sqlite3StrAccumFinish(&x); 1424 assert( zP4!=0 ); 1425 return zP4; 1426 } 1427 #endif /* VDBE_DISPLAY_P4 */ 1428 1429 /* 1430 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1431 ** 1432 ** The prepared statements need to know in advance the complete set of 1433 ** attached databases that will be use. A mask of these databases 1434 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1435 ** p->btreeMask of databases that will require a lock. 1436 */ 1437 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1438 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1439 assert( i<(int)sizeof(p->btreeMask)*8 ); 1440 DbMaskSet(p->btreeMask, i); 1441 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1442 DbMaskSet(p->lockMask, i); 1443 } 1444 } 1445 1446 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1447 /* 1448 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1449 ** this routine obtains the mutex associated with each BtShared structure 1450 ** that may be accessed by the VM passed as an argument. In doing so it also 1451 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1452 ** that the correct busy-handler callback is invoked if required. 1453 ** 1454 ** If SQLite is not threadsafe but does support shared-cache mode, then 1455 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1456 ** of all of BtShared structures accessible via the database handle 1457 ** associated with the VM. 1458 ** 1459 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1460 ** function is a no-op. 1461 ** 1462 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1463 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1464 ** corresponding to btrees that use shared cache. Then the runtime of 1465 ** this routine is N*N. But as N is rarely more than 1, this should not 1466 ** be a problem. 1467 */ 1468 void sqlite3VdbeEnter(Vdbe *p){ 1469 int i; 1470 sqlite3 *db; 1471 Db *aDb; 1472 int nDb; 1473 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1474 db = p->db; 1475 aDb = db->aDb; 1476 nDb = db->nDb; 1477 for(i=0; i<nDb; i++){ 1478 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1479 sqlite3BtreeEnter(aDb[i].pBt); 1480 } 1481 } 1482 } 1483 #endif 1484 1485 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1486 /* 1487 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1488 */ 1489 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1490 int i; 1491 sqlite3 *db; 1492 Db *aDb; 1493 int nDb; 1494 db = p->db; 1495 aDb = db->aDb; 1496 nDb = db->nDb; 1497 for(i=0; i<nDb; i++){ 1498 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1499 sqlite3BtreeLeave(aDb[i].pBt); 1500 } 1501 } 1502 } 1503 void sqlite3VdbeLeave(Vdbe *p){ 1504 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1505 vdbeLeave(p); 1506 } 1507 #endif 1508 1509 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1510 /* 1511 ** Print a single opcode. This routine is used for debugging only. 1512 */ 1513 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ 1514 char *zP4; 1515 char zPtr[50]; 1516 char zCom[100]; 1517 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1518 if( pOut==0 ) pOut = stdout; 1519 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); 1520 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1521 displayComment(pOp, zP4, zCom, sizeof(zCom)); 1522 #else 1523 zCom[0] = 0; 1524 #endif 1525 /* NB: The sqlite3OpcodeName() function is implemented by code created 1526 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1527 ** information from the vdbe.c source text */ 1528 fprintf(pOut, zFormat1, pc, 1529 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, 1530 zCom 1531 ); 1532 fflush(pOut); 1533 } 1534 #endif 1535 1536 /* 1537 ** Initialize an array of N Mem element. 1538 */ 1539 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1540 while( (N--)>0 ){ 1541 p->db = db; 1542 p->flags = flags; 1543 p->szMalloc = 0; 1544 #ifdef SQLITE_DEBUG 1545 p->pScopyFrom = 0; 1546 #endif 1547 p++; 1548 } 1549 } 1550 1551 /* 1552 ** Release an array of N Mem elements 1553 */ 1554 static void releaseMemArray(Mem *p, int N){ 1555 if( p && N ){ 1556 Mem *pEnd = &p[N]; 1557 sqlite3 *db = p->db; 1558 if( db->pnBytesFreed ){ 1559 do{ 1560 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1561 }while( (++p)<pEnd ); 1562 return; 1563 } 1564 do{ 1565 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1566 assert( sqlite3VdbeCheckMemInvariants(p) ); 1567 1568 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1569 ** that takes advantage of the fact that the memory cell value is 1570 ** being set to NULL after releasing any dynamic resources. 1571 ** 1572 ** The justification for duplicating code is that according to 1573 ** callgrind, this causes a certain test case to hit the CPU 4.7 1574 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1575 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1576 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1577 ** with no indexes using a single prepared INSERT statement, bind() 1578 ** and reset(). Inserts are grouped into a transaction. 1579 */ 1580 testcase( p->flags & MEM_Agg ); 1581 testcase( p->flags & MEM_Dyn ); 1582 testcase( p->flags & MEM_Frame ); 1583 testcase( p->flags & MEM_RowSet ); 1584 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ 1585 sqlite3VdbeMemRelease(p); 1586 }else if( p->szMalloc ){ 1587 sqlite3DbFreeNN(db, p->zMalloc); 1588 p->szMalloc = 0; 1589 } 1590 1591 p->flags = MEM_Undefined; 1592 }while( (++p)<pEnd ); 1593 } 1594 } 1595 1596 /* 1597 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 1598 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 1599 */ 1600 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 1601 int i; 1602 Mem *aMem = VdbeFrameMem(p); 1603 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 1604 for(i=0; i<p->nChildCsr; i++){ 1605 sqlite3VdbeFreeCursor(p->v, apCsr[i]); 1606 } 1607 releaseMemArray(aMem, p->nChildMem); 1608 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 1609 sqlite3DbFree(p->v->db, p); 1610 } 1611 1612 #ifndef SQLITE_OMIT_EXPLAIN 1613 /* 1614 ** Give a listing of the program in the virtual machine. 1615 ** 1616 ** The interface is the same as sqlite3VdbeExec(). But instead of 1617 ** running the code, it invokes the callback once for each instruction. 1618 ** This feature is used to implement "EXPLAIN". 1619 ** 1620 ** When p->explain==1, each instruction is listed. When 1621 ** p->explain==2, only OP_Explain instructions are listed and these 1622 ** are shown in a different format. p->explain==2 is used to implement 1623 ** EXPLAIN QUERY PLAN. 1624 ** 1625 ** When p->explain==1, first the main program is listed, then each of 1626 ** the trigger subprograms are listed one by one. 1627 */ 1628 int sqlite3VdbeList( 1629 Vdbe *p /* The VDBE */ 1630 ){ 1631 int nRow; /* Stop when row count reaches this */ 1632 int nSub = 0; /* Number of sub-vdbes seen so far */ 1633 SubProgram **apSub = 0; /* Array of sub-vdbes */ 1634 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 1635 sqlite3 *db = p->db; /* The database connection */ 1636 int i; /* Loop counter */ 1637 int rc = SQLITE_OK; /* Return code */ 1638 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 1639 1640 assert( p->explain ); 1641 assert( p->magic==VDBE_MAGIC_RUN ); 1642 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 1643 1644 /* Even though this opcode does not use dynamic strings for 1645 ** the result, result columns may become dynamic if the user calls 1646 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 1647 */ 1648 releaseMemArray(pMem, 8); 1649 p->pResultSet = 0; 1650 1651 if( p->rc==SQLITE_NOMEM_BKPT ){ 1652 /* This happens if a malloc() inside a call to sqlite3_column_text() or 1653 ** sqlite3_column_text16() failed. */ 1654 sqlite3OomFault(db); 1655 return SQLITE_ERROR; 1656 } 1657 1658 /* When the number of output rows reaches nRow, that means the 1659 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 1660 ** nRow is the sum of the number of rows in the main program, plus 1661 ** the sum of the number of rows in all trigger subprograms encountered 1662 ** so far. The nRow value will increase as new trigger subprograms are 1663 ** encountered, but p->pc will eventually catch up to nRow. 1664 */ 1665 nRow = p->nOp; 1666 if( p->explain==1 ){ 1667 /* The first 8 memory cells are used for the result set. So we will 1668 ** commandeer the 9th cell to use as storage for an array of pointers 1669 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 1670 ** cells. */ 1671 assert( p->nMem>9 ); 1672 pSub = &p->aMem[9]; 1673 if( pSub->flags&MEM_Blob ){ 1674 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is 1675 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ 1676 nSub = pSub->n/sizeof(Vdbe*); 1677 apSub = (SubProgram **)pSub->z; 1678 } 1679 for(i=0; i<nSub; i++){ 1680 nRow += apSub[i]->nOp; 1681 } 1682 } 1683 1684 do{ 1685 i = p->pc++; 1686 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); 1687 if( i>=nRow ){ 1688 p->rc = SQLITE_OK; 1689 rc = SQLITE_DONE; 1690 }else if( db->u1.isInterrupted ){ 1691 p->rc = SQLITE_INTERRUPT; 1692 rc = SQLITE_ERROR; 1693 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 1694 }else{ 1695 char *zP4; 1696 Op *pOp; 1697 if( i<p->nOp ){ 1698 /* The output line number is small enough that we are still in the 1699 ** main program. */ 1700 pOp = &p->aOp[i]; 1701 }else{ 1702 /* We are currently listing subprograms. Figure out which one and 1703 ** pick up the appropriate opcode. */ 1704 int j; 1705 i -= p->nOp; 1706 for(j=0; i>=apSub[j]->nOp; j++){ 1707 i -= apSub[j]->nOp; 1708 } 1709 pOp = &apSub[j]->aOp[i]; 1710 } 1711 if( p->explain==1 ){ 1712 pMem->flags = MEM_Int; 1713 pMem->u.i = i; /* Program counter */ 1714 pMem++; 1715 1716 pMem->flags = MEM_Static|MEM_Str|MEM_Term; 1717 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ 1718 assert( pMem->z!=0 ); 1719 pMem->n = sqlite3Strlen30(pMem->z); 1720 pMem->enc = SQLITE_UTF8; 1721 pMem++; 1722 1723 /* When an OP_Program opcode is encounter (the only opcode that has 1724 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 1725 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 1726 ** has not already been seen. 1727 */ 1728 if( pOp->p4type==P4_SUBPROGRAM ){ 1729 int nByte = (nSub+1)*sizeof(SubProgram*); 1730 int j; 1731 for(j=0; j<nSub; j++){ 1732 if( apSub[j]==pOp->p4.pProgram ) break; 1733 } 1734 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){ 1735 apSub = (SubProgram **)pSub->z; 1736 apSub[nSub++] = pOp->p4.pProgram; 1737 pSub->flags |= MEM_Blob; 1738 pSub->n = nSub*sizeof(SubProgram*); 1739 } 1740 } 1741 } 1742 1743 pMem->flags = MEM_Int; 1744 pMem->u.i = pOp->p1; /* P1 */ 1745 pMem++; 1746 1747 pMem->flags = MEM_Int; 1748 pMem->u.i = pOp->p2; /* P2 */ 1749 pMem++; 1750 1751 pMem->flags = MEM_Int; 1752 pMem->u.i = pOp->p3; /* P3 */ 1753 pMem++; 1754 1755 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */ 1756 assert( p->db->mallocFailed ); 1757 return SQLITE_ERROR; 1758 } 1759 pMem->flags = MEM_Str|MEM_Term; 1760 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc); 1761 if( zP4!=pMem->z ){ 1762 pMem->n = 0; 1763 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); 1764 }else{ 1765 assert( pMem->z!=0 ); 1766 pMem->n = sqlite3Strlen30(pMem->z); 1767 pMem->enc = SQLITE_UTF8; 1768 } 1769 pMem++; 1770 1771 if( p->explain==1 ){ 1772 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ 1773 assert( p->db->mallocFailed ); 1774 return SQLITE_ERROR; 1775 } 1776 pMem->flags = MEM_Str|MEM_Term; 1777 pMem->n = 2; 1778 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ 1779 pMem->enc = SQLITE_UTF8; 1780 pMem++; 1781 1782 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1783 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ 1784 assert( p->db->mallocFailed ); 1785 return SQLITE_ERROR; 1786 } 1787 pMem->flags = MEM_Str|MEM_Term; 1788 pMem->n = displayComment(pOp, zP4, pMem->z, 500); 1789 pMem->enc = SQLITE_UTF8; 1790 #else 1791 pMem->flags = MEM_Null; /* Comment */ 1792 #endif 1793 } 1794 1795 p->nResColumn = 8 - 4*(p->explain-1); 1796 p->pResultSet = &p->aMem[1]; 1797 p->rc = SQLITE_OK; 1798 rc = SQLITE_ROW; 1799 } 1800 return rc; 1801 } 1802 #endif /* SQLITE_OMIT_EXPLAIN */ 1803 1804 #ifdef SQLITE_DEBUG 1805 /* 1806 ** Print the SQL that was used to generate a VDBE program. 1807 */ 1808 void sqlite3VdbePrintSql(Vdbe *p){ 1809 const char *z = 0; 1810 if( p->zSql ){ 1811 z = p->zSql; 1812 }else if( p->nOp>=1 ){ 1813 const VdbeOp *pOp = &p->aOp[0]; 1814 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1815 z = pOp->p4.z; 1816 while( sqlite3Isspace(*z) ) z++; 1817 } 1818 } 1819 if( z ) printf("SQL: [%s]\n", z); 1820 } 1821 #endif 1822 1823 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 1824 /* 1825 ** Print an IOTRACE message showing SQL content. 1826 */ 1827 void sqlite3VdbeIOTraceSql(Vdbe *p){ 1828 int nOp = p->nOp; 1829 VdbeOp *pOp; 1830 if( sqlite3IoTrace==0 ) return; 1831 if( nOp<1 ) return; 1832 pOp = &p->aOp[0]; 1833 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 1834 int i, j; 1835 char z[1000]; 1836 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 1837 for(i=0; sqlite3Isspace(z[i]); i++){} 1838 for(j=0; z[i]; i++){ 1839 if( sqlite3Isspace(z[i]) ){ 1840 if( z[i-1]!=' ' ){ 1841 z[j++] = ' '; 1842 } 1843 }else{ 1844 z[j++] = z[i]; 1845 } 1846 } 1847 z[j] = 0; 1848 sqlite3IoTrace("SQL %s\n", z); 1849 } 1850 } 1851 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 1852 1853 /* An instance of this object describes bulk memory available for use 1854 ** by subcomponents of a prepared statement. Space is allocated out 1855 ** of a ReusableSpace object by the allocSpace() routine below. 1856 */ 1857 struct ReusableSpace { 1858 u8 *pSpace; /* Available memory */ 1859 int nFree; /* Bytes of available memory */ 1860 int nNeeded; /* Total bytes that could not be allocated */ 1861 }; 1862 1863 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 1864 ** from the ReusableSpace object. Return a pointer to the allocated 1865 ** memory on success. If insufficient memory is available in the 1866 ** ReusableSpace object, increase the ReusableSpace.nNeeded 1867 ** value by the amount needed and return NULL. 1868 ** 1869 ** If pBuf is not initially NULL, that means that the memory has already 1870 ** been allocated by a prior call to this routine, so just return a copy 1871 ** of pBuf and leave ReusableSpace unchanged. 1872 ** 1873 ** This allocator is employed to repurpose unused slots at the end of the 1874 ** opcode array of prepared state for other memory needs of the prepared 1875 ** statement. 1876 */ 1877 static void *allocSpace( 1878 struct ReusableSpace *p, /* Bulk memory available for allocation */ 1879 void *pBuf, /* Pointer to a prior allocation */ 1880 int nByte /* Bytes of memory needed */ 1881 ){ 1882 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 1883 if( pBuf==0 ){ 1884 nByte = ROUND8(nByte); 1885 if( nByte <= p->nFree ){ 1886 p->nFree -= nByte; 1887 pBuf = &p->pSpace[p->nFree]; 1888 }else{ 1889 p->nNeeded += nByte; 1890 } 1891 } 1892 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 1893 return pBuf; 1894 } 1895 1896 /* 1897 ** Rewind the VDBE back to the beginning in preparation for 1898 ** running it. 1899 */ 1900 void sqlite3VdbeRewind(Vdbe *p){ 1901 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 1902 int i; 1903 #endif 1904 assert( p!=0 ); 1905 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET ); 1906 1907 /* There should be at least one opcode. 1908 */ 1909 assert( p->nOp>0 ); 1910 1911 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ 1912 p->magic = VDBE_MAGIC_RUN; 1913 1914 #ifdef SQLITE_DEBUG 1915 for(i=0; i<p->nMem; i++){ 1916 assert( p->aMem[i].db==p->db ); 1917 } 1918 #endif 1919 p->pc = -1; 1920 p->rc = SQLITE_OK; 1921 p->errorAction = OE_Abort; 1922 p->nChange = 0; 1923 p->cacheCtr = 1; 1924 p->minWriteFileFormat = 255; 1925 p->iStatement = 0; 1926 p->nFkConstraint = 0; 1927 #ifdef VDBE_PROFILE 1928 for(i=0; i<p->nOp; i++){ 1929 p->aOp[i].cnt = 0; 1930 p->aOp[i].cycles = 0; 1931 } 1932 #endif 1933 } 1934 1935 /* 1936 ** Prepare a virtual machine for execution for the first time after 1937 ** creating the virtual machine. This involves things such 1938 ** as allocating registers and initializing the program counter. 1939 ** After the VDBE has be prepped, it can be executed by one or more 1940 ** calls to sqlite3VdbeExec(). 1941 ** 1942 ** This function may be called exactly once on each virtual machine. 1943 ** After this routine is called the VM has been "packaged" and is ready 1944 ** to run. After this routine is called, further calls to 1945 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 1946 ** the Vdbe from the Parse object that helped generate it so that the 1947 ** the Vdbe becomes an independent entity and the Parse object can be 1948 ** destroyed. 1949 ** 1950 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 1951 ** to its initial state after it has been run. 1952 */ 1953 void sqlite3VdbeMakeReady( 1954 Vdbe *p, /* The VDBE */ 1955 Parse *pParse /* Parsing context */ 1956 ){ 1957 sqlite3 *db; /* The database connection */ 1958 int nVar; /* Number of parameters */ 1959 int nMem; /* Number of VM memory registers */ 1960 int nCursor; /* Number of cursors required */ 1961 int nArg; /* Number of arguments in subprograms */ 1962 int n; /* Loop counter */ 1963 struct ReusableSpace x; /* Reusable bulk memory */ 1964 1965 assert( p!=0 ); 1966 assert( p->nOp>0 ); 1967 assert( pParse!=0 ); 1968 assert( p->magic==VDBE_MAGIC_INIT ); 1969 assert( pParse==p->pParse ); 1970 db = p->db; 1971 assert( db->mallocFailed==0 ); 1972 nVar = pParse->nVar; 1973 nMem = pParse->nMem; 1974 nCursor = pParse->nTab; 1975 nArg = pParse->nMaxArg; 1976 1977 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 1978 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 1979 ** space at the end of aMem[] for cursors 1 and greater. 1980 ** See also: allocateCursor(). 1981 */ 1982 nMem += nCursor; 1983 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 1984 1985 /* Figure out how much reusable memory is available at the end of the 1986 ** opcode array. This extra memory will be reallocated for other elements 1987 ** of the prepared statement. 1988 */ 1989 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 1990 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 1991 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 1992 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 1993 assert( x.nFree>=0 ); 1994 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 1995 1996 resolveP2Values(p, &nArg); 1997 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 1998 if( pParse->explain && nMem<10 ){ 1999 nMem = 10; 2000 } 2001 p->expired = 0; 2002 2003 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 2004 ** passes. On the first pass, we try to reuse unused memory at the 2005 ** end of the opcode array. If we are unable to satisfy all memory 2006 ** requirements by reusing the opcode array tail, then the second 2007 ** pass will fill in the remainder using a fresh memory allocation. 2008 ** 2009 ** This two-pass approach that reuses as much memory as possible from 2010 ** the leftover memory at the end of the opcode array. This can significantly 2011 ** reduce the amount of memory held by a prepared statement. 2012 */ 2013 do { 2014 x.nNeeded = 0; 2015 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 2016 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 2017 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 2018 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 2019 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2020 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 2021 #endif 2022 if( x.nNeeded==0 ) break; 2023 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 2024 x.nFree = x.nNeeded; 2025 }while( !db->mallocFailed ); 2026 2027 p->pVList = pParse->pVList; 2028 pParse->pVList = 0; 2029 p->explain = pParse->explain; 2030 if( db->mallocFailed ){ 2031 p->nVar = 0; 2032 p->nCursor = 0; 2033 p->nMem = 0; 2034 }else{ 2035 p->nCursor = nCursor; 2036 p->nVar = (ynVar)nVar; 2037 initMemArray(p->aVar, nVar, db, MEM_Null); 2038 p->nMem = nMem; 2039 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2040 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2041 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2042 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2043 #endif 2044 } 2045 sqlite3VdbeRewind(p); 2046 } 2047 2048 /* 2049 ** Close a VDBE cursor and release all the resources that cursor 2050 ** happens to hold. 2051 */ 2052 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2053 if( pCx==0 ){ 2054 return; 2055 } 2056 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE ); 2057 switch( pCx->eCurType ){ 2058 case CURTYPE_SORTER: { 2059 sqlite3VdbeSorterClose(p->db, pCx); 2060 break; 2061 } 2062 case CURTYPE_BTREE: { 2063 if( pCx->isEphemeral ){ 2064 if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx); 2065 /* The pCx->pCursor will be close automatically, if it exists, by 2066 ** the call above. */ 2067 }else{ 2068 assert( pCx->uc.pCursor!=0 ); 2069 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2070 } 2071 break; 2072 } 2073 #ifndef SQLITE_OMIT_VIRTUALTABLE 2074 case CURTYPE_VTAB: { 2075 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2076 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2077 assert( pVCur->pVtab->nRef>0 ); 2078 pVCur->pVtab->nRef--; 2079 pModule->xClose(pVCur); 2080 break; 2081 } 2082 #endif 2083 } 2084 } 2085 2086 /* 2087 ** Close all cursors in the current frame. 2088 */ 2089 static void closeCursorsInFrame(Vdbe *p){ 2090 if( p->apCsr ){ 2091 int i; 2092 for(i=0; i<p->nCursor; i++){ 2093 VdbeCursor *pC = p->apCsr[i]; 2094 if( pC ){ 2095 sqlite3VdbeFreeCursor(p, pC); 2096 p->apCsr[i] = 0; 2097 } 2098 } 2099 } 2100 } 2101 2102 /* 2103 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2104 ** is used, for example, when a trigger sub-program is halted to restore 2105 ** control to the main program. 2106 */ 2107 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2108 Vdbe *v = pFrame->v; 2109 closeCursorsInFrame(v); 2110 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2111 v->anExec = pFrame->anExec; 2112 #endif 2113 v->aOp = pFrame->aOp; 2114 v->nOp = pFrame->nOp; 2115 v->aMem = pFrame->aMem; 2116 v->nMem = pFrame->nMem; 2117 v->apCsr = pFrame->apCsr; 2118 v->nCursor = pFrame->nCursor; 2119 v->db->lastRowid = pFrame->lastRowid; 2120 v->nChange = pFrame->nChange; 2121 v->db->nChange = pFrame->nDbChange; 2122 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2123 v->pAuxData = pFrame->pAuxData; 2124 pFrame->pAuxData = 0; 2125 return pFrame->pc; 2126 } 2127 2128 /* 2129 ** Close all cursors. 2130 ** 2131 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2132 ** cell array. This is necessary as the memory cell array may contain 2133 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2134 ** open cursors. 2135 */ 2136 static void closeAllCursors(Vdbe *p){ 2137 if( p->pFrame ){ 2138 VdbeFrame *pFrame; 2139 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2140 sqlite3VdbeFrameRestore(pFrame); 2141 p->pFrame = 0; 2142 p->nFrame = 0; 2143 } 2144 assert( p->nFrame==0 ); 2145 closeCursorsInFrame(p); 2146 if( p->aMem ){ 2147 releaseMemArray(p->aMem, p->nMem); 2148 } 2149 while( p->pDelFrame ){ 2150 VdbeFrame *pDel = p->pDelFrame; 2151 p->pDelFrame = pDel->pParent; 2152 sqlite3VdbeFrameDelete(pDel); 2153 } 2154 2155 /* Delete any auxdata allocations made by the VM */ 2156 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2157 assert( p->pAuxData==0 ); 2158 } 2159 2160 /* 2161 ** Clean up the VM after a single run. 2162 */ 2163 static void Cleanup(Vdbe *p){ 2164 sqlite3 *db = p->db; 2165 2166 #ifdef SQLITE_DEBUG 2167 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 2168 ** Vdbe.aMem[] arrays have already been cleaned up. */ 2169 int i; 2170 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 2171 if( p->aMem ){ 2172 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 2173 } 2174 #endif 2175 2176 sqlite3DbFree(db, p->zErrMsg); 2177 p->zErrMsg = 0; 2178 p->pResultSet = 0; 2179 } 2180 2181 /* 2182 ** Set the number of result columns that will be returned by this SQL 2183 ** statement. This is now set at compile time, rather than during 2184 ** execution of the vdbe program so that sqlite3_column_count() can 2185 ** be called on an SQL statement before sqlite3_step(). 2186 */ 2187 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2188 int n; 2189 sqlite3 *db = p->db; 2190 2191 if( p->nResColumn ){ 2192 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2193 sqlite3DbFree(db, p->aColName); 2194 } 2195 n = nResColumn*COLNAME_N; 2196 p->nResColumn = (u16)nResColumn; 2197 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2198 if( p->aColName==0 ) return; 2199 initMemArray(p->aColName, n, db, MEM_Null); 2200 } 2201 2202 /* 2203 ** Set the name of the idx'th column to be returned by the SQL statement. 2204 ** zName must be a pointer to a nul terminated string. 2205 ** 2206 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2207 ** 2208 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2209 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2210 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2211 */ 2212 int sqlite3VdbeSetColName( 2213 Vdbe *p, /* Vdbe being configured */ 2214 int idx, /* Index of column zName applies to */ 2215 int var, /* One of the COLNAME_* constants */ 2216 const char *zName, /* Pointer to buffer containing name */ 2217 void (*xDel)(void*) /* Memory management strategy for zName */ 2218 ){ 2219 int rc; 2220 Mem *pColName; 2221 assert( idx<p->nResColumn ); 2222 assert( var<COLNAME_N ); 2223 if( p->db->mallocFailed ){ 2224 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2225 return SQLITE_NOMEM_BKPT; 2226 } 2227 assert( p->aColName!=0 ); 2228 pColName = &(p->aColName[idx+var*p->nResColumn]); 2229 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2230 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2231 return rc; 2232 } 2233 2234 /* 2235 ** A read or write transaction may or may not be active on database handle 2236 ** db. If a transaction is active, commit it. If there is a 2237 ** write-transaction spanning more than one database file, this routine 2238 ** takes care of the master journal trickery. 2239 */ 2240 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2241 int i; 2242 int nTrans = 0; /* Number of databases with an active write-transaction 2243 ** that are candidates for a two-phase commit using a 2244 ** master-journal */ 2245 int rc = SQLITE_OK; 2246 int needXcommit = 0; 2247 2248 #ifdef SQLITE_OMIT_VIRTUALTABLE 2249 /* With this option, sqlite3VtabSync() is defined to be simply 2250 ** SQLITE_OK so p is not used. 2251 */ 2252 UNUSED_PARAMETER(p); 2253 #endif 2254 2255 /* Before doing anything else, call the xSync() callback for any 2256 ** virtual module tables written in this transaction. This has to 2257 ** be done before determining whether a master journal file is 2258 ** required, as an xSync() callback may add an attached database 2259 ** to the transaction. 2260 */ 2261 rc = sqlite3VtabSync(db, p); 2262 2263 /* This loop determines (a) if the commit hook should be invoked and 2264 ** (b) how many database files have open write transactions, not 2265 ** including the temp database. (b) is important because if more than 2266 ** one database file has an open write transaction, a master journal 2267 ** file is required for an atomic commit. 2268 */ 2269 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2270 Btree *pBt = db->aDb[i].pBt; 2271 if( sqlite3BtreeIsInTrans(pBt) ){ 2272 /* Whether or not a database might need a master journal depends upon 2273 ** its journal mode (among other things). This matrix determines which 2274 ** journal modes use a master journal and which do not */ 2275 static const u8 aMJNeeded[] = { 2276 /* DELETE */ 1, 2277 /* PERSIST */ 1, 2278 /* OFF */ 0, 2279 /* TRUNCATE */ 1, 2280 /* MEMORY */ 0, 2281 /* WAL */ 0 2282 }; 2283 Pager *pPager; /* Pager associated with pBt */ 2284 needXcommit = 1; 2285 sqlite3BtreeEnter(pBt); 2286 pPager = sqlite3BtreePager(pBt); 2287 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2288 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2289 ){ 2290 assert( i!=1 ); 2291 nTrans++; 2292 } 2293 rc = sqlite3PagerExclusiveLock(pPager); 2294 sqlite3BtreeLeave(pBt); 2295 } 2296 } 2297 if( rc!=SQLITE_OK ){ 2298 return rc; 2299 } 2300 2301 /* If there are any write-transactions at all, invoke the commit hook */ 2302 if( needXcommit && db->xCommitCallback ){ 2303 rc = db->xCommitCallback(db->pCommitArg); 2304 if( rc ){ 2305 return SQLITE_CONSTRAINT_COMMITHOOK; 2306 } 2307 } 2308 2309 /* The simple case - no more than one database file (not counting the 2310 ** TEMP database) has a transaction active. There is no need for the 2311 ** master-journal. 2312 ** 2313 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2314 ** string, it means the main database is :memory: or a temp file. In 2315 ** that case we do not support atomic multi-file commits, so use the 2316 ** simple case then too. 2317 */ 2318 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2319 || nTrans<=1 2320 ){ 2321 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2322 Btree *pBt = db->aDb[i].pBt; 2323 if( pBt ){ 2324 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2325 } 2326 } 2327 2328 /* Do the commit only if all databases successfully complete phase 1. 2329 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2330 ** IO error while deleting or truncating a journal file. It is unlikely, 2331 ** but could happen. In this case abandon processing and return the error. 2332 */ 2333 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2334 Btree *pBt = db->aDb[i].pBt; 2335 if( pBt ){ 2336 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2337 } 2338 } 2339 if( rc==SQLITE_OK ){ 2340 sqlite3VtabCommit(db); 2341 } 2342 } 2343 2344 /* The complex case - There is a multi-file write-transaction active. 2345 ** This requires a master journal file to ensure the transaction is 2346 ** committed atomically. 2347 */ 2348 #ifndef SQLITE_OMIT_DISKIO 2349 else{ 2350 sqlite3_vfs *pVfs = db->pVfs; 2351 char *zMaster = 0; /* File-name for the master journal */ 2352 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2353 sqlite3_file *pMaster = 0; 2354 i64 offset = 0; 2355 int res; 2356 int retryCount = 0; 2357 int nMainFile; 2358 2359 /* Select a master journal file name */ 2360 nMainFile = sqlite3Strlen30(zMainFile); 2361 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); 2362 if( zMaster==0 ) return SQLITE_NOMEM_BKPT; 2363 do { 2364 u32 iRandom; 2365 if( retryCount ){ 2366 if( retryCount>100 ){ 2367 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); 2368 sqlite3OsDelete(pVfs, zMaster, 0); 2369 break; 2370 }else if( retryCount==1 ){ 2371 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); 2372 } 2373 } 2374 retryCount++; 2375 sqlite3_randomness(sizeof(iRandom), &iRandom); 2376 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", 2377 (iRandom>>8)&0xffffff, iRandom&0xff); 2378 /* The antipenultimate character of the master journal name must 2379 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2380 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); 2381 sqlite3FileSuffix3(zMainFile, zMaster); 2382 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2383 }while( rc==SQLITE_OK && res ); 2384 if( rc==SQLITE_OK ){ 2385 /* Open the master journal. */ 2386 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 2387 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2388 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 2389 ); 2390 } 2391 if( rc!=SQLITE_OK ){ 2392 sqlite3DbFree(db, zMaster); 2393 return rc; 2394 } 2395 2396 /* Write the name of each database file in the transaction into the new 2397 ** master journal file. If an error occurs at this point close 2398 ** and delete the master journal file. All the individual journal files 2399 ** still have 'null' as the master journal pointer, so they will roll 2400 ** back independently if a failure occurs. 2401 */ 2402 for(i=0; i<db->nDb; i++){ 2403 Btree *pBt = db->aDb[i].pBt; 2404 if( sqlite3BtreeIsInTrans(pBt) ){ 2405 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2406 if( zFile==0 ){ 2407 continue; /* Ignore TEMP and :memory: databases */ 2408 } 2409 assert( zFile[0]!=0 ); 2410 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); 2411 offset += sqlite3Strlen30(zFile)+1; 2412 if( rc!=SQLITE_OK ){ 2413 sqlite3OsCloseFree(pMaster); 2414 sqlite3OsDelete(pVfs, zMaster, 0); 2415 sqlite3DbFree(db, zMaster); 2416 return rc; 2417 } 2418 } 2419 } 2420 2421 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device 2422 ** flag is set this is not required. 2423 */ 2424 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) 2425 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) 2426 ){ 2427 sqlite3OsCloseFree(pMaster); 2428 sqlite3OsDelete(pVfs, zMaster, 0); 2429 sqlite3DbFree(db, zMaster); 2430 return rc; 2431 } 2432 2433 /* Sync all the db files involved in the transaction. The same call 2434 ** sets the master journal pointer in each individual journal. If 2435 ** an error occurs here, do not delete the master journal file. 2436 ** 2437 ** If the error occurs during the first call to 2438 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2439 ** master journal file will be orphaned. But we cannot delete it, 2440 ** in case the master journal file name was written into the journal 2441 ** file before the failure occurred. 2442 */ 2443 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2444 Btree *pBt = db->aDb[i].pBt; 2445 if( pBt ){ 2446 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); 2447 } 2448 } 2449 sqlite3OsCloseFree(pMaster); 2450 assert( rc!=SQLITE_BUSY ); 2451 if( rc!=SQLITE_OK ){ 2452 sqlite3DbFree(db, zMaster); 2453 return rc; 2454 } 2455 2456 /* Delete the master journal file. This commits the transaction. After 2457 ** doing this the directory is synced again before any individual 2458 ** transaction files are deleted. 2459 */ 2460 rc = sqlite3OsDelete(pVfs, zMaster, 1); 2461 sqlite3DbFree(db, zMaster); 2462 zMaster = 0; 2463 if( rc ){ 2464 return rc; 2465 } 2466 2467 /* All files and directories have already been synced, so the following 2468 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2469 ** deleting or truncating journals. If something goes wrong while 2470 ** this is happening we don't really care. The integrity of the 2471 ** transaction is already guaranteed, but some stray 'cold' journals 2472 ** may be lying around. Returning an error code won't help matters. 2473 */ 2474 disable_simulated_io_errors(); 2475 sqlite3BeginBenignMalloc(); 2476 for(i=0; i<db->nDb; i++){ 2477 Btree *pBt = db->aDb[i].pBt; 2478 if( pBt ){ 2479 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2480 } 2481 } 2482 sqlite3EndBenignMalloc(); 2483 enable_simulated_io_errors(); 2484 2485 sqlite3VtabCommit(db); 2486 } 2487 #endif 2488 2489 return rc; 2490 } 2491 2492 /* 2493 ** This routine checks that the sqlite3.nVdbeActive count variable 2494 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2495 ** currently active. An assertion fails if the two counts do not match. 2496 ** This is an internal self-check only - it is not an essential processing 2497 ** step. 2498 ** 2499 ** This is a no-op if NDEBUG is defined. 2500 */ 2501 #ifndef NDEBUG 2502 static void checkActiveVdbeCnt(sqlite3 *db){ 2503 Vdbe *p; 2504 int cnt = 0; 2505 int nWrite = 0; 2506 int nRead = 0; 2507 p = db->pVdbe; 2508 while( p ){ 2509 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2510 cnt++; 2511 if( p->readOnly==0 ) nWrite++; 2512 if( p->bIsReader ) nRead++; 2513 } 2514 p = p->pNext; 2515 } 2516 assert( cnt==db->nVdbeActive ); 2517 assert( nWrite==db->nVdbeWrite ); 2518 assert( nRead==db->nVdbeRead ); 2519 } 2520 #else 2521 #define checkActiveVdbeCnt(x) 2522 #endif 2523 2524 /* 2525 ** If the Vdbe passed as the first argument opened a statement-transaction, 2526 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 2527 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 2528 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 2529 ** statement transaction is committed. 2530 ** 2531 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 2532 ** Otherwise SQLITE_OK. 2533 */ 2534 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 2535 sqlite3 *const db = p->db; 2536 int rc = SQLITE_OK; 2537 int i; 2538 const int iSavepoint = p->iStatement-1; 2539 2540 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 2541 assert( db->nStatement>0 ); 2542 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 2543 2544 for(i=0; i<db->nDb; i++){ 2545 int rc2 = SQLITE_OK; 2546 Btree *pBt = db->aDb[i].pBt; 2547 if( pBt ){ 2548 if( eOp==SAVEPOINT_ROLLBACK ){ 2549 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 2550 } 2551 if( rc2==SQLITE_OK ){ 2552 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 2553 } 2554 if( rc==SQLITE_OK ){ 2555 rc = rc2; 2556 } 2557 } 2558 } 2559 db->nStatement--; 2560 p->iStatement = 0; 2561 2562 if( rc==SQLITE_OK ){ 2563 if( eOp==SAVEPOINT_ROLLBACK ){ 2564 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 2565 } 2566 if( rc==SQLITE_OK ){ 2567 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 2568 } 2569 } 2570 2571 /* If the statement transaction is being rolled back, also restore the 2572 ** database handles deferred constraint counter to the value it had when 2573 ** the statement transaction was opened. */ 2574 if( eOp==SAVEPOINT_ROLLBACK ){ 2575 db->nDeferredCons = p->nStmtDefCons; 2576 db->nDeferredImmCons = p->nStmtDefImmCons; 2577 } 2578 return rc; 2579 } 2580 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 2581 if( p->db->nStatement && p->iStatement ){ 2582 return vdbeCloseStatement(p, eOp); 2583 } 2584 return SQLITE_OK; 2585 } 2586 2587 2588 /* 2589 ** This function is called when a transaction opened by the database 2590 ** handle associated with the VM passed as an argument is about to be 2591 ** committed. If there are outstanding deferred foreign key constraint 2592 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 2593 ** 2594 ** If there are outstanding FK violations and this function returns 2595 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 2596 ** and write an error message to it. Then return SQLITE_ERROR. 2597 */ 2598 #ifndef SQLITE_OMIT_FOREIGN_KEY 2599 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 2600 sqlite3 *db = p->db; 2601 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 2602 || (!deferred && p->nFkConstraint>0) 2603 ){ 2604 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2605 p->errorAction = OE_Abort; 2606 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 2607 return SQLITE_ERROR; 2608 } 2609 return SQLITE_OK; 2610 } 2611 #endif 2612 2613 /* 2614 ** This routine is called the when a VDBE tries to halt. If the VDBE 2615 ** has made changes and is in autocommit mode, then commit those 2616 ** changes. If a rollback is needed, then do the rollback. 2617 ** 2618 ** This routine is the only way to move the state of a VM from 2619 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to 2620 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. 2621 ** 2622 ** Return an error code. If the commit could not complete because of 2623 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 2624 ** means the close did not happen and needs to be repeated. 2625 */ 2626 int sqlite3VdbeHalt(Vdbe *p){ 2627 int rc; /* Used to store transient return codes */ 2628 sqlite3 *db = p->db; 2629 2630 /* This function contains the logic that determines if a statement or 2631 ** transaction will be committed or rolled back as a result of the 2632 ** execution of this virtual machine. 2633 ** 2634 ** If any of the following errors occur: 2635 ** 2636 ** SQLITE_NOMEM 2637 ** SQLITE_IOERR 2638 ** SQLITE_FULL 2639 ** SQLITE_INTERRUPT 2640 ** 2641 ** Then the internal cache might have been left in an inconsistent 2642 ** state. We need to rollback the statement transaction, if there is 2643 ** one, or the complete transaction if there is no statement transaction. 2644 */ 2645 2646 if( p->magic!=VDBE_MAGIC_RUN ){ 2647 return SQLITE_OK; 2648 } 2649 if( db->mallocFailed ){ 2650 p->rc = SQLITE_NOMEM_BKPT; 2651 } 2652 closeAllCursors(p); 2653 checkActiveVdbeCnt(db); 2654 2655 /* No commit or rollback needed if the program never started or if the 2656 ** SQL statement does not read or write a database file. */ 2657 if( p->pc>=0 && p->bIsReader ){ 2658 int mrc; /* Primary error code from p->rc */ 2659 int eStatementOp = 0; 2660 int isSpecialError; /* Set to true if a 'special' error */ 2661 2662 /* Lock all btrees used by the statement */ 2663 sqlite3VdbeEnter(p); 2664 2665 /* Check for one of the special errors */ 2666 mrc = p->rc & 0xff; 2667 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR 2668 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; 2669 if( isSpecialError ){ 2670 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 2671 ** no rollback is necessary. Otherwise, at least a savepoint 2672 ** transaction must be rolled back to restore the database to a 2673 ** consistent state. 2674 ** 2675 ** Even if the statement is read-only, it is important to perform 2676 ** a statement or transaction rollback operation. If the error 2677 ** occurred while writing to the journal, sub-journal or database 2678 ** file as part of an effort to free up cache space (see function 2679 ** pagerStress() in pager.c), the rollback is required to restore 2680 ** the pager to a consistent state. 2681 */ 2682 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 2683 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 2684 eStatementOp = SAVEPOINT_ROLLBACK; 2685 }else{ 2686 /* We are forced to roll back the active transaction. Before doing 2687 ** so, abort any other statements this handle currently has active. 2688 */ 2689 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2690 sqlite3CloseSavepoints(db); 2691 db->autoCommit = 1; 2692 p->nChange = 0; 2693 } 2694 } 2695 } 2696 2697 /* Check for immediate foreign key violations. */ 2698 if( p->rc==SQLITE_OK ){ 2699 sqlite3VdbeCheckFk(p, 0); 2700 } 2701 2702 /* If the auto-commit flag is set and this is the only active writer 2703 ** VM, then we do either a commit or rollback of the current transaction. 2704 ** 2705 ** Note: This block also runs if one of the special errors handled 2706 ** above has occurred. 2707 */ 2708 if( !sqlite3VtabInSync(db) 2709 && db->autoCommit 2710 && db->nVdbeWrite==(p->readOnly==0) 2711 ){ 2712 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 2713 rc = sqlite3VdbeCheckFk(p, 1); 2714 if( rc!=SQLITE_OK ){ 2715 if( NEVER(p->readOnly) ){ 2716 sqlite3VdbeLeave(p); 2717 return SQLITE_ERROR; 2718 } 2719 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 2720 }else{ 2721 /* The auto-commit flag is true, the vdbe program was successful 2722 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 2723 ** key constraints to hold up the transaction. This means a commit 2724 ** is required. */ 2725 rc = vdbeCommit(db, p); 2726 } 2727 if( rc==SQLITE_BUSY && p->readOnly ){ 2728 sqlite3VdbeLeave(p); 2729 return SQLITE_BUSY; 2730 }else if( rc!=SQLITE_OK ){ 2731 p->rc = rc; 2732 sqlite3RollbackAll(db, SQLITE_OK); 2733 p->nChange = 0; 2734 }else{ 2735 db->nDeferredCons = 0; 2736 db->nDeferredImmCons = 0; 2737 db->flags &= ~SQLITE_DeferFKs; 2738 sqlite3CommitInternalChanges(db); 2739 } 2740 }else{ 2741 sqlite3RollbackAll(db, SQLITE_OK); 2742 p->nChange = 0; 2743 } 2744 db->nStatement = 0; 2745 }else if( eStatementOp==0 ){ 2746 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 2747 eStatementOp = SAVEPOINT_RELEASE; 2748 }else if( p->errorAction==OE_Abort ){ 2749 eStatementOp = SAVEPOINT_ROLLBACK; 2750 }else{ 2751 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2752 sqlite3CloseSavepoints(db); 2753 db->autoCommit = 1; 2754 p->nChange = 0; 2755 } 2756 } 2757 2758 /* If eStatementOp is non-zero, then a statement transaction needs to 2759 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 2760 ** do so. If this operation returns an error, and the current statement 2761 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 2762 ** current statement error code. 2763 */ 2764 if( eStatementOp ){ 2765 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 2766 if( rc ){ 2767 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 2768 p->rc = rc; 2769 sqlite3DbFree(db, p->zErrMsg); 2770 p->zErrMsg = 0; 2771 } 2772 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2773 sqlite3CloseSavepoints(db); 2774 db->autoCommit = 1; 2775 p->nChange = 0; 2776 } 2777 } 2778 2779 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 2780 ** has been rolled back, update the database connection change-counter. 2781 */ 2782 if( p->changeCntOn ){ 2783 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 2784 sqlite3VdbeSetChanges(db, p->nChange); 2785 }else{ 2786 sqlite3VdbeSetChanges(db, 0); 2787 } 2788 p->nChange = 0; 2789 } 2790 2791 /* Release the locks */ 2792 sqlite3VdbeLeave(p); 2793 } 2794 2795 /* We have successfully halted and closed the VM. Record this fact. */ 2796 if( p->pc>=0 ){ 2797 db->nVdbeActive--; 2798 if( !p->readOnly ) db->nVdbeWrite--; 2799 if( p->bIsReader ) db->nVdbeRead--; 2800 assert( db->nVdbeActive>=db->nVdbeRead ); 2801 assert( db->nVdbeRead>=db->nVdbeWrite ); 2802 assert( db->nVdbeWrite>=0 ); 2803 } 2804 p->magic = VDBE_MAGIC_HALT; 2805 checkActiveVdbeCnt(db); 2806 if( db->mallocFailed ){ 2807 p->rc = SQLITE_NOMEM_BKPT; 2808 } 2809 2810 /* If the auto-commit flag is set to true, then any locks that were held 2811 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 2812 ** to invoke any required unlock-notify callbacks. 2813 */ 2814 if( db->autoCommit ){ 2815 sqlite3ConnectionUnlocked(db); 2816 } 2817 2818 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 2819 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 2820 } 2821 2822 2823 /* 2824 ** Each VDBE holds the result of the most recent sqlite3_step() call 2825 ** in p->rc. This routine sets that result back to SQLITE_OK. 2826 */ 2827 void sqlite3VdbeResetStepResult(Vdbe *p){ 2828 p->rc = SQLITE_OK; 2829 } 2830 2831 /* 2832 ** Copy the error code and error message belonging to the VDBE passed 2833 ** as the first argument to its database handle (so that they will be 2834 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 2835 ** 2836 ** This function does not clear the VDBE error code or message, just 2837 ** copies them to the database handle. 2838 */ 2839 int sqlite3VdbeTransferError(Vdbe *p){ 2840 sqlite3 *db = p->db; 2841 int rc = p->rc; 2842 if( p->zErrMsg ){ 2843 db->bBenignMalloc++; 2844 sqlite3BeginBenignMalloc(); 2845 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 2846 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 2847 sqlite3EndBenignMalloc(); 2848 db->bBenignMalloc--; 2849 }else if( db->pErr ){ 2850 sqlite3ValueSetNull(db->pErr); 2851 } 2852 db->errCode = rc; 2853 return rc; 2854 } 2855 2856 #ifdef SQLITE_ENABLE_SQLLOG 2857 /* 2858 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 2859 ** invoke it. 2860 */ 2861 static void vdbeInvokeSqllog(Vdbe *v){ 2862 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 2863 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 2864 assert( v->db->init.busy==0 ); 2865 if( zExpanded ){ 2866 sqlite3GlobalConfig.xSqllog( 2867 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 2868 ); 2869 sqlite3DbFree(v->db, zExpanded); 2870 } 2871 } 2872 } 2873 #else 2874 # define vdbeInvokeSqllog(x) 2875 #endif 2876 2877 /* 2878 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 2879 ** Write any error messages into *pzErrMsg. Return the result code. 2880 ** 2881 ** After this routine is run, the VDBE should be ready to be executed 2882 ** again. 2883 ** 2884 ** To look at it another way, this routine resets the state of the 2885 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to 2886 ** VDBE_MAGIC_INIT. 2887 */ 2888 int sqlite3VdbeReset(Vdbe *p){ 2889 sqlite3 *db; 2890 db = p->db; 2891 2892 /* If the VM did not run to completion or if it encountered an 2893 ** error, then it might not have been halted properly. So halt 2894 ** it now. 2895 */ 2896 sqlite3VdbeHalt(p); 2897 2898 /* If the VDBE has be run even partially, then transfer the error code 2899 ** and error message from the VDBE into the main database structure. But 2900 ** if the VDBE has just been set to run but has not actually executed any 2901 ** instructions yet, leave the main database error information unchanged. 2902 */ 2903 if( p->pc>=0 ){ 2904 vdbeInvokeSqllog(p); 2905 sqlite3VdbeTransferError(p); 2906 sqlite3DbFree(db, p->zErrMsg); 2907 p->zErrMsg = 0; 2908 if( p->runOnlyOnce ) p->expired = 1; 2909 }else if( p->rc && p->expired ){ 2910 /* The expired flag was set on the VDBE before the first call 2911 ** to sqlite3_step(). For consistency (since sqlite3_step() was 2912 ** called), set the database error in this case as well. 2913 */ 2914 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); 2915 sqlite3DbFree(db, p->zErrMsg); 2916 p->zErrMsg = 0; 2917 } 2918 2919 /* Reclaim all memory used by the VDBE 2920 */ 2921 Cleanup(p); 2922 2923 /* Save profiling information from this VDBE run. 2924 */ 2925 #ifdef VDBE_PROFILE 2926 { 2927 FILE *out = fopen("vdbe_profile.out", "a"); 2928 if( out ){ 2929 int i; 2930 fprintf(out, "---- "); 2931 for(i=0; i<p->nOp; i++){ 2932 fprintf(out, "%02x", p->aOp[i].opcode); 2933 } 2934 fprintf(out, "\n"); 2935 if( p->zSql ){ 2936 char c, pc = 0; 2937 fprintf(out, "-- "); 2938 for(i=0; (c = p->zSql[i])!=0; i++){ 2939 if( pc=='\n' ) fprintf(out, "-- "); 2940 putc(c, out); 2941 pc = c; 2942 } 2943 if( pc!='\n' ) fprintf(out, "\n"); 2944 } 2945 for(i=0; i<p->nOp; i++){ 2946 char zHdr[100]; 2947 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 2948 p->aOp[i].cnt, 2949 p->aOp[i].cycles, 2950 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 2951 ); 2952 fprintf(out, "%s", zHdr); 2953 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 2954 } 2955 fclose(out); 2956 } 2957 } 2958 #endif 2959 p->magic = VDBE_MAGIC_RESET; 2960 return p->rc & db->errMask; 2961 } 2962 2963 /* 2964 ** Clean up and delete a VDBE after execution. Return an integer which is 2965 ** the result code. Write any error message text into *pzErrMsg. 2966 */ 2967 int sqlite3VdbeFinalize(Vdbe *p){ 2968 int rc = SQLITE_OK; 2969 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ 2970 rc = sqlite3VdbeReset(p); 2971 assert( (rc & p->db->errMask)==rc ); 2972 } 2973 sqlite3VdbeDelete(p); 2974 return rc; 2975 } 2976 2977 /* 2978 ** If parameter iOp is less than zero, then invoke the destructor for 2979 ** all auxiliary data pointers currently cached by the VM passed as 2980 ** the first argument. 2981 ** 2982 ** Or, if iOp is greater than or equal to zero, then the destructor is 2983 ** only invoked for those auxiliary data pointers created by the user 2984 ** function invoked by the OP_Function opcode at instruction iOp of 2985 ** VM pVdbe, and only then if: 2986 ** 2987 ** * the associated function parameter is the 32nd or later (counting 2988 ** from left to right), or 2989 ** 2990 ** * the corresponding bit in argument mask is clear (where the first 2991 ** function parameter corresponds to bit 0 etc.). 2992 */ 2993 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 2994 while( *pp ){ 2995 AuxData *pAux = *pp; 2996 if( (iOp<0) 2997 || (pAux->iAuxOp==iOp 2998 && pAux->iAuxArg>=0 2999 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 3000 ){ 3001 testcase( pAux->iAuxArg==31 ); 3002 if( pAux->xDeleteAux ){ 3003 pAux->xDeleteAux(pAux->pAux); 3004 } 3005 *pp = pAux->pNextAux; 3006 sqlite3DbFree(db, pAux); 3007 }else{ 3008 pp= &pAux->pNextAux; 3009 } 3010 } 3011 } 3012 3013 /* 3014 ** Free all memory associated with the Vdbe passed as the second argument, 3015 ** except for object itself, which is preserved. 3016 ** 3017 ** The difference between this function and sqlite3VdbeDelete() is that 3018 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 3019 ** the database connection and frees the object itself. 3020 */ 3021 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 3022 SubProgram *pSub, *pNext; 3023 assert( p->db==0 || p->db==db ); 3024 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 3025 for(pSub=p->pProgram; pSub; pSub=pNext){ 3026 pNext = pSub->pNext; 3027 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 3028 sqlite3DbFree(db, pSub); 3029 } 3030 if( p->magic!=VDBE_MAGIC_INIT ){ 3031 releaseMemArray(p->aVar, p->nVar); 3032 sqlite3DbFree(db, p->pVList); 3033 sqlite3DbFree(db, p->pFree); 3034 } 3035 vdbeFreeOpArray(db, p->aOp, p->nOp); 3036 sqlite3DbFree(db, p->aColName); 3037 sqlite3DbFree(db, p->zSql); 3038 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3039 { 3040 int i; 3041 for(i=0; i<p->nScan; i++){ 3042 sqlite3DbFree(db, p->aScan[i].zName); 3043 } 3044 sqlite3DbFree(db, p->aScan); 3045 } 3046 #endif 3047 } 3048 3049 /* 3050 ** Delete an entire VDBE. 3051 */ 3052 void sqlite3VdbeDelete(Vdbe *p){ 3053 sqlite3 *db; 3054 3055 if( NEVER(p==0) ) return; 3056 db = p->db; 3057 assert( sqlite3_mutex_held(db->mutex) ); 3058 sqlite3VdbeClearObject(db, p); 3059 if( p->pPrev ){ 3060 p->pPrev->pNext = p->pNext; 3061 }else{ 3062 assert( db->pVdbe==p ); 3063 db->pVdbe = p->pNext; 3064 } 3065 if( p->pNext ){ 3066 p->pNext->pPrev = p->pPrev; 3067 } 3068 p->magic = VDBE_MAGIC_DEAD; 3069 p->db = 0; 3070 sqlite3DbFreeNN(db, p); 3071 } 3072 3073 /* 3074 ** The cursor "p" has a pending seek operation that has not yet been 3075 ** carried out. Seek the cursor now. If an error occurs, return 3076 ** the appropriate error code. 3077 */ 3078 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ 3079 int res, rc; 3080 #ifdef SQLITE_TEST 3081 extern int sqlite3_search_count; 3082 #endif 3083 assert( p->deferredMoveto ); 3084 assert( p->isTable ); 3085 assert( p->eCurType==CURTYPE_BTREE ); 3086 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); 3087 if( rc ) return rc; 3088 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3089 #ifdef SQLITE_TEST 3090 sqlite3_search_count++; 3091 #endif 3092 p->deferredMoveto = 0; 3093 p->cacheStatus = CACHE_STALE; 3094 return SQLITE_OK; 3095 } 3096 3097 /* 3098 ** Something has moved cursor "p" out of place. Maybe the row it was 3099 ** pointed to was deleted out from under it. Or maybe the btree was 3100 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3101 ** is supposed to be pointing. If the row was deleted out from under the 3102 ** cursor, set the cursor to point to a NULL row. 3103 */ 3104 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ 3105 int isDifferentRow, rc; 3106 assert( p->eCurType==CURTYPE_BTREE ); 3107 assert( p->uc.pCursor!=0 ); 3108 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3109 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3110 p->cacheStatus = CACHE_STALE; 3111 if( isDifferentRow ) p->nullRow = 1; 3112 return rc; 3113 } 3114 3115 /* 3116 ** Check to ensure that the cursor is valid. Restore the cursor 3117 ** if need be. Return any I/O error from the restore operation. 3118 */ 3119 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3120 assert( p->eCurType==CURTYPE_BTREE ); 3121 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3122 return handleMovedCursor(p); 3123 } 3124 return SQLITE_OK; 3125 } 3126 3127 /* 3128 ** Make sure the cursor p is ready to read or write the row to which it 3129 ** was last positioned. Return an error code if an OOM fault or I/O error 3130 ** prevents us from positioning the cursor to its correct position. 3131 ** 3132 ** If a MoveTo operation is pending on the given cursor, then do that 3133 ** MoveTo now. If no move is pending, check to see if the row has been 3134 ** deleted out from under the cursor and if it has, mark the row as 3135 ** a NULL row. 3136 ** 3137 ** If the cursor is already pointing to the correct row and that row has 3138 ** not been deleted out from under the cursor, then this routine is a no-op. 3139 */ 3140 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){ 3141 VdbeCursor *p = *pp; 3142 if( p->eCurType==CURTYPE_BTREE ){ 3143 if( p->deferredMoveto ){ 3144 int iMap; 3145 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){ 3146 *pp = p->pAltCursor; 3147 *piCol = iMap - 1; 3148 return SQLITE_OK; 3149 } 3150 return handleDeferredMoveto(p); 3151 } 3152 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3153 return handleMovedCursor(p); 3154 } 3155 } 3156 return SQLITE_OK; 3157 } 3158 3159 /* 3160 ** The following functions: 3161 ** 3162 ** sqlite3VdbeSerialType() 3163 ** sqlite3VdbeSerialTypeLen() 3164 ** sqlite3VdbeSerialLen() 3165 ** sqlite3VdbeSerialPut() 3166 ** sqlite3VdbeSerialGet() 3167 ** 3168 ** encapsulate the code that serializes values for storage in SQLite 3169 ** data and index records. Each serialized value consists of a 3170 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3171 ** integer, stored as a varint. 3172 ** 3173 ** In an SQLite index record, the serial type is stored directly before 3174 ** the blob of data that it corresponds to. In a table record, all serial 3175 ** types are stored at the start of the record, and the blobs of data at 3176 ** the end. Hence these functions allow the caller to handle the 3177 ** serial-type and data blob separately. 3178 ** 3179 ** The following table describes the various storage classes for data: 3180 ** 3181 ** serial type bytes of data type 3182 ** -------------- --------------- --------------- 3183 ** 0 0 NULL 3184 ** 1 1 signed integer 3185 ** 2 2 signed integer 3186 ** 3 3 signed integer 3187 ** 4 4 signed integer 3188 ** 5 6 signed integer 3189 ** 6 8 signed integer 3190 ** 7 8 IEEE float 3191 ** 8 0 Integer constant 0 3192 ** 9 0 Integer constant 1 3193 ** 10,11 reserved for expansion 3194 ** N>=12 and even (N-12)/2 BLOB 3195 ** N>=13 and odd (N-13)/2 text 3196 ** 3197 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3198 ** of SQLite will not understand those serial types. 3199 */ 3200 3201 /* 3202 ** Return the serial-type for the value stored in pMem. 3203 */ 3204 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3205 int flags = pMem->flags; 3206 u32 n; 3207 3208 assert( pLen!=0 ); 3209 if( flags&MEM_Null ){ 3210 *pLen = 0; 3211 return 0; 3212 } 3213 if( flags&MEM_Int ){ 3214 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3215 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3216 i64 i = pMem->u.i; 3217 u64 u; 3218 if( i<0 ){ 3219 u = ~i; 3220 }else{ 3221 u = i; 3222 } 3223 if( u<=127 ){ 3224 if( (i&1)==i && file_format>=4 ){ 3225 *pLen = 0; 3226 return 8+(u32)u; 3227 }else{ 3228 *pLen = 1; 3229 return 1; 3230 } 3231 } 3232 if( u<=32767 ){ *pLen = 2; return 2; } 3233 if( u<=8388607 ){ *pLen = 3; return 3; } 3234 if( u<=2147483647 ){ *pLen = 4; return 4; } 3235 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3236 *pLen = 8; 3237 return 6; 3238 } 3239 if( flags&MEM_Real ){ 3240 *pLen = 8; 3241 return 7; 3242 } 3243 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3244 assert( pMem->n>=0 ); 3245 n = (u32)pMem->n; 3246 if( flags & MEM_Zero ){ 3247 n += pMem->u.nZero; 3248 } 3249 *pLen = n; 3250 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3251 } 3252 3253 /* 3254 ** The sizes for serial types less than 128 3255 */ 3256 static const u8 sqlite3SmallTypeSizes[] = { 3257 /* 0 1 2 3 4 5 6 7 8 9 */ 3258 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3259 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3260 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3261 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3262 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3263 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3264 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3265 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3266 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3267 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3268 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3269 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3270 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3271 }; 3272 3273 /* 3274 ** Return the length of the data corresponding to the supplied serial-type. 3275 */ 3276 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3277 if( serial_type>=128 ){ 3278 return (serial_type-12)/2; 3279 }else{ 3280 assert( serial_type<12 3281 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3282 return sqlite3SmallTypeSizes[serial_type]; 3283 } 3284 } 3285 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3286 assert( serial_type<128 ); 3287 return sqlite3SmallTypeSizes[serial_type]; 3288 } 3289 3290 /* 3291 ** If we are on an architecture with mixed-endian floating 3292 ** points (ex: ARM7) then swap the lower 4 bytes with the 3293 ** upper 4 bytes. Return the result. 3294 ** 3295 ** For most architectures, this is a no-op. 3296 ** 3297 ** (later): It is reported to me that the mixed-endian problem 3298 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3299 ** that early versions of GCC stored the two words of a 64-bit 3300 ** float in the wrong order. And that error has been propagated 3301 ** ever since. The blame is not necessarily with GCC, though. 3302 ** GCC might have just copying the problem from a prior compiler. 3303 ** I am also told that newer versions of GCC that follow a different 3304 ** ABI get the byte order right. 3305 ** 3306 ** Developers using SQLite on an ARM7 should compile and run their 3307 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3308 ** enabled, some asserts below will ensure that the byte order of 3309 ** floating point values is correct. 3310 ** 3311 ** (2007-08-30) Frank van Vugt has studied this problem closely 3312 ** and has send his findings to the SQLite developers. Frank 3313 ** writes that some Linux kernels offer floating point hardware 3314 ** emulation that uses only 32-bit mantissas instead of a full 3315 ** 48-bits as required by the IEEE standard. (This is the 3316 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3317 ** byte swapping becomes very complicated. To avoid problems, 3318 ** the necessary byte swapping is carried out using a 64-bit integer 3319 ** rather than a 64-bit float. Frank assures us that the code here 3320 ** works for him. We, the developers, have no way to independently 3321 ** verify this, but Frank seems to know what he is talking about 3322 ** so we trust him. 3323 */ 3324 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3325 static u64 floatSwap(u64 in){ 3326 union { 3327 u64 r; 3328 u32 i[2]; 3329 } u; 3330 u32 t; 3331 3332 u.r = in; 3333 t = u.i[0]; 3334 u.i[0] = u.i[1]; 3335 u.i[1] = t; 3336 return u.r; 3337 } 3338 # define swapMixedEndianFloat(X) X = floatSwap(X) 3339 #else 3340 # define swapMixedEndianFloat(X) 3341 #endif 3342 3343 /* 3344 ** Write the serialized data blob for the value stored in pMem into 3345 ** buf. It is assumed that the caller has allocated sufficient space. 3346 ** Return the number of bytes written. 3347 ** 3348 ** nBuf is the amount of space left in buf[]. The caller is responsible 3349 ** for allocating enough space to buf[] to hold the entire field, exclusive 3350 ** of the pMem->u.nZero bytes for a MEM_Zero value. 3351 ** 3352 ** Return the number of bytes actually written into buf[]. The number 3353 ** of bytes in the zero-filled tail is included in the return value only 3354 ** if those bytes were zeroed in buf[]. 3355 */ 3356 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ 3357 u32 len; 3358 3359 /* Integer and Real */ 3360 if( serial_type<=7 && serial_type>0 ){ 3361 u64 v; 3362 u32 i; 3363 if( serial_type==7 ){ 3364 assert( sizeof(v)==sizeof(pMem->u.r) ); 3365 memcpy(&v, &pMem->u.r, sizeof(v)); 3366 swapMixedEndianFloat(v); 3367 }else{ 3368 v = pMem->u.i; 3369 } 3370 len = i = sqlite3SmallTypeSizes[serial_type]; 3371 assert( i>0 ); 3372 do{ 3373 buf[--i] = (u8)(v&0xFF); 3374 v >>= 8; 3375 }while( i ); 3376 return len; 3377 } 3378 3379 /* String or blob */ 3380 if( serial_type>=12 ){ 3381 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) 3382 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); 3383 len = pMem->n; 3384 if( len>0 ) memcpy(buf, pMem->z, len); 3385 return len; 3386 } 3387 3388 /* NULL or constants 0 or 1 */ 3389 return 0; 3390 } 3391 3392 /* Input "x" is a sequence of unsigned characters that represent a 3393 ** big-endian integer. Return the equivalent native integer 3394 */ 3395 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3396 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3397 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3398 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3399 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3400 3401 /* 3402 ** Deserialize the data blob pointed to by buf as serial type serial_type 3403 ** and store the result in pMem. Return the number of bytes read. 3404 ** 3405 ** This function is implemented as two separate routines for performance. 3406 ** The few cases that require local variables are broken out into a separate 3407 ** routine so that in most cases the overhead of moving the stack pointer 3408 ** is avoided. 3409 */ 3410 static u32 SQLITE_NOINLINE serialGet( 3411 const unsigned char *buf, /* Buffer to deserialize from */ 3412 u32 serial_type, /* Serial type to deserialize */ 3413 Mem *pMem /* Memory cell to write value into */ 3414 ){ 3415 u64 x = FOUR_BYTE_UINT(buf); 3416 u32 y = FOUR_BYTE_UINT(buf+4); 3417 x = (x<<32) + y; 3418 if( serial_type==6 ){ 3419 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3420 ** twos-complement integer. */ 3421 pMem->u.i = *(i64*)&x; 3422 pMem->flags = MEM_Int; 3423 testcase( pMem->u.i<0 ); 3424 }else{ 3425 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3426 ** floating point number. */ 3427 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3428 /* Verify that integers and floating point values use the same 3429 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3430 ** defined that 64-bit floating point values really are mixed 3431 ** endian. 3432 */ 3433 static const u64 t1 = ((u64)0x3ff00000)<<32; 3434 static const double r1 = 1.0; 3435 u64 t2 = t1; 3436 swapMixedEndianFloat(t2); 3437 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3438 #endif 3439 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3440 swapMixedEndianFloat(x); 3441 memcpy(&pMem->u.r, &x, sizeof(x)); 3442 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; 3443 } 3444 return 8; 3445 } 3446 u32 sqlite3VdbeSerialGet( 3447 const unsigned char *buf, /* Buffer to deserialize from */ 3448 u32 serial_type, /* Serial type to deserialize */ 3449 Mem *pMem /* Memory cell to write value into */ 3450 ){ 3451 switch( serial_type ){ 3452 case 10: /* Reserved for future use */ 3453 case 11: /* Reserved for future use */ 3454 case 0: { /* Null */ 3455 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3456 pMem->flags = MEM_Null; 3457 break; 3458 } 3459 case 1: { 3460 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3461 ** integer. */ 3462 pMem->u.i = ONE_BYTE_INT(buf); 3463 pMem->flags = MEM_Int; 3464 testcase( pMem->u.i<0 ); 3465 return 1; 3466 } 3467 case 2: { /* 2-byte signed integer */ 3468 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3469 ** twos-complement integer. */ 3470 pMem->u.i = TWO_BYTE_INT(buf); 3471 pMem->flags = MEM_Int; 3472 testcase( pMem->u.i<0 ); 3473 return 2; 3474 } 3475 case 3: { /* 3-byte signed integer */ 3476 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3477 ** twos-complement integer. */ 3478 pMem->u.i = THREE_BYTE_INT(buf); 3479 pMem->flags = MEM_Int; 3480 testcase( pMem->u.i<0 ); 3481 return 3; 3482 } 3483 case 4: { /* 4-byte signed integer */ 3484 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3485 ** twos-complement integer. */ 3486 pMem->u.i = FOUR_BYTE_INT(buf); 3487 #ifdef __HP_cc 3488 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3489 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3490 #endif 3491 pMem->flags = MEM_Int; 3492 testcase( pMem->u.i<0 ); 3493 return 4; 3494 } 3495 case 5: { /* 6-byte signed integer */ 3496 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3497 ** twos-complement integer. */ 3498 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3499 pMem->flags = MEM_Int; 3500 testcase( pMem->u.i<0 ); 3501 return 6; 3502 } 3503 case 6: /* 8-byte signed integer */ 3504 case 7: { /* IEEE floating point */ 3505 /* These use local variables, so do them in a separate routine 3506 ** to avoid having to move the frame pointer in the common case */ 3507 return serialGet(buf,serial_type,pMem); 3508 } 3509 case 8: /* Integer 0 */ 3510 case 9: { /* Integer 1 */ 3511 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3512 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3513 pMem->u.i = serial_type-8; 3514 pMem->flags = MEM_Int; 3515 return 0; 3516 } 3517 default: { 3518 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3519 ** length. 3520 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3521 ** (N-13)/2 bytes in length. */ 3522 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3523 pMem->z = (char *)buf; 3524 pMem->n = (serial_type-12)/2; 3525 pMem->flags = aFlag[serial_type&1]; 3526 return pMem->n; 3527 } 3528 } 3529 return 0; 3530 } 3531 /* 3532 ** This routine is used to allocate sufficient space for an UnpackedRecord 3533 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3534 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3535 ** 3536 ** The space is either allocated using sqlite3DbMallocRaw() or from within 3537 ** the unaligned buffer passed via the second and third arguments (presumably 3538 ** stack space). If the former, then *ppFree is set to a pointer that should 3539 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 3540 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 3541 ** before returning. 3542 ** 3543 ** If an OOM error occurs, NULL is returned. 3544 */ 3545 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 3546 KeyInfo *pKeyInfo /* Description of the record */ 3547 ){ 3548 UnpackedRecord *p; /* Unpacked record to return */ 3549 int nByte; /* Number of bytes required for *p */ 3550 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 3551 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 3552 if( !p ) return 0; 3553 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; 3554 assert( pKeyInfo->aSortOrder!=0 ); 3555 p->pKeyInfo = pKeyInfo; 3556 p->nField = pKeyInfo->nKeyField + 1; 3557 return p; 3558 } 3559 3560 /* 3561 ** Given the nKey-byte encoding of a record in pKey[], populate the 3562 ** UnpackedRecord structure indicated by the fourth argument with the 3563 ** contents of the decoded record. 3564 */ 3565 void sqlite3VdbeRecordUnpack( 3566 KeyInfo *pKeyInfo, /* Information about the record format */ 3567 int nKey, /* Size of the binary record */ 3568 const void *pKey, /* The binary record */ 3569 UnpackedRecord *p /* Populate this structure before returning. */ 3570 ){ 3571 const unsigned char *aKey = (const unsigned char *)pKey; 3572 int d; 3573 u32 idx; /* Offset in aKey[] to read from */ 3574 u16 u; /* Unsigned loop counter */ 3575 u32 szHdr; 3576 Mem *pMem = p->aMem; 3577 3578 p->default_rc = 0; 3579 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 3580 idx = getVarint32(aKey, szHdr); 3581 d = szHdr; 3582 u = 0; 3583 while( idx<szHdr && d<=nKey ){ 3584 u32 serial_type; 3585 3586 idx += getVarint32(&aKey[idx], serial_type); 3587 pMem->enc = pKeyInfo->enc; 3588 pMem->db = pKeyInfo->db; 3589 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 3590 pMem->szMalloc = 0; 3591 pMem->z = 0; 3592 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 3593 pMem++; 3594 if( (++u)>=p->nField ) break; 3595 } 3596 assert( u<=pKeyInfo->nKeyField + 1 ); 3597 p->nField = u; 3598 } 3599 3600 #ifdef SQLITE_DEBUG 3601 /* 3602 ** This function compares two index or table record keys in the same way 3603 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 3604 ** this function deserializes and compares values using the 3605 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 3606 ** in assert() statements to ensure that the optimized code in 3607 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 3608 ** 3609 ** Return true if the result of comparison is equivalent to desiredResult. 3610 ** Return false if there is a disagreement. 3611 */ 3612 static int vdbeRecordCompareDebug( 3613 int nKey1, const void *pKey1, /* Left key */ 3614 const UnpackedRecord *pPKey2, /* Right key */ 3615 int desiredResult /* Correct answer */ 3616 ){ 3617 u32 d1; /* Offset into aKey[] of next data element */ 3618 u32 idx1; /* Offset into aKey[] of next header element */ 3619 u32 szHdr1; /* Number of bytes in header */ 3620 int i = 0; 3621 int rc = 0; 3622 const unsigned char *aKey1 = (const unsigned char *)pKey1; 3623 KeyInfo *pKeyInfo; 3624 Mem mem1; 3625 3626 pKeyInfo = pPKey2->pKeyInfo; 3627 if( pKeyInfo->db==0 ) return 1; 3628 mem1.enc = pKeyInfo->enc; 3629 mem1.db = pKeyInfo->db; 3630 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 3631 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 3632 3633 /* Compilers may complain that mem1.u.i is potentially uninitialized. 3634 ** We could initialize it, as shown here, to silence those complaints. 3635 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 3636 ** the unnecessary initialization has a measurable negative performance 3637 ** impact, since this routine is a very high runner. And so, we choose 3638 ** to ignore the compiler warnings and leave this variable uninitialized. 3639 */ 3640 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 3641 3642 idx1 = getVarint32(aKey1, szHdr1); 3643 if( szHdr1>98307 ) return SQLITE_CORRUPT; 3644 d1 = szHdr1; 3645 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 3646 assert( pKeyInfo->aSortOrder!=0 ); 3647 assert( pKeyInfo->nKeyField>0 ); 3648 assert( idx1<=szHdr1 || CORRUPT_DB ); 3649 do{ 3650 u32 serial_type1; 3651 3652 /* Read the serial types for the next element in each key. */ 3653 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 3654 3655 /* Verify that there is enough key space remaining to avoid 3656 ** a buffer overread. The "d1+serial_type1+2" subexpression will 3657 ** always be greater than or equal to the amount of required key space. 3658 ** Use that approximation to avoid the more expensive call to 3659 ** sqlite3VdbeSerialTypeLen() in the common case. 3660 */ 3661 if( d1+serial_type1+2>(u32)nKey1 3662 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 3663 ){ 3664 break; 3665 } 3666 3667 /* Extract the values to be compared. 3668 */ 3669 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 3670 3671 /* Do the comparison 3672 */ 3673 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); 3674 if( rc!=0 ){ 3675 assert( mem1.szMalloc==0 ); /* See comment below */ 3676 if( pKeyInfo->aSortOrder[i] ){ 3677 rc = -rc; /* Invert the result for DESC sort order. */ 3678 } 3679 goto debugCompareEnd; 3680 } 3681 i++; 3682 }while( idx1<szHdr1 && i<pPKey2->nField ); 3683 3684 /* No memory allocation is ever used on mem1. Prove this using 3685 ** the following assert(). If the assert() fails, it indicates a 3686 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 3687 */ 3688 assert( mem1.szMalloc==0 ); 3689 3690 /* rc==0 here means that one of the keys ran out of fields and 3691 ** all the fields up to that point were equal. Return the default_rc 3692 ** value. */ 3693 rc = pPKey2->default_rc; 3694 3695 debugCompareEnd: 3696 if( desiredResult==0 && rc==0 ) return 1; 3697 if( desiredResult<0 && rc<0 ) return 1; 3698 if( desiredResult>0 && rc>0 ) return 1; 3699 if( CORRUPT_DB ) return 1; 3700 if( pKeyInfo->db->mallocFailed ) return 1; 3701 return 0; 3702 } 3703 #endif 3704 3705 #ifdef SQLITE_DEBUG 3706 /* 3707 ** Count the number of fields (a.k.a. columns) in the record given by 3708 ** pKey,nKey. The verify that this count is less than or equal to the 3709 ** limit given by pKeyInfo->nAllField. 3710 ** 3711 ** If this constraint is not satisfied, it means that the high-speed 3712 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 3713 ** not work correctly. If this assert() ever fires, it probably means 3714 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 3715 ** incorrectly. 3716 */ 3717 static void vdbeAssertFieldCountWithinLimits( 3718 int nKey, const void *pKey, /* The record to verify */ 3719 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 3720 ){ 3721 int nField = 0; 3722 u32 szHdr; 3723 u32 idx; 3724 u32 notUsed; 3725 const unsigned char *aKey = (const unsigned char*)pKey; 3726 3727 if( CORRUPT_DB ) return; 3728 idx = getVarint32(aKey, szHdr); 3729 assert( nKey>=0 ); 3730 assert( szHdr<=(u32)nKey ); 3731 while( idx<szHdr ){ 3732 idx += getVarint32(aKey+idx, notUsed); 3733 nField++; 3734 } 3735 assert( nField <= pKeyInfo->nAllField ); 3736 } 3737 #else 3738 # define vdbeAssertFieldCountWithinLimits(A,B,C) 3739 #endif 3740 3741 /* 3742 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 3743 ** using the collation sequence pColl. As usual, return a negative , zero 3744 ** or positive value if *pMem1 is less than, equal to or greater than 3745 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 3746 */ 3747 static int vdbeCompareMemString( 3748 const Mem *pMem1, 3749 const Mem *pMem2, 3750 const CollSeq *pColl, 3751 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 3752 ){ 3753 if( pMem1->enc==pColl->enc ){ 3754 /* The strings are already in the correct encoding. Call the 3755 ** comparison function directly */ 3756 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 3757 }else{ 3758 int rc; 3759 const void *v1, *v2; 3760 Mem c1; 3761 Mem c2; 3762 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 3763 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 3764 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 3765 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 3766 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 3767 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 3768 if( (v1==0 || v2==0) ){ 3769 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 3770 rc = 0; 3771 }else{ 3772 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 3773 } 3774 sqlite3VdbeMemRelease(&c1); 3775 sqlite3VdbeMemRelease(&c2); 3776 return rc; 3777 } 3778 } 3779 3780 /* 3781 ** The input pBlob is guaranteed to be a Blob that is not marked 3782 ** with MEM_Zero. Return true if it could be a zero-blob. 3783 */ 3784 static int isAllZero(const char *z, int n){ 3785 int i; 3786 for(i=0; i<n; i++){ 3787 if( z[i] ) return 0; 3788 } 3789 return 1; 3790 } 3791 3792 /* 3793 ** Compare two blobs. Return negative, zero, or positive if the first 3794 ** is less than, equal to, or greater than the second, respectively. 3795 ** If one blob is a prefix of the other, then the shorter is the lessor. 3796 */ 3797 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 3798 int c; 3799 int n1 = pB1->n; 3800 int n2 = pB2->n; 3801 3802 /* It is possible to have a Blob value that has some non-zero content 3803 ** followed by zero content. But that only comes up for Blobs formed 3804 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 3805 ** sqlite3MemCompare(). */ 3806 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 3807 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 3808 3809 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 3810 if( pB1->flags & pB2->flags & MEM_Zero ){ 3811 return pB1->u.nZero - pB2->u.nZero; 3812 }else if( pB1->flags & MEM_Zero ){ 3813 if( !isAllZero(pB2->z, pB2->n) ) return -1; 3814 return pB1->u.nZero - n2; 3815 }else{ 3816 if( !isAllZero(pB1->z, pB1->n) ) return +1; 3817 return n1 - pB2->u.nZero; 3818 } 3819 } 3820 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 3821 if( c ) return c; 3822 return n1 - n2; 3823 } 3824 3825 /* 3826 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 3827 ** number. Return negative, zero, or positive if the first (i64) is less than, 3828 ** equal to, or greater than the second (double). 3829 */ 3830 static int sqlite3IntFloatCompare(i64 i, double r){ 3831 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 3832 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 3833 if( x<r ) return -1; 3834 if( x>r ) return +1; 3835 return 0; 3836 }else{ 3837 i64 y; 3838 double s; 3839 if( r<-9223372036854775808.0 ) return +1; 3840 if( r>9223372036854775807.0 ) return -1; 3841 y = (i64)r; 3842 if( i<y ) return -1; 3843 if( i>y ){ 3844 if( y==SMALLEST_INT64 && r>0.0 ) return -1; 3845 return +1; 3846 } 3847 s = (double)i; 3848 if( s<r ) return -1; 3849 if( s>r ) return +1; 3850 return 0; 3851 } 3852 } 3853 3854 /* 3855 ** Compare the values contained by the two memory cells, returning 3856 ** negative, zero or positive if pMem1 is less than, equal to, or greater 3857 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 3858 ** and reals) sorted numerically, followed by text ordered by the collating 3859 ** sequence pColl and finally blob's ordered by memcmp(). 3860 ** 3861 ** Two NULL values are considered equal by this function. 3862 */ 3863 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 3864 int f1, f2; 3865 int combined_flags; 3866 3867 f1 = pMem1->flags; 3868 f2 = pMem2->flags; 3869 combined_flags = f1|f2; 3870 assert( (combined_flags & MEM_RowSet)==0 ); 3871 3872 /* If one value is NULL, it is less than the other. If both values 3873 ** are NULL, return 0. 3874 */ 3875 if( combined_flags&MEM_Null ){ 3876 return (f2&MEM_Null) - (f1&MEM_Null); 3877 } 3878 3879 /* At least one of the two values is a number 3880 */ 3881 if( combined_flags&(MEM_Int|MEM_Real) ){ 3882 if( (f1 & f2 & MEM_Int)!=0 ){ 3883 if( pMem1->u.i < pMem2->u.i ) return -1; 3884 if( pMem1->u.i > pMem2->u.i ) return +1; 3885 return 0; 3886 } 3887 if( (f1 & f2 & MEM_Real)!=0 ){ 3888 if( pMem1->u.r < pMem2->u.r ) return -1; 3889 if( pMem1->u.r > pMem2->u.r ) return +1; 3890 return 0; 3891 } 3892 if( (f1&MEM_Int)!=0 ){ 3893 if( (f2&MEM_Real)!=0 ){ 3894 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 3895 }else{ 3896 return -1; 3897 } 3898 } 3899 if( (f1&MEM_Real)!=0 ){ 3900 if( (f2&MEM_Int)!=0 ){ 3901 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 3902 }else{ 3903 return -1; 3904 } 3905 } 3906 return +1; 3907 } 3908 3909 /* If one value is a string and the other is a blob, the string is less. 3910 ** If both are strings, compare using the collating functions. 3911 */ 3912 if( combined_flags&MEM_Str ){ 3913 if( (f1 & MEM_Str)==0 ){ 3914 return 1; 3915 } 3916 if( (f2 & MEM_Str)==0 ){ 3917 return -1; 3918 } 3919 3920 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 3921 assert( pMem1->enc==SQLITE_UTF8 || 3922 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 3923 3924 /* The collation sequence must be defined at this point, even if 3925 ** the user deletes the collation sequence after the vdbe program is 3926 ** compiled (this was not always the case). 3927 */ 3928 assert( !pColl || pColl->xCmp ); 3929 3930 if( pColl ){ 3931 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 3932 } 3933 /* If a NULL pointer was passed as the collate function, fall through 3934 ** to the blob case and use memcmp(). */ 3935 } 3936 3937 /* Both values must be blobs. Compare using memcmp(). */ 3938 return sqlite3BlobCompare(pMem1, pMem2); 3939 } 3940 3941 3942 /* 3943 ** The first argument passed to this function is a serial-type that 3944 ** corresponds to an integer - all values between 1 and 9 inclusive 3945 ** except 7. The second points to a buffer containing an integer value 3946 ** serialized according to serial_type. This function deserializes 3947 ** and returns the value. 3948 */ 3949 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 3950 u32 y; 3951 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 3952 switch( serial_type ){ 3953 case 0: 3954 case 1: 3955 testcase( aKey[0]&0x80 ); 3956 return ONE_BYTE_INT(aKey); 3957 case 2: 3958 testcase( aKey[0]&0x80 ); 3959 return TWO_BYTE_INT(aKey); 3960 case 3: 3961 testcase( aKey[0]&0x80 ); 3962 return THREE_BYTE_INT(aKey); 3963 case 4: { 3964 testcase( aKey[0]&0x80 ); 3965 y = FOUR_BYTE_UINT(aKey); 3966 return (i64)*(int*)&y; 3967 } 3968 case 5: { 3969 testcase( aKey[0]&0x80 ); 3970 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 3971 } 3972 case 6: { 3973 u64 x = FOUR_BYTE_UINT(aKey); 3974 testcase( aKey[0]&0x80 ); 3975 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 3976 return (i64)*(i64*)&x; 3977 } 3978 } 3979 3980 return (serial_type - 8); 3981 } 3982 3983 /* 3984 ** This function compares the two table rows or index records 3985 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 3986 ** or positive integer if key1 is less than, equal to or 3987 ** greater than key2. The {nKey1, pKey1} key must be a blob 3988 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 3989 ** key must be a parsed key such as obtained from 3990 ** sqlite3VdbeParseRecord. 3991 ** 3992 ** If argument bSkip is non-zero, it is assumed that the caller has already 3993 ** determined that the first fields of the keys are equal. 3994 ** 3995 ** Key1 and Key2 do not have to contain the same number of fields. If all 3996 ** fields that appear in both keys are equal, then pPKey2->default_rc is 3997 ** returned. 3998 ** 3999 ** If database corruption is discovered, set pPKey2->errCode to 4000 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 4001 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 4002 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 4003 */ 4004 int sqlite3VdbeRecordCompareWithSkip( 4005 int nKey1, const void *pKey1, /* Left key */ 4006 UnpackedRecord *pPKey2, /* Right key */ 4007 int bSkip /* If true, skip the first field */ 4008 ){ 4009 u32 d1; /* Offset into aKey[] of next data element */ 4010 int i; /* Index of next field to compare */ 4011 u32 szHdr1; /* Size of record header in bytes */ 4012 u32 idx1; /* Offset of first type in header */ 4013 int rc = 0; /* Return value */ 4014 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 4015 KeyInfo *pKeyInfo = pPKey2->pKeyInfo; 4016 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4017 Mem mem1; 4018 4019 /* If bSkip is true, then the caller has already determined that the first 4020 ** two elements in the keys are equal. Fix the various stack variables so 4021 ** that this routine begins comparing at the second field. */ 4022 if( bSkip ){ 4023 u32 s1; 4024 idx1 = 1 + getVarint32(&aKey1[1], s1); 4025 szHdr1 = aKey1[0]; 4026 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 4027 i = 1; 4028 pRhs++; 4029 }else{ 4030 idx1 = getVarint32(aKey1, szHdr1); 4031 d1 = szHdr1; 4032 if( d1>(unsigned)nKey1 ){ 4033 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4034 return 0; /* Corruption */ 4035 } 4036 i = 0; 4037 } 4038 4039 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4040 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 4041 || CORRUPT_DB ); 4042 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); 4043 assert( pPKey2->pKeyInfo->nKeyField>0 ); 4044 assert( idx1<=szHdr1 || CORRUPT_DB ); 4045 do{ 4046 u32 serial_type; 4047 4048 /* RHS is an integer */ 4049 if( pRhs->flags & MEM_Int ){ 4050 serial_type = aKey1[idx1]; 4051 testcase( serial_type==12 ); 4052 if( serial_type>=10 ){ 4053 rc = +1; 4054 }else if( serial_type==0 ){ 4055 rc = -1; 4056 }else if( serial_type==7 ){ 4057 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4058 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4059 }else{ 4060 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4061 i64 rhs = pRhs->u.i; 4062 if( lhs<rhs ){ 4063 rc = -1; 4064 }else if( lhs>rhs ){ 4065 rc = +1; 4066 } 4067 } 4068 } 4069 4070 /* RHS is real */ 4071 else if( pRhs->flags & MEM_Real ){ 4072 serial_type = aKey1[idx1]; 4073 if( serial_type>=10 ){ 4074 /* Serial types 12 or greater are strings and blobs (greater than 4075 ** numbers). Types 10 and 11 are currently "reserved for future 4076 ** use", so it doesn't really matter what the results of comparing 4077 ** them to numberic values are. */ 4078 rc = +1; 4079 }else if( serial_type==0 ){ 4080 rc = -1; 4081 }else{ 4082 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4083 if( serial_type==7 ){ 4084 if( mem1.u.r<pRhs->u.r ){ 4085 rc = -1; 4086 }else if( mem1.u.r>pRhs->u.r ){ 4087 rc = +1; 4088 } 4089 }else{ 4090 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4091 } 4092 } 4093 } 4094 4095 /* RHS is a string */ 4096 else if( pRhs->flags & MEM_Str ){ 4097 getVarint32(&aKey1[idx1], serial_type); 4098 testcase( serial_type==12 ); 4099 if( serial_type<12 ){ 4100 rc = -1; 4101 }else if( !(serial_type & 0x01) ){ 4102 rc = +1; 4103 }else{ 4104 mem1.n = (serial_type - 12) / 2; 4105 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4106 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4107 if( (d1+mem1.n) > (unsigned)nKey1 ){ 4108 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4109 return 0; /* Corruption */ 4110 }else if( pKeyInfo->aColl[i] ){ 4111 mem1.enc = pKeyInfo->enc; 4112 mem1.db = pKeyInfo->db; 4113 mem1.flags = MEM_Str; 4114 mem1.z = (char*)&aKey1[d1]; 4115 rc = vdbeCompareMemString( 4116 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4117 ); 4118 }else{ 4119 int nCmp = MIN(mem1.n, pRhs->n); 4120 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4121 if( rc==0 ) rc = mem1.n - pRhs->n; 4122 } 4123 } 4124 } 4125 4126 /* RHS is a blob */ 4127 else if( pRhs->flags & MEM_Blob ){ 4128 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4129 getVarint32(&aKey1[idx1], serial_type); 4130 testcase( serial_type==12 ); 4131 if( serial_type<12 || (serial_type & 0x01) ){ 4132 rc = -1; 4133 }else{ 4134 int nStr = (serial_type - 12) / 2; 4135 testcase( (d1+nStr)==(unsigned)nKey1 ); 4136 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4137 if( (d1+nStr) > (unsigned)nKey1 ){ 4138 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4139 return 0; /* Corruption */ 4140 }else if( pRhs->flags & MEM_Zero ){ 4141 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4142 rc = 1; 4143 }else{ 4144 rc = nStr - pRhs->u.nZero; 4145 } 4146 }else{ 4147 int nCmp = MIN(nStr, pRhs->n); 4148 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4149 if( rc==0 ) rc = nStr - pRhs->n; 4150 } 4151 } 4152 } 4153 4154 /* RHS is null */ 4155 else{ 4156 serial_type = aKey1[idx1]; 4157 rc = (serial_type!=0); 4158 } 4159 4160 if( rc!=0 ){ 4161 if( pKeyInfo->aSortOrder[i] ){ 4162 rc = -rc; 4163 } 4164 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4165 assert( mem1.szMalloc==0 ); /* See comment below */ 4166 return rc; 4167 } 4168 4169 i++; 4170 pRhs++; 4171 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4172 idx1 += sqlite3VarintLen(serial_type); 4173 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); 4174 4175 /* No memory allocation is ever used on mem1. Prove this using 4176 ** the following assert(). If the assert() fails, it indicates a 4177 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4178 assert( mem1.szMalloc==0 ); 4179 4180 /* rc==0 here means that one or both of the keys ran out of fields and 4181 ** all the fields up to that point were equal. Return the default_rc 4182 ** value. */ 4183 assert( CORRUPT_DB 4184 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4185 || pKeyInfo->db->mallocFailed 4186 ); 4187 pPKey2->eqSeen = 1; 4188 return pPKey2->default_rc; 4189 } 4190 int sqlite3VdbeRecordCompare( 4191 int nKey1, const void *pKey1, /* Left key */ 4192 UnpackedRecord *pPKey2 /* Right key */ 4193 ){ 4194 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4195 } 4196 4197 4198 /* 4199 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4200 ** that (a) the first field of pPKey2 is an integer, and (b) the 4201 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4202 ** byte (i.e. is less than 128). 4203 ** 4204 ** To avoid concerns about buffer overreads, this routine is only used 4205 ** on schemas where the maximum valid header size is 63 bytes or less. 4206 */ 4207 static int vdbeRecordCompareInt( 4208 int nKey1, const void *pKey1, /* Left key */ 4209 UnpackedRecord *pPKey2 /* Right key */ 4210 ){ 4211 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4212 int serial_type = ((const u8*)pKey1)[1]; 4213 int res; 4214 u32 y; 4215 u64 x; 4216 i64 v; 4217 i64 lhs; 4218 4219 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4220 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4221 switch( serial_type ){ 4222 case 1: { /* 1-byte signed integer */ 4223 lhs = ONE_BYTE_INT(aKey); 4224 testcase( lhs<0 ); 4225 break; 4226 } 4227 case 2: { /* 2-byte signed integer */ 4228 lhs = TWO_BYTE_INT(aKey); 4229 testcase( lhs<0 ); 4230 break; 4231 } 4232 case 3: { /* 3-byte signed integer */ 4233 lhs = THREE_BYTE_INT(aKey); 4234 testcase( lhs<0 ); 4235 break; 4236 } 4237 case 4: { /* 4-byte signed integer */ 4238 y = FOUR_BYTE_UINT(aKey); 4239 lhs = (i64)*(int*)&y; 4240 testcase( lhs<0 ); 4241 break; 4242 } 4243 case 5: { /* 6-byte signed integer */ 4244 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4245 testcase( lhs<0 ); 4246 break; 4247 } 4248 case 6: { /* 8-byte signed integer */ 4249 x = FOUR_BYTE_UINT(aKey); 4250 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4251 lhs = *(i64*)&x; 4252 testcase( lhs<0 ); 4253 break; 4254 } 4255 case 8: 4256 lhs = 0; 4257 break; 4258 case 9: 4259 lhs = 1; 4260 break; 4261 4262 /* This case could be removed without changing the results of running 4263 ** this code. Including it causes gcc to generate a faster switch 4264 ** statement (since the range of switch targets now starts at zero and 4265 ** is contiguous) but does not cause any duplicate code to be generated 4266 ** (as gcc is clever enough to combine the two like cases). Other 4267 ** compilers might be similar. */ 4268 case 0: case 7: 4269 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4270 4271 default: 4272 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4273 } 4274 4275 v = pPKey2->aMem[0].u.i; 4276 if( v>lhs ){ 4277 res = pPKey2->r1; 4278 }else if( v<lhs ){ 4279 res = pPKey2->r2; 4280 }else if( pPKey2->nField>1 ){ 4281 /* The first fields of the two keys are equal. Compare the trailing 4282 ** fields. */ 4283 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4284 }else{ 4285 /* The first fields of the two keys are equal and there are no trailing 4286 ** fields. Return pPKey2->default_rc in this case. */ 4287 res = pPKey2->default_rc; 4288 pPKey2->eqSeen = 1; 4289 } 4290 4291 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4292 return res; 4293 } 4294 4295 /* 4296 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4297 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4298 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4299 ** at the start of (pKey1/nKey1) fits in a single byte. 4300 */ 4301 static int vdbeRecordCompareString( 4302 int nKey1, const void *pKey1, /* Left key */ 4303 UnpackedRecord *pPKey2 /* Right key */ 4304 ){ 4305 const u8 *aKey1 = (const u8*)pKey1; 4306 int serial_type; 4307 int res; 4308 4309 assert( pPKey2->aMem[0].flags & MEM_Str ); 4310 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4311 getVarint32(&aKey1[1], serial_type); 4312 if( serial_type<12 ){ 4313 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4314 }else if( !(serial_type & 0x01) ){ 4315 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4316 }else{ 4317 int nCmp; 4318 int nStr; 4319 int szHdr = aKey1[0]; 4320 4321 nStr = (serial_type-12) / 2; 4322 if( (szHdr + nStr) > nKey1 ){ 4323 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4324 return 0; /* Corruption */ 4325 } 4326 nCmp = MIN( pPKey2->aMem[0].n, nStr ); 4327 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); 4328 4329 if( res==0 ){ 4330 res = nStr - pPKey2->aMem[0].n; 4331 if( res==0 ){ 4332 if( pPKey2->nField>1 ){ 4333 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4334 }else{ 4335 res = pPKey2->default_rc; 4336 pPKey2->eqSeen = 1; 4337 } 4338 }else if( res>0 ){ 4339 res = pPKey2->r2; 4340 }else{ 4341 res = pPKey2->r1; 4342 } 4343 }else if( res>0 ){ 4344 res = pPKey2->r2; 4345 }else{ 4346 res = pPKey2->r1; 4347 } 4348 } 4349 4350 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4351 || CORRUPT_DB 4352 || pPKey2->pKeyInfo->db->mallocFailed 4353 ); 4354 return res; 4355 } 4356 4357 /* 4358 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4359 ** suitable for comparing serialized records to the unpacked record passed 4360 ** as the only argument. 4361 */ 4362 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4363 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4364 ** that the size-of-header varint that occurs at the start of each record 4365 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4366 ** also assumes that it is safe to overread a buffer by at least the 4367 ** maximum possible legal header size plus 8 bytes. Because there is 4368 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4369 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4370 ** limit the size of the header to 64 bytes in cases where the first field 4371 ** is an integer. 4372 ** 4373 ** The easiest way to enforce this limit is to consider only records with 4374 ** 13 fields or less. If the first field is an integer, the maximum legal 4375 ** header size is (12*5 + 1 + 1) bytes. */ 4376 if( p->pKeyInfo->nAllField<=13 ){ 4377 int flags = p->aMem[0].flags; 4378 if( p->pKeyInfo->aSortOrder[0] ){ 4379 p->r1 = 1; 4380 p->r2 = -1; 4381 }else{ 4382 p->r1 = -1; 4383 p->r2 = 1; 4384 } 4385 if( (flags & MEM_Int) ){ 4386 return vdbeRecordCompareInt; 4387 } 4388 testcase( flags & MEM_Real ); 4389 testcase( flags & MEM_Null ); 4390 testcase( flags & MEM_Blob ); 4391 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ 4392 assert( flags & MEM_Str ); 4393 return vdbeRecordCompareString; 4394 } 4395 } 4396 4397 return sqlite3VdbeRecordCompare; 4398 } 4399 4400 /* 4401 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4402 ** Read the rowid (the last field in the record) and store it in *rowid. 4403 ** Return SQLITE_OK if everything works, or an error code otherwise. 4404 ** 4405 ** pCur might be pointing to text obtained from a corrupt database file. 4406 ** So the content cannot be trusted. Do appropriate checks on the content. 4407 */ 4408 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4409 i64 nCellKey = 0; 4410 int rc; 4411 u32 szHdr; /* Size of the header */ 4412 u32 typeRowid; /* Serial type of the rowid */ 4413 u32 lenRowid; /* Size of the rowid */ 4414 Mem m, v; 4415 4416 /* Get the size of the index entry. Only indices entries of less 4417 ** than 2GiB are support - anything large must be database corruption. 4418 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4419 ** this code can safely assume that nCellKey is 32-bits 4420 */ 4421 assert( sqlite3BtreeCursorIsValid(pCur) ); 4422 nCellKey = sqlite3BtreePayloadSize(pCur); 4423 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4424 4425 /* Read in the complete content of the index entry */ 4426 sqlite3VdbeMemInit(&m, db, 0); 4427 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4428 if( rc ){ 4429 return rc; 4430 } 4431 4432 /* The index entry must begin with a header size */ 4433 (void)getVarint32((u8*)m.z, szHdr); 4434 testcase( szHdr==3 ); 4435 testcase( szHdr==m.n ); 4436 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ 4437 goto idx_rowid_corruption; 4438 } 4439 4440 /* The last field of the index should be an integer - the ROWID. 4441 ** Verify that the last entry really is an integer. */ 4442 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); 4443 testcase( typeRowid==1 ); 4444 testcase( typeRowid==2 ); 4445 testcase( typeRowid==3 ); 4446 testcase( typeRowid==4 ); 4447 testcase( typeRowid==5 ); 4448 testcase( typeRowid==6 ); 4449 testcase( typeRowid==8 ); 4450 testcase( typeRowid==9 ); 4451 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4452 goto idx_rowid_corruption; 4453 } 4454 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4455 testcase( (u32)m.n==szHdr+lenRowid ); 4456 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4457 goto idx_rowid_corruption; 4458 } 4459 4460 /* Fetch the integer off the end of the index record */ 4461 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4462 *rowid = v.u.i; 4463 sqlite3VdbeMemRelease(&m); 4464 return SQLITE_OK; 4465 4466 /* Jump here if database corruption is detected after m has been 4467 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4468 idx_rowid_corruption: 4469 testcase( m.szMalloc!=0 ); 4470 sqlite3VdbeMemRelease(&m); 4471 return SQLITE_CORRUPT_BKPT; 4472 } 4473 4474 /* 4475 ** Compare the key of the index entry that cursor pC is pointing to against 4476 ** the key string in pUnpacked. Write into *pRes a number 4477 ** that is negative, zero, or positive if pC is less than, equal to, 4478 ** or greater than pUnpacked. Return SQLITE_OK on success. 4479 ** 4480 ** pUnpacked is either created without a rowid or is truncated so that it 4481 ** omits the rowid at the end. The rowid at the end of the index entry 4482 ** is ignored as well. Hence, this routine only compares the prefixes 4483 ** of the keys prior to the final rowid, not the entire key. 4484 */ 4485 int sqlite3VdbeIdxKeyCompare( 4486 sqlite3 *db, /* Database connection */ 4487 VdbeCursor *pC, /* The cursor to compare against */ 4488 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 4489 int *res /* Write the comparison result here */ 4490 ){ 4491 i64 nCellKey = 0; 4492 int rc; 4493 BtCursor *pCur; 4494 Mem m; 4495 4496 assert( pC->eCurType==CURTYPE_BTREE ); 4497 pCur = pC->uc.pCursor; 4498 assert( sqlite3BtreeCursorIsValid(pCur) ); 4499 nCellKey = sqlite3BtreePayloadSize(pCur); 4500 /* nCellKey will always be between 0 and 0xffffffff because of the way 4501 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 4502 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 4503 *res = 0; 4504 return SQLITE_CORRUPT_BKPT; 4505 } 4506 sqlite3VdbeMemInit(&m, db, 0); 4507 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); 4508 if( rc ){ 4509 return rc; 4510 } 4511 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); 4512 sqlite3VdbeMemRelease(&m); 4513 return SQLITE_OK; 4514 } 4515 4516 /* 4517 ** This routine sets the value to be returned by subsequent calls to 4518 ** sqlite3_changes() on the database handle 'db'. 4519 */ 4520 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ 4521 assert( sqlite3_mutex_held(db->mutex) ); 4522 db->nChange = nChange; 4523 db->nTotalChange += nChange; 4524 } 4525 4526 /* 4527 ** Set a flag in the vdbe to update the change counter when it is finalised 4528 ** or reset. 4529 */ 4530 void sqlite3VdbeCountChanges(Vdbe *v){ 4531 v->changeCntOn = 1; 4532 } 4533 4534 /* 4535 ** Mark every prepared statement associated with a database connection 4536 ** as expired. 4537 ** 4538 ** An expired statement means that recompilation of the statement is 4539 ** recommend. Statements expire when things happen that make their 4540 ** programs obsolete. Removing user-defined functions or collating 4541 ** sequences, or changing an authorization function are the types of 4542 ** things that make prepared statements obsolete. 4543 */ 4544 void sqlite3ExpirePreparedStatements(sqlite3 *db){ 4545 Vdbe *p; 4546 for(p = db->pVdbe; p; p=p->pNext){ 4547 p->expired = 1; 4548 } 4549 } 4550 4551 /* 4552 ** Return the database associated with the Vdbe. 4553 */ 4554 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 4555 return v->db; 4556 } 4557 4558 /* 4559 ** Return the SQLITE_PREPARE flags for a Vdbe. 4560 */ 4561 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 4562 return v->prepFlags; 4563 } 4564 4565 /* 4566 ** Return a pointer to an sqlite3_value structure containing the value bound 4567 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 4568 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 4569 ** constants) to the value before returning it. 4570 ** 4571 ** The returned value must be freed by the caller using sqlite3ValueFree(). 4572 */ 4573 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 4574 assert( iVar>0 ); 4575 if( v ){ 4576 Mem *pMem = &v->aVar[iVar-1]; 4577 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 4578 if( 0==(pMem->flags & MEM_Null) ){ 4579 sqlite3_value *pRet = sqlite3ValueNew(v->db); 4580 if( pRet ){ 4581 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 4582 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 4583 } 4584 return pRet; 4585 } 4586 } 4587 return 0; 4588 } 4589 4590 /* 4591 ** Configure SQL variable iVar so that binding a new value to it signals 4592 ** to sqlite3_reoptimize() that re-preparing the statement may result 4593 ** in a better query plan. 4594 */ 4595 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 4596 assert( iVar>0 ); 4597 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 4598 if( iVar>=32 ){ 4599 v->expmask |= 0x80000000; 4600 }else{ 4601 v->expmask |= ((u32)1 << (iVar-1)); 4602 } 4603 } 4604 4605 /* 4606 ** Cause a function to throw an error if it was call from OP_PureFunc 4607 ** rather than OP_Function. 4608 ** 4609 ** OP_PureFunc means that the function must be deterministic, and should 4610 ** throw an error if it is given inputs that would make it non-deterministic. 4611 ** This routine is invoked by date/time functions that use non-deterministic 4612 ** features such as 'now'. 4613 */ 4614 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 4615 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 4616 if( pCtx->pVdbe==0 ) return 1; 4617 #endif 4618 if( pCtx->pVdbe->aOp[pCtx->iOp].opcode==OP_PureFunc ){ 4619 sqlite3_result_error(pCtx, 4620 "non-deterministic function in index expression or CHECK constraint", 4621 -1); 4622 return 0; 4623 } 4624 return 1; 4625 } 4626 4627 #ifndef SQLITE_OMIT_VIRTUALTABLE 4628 /* 4629 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 4630 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 4631 ** in memory obtained from sqlite3DbMalloc). 4632 */ 4633 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 4634 if( pVtab->zErrMsg ){ 4635 sqlite3 *db = p->db; 4636 sqlite3DbFree(db, p->zErrMsg); 4637 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 4638 sqlite3_free(pVtab->zErrMsg); 4639 pVtab->zErrMsg = 0; 4640 } 4641 } 4642 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4643 4644 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4645 4646 /* 4647 ** If the second argument is not NULL, release any allocations associated 4648 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 4649 ** structure itself, using sqlite3DbFree(). 4650 ** 4651 ** This function is used to free UnpackedRecord structures allocated by 4652 ** the vdbeUnpackRecord() function found in vdbeapi.c. 4653 */ 4654 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 4655 if( p ){ 4656 int i; 4657 for(i=0; i<nField; i++){ 4658 Mem *pMem = &p->aMem[i]; 4659 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem); 4660 } 4661 sqlite3DbFreeNN(db, p); 4662 } 4663 } 4664 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4665 4666 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4667 /* 4668 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 4669 ** then cursor passed as the second argument should point to the row about 4670 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 4671 ** the required value will be read from the row the cursor points to. 4672 */ 4673 void sqlite3VdbePreUpdateHook( 4674 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 4675 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 4676 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 4677 const char *zDb, /* Database name */ 4678 Table *pTab, /* Modified table */ 4679 i64 iKey1, /* Initial key value */ 4680 int iReg /* Register for new.* record */ 4681 ){ 4682 sqlite3 *db = v->db; 4683 i64 iKey2; 4684 PreUpdate preupdate; 4685 const char *zTbl = pTab->zName; 4686 static const u8 fakeSortOrder = 0; 4687 4688 assert( db->pPreUpdate==0 ); 4689 memset(&preupdate, 0, sizeof(PreUpdate)); 4690 if( HasRowid(pTab)==0 ){ 4691 iKey1 = iKey2 = 0; 4692 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 4693 }else{ 4694 if( op==SQLITE_UPDATE ){ 4695 iKey2 = v->aMem[iReg].u.i; 4696 }else{ 4697 iKey2 = iKey1; 4698 } 4699 } 4700 4701 assert( pCsr->nField==pTab->nCol 4702 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 4703 ); 4704 4705 preupdate.v = v; 4706 preupdate.pCsr = pCsr; 4707 preupdate.op = op; 4708 preupdate.iNewReg = iReg; 4709 preupdate.keyinfo.db = db; 4710 preupdate.keyinfo.enc = ENC(db); 4711 preupdate.keyinfo.nKeyField = pTab->nCol; 4712 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder; 4713 preupdate.iKey1 = iKey1; 4714 preupdate.iKey2 = iKey2; 4715 preupdate.pTab = pTab; 4716 4717 db->pPreUpdate = &preupdate; 4718 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 4719 db->pPreUpdate = 0; 4720 sqlite3DbFree(db, preupdate.aRecord); 4721 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 4722 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 4723 if( preupdate.aNew ){ 4724 int i; 4725 for(i=0; i<pCsr->nField; i++){ 4726 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 4727 } 4728 sqlite3DbFreeNN(db, preupdate.aNew); 4729 } 4730 } 4731 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 4732