1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* Forward references */ 19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef); 20 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 21 22 /* 23 ** Create a new virtual database engine. 24 */ 25 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 26 sqlite3 *db = pParse->db; 27 Vdbe *p; 28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 29 if( p==0 ) return 0; 30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 31 p->db = db; 32 if( db->pVdbe ){ 33 db->pVdbe->pPrev = p; 34 } 35 p->pNext = db->pVdbe; 36 p->pPrev = 0; 37 db->pVdbe = p; 38 assert( p->eVdbeState==VDBE_INIT_STATE ); 39 p->pParse = pParse; 40 pParse->pVdbe = p; 41 assert( pParse->aLabel==0 ); 42 assert( pParse->nLabel==0 ); 43 assert( p->nOpAlloc==0 ); 44 assert( pParse->szOpAlloc==0 ); 45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1); 46 return p; 47 } 48 49 /* 50 ** Return the Parse object that owns a Vdbe object. 51 */ 52 Parse *sqlite3VdbeParser(Vdbe *p){ 53 return p->pParse; 54 } 55 56 /* 57 ** Change the error string stored in Vdbe.zErrMsg 58 */ 59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 60 va_list ap; 61 sqlite3DbFree(p->db, p->zErrMsg); 62 va_start(ap, zFormat); 63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 64 va_end(ap); 65 } 66 67 /* 68 ** Remember the SQL string for a prepared statement. 69 */ 70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 71 if( p==0 ) return; 72 p->prepFlags = prepFlags; 73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 74 p->expmask = 0; 75 } 76 assert( p->zSql==0 ); 77 p->zSql = sqlite3DbStrNDup(p->db, z, n); 78 } 79 80 #ifdef SQLITE_ENABLE_NORMALIZE 81 /* 82 ** Add a new element to the Vdbe->pDblStr list. 83 */ 84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ 85 if( p ){ 86 int n = sqlite3Strlen30(z); 87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db, 88 sizeof(*pStr)+n+1-sizeof(pStr->z)); 89 if( pStr ){ 90 pStr->pNextStr = p->pDblStr; 91 p->pDblStr = pStr; 92 memcpy(pStr->z, z, n+1); 93 } 94 } 95 } 96 #endif 97 98 #ifdef SQLITE_ENABLE_NORMALIZE 99 /* 100 ** zId of length nId is a double-quoted identifier. Check to see if 101 ** that identifier is really used as a string literal. 102 */ 103 int sqlite3VdbeUsesDoubleQuotedString( 104 Vdbe *pVdbe, /* The prepared statement */ 105 const char *zId /* The double-quoted identifier, already dequoted */ 106 ){ 107 DblquoteStr *pStr; 108 assert( zId!=0 ); 109 if( pVdbe->pDblStr==0 ) return 0; 110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ 111 if( strcmp(zId, pStr->z)==0 ) return 1; 112 } 113 return 0; 114 } 115 #endif 116 117 /* 118 ** Swap all content between two VDBE structures. 119 */ 120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 121 Vdbe tmp, *pTmp; 122 char *zTmp; 123 assert( pA->db==pB->db ); 124 tmp = *pA; 125 *pA = *pB; 126 *pB = tmp; 127 pTmp = pA->pNext; 128 pA->pNext = pB->pNext; 129 pB->pNext = pTmp; 130 pTmp = pA->pPrev; 131 pA->pPrev = pB->pPrev; 132 pB->pPrev = pTmp; 133 zTmp = pA->zSql; 134 pA->zSql = pB->zSql; 135 pB->zSql = zTmp; 136 #ifdef SQLITE_ENABLE_NORMALIZE 137 zTmp = pA->zNormSql; 138 pA->zNormSql = pB->zNormSql; 139 pB->zNormSql = zTmp; 140 #endif 141 pB->expmask = pA->expmask; 142 pB->prepFlags = pA->prepFlags; 143 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 144 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 145 } 146 147 /* 148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 149 ** than its current size. nOp is guaranteed to be less than or equal 150 ** to 1024/sizeof(Op). 151 ** 152 ** If an out-of-memory error occurs while resizing the array, return 153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain 154 ** unchanged (this is so that any opcodes already allocated can be 155 ** correctly deallocated along with the rest of the Vdbe). 156 */ 157 static int growOpArray(Vdbe *v, int nOp){ 158 VdbeOp *pNew; 159 Parse *p = v->pParse; 160 161 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 162 ** more frequent reallocs and hence provide more opportunities for 163 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 164 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 165 ** by the minimum* amount required until the size reaches 512. Normal 166 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 167 ** size of the op array or add 1KB of space, whichever is smaller. */ 168 #ifdef SQLITE_TEST_REALLOC_STRESS 169 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc 170 : (sqlite3_int64)v->nOpAlloc+nOp); 171 #else 172 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc 173 : (sqlite3_int64)(1024/sizeof(Op))); 174 UNUSED_PARAMETER(nOp); 175 #endif 176 177 /* Ensure that the size of a VDBE does not grow too large */ 178 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 179 sqlite3OomFault(p->db); 180 return SQLITE_NOMEM; 181 } 182 183 assert( nOp<=(int)(1024/sizeof(Op)) ); 184 assert( nNew>=(v->nOpAlloc+nOp) ); 185 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 186 if( pNew ){ 187 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 188 v->nOpAlloc = p->szOpAlloc/sizeof(Op); 189 v->aOp = pNew; 190 } 191 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 192 } 193 194 #ifdef SQLITE_DEBUG 195 /* This routine is just a convenient place to set a breakpoint that will 196 ** fire after each opcode is inserted and displayed using 197 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and 198 ** pOp are available to make the breakpoint conditional. 199 ** 200 ** Other useful labels for breakpoints include: 201 ** test_trace_breakpoint(pc,pOp) 202 ** sqlite3CorruptError(lineno) 203 ** sqlite3MisuseError(lineno) 204 ** sqlite3CantopenError(lineno) 205 */ 206 static void test_addop_breakpoint(int pc, Op *pOp){ 207 static int n = 0; 208 n++; 209 } 210 #endif 211 212 /* 213 ** Add a new instruction to the list of instructions current in the 214 ** VDBE. Return the address of the new instruction. 215 ** 216 ** Parameters: 217 ** 218 ** p Pointer to the VDBE 219 ** 220 ** op The opcode for this instruction 221 ** 222 ** p1, p2, p3 Operands 223 ** 224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 225 ** the sqlite3VdbeChangeP4() function to change the value of the P4 226 ** operand. 227 */ 228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 229 assert( p->nOpAlloc<=p->nOp ); 230 if( growOpArray(p, 1) ) return 1; 231 assert( p->nOpAlloc>p->nOp ); 232 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 233 } 234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 235 int i; 236 VdbeOp *pOp; 237 238 i = p->nOp; 239 assert( p->eVdbeState==VDBE_INIT_STATE ); 240 assert( op>=0 && op<0xff ); 241 if( p->nOpAlloc<=i ){ 242 return growOp3(p, op, p1, p2, p3); 243 } 244 assert( p->aOp!=0 ); 245 p->nOp++; 246 pOp = &p->aOp[i]; 247 assert( pOp!=0 ); 248 pOp->opcode = (u8)op; 249 pOp->p5 = 0; 250 pOp->p1 = p1; 251 pOp->p2 = p2; 252 pOp->p3 = p3; 253 pOp->p4.p = 0; 254 pOp->p4type = P4_NOTUSED; 255 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 256 pOp->zComment = 0; 257 #endif 258 #ifdef SQLITE_DEBUG 259 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 260 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 261 test_addop_breakpoint(i, &p->aOp[i]); 262 } 263 #endif 264 #ifdef VDBE_PROFILE 265 pOp->cycles = 0; 266 pOp->cnt = 0; 267 #endif 268 #ifdef SQLITE_VDBE_COVERAGE 269 pOp->iSrcLine = 0; 270 #endif 271 return i; 272 } 273 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 274 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 275 } 276 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 277 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 278 } 279 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 280 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 281 } 282 283 /* Generate code for an unconditional jump to instruction iDest 284 */ 285 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 286 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 287 } 288 289 /* Generate code to cause the string zStr to be loaded into 290 ** register iDest 291 */ 292 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 293 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 294 } 295 296 /* 297 ** Generate code that initializes multiple registers to string or integer 298 ** constants. The registers begin with iDest and increase consecutively. 299 ** One register is initialized for each characgter in zTypes[]. For each 300 ** "s" character in zTypes[], the register is a string if the argument is 301 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 302 ** in zTypes[], the register is initialized to an integer. 303 ** 304 ** If the input string does not end with "X" then an OP_ResultRow instruction 305 ** is generated for the values inserted. 306 */ 307 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 308 va_list ap; 309 int i; 310 char c; 311 va_start(ap, zTypes); 312 for(i=0; (c = zTypes[i])!=0; i++){ 313 if( c=='s' ){ 314 const char *z = va_arg(ap, const char*); 315 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 316 }else if( c=='i' ){ 317 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 318 }else{ 319 goto skip_op_resultrow; 320 } 321 } 322 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 323 skip_op_resultrow: 324 va_end(ap); 325 } 326 327 /* 328 ** Add an opcode that includes the p4 value as a pointer. 329 */ 330 int sqlite3VdbeAddOp4( 331 Vdbe *p, /* Add the opcode to this VM */ 332 int op, /* The new opcode */ 333 int p1, /* The P1 operand */ 334 int p2, /* The P2 operand */ 335 int p3, /* The P3 operand */ 336 const char *zP4, /* The P4 operand */ 337 int p4type /* P4 operand type */ 338 ){ 339 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 340 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 341 return addr; 342 } 343 344 /* 345 ** Add an OP_Function or OP_PureFunc opcode. 346 ** 347 ** The eCallCtx argument is information (typically taken from Expr.op2) 348 ** that describes the calling context of the function. 0 means a general 349 ** function call. NC_IsCheck means called by a check constraint, 350 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx 351 ** means in the WHERE clause of a partial index. NC_GenCol means called 352 ** while computing a generated column value. 0 is the usual case. 353 */ 354 int sqlite3VdbeAddFunctionCall( 355 Parse *pParse, /* Parsing context */ 356 int p1, /* Constant argument mask */ 357 int p2, /* First argument register */ 358 int p3, /* Register into which results are written */ 359 int nArg, /* Number of argument */ 360 const FuncDef *pFunc, /* The function to be invoked */ 361 int eCallCtx /* Calling context */ 362 ){ 363 Vdbe *v = pParse->pVdbe; 364 int nByte; 365 int addr; 366 sqlite3_context *pCtx; 367 assert( v ); 368 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*); 369 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte); 370 if( pCtx==0 ){ 371 assert( pParse->db->mallocFailed ); 372 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc); 373 return 0; 374 } 375 pCtx->pOut = 0; 376 pCtx->pFunc = (FuncDef*)pFunc; 377 pCtx->pVdbe = 0; 378 pCtx->isError = 0; 379 pCtx->argc = nArg; 380 pCtx->iOp = sqlite3VdbeCurrentAddr(v); 381 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function, 382 p1, p2, p3, (char*)pCtx, P4_FUNCCTX); 383 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef); 384 return addr; 385 } 386 387 /* 388 ** Add an opcode that includes the p4 value with a P4_INT64 or 389 ** P4_REAL type. 390 */ 391 int sqlite3VdbeAddOp4Dup8( 392 Vdbe *p, /* Add the opcode to this VM */ 393 int op, /* The new opcode */ 394 int p1, /* The P1 operand */ 395 int p2, /* The P2 operand */ 396 int p3, /* The P3 operand */ 397 const u8 *zP4, /* The P4 operand */ 398 int p4type /* P4 operand type */ 399 ){ 400 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 401 if( p4copy ) memcpy(p4copy, zP4, 8); 402 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 403 } 404 405 #ifndef SQLITE_OMIT_EXPLAIN 406 /* 407 ** Return the address of the current EXPLAIN QUERY PLAN baseline. 408 ** 0 means "none". 409 */ 410 int sqlite3VdbeExplainParent(Parse *pParse){ 411 VdbeOp *pOp; 412 if( pParse->addrExplain==0 ) return 0; 413 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); 414 return pOp->p2; 415 } 416 417 /* 418 ** Set a debugger breakpoint on the following routine in order to 419 ** monitor the EXPLAIN QUERY PLAN code generation. 420 */ 421 #if defined(SQLITE_DEBUG) 422 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ 423 (void)z1; 424 (void)z2; 425 } 426 #endif 427 428 /* 429 ** Add a new OP_Explain opcode. 430 ** 431 ** If the bPush flag is true, then make this opcode the parent for 432 ** subsequent Explains until sqlite3VdbeExplainPop() is called. 433 */ 434 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ 435 #ifndef SQLITE_DEBUG 436 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined. 437 ** But omit them (for performance) during production builds */ 438 if( pParse->explain==2 ) 439 #endif 440 { 441 char *zMsg; 442 Vdbe *v; 443 va_list ap; 444 int iThis; 445 va_start(ap, zFmt); 446 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); 447 va_end(ap); 448 v = pParse->pVdbe; 449 iThis = v->nOp; 450 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, 451 zMsg, P4_DYNAMIC); 452 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z); 453 if( bPush){ 454 pParse->addrExplain = iThis; 455 } 456 } 457 } 458 459 /* 460 ** Pop the EXPLAIN QUERY PLAN stack one level. 461 */ 462 void sqlite3VdbeExplainPop(Parse *pParse){ 463 sqlite3ExplainBreakpoint("POP", 0); 464 pParse->addrExplain = sqlite3VdbeExplainParent(pParse); 465 } 466 #endif /* SQLITE_OMIT_EXPLAIN */ 467 468 /* 469 ** Add an OP_ParseSchema opcode. This routine is broken out from 470 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 471 ** as having been used. 472 ** 473 ** The zWhere string must have been obtained from sqlite3_malloc(). 474 ** This routine will take ownership of the allocated memory. 475 */ 476 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){ 477 int j; 478 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 479 sqlite3VdbeChangeP5(p, p5); 480 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 481 sqlite3MayAbort(p->pParse); 482 } 483 484 /* 485 ** Add an opcode that includes the p4 value as an integer. 486 */ 487 int sqlite3VdbeAddOp4Int( 488 Vdbe *p, /* Add the opcode to this VM */ 489 int op, /* The new opcode */ 490 int p1, /* The P1 operand */ 491 int p2, /* The P2 operand */ 492 int p3, /* The P3 operand */ 493 int p4 /* The P4 operand as an integer */ 494 ){ 495 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 496 if( p->db->mallocFailed==0 ){ 497 VdbeOp *pOp = &p->aOp[addr]; 498 pOp->p4type = P4_INT32; 499 pOp->p4.i = p4; 500 } 501 return addr; 502 } 503 504 /* Insert the end of a co-routine 505 */ 506 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 507 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 508 509 /* Clear the temporary register cache, thereby ensuring that each 510 ** co-routine has its own independent set of registers, because co-routines 511 ** might expect their registers to be preserved across an OP_Yield, and 512 ** that could cause problems if two or more co-routines are using the same 513 ** temporary register. 514 */ 515 v->pParse->nTempReg = 0; 516 v->pParse->nRangeReg = 0; 517 } 518 519 /* 520 ** Create a new symbolic label for an instruction that has yet to be 521 ** coded. The symbolic label is really just a negative number. The 522 ** label can be used as the P2 value of an operation. Later, when 523 ** the label is resolved to a specific address, the VDBE will scan 524 ** through its operation list and change all values of P2 which match 525 ** the label into the resolved address. 526 ** 527 ** The VDBE knows that a P2 value is a label because labels are 528 ** always negative and P2 values are suppose to be non-negative. 529 ** Hence, a negative P2 value is a label that has yet to be resolved. 530 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP 531 ** property. 532 ** 533 ** Variable usage notes: 534 ** 535 ** Parse.aLabel[x] Stores the address that the x-th label resolves 536 ** into. For testing (SQLITE_DEBUG), unresolved 537 ** labels stores -1, but that is not required. 538 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[] 539 ** Parse.nLabel The *negative* of the number of labels that have 540 ** been issued. The negative is stored because 541 ** that gives a performance improvement over storing 542 ** the equivalent positive value. 543 */ 544 int sqlite3VdbeMakeLabel(Parse *pParse){ 545 return --pParse->nLabel; 546 } 547 548 /* 549 ** Resolve label "x" to be the address of the next instruction to 550 ** be inserted. The parameter "x" must have been obtained from 551 ** a prior call to sqlite3VdbeMakeLabel(). 552 */ 553 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){ 554 int nNewSize = 10 - p->nLabel; 555 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 556 nNewSize*sizeof(p->aLabel[0])); 557 if( p->aLabel==0 ){ 558 p->nLabelAlloc = 0; 559 }else{ 560 #ifdef SQLITE_DEBUG 561 int i; 562 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1; 563 #endif 564 p->nLabelAlloc = nNewSize; 565 p->aLabel[j] = v->nOp; 566 } 567 } 568 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 569 Parse *p = v->pParse; 570 int j = ADDR(x); 571 assert( v->eVdbeState==VDBE_INIT_STATE ); 572 assert( j<-p->nLabel ); 573 assert( j>=0 ); 574 #ifdef SQLITE_DEBUG 575 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 576 printf("RESOLVE LABEL %d to %d\n", x, v->nOp); 577 } 578 #endif 579 if( p->nLabelAlloc + p->nLabel < 0 ){ 580 resizeResolveLabel(p,v,j); 581 }else{ 582 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ 583 p->aLabel[j] = v->nOp; 584 } 585 } 586 587 /* 588 ** Mark the VDBE as one that can only be run one time. 589 */ 590 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 591 sqlite3VdbeAddOp2(p, OP_Expire, 1, 1); 592 } 593 594 /* 595 ** Mark the VDBE as one that can only be run multiple times. 596 */ 597 void sqlite3VdbeReusable(Vdbe *p){ 598 int i; 599 for(i=1; ALWAYS(i<p->nOp); i++){ 600 if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){ 601 p->aOp[1].opcode = OP_Noop; 602 break; 603 } 604 } 605 } 606 607 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 608 609 /* 610 ** The following type and function are used to iterate through all opcodes 611 ** in a Vdbe main program and each of the sub-programs (triggers) it may 612 ** invoke directly or indirectly. It should be used as follows: 613 ** 614 ** Op *pOp; 615 ** VdbeOpIter sIter; 616 ** 617 ** memset(&sIter, 0, sizeof(sIter)); 618 ** sIter.v = v; // v is of type Vdbe* 619 ** while( (pOp = opIterNext(&sIter)) ){ 620 ** // Do something with pOp 621 ** } 622 ** sqlite3DbFree(v->db, sIter.apSub); 623 ** 624 */ 625 typedef struct VdbeOpIter VdbeOpIter; 626 struct VdbeOpIter { 627 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 628 SubProgram **apSub; /* Array of subprograms */ 629 int nSub; /* Number of entries in apSub */ 630 int iAddr; /* Address of next instruction to return */ 631 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 632 }; 633 static Op *opIterNext(VdbeOpIter *p){ 634 Vdbe *v = p->v; 635 Op *pRet = 0; 636 Op *aOp; 637 int nOp; 638 639 if( p->iSub<=p->nSub ){ 640 641 if( p->iSub==0 ){ 642 aOp = v->aOp; 643 nOp = v->nOp; 644 }else{ 645 aOp = p->apSub[p->iSub-1]->aOp; 646 nOp = p->apSub[p->iSub-1]->nOp; 647 } 648 assert( p->iAddr<nOp ); 649 650 pRet = &aOp[p->iAddr]; 651 p->iAddr++; 652 if( p->iAddr==nOp ){ 653 p->iSub++; 654 p->iAddr = 0; 655 } 656 657 if( pRet->p4type==P4_SUBPROGRAM ){ 658 int nByte = (p->nSub+1)*sizeof(SubProgram*); 659 int j; 660 for(j=0; j<p->nSub; j++){ 661 if( p->apSub[j]==pRet->p4.pProgram ) break; 662 } 663 if( j==p->nSub ){ 664 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 665 if( !p->apSub ){ 666 pRet = 0; 667 }else{ 668 p->apSub[p->nSub++] = pRet->p4.pProgram; 669 } 670 } 671 } 672 } 673 674 return pRet; 675 } 676 677 /* 678 ** Check if the program stored in the VM associated with pParse may 679 ** throw an ABORT exception (causing the statement, but not entire transaction 680 ** to be rolled back). This condition is true if the main program or any 681 ** sub-programs contains any of the following: 682 ** 683 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 684 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 685 ** * OP_Destroy 686 ** * OP_VUpdate 687 ** * OP_VCreate 688 ** * OP_VRename 689 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 690 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 691 ** (for CREATE TABLE AS SELECT ...) 692 ** 693 ** Then check that the value of Parse.mayAbort is true if an 694 ** ABORT may be thrown, or false otherwise. Return true if it does 695 ** match, or false otherwise. This function is intended to be used as 696 ** part of an assert statement in the compiler. Similar to: 697 ** 698 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 699 */ 700 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 701 int hasAbort = 0; 702 int hasFkCounter = 0; 703 int hasCreateTable = 0; 704 int hasCreateIndex = 0; 705 int hasInitCoroutine = 0; 706 Op *pOp; 707 VdbeOpIter sIter; 708 709 if( v==0 ) return 0; 710 memset(&sIter, 0, sizeof(sIter)); 711 sIter.v = v; 712 713 while( (pOp = opIterNext(&sIter))!=0 ){ 714 int opcode = pOp->opcode; 715 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 716 || opcode==OP_VDestroy 717 || opcode==OP_VCreate 718 || opcode==OP_ParseSchema 719 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 720 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort)) 721 ){ 722 hasAbort = 1; 723 break; 724 } 725 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; 726 if( mayAbort ){ 727 /* hasCreateIndex may also be set for some DELETE statements that use 728 ** OP_Clear. So this routine may end up returning true in the case 729 ** where a "DELETE FROM tbl" has a statement-journal but does not 730 ** require one. This is not so bad - it is an inefficiency, not a bug. */ 731 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1; 732 if( opcode==OP_Clear ) hasCreateIndex = 1; 733 } 734 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 735 #ifndef SQLITE_OMIT_FOREIGN_KEY 736 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 737 hasFkCounter = 1; 738 } 739 #endif 740 } 741 sqlite3DbFree(v->db, sIter.apSub); 742 743 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 744 ** If malloc failed, then the while() loop above may not have iterated 745 ** through all opcodes and hasAbort may be set incorrectly. Return 746 ** true for this case to prevent the assert() in the callers frame 747 ** from failing. */ 748 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 749 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex 750 ); 751 } 752 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 753 754 #ifdef SQLITE_DEBUG 755 /* 756 ** Increment the nWrite counter in the VDBE if the cursor is not an 757 ** ephemeral cursor, or if the cursor argument is NULL. 758 */ 759 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ 760 if( pC==0 761 || (pC->eCurType!=CURTYPE_SORTER 762 && pC->eCurType!=CURTYPE_PSEUDO 763 && !pC->isEphemeral) 764 ){ 765 p->nWrite++; 766 } 767 } 768 #endif 769 770 #ifdef SQLITE_DEBUG 771 /* 772 ** Assert if an Abort at this point in time might result in a corrupt 773 ** database. 774 */ 775 void sqlite3VdbeAssertAbortable(Vdbe *p){ 776 assert( p->nWrite==0 || p->usesStmtJournal ); 777 } 778 #endif 779 780 /* 781 ** This routine is called after all opcodes have been inserted. It loops 782 ** through all the opcodes and fixes up some details. 783 ** 784 ** (1) For each jump instruction with a negative P2 value (a label) 785 ** resolve the P2 value to an actual address. 786 ** 787 ** (2) Compute the maximum number of arguments used by any SQL function 788 ** and store that value in *pMaxFuncArgs. 789 ** 790 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 791 ** indicate what the prepared statement actually does. 792 ** 793 ** (4) (discontinued) 794 ** 795 ** (5) Reclaim the memory allocated for storing labels. 796 ** 797 ** This routine will only function correctly if the mkopcodeh.tcl generator 798 ** script numbers the opcodes correctly. Changes to this routine must be 799 ** coordinated with changes to mkopcodeh.tcl. 800 */ 801 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 802 int nMaxArgs = *pMaxFuncArgs; 803 Op *pOp; 804 Parse *pParse = p->pParse; 805 int *aLabel = pParse->aLabel; 806 p->readOnly = 1; 807 p->bIsReader = 0; 808 pOp = &p->aOp[p->nOp-1]; 809 while(1){ 810 811 /* Only JUMP opcodes and the short list of special opcodes in the switch 812 ** below need to be considered. The mkopcodeh.tcl generator script groups 813 ** all these opcodes together near the front of the opcode list. Skip 814 ** any opcode that does not need processing by virtual of the fact that 815 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 816 */ 817 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 818 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 819 ** cases from this switch! */ 820 switch( pOp->opcode ){ 821 case OP_Transaction: { 822 if( pOp->p2!=0 ) p->readOnly = 0; 823 /* no break */ deliberate_fall_through 824 } 825 case OP_AutoCommit: 826 case OP_Savepoint: { 827 p->bIsReader = 1; 828 break; 829 } 830 #ifndef SQLITE_OMIT_WAL 831 case OP_Checkpoint: 832 #endif 833 case OP_Vacuum: 834 case OP_JournalMode: { 835 p->readOnly = 0; 836 p->bIsReader = 1; 837 break; 838 } 839 #ifndef SQLITE_OMIT_VIRTUALTABLE 840 case OP_VUpdate: { 841 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 842 break; 843 } 844 case OP_VFilter: { 845 int n; 846 assert( (pOp - p->aOp) >= 3 ); 847 assert( pOp[-1].opcode==OP_Integer ); 848 n = pOp[-1].p1; 849 if( n>nMaxArgs ) nMaxArgs = n; 850 /* Fall through into the default case */ 851 /* no break */ deliberate_fall_through 852 } 853 #endif 854 default: { 855 if( pOp->p2<0 ){ 856 /* The mkopcodeh.tcl script has so arranged things that the only 857 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 858 ** have non-negative values for P2. */ 859 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 860 assert( ADDR(pOp->p2)<-pParse->nLabel ); 861 pOp->p2 = aLabel[ADDR(pOp->p2)]; 862 } 863 break; 864 } 865 } 866 /* The mkopcodeh.tcl script has so arranged things that the only 867 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 868 ** have non-negative values for P2. */ 869 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 870 } 871 if( pOp==p->aOp ) break; 872 pOp--; 873 } 874 if( aLabel ){ 875 sqlite3DbFreeNN(p->db, pParse->aLabel); 876 pParse->aLabel = 0; 877 } 878 pParse->nLabel = 0; 879 *pMaxFuncArgs = nMaxArgs; 880 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 881 } 882 883 #ifdef SQLITE_DEBUG 884 /* 885 ** Check to see if a subroutine contains a jump to a location outside of 886 ** the subroutine. If a jump outside the subroutine is detected, add code 887 ** that will cause the program to halt with an error message. 888 ** 889 ** The subroutine consists of opcodes between iFirst and iLast. Jumps to 890 ** locations within the subroutine are acceptable. iRetReg is a register 891 ** that contains the return address. Jumps to outside the range of iFirst 892 ** through iLast are also acceptable as long as the jump destination is 893 ** an OP_Return to iReturnAddr. 894 ** 895 ** A jump to an unresolved label means that the jump destination will be 896 ** beyond the current address. That is normally a jump to an early 897 ** termination and is consider acceptable. 898 ** 899 ** This routine only runs during debug builds. The purpose is (of course) 900 ** to detect invalid escapes out of a subroutine. The OP_Halt opcode 901 ** is generated rather than an assert() or other error, so that ".eqp full" 902 ** will still work to show the original bytecode, to aid in debugging. 903 */ 904 void sqlite3VdbeNoJumpsOutsideSubrtn( 905 Vdbe *v, /* The byte-code program under construction */ 906 int iFirst, /* First opcode of the subroutine */ 907 int iLast, /* Last opcode of the subroutine */ 908 int iRetReg /* Subroutine return address register */ 909 ){ 910 VdbeOp *pOp; 911 Parse *pParse; 912 int i; 913 sqlite3_str *pErr = 0; 914 assert( v!=0 ); 915 pParse = v->pParse; 916 assert( pParse!=0 ); 917 if( pParse->nErr ) return; 918 assert( iLast>=iFirst ); 919 assert( iLast<v->nOp ); 920 pOp = &v->aOp[iFirst]; 921 for(i=iFirst; i<=iLast; i++, pOp++){ 922 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){ 923 int iDest = pOp->p2; /* Jump destination */ 924 if( iDest==0 ) continue; 925 if( pOp->opcode==OP_Gosub ) continue; 926 if( iDest<0 ){ 927 int j = ADDR(iDest); 928 assert( j>=0 ); 929 if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){ 930 continue; 931 } 932 iDest = pParse->aLabel[j]; 933 } 934 if( iDest<iFirst || iDest>iLast ){ 935 int j = iDest; 936 for(; j<v->nOp; j++){ 937 VdbeOp *pX = &v->aOp[j]; 938 if( pX->opcode==OP_Return ){ 939 if( pX->p1==iRetReg ) break; 940 continue; 941 } 942 if( pX->opcode==OP_Noop ) continue; 943 if( pX->opcode==OP_Explain ) continue; 944 if( pErr==0 ){ 945 pErr = sqlite3_str_new(0); 946 }else{ 947 sqlite3_str_appendchar(pErr, 1, '\n'); 948 } 949 sqlite3_str_appendf(pErr, 950 "Opcode at %d jumps to %d which is outside the " 951 "subroutine at %d..%d", 952 i, iDest, iFirst, iLast); 953 break; 954 } 955 } 956 } 957 } 958 if( pErr ){ 959 char *zErr = sqlite3_str_finish(pErr); 960 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0); 961 sqlite3_free(zErr); 962 sqlite3MayAbort(pParse); 963 } 964 } 965 #endif /* SQLITE_DEBUG */ 966 967 /* 968 ** Return the address of the next instruction to be inserted. 969 */ 970 int sqlite3VdbeCurrentAddr(Vdbe *p){ 971 assert( p->eVdbeState==VDBE_INIT_STATE ); 972 return p->nOp; 973 } 974 975 /* 976 ** Verify that at least N opcode slots are available in p without 977 ** having to malloc for more space (except when compiled using 978 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 979 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 980 ** fail due to a OOM fault and hence that the return value from 981 ** sqlite3VdbeAddOpList() will always be non-NULL. 982 */ 983 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 984 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 985 assert( p->nOp + N <= p->nOpAlloc ); 986 } 987 #endif 988 989 /* 990 ** Verify that the VM passed as the only argument does not contain 991 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 992 ** by code in pragma.c to ensure that the implementation of certain 993 ** pragmas comports with the flags specified in the mkpragmatab.tcl 994 ** script. 995 */ 996 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 997 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 998 int i; 999 for(i=0; i<p->nOp; i++){ 1000 assert( p->aOp[i].opcode!=OP_ResultRow ); 1001 } 1002 } 1003 #endif 1004 1005 /* 1006 ** Generate code (a single OP_Abortable opcode) that will 1007 ** verify that the VDBE program can safely call Abort in the current 1008 ** context. 1009 */ 1010 #if defined(SQLITE_DEBUG) 1011 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ 1012 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); 1013 } 1014 #endif 1015 1016 /* 1017 ** This function returns a pointer to the array of opcodes associated with 1018 ** the Vdbe passed as the first argument. It is the callers responsibility 1019 ** to arrange for the returned array to be eventually freed using the 1020 ** vdbeFreeOpArray() function. 1021 ** 1022 ** Before returning, *pnOp is set to the number of entries in the returned 1023 ** array. Also, *pnMaxArg is set to the larger of its current value and 1024 ** the number of entries in the Vdbe.apArg[] array required to execute the 1025 ** returned program. 1026 */ 1027 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 1028 VdbeOp *aOp = p->aOp; 1029 assert( aOp && !p->db->mallocFailed ); 1030 1031 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 1032 assert( DbMaskAllZero(p->btreeMask) ); 1033 1034 resolveP2Values(p, pnMaxArg); 1035 *pnOp = p->nOp; 1036 p->aOp = 0; 1037 return aOp; 1038 } 1039 1040 /* 1041 ** Add a whole list of operations to the operation stack. Return a 1042 ** pointer to the first operation inserted. 1043 ** 1044 ** Non-zero P2 arguments to jump instructions are automatically adjusted 1045 ** so that the jump target is relative to the first operation inserted. 1046 */ 1047 VdbeOp *sqlite3VdbeAddOpList( 1048 Vdbe *p, /* Add opcodes to the prepared statement */ 1049 int nOp, /* Number of opcodes to add */ 1050 VdbeOpList const *aOp, /* The opcodes to be added */ 1051 int iLineno /* Source-file line number of first opcode */ 1052 ){ 1053 int i; 1054 VdbeOp *pOut, *pFirst; 1055 assert( nOp>0 ); 1056 assert( p->eVdbeState==VDBE_INIT_STATE ); 1057 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){ 1058 return 0; 1059 } 1060 pFirst = pOut = &p->aOp[p->nOp]; 1061 for(i=0; i<nOp; i++, aOp++, pOut++){ 1062 pOut->opcode = aOp->opcode; 1063 pOut->p1 = aOp->p1; 1064 pOut->p2 = aOp->p2; 1065 assert( aOp->p2>=0 ); 1066 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 1067 pOut->p2 += p->nOp; 1068 } 1069 pOut->p3 = aOp->p3; 1070 pOut->p4type = P4_NOTUSED; 1071 pOut->p4.p = 0; 1072 pOut->p5 = 0; 1073 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1074 pOut->zComment = 0; 1075 #endif 1076 #ifdef SQLITE_VDBE_COVERAGE 1077 pOut->iSrcLine = iLineno+i; 1078 #else 1079 (void)iLineno; 1080 #endif 1081 #ifdef SQLITE_DEBUG 1082 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 1083 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 1084 } 1085 #endif 1086 } 1087 p->nOp += nOp; 1088 return pFirst; 1089 } 1090 1091 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 1092 /* 1093 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 1094 */ 1095 void sqlite3VdbeScanStatus( 1096 Vdbe *p, /* VM to add scanstatus() to */ 1097 int addrExplain, /* Address of OP_Explain (or 0) */ 1098 int addrLoop, /* Address of loop counter */ 1099 int addrVisit, /* Address of rows visited counter */ 1100 LogEst nEst, /* Estimated number of output rows */ 1101 const char *zName /* Name of table or index being scanned */ 1102 ){ 1103 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus); 1104 ScanStatus *aNew; 1105 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 1106 if( aNew ){ 1107 ScanStatus *pNew = &aNew[p->nScan++]; 1108 pNew->addrExplain = addrExplain; 1109 pNew->addrLoop = addrLoop; 1110 pNew->addrVisit = addrVisit; 1111 pNew->nEst = nEst; 1112 pNew->zName = sqlite3DbStrDup(p->db, zName); 1113 p->aScan = aNew; 1114 } 1115 } 1116 #endif 1117 1118 1119 /* 1120 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 1121 ** for a specific instruction. 1122 */ 1123 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){ 1124 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 1125 } 1126 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ 1127 sqlite3VdbeGetOp(p,addr)->p1 = val; 1128 } 1129 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ 1130 sqlite3VdbeGetOp(p,addr)->p2 = val; 1131 } 1132 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ 1133 sqlite3VdbeGetOp(p,addr)->p3 = val; 1134 } 1135 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 1136 assert( p->nOp>0 || p->db->mallocFailed ); 1137 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 1138 } 1139 1140 /* 1141 ** Change the P2 operand of instruction addr so that it points to 1142 ** the address of the next instruction to be coded. 1143 */ 1144 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 1145 sqlite3VdbeChangeP2(p, addr, p->nOp); 1146 } 1147 1148 /* 1149 ** Change the P2 operand of the jump instruction at addr so that 1150 ** the jump lands on the next opcode. Or if the jump instruction was 1151 ** the previous opcode (and is thus a no-op) then simply back up 1152 ** the next instruction counter by one slot so that the jump is 1153 ** overwritten by the next inserted opcode. 1154 ** 1155 ** This routine is an optimization of sqlite3VdbeJumpHere() that 1156 ** strives to omit useless byte-code like this: 1157 ** 1158 ** 7 Once 0 8 0 1159 ** 8 ... 1160 */ 1161 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){ 1162 if( addr==p->nOp-1 ){ 1163 assert( p->aOp[addr].opcode==OP_Once 1164 || p->aOp[addr].opcode==OP_If 1165 || p->aOp[addr].opcode==OP_FkIfZero ); 1166 assert( p->aOp[addr].p4type==0 ); 1167 #ifdef SQLITE_VDBE_COVERAGE 1168 sqlite3VdbeGetOp(p,-1)->iSrcLine = 0; /* Erase VdbeCoverage() macros */ 1169 #endif 1170 p->nOp--; 1171 }else{ 1172 sqlite3VdbeChangeP2(p, addr, p->nOp); 1173 } 1174 } 1175 1176 1177 /* 1178 ** If the input FuncDef structure is ephemeral, then free it. If 1179 ** the FuncDef is not ephermal, then do nothing. 1180 */ 1181 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 1182 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 1183 sqlite3DbFreeNN(db, pDef); 1184 } 1185 } 1186 1187 /* 1188 ** Delete a P4 value if necessary. 1189 */ 1190 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 1191 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1192 sqlite3DbFreeNN(db, p); 1193 } 1194 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 1195 freeEphemeralFunction(db, p->pFunc); 1196 sqlite3DbFreeNN(db, p); 1197 } 1198 static void freeP4(sqlite3 *db, int p4type, void *p4){ 1199 assert( db ); 1200 switch( p4type ){ 1201 case P4_FUNCCTX: { 1202 freeP4FuncCtx(db, (sqlite3_context*)p4); 1203 break; 1204 } 1205 case P4_REAL: 1206 case P4_INT64: 1207 case P4_DYNAMIC: 1208 case P4_INTARRAY: { 1209 sqlite3DbFree(db, p4); 1210 break; 1211 } 1212 case P4_KEYINFO: { 1213 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 1214 break; 1215 } 1216 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1217 case P4_EXPR: { 1218 sqlite3ExprDelete(db, (Expr*)p4); 1219 break; 1220 } 1221 #endif 1222 case P4_FUNCDEF: { 1223 freeEphemeralFunction(db, (FuncDef*)p4); 1224 break; 1225 } 1226 case P4_MEM: { 1227 if( db->pnBytesFreed==0 ){ 1228 sqlite3ValueFree((sqlite3_value*)p4); 1229 }else{ 1230 freeP4Mem(db, (Mem*)p4); 1231 } 1232 break; 1233 } 1234 case P4_VTAB : { 1235 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 1236 break; 1237 } 1238 } 1239 } 1240 1241 /* 1242 ** Free the space allocated for aOp and any p4 values allocated for the 1243 ** opcodes contained within. If aOp is not NULL it is assumed to contain 1244 ** nOp entries. 1245 */ 1246 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 1247 assert( nOp>=0 ); 1248 if( aOp ){ 1249 Op *pOp = &aOp[nOp-1]; 1250 while(1){ /* Exit via break */ 1251 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 1252 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1253 sqlite3DbFree(db, pOp->zComment); 1254 #endif 1255 if( pOp==aOp ) break; 1256 pOp--; 1257 } 1258 sqlite3DbFreeNN(db, aOp); 1259 } 1260 } 1261 1262 /* 1263 ** Link the SubProgram object passed as the second argument into the linked 1264 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 1265 ** objects when the VM is no longer required. 1266 */ 1267 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 1268 p->pNext = pVdbe->pProgram; 1269 pVdbe->pProgram = p; 1270 } 1271 1272 /* 1273 ** Return true if the given Vdbe has any SubPrograms. 1274 */ 1275 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){ 1276 return pVdbe->pProgram!=0; 1277 } 1278 1279 /* 1280 ** Change the opcode at addr into OP_Noop 1281 */ 1282 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 1283 VdbeOp *pOp; 1284 if( p->db->mallocFailed ) return 0; 1285 assert( addr>=0 && addr<p->nOp ); 1286 pOp = &p->aOp[addr]; 1287 freeP4(p->db, pOp->p4type, pOp->p4.p); 1288 pOp->p4type = P4_NOTUSED; 1289 pOp->p4.z = 0; 1290 pOp->opcode = OP_Noop; 1291 return 1; 1292 } 1293 1294 /* 1295 ** If the last opcode is "op" and it is not a jump destination, 1296 ** then remove it. Return true if and only if an opcode was removed. 1297 */ 1298 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 1299 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 1300 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 1301 }else{ 1302 return 0; 1303 } 1304 } 1305 1306 #ifdef SQLITE_DEBUG 1307 /* 1308 ** Generate an OP_ReleaseReg opcode to indicate that a range of 1309 ** registers, except any identified by mask, are no longer in use. 1310 */ 1311 void sqlite3VdbeReleaseRegisters( 1312 Parse *pParse, /* Parsing context */ 1313 int iFirst, /* Index of first register to be released */ 1314 int N, /* Number of registers to release */ 1315 u32 mask, /* Mask of registers to NOT release */ 1316 int bUndefine /* If true, mark registers as undefined */ 1317 ){ 1318 if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return; 1319 assert( pParse->pVdbe ); 1320 assert( iFirst>=1 ); 1321 assert( iFirst+N-1<=pParse->nMem ); 1322 if( N<=31 && mask!=0 ){ 1323 while( N>0 && (mask&1)!=0 ){ 1324 mask >>= 1; 1325 iFirst++; 1326 N--; 1327 } 1328 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){ 1329 mask &= ~MASKBIT32(N-1); 1330 N--; 1331 } 1332 } 1333 if( N>0 ){ 1334 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); 1335 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); 1336 } 1337 } 1338 #endif /* SQLITE_DEBUG */ 1339 1340 1341 /* 1342 ** Change the value of the P4 operand for a specific instruction. 1343 ** This routine is useful when a large program is loaded from a 1344 ** static array using sqlite3VdbeAddOpList but we want to make a 1345 ** few minor changes to the program. 1346 ** 1347 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 1348 ** the string is made into memory obtained from sqlite3_malloc(). 1349 ** A value of n==0 means copy bytes of zP4 up to and including the 1350 ** first null byte. If n>0 then copy n+1 bytes of zP4. 1351 ** 1352 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 1353 ** to a string or structure that is guaranteed to exist for the lifetime of 1354 ** the Vdbe. In these cases we can just copy the pointer. 1355 ** 1356 ** If addr<0 then change P4 on the most recently inserted instruction. 1357 */ 1358 static void SQLITE_NOINLINE vdbeChangeP4Full( 1359 Vdbe *p, 1360 Op *pOp, 1361 const char *zP4, 1362 int n 1363 ){ 1364 if( pOp->p4type ){ 1365 freeP4(p->db, pOp->p4type, pOp->p4.p); 1366 pOp->p4type = 0; 1367 pOp->p4.p = 0; 1368 } 1369 if( n<0 ){ 1370 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 1371 }else{ 1372 if( n==0 ) n = sqlite3Strlen30(zP4); 1373 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 1374 pOp->p4type = P4_DYNAMIC; 1375 } 1376 } 1377 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 1378 Op *pOp; 1379 sqlite3 *db; 1380 assert( p!=0 ); 1381 db = p->db; 1382 assert( p->eVdbeState==VDBE_INIT_STATE ); 1383 assert( p->aOp!=0 || db->mallocFailed ); 1384 if( db->mallocFailed ){ 1385 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 1386 return; 1387 } 1388 assert( p->nOp>0 ); 1389 assert( addr<p->nOp ); 1390 if( addr<0 ){ 1391 addr = p->nOp - 1; 1392 } 1393 pOp = &p->aOp[addr]; 1394 if( n>=0 || pOp->p4type ){ 1395 vdbeChangeP4Full(p, pOp, zP4, n); 1396 return; 1397 } 1398 if( n==P4_INT32 ){ 1399 /* Note: this cast is safe, because the origin data point was an int 1400 ** that was cast to a (const char *). */ 1401 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 1402 pOp->p4type = P4_INT32; 1403 }else if( zP4!=0 ){ 1404 assert( n<0 ); 1405 pOp->p4.p = (void*)zP4; 1406 pOp->p4type = (signed char)n; 1407 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 1408 } 1409 } 1410 1411 /* 1412 ** Change the P4 operand of the most recently coded instruction 1413 ** to the value defined by the arguments. This is a high-speed 1414 ** version of sqlite3VdbeChangeP4(). 1415 ** 1416 ** The P4 operand must not have been previously defined. And the new 1417 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 1418 ** those cases. 1419 */ 1420 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1421 VdbeOp *pOp; 1422 assert( n!=P4_INT32 && n!=P4_VTAB ); 1423 assert( n<=0 ); 1424 if( p->db->mallocFailed ){ 1425 freeP4(p->db, n, pP4); 1426 }else{ 1427 assert( pP4!=0 ); 1428 assert( p->nOp>0 ); 1429 pOp = &p->aOp[p->nOp-1]; 1430 assert( pOp->p4type==P4_NOTUSED ); 1431 pOp->p4type = n; 1432 pOp->p4.p = pP4; 1433 } 1434 } 1435 1436 /* 1437 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1438 ** index given. 1439 */ 1440 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1441 Vdbe *v = pParse->pVdbe; 1442 KeyInfo *pKeyInfo; 1443 assert( v!=0 ); 1444 assert( pIdx!=0 ); 1445 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1446 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1447 } 1448 1449 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1450 /* 1451 ** Change the comment on the most recently coded instruction. Or 1452 ** insert a No-op and add the comment to that new instruction. This 1453 ** makes the code easier to read during debugging. None of this happens 1454 ** in a production build. 1455 */ 1456 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1457 assert( p->nOp>0 || p->aOp==0 ); 1458 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 ); 1459 if( p->nOp ){ 1460 assert( p->aOp ); 1461 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1462 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1463 } 1464 } 1465 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1466 va_list ap; 1467 if( p ){ 1468 va_start(ap, zFormat); 1469 vdbeVComment(p, zFormat, ap); 1470 va_end(ap); 1471 } 1472 } 1473 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1474 va_list ap; 1475 if( p ){ 1476 sqlite3VdbeAddOp0(p, OP_Noop); 1477 va_start(ap, zFormat); 1478 vdbeVComment(p, zFormat, ap); 1479 va_end(ap); 1480 } 1481 } 1482 #endif /* NDEBUG */ 1483 1484 #ifdef SQLITE_VDBE_COVERAGE 1485 /* 1486 ** Set the value if the iSrcLine field for the previously coded instruction. 1487 */ 1488 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1489 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; 1490 } 1491 #endif /* SQLITE_VDBE_COVERAGE */ 1492 1493 /* 1494 ** Return the opcode for a given address. If the address is -1, then 1495 ** return the most recently inserted opcode. 1496 ** 1497 ** If a memory allocation error has occurred prior to the calling of this 1498 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1499 ** is readable but not writable, though it is cast to a writable value. 1500 ** The return of a dummy opcode allows the call to continue functioning 1501 ** after an OOM fault without having to check to see if the return from 1502 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1503 ** dummy will never be written to. This is verified by code inspection and 1504 ** by running with Valgrind. 1505 */ 1506 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1507 /* C89 specifies that the constant "dummy" will be initialized to all 1508 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1509 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1510 assert( p->eVdbeState==VDBE_INIT_STATE ); 1511 if( addr<0 ){ 1512 addr = p->nOp - 1; 1513 } 1514 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1515 if( p->db->mallocFailed ){ 1516 return (VdbeOp*)&dummy; 1517 }else{ 1518 return &p->aOp[addr]; 1519 } 1520 } 1521 1522 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1523 /* 1524 ** Return an integer value for one of the parameters to the opcode pOp 1525 ** determined by character c. 1526 */ 1527 static int translateP(char c, const Op *pOp){ 1528 if( c=='1' ) return pOp->p1; 1529 if( c=='2' ) return pOp->p2; 1530 if( c=='3' ) return pOp->p3; 1531 if( c=='4' ) return pOp->p4.i; 1532 return pOp->p5; 1533 } 1534 1535 /* 1536 ** Compute a string for the "comment" field of a VDBE opcode listing. 1537 ** 1538 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1539 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1540 ** absence of other comments, this synopsis becomes the comment on the opcode. 1541 ** Some translation occurs: 1542 ** 1543 ** "PX" -> "r[X]" 1544 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1545 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1546 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1547 */ 1548 char *sqlite3VdbeDisplayComment( 1549 sqlite3 *db, /* Optional - Oom error reporting only */ 1550 const Op *pOp, /* The opcode to be commented */ 1551 const char *zP4 /* Previously obtained value for P4 */ 1552 ){ 1553 const char *zOpName; 1554 const char *zSynopsis; 1555 int nOpName; 1556 int ii; 1557 char zAlt[50]; 1558 StrAccum x; 1559 1560 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1561 zOpName = sqlite3OpcodeName(pOp->opcode); 1562 nOpName = sqlite3Strlen30(zOpName); 1563 if( zOpName[nOpName+1] ){ 1564 int seenCom = 0; 1565 char c; 1566 zSynopsis = zOpName + nOpName + 1; 1567 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1568 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1569 zSynopsis = zAlt; 1570 } 1571 for(ii=0; (c = zSynopsis[ii])!=0; ii++){ 1572 if( c=='P' ){ 1573 c = zSynopsis[++ii]; 1574 if( c=='4' ){ 1575 sqlite3_str_appendall(&x, zP4); 1576 }else if( c=='X' ){ 1577 if( pOp->zComment && pOp->zComment[0] ){ 1578 sqlite3_str_appendall(&x, pOp->zComment); 1579 seenCom = 1; 1580 break; 1581 } 1582 }else{ 1583 int v1 = translateP(c, pOp); 1584 int v2; 1585 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1586 ii += 3; 1587 v2 = translateP(zSynopsis[ii], pOp); 1588 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1589 ii += 2; 1590 v2++; 1591 } 1592 if( v2<2 ){ 1593 sqlite3_str_appendf(&x, "%d", v1); 1594 }else{ 1595 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1); 1596 } 1597 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){ 1598 sqlite3_context *pCtx = pOp->p4.pCtx; 1599 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){ 1600 sqlite3_str_appendf(&x, "%d", v1); 1601 }else if( pCtx->argc>1 ){ 1602 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1); 1603 }else if( x.accError==0 ){ 1604 assert( x.nChar>2 ); 1605 x.nChar -= 2; 1606 ii++; 1607 } 1608 ii += 3; 1609 }else{ 1610 sqlite3_str_appendf(&x, "%d", v1); 1611 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1612 ii += 4; 1613 } 1614 } 1615 } 1616 }else{ 1617 sqlite3_str_appendchar(&x, 1, c); 1618 } 1619 } 1620 if( !seenCom && pOp->zComment ){ 1621 sqlite3_str_appendf(&x, "; %s", pOp->zComment); 1622 } 1623 }else if( pOp->zComment ){ 1624 sqlite3_str_appendall(&x, pOp->zComment); 1625 } 1626 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){ 1627 sqlite3OomFault(db); 1628 } 1629 return sqlite3StrAccumFinish(&x); 1630 } 1631 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */ 1632 1633 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1634 /* 1635 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1636 ** that can be displayed in the P4 column of EXPLAIN output. 1637 */ 1638 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1639 const char *zOp = 0; 1640 switch( pExpr->op ){ 1641 case TK_STRING: 1642 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1643 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); 1644 break; 1645 case TK_INTEGER: 1646 sqlite3_str_appendf(p, "%d", pExpr->u.iValue); 1647 break; 1648 case TK_NULL: 1649 sqlite3_str_appendf(p, "NULL"); 1650 break; 1651 case TK_REGISTER: { 1652 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); 1653 break; 1654 } 1655 case TK_COLUMN: { 1656 if( pExpr->iColumn<0 ){ 1657 sqlite3_str_appendf(p, "rowid"); 1658 }else{ 1659 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); 1660 } 1661 break; 1662 } 1663 case TK_LT: zOp = "LT"; break; 1664 case TK_LE: zOp = "LE"; break; 1665 case TK_GT: zOp = "GT"; break; 1666 case TK_GE: zOp = "GE"; break; 1667 case TK_NE: zOp = "NE"; break; 1668 case TK_EQ: zOp = "EQ"; break; 1669 case TK_IS: zOp = "IS"; break; 1670 case TK_ISNOT: zOp = "ISNOT"; break; 1671 case TK_AND: zOp = "AND"; break; 1672 case TK_OR: zOp = "OR"; break; 1673 case TK_PLUS: zOp = "ADD"; break; 1674 case TK_STAR: zOp = "MUL"; break; 1675 case TK_MINUS: zOp = "SUB"; break; 1676 case TK_REM: zOp = "REM"; break; 1677 case TK_BITAND: zOp = "BITAND"; break; 1678 case TK_BITOR: zOp = "BITOR"; break; 1679 case TK_SLASH: zOp = "DIV"; break; 1680 case TK_LSHIFT: zOp = "LSHIFT"; break; 1681 case TK_RSHIFT: zOp = "RSHIFT"; break; 1682 case TK_CONCAT: zOp = "CONCAT"; break; 1683 case TK_UMINUS: zOp = "MINUS"; break; 1684 case TK_UPLUS: zOp = "PLUS"; break; 1685 case TK_BITNOT: zOp = "BITNOT"; break; 1686 case TK_NOT: zOp = "NOT"; break; 1687 case TK_ISNULL: zOp = "ISNULL"; break; 1688 case TK_NOTNULL: zOp = "NOTNULL"; break; 1689 1690 default: 1691 sqlite3_str_appendf(p, "%s", "expr"); 1692 break; 1693 } 1694 1695 if( zOp ){ 1696 sqlite3_str_appendf(p, "%s(", zOp); 1697 displayP4Expr(p, pExpr->pLeft); 1698 if( pExpr->pRight ){ 1699 sqlite3_str_append(p, ",", 1); 1700 displayP4Expr(p, pExpr->pRight); 1701 } 1702 sqlite3_str_append(p, ")", 1); 1703 } 1704 } 1705 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1706 1707 1708 #if VDBE_DISPLAY_P4 1709 /* 1710 ** Compute a string that describes the P4 parameter for an opcode. 1711 ** Use zTemp for any required temporary buffer space. 1712 */ 1713 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){ 1714 char *zP4 = 0; 1715 StrAccum x; 1716 1717 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1718 switch( pOp->p4type ){ 1719 case P4_KEYINFO: { 1720 int j; 1721 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1722 assert( pKeyInfo->aSortFlags!=0 ); 1723 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); 1724 for(j=0; j<pKeyInfo->nKeyField; j++){ 1725 CollSeq *pColl = pKeyInfo->aColl[j]; 1726 const char *zColl = pColl ? pColl->zName : ""; 1727 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1728 sqlite3_str_appendf(&x, ",%s%s%s", 1729 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "", 1730 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "", 1731 zColl); 1732 } 1733 sqlite3_str_append(&x, ")", 1); 1734 break; 1735 } 1736 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1737 case P4_EXPR: { 1738 displayP4Expr(&x, pOp->p4.pExpr); 1739 break; 1740 } 1741 #endif 1742 case P4_COLLSEQ: { 1743 static const char *const encnames[] = {"?", "8", "16LE", "16BE"}; 1744 CollSeq *pColl = pOp->p4.pColl; 1745 assert( pColl->enc<4 ); 1746 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName, 1747 encnames[pColl->enc]); 1748 break; 1749 } 1750 case P4_FUNCDEF: { 1751 FuncDef *pDef = pOp->p4.pFunc; 1752 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1753 break; 1754 } 1755 case P4_FUNCCTX: { 1756 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1757 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1758 break; 1759 } 1760 case P4_INT64: { 1761 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); 1762 break; 1763 } 1764 case P4_INT32: { 1765 sqlite3_str_appendf(&x, "%d", pOp->p4.i); 1766 break; 1767 } 1768 case P4_REAL: { 1769 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); 1770 break; 1771 } 1772 case P4_MEM: { 1773 Mem *pMem = pOp->p4.pMem; 1774 if( pMem->flags & MEM_Str ){ 1775 zP4 = pMem->z; 1776 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1777 sqlite3_str_appendf(&x, "%lld", pMem->u.i); 1778 }else if( pMem->flags & MEM_Real ){ 1779 sqlite3_str_appendf(&x, "%.16g", pMem->u.r); 1780 }else if( pMem->flags & MEM_Null ){ 1781 zP4 = "NULL"; 1782 }else{ 1783 assert( pMem->flags & MEM_Blob ); 1784 zP4 = "(blob)"; 1785 } 1786 break; 1787 } 1788 #ifndef SQLITE_OMIT_VIRTUALTABLE 1789 case P4_VTAB: { 1790 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1791 sqlite3_str_appendf(&x, "vtab:%p", pVtab); 1792 break; 1793 } 1794 #endif 1795 case P4_INTARRAY: { 1796 u32 i; 1797 u32 *ai = pOp->p4.ai; 1798 u32 n = ai[0]; /* The first element of an INTARRAY is always the 1799 ** count of the number of elements to follow */ 1800 for(i=1; i<=n; i++){ 1801 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]); 1802 } 1803 sqlite3_str_append(&x, "]", 1); 1804 break; 1805 } 1806 case P4_SUBPROGRAM: { 1807 zP4 = "program"; 1808 break; 1809 } 1810 case P4_TABLE: { 1811 zP4 = pOp->p4.pTab->zName; 1812 break; 1813 } 1814 default: { 1815 zP4 = pOp->p4.z; 1816 } 1817 } 1818 if( zP4 ) sqlite3_str_appendall(&x, zP4); 1819 if( (x.accError & SQLITE_NOMEM)!=0 ){ 1820 sqlite3OomFault(db); 1821 } 1822 return sqlite3StrAccumFinish(&x); 1823 } 1824 #endif /* VDBE_DISPLAY_P4 */ 1825 1826 /* 1827 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1828 ** 1829 ** The prepared statements need to know in advance the complete set of 1830 ** attached databases that will be use. A mask of these databases 1831 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1832 ** p->btreeMask of databases that will require a lock. 1833 */ 1834 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1835 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1836 assert( i<(int)sizeof(p->btreeMask)*8 ); 1837 DbMaskSet(p->btreeMask, i); 1838 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1839 DbMaskSet(p->lockMask, i); 1840 } 1841 } 1842 1843 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1844 /* 1845 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1846 ** this routine obtains the mutex associated with each BtShared structure 1847 ** that may be accessed by the VM passed as an argument. In doing so it also 1848 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1849 ** that the correct busy-handler callback is invoked if required. 1850 ** 1851 ** If SQLite is not threadsafe but does support shared-cache mode, then 1852 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1853 ** of all of BtShared structures accessible via the database handle 1854 ** associated with the VM. 1855 ** 1856 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1857 ** function is a no-op. 1858 ** 1859 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1860 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1861 ** corresponding to btrees that use shared cache. Then the runtime of 1862 ** this routine is N*N. But as N is rarely more than 1, this should not 1863 ** be a problem. 1864 */ 1865 void sqlite3VdbeEnter(Vdbe *p){ 1866 int i; 1867 sqlite3 *db; 1868 Db *aDb; 1869 int nDb; 1870 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1871 db = p->db; 1872 aDb = db->aDb; 1873 nDb = db->nDb; 1874 for(i=0; i<nDb; i++){ 1875 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1876 sqlite3BtreeEnter(aDb[i].pBt); 1877 } 1878 } 1879 } 1880 #endif 1881 1882 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1883 /* 1884 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1885 */ 1886 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1887 int i; 1888 sqlite3 *db; 1889 Db *aDb; 1890 int nDb; 1891 db = p->db; 1892 aDb = db->aDb; 1893 nDb = db->nDb; 1894 for(i=0; i<nDb; i++){ 1895 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1896 sqlite3BtreeLeave(aDb[i].pBt); 1897 } 1898 } 1899 } 1900 void sqlite3VdbeLeave(Vdbe *p){ 1901 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1902 vdbeLeave(p); 1903 } 1904 #endif 1905 1906 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1907 /* 1908 ** Print a single opcode. This routine is used for debugging only. 1909 */ 1910 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ 1911 char *zP4; 1912 char *zCom; 1913 sqlite3 dummyDb; 1914 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1915 if( pOut==0 ) pOut = stdout; 1916 sqlite3BeginBenignMalloc(); 1917 dummyDb.mallocFailed = 1; 1918 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp); 1919 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1920 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4); 1921 #else 1922 zCom = 0; 1923 #endif 1924 /* NB: The sqlite3OpcodeName() function is implemented by code created 1925 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1926 ** information from the vdbe.c source text */ 1927 fprintf(pOut, zFormat1, pc, 1928 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, 1929 zP4 ? zP4 : "", pOp->p5, 1930 zCom ? zCom : "" 1931 ); 1932 fflush(pOut); 1933 sqlite3_free(zP4); 1934 sqlite3_free(zCom); 1935 sqlite3EndBenignMalloc(); 1936 } 1937 #endif 1938 1939 /* 1940 ** Initialize an array of N Mem element. 1941 ** 1942 ** This is a high-runner, so only those fields that really do need to 1943 ** be initialized are set. The Mem structure is organized so that 1944 ** the fields that get initialized are nearby and hopefully on the same 1945 ** cache line. 1946 ** 1947 ** Mem.flags = flags 1948 ** Mem.db = db 1949 ** Mem.szMalloc = 0 1950 ** 1951 ** All other fields of Mem can safely remain uninitialized for now. They 1952 ** will be initialized before use. 1953 */ 1954 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1955 if( N>0 ){ 1956 do{ 1957 p->flags = flags; 1958 p->db = db; 1959 p->szMalloc = 0; 1960 #ifdef SQLITE_DEBUG 1961 p->pScopyFrom = 0; 1962 #endif 1963 p++; 1964 }while( (--N)>0 ); 1965 } 1966 } 1967 1968 /* 1969 ** Release auxiliary memory held in an array of N Mem elements. 1970 ** 1971 ** After this routine returns, all Mem elements in the array will still 1972 ** be valid. Those Mem elements that were not holding auxiliary resources 1973 ** will be unchanged. Mem elements which had something freed will be 1974 ** set to MEM_Undefined. 1975 */ 1976 static void releaseMemArray(Mem *p, int N){ 1977 if( p && N ){ 1978 Mem *pEnd = &p[N]; 1979 sqlite3 *db = p->db; 1980 if( db->pnBytesFreed ){ 1981 do{ 1982 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1983 }while( (++p)<pEnd ); 1984 return; 1985 } 1986 do{ 1987 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 1988 assert( sqlite3VdbeCheckMemInvariants(p) ); 1989 1990 /* This block is really an inlined version of sqlite3VdbeMemRelease() 1991 ** that takes advantage of the fact that the memory cell value is 1992 ** being set to NULL after releasing any dynamic resources. 1993 ** 1994 ** The justification for duplicating code is that according to 1995 ** callgrind, this causes a certain test case to hit the CPU 4.7 1996 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 1997 ** sqlite3MemRelease() were called from here. With -O2, this jumps 1998 ** to 6.6 percent. The test case is inserting 1000 rows into a table 1999 ** with no indexes using a single prepared INSERT statement, bind() 2000 ** and reset(). Inserts are grouped into a transaction. 2001 */ 2002 testcase( p->flags & MEM_Agg ); 2003 testcase( p->flags & MEM_Dyn ); 2004 if( p->flags&(MEM_Agg|MEM_Dyn) ){ 2005 testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel ); 2006 sqlite3VdbeMemRelease(p); 2007 p->flags = MEM_Undefined; 2008 }else if( p->szMalloc ){ 2009 sqlite3DbFreeNN(db, p->zMalloc); 2010 p->szMalloc = 0; 2011 p->flags = MEM_Undefined; 2012 } 2013 #ifdef SQLITE_DEBUG 2014 else{ 2015 p->flags = MEM_Undefined; 2016 } 2017 #endif 2018 }while( (++p)<pEnd ); 2019 } 2020 } 2021 2022 #ifdef SQLITE_DEBUG 2023 /* 2024 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is 2025 ** and false if something is wrong. 2026 ** 2027 ** This routine is intended for use inside of assert() statements only. 2028 */ 2029 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){ 2030 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; 2031 return 1; 2032 } 2033 #endif 2034 2035 2036 /* 2037 ** This is a destructor on a Mem object (which is really an sqlite3_value) 2038 ** that deletes the Frame object that is attached to it as a blob. 2039 ** 2040 ** This routine does not delete the Frame right away. It merely adds the 2041 ** frame to a list of frames to be deleted when the Vdbe halts. 2042 */ 2043 void sqlite3VdbeFrameMemDel(void *pArg){ 2044 VdbeFrame *pFrame = (VdbeFrame*)pArg; 2045 assert( sqlite3VdbeFrameIsValid(pFrame) ); 2046 pFrame->pParent = pFrame->v->pDelFrame; 2047 pFrame->v->pDelFrame = pFrame; 2048 } 2049 2050 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN) 2051 /* 2052 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN 2053 ** QUERY PLAN output. 2054 ** 2055 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no 2056 ** more opcodes to be displayed. 2057 */ 2058 int sqlite3VdbeNextOpcode( 2059 Vdbe *p, /* The statement being explained */ 2060 Mem *pSub, /* Storage for keeping track of subprogram nesting */ 2061 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */ 2062 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */ 2063 int *piAddr, /* OUT: Write index into (*paOp)[] here */ 2064 Op **paOp /* OUT: Write the opcode array here */ 2065 ){ 2066 int nRow; /* Stop when row count reaches this */ 2067 int nSub = 0; /* Number of sub-vdbes seen so far */ 2068 SubProgram **apSub = 0; /* Array of sub-vdbes */ 2069 int i; /* Next instruction address */ 2070 int rc = SQLITE_OK; /* Result code */ 2071 Op *aOp = 0; /* Opcode array */ 2072 int iPc; /* Rowid. Copy of value in *piPc */ 2073 2074 /* When the number of output rows reaches nRow, that means the 2075 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 2076 ** nRow is the sum of the number of rows in the main program, plus 2077 ** the sum of the number of rows in all trigger subprograms encountered 2078 ** so far. The nRow value will increase as new trigger subprograms are 2079 ** encountered, but p->pc will eventually catch up to nRow. 2080 */ 2081 nRow = p->nOp; 2082 if( pSub!=0 ){ 2083 if( pSub->flags&MEM_Blob ){ 2084 /* pSub is initiallly NULL. It is initialized to a BLOB by 2085 ** the P4_SUBPROGRAM processing logic below */ 2086 nSub = pSub->n/sizeof(Vdbe*); 2087 apSub = (SubProgram **)pSub->z; 2088 } 2089 for(i=0; i<nSub; i++){ 2090 nRow += apSub[i]->nOp; 2091 } 2092 } 2093 iPc = *piPc; 2094 while(1){ /* Loop exits via break */ 2095 i = iPc++; 2096 if( i>=nRow ){ 2097 p->rc = SQLITE_OK; 2098 rc = SQLITE_DONE; 2099 break; 2100 } 2101 if( i<p->nOp ){ 2102 /* The rowid is small enough that we are still in the 2103 ** main program. */ 2104 aOp = p->aOp; 2105 }else{ 2106 /* We are currently listing subprograms. Figure out which one and 2107 ** pick up the appropriate opcode. */ 2108 int j; 2109 i -= p->nOp; 2110 assert( apSub!=0 ); 2111 assert( nSub>0 ); 2112 for(j=0; i>=apSub[j]->nOp; j++){ 2113 i -= apSub[j]->nOp; 2114 assert( i<apSub[j]->nOp || j+1<nSub ); 2115 } 2116 aOp = apSub[j]->aOp; 2117 } 2118 2119 /* When an OP_Program opcode is encounter (the only opcode that has 2120 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 2121 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 2122 ** has not already been seen. 2123 */ 2124 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){ 2125 int nByte = (nSub+1)*sizeof(SubProgram*); 2126 int j; 2127 for(j=0; j<nSub; j++){ 2128 if( apSub[j]==aOp[i].p4.pProgram ) break; 2129 } 2130 if( j==nSub ){ 2131 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); 2132 if( p->rc!=SQLITE_OK ){ 2133 rc = SQLITE_ERROR; 2134 break; 2135 } 2136 apSub = (SubProgram **)pSub->z; 2137 apSub[nSub++] = aOp[i].p4.pProgram; 2138 MemSetTypeFlag(pSub, MEM_Blob); 2139 pSub->n = nSub*sizeof(SubProgram*); 2140 nRow += aOp[i].p4.pProgram->nOp; 2141 } 2142 } 2143 if( eMode==0 ) break; 2144 #ifdef SQLITE_ENABLE_BYTECODE_VTAB 2145 if( eMode==2 ){ 2146 Op *pOp = aOp + i; 2147 if( pOp->opcode==OP_OpenRead ) break; 2148 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break; 2149 if( pOp->opcode==OP_ReopenIdx ) break; 2150 }else 2151 #endif 2152 { 2153 assert( eMode==1 ); 2154 if( aOp[i].opcode==OP_Explain ) break; 2155 if( aOp[i].opcode==OP_Init && iPc>1 ) break; 2156 } 2157 } 2158 *piPc = iPc; 2159 *piAddr = i; 2160 *paOp = aOp; 2161 return rc; 2162 } 2163 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */ 2164 2165 2166 /* 2167 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 2168 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 2169 */ 2170 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 2171 int i; 2172 Mem *aMem = VdbeFrameMem(p); 2173 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 2174 assert( sqlite3VdbeFrameIsValid(p) ); 2175 for(i=0; i<p->nChildCsr; i++){ 2176 if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]); 2177 } 2178 releaseMemArray(aMem, p->nChildMem); 2179 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 2180 sqlite3DbFree(p->v->db, p); 2181 } 2182 2183 #ifndef SQLITE_OMIT_EXPLAIN 2184 /* 2185 ** Give a listing of the program in the virtual machine. 2186 ** 2187 ** The interface is the same as sqlite3VdbeExec(). But instead of 2188 ** running the code, it invokes the callback once for each instruction. 2189 ** This feature is used to implement "EXPLAIN". 2190 ** 2191 ** When p->explain==1, each instruction is listed. When 2192 ** p->explain==2, only OP_Explain instructions are listed and these 2193 ** are shown in a different format. p->explain==2 is used to implement 2194 ** EXPLAIN QUERY PLAN. 2195 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers 2196 ** are also shown, so that the boundaries between the main program and 2197 ** each trigger are clear. 2198 ** 2199 ** When p->explain==1, first the main program is listed, then each of 2200 ** the trigger subprograms are listed one by one. 2201 */ 2202 int sqlite3VdbeList( 2203 Vdbe *p /* The VDBE */ 2204 ){ 2205 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 2206 sqlite3 *db = p->db; /* The database connection */ 2207 int i; /* Loop counter */ 2208 int rc = SQLITE_OK; /* Return code */ 2209 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 2210 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); 2211 Op *aOp; /* Array of opcodes */ 2212 Op *pOp; /* Current opcode */ 2213 2214 assert( p->explain ); 2215 assert( p->eVdbeState==VDBE_RUN_STATE ); 2216 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 2217 2218 /* Even though this opcode does not use dynamic strings for 2219 ** the result, result columns may become dynamic if the user calls 2220 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 2221 */ 2222 releaseMemArray(pMem, 8); 2223 p->pResultSet = 0; 2224 2225 if( p->rc==SQLITE_NOMEM ){ 2226 /* This happens if a malloc() inside a call to sqlite3_column_text() or 2227 ** sqlite3_column_text16() failed. */ 2228 sqlite3OomFault(db); 2229 return SQLITE_ERROR; 2230 } 2231 2232 if( bListSubprogs ){ 2233 /* The first 8 memory cells are used for the result set. So we will 2234 ** commandeer the 9th cell to use as storage for an array of pointers 2235 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 2236 ** cells. */ 2237 assert( p->nMem>9 ); 2238 pSub = &p->aMem[9]; 2239 }else{ 2240 pSub = 0; 2241 } 2242 2243 /* Figure out which opcode is next to display */ 2244 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp); 2245 2246 if( rc==SQLITE_OK ){ 2247 pOp = aOp + i; 2248 if( AtomicLoad(&db->u1.isInterrupted) ){ 2249 p->rc = SQLITE_INTERRUPT; 2250 rc = SQLITE_ERROR; 2251 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 2252 }else{ 2253 char *zP4 = sqlite3VdbeDisplayP4(db, pOp); 2254 if( p->explain==2 ){ 2255 sqlite3VdbeMemSetInt64(pMem, pOp->p1); 2256 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2); 2257 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3); 2258 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free); 2259 p->nResColumn = 4; 2260 }else{ 2261 sqlite3VdbeMemSetInt64(pMem+0, i); 2262 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode), 2263 -1, SQLITE_UTF8, SQLITE_STATIC); 2264 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1); 2265 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2); 2266 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3); 2267 /* pMem+5 for p4 is done last */ 2268 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5); 2269 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2270 { 2271 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4); 2272 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free); 2273 } 2274 #else 2275 sqlite3VdbeMemSetNull(pMem+7); 2276 #endif 2277 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free); 2278 p->nResColumn = 8; 2279 } 2280 p->pResultSet = pMem; 2281 if( db->mallocFailed ){ 2282 p->rc = SQLITE_NOMEM; 2283 rc = SQLITE_ERROR; 2284 }else{ 2285 p->rc = SQLITE_OK; 2286 rc = SQLITE_ROW; 2287 } 2288 } 2289 } 2290 return rc; 2291 } 2292 #endif /* SQLITE_OMIT_EXPLAIN */ 2293 2294 #ifdef SQLITE_DEBUG 2295 /* 2296 ** Print the SQL that was used to generate a VDBE program. 2297 */ 2298 void sqlite3VdbePrintSql(Vdbe *p){ 2299 const char *z = 0; 2300 if( p->zSql ){ 2301 z = p->zSql; 2302 }else if( p->nOp>=1 ){ 2303 const VdbeOp *pOp = &p->aOp[0]; 2304 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2305 z = pOp->p4.z; 2306 while( sqlite3Isspace(*z) ) z++; 2307 } 2308 } 2309 if( z ) printf("SQL: [%s]\n", z); 2310 } 2311 #endif 2312 2313 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 2314 /* 2315 ** Print an IOTRACE message showing SQL content. 2316 */ 2317 void sqlite3VdbeIOTraceSql(Vdbe *p){ 2318 int nOp = p->nOp; 2319 VdbeOp *pOp; 2320 if( sqlite3IoTrace==0 ) return; 2321 if( nOp<1 ) return; 2322 pOp = &p->aOp[0]; 2323 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2324 int i, j; 2325 char z[1000]; 2326 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 2327 for(i=0; sqlite3Isspace(z[i]); i++){} 2328 for(j=0; z[i]; i++){ 2329 if( sqlite3Isspace(z[i]) ){ 2330 if( z[i-1]!=' ' ){ 2331 z[j++] = ' '; 2332 } 2333 }else{ 2334 z[j++] = z[i]; 2335 } 2336 } 2337 z[j] = 0; 2338 sqlite3IoTrace("SQL %s\n", z); 2339 } 2340 } 2341 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 2342 2343 /* An instance of this object describes bulk memory available for use 2344 ** by subcomponents of a prepared statement. Space is allocated out 2345 ** of a ReusableSpace object by the allocSpace() routine below. 2346 */ 2347 struct ReusableSpace { 2348 u8 *pSpace; /* Available memory */ 2349 sqlite3_int64 nFree; /* Bytes of available memory */ 2350 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */ 2351 }; 2352 2353 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 2354 ** from the ReusableSpace object. Return a pointer to the allocated 2355 ** memory on success. If insufficient memory is available in the 2356 ** ReusableSpace object, increase the ReusableSpace.nNeeded 2357 ** value by the amount needed and return NULL. 2358 ** 2359 ** If pBuf is not initially NULL, that means that the memory has already 2360 ** been allocated by a prior call to this routine, so just return a copy 2361 ** of pBuf and leave ReusableSpace unchanged. 2362 ** 2363 ** This allocator is employed to repurpose unused slots at the end of the 2364 ** opcode array of prepared state for other memory needs of the prepared 2365 ** statement. 2366 */ 2367 static void *allocSpace( 2368 struct ReusableSpace *p, /* Bulk memory available for allocation */ 2369 void *pBuf, /* Pointer to a prior allocation */ 2370 sqlite3_int64 nByte /* Bytes of memory needed. */ 2371 ){ 2372 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 2373 if( pBuf==0 ){ 2374 nByte = ROUND8P(nByte); 2375 if( nByte <= p->nFree ){ 2376 p->nFree -= nByte; 2377 pBuf = &p->pSpace[p->nFree]; 2378 }else{ 2379 p->nNeeded += nByte; 2380 } 2381 } 2382 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 2383 return pBuf; 2384 } 2385 2386 /* 2387 ** Rewind the VDBE back to the beginning in preparation for 2388 ** running it. 2389 */ 2390 void sqlite3VdbeRewind(Vdbe *p){ 2391 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 2392 int i; 2393 #endif 2394 assert( p!=0 ); 2395 assert( p->eVdbeState==VDBE_INIT_STATE 2396 || p->eVdbeState==VDBE_READY_STATE 2397 || p->eVdbeState==VDBE_HALT_STATE ); 2398 2399 /* There should be at least one opcode. 2400 */ 2401 assert( p->nOp>0 ); 2402 2403 p->eVdbeState = VDBE_READY_STATE; 2404 2405 #ifdef SQLITE_DEBUG 2406 for(i=0; i<p->nMem; i++){ 2407 assert( p->aMem[i].db==p->db ); 2408 } 2409 #endif 2410 p->pc = -1; 2411 p->rc = SQLITE_OK; 2412 p->errorAction = OE_Abort; 2413 p->nChange = 0; 2414 p->cacheCtr = 1; 2415 p->minWriteFileFormat = 255; 2416 p->iStatement = 0; 2417 p->nFkConstraint = 0; 2418 #ifdef VDBE_PROFILE 2419 for(i=0; i<p->nOp; i++){ 2420 p->aOp[i].cnt = 0; 2421 p->aOp[i].cycles = 0; 2422 } 2423 #endif 2424 } 2425 2426 /* 2427 ** Prepare a virtual machine for execution for the first time after 2428 ** creating the virtual machine. This involves things such 2429 ** as allocating registers and initializing the program counter. 2430 ** After the VDBE has be prepped, it can be executed by one or more 2431 ** calls to sqlite3VdbeExec(). 2432 ** 2433 ** This function may be called exactly once on each virtual machine. 2434 ** After this routine is called the VM has been "packaged" and is ready 2435 ** to run. After this routine is called, further calls to 2436 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 2437 ** the Vdbe from the Parse object that helped generate it so that the 2438 ** the Vdbe becomes an independent entity and the Parse object can be 2439 ** destroyed. 2440 ** 2441 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 2442 ** to its initial state after it has been run. 2443 */ 2444 void sqlite3VdbeMakeReady( 2445 Vdbe *p, /* The VDBE */ 2446 Parse *pParse /* Parsing context */ 2447 ){ 2448 sqlite3 *db; /* The database connection */ 2449 int nVar; /* Number of parameters */ 2450 int nMem; /* Number of VM memory registers */ 2451 int nCursor; /* Number of cursors required */ 2452 int nArg; /* Number of arguments in subprograms */ 2453 int n; /* Loop counter */ 2454 struct ReusableSpace x; /* Reusable bulk memory */ 2455 2456 assert( p!=0 ); 2457 assert( p->nOp>0 ); 2458 assert( pParse!=0 ); 2459 assert( p->eVdbeState==VDBE_INIT_STATE ); 2460 assert( pParse==p->pParse ); 2461 p->pVList = pParse->pVList; 2462 pParse->pVList = 0; 2463 db = p->db; 2464 assert( db->mallocFailed==0 ); 2465 nVar = pParse->nVar; 2466 nMem = pParse->nMem; 2467 nCursor = pParse->nTab; 2468 nArg = pParse->nMaxArg; 2469 2470 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 2471 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 2472 ** space at the end of aMem[] for cursors 1 and greater. 2473 ** See also: allocateCursor(). 2474 */ 2475 nMem += nCursor; 2476 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 2477 2478 /* Figure out how much reusable memory is available at the end of the 2479 ** opcode array. This extra memory will be reallocated for other elements 2480 ** of the prepared statement. 2481 */ 2482 n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 2483 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 2484 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 2485 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 2486 assert( x.nFree>=0 ); 2487 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 2488 2489 resolveP2Values(p, &nArg); 2490 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 2491 if( pParse->explain ){ 2492 static const char * const azColName[] = { 2493 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", 2494 "id", "parent", "notused", "detail" 2495 }; 2496 int iFirst, mx, i; 2497 if( nMem<10 ) nMem = 10; 2498 p->explain = pParse->explain; 2499 if( pParse->explain==2 ){ 2500 sqlite3VdbeSetNumCols(p, 4); 2501 iFirst = 8; 2502 mx = 12; 2503 }else{ 2504 sqlite3VdbeSetNumCols(p, 8); 2505 iFirst = 0; 2506 mx = 8; 2507 } 2508 for(i=iFirst; i<mx; i++){ 2509 sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME, 2510 azColName[i], SQLITE_STATIC); 2511 } 2512 } 2513 p->expired = 0; 2514 2515 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 2516 ** passes. On the first pass, we try to reuse unused memory at the 2517 ** end of the opcode array. If we are unable to satisfy all memory 2518 ** requirements by reusing the opcode array tail, then the second 2519 ** pass will fill in the remainder using a fresh memory allocation. 2520 ** 2521 ** This two-pass approach that reuses as much memory as possible from 2522 ** the leftover memory at the end of the opcode array. This can significantly 2523 ** reduce the amount of memory held by a prepared statement. 2524 */ 2525 x.nNeeded = 0; 2526 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem)); 2527 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem)); 2528 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*)); 2529 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*)); 2530 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2531 p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64)); 2532 #endif 2533 if( x.nNeeded ){ 2534 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 2535 x.nFree = x.nNeeded; 2536 if( !db->mallocFailed ){ 2537 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 2538 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 2539 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 2540 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 2541 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2542 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 2543 #endif 2544 } 2545 } 2546 2547 if( db->mallocFailed ){ 2548 p->nVar = 0; 2549 p->nCursor = 0; 2550 p->nMem = 0; 2551 }else{ 2552 p->nCursor = nCursor; 2553 p->nVar = (ynVar)nVar; 2554 initMemArray(p->aVar, nVar, db, MEM_Null); 2555 p->nMem = nMem; 2556 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2557 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2558 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2559 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2560 #endif 2561 } 2562 sqlite3VdbeRewind(p); 2563 } 2564 2565 /* 2566 ** Close a VDBE cursor and release all the resources that cursor 2567 ** happens to hold. 2568 */ 2569 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2570 if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx); 2571 } 2572 void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){ 2573 switch( pCx->eCurType ){ 2574 case CURTYPE_SORTER: { 2575 sqlite3VdbeSorterClose(p->db, pCx); 2576 break; 2577 } 2578 case CURTYPE_BTREE: { 2579 assert( pCx->uc.pCursor!=0 ); 2580 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2581 break; 2582 } 2583 #ifndef SQLITE_OMIT_VIRTUALTABLE 2584 case CURTYPE_VTAB: { 2585 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2586 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2587 assert( pVCur->pVtab->nRef>0 ); 2588 pVCur->pVtab->nRef--; 2589 pModule->xClose(pVCur); 2590 break; 2591 } 2592 #endif 2593 } 2594 } 2595 2596 /* 2597 ** Close all cursors in the current frame. 2598 */ 2599 static void closeCursorsInFrame(Vdbe *p){ 2600 int i; 2601 for(i=0; i<p->nCursor; i++){ 2602 VdbeCursor *pC = p->apCsr[i]; 2603 if( pC ){ 2604 sqlite3VdbeFreeCursorNN(p, pC); 2605 p->apCsr[i] = 0; 2606 } 2607 } 2608 } 2609 2610 /* 2611 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2612 ** is used, for example, when a trigger sub-program is halted to restore 2613 ** control to the main program. 2614 */ 2615 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2616 Vdbe *v = pFrame->v; 2617 closeCursorsInFrame(v); 2618 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2619 v->anExec = pFrame->anExec; 2620 #endif 2621 v->aOp = pFrame->aOp; 2622 v->nOp = pFrame->nOp; 2623 v->aMem = pFrame->aMem; 2624 v->nMem = pFrame->nMem; 2625 v->apCsr = pFrame->apCsr; 2626 v->nCursor = pFrame->nCursor; 2627 v->db->lastRowid = pFrame->lastRowid; 2628 v->nChange = pFrame->nChange; 2629 v->db->nChange = pFrame->nDbChange; 2630 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2631 v->pAuxData = pFrame->pAuxData; 2632 pFrame->pAuxData = 0; 2633 return pFrame->pc; 2634 } 2635 2636 /* 2637 ** Close all cursors. 2638 ** 2639 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2640 ** cell array. This is necessary as the memory cell array may contain 2641 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2642 ** open cursors. 2643 */ 2644 static void closeAllCursors(Vdbe *p){ 2645 if( p->pFrame ){ 2646 VdbeFrame *pFrame; 2647 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2648 sqlite3VdbeFrameRestore(pFrame); 2649 p->pFrame = 0; 2650 p->nFrame = 0; 2651 } 2652 assert( p->nFrame==0 ); 2653 closeCursorsInFrame(p); 2654 releaseMemArray(p->aMem, p->nMem); 2655 while( p->pDelFrame ){ 2656 VdbeFrame *pDel = p->pDelFrame; 2657 p->pDelFrame = pDel->pParent; 2658 sqlite3VdbeFrameDelete(pDel); 2659 } 2660 2661 /* Delete any auxdata allocations made by the VM */ 2662 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2663 assert( p->pAuxData==0 ); 2664 } 2665 2666 /* 2667 ** Set the number of result columns that will be returned by this SQL 2668 ** statement. This is now set at compile time, rather than during 2669 ** execution of the vdbe program so that sqlite3_column_count() can 2670 ** be called on an SQL statement before sqlite3_step(). 2671 */ 2672 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2673 int n; 2674 sqlite3 *db = p->db; 2675 2676 if( p->nResColumn ){ 2677 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2678 sqlite3DbFree(db, p->aColName); 2679 } 2680 n = nResColumn*COLNAME_N; 2681 p->nResColumn = (u16)nResColumn; 2682 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2683 if( p->aColName==0 ) return; 2684 initMemArray(p->aColName, n, db, MEM_Null); 2685 } 2686 2687 /* 2688 ** Set the name of the idx'th column to be returned by the SQL statement. 2689 ** zName must be a pointer to a nul terminated string. 2690 ** 2691 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2692 ** 2693 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2694 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2695 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2696 */ 2697 int sqlite3VdbeSetColName( 2698 Vdbe *p, /* Vdbe being configured */ 2699 int idx, /* Index of column zName applies to */ 2700 int var, /* One of the COLNAME_* constants */ 2701 const char *zName, /* Pointer to buffer containing name */ 2702 void (*xDel)(void*) /* Memory management strategy for zName */ 2703 ){ 2704 int rc; 2705 Mem *pColName; 2706 assert( idx<p->nResColumn ); 2707 assert( var<COLNAME_N ); 2708 if( p->db->mallocFailed ){ 2709 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2710 return SQLITE_NOMEM_BKPT; 2711 } 2712 assert( p->aColName!=0 ); 2713 pColName = &(p->aColName[idx+var*p->nResColumn]); 2714 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2715 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2716 return rc; 2717 } 2718 2719 /* 2720 ** A read or write transaction may or may not be active on database handle 2721 ** db. If a transaction is active, commit it. If there is a 2722 ** write-transaction spanning more than one database file, this routine 2723 ** takes care of the super-journal trickery. 2724 */ 2725 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2726 int i; 2727 int nTrans = 0; /* Number of databases with an active write-transaction 2728 ** that are candidates for a two-phase commit using a 2729 ** super-journal */ 2730 int rc = SQLITE_OK; 2731 int needXcommit = 0; 2732 2733 #ifdef SQLITE_OMIT_VIRTUALTABLE 2734 /* With this option, sqlite3VtabSync() is defined to be simply 2735 ** SQLITE_OK so p is not used. 2736 */ 2737 UNUSED_PARAMETER(p); 2738 #endif 2739 2740 /* Before doing anything else, call the xSync() callback for any 2741 ** virtual module tables written in this transaction. This has to 2742 ** be done before determining whether a super-journal file is 2743 ** required, as an xSync() callback may add an attached database 2744 ** to the transaction. 2745 */ 2746 rc = sqlite3VtabSync(db, p); 2747 2748 /* This loop determines (a) if the commit hook should be invoked and 2749 ** (b) how many database files have open write transactions, not 2750 ** including the temp database. (b) is important because if more than 2751 ** one database file has an open write transaction, a super-journal 2752 ** file is required for an atomic commit. 2753 */ 2754 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2755 Btree *pBt = db->aDb[i].pBt; 2756 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 2757 /* Whether or not a database might need a super-journal depends upon 2758 ** its journal mode (among other things). This matrix determines which 2759 ** journal modes use a super-journal and which do not */ 2760 static const u8 aMJNeeded[] = { 2761 /* DELETE */ 1, 2762 /* PERSIST */ 1, 2763 /* OFF */ 0, 2764 /* TRUNCATE */ 1, 2765 /* MEMORY */ 0, 2766 /* WAL */ 0 2767 }; 2768 Pager *pPager; /* Pager associated with pBt */ 2769 needXcommit = 1; 2770 sqlite3BtreeEnter(pBt); 2771 pPager = sqlite3BtreePager(pBt); 2772 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2773 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2774 && sqlite3PagerIsMemdb(pPager)==0 2775 ){ 2776 assert( i!=1 ); 2777 nTrans++; 2778 } 2779 rc = sqlite3PagerExclusiveLock(pPager); 2780 sqlite3BtreeLeave(pBt); 2781 } 2782 } 2783 if( rc!=SQLITE_OK ){ 2784 return rc; 2785 } 2786 2787 /* If there are any write-transactions at all, invoke the commit hook */ 2788 if( needXcommit && db->xCommitCallback ){ 2789 rc = db->xCommitCallback(db->pCommitArg); 2790 if( rc ){ 2791 return SQLITE_CONSTRAINT_COMMITHOOK; 2792 } 2793 } 2794 2795 /* The simple case - no more than one database file (not counting the 2796 ** TEMP database) has a transaction active. There is no need for the 2797 ** super-journal. 2798 ** 2799 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2800 ** string, it means the main database is :memory: or a temp file. In 2801 ** that case we do not support atomic multi-file commits, so use the 2802 ** simple case then too. 2803 */ 2804 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2805 || nTrans<=1 2806 ){ 2807 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2808 Btree *pBt = db->aDb[i].pBt; 2809 if( pBt ){ 2810 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2811 } 2812 } 2813 2814 /* Do the commit only if all databases successfully complete phase 1. 2815 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2816 ** IO error while deleting or truncating a journal file. It is unlikely, 2817 ** but could happen. In this case abandon processing and return the error. 2818 */ 2819 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2820 Btree *pBt = db->aDb[i].pBt; 2821 if( pBt ){ 2822 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2823 } 2824 } 2825 if( rc==SQLITE_OK ){ 2826 sqlite3VtabCommit(db); 2827 } 2828 } 2829 2830 /* The complex case - There is a multi-file write-transaction active. 2831 ** This requires a super-journal file to ensure the transaction is 2832 ** committed atomically. 2833 */ 2834 #ifndef SQLITE_OMIT_DISKIO 2835 else{ 2836 sqlite3_vfs *pVfs = db->pVfs; 2837 char *zSuper = 0; /* File-name for the super-journal */ 2838 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2839 sqlite3_file *pSuperJrnl = 0; 2840 i64 offset = 0; 2841 int res; 2842 int retryCount = 0; 2843 int nMainFile; 2844 2845 /* Select a super-journal file name */ 2846 nMainFile = sqlite3Strlen30(zMainFile); 2847 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0); 2848 if( zSuper==0 ) return SQLITE_NOMEM_BKPT; 2849 zSuper += 4; 2850 do { 2851 u32 iRandom; 2852 if( retryCount ){ 2853 if( retryCount>100 ){ 2854 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper); 2855 sqlite3OsDelete(pVfs, zSuper, 0); 2856 break; 2857 }else if( retryCount==1 ){ 2858 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper); 2859 } 2860 } 2861 retryCount++; 2862 sqlite3_randomness(sizeof(iRandom), &iRandom); 2863 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X", 2864 (iRandom>>8)&0xffffff, iRandom&0xff); 2865 /* The antipenultimate character of the super-journal name must 2866 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2867 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' ); 2868 sqlite3FileSuffix3(zMainFile, zSuper); 2869 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); 2870 }while( rc==SQLITE_OK && res ); 2871 if( rc==SQLITE_OK ){ 2872 /* Open the super-journal. */ 2873 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl, 2874 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2875 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0 2876 ); 2877 } 2878 if( rc!=SQLITE_OK ){ 2879 sqlite3DbFree(db, zSuper-4); 2880 return rc; 2881 } 2882 2883 /* Write the name of each database file in the transaction into the new 2884 ** super-journal file. If an error occurs at this point close 2885 ** and delete the super-journal file. All the individual journal files 2886 ** still have 'null' as the super-journal pointer, so they will roll 2887 ** back independently if a failure occurs. 2888 */ 2889 for(i=0; i<db->nDb; i++){ 2890 Btree *pBt = db->aDb[i].pBt; 2891 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 2892 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2893 if( zFile==0 ){ 2894 continue; /* Ignore TEMP and :memory: databases */ 2895 } 2896 assert( zFile[0]!=0 ); 2897 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset); 2898 offset += sqlite3Strlen30(zFile)+1; 2899 if( rc!=SQLITE_OK ){ 2900 sqlite3OsCloseFree(pSuperJrnl); 2901 sqlite3OsDelete(pVfs, zSuper, 0); 2902 sqlite3DbFree(db, zSuper-4); 2903 return rc; 2904 } 2905 } 2906 } 2907 2908 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device 2909 ** flag is set this is not required. 2910 */ 2911 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL) 2912 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL)) 2913 ){ 2914 sqlite3OsCloseFree(pSuperJrnl); 2915 sqlite3OsDelete(pVfs, zSuper, 0); 2916 sqlite3DbFree(db, zSuper-4); 2917 return rc; 2918 } 2919 2920 /* Sync all the db files involved in the transaction. The same call 2921 ** sets the super-journal pointer in each individual journal. If 2922 ** an error occurs here, do not delete the super-journal file. 2923 ** 2924 ** If the error occurs during the first call to 2925 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2926 ** super-journal file will be orphaned. But we cannot delete it, 2927 ** in case the super-journal file name was written into the journal 2928 ** file before the failure occurred. 2929 */ 2930 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2931 Btree *pBt = db->aDb[i].pBt; 2932 if( pBt ){ 2933 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper); 2934 } 2935 } 2936 sqlite3OsCloseFree(pSuperJrnl); 2937 assert( rc!=SQLITE_BUSY ); 2938 if( rc!=SQLITE_OK ){ 2939 sqlite3DbFree(db, zSuper-4); 2940 return rc; 2941 } 2942 2943 /* Delete the super-journal file. This commits the transaction. After 2944 ** doing this the directory is synced again before any individual 2945 ** transaction files are deleted. 2946 */ 2947 rc = sqlite3OsDelete(pVfs, zSuper, 1); 2948 sqlite3DbFree(db, zSuper-4); 2949 zSuper = 0; 2950 if( rc ){ 2951 return rc; 2952 } 2953 2954 /* All files and directories have already been synced, so the following 2955 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2956 ** deleting or truncating journals. If something goes wrong while 2957 ** this is happening we don't really care. The integrity of the 2958 ** transaction is already guaranteed, but some stray 'cold' journals 2959 ** may be lying around. Returning an error code won't help matters. 2960 */ 2961 disable_simulated_io_errors(); 2962 sqlite3BeginBenignMalloc(); 2963 for(i=0; i<db->nDb; i++){ 2964 Btree *pBt = db->aDb[i].pBt; 2965 if( pBt ){ 2966 sqlite3BtreeCommitPhaseTwo(pBt, 1); 2967 } 2968 } 2969 sqlite3EndBenignMalloc(); 2970 enable_simulated_io_errors(); 2971 2972 sqlite3VtabCommit(db); 2973 } 2974 #endif 2975 2976 return rc; 2977 } 2978 2979 /* 2980 ** This routine checks that the sqlite3.nVdbeActive count variable 2981 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 2982 ** currently active. An assertion fails if the two counts do not match. 2983 ** This is an internal self-check only - it is not an essential processing 2984 ** step. 2985 ** 2986 ** This is a no-op if NDEBUG is defined. 2987 */ 2988 #ifndef NDEBUG 2989 static void checkActiveVdbeCnt(sqlite3 *db){ 2990 Vdbe *p; 2991 int cnt = 0; 2992 int nWrite = 0; 2993 int nRead = 0; 2994 p = db->pVdbe; 2995 while( p ){ 2996 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 2997 cnt++; 2998 if( p->readOnly==0 ) nWrite++; 2999 if( p->bIsReader ) nRead++; 3000 } 3001 p = p->pNext; 3002 } 3003 assert( cnt==db->nVdbeActive ); 3004 assert( nWrite==db->nVdbeWrite ); 3005 assert( nRead==db->nVdbeRead ); 3006 } 3007 #else 3008 #define checkActiveVdbeCnt(x) 3009 #endif 3010 3011 /* 3012 ** If the Vdbe passed as the first argument opened a statement-transaction, 3013 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 3014 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 3015 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 3016 ** statement transaction is committed. 3017 ** 3018 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 3019 ** Otherwise SQLITE_OK. 3020 */ 3021 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 3022 sqlite3 *const db = p->db; 3023 int rc = SQLITE_OK; 3024 int i; 3025 const int iSavepoint = p->iStatement-1; 3026 3027 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 3028 assert( db->nStatement>0 ); 3029 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 3030 3031 for(i=0; i<db->nDb; i++){ 3032 int rc2 = SQLITE_OK; 3033 Btree *pBt = db->aDb[i].pBt; 3034 if( pBt ){ 3035 if( eOp==SAVEPOINT_ROLLBACK ){ 3036 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 3037 } 3038 if( rc2==SQLITE_OK ){ 3039 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 3040 } 3041 if( rc==SQLITE_OK ){ 3042 rc = rc2; 3043 } 3044 } 3045 } 3046 db->nStatement--; 3047 p->iStatement = 0; 3048 3049 if( rc==SQLITE_OK ){ 3050 if( eOp==SAVEPOINT_ROLLBACK ){ 3051 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 3052 } 3053 if( rc==SQLITE_OK ){ 3054 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 3055 } 3056 } 3057 3058 /* If the statement transaction is being rolled back, also restore the 3059 ** database handles deferred constraint counter to the value it had when 3060 ** the statement transaction was opened. */ 3061 if( eOp==SAVEPOINT_ROLLBACK ){ 3062 db->nDeferredCons = p->nStmtDefCons; 3063 db->nDeferredImmCons = p->nStmtDefImmCons; 3064 } 3065 return rc; 3066 } 3067 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 3068 if( p->db->nStatement && p->iStatement ){ 3069 return vdbeCloseStatement(p, eOp); 3070 } 3071 return SQLITE_OK; 3072 } 3073 3074 3075 /* 3076 ** This function is called when a transaction opened by the database 3077 ** handle associated with the VM passed as an argument is about to be 3078 ** committed. If there are outstanding deferred foreign key constraint 3079 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 3080 ** 3081 ** If there are outstanding FK violations and this function returns 3082 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 3083 ** and write an error message to it. Then return SQLITE_ERROR. 3084 */ 3085 #ifndef SQLITE_OMIT_FOREIGN_KEY 3086 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 3087 sqlite3 *db = p->db; 3088 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 3089 || (!deferred && p->nFkConstraint>0) 3090 ){ 3091 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 3092 p->errorAction = OE_Abort; 3093 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 3094 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR; 3095 return SQLITE_CONSTRAINT_FOREIGNKEY; 3096 } 3097 return SQLITE_OK; 3098 } 3099 #endif 3100 3101 /* 3102 ** This routine is called the when a VDBE tries to halt. If the VDBE 3103 ** has made changes and is in autocommit mode, then commit those 3104 ** changes. If a rollback is needed, then do the rollback. 3105 ** 3106 ** This routine is the only way to move the sqlite3eOpenState of a VM from 3107 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to 3108 ** call this on a VM that is in the SQLITE_STATE_HALT state. 3109 ** 3110 ** Return an error code. If the commit could not complete because of 3111 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 3112 ** means the close did not happen and needs to be repeated. 3113 */ 3114 int sqlite3VdbeHalt(Vdbe *p){ 3115 int rc; /* Used to store transient return codes */ 3116 sqlite3 *db = p->db; 3117 3118 /* This function contains the logic that determines if a statement or 3119 ** transaction will be committed or rolled back as a result of the 3120 ** execution of this virtual machine. 3121 ** 3122 ** If any of the following errors occur: 3123 ** 3124 ** SQLITE_NOMEM 3125 ** SQLITE_IOERR 3126 ** SQLITE_FULL 3127 ** SQLITE_INTERRUPT 3128 ** 3129 ** Then the internal cache might have been left in an inconsistent 3130 ** state. We need to rollback the statement transaction, if there is 3131 ** one, or the complete transaction if there is no statement transaction. 3132 */ 3133 3134 assert( p->eVdbeState==VDBE_RUN_STATE ); 3135 if( db->mallocFailed ){ 3136 p->rc = SQLITE_NOMEM_BKPT; 3137 } 3138 closeAllCursors(p); 3139 checkActiveVdbeCnt(db); 3140 3141 /* No commit or rollback needed if the program never started or if the 3142 ** SQL statement does not read or write a database file. */ 3143 if( p->bIsReader ){ 3144 int mrc; /* Primary error code from p->rc */ 3145 int eStatementOp = 0; 3146 int isSpecialError; /* Set to true if a 'special' error */ 3147 3148 /* Lock all btrees used by the statement */ 3149 sqlite3VdbeEnter(p); 3150 3151 /* Check for one of the special errors */ 3152 if( p->rc ){ 3153 mrc = p->rc & 0xff; 3154 isSpecialError = mrc==SQLITE_NOMEM 3155 || mrc==SQLITE_IOERR 3156 || mrc==SQLITE_INTERRUPT 3157 || mrc==SQLITE_FULL; 3158 }else{ 3159 mrc = isSpecialError = 0; 3160 } 3161 if( isSpecialError ){ 3162 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 3163 ** no rollback is necessary. Otherwise, at least a savepoint 3164 ** transaction must be rolled back to restore the database to a 3165 ** consistent state. 3166 ** 3167 ** Even if the statement is read-only, it is important to perform 3168 ** a statement or transaction rollback operation. If the error 3169 ** occurred while writing to the journal, sub-journal or database 3170 ** file as part of an effort to free up cache space (see function 3171 ** pagerStress() in pager.c), the rollback is required to restore 3172 ** the pager to a consistent state. 3173 */ 3174 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 3175 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 3176 eStatementOp = SAVEPOINT_ROLLBACK; 3177 }else{ 3178 /* We are forced to roll back the active transaction. Before doing 3179 ** so, abort any other statements this handle currently has active. 3180 */ 3181 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3182 sqlite3CloseSavepoints(db); 3183 db->autoCommit = 1; 3184 p->nChange = 0; 3185 } 3186 } 3187 } 3188 3189 /* Check for immediate foreign key violations. */ 3190 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3191 sqlite3VdbeCheckFk(p, 0); 3192 } 3193 3194 /* If the auto-commit flag is set and this is the only active writer 3195 ** VM, then we do either a commit or rollback of the current transaction. 3196 ** 3197 ** Note: This block also runs if one of the special errors handled 3198 ** above has occurred. 3199 */ 3200 if( !sqlite3VtabInSync(db) 3201 && db->autoCommit 3202 && db->nVdbeWrite==(p->readOnly==0) 3203 ){ 3204 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3205 rc = sqlite3VdbeCheckFk(p, 1); 3206 if( rc!=SQLITE_OK ){ 3207 if( NEVER(p->readOnly) ){ 3208 sqlite3VdbeLeave(p); 3209 return SQLITE_ERROR; 3210 } 3211 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 3212 }else if( db->flags & SQLITE_CorruptRdOnly ){ 3213 rc = SQLITE_CORRUPT; 3214 db->flags &= ~SQLITE_CorruptRdOnly; 3215 }else{ 3216 /* The auto-commit flag is true, the vdbe program was successful 3217 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 3218 ** key constraints to hold up the transaction. This means a commit 3219 ** is required. */ 3220 rc = vdbeCommit(db, p); 3221 } 3222 if( rc==SQLITE_BUSY && p->readOnly ){ 3223 sqlite3VdbeLeave(p); 3224 return SQLITE_BUSY; 3225 }else if( rc!=SQLITE_OK ){ 3226 p->rc = rc; 3227 sqlite3RollbackAll(db, SQLITE_OK); 3228 p->nChange = 0; 3229 }else{ 3230 db->nDeferredCons = 0; 3231 db->nDeferredImmCons = 0; 3232 db->flags &= ~(u64)SQLITE_DeferFKs; 3233 sqlite3CommitInternalChanges(db); 3234 } 3235 }else{ 3236 sqlite3RollbackAll(db, SQLITE_OK); 3237 p->nChange = 0; 3238 } 3239 db->nStatement = 0; 3240 }else if( eStatementOp==0 ){ 3241 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 3242 eStatementOp = SAVEPOINT_RELEASE; 3243 }else if( p->errorAction==OE_Abort ){ 3244 eStatementOp = SAVEPOINT_ROLLBACK; 3245 }else{ 3246 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3247 sqlite3CloseSavepoints(db); 3248 db->autoCommit = 1; 3249 p->nChange = 0; 3250 } 3251 } 3252 3253 /* If eStatementOp is non-zero, then a statement transaction needs to 3254 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 3255 ** do so. If this operation returns an error, and the current statement 3256 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 3257 ** current statement error code. 3258 */ 3259 if( eStatementOp ){ 3260 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 3261 if( rc ){ 3262 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 3263 p->rc = rc; 3264 sqlite3DbFree(db, p->zErrMsg); 3265 p->zErrMsg = 0; 3266 } 3267 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3268 sqlite3CloseSavepoints(db); 3269 db->autoCommit = 1; 3270 p->nChange = 0; 3271 } 3272 } 3273 3274 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 3275 ** has been rolled back, update the database connection change-counter. 3276 */ 3277 if( p->changeCntOn ){ 3278 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 3279 sqlite3VdbeSetChanges(db, p->nChange); 3280 }else{ 3281 sqlite3VdbeSetChanges(db, 0); 3282 } 3283 p->nChange = 0; 3284 } 3285 3286 /* Release the locks */ 3287 sqlite3VdbeLeave(p); 3288 } 3289 3290 /* We have successfully halted and closed the VM. Record this fact. */ 3291 db->nVdbeActive--; 3292 if( !p->readOnly ) db->nVdbeWrite--; 3293 if( p->bIsReader ) db->nVdbeRead--; 3294 assert( db->nVdbeActive>=db->nVdbeRead ); 3295 assert( db->nVdbeRead>=db->nVdbeWrite ); 3296 assert( db->nVdbeWrite>=0 ); 3297 p->eVdbeState = VDBE_HALT_STATE; 3298 checkActiveVdbeCnt(db); 3299 if( db->mallocFailed ){ 3300 p->rc = SQLITE_NOMEM_BKPT; 3301 } 3302 3303 /* If the auto-commit flag is set to true, then any locks that were held 3304 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 3305 ** to invoke any required unlock-notify callbacks. 3306 */ 3307 if( db->autoCommit ){ 3308 sqlite3ConnectionUnlocked(db); 3309 } 3310 3311 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 3312 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 3313 } 3314 3315 3316 /* 3317 ** Each VDBE holds the result of the most recent sqlite3_step() call 3318 ** in p->rc. This routine sets that result back to SQLITE_OK. 3319 */ 3320 void sqlite3VdbeResetStepResult(Vdbe *p){ 3321 p->rc = SQLITE_OK; 3322 } 3323 3324 /* 3325 ** Copy the error code and error message belonging to the VDBE passed 3326 ** as the first argument to its database handle (so that they will be 3327 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 3328 ** 3329 ** This function does not clear the VDBE error code or message, just 3330 ** copies them to the database handle. 3331 */ 3332 int sqlite3VdbeTransferError(Vdbe *p){ 3333 sqlite3 *db = p->db; 3334 int rc = p->rc; 3335 if( p->zErrMsg ){ 3336 db->bBenignMalloc++; 3337 sqlite3BeginBenignMalloc(); 3338 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 3339 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 3340 sqlite3EndBenignMalloc(); 3341 db->bBenignMalloc--; 3342 }else if( db->pErr ){ 3343 sqlite3ValueSetNull(db->pErr); 3344 } 3345 db->errCode = rc; 3346 db->errByteOffset = -1; 3347 return rc; 3348 } 3349 3350 #ifdef SQLITE_ENABLE_SQLLOG 3351 /* 3352 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 3353 ** invoke it. 3354 */ 3355 static void vdbeInvokeSqllog(Vdbe *v){ 3356 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 3357 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 3358 assert( v->db->init.busy==0 ); 3359 if( zExpanded ){ 3360 sqlite3GlobalConfig.xSqllog( 3361 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 3362 ); 3363 sqlite3DbFree(v->db, zExpanded); 3364 } 3365 } 3366 } 3367 #else 3368 # define vdbeInvokeSqllog(x) 3369 #endif 3370 3371 /* 3372 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 3373 ** Write any error messages into *pzErrMsg. Return the result code. 3374 ** 3375 ** After this routine is run, the VDBE should be ready to be executed 3376 ** again. 3377 ** 3378 ** To look at it another way, this routine resets the state of the 3379 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to 3380 ** VDBE_READY_STATE. 3381 */ 3382 int sqlite3VdbeReset(Vdbe *p){ 3383 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 3384 int i; 3385 #endif 3386 3387 sqlite3 *db; 3388 db = p->db; 3389 3390 /* If the VM did not run to completion or if it encountered an 3391 ** error, then it might not have been halted properly. So halt 3392 ** it now. 3393 */ 3394 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); 3395 3396 /* If the VDBE has been run even partially, then transfer the error code 3397 ** and error message from the VDBE into the main database structure. But 3398 ** if the VDBE has just been set to run but has not actually executed any 3399 ** instructions yet, leave the main database error information unchanged. 3400 */ 3401 if( p->pc>=0 ){ 3402 vdbeInvokeSqllog(p); 3403 if( db->pErr || p->zErrMsg ){ 3404 sqlite3VdbeTransferError(p); 3405 }else{ 3406 db->errCode = p->rc; 3407 } 3408 } 3409 3410 /* Reset register contents and reclaim error message memory. 3411 */ 3412 #ifdef SQLITE_DEBUG 3413 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 3414 ** Vdbe.aMem[] arrays have already been cleaned up. */ 3415 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 3416 if( p->aMem ){ 3417 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 3418 } 3419 #endif 3420 if( p->zErrMsg ){ 3421 sqlite3DbFree(db, p->zErrMsg); 3422 p->zErrMsg = 0; 3423 } 3424 p->pResultSet = 0; 3425 #ifdef SQLITE_DEBUG 3426 p->nWrite = 0; 3427 #endif 3428 3429 /* Save profiling information from this VDBE run. 3430 */ 3431 #ifdef VDBE_PROFILE 3432 { 3433 FILE *out = fopen("vdbe_profile.out", "a"); 3434 if( out ){ 3435 fprintf(out, "---- "); 3436 for(i=0; i<p->nOp; i++){ 3437 fprintf(out, "%02x", p->aOp[i].opcode); 3438 } 3439 fprintf(out, "\n"); 3440 if( p->zSql ){ 3441 char c, pc = 0; 3442 fprintf(out, "-- "); 3443 for(i=0; (c = p->zSql[i])!=0; i++){ 3444 if( pc=='\n' ) fprintf(out, "-- "); 3445 putc(c, out); 3446 pc = c; 3447 } 3448 if( pc!='\n' ) fprintf(out, "\n"); 3449 } 3450 for(i=0; i<p->nOp; i++){ 3451 char zHdr[100]; 3452 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 3453 p->aOp[i].cnt, 3454 p->aOp[i].cycles, 3455 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 3456 ); 3457 fprintf(out, "%s", zHdr); 3458 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 3459 } 3460 fclose(out); 3461 } 3462 } 3463 #endif 3464 return p->rc & db->errMask; 3465 } 3466 3467 /* 3468 ** Clean up and delete a VDBE after execution. Return an integer which is 3469 ** the result code. Write any error message text into *pzErrMsg. 3470 */ 3471 int sqlite3VdbeFinalize(Vdbe *p){ 3472 int rc = SQLITE_OK; 3473 assert( VDBE_RUN_STATE>VDBE_READY_STATE ); 3474 assert( VDBE_HALT_STATE>VDBE_READY_STATE ); 3475 assert( VDBE_INIT_STATE<VDBE_READY_STATE ); 3476 if( p->eVdbeState>=VDBE_READY_STATE ){ 3477 rc = sqlite3VdbeReset(p); 3478 assert( (rc & p->db->errMask)==rc ); 3479 } 3480 sqlite3VdbeDelete(p); 3481 return rc; 3482 } 3483 3484 /* 3485 ** If parameter iOp is less than zero, then invoke the destructor for 3486 ** all auxiliary data pointers currently cached by the VM passed as 3487 ** the first argument. 3488 ** 3489 ** Or, if iOp is greater than or equal to zero, then the destructor is 3490 ** only invoked for those auxiliary data pointers created by the user 3491 ** function invoked by the OP_Function opcode at instruction iOp of 3492 ** VM pVdbe, and only then if: 3493 ** 3494 ** * the associated function parameter is the 32nd or later (counting 3495 ** from left to right), or 3496 ** 3497 ** * the corresponding bit in argument mask is clear (where the first 3498 ** function parameter corresponds to bit 0 etc.). 3499 */ 3500 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 3501 while( *pp ){ 3502 AuxData *pAux = *pp; 3503 if( (iOp<0) 3504 || (pAux->iAuxOp==iOp 3505 && pAux->iAuxArg>=0 3506 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 3507 ){ 3508 testcase( pAux->iAuxArg==31 ); 3509 if( pAux->xDeleteAux ){ 3510 pAux->xDeleteAux(pAux->pAux); 3511 } 3512 *pp = pAux->pNextAux; 3513 sqlite3DbFree(db, pAux); 3514 }else{ 3515 pp= &pAux->pNextAux; 3516 } 3517 } 3518 } 3519 3520 /* 3521 ** Free all memory associated with the Vdbe passed as the second argument, 3522 ** except for object itself, which is preserved. 3523 ** 3524 ** The difference between this function and sqlite3VdbeDelete() is that 3525 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 3526 ** the database connection and frees the object itself. 3527 */ 3528 static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 3529 SubProgram *pSub, *pNext; 3530 assert( p->db==0 || p->db==db ); 3531 if( p->aColName ){ 3532 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 3533 sqlite3DbFreeNN(db, p->aColName); 3534 } 3535 for(pSub=p->pProgram; pSub; pSub=pNext){ 3536 pNext = pSub->pNext; 3537 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 3538 sqlite3DbFree(db, pSub); 3539 } 3540 if( p->eVdbeState!=VDBE_INIT_STATE ){ 3541 releaseMemArray(p->aVar, p->nVar); 3542 if( p->pVList ) sqlite3DbFreeNN(db, p->pVList); 3543 if( p->pFree ) sqlite3DbFreeNN(db, p->pFree); 3544 } 3545 vdbeFreeOpArray(db, p->aOp, p->nOp); 3546 sqlite3DbFree(db, p->zSql); 3547 #ifdef SQLITE_ENABLE_NORMALIZE 3548 sqlite3DbFree(db, p->zNormSql); 3549 { 3550 DblquoteStr *pThis, *pNext; 3551 for(pThis=p->pDblStr; pThis; pThis=pNext){ 3552 pNext = pThis->pNextStr; 3553 sqlite3DbFree(db, pThis); 3554 } 3555 } 3556 #endif 3557 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3558 { 3559 int i; 3560 for(i=0; i<p->nScan; i++){ 3561 sqlite3DbFree(db, p->aScan[i].zName); 3562 } 3563 sqlite3DbFree(db, p->aScan); 3564 } 3565 #endif 3566 } 3567 3568 /* 3569 ** Delete an entire VDBE. 3570 */ 3571 void sqlite3VdbeDelete(Vdbe *p){ 3572 sqlite3 *db; 3573 3574 assert( p!=0 ); 3575 db = p->db; 3576 assert( sqlite3_mutex_held(db->mutex) ); 3577 sqlite3VdbeClearObject(db, p); 3578 if( db->pnBytesFreed==0 ){ 3579 if( p->pPrev ){ 3580 p->pPrev->pNext = p->pNext; 3581 }else{ 3582 assert( db->pVdbe==p ); 3583 db->pVdbe = p->pNext; 3584 } 3585 if( p->pNext ){ 3586 p->pNext->pPrev = p->pPrev; 3587 } 3588 } 3589 sqlite3DbFreeNN(db, p); 3590 } 3591 3592 /* 3593 ** The cursor "p" has a pending seek operation that has not yet been 3594 ** carried out. Seek the cursor now. If an error occurs, return 3595 ** the appropriate error code. 3596 */ 3597 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){ 3598 int res, rc; 3599 #ifdef SQLITE_TEST 3600 extern int sqlite3_search_count; 3601 #endif 3602 assert( p->deferredMoveto ); 3603 assert( p->isTable ); 3604 assert( p->eCurType==CURTYPE_BTREE ); 3605 rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res); 3606 if( rc ) return rc; 3607 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3608 #ifdef SQLITE_TEST 3609 sqlite3_search_count++; 3610 #endif 3611 p->deferredMoveto = 0; 3612 p->cacheStatus = CACHE_STALE; 3613 return SQLITE_OK; 3614 } 3615 3616 /* 3617 ** Something has moved cursor "p" out of place. Maybe the row it was 3618 ** pointed to was deleted out from under it. Or maybe the btree was 3619 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3620 ** is supposed to be pointing. If the row was deleted out from under the 3621 ** cursor, set the cursor to point to a NULL row. 3622 */ 3623 int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){ 3624 int isDifferentRow, rc; 3625 assert( p->eCurType==CURTYPE_BTREE ); 3626 assert( p->uc.pCursor!=0 ); 3627 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3628 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3629 p->cacheStatus = CACHE_STALE; 3630 if( isDifferentRow ) p->nullRow = 1; 3631 return rc; 3632 } 3633 3634 /* 3635 ** Check to ensure that the cursor is valid. Restore the cursor 3636 ** if need be. Return any I/O error from the restore operation. 3637 */ 3638 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3639 assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) ); 3640 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3641 return sqlite3VdbeHandleMovedCursor(p); 3642 } 3643 return SQLITE_OK; 3644 } 3645 3646 /* 3647 ** The following functions: 3648 ** 3649 ** sqlite3VdbeSerialType() 3650 ** sqlite3VdbeSerialTypeLen() 3651 ** sqlite3VdbeSerialLen() 3652 ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02 3653 ** sqlite3VdbeSerialGet() 3654 ** 3655 ** encapsulate the code that serializes values for storage in SQLite 3656 ** data and index records. Each serialized value consists of a 3657 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3658 ** integer, stored as a varint. 3659 ** 3660 ** In an SQLite index record, the serial type is stored directly before 3661 ** the blob of data that it corresponds to. In a table record, all serial 3662 ** types are stored at the start of the record, and the blobs of data at 3663 ** the end. Hence these functions allow the caller to handle the 3664 ** serial-type and data blob separately. 3665 ** 3666 ** The following table describes the various storage classes for data: 3667 ** 3668 ** serial type bytes of data type 3669 ** -------------- --------------- --------------- 3670 ** 0 0 NULL 3671 ** 1 1 signed integer 3672 ** 2 2 signed integer 3673 ** 3 3 signed integer 3674 ** 4 4 signed integer 3675 ** 5 6 signed integer 3676 ** 6 8 signed integer 3677 ** 7 8 IEEE float 3678 ** 8 0 Integer constant 0 3679 ** 9 0 Integer constant 1 3680 ** 10,11 reserved for expansion 3681 ** N>=12 and even (N-12)/2 BLOB 3682 ** N>=13 and odd (N-13)/2 text 3683 ** 3684 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3685 ** of SQLite will not understand those serial types. 3686 */ 3687 3688 #if 0 /* Inlined into the OP_MakeRecord opcode */ 3689 /* 3690 ** Return the serial-type for the value stored in pMem. 3691 ** 3692 ** This routine might convert a large MEM_IntReal value into MEM_Real. 3693 ** 3694 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord 3695 ** opcode in the byte-code engine. But by moving this routine in-line, we 3696 ** can omit some redundant tests and make that opcode a lot faster. So 3697 ** this routine is now only used by the STAT3 logic and STAT3 support has 3698 ** ended. The code is kept here for historical reference only. 3699 */ 3700 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3701 int flags = pMem->flags; 3702 u32 n; 3703 3704 assert( pLen!=0 ); 3705 if( flags&MEM_Null ){ 3706 *pLen = 0; 3707 return 0; 3708 } 3709 if( flags&(MEM_Int|MEM_IntReal) ){ 3710 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3711 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3712 i64 i = pMem->u.i; 3713 u64 u; 3714 testcase( flags & MEM_Int ); 3715 testcase( flags & MEM_IntReal ); 3716 if( i<0 ){ 3717 u = ~i; 3718 }else{ 3719 u = i; 3720 } 3721 if( u<=127 ){ 3722 if( (i&1)==i && file_format>=4 ){ 3723 *pLen = 0; 3724 return 8+(u32)u; 3725 }else{ 3726 *pLen = 1; 3727 return 1; 3728 } 3729 } 3730 if( u<=32767 ){ *pLen = 2; return 2; } 3731 if( u<=8388607 ){ *pLen = 3; return 3; } 3732 if( u<=2147483647 ){ *pLen = 4; return 4; } 3733 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3734 *pLen = 8; 3735 if( flags&MEM_IntReal ){ 3736 /* If the value is IntReal and is going to take up 8 bytes to store 3737 ** as an integer, then we might as well make it an 8-byte floating 3738 ** point value */ 3739 pMem->u.r = (double)pMem->u.i; 3740 pMem->flags &= ~MEM_IntReal; 3741 pMem->flags |= MEM_Real; 3742 return 7; 3743 } 3744 return 6; 3745 } 3746 if( flags&MEM_Real ){ 3747 *pLen = 8; 3748 return 7; 3749 } 3750 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3751 assert( pMem->n>=0 ); 3752 n = (u32)pMem->n; 3753 if( flags & MEM_Zero ){ 3754 n += pMem->u.nZero; 3755 } 3756 *pLen = n; 3757 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3758 } 3759 #endif /* inlined into OP_MakeRecord */ 3760 3761 /* 3762 ** The sizes for serial types less than 128 3763 */ 3764 const u8 sqlite3SmallTypeSizes[128] = { 3765 /* 0 1 2 3 4 5 6 7 8 9 */ 3766 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3767 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3768 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3769 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3770 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3771 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3772 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3773 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3774 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3775 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3776 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3777 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3778 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3779 }; 3780 3781 /* 3782 ** Return the length of the data corresponding to the supplied serial-type. 3783 */ 3784 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3785 if( serial_type>=128 ){ 3786 return (serial_type-12)/2; 3787 }else{ 3788 assert( serial_type<12 3789 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3790 return sqlite3SmallTypeSizes[serial_type]; 3791 } 3792 } 3793 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3794 assert( serial_type<128 ); 3795 return sqlite3SmallTypeSizes[serial_type]; 3796 } 3797 3798 /* 3799 ** If we are on an architecture with mixed-endian floating 3800 ** points (ex: ARM7) then swap the lower 4 bytes with the 3801 ** upper 4 bytes. Return the result. 3802 ** 3803 ** For most architectures, this is a no-op. 3804 ** 3805 ** (later): It is reported to me that the mixed-endian problem 3806 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3807 ** that early versions of GCC stored the two words of a 64-bit 3808 ** float in the wrong order. And that error has been propagated 3809 ** ever since. The blame is not necessarily with GCC, though. 3810 ** GCC might have just copying the problem from a prior compiler. 3811 ** I am also told that newer versions of GCC that follow a different 3812 ** ABI get the byte order right. 3813 ** 3814 ** Developers using SQLite on an ARM7 should compile and run their 3815 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3816 ** enabled, some asserts below will ensure that the byte order of 3817 ** floating point values is correct. 3818 ** 3819 ** (2007-08-30) Frank van Vugt has studied this problem closely 3820 ** and has send his findings to the SQLite developers. Frank 3821 ** writes that some Linux kernels offer floating point hardware 3822 ** emulation that uses only 32-bit mantissas instead of a full 3823 ** 48-bits as required by the IEEE standard. (This is the 3824 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3825 ** byte swapping becomes very complicated. To avoid problems, 3826 ** the necessary byte swapping is carried out using a 64-bit integer 3827 ** rather than a 64-bit float. Frank assures us that the code here 3828 ** works for him. We, the developers, have no way to independently 3829 ** verify this, but Frank seems to know what he is talking about 3830 ** so we trust him. 3831 */ 3832 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3833 u64 sqlite3FloatSwap(u64 in){ 3834 union { 3835 u64 r; 3836 u32 i[2]; 3837 } u; 3838 u32 t; 3839 3840 u.r = in; 3841 t = u.i[0]; 3842 u.i[0] = u.i[1]; 3843 u.i[1] = t; 3844 return u.r; 3845 } 3846 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */ 3847 3848 3849 /* Input "x" is a sequence of unsigned characters that represent a 3850 ** big-endian integer. Return the equivalent native integer 3851 */ 3852 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3853 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3854 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3855 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3856 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3857 3858 /* 3859 ** Deserialize the data blob pointed to by buf as serial type serial_type 3860 ** and store the result in pMem. 3861 ** 3862 ** This function is implemented as two separate routines for performance. 3863 ** The few cases that require local variables are broken out into a separate 3864 ** routine so that in most cases the overhead of moving the stack pointer 3865 ** is avoided. 3866 */ 3867 static void serialGet( 3868 const unsigned char *buf, /* Buffer to deserialize from */ 3869 u32 serial_type, /* Serial type to deserialize */ 3870 Mem *pMem /* Memory cell to write value into */ 3871 ){ 3872 u64 x = FOUR_BYTE_UINT(buf); 3873 u32 y = FOUR_BYTE_UINT(buf+4); 3874 x = (x<<32) + y; 3875 if( serial_type==6 ){ 3876 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3877 ** twos-complement integer. */ 3878 pMem->u.i = *(i64*)&x; 3879 pMem->flags = MEM_Int; 3880 testcase( pMem->u.i<0 ); 3881 }else{ 3882 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3883 ** floating point number. */ 3884 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3885 /* Verify that integers and floating point values use the same 3886 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3887 ** defined that 64-bit floating point values really are mixed 3888 ** endian. 3889 */ 3890 static const u64 t1 = ((u64)0x3ff00000)<<32; 3891 static const double r1 = 1.0; 3892 u64 t2 = t1; 3893 swapMixedEndianFloat(t2); 3894 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3895 #endif 3896 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3897 swapMixedEndianFloat(x); 3898 memcpy(&pMem->u.r, &x, sizeof(x)); 3899 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real; 3900 } 3901 } 3902 void sqlite3VdbeSerialGet( 3903 const unsigned char *buf, /* Buffer to deserialize from */ 3904 u32 serial_type, /* Serial type to deserialize */ 3905 Mem *pMem /* Memory cell to write value into */ 3906 ){ 3907 switch( serial_type ){ 3908 case 10: { /* Internal use only: NULL with virtual table 3909 ** UPDATE no-change flag set */ 3910 pMem->flags = MEM_Null|MEM_Zero; 3911 pMem->n = 0; 3912 pMem->u.nZero = 0; 3913 return; 3914 } 3915 case 11: /* Reserved for future use */ 3916 case 0: { /* Null */ 3917 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3918 pMem->flags = MEM_Null; 3919 return; 3920 } 3921 case 1: { 3922 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3923 ** integer. */ 3924 pMem->u.i = ONE_BYTE_INT(buf); 3925 pMem->flags = MEM_Int; 3926 testcase( pMem->u.i<0 ); 3927 return; 3928 } 3929 case 2: { /* 2-byte signed integer */ 3930 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3931 ** twos-complement integer. */ 3932 pMem->u.i = TWO_BYTE_INT(buf); 3933 pMem->flags = MEM_Int; 3934 testcase( pMem->u.i<0 ); 3935 return; 3936 } 3937 case 3: { /* 3-byte signed integer */ 3938 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3939 ** twos-complement integer. */ 3940 pMem->u.i = THREE_BYTE_INT(buf); 3941 pMem->flags = MEM_Int; 3942 testcase( pMem->u.i<0 ); 3943 return; 3944 } 3945 case 4: { /* 4-byte signed integer */ 3946 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3947 ** twos-complement integer. */ 3948 pMem->u.i = FOUR_BYTE_INT(buf); 3949 #ifdef __HP_cc 3950 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3951 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3952 #endif 3953 pMem->flags = MEM_Int; 3954 testcase( pMem->u.i<0 ); 3955 return; 3956 } 3957 case 5: { /* 6-byte signed integer */ 3958 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3959 ** twos-complement integer. */ 3960 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3961 pMem->flags = MEM_Int; 3962 testcase( pMem->u.i<0 ); 3963 return; 3964 } 3965 case 6: /* 8-byte signed integer */ 3966 case 7: { /* IEEE floating point */ 3967 /* These use local variables, so do them in a separate routine 3968 ** to avoid having to move the frame pointer in the common case */ 3969 serialGet(buf,serial_type,pMem); 3970 return; 3971 } 3972 case 8: /* Integer 0 */ 3973 case 9: { /* Integer 1 */ 3974 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 3975 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 3976 pMem->u.i = serial_type-8; 3977 pMem->flags = MEM_Int; 3978 return; 3979 } 3980 default: { 3981 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 3982 ** length. 3983 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 3984 ** (N-13)/2 bytes in length. */ 3985 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 3986 pMem->z = (char *)buf; 3987 pMem->n = (serial_type-12)/2; 3988 pMem->flags = aFlag[serial_type&1]; 3989 return; 3990 } 3991 } 3992 return; 3993 } 3994 /* 3995 ** This routine is used to allocate sufficient space for an UnpackedRecord 3996 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 3997 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 3998 ** 3999 ** The space is either allocated using sqlite3DbMallocRaw() or from within 4000 ** the unaligned buffer passed via the second and third arguments (presumably 4001 ** stack space). If the former, then *ppFree is set to a pointer that should 4002 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 4003 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 4004 ** before returning. 4005 ** 4006 ** If an OOM error occurs, NULL is returned. 4007 */ 4008 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 4009 KeyInfo *pKeyInfo /* Description of the record */ 4010 ){ 4011 UnpackedRecord *p; /* Unpacked record to return */ 4012 int nByte; /* Number of bytes required for *p */ 4013 nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 4014 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 4015 if( !p ) return 0; 4016 p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))]; 4017 assert( pKeyInfo->aSortFlags!=0 ); 4018 p->pKeyInfo = pKeyInfo; 4019 p->nField = pKeyInfo->nKeyField + 1; 4020 return p; 4021 } 4022 4023 /* 4024 ** Given the nKey-byte encoding of a record in pKey[], populate the 4025 ** UnpackedRecord structure indicated by the fourth argument with the 4026 ** contents of the decoded record. 4027 */ 4028 void sqlite3VdbeRecordUnpack( 4029 KeyInfo *pKeyInfo, /* Information about the record format */ 4030 int nKey, /* Size of the binary record */ 4031 const void *pKey, /* The binary record */ 4032 UnpackedRecord *p /* Populate this structure before returning. */ 4033 ){ 4034 const unsigned char *aKey = (const unsigned char *)pKey; 4035 u32 d; 4036 u32 idx; /* Offset in aKey[] to read from */ 4037 u16 u; /* Unsigned loop counter */ 4038 u32 szHdr; 4039 Mem *pMem = p->aMem; 4040 4041 p->default_rc = 0; 4042 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 4043 idx = getVarint32(aKey, szHdr); 4044 d = szHdr; 4045 u = 0; 4046 while( idx<szHdr && d<=(u32)nKey ){ 4047 u32 serial_type; 4048 4049 idx += getVarint32(&aKey[idx], serial_type); 4050 pMem->enc = pKeyInfo->enc; 4051 pMem->db = pKeyInfo->db; 4052 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 4053 pMem->szMalloc = 0; 4054 pMem->z = 0; 4055 sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 4056 d += sqlite3VdbeSerialTypeLen(serial_type); 4057 pMem++; 4058 if( (++u)>=p->nField ) break; 4059 } 4060 if( d>(u32)nKey && u ){ 4061 assert( CORRUPT_DB ); 4062 /* In a corrupt record entry, the last pMem might have been set up using 4063 ** uninitialized memory. Overwrite its value with NULL, to prevent 4064 ** warnings from MSAN. */ 4065 sqlite3VdbeMemSetNull(pMem-1); 4066 } 4067 assert( u<=pKeyInfo->nKeyField + 1 ); 4068 p->nField = u; 4069 } 4070 4071 #ifdef SQLITE_DEBUG 4072 /* 4073 ** This function compares two index or table record keys in the same way 4074 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 4075 ** this function deserializes and compares values using the 4076 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 4077 ** in assert() statements to ensure that the optimized code in 4078 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 4079 ** 4080 ** Return true if the result of comparison is equivalent to desiredResult. 4081 ** Return false if there is a disagreement. 4082 */ 4083 static int vdbeRecordCompareDebug( 4084 int nKey1, const void *pKey1, /* Left key */ 4085 const UnpackedRecord *pPKey2, /* Right key */ 4086 int desiredResult /* Correct answer */ 4087 ){ 4088 u32 d1; /* Offset into aKey[] of next data element */ 4089 u32 idx1; /* Offset into aKey[] of next header element */ 4090 u32 szHdr1; /* Number of bytes in header */ 4091 int i = 0; 4092 int rc = 0; 4093 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4094 KeyInfo *pKeyInfo; 4095 Mem mem1; 4096 4097 pKeyInfo = pPKey2->pKeyInfo; 4098 if( pKeyInfo->db==0 ) return 1; 4099 mem1.enc = pKeyInfo->enc; 4100 mem1.db = pKeyInfo->db; 4101 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 4102 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4103 4104 /* Compilers may complain that mem1.u.i is potentially uninitialized. 4105 ** We could initialize it, as shown here, to silence those complaints. 4106 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 4107 ** the unnecessary initialization has a measurable negative performance 4108 ** impact, since this routine is a very high runner. And so, we choose 4109 ** to ignore the compiler warnings and leave this variable uninitialized. 4110 */ 4111 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 4112 4113 idx1 = getVarint32(aKey1, szHdr1); 4114 if( szHdr1>98307 ) return SQLITE_CORRUPT; 4115 d1 = szHdr1; 4116 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 4117 assert( pKeyInfo->aSortFlags!=0 ); 4118 assert( pKeyInfo->nKeyField>0 ); 4119 assert( idx1<=szHdr1 || CORRUPT_DB ); 4120 do{ 4121 u32 serial_type1; 4122 4123 /* Read the serial types for the next element in each key. */ 4124 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 4125 4126 /* Verify that there is enough key space remaining to avoid 4127 ** a buffer overread. The "d1+serial_type1+2" subexpression will 4128 ** always be greater than or equal to the amount of required key space. 4129 ** Use that approximation to avoid the more expensive call to 4130 ** sqlite3VdbeSerialTypeLen() in the common case. 4131 */ 4132 if( d1+(u64)serial_type1+2>(u64)nKey1 4133 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 4134 ){ 4135 break; 4136 } 4137 4138 /* Extract the values to be compared. 4139 */ 4140 sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 4141 d1 += sqlite3VdbeSerialTypeLen(serial_type1); 4142 4143 /* Do the comparison 4144 */ 4145 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], 4146 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0); 4147 if( rc!=0 ){ 4148 assert( mem1.szMalloc==0 ); /* See comment below */ 4149 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 4150 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null)) 4151 ){ 4152 rc = -rc; 4153 } 4154 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){ 4155 rc = -rc; /* Invert the result for DESC sort order. */ 4156 } 4157 goto debugCompareEnd; 4158 } 4159 i++; 4160 }while( idx1<szHdr1 && i<pPKey2->nField ); 4161 4162 /* No memory allocation is ever used on mem1. Prove this using 4163 ** the following assert(). If the assert() fails, it indicates a 4164 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 4165 */ 4166 assert( mem1.szMalloc==0 ); 4167 4168 /* rc==0 here means that one of the keys ran out of fields and 4169 ** all the fields up to that point were equal. Return the default_rc 4170 ** value. */ 4171 rc = pPKey2->default_rc; 4172 4173 debugCompareEnd: 4174 if( desiredResult==0 && rc==0 ) return 1; 4175 if( desiredResult<0 && rc<0 ) return 1; 4176 if( desiredResult>0 && rc>0 ) return 1; 4177 if( CORRUPT_DB ) return 1; 4178 if( pKeyInfo->db->mallocFailed ) return 1; 4179 return 0; 4180 } 4181 #endif 4182 4183 #ifdef SQLITE_DEBUG 4184 /* 4185 ** Count the number of fields (a.k.a. columns) in the record given by 4186 ** pKey,nKey. The verify that this count is less than or equal to the 4187 ** limit given by pKeyInfo->nAllField. 4188 ** 4189 ** If this constraint is not satisfied, it means that the high-speed 4190 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 4191 ** not work correctly. If this assert() ever fires, it probably means 4192 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 4193 ** incorrectly. 4194 */ 4195 static void vdbeAssertFieldCountWithinLimits( 4196 int nKey, const void *pKey, /* The record to verify */ 4197 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 4198 ){ 4199 int nField = 0; 4200 u32 szHdr; 4201 u32 idx; 4202 u32 notUsed; 4203 const unsigned char *aKey = (const unsigned char*)pKey; 4204 4205 if( CORRUPT_DB ) return; 4206 idx = getVarint32(aKey, szHdr); 4207 assert( nKey>=0 ); 4208 assert( szHdr<=(u32)nKey ); 4209 while( idx<szHdr ){ 4210 idx += getVarint32(aKey+idx, notUsed); 4211 nField++; 4212 } 4213 assert( nField <= pKeyInfo->nAllField ); 4214 } 4215 #else 4216 # define vdbeAssertFieldCountWithinLimits(A,B,C) 4217 #endif 4218 4219 /* 4220 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 4221 ** using the collation sequence pColl. As usual, return a negative , zero 4222 ** or positive value if *pMem1 is less than, equal to or greater than 4223 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 4224 */ 4225 static int vdbeCompareMemString( 4226 const Mem *pMem1, 4227 const Mem *pMem2, 4228 const CollSeq *pColl, 4229 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 4230 ){ 4231 if( pMem1->enc==pColl->enc ){ 4232 /* The strings are already in the correct encoding. Call the 4233 ** comparison function directly */ 4234 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 4235 }else{ 4236 int rc; 4237 const void *v1, *v2; 4238 Mem c1; 4239 Mem c2; 4240 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 4241 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 4242 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 4243 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 4244 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 4245 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 4246 if( (v1==0 || v2==0) ){ 4247 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 4248 rc = 0; 4249 }else{ 4250 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 4251 } 4252 sqlite3VdbeMemReleaseMalloc(&c1); 4253 sqlite3VdbeMemReleaseMalloc(&c2); 4254 return rc; 4255 } 4256 } 4257 4258 /* 4259 ** The input pBlob is guaranteed to be a Blob that is not marked 4260 ** with MEM_Zero. Return true if it could be a zero-blob. 4261 */ 4262 static int isAllZero(const char *z, int n){ 4263 int i; 4264 for(i=0; i<n; i++){ 4265 if( z[i] ) return 0; 4266 } 4267 return 1; 4268 } 4269 4270 /* 4271 ** Compare two blobs. Return negative, zero, or positive if the first 4272 ** is less than, equal to, or greater than the second, respectively. 4273 ** If one blob is a prefix of the other, then the shorter is the lessor. 4274 */ 4275 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 4276 int c; 4277 int n1 = pB1->n; 4278 int n2 = pB2->n; 4279 4280 /* It is possible to have a Blob value that has some non-zero content 4281 ** followed by zero content. But that only comes up for Blobs formed 4282 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 4283 ** sqlite3MemCompare(). */ 4284 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 4285 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 4286 4287 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 4288 if( pB1->flags & pB2->flags & MEM_Zero ){ 4289 return pB1->u.nZero - pB2->u.nZero; 4290 }else if( pB1->flags & MEM_Zero ){ 4291 if( !isAllZero(pB2->z, pB2->n) ) return -1; 4292 return pB1->u.nZero - n2; 4293 }else{ 4294 if( !isAllZero(pB1->z, pB1->n) ) return +1; 4295 return n1 - pB2->u.nZero; 4296 } 4297 } 4298 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 4299 if( c ) return c; 4300 return n1 - n2; 4301 } 4302 4303 /* 4304 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 4305 ** number. Return negative, zero, or positive if the first (i64) is less than, 4306 ** equal to, or greater than the second (double). 4307 */ 4308 int sqlite3IntFloatCompare(i64 i, double r){ 4309 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 4310 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 4311 testcase( x<r ); 4312 testcase( x>r ); 4313 testcase( x==r ); 4314 if( x<r ) return -1; 4315 if( x>r ) return +1; /*NO_TEST*/ /* work around bugs in gcov */ 4316 return 0; /*NO_TEST*/ /* work around bugs in gcov */ 4317 }else{ 4318 i64 y; 4319 double s; 4320 if( r<-9223372036854775808.0 ) return +1; 4321 if( r>=9223372036854775808.0 ) return -1; 4322 y = (i64)r; 4323 if( i<y ) return -1; 4324 if( i>y ) return +1; 4325 s = (double)i; 4326 if( s<r ) return -1; 4327 if( s>r ) return +1; 4328 return 0; 4329 } 4330 } 4331 4332 /* 4333 ** Compare the values contained by the two memory cells, returning 4334 ** negative, zero or positive if pMem1 is less than, equal to, or greater 4335 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 4336 ** and reals) sorted numerically, followed by text ordered by the collating 4337 ** sequence pColl and finally blob's ordered by memcmp(). 4338 ** 4339 ** Two NULL values are considered equal by this function. 4340 */ 4341 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 4342 int f1, f2; 4343 int combined_flags; 4344 4345 f1 = pMem1->flags; 4346 f2 = pMem2->flags; 4347 combined_flags = f1|f2; 4348 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); 4349 4350 /* If one value is NULL, it is less than the other. If both values 4351 ** are NULL, return 0. 4352 */ 4353 if( combined_flags&MEM_Null ){ 4354 return (f2&MEM_Null) - (f1&MEM_Null); 4355 } 4356 4357 /* At least one of the two values is a number 4358 */ 4359 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ 4360 testcase( combined_flags & MEM_Int ); 4361 testcase( combined_flags & MEM_Real ); 4362 testcase( combined_flags & MEM_IntReal ); 4363 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ 4364 testcase( f1 & f2 & MEM_Int ); 4365 testcase( f1 & f2 & MEM_IntReal ); 4366 if( pMem1->u.i < pMem2->u.i ) return -1; 4367 if( pMem1->u.i > pMem2->u.i ) return +1; 4368 return 0; 4369 } 4370 if( (f1 & f2 & MEM_Real)!=0 ){ 4371 if( pMem1->u.r < pMem2->u.r ) return -1; 4372 if( pMem1->u.r > pMem2->u.r ) return +1; 4373 return 0; 4374 } 4375 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ 4376 testcase( f1 & MEM_Int ); 4377 testcase( f1 & MEM_IntReal ); 4378 if( (f2&MEM_Real)!=0 ){ 4379 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 4380 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4381 if( pMem1->u.i < pMem2->u.i ) return -1; 4382 if( pMem1->u.i > pMem2->u.i ) return +1; 4383 return 0; 4384 }else{ 4385 return -1; 4386 } 4387 } 4388 if( (f1&MEM_Real)!=0 ){ 4389 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4390 testcase( f2 & MEM_Int ); 4391 testcase( f2 & MEM_IntReal ); 4392 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 4393 }else{ 4394 return -1; 4395 } 4396 } 4397 return +1; 4398 } 4399 4400 /* If one value is a string and the other is a blob, the string is less. 4401 ** If both are strings, compare using the collating functions. 4402 */ 4403 if( combined_flags&MEM_Str ){ 4404 if( (f1 & MEM_Str)==0 ){ 4405 return 1; 4406 } 4407 if( (f2 & MEM_Str)==0 ){ 4408 return -1; 4409 } 4410 4411 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 4412 assert( pMem1->enc==SQLITE_UTF8 || 4413 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 4414 4415 /* The collation sequence must be defined at this point, even if 4416 ** the user deletes the collation sequence after the vdbe program is 4417 ** compiled (this was not always the case). 4418 */ 4419 assert( !pColl || pColl->xCmp ); 4420 4421 if( pColl ){ 4422 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 4423 } 4424 /* If a NULL pointer was passed as the collate function, fall through 4425 ** to the blob case and use memcmp(). */ 4426 } 4427 4428 /* Both values must be blobs. Compare using memcmp(). */ 4429 return sqlite3BlobCompare(pMem1, pMem2); 4430 } 4431 4432 4433 /* 4434 ** The first argument passed to this function is a serial-type that 4435 ** corresponds to an integer - all values between 1 and 9 inclusive 4436 ** except 7. The second points to a buffer containing an integer value 4437 ** serialized according to serial_type. This function deserializes 4438 ** and returns the value. 4439 */ 4440 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 4441 u32 y; 4442 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 4443 switch( serial_type ){ 4444 case 0: 4445 case 1: 4446 testcase( aKey[0]&0x80 ); 4447 return ONE_BYTE_INT(aKey); 4448 case 2: 4449 testcase( aKey[0]&0x80 ); 4450 return TWO_BYTE_INT(aKey); 4451 case 3: 4452 testcase( aKey[0]&0x80 ); 4453 return THREE_BYTE_INT(aKey); 4454 case 4: { 4455 testcase( aKey[0]&0x80 ); 4456 y = FOUR_BYTE_UINT(aKey); 4457 return (i64)*(int*)&y; 4458 } 4459 case 5: { 4460 testcase( aKey[0]&0x80 ); 4461 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4462 } 4463 case 6: { 4464 u64 x = FOUR_BYTE_UINT(aKey); 4465 testcase( aKey[0]&0x80 ); 4466 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4467 return (i64)*(i64*)&x; 4468 } 4469 } 4470 4471 return (serial_type - 8); 4472 } 4473 4474 /* 4475 ** This function compares the two table rows or index records 4476 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 4477 ** or positive integer if key1 is less than, equal to or 4478 ** greater than key2. The {nKey1, pKey1} key must be a blob 4479 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 4480 ** key must be a parsed key such as obtained from 4481 ** sqlite3VdbeParseRecord. 4482 ** 4483 ** If argument bSkip is non-zero, it is assumed that the caller has already 4484 ** determined that the first fields of the keys are equal. 4485 ** 4486 ** Key1 and Key2 do not have to contain the same number of fields. If all 4487 ** fields that appear in both keys are equal, then pPKey2->default_rc is 4488 ** returned. 4489 ** 4490 ** If database corruption is discovered, set pPKey2->errCode to 4491 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 4492 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 4493 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 4494 */ 4495 int sqlite3VdbeRecordCompareWithSkip( 4496 int nKey1, const void *pKey1, /* Left key */ 4497 UnpackedRecord *pPKey2, /* Right key */ 4498 int bSkip /* If true, skip the first field */ 4499 ){ 4500 u32 d1; /* Offset into aKey[] of next data element */ 4501 int i; /* Index of next field to compare */ 4502 u32 szHdr1; /* Size of record header in bytes */ 4503 u32 idx1; /* Offset of first type in header */ 4504 int rc = 0; /* Return value */ 4505 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 4506 KeyInfo *pKeyInfo; 4507 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4508 Mem mem1; 4509 4510 /* If bSkip is true, then the caller has already determined that the first 4511 ** two elements in the keys are equal. Fix the various stack variables so 4512 ** that this routine begins comparing at the second field. */ 4513 if( bSkip ){ 4514 u32 s1 = aKey1[1]; 4515 if( s1<0x80 ){ 4516 idx1 = 2; 4517 }else{ 4518 idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1); 4519 } 4520 szHdr1 = aKey1[0]; 4521 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 4522 i = 1; 4523 pRhs++; 4524 }else{ 4525 if( (szHdr1 = aKey1[0])<0x80 ){ 4526 idx1 = 1; 4527 }else{ 4528 idx1 = sqlite3GetVarint32(aKey1, &szHdr1); 4529 } 4530 d1 = szHdr1; 4531 i = 0; 4532 } 4533 if( d1>(unsigned)nKey1 ){ 4534 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4535 return 0; /* Corruption */ 4536 } 4537 4538 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4539 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 4540 || CORRUPT_DB ); 4541 assert( pPKey2->pKeyInfo->aSortFlags!=0 ); 4542 assert( pPKey2->pKeyInfo->nKeyField>0 ); 4543 assert( idx1<=szHdr1 || CORRUPT_DB ); 4544 do{ 4545 u32 serial_type; 4546 4547 /* RHS is an integer */ 4548 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ 4549 testcase( pRhs->flags & MEM_Int ); 4550 testcase( pRhs->flags & MEM_IntReal ); 4551 serial_type = aKey1[idx1]; 4552 testcase( serial_type==12 ); 4553 if( serial_type>=10 ){ 4554 rc = +1; 4555 }else if( serial_type==0 ){ 4556 rc = -1; 4557 }else if( serial_type==7 ){ 4558 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4559 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4560 }else{ 4561 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4562 i64 rhs = pRhs->u.i; 4563 if( lhs<rhs ){ 4564 rc = -1; 4565 }else if( lhs>rhs ){ 4566 rc = +1; 4567 } 4568 } 4569 } 4570 4571 /* RHS is real */ 4572 else if( pRhs->flags & MEM_Real ){ 4573 serial_type = aKey1[idx1]; 4574 if( serial_type>=10 ){ 4575 /* Serial types 12 or greater are strings and blobs (greater than 4576 ** numbers). Types 10 and 11 are currently "reserved for future 4577 ** use", so it doesn't really matter what the results of comparing 4578 ** them to numberic values are. */ 4579 rc = +1; 4580 }else if( serial_type==0 ){ 4581 rc = -1; 4582 }else{ 4583 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4584 if( serial_type==7 ){ 4585 if( mem1.u.r<pRhs->u.r ){ 4586 rc = -1; 4587 }else if( mem1.u.r>pRhs->u.r ){ 4588 rc = +1; 4589 } 4590 }else{ 4591 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4592 } 4593 } 4594 } 4595 4596 /* RHS is a string */ 4597 else if( pRhs->flags & MEM_Str ){ 4598 getVarint32NR(&aKey1[idx1], serial_type); 4599 testcase( serial_type==12 ); 4600 if( serial_type<12 ){ 4601 rc = -1; 4602 }else if( !(serial_type & 0x01) ){ 4603 rc = +1; 4604 }else{ 4605 mem1.n = (serial_type - 12) / 2; 4606 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4607 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4608 if( (d1+mem1.n) > (unsigned)nKey1 4609 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i 4610 ){ 4611 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4612 return 0; /* Corruption */ 4613 }else if( pKeyInfo->aColl[i] ){ 4614 mem1.enc = pKeyInfo->enc; 4615 mem1.db = pKeyInfo->db; 4616 mem1.flags = MEM_Str; 4617 mem1.z = (char*)&aKey1[d1]; 4618 rc = vdbeCompareMemString( 4619 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4620 ); 4621 }else{ 4622 int nCmp = MIN(mem1.n, pRhs->n); 4623 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4624 if( rc==0 ) rc = mem1.n - pRhs->n; 4625 } 4626 } 4627 } 4628 4629 /* RHS is a blob */ 4630 else if( pRhs->flags & MEM_Blob ){ 4631 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4632 getVarint32NR(&aKey1[idx1], serial_type); 4633 testcase( serial_type==12 ); 4634 if( serial_type<12 || (serial_type & 0x01) ){ 4635 rc = -1; 4636 }else{ 4637 int nStr = (serial_type - 12) / 2; 4638 testcase( (d1+nStr)==(unsigned)nKey1 ); 4639 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4640 if( (d1+nStr) > (unsigned)nKey1 ){ 4641 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4642 return 0; /* Corruption */ 4643 }else if( pRhs->flags & MEM_Zero ){ 4644 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4645 rc = 1; 4646 }else{ 4647 rc = nStr - pRhs->u.nZero; 4648 } 4649 }else{ 4650 int nCmp = MIN(nStr, pRhs->n); 4651 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4652 if( rc==0 ) rc = nStr - pRhs->n; 4653 } 4654 } 4655 } 4656 4657 /* RHS is null */ 4658 else{ 4659 serial_type = aKey1[idx1]; 4660 rc = (serial_type!=0); 4661 } 4662 4663 if( rc!=0 ){ 4664 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i]; 4665 if( sortFlags ){ 4666 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0 4667 || ((sortFlags & KEYINFO_ORDER_DESC) 4668 !=(serial_type==0 || (pRhs->flags&MEM_Null))) 4669 ){ 4670 rc = -rc; 4671 } 4672 } 4673 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4674 assert( mem1.szMalloc==0 ); /* See comment below */ 4675 return rc; 4676 } 4677 4678 i++; 4679 if( i==pPKey2->nField ) break; 4680 pRhs++; 4681 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4682 idx1 += sqlite3VarintLen(serial_type); 4683 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 ); 4684 4685 /* No memory allocation is ever used on mem1. Prove this using 4686 ** the following assert(). If the assert() fails, it indicates a 4687 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4688 assert( mem1.szMalloc==0 ); 4689 4690 /* rc==0 here means that one or both of the keys ran out of fields and 4691 ** all the fields up to that point were equal. Return the default_rc 4692 ** value. */ 4693 assert( CORRUPT_DB 4694 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4695 || pPKey2->pKeyInfo->db->mallocFailed 4696 ); 4697 pPKey2->eqSeen = 1; 4698 return pPKey2->default_rc; 4699 } 4700 int sqlite3VdbeRecordCompare( 4701 int nKey1, const void *pKey1, /* Left key */ 4702 UnpackedRecord *pPKey2 /* Right key */ 4703 ){ 4704 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4705 } 4706 4707 4708 /* 4709 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4710 ** that (a) the first field of pPKey2 is an integer, and (b) the 4711 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4712 ** byte (i.e. is less than 128). 4713 ** 4714 ** To avoid concerns about buffer overreads, this routine is only used 4715 ** on schemas where the maximum valid header size is 63 bytes or less. 4716 */ 4717 static int vdbeRecordCompareInt( 4718 int nKey1, const void *pKey1, /* Left key */ 4719 UnpackedRecord *pPKey2 /* Right key */ 4720 ){ 4721 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4722 int serial_type = ((const u8*)pKey1)[1]; 4723 int res; 4724 u32 y; 4725 u64 x; 4726 i64 v; 4727 i64 lhs; 4728 4729 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4730 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4731 switch( serial_type ){ 4732 case 1: { /* 1-byte signed integer */ 4733 lhs = ONE_BYTE_INT(aKey); 4734 testcase( lhs<0 ); 4735 break; 4736 } 4737 case 2: { /* 2-byte signed integer */ 4738 lhs = TWO_BYTE_INT(aKey); 4739 testcase( lhs<0 ); 4740 break; 4741 } 4742 case 3: { /* 3-byte signed integer */ 4743 lhs = THREE_BYTE_INT(aKey); 4744 testcase( lhs<0 ); 4745 break; 4746 } 4747 case 4: { /* 4-byte signed integer */ 4748 y = FOUR_BYTE_UINT(aKey); 4749 lhs = (i64)*(int*)&y; 4750 testcase( lhs<0 ); 4751 break; 4752 } 4753 case 5: { /* 6-byte signed integer */ 4754 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4755 testcase( lhs<0 ); 4756 break; 4757 } 4758 case 6: { /* 8-byte signed integer */ 4759 x = FOUR_BYTE_UINT(aKey); 4760 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4761 lhs = *(i64*)&x; 4762 testcase( lhs<0 ); 4763 break; 4764 } 4765 case 8: 4766 lhs = 0; 4767 break; 4768 case 9: 4769 lhs = 1; 4770 break; 4771 4772 /* This case could be removed without changing the results of running 4773 ** this code. Including it causes gcc to generate a faster switch 4774 ** statement (since the range of switch targets now starts at zero and 4775 ** is contiguous) but does not cause any duplicate code to be generated 4776 ** (as gcc is clever enough to combine the two like cases). Other 4777 ** compilers might be similar. */ 4778 case 0: case 7: 4779 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4780 4781 default: 4782 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4783 } 4784 4785 assert( pPKey2->u.i == pPKey2->aMem[0].u.i ); 4786 v = pPKey2->u.i; 4787 if( v>lhs ){ 4788 res = pPKey2->r1; 4789 }else if( v<lhs ){ 4790 res = pPKey2->r2; 4791 }else if( pPKey2->nField>1 ){ 4792 /* The first fields of the two keys are equal. Compare the trailing 4793 ** fields. */ 4794 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4795 }else{ 4796 /* The first fields of the two keys are equal and there are no trailing 4797 ** fields. Return pPKey2->default_rc in this case. */ 4798 res = pPKey2->default_rc; 4799 pPKey2->eqSeen = 1; 4800 } 4801 4802 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4803 return res; 4804 } 4805 4806 /* 4807 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4808 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4809 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4810 ** at the start of (pKey1/nKey1) fits in a single byte. 4811 */ 4812 static int vdbeRecordCompareString( 4813 int nKey1, const void *pKey1, /* Left key */ 4814 UnpackedRecord *pPKey2 /* Right key */ 4815 ){ 4816 const u8 *aKey1 = (const u8*)pKey1; 4817 int serial_type; 4818 int res; 4819 4820 assert( pPKey2->aMem[0].flags & MEM_Str ); 4821 assert( pPKey2->aMem[0].n == pPKey2->n ); 4822 assert( pPKey2->aMem[0].z == pPKey2->u.z ); 4823 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4824 serial_type = (signed char)(aKey1[1]); 4825 4826 vrcs_restart: 4827 if( serial_type<12 ){ 4828 if( serial_type<0 ){ 4829 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type); 4830 if( serial_type>=12 ) goto vrcs_restart; 4831 assert( CORRUPT_DB ); 4832 } 4833 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4834 }else if( !(serial_type & 0x01) ){ 4835 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4836 }else{ 4837 int nCmp; 4838 int nStr; 4839 int szHdr = aKey1[0]; 4840 4841 nStr = (serial_type-12) / 2; 4842 if( (szHdr + nStr) > nKey1 ){ 4843 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4844 return 0; /* Corruption */ 4845 } 4846 nCmp = MIN( pPKey2->n, nStr ); 4847 res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp); 4848 4849 if( res>0 ){ 4850 res = pPKey2->r2; 4851 }else if( res<0 ){ 4852 res = pPKey2->r1; 4853 }else{ 4854 res = nStr - pPKey2->n; 4855 if( res==0 ){ 4856 if( pPKey2->nField>1 ){ 4857 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4858 }else{ 4859 res = pPKey2->default_rc; 4860 pPKey2->eqSeen = 1; 4861 } 4862 }else if( res>0 ){ 4863 res = pPKey2->r2; 4864 }else{ 4865 res = pPKey2->r1; 4866 } 4867 } 4868 } 4869 4870 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4871 || CORRUPT_DB 4872 || pPKey2->pKeyInfo->db->mallocFailed 4873 ); 4874 return res; 4875 } 4876 4877 /* 4878 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4879 ** suitable for comparing serialized records to the unpacked record passed 4880 ** as the only argument. 4881 */ 4882 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4883 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4884 ** that the size-of-header varint that occurs at the start of each record 4885 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4886 ** also assumes that it is safe to overread a buffer by at least the 4887 ** maximum possible legal header size plus 8 bytes. Because there is 4888 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4889 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4890 ** limit the size of the header to 64 bytes in cases where the first field 4891 ** is an integer. 4892 ** 4893 ** The easiest way to enforce this limit is to consider only records with 4894 ** 13 fields or less. If the first field is an integer, the maximum legal 4895 ** header size is (12*5 + 1 + 1) bytes. */ 4896 if( p->pKeyInfo->nAllField<=13 ){ 4897 int flags = p->aMem[0].flags; 4898 if( p->pKeyInfo->aSortFlags[0] ){ 4899 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){ 4900 return sqlite3VdbeRecordCompare; 4901 } 4902 p->r1 = 1; 4903 p->r2 = -1; 4904 }else{ 4905 p->r1 = -1; 4906 p->r2 = 1; 4907 } 4908 if( (flags & MEM_Int) ){ 4909 p->u.i = p->aMem[0].u.i; 4910 return vdbeRecordCompareInt; 4911 } 4912 testcase( flags & MEM_Real ); 4913 testcase( flags & MEM_Null ); 4914 testcase( flags & MEM_Blob ); 4915 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 4916 && p->pKeyInfo->aColl[0]==0 4917 ){ 4918 assert( flags & MEM_Str ); 4919 p->u.z = p->aMem[0].z; 4920 p->n = p->aMem[0].n; 4921 return vdbeRecordCompareString; 4922 } 4923 } 4924 4925 return sqlite3VdbeRecordCompare; 4926 } 4927 4928 /* 4929 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4930 ** Read the rowid (the last field in the record) and store it in *rowid. 4931 ** Return SQLITE_OK if everything works, or an error code otherwise. 4932 ** 4933 ** pCur might be pointing to text obtained from a corrupt database file. 4934 ** So the content cannot be trusted. Do appropriate checks on the content. 4935 */ 4936 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4937 i64 nCellKey = 0; 4938 int rc; 4939 u32 szHdr; /* Size of the header */ 4940 u32 typeRowid; /* Serial type of the rowid */ 4941 u32 lenRowid; /* Size of the rowid */ 4942 Mem m, v; 4943 4944 /* Get the size of the index entry. Only indices entries of less 4945 ** than 2GiB are support - anything large must be database corruption. 4946 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4947 ** this code can safely assume that nCellKey is 32-bits 4948 */ 4949 assert( sqlite3BtreeCursorIsValid(pCur) ); 4950 nCellKey = sqlite3BtreePayloadSize(pCur); 4951 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4952 4953 /* Read in the complete content of the index entry */ 4954 sqlite3VdbeMemInit(&m, db, 0); 4955 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 4956 if( rc ){ 4957 return rc; 4958 } 4959 4960 /* The index entry must begin with a header size */ 4961 getVarint32NR((u8*)m.z, szHdr); 4962 testcase( szHdr==3 ); 4963 testcase( szHdr==(u32)m.n ); 4964 testcase( szHdr>0x7fffffff ); 4965 assert( m.n>=0 ); 4966 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ 4967 goto idx_rowid_corruption; 4968 } 4969 4970 /* The last field of the index should be an integer - the ROWID. 4971 ** Verify that the last entry really is an integer. */ 4972 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid); 4973 testcase( typeRowid==1 ); 4974 testcase( typeRowid==2 ); 4975 testcase( typeRowid==3 ); 4976 testcase( typeRowid==4 ); 4977 testcase( typeRowid==5 ); 4978 testcase( typeRowid==6 ); 4979 testcase( typeRowid==8 ); 4980 testcase( typeRowid==9 ); 4981 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 4982 goto idx_rowid_corruption; 4983 } 4984 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 4985 testcase( (u32)m.n==szHdr+lenRowid ); 4986 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 4987 goto idx_rowid_corruption; 4988 } 4989 4990 /* Fetch the integer off the end of the index record */ 4991 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 4992 *rowid = v.u.i; 4993 sqlite3VdbeMemReleaseMalloc(&m); 4994 return SQLITE_OK; 4995 4996 /* Jump here if database corruption is detected after m has been 4997 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 4998 idx_rowid_corruption: 4999 testcase( m.szMalloc!=0 ); 5000 sqlite3VdbeMemReleaseMalloc(&m); 5001 return SQLITE_CORRUPT_BKPT; 5002 } 5003 5004 /* 5005 ** Compare the key of the index entry that cursor pC is pointing to against 5006 ** the key string in pUnpacked. Write into *pRes a number 5007 ** that is negative, zero, or positive if pC is less than, equal to, 5008 ** or greater than pUnpacked. Return SQLITE_OK on success. 5009 ** 5010 ** pUnpacked is either created without a rowid or is truncated so that it 5011 ** omits the rowid at the end. The rowid at the end of the index entry 5012 ** is ignored as well. Hence, this routine only compares the prefixes 5013 ** of the keys prior to the final rowid, not the entire key. 5014 */ 5015 int sqlite3VdbeIdxKeyCompare( 5016 sqlite3 *db, /* Database connection */ 5017 VdbeCursor *pC, /* The cursor to compare against */ 5018 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 5019 int *res /* Write the comparison result here */ 5020 ){ 5021 i64 nCellKey = 0; 5022 int rc; 5023 BtCursor *pCur; 5024 Mem m; 5025 5026 assert( pC->eCurType==CURTYPE_BTREE ); 5027 pCur = pC->uc.pCursor; 5028 assert( sqlite3BtreeCursorIsValid(pCur) ); 5029 nCellKey = sqlite3BtreePayloadSize(pCur); 5030 /* nCellKey will always be between 0 and 0xffffffff because of the way 5031 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 5032 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 5033 *res = 0; 5034 return SQLITE_CORRUPT_BKPT; 5035 } 5036 sqlite3VdbeMemInit(&m, db, 0); 5037 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 5038 if( rc ){ 5039 return rc; 5040 } 5041 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); 5042 sqlite3VdbeMemReleaseMalloc(&m); 5043 return SQLITE_OK; 5044 } 5045 5046 /* 5047 ** This routine sets the value to be returned by subsequent calls to 5048 ** sqlite3_changes() on the database handle 'db'. 5049 */ 5050 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){ 5051 assert( sqlite3_mutex_held(db->mutex) ); 5052 db->nChange = nChange; 5053 db->nTotalChange += nChange; 5054 } 5055 5056 /* 5057 ** Set a flag in the vdbe to update the change counter when it is finalised 5058 ** or reset. 5059 */ 5060 void sqlite3VdbeCountChanges(Vdbe *v){ 5061 v->changeCntOn = 1; 5062 } 5063 5064 /* 5065 ** Mark every prepared statement associated with a database connection 5066 ** as expired. 5067 ** 5068 ** An expired statement means that recompilation of the statement is 5069 ** recommend. Statements expire when things happen that make their 5070 ** programs obsolete. Removing user-defined functions or collating 5071 ** sequences, or changing an authorization function are the types of 5072 ** things that make prepared statements obsolete. 5073 ** 5074 ** If iCode is 1, then expiration is advisory. The statement should 5075 ** be reprepared before being restarted, but if it is already running 5076 ** it is allowed to run to completion. 5077 ** 5078 ** Internally, this function just sets the Vdbe.expired flag on all 5079 ** prepared statements. The flag is set to 1 for an immediate expiration 5080 ** and set to 2 for an advisory expiration. 5081 */ 5082 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ 5083 Vdbe *p; 5084 for(p = db->pVdbe; p; p=p->pNext){ 5085 p->expired = iCode+1; 5086 } 5087 } 5088 5089 /* 5090 ** Return the database associated with the Vdbe. 5091 */ 5092 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 5093 return v->db; 5094 } 5095 5096 /* 5097 ** Return the SQLITE_PREPARE flags for a Vdbe. 5098 */ 5099 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 5100 return v->prepFlags; 5101 } 5102 5103 /* 5104 ** Return a pointer to an sqlite3_value structure containing the value bound 5105 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 5106 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 5107 ** constants) to the value before returning it. 5108 ** 5109 ** The returned value must be freed by the caller using sqlite3ValueFree(). 5110 */ 5111 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 5112 assert( iVar>0 ); 5113 if( v ){ 5114 Mem *pMem = &v->aVar[iVar-1]; 5115 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5116 if( 0==(pMem->flags & MEM_Null) ){ 5117 sqlite3_value *pRet = sqlite3ValueNew(v->db); 5118 if( pRet ){ 5119 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 5120 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 5121 } 5122 return pRet; 5123 } 5124 } 5125 return 0; 5126 } 5127 5128 /* 5129 ** Configure SQL variable iVar so that binding a new value to it signals 5130 ** to sqlite3_reoptimize() that re-preparing the statement may result 5131 ** in a better query plan. 5132 */ 5133 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 5134 assert( iVar>0 ); 5135 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5136 if( iVar>=32 ){ 5137 v->expmask |= 0x80000000; 5138 }else{ 5139 v->expmask |= ((u32)1 << (iVar-1)); 5140 } 5141 } 5142 5143 /* 5144 ** Cause a function to throw an error if it was call from OP_PureFunc 5145 ** rather than OP_Function. 5146 ** 5147 ** OP_PureFunc means that the function must be deterministic, and should 5148 ** throw an error if it is given inputs that would make it non-deterministic. 5149 ** This routine is invoked by date/time functions that use non-deterministic 5150 ** features such as 'now'. 5151 */ 5152 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 5153 const VdbeOp *pOp; 5154 #ifdef SQLITE_ENABLE_STAT4 5155 if( pCtx->pVdbe==0 ) return 1; 5156 #endif 5157 pOp = pCtx->pVdbe->aOp + pCtx->iOp; 5158 if( pOp->opcode==OP_PureFunc ){ 5159 const char *zContext; 5160 char *zMsg; 5161 if( pOp->p5 & NC_IsCheck ){ 5162 zContext = "a CHECK constraint"; 5163 }else if( pOp->p5 & NC_GenCol ){ 5164 zContext = "a generated column"; 5165 }else{ 5166 zContext = "an index"; 5167 } 5168 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s", 5169 pCtx->pFunc->zName, zContext); 5170 sqlite3_result_error(pCtx, zMsg, -1); 5171 sqlite3_free(zMsg); 5172 return 0; 5173 } 5174 return 1; 5175 } 5176 5177 #ifndef SQLITE_OMIT_VIRTUALTABLE 5178 /* 5179 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 5180 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 5181 ** in memory obtained from sqlite3DbMalloc). 5182 */ 5183 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 5184 if( pVtab->zErrMsg ){ 5185 sqlite3 *db = p->db; 5186 sqlite3DbFree(db, p->zErrMsg); 5187 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 5188 sqlite3_free(pVtab->zErrMsg); 5189 pVtab->zErrMsg = 0; 5190 } 5191 } 5192 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5193 5194 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5195 5196 /* 5197 ** If the second argument is not NULL, release any allocations associated 5198 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 5199 ** structure itself, using sqlite3DbFree(). 5200 ** 5201 ** This function is used to free UnpackedRecord structures allocated by 5202 ** the vdbeUnpackRecord() function found in vdbeapi.c. 5203 */ 5204 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 5205 if( p ){ 5206 int i; 5207 for(i=0; i<nField; i++){ 5208 Mem *pMem = &p->aMem[i]; 5209 if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem); 5210 } 5211 sqlite3DbFreeNN(db, p); 5212 } 5213 } 5214 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5215 5216 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5217 /* 5218 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 5219 ** then cursor passed as the second argument should point to the row about 5220 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 5221 ** the required value will be read from the row the cursor points to. 5222 */ 5223 void sqlite3VdbePreUpdateHook( 5224 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 5225 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 5226 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 5227 const char *zDb, /* Database name */ 5228 Table *pTab, /* Modified table */ 5229 i64 iKey1, /* Initial key value */ 5230 int iReg, /* Register for new.* record */ 5231 int iBlobWrite 5232 ){ 5233 sqlite3 *db = v->db; 5234 i64 iKey2; 5235 PreUpdate preupdate; 5236 const char *zTbl = pTab->zName; 5237 static const u8 fakeSortOrder = 0; 5238 5239 assert( db->pPreUpdate==0 ); 5240 memset(&preupdate, 0, sizeof(PreUpdate)); 5241 if( HasRowid(pTab)==0 ){ 5242 iKey1 = iKey2 = 0; 5243 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 5244 }else{ 5245 if( op==SQLITE_UPDATE ){ 5246 iKey2 = v->aMem[iReg].u.i; 5247 }else{ 5248 iKey2 = iKey1; 5249 } 5250 } 5251 5252 assert( pCsr!=0 ); 5253 assert( pCsr->eCurType==CURTYPE_BTREE ); 5254 assert( pCsr->nField==pTab->nCol 5255 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 5256 ); 5257 5258 preupdate.v = v; 5259 preupdate.pCsr = pCsr; 5260 preupdate.op = op; 5261 preupdate.iNewReg = iReg; 5262 preupdate.keyinfo.db = db; 5263 preupdate.keyinfo.enc = ENC(db); 5264 preupdate.keyinfo.nKeyField = pTab->nCol; 5265 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder; 5266 preupdate.iKey1 = iKey1; 5267 preupdate.iKey2 = iKey2; 5268 preupdate.pTab = pTab; 5269 preupdate.iBlobWrite = iBlobWrite; 5270 5271 db->pPreUpdate = &preupdate; 5272 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 5273 db->pPreUpdate = 0; 5274 sqlite3DbFree(db, preupdate.aRecord); 5275 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 5276 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 5277 if( preupdate.aNew ){ 5278 int i; 5279 for(i=0; i<pCsr->nField; i++){ 5280 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 5281 } 5282 sqlite3DbFreeNN(db, preupdate.aNew); 5283 } 5284 } 5285 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5286